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NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION FOR1
DATA ASSIMILATION∗2

JASON A. OTKIN †‡ , ROLAND W. E. POTTHAST ‡§ , AND AMOS S. LAWLESS ‡¶‖3

Abstract. In this study, we develop model bias estimators based on an asymptotic expansion4
of the model dynamics for small time scales and small perturbations in a model parameter, and5
then use the estimators to improve the performance of a data assimilation system. We employ the6
well-known Lorenz (1963) model so that we can study all aspects of the dynamical system and model7
bias estimators in a detailed way that would not be possible with a full physics numerical weather8
prediction model. In particular, we first work out the asymptotics of the Lorenz model for small9
changes in one of its parameters and then use statistics from cycled data assimilation experiments10
to demonstrate that the asymptotics accurately represent the behavior of the model and that the11
coefficients of the nonlinear asymptotical expansion can be reasonably estimated by solving a least12
squares minimization problem.13

In data assimilation, the background error covariance matrix usually estimates the uncertainty14
of the model background, which is then used along with the observation error covariance matrix15
to produce an updated analysis. If the uncertainty of the model background is strongly influenced16
by time-dependent model biases, then the development of nonlinear bias estimators that also vary17
with time could improve the performance of the assimilation system and the accuracy of the updated18
analysis. We demonstrate this improvement through the combination of a constant background error19
covariance matrix with a dynamically-varying matrix computed using the model bias estimators.20
Numerical tests using the Lorenz (1963) model illustrate the feasibility of the approach and show21
that it leads to clear improvements in the analysis and forecast accuracy.22

Key words. Variational data assimilation, asymptotic expansion, model error, parameter esti-23
mation24

AMS subject classifications. 34A55, 65K10, 34E0525

1. Introduction. Partial differential equations are widely used in scientific and26
technological fields to simulate the evolution of natural phenomena. For initial bound-27
ary condition problems such as those that are commonly encountered in atmospheric28
science, an accurate prediction of the spatial and temporal characteristics of var-29
ious weather and climate features depends not only on the ability of a numerical30
model to realistically simulate the physical processes controlling their evolution, but31
also on the ability of a data assimilation system to provide the forecast model an32
accurate estimate of the initial conditions. Atmospheric data assimilation systems33
typically combine information from a short-range model forecast, or ensemble of fore-34
casts, with a set of observations gathered over a specified time period to produce an35
analysis of the current state of the dynamical system that then serves as the initial36
conditions for the next model forecast. Commonly used data assimilation methods37
include variational assimilation that determines the analysis through minimization of38
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2 JASON A. OTKIN, ROLAND W. E. POTTHAST, AND AMOS S. LAWLESS

a cost function, ensemble methods that use an ensemble of forecasts to dynamically39
estimate the sample covariances between different state components when determin-40
ing how new observations impact the ensemble analysis, and so-called hybrid methods41
that combine aspects of variational and ensemble data assimilation methods. A wide42
range of literature is known today introducing and studying different data assimilation43
methods, see for example [46, 36, 20, 3, 75, 62, 38, 52, 33, 10].44

Regardless of which assimilation methodology is employed, generation of the best45
possible analysis state x(a) through combination of the model first guess or background46
state x(b) with the available observations requires knowledge of the observation error47
and the underlying uncertainty in the model background x(b). The observation error48
uncertainty is usually determined by the covariance matrix R ∈ Rm×m of the obser-49
vation vector y ∈ Rm in observation space Rm, where m ∈ N denotes the number50
of observations. The uncertainty of the model background state x(b) is measured by51
the covariance matrix B ∈ Rn×n, where n ∈ N is the dimension of the model space52
Rn and x(b) ∈ Rn. Variational data assimilation methods calculate the analysis state53
x(a) ∈ Rn by minimizing the functional54

(1.1) J(x) := ||x− x(b)||2B−1 + ||y −H(x)||2R−1 , x ∈ Rn, y ∈ Rm55

where H : Rn → Rm is the forward observation operator that maps the model state56
x into the simulated observation H(x) ∈ Rm. For linear observation operators, it is57
well-known (c.f. [52], Chapter 5) that the minimization of (1.1) is given by58

(1.2) x(a) = x(b) +BHT (R+HBHT )−1(y −H(x(b))).59

Because the model background and observations are not perfect, accurate knowledge60
of the covariance matrices B and R is very important for data assimilation since they61
determine the weights that are applied to the model background and observations,62
respectively, when generating the updated analysis x(a). In addition, the matrix B63
spreads information spatially within a region surrounding the observation location64
and can also be used to add balance constraints between analysis variables based on65
physical principles [8, 9].66

Despite its importance, an exact form for B cannot be determined for real-world67
applications because the true state of the dynamical system cannot be completely68
known due to a limited number of observations and the presence of errors in the obser-69
vations that are available. For variational assimilation systems, the model background70
error covariances are often computed using the so-called National Meteorological Cen-71
ter (NMC) method that was first described by [58]. This method estimates B using72
differences between forecasts of different lengths valid at the same time. For example,73
forecast errors could be assessed by examining differences between 24 and 48 hour74
forecasts from model integrations initialized one day apart. These difference fields are75
usually obtained from a large collection of model forecasts covering time periods of a76
month or longer. As such, the NMC method generates a climatological estimate of B77
that may not properly represent the true model errors on any given day due to changes78
in the atmospheric conditions. Because of this, some operational weather forecast-79
ing centers have developed new methods to generate B. One approach is to use an80
ensemble of data assimilations (EDA) where an ensemble of reduced-resolution data81
assimilation cycles is performed in which the observations and model are perturbed in82
some manner. A theoretical analysis by [35] has shown that if the perturbations are83
drawn from the true distributions of observation and model errors, that the spread in84
the resultant EDA analyses about the unperturbed control analysis will be represen-85
tative of the background error. This approach has the advantage of introducing some86
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NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION FOR DATA ASSIMILATION 3

flow-dependency to the B matrix, thereby allowing it to better capture the errors of87
the day ([13, 35, 61]).88

Ensemble data assimilation systems such as the ensemble Kalman filter (EnKF)89
(e.g. [20, 18, 28, 21, 29, 4, 80, 72, 30, 32]) on the other hand re-compute B for90
each assimilation step using an estimator based on output from an ensemble x(b,`) of91
forecasts valid at the current analysis time, where ` = 1, ..., L, and L is the size of the92
ensemble. For most applications, the standard stochastic estimator93

(1.3) B :=
1

L− 1

L∑
`=1

(x(b,`) − x̄(b))(x(b,`) − x̄(b))T , x̄(b) :=
1

L

L∑
`=1

x(b,`),94

is used to compute the first guess ensemble mean x̄(b) and the background error95
covariance matrix B. The stochastic estimator includes the uncertainty of the previous96
model analysis propagated to the current analysis time. Because the forecast model97
is an approximation of the real dynamical system, the distribution of the first guess98
ensemble could be sub-optimal due to the impact of systematic errors on the ensemble99
mean and ensemble spread. Similar problems can arise when using the NMC method100
because in situations where the model error varies with time, the forecast differences101
used to compute the covariances in B will include the dynamically-varying model bias.102
This could result in incorrect statistical relationships between the model variables.103
Both of these outcomes are not desirable because the inclusion of systematic model104
errors when generating B can degrade the accuracy of the posterior analysis x(a)105
obtained during the data assimilation step.106

Various studies have focused on improving methods to estimate the background107
error covariances used by modern data assimilation systems; however, accounting108
for model error is challenging because of the large size of geophysical models [16].109
One approach is to add perturbations to a subset of the model variables, such as110
temperature, at the initialization time, whereas another technique adds random per-111
turbations to specific parameters in the parameterization schemes used to simulate112
sub-grid scale processes during each model time step. The goal with both approaches113
is to increase the range of possible forecast solutions to realistically address the impact114
of systematic model errors and the underlying uncertainties in the parameterization115
schemes. Substantial research has been directed toward development of these meth-116
ods, which have the potential to greatly improve the performance of assimilation117
systems [14, 79, 63, 25, 71, 11]. As a corollary to the above approaches, other studies118
have shown that the detrimental impact of systematic model errors in ensemble data119
assimilation systems can be reduced by using different parameterization schemes in120
each ensemble member [49, 22].121

Another approach widely used in ensemble data assimilation systems to increase122
the ensemble spread is to apply additive or multiplicative covariance inflation during123
the assimilation step. Some amount of covariance inflation is often necessary because124
the rank deficiency of the system can lead to an underestimation of the ensemble125
variance and because systematic model errors can cause the model background x(b)126
to deviate greatly from reality. This in turn can lead to so-called filter divergence127
where the model analyses can no longer be pulled toward the observations during the128
data assimilation step [33]. In the case of additive covariance inflation, the impact129
of the unknown model error is treated by drawing random perturbations from some130
distribution and then adding them to either the model background x(b) or to the131
model analysis x(a). With multiplicative covariance inflation, the ensemble spread for132
selected model variables is multiplied by a real number to achieve the desired ensemble133
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4 JASON A. OTKIN, ROLAND W. E. POTTHAST, AND AMOS S. LAWLESS

spread. Both methods have some adaptivity because observation-minus-background134
(OMB) statistics are used to estimate how much inflation is necessary. There is a135
very active community working on these approaches, see for example [26, 5, 6, 31, 44,136
43, 51, 81].137

Model error has often been ignored in variational data assimilation systems be-138
cause it is difficult to quantify and has been viewed as having a minor impact compared139
to random errors in the initial conditions and systematic errors in the observations140
[15]. Unlike ensemble assimilation systems where the background error covariance ma-141
trix B is dynamically estimated for each assimilation cycle using the ensemble output,142
additional statistical or dynamical assumptions are generally necessary when creating143
these estimates for variational systems. Studies by [17, 84, 77, 73, 74] have shown144
that treating the model error as part of the state estimation problem substantially im-145
proves the accuracy of the state estimates. Theoretical model error frameworks were146
developed by [24, 54, 55, 56] based on the behavior of model errors in deterministic147
models. These frameworks were then used by [15] to derive evolution equations for the148
model error covariances and correlations that address errors due to parameterization149
schemes.150

The desire to properly account for model error also underpins recent efforts to151
move from "strong-constraint" 4-dimensional variational systems that assume the152
forecast model is perfect to "weak-constraint" systems that include some estimate153
of the model error. This concept was introduced 50 years ago by [69], however, it154
was not implemented in a full-physics forecast model for several decades because of155
the lack of information with which to define and solve the problem and the compu-156
tational burden associated with inverting the model error covariance matrix along157
with the other matrices already included in the strong-constraint formulation [53].158
The basic premise behind the weak-constraint approach is that it is sufficient to only159
approximately satisfy the model equations because they are not exact anyway due to160
incomplete knowledge of the physical processes being modeled or the need to simplify161
the governing equations due to computational limitations. Despite the challenges as-162
sociated with implementing weak-constraint systems, their use has generally led to163
more accurate model analyses and forecasts when compared to strong-constraint sys-164
tems due to the higher number of degrees of freedom. As such, they are becoming165
more widely used in variational data assimilation systems [74, 45, 53]. A recent study166
by [34] has also shown that model errors can be accounted for in strong-constraint167
systems by allowing errors in both the model and the observations when considering168
the statistics of the innovation vector. They demonstrate that a more accurate esti-169
mate of the model state can be obtained when the combined model and observation170
error statistics are used instead of the standard observation-only error statistics.171

In this paper, we seek to extend our understanding of how to identify and treat172
model bias in modern data assimilation systems. Key tasks of this research include: 1)173
studying the behavior of model errors in a nonlinear dynamical system, 2) developing174
nonlinear conditional model bias estimators using the observations and the model175
first guess and analysis states, and 3) employing these estimators during variational176
data assimilation experiments to assess their ability to improve the performance of177
the system. Numerical experiments are performed using the Lorenz-63 (L63) model178
[47], which is a well-known and popular study object within the data assimilation and179
dynamical systems communities.180

We begin by carrying out an asymptotic analysis of the L63 model when one181
of its parameters, in this case, the normalized Rayleigh number ρ, varies with time.182
In the L63 model, the ρ parameter is usually set to a constant value; however, we183

This manuscript is for review purposes only.



NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION FOR DATA ASSIMILATION 5

allow it to vary with time in order to introduce a model bias. This is accomplished184
through use of a coupled version of the L63 model where a background or "hidden"185
system S2 is used to control how the ρ = ρ(t) parameter changes with time in the186
"primary" system S1 that is used to represent the truth. Though we chose to focus187
on variations in the ρ parameter during this study, the approach works in the same188
way for the other L63 model parameters. We then develop a nonlinear model bias189
estimator method based on the initial ideas discussed in [57] where the bias estimator190
is formulated as a polynomial expansion of the model variables and the coefficients of191
this expansion are determined by solving a least-squares minimization problem. The192
ability of this method to dynamically estimate the model error contribution to the193
matrix B and to improve the resultant OMB statistics is demonstrated by carrying194
out an experiment where B is represented as the sum of static and dynamically-195
varying components. Finally, we demonstrate the feasibility and potential utility of196
the asymptotic expansion and nonlinear bias estimation method by running numerical197
experiments using a 3-dimensional variational (3DVAR) data assimilation system and198
a coupled version of the L63 model.199

A description of the coupled L63 modeling system and derivation of the model200
asymptotics are provided in Section 2. The utility of dynamically estimating the201
model background error covariance matrix B is discussed in Section 3, along with202
development of nonlinear conditional model error estimators. We then perform various203
numerical experiments using the L63 model in Section 4, first demonstrating the204
validity of the asymptotic expansion of the nonlinear model error estimators in Section205
4.1. This is followed by a study of the optimality of the fixed and dynamic components206
of the B matrix used during data assimilation and then a study of the estimation of207
the nonlinear model error dynamics based on the first guess minus analysis statistics.208
Results from these sections will demonstrate the feasibility of using methods developed209
during this study to estimate nonlinear model errors without any prior knowledge or210
assumptions regarding the form of the model dynamics. Conclusions are presented in211
Section 5.212

2. Estimating System Bias.213

2.1. Coupled Lorenz 1963 Model. We want to use a relatively simple atmo-214
spheric model to assess the behavior of nonlinear model biases and to develop ways to215
take into account those biases in a way that is complex enough to represent nonlinear216
atmospheric processes while being simple enough to provide insight into the nonlinear217
behavior of the system. To accomplish this goal, we have chosen to employ the L63218
model [47], which is widely used within the atmospheric data assimilation commu-219
nity (see for example [19, 76, 78, 59, 2, 15, 41, 27, 42, 67, 82, 83, 48, 23]) because it220
is less complex than a full physics numerical weather prediction model while main-221
taining strong nonlinearity representative of many atmospheric processes. The L63222
model consists of a set of three coupled ordinary differential equations that provide a223
simplified description of dry convection. The model equations can be written as:224

(2.1) τ
dx1
dt

= σ(x2 − x1)225

226

(2.2) τ
dx2
dt

= ρx1 − x2 − x1x3227

228

(2.3) τ
dx3
dt

= x1x2 − βx3229
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6 JASON A. OTKIN, ROLAND W. E. POTTHAST, AND AMOS S. LAWLESS

where x1(t), x2(t), and x3(t) are the dependent variables, τ is a temporal scaling230
factor and σ, ρ, and β are the parameters of the model. For some parameter values,231
the system shows chaotic behavior because very small perturbations in the initial232
conditions can grow very rapidly into completely different solutions. The model was233
designed to simulate atmospheric dry cellular convection following the work of [68].234
The model simulates the evolution of a forced dissipative hydrodynamic system that235
possesses non-periodic and unstable solutions. The x1 variable measures the intensity236
of convective motion, the x2 variable measures the temperature difference between237
the ascending and descending currents, and the x3 variable measures the distortion238
of the vertical temperature profile from linearity. The model parameters represent239
the Prandtl number (σ), a normalized Rayleigh number (ρ), and a non-dimensional240
wave number (β). The critical Rayleigh number for the system is 24.74; however, ρ is241
typically set to the slightly supercritical value of 28 following the work of [47]. The σ242
and β parameters are set to 10 and 8/3, respectively. Together, the values for these243
three parameters sustain the chaotic nature of the model.244

In this study, we investigate the sensitivity of the L63 model to perturbations245
in the ρ parameter and identify suitable predictors that can be used to estimate246
conditional biases in the state variables (x1, x2, x3) due to these perturbations. We247
first generate a nature or "truth" simulation that tracks the evolution of the state248
variables over a certain period of time. The truth simulation is generated using a249
particular model for the behavior of ρ over time. Here, we choose to use a coupled250
version of the L63 model where each system (S1, S2) is run at a different speed and251
one-way coupling occurs through the influence of S2 on the ρ parameter in S1, as252
is illustrated in Fig. 1. After some experimentation, we decided to set τS1 = 1 and253
τS2 = 5, which means that the hidden system S2 is integrated forward at one-fifth254
the speed of S1.255

System S1: fast Lorenz 63 model
(x1S1, x2S1, x3S1) with (τS1, ρS1, σS1, βS1)

ρtrue = ρS1 = ρ0 + x1S2(t) ∗ cρ

System S2: slow Lorenz 63 model
(x1S2, x2S2, x3S2) with (τS2, ρS2, σS2, βS2)

Fig. 1. Coupled version of the Lorenz-63 model,
with the fast system S1 dependent on the slow system
S2. S1 is used to generate the nature simulation.

The state location xS2 ob-256
tained from the hidden system is257
then scaled by a factor of cρ = 0.2,258
with the scaled value subsequently259
used to perturb ρ0, such that260
(2.4)
ρS1 = ρ0 + x1S2(t) · cρ, t ∈ R,261

where ρ0 = ρS2 = 28, x1S2(t) · cρ is262
the δρ perturbation obtained from263
S2, and ρS1 is the resultant value264
used when integrating S1 during265
the next time step. The scaling266
of x1S2 by cp = 0.2 means that267
δρ varies between approximately -268

4 and +4, which is reasonable because this represents departures up to 15% from ρ0.269
The slowly varying autocorrelated δρ perturbations could be thought of as represent-270
ing changes in the original L63 model equations due to the influence of the seasonal271
cycle on daily forecasts or the diurnal cycle on hourly forecasts. For example, pa-272
rameters in cloud microphysics parameterization schemes are often assigned constant273
values even though some of them are known to vary, sometimes by up to several orders274
of magnitude, depending upon the stage of the cloud’s life cycle. A similar approach275
was used by [83], where they attached an ocean slab model to the L63 model equa-276
tions in order to represent the interaction between the slowly-varying ocean and the277
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rapidly-changing atmosphere. Note that the parameters σS1 and σS2 were set to 10,278
and βS1 and βS2 were set to 8/3, as is typically done in the L63 model.279

II. After generating the "truth" simulation using S1 in which the ρS1 parameter280
varied with time, observations were generated for each state variable (x1S1, x2S1, x3S1)281
at each model time step and then used in cycled data assimilation experiments employ-282
ing a 3DVAR data assimilation system. The truth simulation and data assimilation ex-283
periments were started with the same initial conditions (x1S1, x2S1, x3S1) = (2, 3, 11);284
however, in the absence of data assimilation, they will follow different trajectories285
thereafter due to differences in the ρ parameter. The L63 model is integrated to the286
next time step using a 4th order Runge-Kutta time integration scheme. Various tests287
were performed using different observation error magnitudes and time step lengths, as288
will be shown in Section 4. Figure 2 shows the trajectory of the model state variables289
and evolution of the ρS1 parameter during the truth simulation.290

The data assimilation experiments employed the typical L63 model equations,291
including ρ = 28; however, for these experiments, the equations represent an imperfect292
model because we know that ρ is not constant during the truth simulation. Let us293
assume that we know that ρ varies with time, but that we only know its mean value294
(ρ̄ = 28) and not how it changes with time. The instantaneous difference between295
ρ in the data assimilation experiment and ρ in the truth simulation represents a296
model error; however, these differences correspond to conditional model biases when297
assessed over long time periods because δρ is a function of S2. Because errors in298
ρ directly impact the evolution of all three of the state variables in nonlinear ways,299
the instantaneous errors will potentially result in biases in the model state variables300
that are a nonlinear function of one or more predictors when assessed over long time301
periods. For example, a numerical weather prediction model may have the tendency302
to produce convection that is too strong during the day or too weak during the night,303
both of which will impact the sign and magnitude of the model biases in nonlinear304
ways during different parts of the diurnal cycle.305

Fig. 2. (a) Butterfly diagram showing the model trajectory during 600 time steps of the truth
simulation using the coupled L63 system described in Section 2.1. (b) Time series showing the
evolution of the ρS1 parameter during the truth simulation, where ρS1 for each model time step is
set using (2.4).

2.2. Asymptotics for Model Error of the Lorenz 1963 System. Here,306
we first evaluate how the model variables (x1, x2, x3) change in dependence on the307
model parameter ρ. In particular, we aim to develop an asymptotic estimator for the308
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8 JASON A. OTKIN, ROLAND W. E. POTTHAST, AND AMOS S. LAWLESS

error in (x1, x2, x3) depending on ρ and time t. The asymptotic analysis is performed309
using a Taylor series expansion with an explicit integral form of the error term. This310
approach is necessary because some of the constants will be zero in the higher order311
terms; therefore, we need to take sufficiently many terms into account to get the312
correct higher order terms.313

Theorem 2.1. The leading terms of the asymptotic analysis of the L63 system314
with respect to variations of ρ = ρ0 + δρ, where we use t = t0 + δt and O(s) denotes315
a function bounded by c|s| with some constant c in a neighborhood of s = 0, are given316
by317

x1(ρ, t)− x1(ρ0, t) =
1

2
σx1(ρ0, t0) · δρ · (δt)2 +O(δρ · δt3)(2.5)318

x2(ρ, t)− x2(ρ0, t) = x1(ρ0, t0) · δρ · δt+O(δρ · δt2)(2.6)319

x3(ρ, t)− x3(ρ0, t) = x21(ρ0, t0) · δρ · (δt)2 +O(δρ · δt3)(2.7)320

Proof. We work out the proof in four steps, starting with some general setup and321
then considering the variables x1, x2, and x3 in three steps.322

Step 1. We begin by differentiating the equations (2.1) - (2.3) with respect to ρ
using the product rule, where

x′1 =
dx1
dρ

, x′2 =
dx2
dρ

, x′3 =
dx3
dρ

are the derivatives of the state variables with respect to ρ. Because the differentiation323
with respect to t and to ρ can be exchanged in the case of continuously differentiable324
functions, we obtain:325

dx′1
dt

= σx′2 − σx′1(2.8)326

dx′2
dt

= x′1ρ+ x1 − x′2 − x′1x3 − x1x′3(2.9)327

dx′3
dt

= x′1x2 + x1x
′
2 − βx′3.(2.10)328

Note that all of the variables depend on time t and the parameter ρ = ρ(t), and that329
the τ terms in equations (2.1) - (2.3) have been set to 1 to represent the original L63330
model equations as described in [47].331

To assess the sensitivity of the L63 model equations to variations in ρ at times332
t close to some initial time, t0, we begin by looking at the scenario where the initial333
values for (x1, x2, x3) are prescribed and identical for all ρ under consideration, such334
that at t = t0:335

x1(ρ, t0) = x1,0(2.11)336

x2(ρ, t0) = x2,0(2.12)337

x3(ρ, t0) = x3,0.(2.13)338

This is an initial value problem where the derivatives of each equation with respect339
to ρ, (x′1, x

′
2, x
′
3), are equal to zero at t = t0, i.e.340

(2.14) x′1(ρ, t0) = 0, x′2(ρ, t0) = 0, x′3(ρ, t0) = 0.341
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After inserting these initial values into (2.8) - (2.10), we obtain:342

dx′1
dt

(ρ, t0) = 0(2.15)343

dx′2
dt

(ρ, t0) = x1(ρ, t0)(2.16)344

dx′3
dt

(ρ, t0) = 0(2.17)345

Step 2. Equation (2.9) reveals that the time rate of change of the sensitivity of x2346
with respect to ρ (i.e., x′2) is a function of its location along the x1-axis. We now347
carry out an asymptotic analysis by an expansion of the functions with respect to348
variations in time t = t0 + δt and the parameter ρ = ρ0 + δρ. To assess the sensitivity349
of x2 with respect to small variations in ρ, we employ (2.14) and (2.16) as follows.350
We estimate351

x2(ρ, t)− x2(ρ0, t) =

∫ ρ

ρ0

x′2(ρ̃, t) dρ̃352

=

∫ ρ

ρ0

(
x′2(ρ̃, t0)︸ ︷︷ ︸

=0

+

∫ t

t0

dx′2(ρ̃, t̃)

dt̃
dt̃
)
dρ̃353

=

∫ ρ

ρ0

∫ t

t0

dx′2(ρ̃, t̃)

dt̃
dt̃ dρ̃354

=

∫ ρ

ρ0

∫ t

t0

( dx′2(ρ̃, t̃)

dt̃
|t0︸ ︷︷ ︸

=x1(ρ̃,t0)

+

∫ t̃

t0

d2x′2(ρ̃, s)

ds2
ds
)
dt̃ dρ̃.(2.18)355

We estimate both terms in (2.18) separately. For the first term T1, by (2.11) we obtain356

T1 =

∫ ρ

ρ0

∫ t

t0

x1(ρ̃, t0) dt̃ dρ̃357

=

∫ ρ

ρ0

∫ t

t0

x1(ρ0, t0) dt̃ dρ̃358

= x1(ρ0, t0) · δρ · δt,(2.19)359

where x1(ρ̃, t0) is replaced by x1(ρ0, t0) because the derivative of x1 with respect to ρ360
is zero at t0 following (2.14). The δρ and δt terms are obtained by solving the definite361
integrals, with δρ denoting the interval [ρ0, ρ] and δt denoting the interval [t0, t]. The362
second term is estimated in a similar way by363

T2 =

∫ ρ

ρ0

∫ t

t0

∫ t̃

t0

d2x′2(ρ̃, s)

ds2
ds dt̃ dρ̃364

= O(δρ · δt2).(2.20)365

Combining the estimates (2.19) and (2.20) then leads to366

x2(ρ, t)− x2(ρ0, t) = x1(ρ0, t0) · δρ · δt+O(δρ · δt2).(2.21)367

This proves equation (2.6) in Theorem 2.1.368
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Step 3. To obtain an estimate for x1(ρ, t), we proceed as in equation (2.18) and,369
for a twice continuously differentiable function x1(ρ, t), estimate370

x1(ρ, t) = x1(ρ0, t) +

∫ ρ

ρ0

x′1(ρ̃, t) dρ̃(2.22)371

= x1(ρ0, t) +

∫ ρ

ρ0

(
x′1(ρ0, t) +

∫ ρ̃

ρ0

x′′1(˜̃ρ, t) d ˜̃ρ
)
dρ̃(2.23)372

We note that by taking the derivative of (2.8) with respect to time and inserting (2.16)373
into the resultant equation, we obtain374

d2x′1(ρ, t0)

dt2
= σ

dx′2(ρ, t0)

dt
− σdx

′
1(ρ, t0)

dt
375

= σx1(ρ, t0)(2.24)376

and thus, the derivative of (2.24) with respect to time gives377

d2x′′1(ρ, t0)

dt2
= σx′1(ρ, t0) = 0.(2.25)378

Performing a third order expansion around t0 then leads to an estimate for x′′1(ρ, t):379

x′′1(ρ, t) = O(δt3).(2.26)380

After inserting (2.26) into (2.23) and then solving the definite integrals, we obtain:381

x1(ρ, t) = x1(ρ0, t) + x′1(ρ0, t) · δρ+O(δρ2 · δt3)(2.27)382

To estimate x′1(ρ, t), with the help of (2.14) and (2.15), we derive:383

x′1(ρ, t) = x′1(ρ, t0)︸ ︷︷ ︸
=0

+

∫ t

t0

dx′1(ρ, t̃)

dt̃
dt̃384

=

∫ t

t0

( dx′1(ρ, t̃)

dt̃

∣∣∣
t0︸ ︷︷ ︸

=0

+

∫ t̃

t0

d2x′1(ρ, s)

ds2
ds
)
dt̃.(2.28)385

The second derivative of x′1(ρ, t) with respect to time t can be estimated by differen-386
tiating (2.8) with respect to t, and using (2.9) and (2.16), which yields:387

d2x′1(ρ, t)

dt2
=

d

dt

(dx′1(ρ, t)

dt

)
388

=
d

dt

(
σx′2(ρ, t)− σx′1(ρ, t)

)
389

= σ
dx′2
dt

(ρ, t)− σdx
′
1

dt
(ρ, t)390

= σ
dx′2
dt

(ρ, t0)− σ dx
′
1

dt
(ρ, t0)︸ ︷︷ ︸
=0

+ O(δt)391

= σx1(ρ, t0) + O(δt).(2.29)392
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We insert this into (2.28) to conclude with393

x′1(ρ, t) = σx1(ρ, t0) ·
∫ t

t0

∫ t̃

t0

1 ds dt̃ + O(δt3)394

= σx1(ρ, t0) ·
∫ t

t0

(t̃− t0) dt̃ + O(δt3)395

= σx1(ρ, t0) · 1

2
(δt)2 + O(δt3).396

= σx1(ρ0, t0) · 1

2
(δt)2 + O(δt3).(2.30)397

Finally, we insert (2.30) into (2.27) with the help of (2.14) to obtain (2.5) in Theorem398
2.1.399

Step 4. In our final step, we estimate the behavior of x3(ρ, t). We note that400
similarly to x′1(ρ, t) given by (2.30) as in (2.18) we obtain:401

x′2(ρ, t) = x′2(ρ, t0)︸ ︷︷ ︸
=0

+

∫ t

t0

dx′2(ρ, t̃)

dt̃
dt̃402

= x1(ρ, t0) · δt+O(δt2).(2.31)403

Also, based on (2.17) we calculate404

x′3(ρ, t) = x′3(ρ, t0)︸ ︷︷ ︸
=0

+

∫ t

t0

dx′3(ρ, t̃)

dt̃
dt̃405

=

∫ t

t0

( dx′3(ρ, t̃)

dt̃
|t0︸ ︷︷ ︸

=0

+

∫ t̃

t0

d2x′3(ρ, s)

ds2
ds
)
dt̃406

= O(δt2).(2.32)407

Now, we follow the above lines to estimate408

x3(ρ, t)− x3(ρ0, t) =

∫ ρ

ρ0

x′3(ρ̃, t) dρ̃409

=

∫ ρ

ρ0

(
x′3(ρ̃, t0)︸ ︷︷ ︸

=0

+

∫ t

t0

dx′3(ρ̃, t̃)

dt̃
dt̃
)
dρ̃(2.33)410

Here, to obtain a sharper estimate than (2.32) and to evaluate the constant explicitly,411
we insert (2.10) into (2.33), which yields:412

x3(ρ, t)− x3(ρ0, t) =

∫ ρ

ρ0

∫ t

t0

(
x′1(ρ̃, t̃)x2(ρ̃, t̃) + x1(ρ̃, t̃)x′2(ρ̃, t̃)− βx′3(ρ̃, t̃)

)
dt̃ dρ̃(2.34)413

Because (x′1, x
′
2, x
′
3) = 0 at t0, we need to estimate the leading order term by its414

temporal change at t0 as given in (2.15) - (2.17). We insert the asymptotics for x′1(ρ, t),415
x′2(ρ, t), and x′3(ρ, t) given by (2.30), (2.31), and (2.32) into (2.34) to estimate:416

x3(ρ, t)− x3(ρ0, t) =

∫ ρ

ρ0

∫ t

t0

(
x21(ρ, t0)δt+O(δt2)

)
dt̃ dρ̃417

= x21(ρ, t0) · δt2 · δρ+O(δρ · δt3),(2.35)418
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12 JASON A. OTKIN, ROLAND W. E. POTTHAST, AND AMOS S. LAWLESS

where x21(ρ, t0)δt is the leading order term, and all other terms have been absorbed419
into the order O(δt2) term. Thus, we have derived (2.7) in Theorem 2.1 and the proof420
is complete. �421

Remark. In Step 3 of the proof, we could have performed the estimate slightly422
differently. Using an approach similar to Steps 2 and 4, we obtain:423

x1(ρ, t)− x1(ρ0, t) =

∫ ρ

ρ0

x′1(ρ̃, t) dρ̃424

=

∫ ρ

ρ0

(
x′1(ρ̃, t0)︸ ︷︷ ︸

=0

+

∫ t

t0

dx′1(ρ̃, t̃)

dt̃
dt̃
)
dρ̃425

=

∫ ρ

ρ0

∫ t

t0

( dx′1(ρ̃, t̃)

dt̃
|t0︸ ︷︷ ︸

=0

+

∫ t̃

t0

d2x′1(ρ̃, s)

ds
ds
)
dt̃ dρ̃(2.36)426

and then proceed as in (2.29) and (2.30) to obtain (2.5) as above. �427

3. Improving Data Assimilation using Bias Estimators. Being able to ac-428
curately estimate errors in the model background x(b) is important for any practical429
implementation of a data assimilation algorithm. In this section, we first discuss the430
model error and model bias terminology and then study a simple Bayesian example431
to illustrate the importance of correctly estimating the model background error co-432
variance matrix B. We then develop a generalized model error estimation method433
that is subsequently applied to the L63 model discussed in Section 2.2 to demonstrate434
the feasibility of dynamically estimating the model errors using nonlinear estimators435
based on the model variables. In Section 3.4, we show how the bias correction coef-436
ficient vector obtained through solving a least squares minimization problem can be437
used to estimate the unknown parameter using the analysis increments from the data438
assimilation system.439

3.1. Nonlinear Model Bias and Error Terminology. In this section, we440
sharpen the terminology for model error, model bias, and conditional model bias, and441
compare the concepts. For a particular location, the model error is the instantaneous442
difference between the background state x(b) and the true state x(true) of the system.443
Model bias is then defined as the x(b) − x(true) differences averaged over some period444
of time or region:445

(3.1) bb := E{x(b) − x(true)},446

where the bias is computed separately for different model quantities such as temper-447
ature, humidity, or cloud water path. If we then assume that the analysis state x(a)448
obtained during each assimilation cycle is the best estimate of the true system state,449
we can use the resultant x(b)−x(a) differences as an approximation to the true model450
bias, with appropriate summation over particular regions or periods of time:451

(3.2) bb−a := E{x(b) − x(a)}.452

The conditional model bias can then be defined as the mean deviation of the dependent453
variable from the true system state when the bias is a function of some other parameter454
or variable p referred to as the predictor. The conditional model bias can be estimated455
using:456

(3.3) bb−a(p) = E{x(b)(p)− x(a)(p)}.457
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For this study, we are interested in the situation where the bias predictor is a compo-458
nent of the model state.459

If bb−a(p) varies in a nonlinear manner, then this behavior represents a nonlinear460
conditional bias and we will need to use nonlinear bias correction methods to remove461
the bias from the model variables. In this case, let us assume that the function bb−a(p)462
can be written as a superposition463

(3.4) bb−a(p) =

N∑
ξ=1

ψξ(p)αξ464

of nonlinear basis functions ψξ with N unknown coefficients αξ. The solution of (3.4)465
can be understood as a generalized bias estimation equation because it structures the466
set of differences according to the predictor p and searches for a functional estimation467
of its behavior. We can then employ nonlinear bias correction methods such as that468
described in [57] to determine the bias correction coefficients based on a set of bb−a(p)469
differences. To do this effectively, we will need to obtain a large sample of differences470
covering a diverse range of system states.471

It should also be noted that the estimation of the coefficients αξ in (3.4) using472
x(b)−x(a) differences accumulated over multiple assimilation cycles subsequently leads473
to the capability to predict the instantaneous model error when those coefficients are474
applied to the current state during an individual assimilation cycle. This demonstrates475
that conditional model bias estimation and model error estimation are strongly related476
and show significant overlap. As discussed in Section 3.3, the forecast error in general477
can be represented as a combination of state estimation error associated with the478
propagation of errors in the prior analysis to the current time and a second component479
that represents the true model error arising from the use of an imperfect model.480
The instantaneous model errors can therefore be viewed as conditional model biases481
because their characteristics likely depend on the state of the system.482

The conditional model error estimators can be used for various purposes, including483
a) model bias correction where the model background is corrected prior to its use in484
the data assimilation system, b) model uncertainty estimation where the model error485
estimates are used to improve the background error covariance matrix B, and c) model486
development efforts where the error statistics are used to improve the accuracy of the487
numerical model. In this paper, we focus on application b) because we seek to employ488
knowledge regarding the behavior of the model errors to improve estimates of the489
model background uncertainty.490

3.2. Study of a Simple Bayesian Example. A Bayesian data assimilation491
step employs Bayes formula492

(3.5) p(a)(x) = cp(b)(x)p(y|x), x ∈ Rn493

for estimating the posterior probability distribution p(a)(x) based on the prior prob-494
ability distribution p(b)(x) and the observation error distribution p(y|x). The prior495
distribution is usually assumed to be Gaussian in data assimilation systems, such496
that:497

(3.6) p(b)(x) := c̃e−
1
2 (x−x

(b))TB−1(x−x(b)), x ∈ Rn,498

where c̃ is a constant and the background error covariance matrix B is estimated499
climatologically in classical variational assimilation systems or based on an ensemble500
of model states in an EnKF.501

This manuscript is for review purposes only.



14 JASON A. OTKIN, ROLAND W. E. POTTHAST, AND AMOS S. LAWLESS

Here, we discuss and demonstrate the role of the correct estimate of B on the502
quality of the analysis mean and analysis distribution. For an EnKF system, the503
ensemble spread is used to estimate B, however, this estimate only contains part of504
the error when a numerical model is used because it does not include the difference505
between the model and the true state of the system. Variational data assimilation506
systems, such as 3DVAR, are also unable to consider these differences because B is507
chosen as fixed for a particular time period due to the way in which it is constructed.508
This means that the model bias and how it changes with time is not taken into509
account by either assimilation methodology, which can substantially degrade their510
performance. For the remainder of this work, we restrict our attention to 3DVAR511
because that is what we used during the numerical experiments discussed in Section512
4. We note however that similar arguments apply for ensemble and hybrid data513
assimilation systems.514

As a starting point, we derive the error representation explicitly for a one-dimensional515
Gaussian case with observation operator H = I. In one dimension, the best estimate516
of the current state (or analysis) during an assimilation step is given by:517

(3.7) x(a) = x(b) +
q

r + q
(y − x(b)),518

where y is the observation, r is the observation error uncertainty, x(b) is the first guess519
or background, and q represents the estimated variance of the error in the variable x.520
Now, let us assume that q0 is the true background error variance that includes model521

error, such that the correct analysis x(a)0 is represented as:522

(3.8) x
(a)
0 = x(b) +

q0
r + q0

(y − x(b))523

The error between the analysis based on some uncertainty or variance q and the524
correct uncertainty or variance q0 is then given by:525

|x(a) − x(a)0 | =
∣∣∣ q

r + q
− q0
r + q0

∣∣∣ · |y − x(b)|526

=
∣∣∣ r(q − q0)

(r + q) · (r + q0)

∣∣∣ · |y − x(b)|.(3.9)527

This result shows that the analysis error for each assimilation cycle is proportional528
to the observation departure |y − x(b)| and to the accuracy of the background error529
variance estimate |q − q0|. Thus, development of new methods that can be used to530
generate a more accurate estimate of q will directly improve the quality of the analysis531
and performance of the assimilation system.532

3.3. Dynamical Error and Bias Estimators. In this section, we develop a533
generalized method to diagnose model biases using the model variables. First, let us534

assume that the the forecast error x(b)k − x
(true)
k at a given time k can be represented535

as the difference between the dynamical states that are obtained when the prior536

analysis x(a)k−1 is propagated by an imperfect model M and the true prior state x(true)k−1537
is propagated by the perfect model M true:538

(3.10) x
(b)
k − x

(true)
k = M(x

(a)
k−1)−M true(xtruek−1 )539

The forecast error can then be decomposed into one part that is due to the propagation540

of the uncertainty error associated with the prior analysis state M(x
(a)
k−1)−M(xtruek−1 ),541
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and a second part that represents the true model error, E = M(xtruek−1 )−M true(xtruek−1 ),542
during the propagation from the prior time:543

(3.11) x
(b)
k − x

(true)
k =

(
M(x

(a)
k−1)−M(xtruek−1 )

)
+
(
M(xtruek−1 )−M true(xtruek−1 )

)
.544

Taking the variance on both sides of (3.11), and using545

(3.12) qstate := Var(M(x
(a)
k−1)−M(xtruek−1 ))546

and547

(3.13) qmodel = Var(M(xtruek−1 )−M true(xtruek−1 )),548

we obtain the total variance of the forecast error:549

qtotal := Var
(
x
(b)
k − x

(true)
k

)
(3.14)550

= qstate + qmodel + 2 · Cov
(
M(x

(a)
k−1)−M(xtruek−1 ), M(xtruek−1 )−M true(xtruek−1 )

)
.(3.15)551

It is a standard approach in data assimilation to assume that the initial condition un-552
certainty and true model error are uncorrelated [50], which means that the covariance553
term on the righthand side of (3.15) will equal zero and therefore the total variance554
of the forecast error can be given by555

(3.16) qtotal = qstate + qmodel,556

where qstate reflects the influence of the variance of the estimate of the prior analysis557
propagated to the current analysis time using the model equations, and qmodel is the558
variance in the model error E due to the use of an imperfect numerical model.559

If some error estimators such as those shown in Theorem 2.1 are available, we560
can employ (3.16) to estimate qtotal and then use it to improve the estimate of the561
analysis during a given data assimilation step. Though we typically will not know562
qstate in a complex real-world system, the development of a method that can be used563
to estimate the time-varying model error E, and thus the variance qmodel, allows us564
to employ a lower fixed qstate in our approach. This outcome is better than having565
to use a larger fixed qstate, which would otherwise be the case, because that would566
lead to an overestimate of the total error variance. In general, it will not be possible567
to carry out a full assessment of the model error due to incomplete knowledge of the568
governing equations; however, Theorem 2.1 shows that the model error asymptotically569
depends on the model variables, here in particular, x1(ρ0, t0). We can therefore employ570
nonlinear model error estimators to diagnose such dependencies as follows.571

II. We begin with a general example where we study the estimation of a error572
that depends on the model state x and time t. We model the dependence on the573
states using basis functions ϕ`(x), x ∈ Rn, with ` = 1, ..., N`. The dependence on574
time is modeled using basis functions ψk, k = 1, ..., Nk. Let us assume an ansatz of575
the form576

(3.17) Ej(x, t) =

N∑̀
`=1

Nk∑
k=1

β
(j)
`,k ϕ`(x)ψk(t), x ∈ Rn, t ∈ R,577

for the model error Ej . For illustrative purposes, the functions ψk(t) could be rep-578
resented by sin(t) and cos(t) or by higher order trigonometric functions, whereas the579
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functions ϕ`(x) could be represented by the polynomial terms in Theorem 2.1. In this580

situation, the terms would correspond to ϕ`(x) = xξ11 x
ξ2
2 x

ξ3
3 , with ξ1, ξ2, ξ3 counted581

by ` = 1, ..., N`, ψ1(t) ≡ 1, and ψk(t) = 0 for k > 1. The coefficients β(j)
`,k are the582

unknown coefficients linking the true dynamics with the numerical model.583
If we then observe the model error Ej(x, t) for a selection of states (x[η], t[η]),584

η = 1, ..., Nη such that the linear independence of ϕ` on x[η] is satisfied and a set585
t[η] ∈ [0, T ] such that the linear independence of ψk is satisfied on this set, we know586
that the linear system587

(3.18) Ej(x[η]) =

N∑̀
`=1

Nk∑
k=1

β
(j)
`,k ϕ`(x[η]) ψk(t[η]),588

η = 1, ..., Nη, has at most one solution for each j = 1, ..., n. It may be overdetermined589
if Nη > N` ·Nk, and if the data is inconsistent would have no exact solution. In that590
case, we can use least squares methods to calculate approximate solutions.591

Let us also discuss the case of non-uniqueness for the calculation of the bias cor-592
rection coefficients. This situation can arise if two or more variables in the dynamical593
system under consideration are correlated. For example, the x1 and x2 variables in594
the L63 system display strong correlations in parts of the trajectory. Though the non-595
unique solution will not affect the quality of the bias estimate for the time interval596
used to calculate the coefficients, it could potentially lead to large errors if these coef-597
ficients are used outside of the training period. Thus, we note that: 1) for time-local598
estimation of model biases, the consequences of non-uniqueness should be small, and599
2) when the bias estimation tool is employed for longer time periods or for forecasting,600
it is important to have training periods that include conditions representative of the601
full climatology of the dynamical model.602

III. Here, we illustrate the utility of the generalized framework developed in the603
previous section by applying it to the L63 model. First, let us assume that the true604
evolution of a hypothetical dynamical system, represented by M true, depends on a605
particular parameter that varies with time, but that limitations in our understanding606
of the physical system means that it is assigned a constant value in the imperfect607
numerical model M used to represent the true dynamical system. An example is the608
dependence of the parameter ρ in the coupled L63 model described in Section 2.1, for609
which we have worked out the behavior of the model error for small time intervals δt610
and small changes δρ of ρ in Section 2.2. For this particular system, we observe the611
dependence of the error612

(3.19) E(δρ) := ‖x[ρ]− x[ρ0]‖2613

on the model state x = (x1, x2, x3) in Theorem 2.1, where ρ0 is the true value at a614
given time t0 in M true and ρ is the constant value used by the imperfect model M .615
This dependence leads to the error estimate for the coupled L63 system:616

(3.20) E(δρ) = x21(ρ0, t0) · δρ2 · δt2 +O(δρ2 · δt4),617

where we added the squares of (2.5), (2.6), and (2.7), and then absorbed the higher618
order terms into the O(δρ2 · δt4) term. It can be seen in (3.20) that the leading error619
term is proportional to x21, which means that the expected model error is largest when620
the system state is located near the tips of the butterfly wings.621

For this work, we use the analysis x(a) from each assimilation step as an approx-622
imation of the true state x(true) because the true state is unknown in a real-world623
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system. Note that this approximation means that we will be unable to recover the624
full model error; however, because x(a) will be pulled toward the observations, we625
will still be able to estimate part of the model error under the assumption that the626
observations have small errors. The current model error Ej of the component xj of627
the state x ∈ Rn is approximated by:628

(3.21) Ej := |x(a)j − x
(b)
j |,629

where j = 1, 2, 3 corresponds to the three variables in the L63 system. Let us assume630
that knowledge of those parts of the system leading to model error at a specific time631
is such that after some manipulation the model error can be rewritten in the form of632
a triple sum:633

(3.22) Ej =

Ncoef∑
ξ1,ξ2,ξ3=0

α
(j)
ξ1,ξ2,ξ3

xξ11 x
ξ2
2 x

ξ3
3 ,634

with coefficients α(j)
ξ1,ξ2,ξ3

, ξ1, ξ2, ξ3 = 0, ..., Ncoef , where Ncoef is the total number of635
coefficients determined by the maximum order of the polynomial and the number of636
model variables under consideration. For the L63 system containing three variables,637
Ncoef = 10 for a 2nd order polynomial. The model error can be expressed as in (3.22)638
if we know that a hidden model exists but that we do not know the dependence of the639
true system because we cannot derive the asymptotics of the model equations. The640
ansatz (3.22) assumes some polynomial dependence of this relationship on the model641
variables x ∈ Rn, as we have shown to be the case for the coupled L63 system. We642
also assume that the model errors do not have a temporal dependence such that the643
basis functions ψk(t) in (3.17) can be set to 1.644

Next, given a sequence of states x[η] and their corresponding model errors Ej [η]645
for η = 1, ..., Nstates over some period of time, the above estimate leads to a linear646
system of equations:647

(3.23) Aα(j) = q648

for the Ncoef×1 coefficient vector α(j) = (α
(j)
0,0,0, α

(j)
1,0,0, α

(j)
0,1,0, α

(j)
0,0,1, α

(j)
1,1,0, ...)

T , where649
the sub-indices correspond to the polynomial order for the predictors (x1, x2, x3) and650
the superscript denotes the model variable xj . For example, the zeroth order coeffi-651

cient for the x1 variable is denoted as α(1)
0,0,0, whereas the second order coefficient for652

the x1 · x2 mixed term is denoted as α(1)
1,1,0. Then, A is an Nstates × Ncoef matrix653

containing the Ncoef polynomial terms for each observation:654

(3.24) A = A(j) :=
(
xξ11 [η]xξ22 [η]xξ33 [η]

)
η=1,...,Nstates; ξ1,ξ2,ξ3=0,...,Ncoef

655

where η counts the rows and ξ1, ξ2, ξ3 are subsequently ordered as column indices656
consistent with the ordering of the components of α, and657

(3.25) q = q(j) :=
(
Ej [η]

)
η=1,...,Nstates

658

is the Nstates×1 vector containing the model errors, with row index η. Finally, we can659
find the coefficients α that best fit the system of equations by solving the quadratic660
minimization problem, which leads to:661

(3.26) α = (ATA)−1AT q.662
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3.4. Parameter Estimation. We begin this section by noting that the asymp-663
totics for the coupled L63 model shown in Theorem 2.1 reveal that the error, Ej , for664
each model variable j = 1, 2, 3 is proportional to the size of the hidden parameter δρ,665
which means that the diagnosed conditional model bias should also be proportional666
to this parameter. In practice, however, this is not an easy relationship to capture667
because their proportionality depends in a very dynamic way on the current state of a668
modeling system characterized by chaotic behavior. Thus, without explicit knowledge669
of the model variables and the relationship between them and δρ, it is impossible to670
draw conclusions about the size of δρ.671

However, based on the nonlinear model error estimators given by (2.5) - (2.7),672
we expect that the coefficient vector α in (3.22) will also be proportional to the size673
of the model bias. This vector depends on the average size of the analysis increment674
x(a) − x(b) during a sequence of data assimilation steps rather than on the model675
state. The explicit dependence, unknown in general, is part of the estimation of the676
coefficients. Thus, we obtain a tool that can be used to dynamically diagnose the677
average size of the unknown parameter δρ by computing the mean of the coefficient678
vector α for each model variable xj = 1, 2, 3. This leads to the following estimates for679
δρ:680
(3.27)

δρ
(1)
diag(t) ≈ c1α

(1)
1,0,0(t) or δρ

(2)
diag(t) ≈ c2α

(2)
1,0,0(t) or δρ

(3)
diag(t) ≈ c3α

(3)
2,0,0(t)681

where c1 = 2/σ(δt)2, c2 = 1/δt, and c3 = 1/(δt)2, and we now need to carry out the682
bias estimation over time intervals [t−∆t, t+ ∆t] with some ∆t > 0 for which δρ can683
be considered a constant.684

Many prior studies have performed parameter estimation within data assimilation685
systems, primarily through use of an augmented state vector and based on statistical686
assumptions about the distribution of the model parameter ([7, 1, 40, 37, 12, 60, 66,687
65, 70, 64, 39]). These studies have generally shown that reasonably accurate parame-688
ter estimates can be obtained if the data assimilation statistics are used to estimate a689
single model parameter. Unlike these previous studies, however, our approach uses the690
asymptotics of the model dynamics to provide a functional form for the relationship691
between the unknown model parameter and the estimated model error when accumu-692
lated over a sequence of assimilation cycles. We will demonstrate in Section 4.4 that693
this simple diagnostic tool provides a reasonable approach to parameter estimation694
for the dynamical system under consideration.695

4. Numerical Results using the L63 Model. The purpose of this section is696
to use the L63 model to perform numerical experiments that demonstrate the validity697
of the model error identification and correction methods developed in the previous698
sections and their use within a data assimilation system. We begin by showing in699
Section 4.1 that the error asymptotics developed in Theorem 2.1 accurately represent700
the behavior of the L63 model and that they are able to capture the rapid evolution701
of the model error in each of the state variables. We then demonstrate in Section702
4.2 that the model error asymptotics can be used to improve the model background703
error covariance matrix B through inclusion of a dynamic component that captures704
the current model errors. It is then shown in Section 4.3 that the coefficients of the705
nonlinear asymptotical expansion can be reasonably estimated by solving a regularized706
least squares minimization problem without explicit a priori knowledge of the error707
behavior. This is accomplished through use of a polynomial expansion of the model708
variables. Finally, we show in Section 4.4 that the ρ parameter can be reconstructed709
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using the bias correction coefficient vector. Moreover, it is shown that it is possible710
to reconstruct this parameter using the analysis increments that are readily available711
in all data assimilation systems.712

4.1. Analysis of the Asymptotic Error Estimators for the L63 Model.713
In this section, we assess the ability of the asymptotics derived in Theorem 2.1 to714
accurately capture the rapid evolution of model errors in the coupled L63 system715
during a cycled data assimilation experiment covering Nt = 600 assimilation cycles716
with an assimilation frequency δtassim = 0.06. Though the true ρ parameter in717
the coupled L63 system varies with time following (2.4), it was set to a constant718
value (ρ = 28) during the data assimilation experiment to represent a dynamic and719
unknown model bias. Output from the truth simulation employing the time-varying720
ρ parameter was used to generate observations with zero measurement error (ε = 0)721
for (x1, x2, x3), which were then assimilated using a 3DVAR system. The analysis722
x(a) during a given assimilation cycle was determined using:723

(4.1) x(a) = x(b) +BHT (R+HBHT )−1(y −H(x(b))),724

where H = I, the observation error covariance matrix R was given the form of the725
identity matrix scaled by the factor r,726

(4.2) R = r · I,727

and the background error covariance matrix B was given the form:728

(4.3) B =

 (x
(b)
1 − x

(true)
1 )2 0 0

0 (x
(b)
2 − x

(true)
2 )2 0

0 0 (x
(b)
3 − x

(true)
3 )2

 ,729

with x(b) being the background state, x(true) being the true dynamical state obtained730
from the truth simulation, and the diagonal elements of B containing the model error731
variances. We chose to use a diagonal matrix here because it is a reasonable place to732
start and, as is shown in this section, still has a positive impact on the assimilation733
performance. Given the strong correlations between errors in the x1 and x2 variables734
(see Fig. 3), it is possible that including the off-diagonal elements would have led to735
even better results; however, their inclusion in the B matrix is left for future work.736
Note that even though this is a perfect observation experiment, we chose to set the737
scaling factor r to a small non-zero value so that we could use the data assimilation738
system rather than directly inserting the observations into the model. This approach739
maintains consistency with the other experiments presented in this section and is a740
reasonable approach because we generally would not know that the observations are741
perfect in a real data assimilation system and therefore would likely still assume that742
the observation errors come from a Gaussian distribution.743

Figure 3 shows the evolution of the true ρ parameter and the model errors744

x
(b)
1 − x

(true)
1 , x(b)2 − x

(true)
2 , and x

(b)
3 − x

(true)
3 during the assimilation experiment.745

The true error for each model variable is shown in blue, whereas the model errors746
estimated using the asymptotic error estimators in (2.5) - (2.7) are depicted by the747
red dashed lines. For the asymptotic model error estimates, x1(ρ0, t0) is taken to be748
its instantaneous value at each assimilation time. Inspection of the error time series749
(Figs. 3a-c) reveals that the asymptotic error estimators are able to accurately cap-750
ture the magnitude of the true errors in the model background, as well as their rapid751

This manuscript is for review purposes only.



20 JASON A. OTKIN, ROLAND W. E. POTTHAST, AND AMOS S. LAWLESS

changes with time, when all other errors in the system are eliminated. The model752
errors display more rapid variations than the ρ parameter (Fig. 3d) because the time753
step used by the coupled model is five times faster than that used in the hidden model754
S2 to perturb ρ. The true ρ parameter oscillates in a quasi-periodic manner for an755
extended period of time either below or above ρ = 28, with occasional transitions be-756
tween values less than or greater than this threshold as the hidden model driving the757
changes in ρtrue propagates from one wing of the butterfly to the other (see Fig. 2a).758
These quasi-periodic oscillations could be thought of as representing biases associated759
with the diurnal or seasonal cycles in atmospheric models.760

Fig. 3. Time series showing the evolution of the true model error (blue lines) and asymptotic
error estimations (red dashed lines) for the (a) x1, (b) x2, and (c) x3 model state variables and
for the (d) ρtrue parameter (red line) for an experiment lasting Nt = 600 assimilation cycles with
δtassim = 0.06 and the measurement error ε set to zero.

4.2. Using Bias Estimators to Improve Assimilation Performance. The761
development of methods to accurately estimate the model background error covari-762
ance matrix B is important for all data assimilation algorithms. In this section, we763
demonstrate that the assimilation quality, as measured using OMB statistics, can be764
improved through inclusion of appropriate model error estimators during the data as-765
similation step. We also examine the optimality of using either a fixed or dynamically766
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varying B matrix and assess the influence of the observation error on these estimates.767
For this exercise, we performed cycled 3DVAR data assimilation experiments768

using two versions of the L63 model where we chose to use a constant δρ = 1 in the769
truth simulation or where we allowed δρ to vary with time based on the influence of770
the hidden system S2 described in Section 2.1. The first version is used to represent771
a situation where a given parameter that does not vary in the real world is assigned772
the wrong constant value in the numerical model. Here, we assume that we know the773
asymptotics describing the sensitivity of the model to small perturbations in ρ, but774
that we do not know the correct scaling factor c for δρ. In other words, we know the775
true value of δρ only up to a constant c ∈ R, which includes the case of a constant but776
unknown δρ. For brevity, this section only includes results for the scenario in which777
δρ is allowed to vary with time. Note that even though the errors in the asymptotic778
estimates will be larger in this situation because the maximum size of δρ is larger, the779
conclusions regarding the importance of using the dynamically varying B matrix are780
the same for the experiments using the constant and time-varying δρ perturbations.781

To assess the sensitivity to the matrix B, we initially performed an experiment782
where a constant covariance matrix of the form B = b · I ∈ R3×3 was used during783
each assimilation cycle, where b is used to scale the identity matrix. We then searched784
for the constant b that produced the smallest OMB errors averaged over Nt = 600785
assimilation cycles. Finally, we repeated the search using a dynamical B matrix, which786
as in (3.16), is the sum of a constant matrix as in (3.12) and a dynamical part as given787
by the term (3.13) that is computed using the model error estimators described in788
Theorem 2.1. The form of B = Bk at time tk, with the index k = 1, 2, ..., Nt of789
analysis steps, is chosen as:790

(4.4) Bk = b ·

 1 0 0
0 1 0
0 0 1

 +

 error21,k 0 0

0 error22,k 0

0 0 error23,k

 ,791

where the diagonal elements in the second part of (4.4) are defined as:792

error1,k = c · 0.5 · σ · x1(ρ0, tk) · (δt)2 · δρk(4.5)793

error2,k = c · x1(ρ0, tk) · δt · δρk(4.6)794

error3,k = c · x21(ρ0, tk) · (δt)2 · δρk(4.7)795

Equations (4.5) - (4.7) correspond to the model first guess errors for x1, x2, and x3,796
respectively, for each assimilation time tk. The numerical experiments evaluated in797
this section were carried out using c = 1.798

Two examples illustrating the relationship between the size of b and the average799
model first guess errors when using either the constant or dynamic estimates for B800
during the assimilation experiments are shown in Fig. 4. The first example (Fig.801
4a) has relatively frequent assimilation cycles (δtassim = 0.02) and small random802
observation errors (ε = 0.2), whereas the observation errors are larger (ε = 0.5) and803
the observations are assimilated less frequently (δtassim = 0.04) during the second804
example (Fig. 4b). Random errors added to each observation were drawn from a805
Gaussian distribution scaled by the value of ε chosen for each case.806

In both examples, the behavior of the relationship shown in Fig. 4 is well-known807
in the field of inverse problems where a regularization that is too small increases the808
influence of the observation errors and a regularization that is too large will not be809
able to fully exploit the new information provided by the observations. The optimal810
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Fig. 4. Scan of the average model first guess errors plotted as a function of the size of b when
the background error covariance matrix B is a multiple of the identity matrix (B = b · I) (black
dashed line) or when it is obtained using the dynamic B estimator presented in (4.4) (blue dotted
line). Panels (a) and (b) show results from experiments using assimilation update intervals δtassim
and random observation errors ε set to (δtassim = 0.02, ε = 0.2) and (δtassim = 0.04, ε = 0.5),
respectively. The first guess error statistics were computed using output from 600 time steps.

B, which varies depending upon the observation and model errors present during a811
given assimilation cycle, will lead to the smallest first guess errors. Of importance for812
this discussion is that the smallest first guess errors for both examples occur when813
the dynamic B matrix is used. It is also evident that the optimal size of b decreases814
when the dynamical error estimators are used to scale B because they are better able815
to capture the actual errors in the model background during each assimilation cycle.816
Together, these examples demonstrate that it is highly desirable to employ dynamical817
estimators of the model first guess error in data assimilation algorithms.818

4.3. Numerical Estimation of the Bias Estimator Polynomial Coeffi-819
cients. In this section, we investigate the determination of the model bias estimator820
coefficients α using output from cycled 3DVAR experiments employing different as-821
similation intervals and observation error magnitudes. For these experiments, we822
employ the dynamical background error covariance matrix B shown in (4.4) during823
each data assimilation cycle, with the dynamic model errors for (x1, x2, x3) computed824
using the asymptotic error estimators in (4.5) - (4.7) with the scaling factor c set to825
1. Sensitivity tests revealed that the model error coefficients were stable over a broad826
range of values for the scaling factor b; therefore, for convenience, it was set to 0.1827
during the experiments discussed in this section. This behavior and the chosen value828
for b are consistent with the results shown in Fig. 4.829

Experimentation also revealed that the matrix A used to determine the bias cor-830
rection coefficients α in (3.26) is ill-posed with singular values smaller than 10−4 and831
a condition number larger than 104. Therefore, to improve its conditioning, Tikhonov832
regularization was used by replacing the least squares estimator A† = (ATA)−1AT in833
(3.26) with the Tikhonov inverse:834

(4.8) Q := (αregI +ATA)−1AT835

where αreg is the Tikhonov regularization parameter. Sensitivity tests showed that836
setting αreg to a small value (10−5) provided the most accurate results. This means837
that the bias correction coefficients for a given model variable can be determined838
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using:839

(4.9) α = (αregI +ATA)−1AT q840

Table 1 shows results computed using truth-minus-background statistics accu-841
mulated over Nt = 600 assimilation cycles for two experiments, including one where842
perfect observations (ε = 0) were assimilated at δtassim = 0.01 time intervals (left843
columns) and a second experiment where random errors were added to the observa-844
tions (ε = 0.01) and the assimilation interval was increased to δtassim = 0.02. The845
scaling factor r for the observation error covariance matrix in (4.2) was set to 10−5846
and 10−4, respectively, for each of these experiments, with δρ for a given time step847
obtained from the hidden system S2 described in Section 2.1. The coefficients of the848
polynomial expansion of the model bias are computed separately for each model vari-849
able (x1, x2, x3). Here, we have used all polynomial terms up to the 2nd order when850
computing the dynamic B matrix in (4.4) because of the presence of the x21 term851
in the asymptotics shown in (3.20). To ease interpretation of the results, we have852
included δρ and the constant 0.5, σ, δt, and (δt2) terms as they appear in (4.5), (4.6),853
and (4.7) such that the estimation outcomes shown in Table 1 should be either 0 or854
1 depending upon whether or not a given term is in the polynomial expansion. This855
means that the reconstructed bias correction coefficient αrecon(1, 0, 0) should equal856
one for x1 and x2, αrecon(2, 0, 0) should equal one for x3, and all of the other αrecon857
values should be zero.858

Inspection of Table 1 shows that the maximum error for each state variable859
(x1, x2, x3) is 8% (e.g., αrecon = 0.92) for the experiment in which perfect obser-860
vations were assimilated, and that the errors for most of the remaining αrecon terms861
are very small. This demonstrates that the bias correction coefficients can be accu-862
rately estimated in this situation such that the only remaining sources of error are863
likely associated with numerical discretization errors or the exclusion of higher order864
polynomial terms from the asymptotical expansion (e.g., higher than the 2nd order).865
The error in each αrecon term increases during the second experiment where measure-866
ment errors were added to the observations prior to their assimilation. Even so, the867
results show that the method is still able to identify the dominant terms and that868
it is possible to obtain reasonable estimates for the bias correction coefficients in the869
presence of observation error. Finally, other experiments were performed where the870
size of the observation error and the length of the assimilation cycling interval were871
varied, with all of the experiments showing similar effects to those demonstrated in872
Table 1 if reasonable observation errors and cycling intervals were used.873

4.4. Reconstruction of the ρ Parameter. In this section, we explore the874
effectiveness of using the bias correction coefficient vector α to reconstruct the ρ875
parameter within the data assimilation system. The truth simulation for this partic-876
ular exercise was performed using the coupled L63 model described in Section 2.1.877
A cycled data assimilation experiment covering Nt = 600 assimilation cycles with878
δtassim = 0.04 was then performed using observations from the truth simulation.879
Given that the true state of a real-world system is unknown, here we choose to use880
the analysis-minus-background difference as a proxy for the model error q in (3.26)881
because the model background x(b) and model analysis x(a) are both readily available882
from data assimilation systems.883

Because ρ varies with time in the coupled L63 system used to perform the truth884
simulation, it is not advantageous to use assimilation statistics accumulated over a885
long time period to estimate the value of this parameter for a specific assimilation886
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Exp 1 Exp 2
for x1 for x2 for x3 for x1 for x2 for x3

αrecon(0, 0, 0) 4.94E-02 -5.30E-03 -4.06E-03 1.16E-01 -7.26E-03 -1.28E-01
αrecon(1, 0, 0) 0.92 1.06 2.37E-03 0.76 1.16 -5.95E-01
αrecon(2, 0, 0) -2.57E-04 4.08E-05 1.03 9.79E-03 1.52E-03 0.94
αrecon(0, 1, 0) 2.38E-02 -4.92E-02 1.31E-02 2.65E-02 -1.13E-01 -2.45E-01
αrecon(0, 2, 0) 3.13E-04 -2.35E-05 -3.94E-03 2.32E-03 -1.84E-04 5.25E-02
αrecon(0, 0, 1) -1.11E-02 6.09E-04 -4.77E-02 1.88E-04 5.97E-03 -1.30E-01
αrecon(0, 0, 2) 2.13E-04 -1.85E-05 2.86E-03 -8.31E-04 -3.04E-04 3.10E-03
αrecon(1, 1, 0) -1.88E-04 -3.84E-06 -4.02E-02 -9.54E-03 -9.32E-04 -2.04E-01
αrecon(1, 0, 1) 3.54E-03 -4.07E-04 4.04E-04 5.71E-03 -2.03E-03 2.42E-03
αrecon(0, 1, 1) -2.21E-03 -4.42E-05 -1.08E-04 -4.80E-03 6.95E-05 3.10E-02

Table 1
Reconstructed bias correction coefficients (αrecon) for each model variable (x1, x2, x3) deter-

mined using (3.23) and truth-minus-background statistics accumulated over 600 assimilation cycles
for two experiments employing different observation errors and assimilation update intervals. The
0th to 2nd order terms are shown in each row. Columns 2-4 and 5-7 show the results for experi-
ments employing (δtassim = 0.01; ε = 0) and (δtassim = 0.02; ε = 0.01), respectively. The Tikhonov
regularization parameter areg was set to 10−5 for both experiments.

cycle. Instead, we compute the coefficient vector α using output from 10 consecutive887
assimilation cycles rather than from the full assimilation period. This length was888
chosen as a balance between the desire to acquire a large enough sample to robustly889
estimate δρ and the need to use a short enough time period to ensure that the instan-890
taneous δρ values during a given time interval do not deviate strongly from the mean891
δρ over that interval. To ease comparison to the reconstructed mean δρ, the average892
of the individual δρ estimates obtained using the simple diagnostic tools shown in893
(3.27) are used to represent the true mean δρ over each time period. Together, these894
choices are consistent with the constraints that would be encountered in a real-world895
data assimilation system.896

Figure 5 shows the evolution of the instantaneous model errors x(b)1 − x
(a)
1 , x(b)2 −897

x
(a)
2 , and x(b)3 − x

(a)
3 , along with the actual and reconstructed values for δρ for three898

experiments employing different observation errors. The images on the left show899
the true error for each model variable in blue, whereas the dashed red lines show the900
model errors estimated using the asymptotic error estimators in Theorem 2.1. For the901
images on the right, the black and blue lines denote the true instantaneous and true902
mean δρ values, respectively, whereas the red lines depict the corresponding mean δρ903
estimates reconstructed using the α vector. Results are shown for three experiments904
assimilating observations with measurement errors ε = {0, 0.02, and 0.04} and scaling905
factors r = {0.0004, 0.0004, and 0.0016} for the observation error covariance matrices.906

Inspection of the time series in Fig. 5 reveals that the mean δρ values recon-907
structed from the coefficient vector α accurately capture the magnitude and evolution908
of the true δρ for the case where the assimilated observations have zero measurement909
error (Fig. 5b). The asymptotic error estimators also do an excellent job representing910
the true model errors during this experiment (Fig. 5a). As the observation error911
increases, however, the model error time series become more noisy (Fig. 5c, e) and912
the accuracy of the δρ reconstruction decreases due to the increased noise (Fig. 5d,913
f). The errors in the δρ reconstruction are largest for time periods when the true914
δρ reaches a local minimum or maximum because the rapid variation with time dur-915
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ing those situations makes it more difficult to properly reconstruct δρ. Regardless,916
these results show that it is possible to use the coefficient vector α to obtain useful917
information about the trajectory of δρ during the truth simulation. Because the true918
state was not used during this exercise, these results also demonstrate that reasonable919
parameter and model bias estimates can be obtained using differences between the920
model analysis and background states. This is important because whereas the true921
state of a real-world system is generally unknown, the model analysis and background922
states are both readily available from data assimilation systems.923

5. Conclusions. In this study, we have examined the behavior of dynamic model924
errors and their influence on the quality of the model analysis and first guess during925
cycled data assimilation experiments using the L63 model and a 3DVAR data assim-926
ilation system. We showed that conditional model biases due to errors in the speci-927
fication of a model parameter can be represented as a polynomial function that can928
be estimated using the model background-minus-truth or background-minus-analysis929
statistics for the realistic situation where the modeling system consists of polynomial930
forcing terms. We have also suggested a regularized least squares regression method931
to estimate the model biases and then described how these model error estimators932
could be used in the data assimilation system to improve the accuracy of the model933
analysis and first guess.934

We have carried out all derivations, estimations, and numerical experiments using935
the well-known L63 model to demonstrate the validity and feasibility of the ideas936
developed during this study. The L63 model allows us to study all parts of the system,937
bias estimators, and tools in a detailed way that would not be possible if we had used938
a full physics numerical model while still being able to represent the chaotic nonlinear939
characteristics of the real atmosphere. The results showed that the asymptotics are940
indeed a valid method to estimate an important part of the model first guess error,941
and that their use in data assimilation has the potential to improve the accuracy of the942
model background and analysis. We showed that model error estimators computed943
using the difference between the model background and analysis, which are readily944
available from all assimilation systems, are an effective way to estimate model error. In945
this framework, the model analysis serves as an approximation of the true state, which946
is unknown in a real-world system. Reasonable results can be achieved even when947
relatively large errors are present in the observations if Tikhonov regularization is948
employed during the estimation of the polynomial model error coefficients. Finally, we949
also show that the polynomial model bias coefficient vector can be used to reconstruct950
δρ during the assimilation experiments.951

In the current work, we have restricted our attention to a small-scale system952
containing three state variables. Real-world NWP models and data assimilation sys-953
tems have much deeper complexity and their dimensions are much larger than the954
system used here. Thus, future work is necessary to investigate the validity of the955
above ideas in high-dimensional models and to determine if the methods developed956
during this study can improve the representation of the background error covariance957
matrix B used by such systems. For the experiments presented in this paper, all of958
the state variables were observed during each assimilation cycle, which of course is959
not possible in a real data assimilation system. It will be important to evaluate the960
utility of the method when the observation uncertainty is higher or the measurements961
do not observe the full state of the model. It is reasonable to expect that it will be962
more difficult to estimate the model errors in such situations. It is also possible that963
the size of the initial condition uncertainty relative to the model error could impact964
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Fig. 5. (a) Time series showing the evolution of the model error given by the first guess minus
analysis (blue line) for x1, x2, and x3, and their estimation computed using the error asymptotics
(dashed red line). Here, δt = 0.04 and ε = 0. (b) Time series showing the evolution of the true
δρ (black line). The mean δρ parameter computed over intervals of 10 assimilation cycles is shown
by the dashed blue line, with the corresponding dynamic estimation computed using the mean bias
correction coefficients shown by the red lines. (c-d) Same as (a-b), except for the case where the
assimilation experiment was performed using δt = 0.04 and ε = 0.02. (e-f) Same as (a-b), except
for the case where the assimilation experiment was carried out using δt = 0.04 and ε = 0.04.
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the performance of this method. For example, the model error contribution to the965
forecast uncertainty will typically increase relative to the initial condition uncertainty966
over longer time periods. This would suggest that the model error estimation method967
may be especially useful for longer assimilation windows or when the observations are968
assimilated less frequently. A final point to consider is that we already knew which969
model parameter was incorrectly specified in the L63 model during the data assimila-970
tion experiments, which made it possible for us to target its reconstruction using the971
bias correction coefficient vector. Though this knowledge made the problem easier to972
solve, it is still consistent with many real-world situations where it is known a priori973
that a certain parameter varies with time but has been assigned a constant value in974
the NWP model due to computational constraints or incomplete knowledge on how975
to predict its evolution. With this knowledge, it should be possible to use the general976
polynomial expansion of the model variables method developed in Section 4.3 to de-977
termine if there are relationships between any of the polynomial terms and a chosen978
parameter and then use that information to reconstruct the value of the parameter.979

The dynamic B method developed during this study could be interpreted as980
providing dynamic additive covariance inflation capturing systematic model errors981
that are not represented by the static B used by variational systems nor by the982
dynamic B used by hybrid and EnKF assimilation methods. Inclusion of the dynamic983
model bias estimates in the B matrix could therefore make it possible to reduce984
the amount of covariance inflation that is used during the data assimilation step in985
EnKF systems. This is potentially advantageous because the dynamic B is computed986
based on the current conditions rather than using random perturbations drawn from987
a climatology as is typically done with additive covariance inflation methods. It may988
also provide a complementary approach to weak-constraint 4DVAR where instead of989
providing the model an additional degree of freedom through introduction of a model990
error forcing term, we instead enhance the quality of the B matrix through inclusion991
of the model bias estimates before it is used by the assimilation algorithm. More992
detailed investigations of these and other topics are left for future work.993
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