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NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION FOR
DATA ASSIMILATION*

JASON A. OTKIN T#, ROLAND W. E. POTTHAST #§, AND AMOS S. LAWLESS 1l

Abstract. In this study, we develop model bias estimators based on an asymptotic expansion
of the model dynamics for small time scales and small perturbations in a model parameter, and
then use the estimators to improve the performance of a data assimilation system. We employ the
well-known Lorenz (1963) model so that we can study all aspects of the dynamical system and model
bias estimators in a detailed way that would not be possible with a full physics numerical weather
prediction model. In particular, we first work out the asymptotics of the Lorenz model for small
changes in one of its parameters and then use statistics from cycled data assimilation experiments
to demonstrate that the asymptotics accurately represent the behavior of the model and that the
coefficients of the nonlinear asymptotical expansion can be reasonably estimated by solving a least
squares minimization problem.

In data assimilation, the background error covariance matrix usually estimates the uncertainty
of the model background, which is then used along with the observation error covariance matrix
to produce an updated analysis. If the uncertainty of the model background is strongly influenced
by time-dependent model biases, then the development of nonlinear bias estimators that also vary
with time could improve the performance of the assimilation system and the accuracy of the updated
analysis. We demonstrate this improvement through the combination of a constant background error
covariance matrix with a dynamically-varying matrix computed using the model bias estimators.
Numerical tests using the Lorenz (1963) model illustrate the feasibility of the approach and show
that it leads to clear improvements in the analysis and forecast accuracy.

Key words. Variational data assimilation, asymptotic expansion, model error, parameter esti-
mation

AMS subject classifications. 34A55, 65K10, 34E05

1. Introduction. Partial differential equations are widely used in scientific and
technological fields to simulate the evolution of natural phenomena. For initial bound-
ary condition problems such as those that are commonly encountered in atmospheric
science, an accurate prediction of the spatial and temporal characteristics of var-
ious weather and climate features depends not only on the ability of a numerical
model to realistically simulate the physical processes controlling their evolution, but
also on the ability of a data assimilation system to provide the forecast model an
accurate estimate of the initial conditions. Atmospheric data assimilation systems
typically combine information from a short-range model forecast, or ensemble of fore-
casts, with a set of observations gathered over a specified time period to produce an
analysis of the current state of the dynamical system that then serves as the initial
conditions for the next model forecast. Commonly used data assimilation methods
include variational assimilation that determines the analysis through minimization of
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a cost function, ensemble methods that use an ensemble of forecasts to dynamically
estimate the sample covariances between different state components when determin-
ing how new observations impact the ensemble analysis, and so-called hybrid methods
that combine aspects of variational and ensemble data assimilation methods. A wide
range of literature is known today introducing and studying different data assimilation
methods, see for example [46, 36, 20, 3, 75, 62, 38, 52, 33, 10].

Regardless of which assimilation methodology is employed, generation of the best
possible analysis state (%) through combination of the model first guess or background
state z(®) with the available observations requires knowledge of the observation error
and the underlying uncertainty in the model background z(*). The observation error
uncertainty is usually determined by the covariance matrix R € R™*™ of the obser-
vation vector y € R™ in observation space R, where m € N denotes the number
of observations. The uncertainty of the model background state z(?) is measured by
the covariance matrix B € R"*™, where n € N is the dimension of the model space
R” and z(®) € R™. Variational data assimilation methods calculate the analysis state
z(®) € R” by minimizing the functional

(1.1) J(@) = le =25+ |ly — H(@)|[7-1, z€R",y eR™

where H : R — R™ is the forward observation operator that maps the model state
2 into the simulated observation H(x) € R™. For linear observation operators, it is
well-known (c.f. [52], Chapter 5) that the minimization of (1.1) is given by

(1.2) o =+ BHT(R+ HBHT) "} (y — H(x")).

Because the model background and observations are not perfect, accurate knowledge
of the covariance matrices B and R is very important for data assimilation since they
determine the weights that are applied to the model background and observations,
respectively, when generating the updated analysis 2(®). In addition, the matrix B
spreads information spatially within a region surrounding the observation location
and can also be used to add balance constraints between analysis variables based on
physical principles [8, 9].

Despite its importance, an exact form for B cannot be determined for real-world
applications because the true state of the dynamical system cannot be completely
known due to a limited number of observations and the presence of errors in the obser-
vations that are available. For variational assimilation systems, the model background
error covariances are often computed using the so-called National Meteorological Cen-
ter (NMC) method that was first described by [58]. This method estimates B using
differences between forecasts of different lengths valid at the same time. For example,
forecast errors could be assessed by examining differences between 24 and 48 hour
forecasts from model integrations initialized one day apart. These difference fields are
usually obtained from a large collection of model forecasts covering time periods of a
month or longer. As such, the NMC method generates a climatological estimate of B
that may not properly represent the true model errors on any given day due to changes
in the atmospheric conditions. Because of this, some operational weather forecast-
ing centers have developed new methods to generate B. One approach is to use an
ensemble of data assimilations (EDA) where an ensemble of reduced-resolution data
assimilation cycles is performed in which the observations and model are perturbed in
some manner. A theoretical analysis by [35] has shown that if the perturbations are
drawn from the true distributions of observation and model errors, that the spread in
the resultant EDA analyses about the unperturbed control analysis will be represen-
tative of the background error. This approach has the advantage of introducing some
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NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION FOR DATA ASSIMILATION 3

flow-dependency to the B matrix, thereby allowing it to better capture the errors of
the day ([13, 35, 61]).

Ensemble data assimilation systems such as the ensemble Kalman filter (EnKF)
(e.g. [20, 18, 28, 21, 29, 4, 80, 72, 30, 32]) on the other hand re-compute B for
each assimilation step using an estimator based on output from an ensemble z(9) of
forecasts valid at the current analysis time, where ¢ = 1, ..., L, and L is the size of the
ensemble. For most applications, the standard stochastic estimator

L

L
(1.3)  B= % S (@00 — 50) (@00 _ FO)T, s . 1 S a0,
/=1 /=1

is used to compute the first guess ensemble mean ) and the background error
covariance matrix B. The stochastic estimator includes the uncertainty of the previous
model analysis propagated to the current analysis time. Because the forecast model
is an approximation of the real dynamical system, the distribution of the first guess
ensemble could be sub-optimal due to the impact of systematic errors on the ensemble
mean and ensemble spread. Similar problems can arise when using the NMC method
because in situations where the model error varies with time, the forecast differences
used to compute the covariances in B will include the dynamically-varying model bias.
This could result in incorrect statistical relationships between the model variables.
Both of these outcomes are not desirable because the inclusion of systematic model
errors when generating B can degrade the accuracy of the posterior analysis x(®)
obtained during the data assimilation step.

Various studies have focused on improving methods to estimate the background
error covariances used by modern data assimilation systems; however, accounting
for model error is challenging because of the large size of geophysical models [16].
One approach is to add perturbations to a subset of the model variables, such as
temperature, at the initialization time, whereas another technique adds random per-
turbations to specific parameters in the parameterization schemes used to simulate
sub-grid scale processes during each model time step. The goal with both approaches
is to increase the range of possible forecast solutions to realistically address the impact
of systematic model errors and the underlying uncertainties in the parameterization
schemes. Substantial research has been directed toward development of these meth-
ods, which have the potential to greatly improve the performance of assimilation
systems [14, 79, 63, 25, 71, 11]. As a corollary to the above approaches, other studies
have shown that the detrimental impact of systematic model errors in ensemble data
assimilation systems can be reduced by using different parameterization schemes in
each ensemble member [49, 22].

Another approach widely used in ensemble data assimilation systems to increase
the ensemble spread is to apply additive or multiplicative covariance inflation during
the assimilation step. Some amount of covariance inflation is often necessary because
the rank deficiency of the system can lead to an underestimation of the ensemble
variance and because systematic model errors can cause the model background z(®
to deviate greatly from reality. This in turn can lead to so-called filter divergence
where the model analyses can no longer be pulled toward the observations during the
data assimilation step [33]. In the case of additive covariance inflation, the impact
of the unknown model error is treated by drawing random perturbations from some
distribution and then adding them to either the model background z® or to the
model analysis z(@ . With multiplicative covariance inflation, the ensemble spread for
selected model variables is multiplied by a real number to achieve the desired ensemble

This manuscript is for review purposes only.



134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

182
183

4 JASON A. OTKIN, ROLAND W. E. POTTHAST, AND AMOS S. LAWLESS

spread. Both methods have some adaptivity because observation-minus-background
(OMB) statistics are used to estimate how much inflation is necessary. There is a
very active community working on these approaches, see for example |26, 5, 6, 31, 44,
43, 51, 81].

Model error has often been ignored in variational data assimilation systems be-
cause it is difficult to quantify and has been viewed as having a minor impact compared
to random errors in the initial conditions and systematic errors in the observations
[15]. Unlike ensemble assimilation systems where the background error covariance ma-
trix B is dynamically estimated for each assimilation cycle using the ensemble output,
additional statistical or dynamical assumptions are generally necessary when creating
these estimates for variational systems. Studies by [17, 84, 77, 73, 74] have shown
that treating the model error as part of the state estimation problem substantially im-
proves the accuracy of the state estimates. Theoretical model error frameworks were
developed by [24, 54, 55, 56] based on the behavior of model errors in deterministic
models. These frameworks were then used by [15] to derive evolution equations for the
model error covariances and correlations that address errors due to parameterization
schemes.

The desire to properly account for model error also underpins recent efforts to
move from "strong-constraint" 4-dimensional variational systems that assume the
forecast model is perfect to "weak-constraint" systems that include some estimate
of the model error. This concept was introduced 50 years ago by [69], however, it
was not implemented in a full-physics forecast model for several decades because of
the lack of information with which to define and solve the problem and the compu-
tational burden associated with inverting the model error covariance matrix along
with the other matrices already included in the strong-constraint formulation [53].
The basic premise behind the weak-constraint approach is that it is sufficient to only
approximately satisfy the model equations because they are not exact anyway due to
incomplete knowledge of the physical processes being modeled or the need to simplify
the governing equations due to computational limitations. Despite the challenges as-
sociated with implementing weak-constraint systems, their use has generally led to
more accurate model analyses and forecasts when compared to strong-constraint sys-
tems due to the higher number of degrees of freedom. As such, they are becoming
more widely used in variational data assimilation systems [74, 45, 53]. A recent study
by [34] has also shown that model errors can be accounted for in strong-constraint
systems by allowing errors in both the model and the observations when considering
the statistics of the innovation vector. They demonstrate that a more accurate esti-
mate of the model state can be obtained when the combined model and observation
error statistics are used instead of the standard observation-only error statistics.

In this paper, we seek to extend our understanding of how to identify and treat
model bias in modern data assimilation systems. Key tasks of this research include: 1)
studying the behavior of model errors in a nonlinear dynamical system, 2) developing
nonlinear conditional model bias estimators using the observations and the model
first guess and analysis states, and 3) employing these estimators during variational
data assimilation experiments to assess their ability to improve the performance of
the system. Numerical experiments are performed using the Lorenz-63 (L63) model
[47], which is a well-known and popular study object within the data assimilation and
dynamical systems communities.

We begin by carrying out an asymptotic analysis of the L63 model when one
of its parameters, in this case, the normalized Rayleigh number p, varies with time.
In the L63 model, the p parameter is usually set to a constant value; however, we
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NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION FOR DATA ASSIMILATION 5

allow it to vary with time in order to introduce a model bias. This is accomplished
through use of a coupled version of the 1.63 model where a background or "hidden"
system S2 is used to control how the p = p(t) parameter changes with time in the
"primary" system S1 that is used to represent the truth. Though we chose to focus
on variations in the p parameter during this study, the approach works in the same
way for the other L63 model parameters. We then develop a nonlinear model bias
estimator method based on the initial ideas discussed in [57] where the bias estimator
is formulated as a polynomial expansion of the model variables and the coefficients of
this expansion are determined by solving a least-squares minimization problem. The
ability of this method to dynamically estimate the model error contribution to the
matrix B and to improve the resultant OMB statistics is demonstrated by carrying
out an experiment where B is represented as the sum of static and dynamically-
varying components. Finally, we demonstrate the feasibility and potential utility of
the asymptotic expansion and nonlinear bias estimation method by running numerical
experiments using a 3-dimensional variational (3DVAR) data assimilation system and
a coupled version of the L63 model.

A description of the coupled L63 modeling system and derivation of the model
asymptotics are provided in Section 2. The utility of dynamically estimating the
model background error covariance matrix B is discussed in Section 3, along with
development of nonlinear conditional model error estimators. We then perform various
numerical experiments using the L63 model in Section 4, first demonstrating the
validity of the asymptotic expansion of the nonlinear model error estimators in Section
4.1. This is followed by a study of the optimality of the fixed and dynamic components
of the B matrix used during data assimilation and then a study of the estimation of
the nonlinear model error dynamics based on the first guess minus analysis statistics.
Results from these sections will demonstrate the feasibility of using methods developed
during this study to estimate nonlinear model errors without any prior knowledge or
assumptions regarding the form of the model dynamics. Conclusions are presented in
Section 5.

2. Estimating System Bias.

2.1. Coupled Lorenz 1963 Model. We want to use a relatively simple atmo-
spheric model to assess the behavior of nonlinear model biases and to develop ways to
take into account those biases in a way that is complex enough to represent nonlinear
atmospheric processes while being simple enough to provide insight into the nonlinear
behavior of the system. To accomplish this goal, we have chosen to employ the L63
model [47], which is widely used within the atmospheric data assimilation commu-
nity (see for example [19, 76, 78, 59, 2, 15, 41, 27, 42, 67, 82, 83, 48, 23]) because it
is less complex than a full physics numerical weather prediction model while main-
taining strong nonlinearity representative of many atmospheric processes. The L63
model consists of a set of three coupled ordinary differential equations that provide a
simplified description of dry convection. The model equations can be written as:

dx
(2.1) Tidtl =o(ze — 1)
dx
(2.2) Td—tz = pT1 — To — XT3
d
(2.3) T8 — 335 — Ba

dt
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6 JASON A. OTKIN, ROLAND W. E. POTTHAST, AND AMOS S. LAWLESS

where x1(t), x2(t), and z3(t) are the dependent variables, 7 is a temporal scaling
factor and o, p, and § are the parameters of the model. For some parameter values,
the system shows chaotic behavior because very small perturbations in the initial
conditions can grow very rapidly into completely different solutions. The model was
designed to simulate atmospheric dry cellular convection following the work of [68].
The model simulates the evolution of a forced dissipative hydrodynamic system that
possesses non-periodic and unstable solutions. The x; variable measures the intensity
of convective motion, the x5 variable measures the temperature difference between
the ascending and descending currents, and the x3 variable measures the distortion
of the vertical temperature profile from linearity. The model parameters represent
the Prandtl number (o), a normalized Rayleigh number (p), and a non-dimensional
wave number (3). The critical Rayleigh number for the system is 24.74; however, p is
typically set to the slightly supercritical value of 28 following the work of [47]. The o
and B parameters are set to 10 and 8/3, respectively. Together, the values for these
three parameters sustain the chaotic nature of the model.

In this study, we investigate the sensitivity of the L63 model to perturbations
in the p parameter and identify suitable predictors that can be used to estimate
conditional biases in the state variables (x1,z2,x3) due to these perturbations. We
first generate a nature or "truth" simulation that tracks the evolution of the state
variables over a certain period of time. The truth simulation is generated using a
particular model for the behavior of p over time. Here, we choose to use a coupled
version of the L63 model where each system (S1,52) is run at a different speed and
one-way coupling occurs through the influence of S2 on the p parameter in S1, as
is illustrated in Fig. 1. After some experimentation, we decided to set 791 = 1 and
Tgo = 5, which means that the hidden system S2 is integrated forward at one-fifth
the speed of S1.

The state location zgo ob-

System S1: fast Lorenz 63 model tained from the hidden system is

. then scaled by a factor of ¢, = 0.2
181, 251, T with (751, ps1,0s1, Y o ’
(@151, 2251, T351) T (751, ps1, 051, Bs) with the scaled value subsequently

used to perturb pg, such that
(2.4)

P = ps1 = po + x152(1) * ¢
frue () x < ps1 = po+ x152(t) - ¢y, tER,

System S2: slow Lorenz 63 model
(T152, T252, T3s2) With (Ts2, ps2, 052, Bs2)

where po = pg2 = 28, z152(t) - ¢, is
the dp perturbation obtained from
S2, and pg1 is the resultant value

used when integrating S1 during
Fic. 1. Coupled version of the Lorenz-63 model,

with the fast system S1 dependent on the slow system the next time step. The scaling
S2. S1 is used to generate the nature simulation. of 192 by Cp = 0.2 means that
dp varies between approximately -

4 and +4, which is reasonable because this represents departures up to 15% from pq.
The slowly varying autocorrelated dp perturbations could be thought of as represent-
ing changes in the original L63 model equations due to the influence of the seasonal
cycle on daily forecasts or the diurnal cycle on hourly forecasts. For example, pa-
rameters in cloud microphysics parameterization schemes are often assigned constant
values even though some of them are known to vary, sometimes by up to several orders
of magnitude, depending upon the stage of the cloud’s life cycle. A similar approach
was used by [83], where they attached an ocean slab model to the L63 model equa-
tions in order to represent the interaction between the slowly-varying ocean and the

This manuscript is for review purposes only.
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rapidly-changing atmosphere. Note that the parameters og; and og2 were set to 10,
and Bg1 and Bg2 were set to 8/3, as is typically done in the L63 model.

II. After generating the "truth" simulation using S1 in which the pg; parameter
varied with time, observations were generated for each state variable (151, 2251, Z351)
at each model time step and then used in cycled data assimilation experiments employ-
ing a 3DVAR data assimilation system. The truth simulation and data assimilation ex-
periments were started with the same initial conditions (z151, Z251,2351) = (2,3, 11);
however, in the absence of data assimilation, they will follow different trajectories
thereafter due to differences in the p parameter. The L63 model is integrated to the
next time step using a 4th order Runge-Kutta time integration scheme. Various tests
were performed using different observation error magnitudes and time step lengths, as
will be shown in Section 4. Figure 2 shows the trajectory of the model state variables
and evolution of the pg; parameter during the truth simulation.

The data assimilation experiments employed the typical L63 model equations,
including p = 28; however, for these experiments, the equations represent an imperfect
model because we know that p is not constant during the truth simulation. Let us
assume that we know that p varies with time, but that we only know its mean value
(p = 28) and not how it changes with time. The instantaneous difference between
p in the data assimilation experiment and p in the truth simulation represents a
model error; however, these differences correspond to conditional model biases when
assessed over long time periods because dp is a function of S2. Because errors in
p directly impact the evolution of all three of the state variables in nonlinear ways,
the instantaneous errors will potentially result in biases in the model state variables
that are a nonlinear function of one or more predictors when assessed over long time
periods. For example, a numerical weather prediction model may have the tendency
to produce convection that is too strong during the day or too weak during the night,
both of which will impact the sign and magnitude of the model biases in nonlinear
ways during different parts of the diurnal cycle.

32
o5 (a) (b)
40
30
30
-
20 <28
10
30
0] 0 20 26
-20 10 . %
0 10 20 2
) 20 30 -

0 100 200 300 400 500 600
Time Step

Fic. 2. (a) Butterfly diagram showing the model trajectory during 600 time steps of the truth
stmulation using the coupled L63 system described in Section 2.1. (b) Time series showing the
evolution of the pg1 parameter during the truth simulation, where psi for each model time step is
set using (2.4).

2.2. Asymptotics for Model Error of the Lorenz 1963 System. Here,
we first evaluate how the model variables (x1,x9,z3) change in dependence on the
model parameter p. In particular, we aim to develop an asymptotic estimator for the
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error in (x1, %2, x3) depending on p and time ¢. The asymptotic analysis is performed
using a Taylor series expansion with an explicit integral form of the error term. This
approach is necessary because some of the constants will be zero in the higher order
terms; therefore, we need to take sufficiently many terms into account to get the
correct higher order terms.

THEOREM 2.1. The leading terms of the asymptotic analysis of the L63 system
with respect to variations of p = po + 0p, where we use t = tg + ot and O(s) denotes
a function bounded by c|s| with some constant ¢ in a neighborhood of s = 0, are given

(2.5) 21(p,1) ~ 21(p0,1) = 50w (po, to) - 50~ (51)? + O(5p - 6¢°)
(2.6) 2(p,t) — x2(po,t) = x1(po, to) - 5p - 6t + O(Sp - 6°)
(2.7) 250, 1) — 300, 1) = 22 (pos to) - 5p - (51)2 + O(6p - 01%)

Proof. We work out the proof in four steps, starting with some general setup and
then considering the variables x1, 2, and x3 in three steps.

Step 1. We begin by differentiating the equations (2.1) - (2.3) with respect to p
using the product rule, where

dzs

dJZl ’
—, ah = dp

/ /
Ty =——, Ty= ,
are the derivatives of the state variables with respect to p. Because the differentiation
with respect to ¢ and to p can be exchanged in the case of continuously differentiable
functions, we obtain:

d /

(2.8) ;tl = ory — o)
dat

(2.9) d—; =a\p+ a1 — ) — 2hxs — 117
dz,

(2.10) dt3 = xlwoy + ;12 — Bk

Note that all of the variables depend on time ¢ and the parameter p = p(t), and that
the 7 terms in equations (2.1) - (2.3) have been set to 1 to represent the original L63
model equations as described in [47].

To assess the sensitivity of the L63 model equations to variations in p at times
t close to some initial time, ty, we begin by looking at the scenario where the initial
values for (x1,xs,x3) are prescribed and identical for all p under consideration, such
that at t = tg:

(2.11) z1(p,to) = 1,0
(2.12) z2(p,to) = 72,0
(2.13) z3(p,to) = 23,0

This is an initial value problem where the derivatives of each equation with respect
to p, (z},xh,2%), are equal to zero at ¢t = to, i.e.

(214) xll(p7t0) =0, x/Q(pa tO) =0, ‘Té(pv tO) =0.
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NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION FOR DATA ASSIMILATION 9

After inserting these initial values into (2.8) - (2.10), we obtain:

dx!
2.15 —L(p,t) =0
(215) —L(p,t0)

dz
(2.16) dff(f% to) = z1(p, to)

dx!
2.17 “(p,to) =0
(217) "3 (p,to)
Step 2. Equation (2.9) reveals that the time rate of change of the sensitivity of xo
with respect to p (i.e., z3) is a function of its location along the zi-axis. We now
carry out an asymptotic analysis by an expansion of the functions with respect to
variations in time ¢ = ty 4 6t and the parameter p = pg+ §p. To assess the sensitivity
of x5 with respect to small variations in p, we employ (2.14) and (2.16) as follows.

We estimate

ra(prt) = sl ) = [ a3(5.0) d

PO

P _ bdah(p,t) AN -
:/ (m’z(p7to)+/ %dt) dp
Po T to i
P td / ~£ N
:/ / 450 ) 47 a5
po Jto dt

d EdQ /(= B
(2.18) / / x2 ”’ |t0 / Mds) di dp.
po Jto to ds

=z1 (P,to)

We estimate both terms in (2.18) separately. For the first term 77, by (2.11) we obtain

Ty = / /$1 psto) dt dp
po Jto

=/ z1(po, to) dt dp
po Jto
(219) :1'1(p0,t0) 5p5t,

where x1(p, to) is replaced by x1(po, to) because the derivative of x1 with respect to p
is zero at t( following (2.14). The dp and dt terms are obtained by solving the definite
integrals, with dp denoting the interval [pg, p] and 0t denoting the interval [tg, t]. The
second term is estimated in a similar way by

2
T, = ///‘”2”’ ds di dp
Po

(2.20) = 0(6p - 6t2).
Combining the estimates (2.19) and (2.20) then leads to
(2.21) za(p,t) — xa(po,t) = z1(po, to) - 6p - 0t + O(Sp - 5t2).

This proves equation (2.6) in Theorem 2.1.
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Step 3. To obtain an estimate for x1(p,t), we proceed as in equation (2.18) and,
for a twice continuously differentiable function x4 (p,t), estimate

(2.22) ri(prt) = 2108+ [ (5.1) dp
(2.23) = ai(mt)+ [ (w00t + / "al(5.1) dp) dp

We note that by taking the derivative of (2.8) with respect to time and inserting (2.16)
into the resultant equation, we obtain

dt?2 T dt
(2.24) = ox1(p, to)

Pai(pto) __drh(pito) _drh(p,to)

and thus, the derivative of (2.24) with respect to time gives

>z (p, to)

(2.25) o

= oz} (p,to) = 0.

Performing a third order expansion around ty then leads to an estimate for z{ (p, t):
(2.26) 2 (p,t) = O(6t3).

After inserting (2.26) into (2.23) and then solving the definite integrals, we obtain:
(2.27) z1(p,t) = x1(po, t) + 4 (po, 1) - 6p + O(6p” - 6°)

To estimate ] (p,t), with the help of (2.14) and (2.15), we derive:

t / s
da' (p.0) -
P(prt) = st(pto) + [ T
~——

to dt
=0
t o de (o1 fdz /
(2.28) :/ (M +/ dai(p:s) ds) di.
to dt to to d82
=0

The second derivative of @ (p,t) with respect to time ¢ can be estimated by differen-
tiating (2.8) with respect to ¢, and using (2.9) and (2.16), which yields:

czi(p,t) _ d (dm’l(p, t))
dt

dt? dt
d

= = (aab(0.) = a2t (p,1)

_ dwy dx}

~day dx}

=05 (p,to) —o 7t (p,to) + O(6t)

=0

(2.29) =ox1(p,to) + O(dt).
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We insert this into (2.28) to conclude with

t ot
zy(p,t) = oxz1(p, to) / / ldsdt + O(6t%)
to

to

:axl(p,to)-/t(f—to) i + O(5t%)

— oz1(pito) - %(&)2 + 0@t
(2.30) = oz1(po, to) - %(&)2 + O(5t%).

Finally, we insert (2.30) into (2.27) with the help of (2.14) to obtain (2.5) in Theorem
2.1.

Step 4. In our final step, we estimate the behavior of z5(p,t). We note that
similarly to @} (p,t) given by (2.30) as in (2.18) we obtain:

td / 7{ N
z5(p,t) = 3(p,to) + / % dt
—— to t
=0
(2.31) =21(p, 1) - 5t + O(6t?).
Also, based on (2.17) we calculate
tdzh(p, 1) -
(o) = gilpto) + [ D g
~—— to dt
=0
"¢ dzy(p, 1) ) .
:/ (37~|t0 +/ %ds)dt
to dt to S
——
=0
(2.32) = O(6t%).

Now, we follow the above lines to estimate

ro(pvt) = aalpont) = [ (5u0) dp

PO
P t /(= 1

(2.33) :/ (xg(ﬁ,to) +/ Mdf) dp
Po T to dt

Here, to obtain a sharper estimate than (2.32) and to evaluate the constant explicitly,
we insert (2.10) into (2.33), which yields:

(2.341p.1) — 5(po, 1) = / ’ / (215 Da(5. D)+ 1 (5. Dy (5.) — By (5.D) dF dp

to

Because (2}, xh,25) = 0 at ty, we need to estimate the leading order term by its
temporal change at ¢ as given in (2.15) - (2.17). We insert the asymptotics for = (p, t),
x4 (p,t), and z4(p,t) given by (2.30), (2.31), and (2.32) into (2.34) to estimate:

23(p,1) — w3(po,t) = / ' / t (300, t0)0t + O(61%)) di dp

po Jto

(2.35) =x3(p,to) - 6t - Sp+ O(Sp - 6t3),

This manuscript is for review purposes only.



119
420
421

422
423

424

426

146

447
448
449
450
151
452
453
454
455
156
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where 2%(p,t9)dt is the leading order term, and all other terms have been absorbed
into the order O(dt?) term. Thus, we have derived (2.7) in Theorem 2.1 and the proof
is complete. O

Remark. In Step 3 of the proof, we could have performed the estimate slightly
differently. Using an approach similar to Steps 2 and 4, we obtain:

ni(pt) =it = [ (5.0 dp

PO
p . dx (p,t) A
:/ (m’l(p,to)—l—/ 71(8 )dt) dp

po T to dt

et da (5.7 Edz /(= _
(2.36) :/ / (L?’)ho +/ Mds) di dp

po Jto " dt , to ds

=0

and then proceed as in (2.29) and (2.30) to obtain (2.5) as above. O

3. Improving Data Assimilation using Bias Estimators. Being able to ac-
curately estimate errors in the model background z(®) is important for any practical
implementation of a data assimilation algorithm. In this section, we first discuss the
model error and model bias terminology and then study a simple Bayesian example
to illustrate the importance of correctly estimating the model background error co-
variance matrix B. We then develop a generalized model error estimation method
that is subsequently applied to the L63 model discussed in Section 2.2 to demonstrate
the feasibility of dynamically estimating the model errors using nonlinear estimators
based on the model variables. In Section 3.4, we show how the bias correction coef-
ficient vector obtained through solving a least squares minimization problem can be
used to estimate the unknown parameter using the analysis increments from the data
assimilation system.

3.1. Nonlinear Model Bias and Error Terminology. In this section, we
sharpen the terminology for model error, model bias, and conditional model bias, and
compare the concepts. For a particular location, the model error is the instantaneous
difference between the background state (%) and the true state z(!"“€) of the system.
Model bias is then defined as the z(®) — z(#"u€) differences averaged over some period
of time or region:

(3.1) by := E{z® — gltreey

where the bias is computed separately for different model quantities such as temper-
ature, humidity, or cloud water path. If we then assume that the analysis state 2(%)
obtained during each assimilation cycle is the best estimate of the true system state,
we can use the resultant 2(® — 2(®) differences as an approximation to the true model
bias, with appropriate summation over particular regions or periods of time:

(3.2) bp_q :=E{z® — (@)},

The conditional model bias can then be defined as the mean deviation of the dependent
variable from the true system state when the bias is a function of some other parameter
or variable p referred to as the predictor. The conditional model bias can be estimated
using:

(3.3) by—a(p) = E{z® (p) — 2 (p)}.
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For this study, we are interested in the situation where the bias predictor is a compo-
nent of the model state.

If bp—q(p) varies in a nonlinear manner, then this behavior represents a nonlinear
conditional bias and we will need to use nonlinear bias correction methods to remove
the bias from the model variables. In this case, let us assume that the function by, (p)
can be written as a superposition

N
(3.4) ba(p) = Y te(p)ae
=1

of nonlinear basis functions ¢ with N unknown coefficients ae. The solution of (3.4)
can be understood as a generalized bias estimation equation because it structures the
set of differences according to the predictor p and searches for a functional estimation
of its behavior. We can then employ nonlinear bias correction methods such as that
described in [57] to determine the bias correction coefficients based on a set of by_,(p)
differences. To do this effectively, we will need to obtain a large sample of differences
covering a diverse range of system states.

It should also be noted that the estimation of the coefficients ¢ in (3.4) using
z®) —z() differences accumulated over multiple assimilation cycles subsequently leads
to the capability to predict the instantaneous model error when those coefficients are
applied to the current state during an individual assimilation cycle. This demonstrates
that conditional model bias estimation and model error estimation are strongly related
and show significant overlap. As discussed in Section 3.3, the forecast error in general
can be represented as a combination of state estimation error associated with the
propagation of errors in the prior analysis to the current time and a second component
that represents the true model error arising from the use of an imperfect model.
The instantaneous model errors can therefore be viewed as conditional model biases
because their characteristics likely depend on the state of the system.

The conditional model error estimators can be used for various purposes, including
a) model bias correction where the model background is corrected prior to its use in
the data assimilation system, b) model uncertainty estimation where the model error
estimates are used to improve the background error covariance matrix B, and c¢) model
development efforts where the error statistics are used to improve the accuracy of the
numerical model. In this paper, we focus on application b) because we seek to employ
knowledge regarding the behavior of the model errors to improve estimates of the
model background uncertainty.

3.2. Study of a Simple Bayesian Example. A Bayesian data assimilation
step employs Bayes formula

(3.5) P! (@) = cp®(@)p(ylz), = €R"

for estimating the posterior probability distribution p(® (z) based on the prior prob-
ability distribution p(®)(x) and the observation error distribution p(y|z). The prior
distribution is usually assumed to be Gaussian in data assimilation systems, such
that:

(3.6) p®(z) = 667%(96796(&“371(171@)), z € R",

where ¢ is a constant and the background error covariance matrix B is estimated
climatologically in classical variational assimilation systems or based on an ensemble
of model states in an EnKF.

This manuscript is for review purposes only.
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502 Here, we discuss and demonstrate the role of the correct estimate of B on the
503 quality of the analysis mean and analysis distribution. For an EnKF system, the
504 ensemble spread is used to estimate B, however, this estimate only contains part of
505 the error when a numerical model is used because it does not include the difference
506  between the model and the true state of the system. Variational data assimilation
507 systems, such as 3DVAR, are also unable to consider these differences because B is
508 chosen as fixed for a particular time period due to the way in which it is constructed.
509 This means that the model bias and how it changes with time is not taken into
510 account by either assimilation methodology, which can substantially degrade their
511 performance. For the remainder of this work, we restrict our attention to 3DVAR
512  because that is what we used during the numerical experiments discussed in Section
513 4. We note however that similar arguments apply for ensemble and hybrid data
514 assimilation systems.

515 As a starting point, we derive the error representation explicitly for a one-dimensionalll
516 Gaussian case with observation operator H = I. In one dimension, the best estimate
517 of the current state (or analysis) during an assimilation step is given by:

515 (3.7) 2@ = 2® ﬁ(y —a®),

519 where y is the observation, r is the observation error uncertainty, z(*) is the first guess
520 or background, and q represents the estimated variance of the error in the variable x.
521  Now, let us assume that ¢q is the true background error variance that includes model

522 error, such that the correct analysis x(()a) is represented as:

‘ 4o b)
523 (3.8 ol =a2® 4 —_
2 (338) ; Ay —a®)
524 The error between the analysis based on some uncertainty or variance ¢ and the
525 correct uncertainty or variance qq is then given by:
526 |x(“) (a)I = ’ _ ’ y — x(b)|

r+ q T+ qo
527 (3.9) = ‘ ra = g) ’ ly — z®)].

(r+¢q)-(r+qo)
528 This result shows that the analysis error for each assimilation cycle is proportional
529 to the observation departure |y — z(®)| and to the accuracy of the background error
530 variance estimate |¢ — go|. Thus, development of new methods that can be used to
531 generate a more accurate estimate of ¢ will directly improve the quality of the analysis
53

32 and performance of the assimilation system.

533 3.3. Dynamical Error and Bias Estimators. In this section, we develop a
534  generalized method to diagnose model biases using the model variables. First, let us
535 assume that the the forecast error LIZ;Cb) - x,(:me) at a given time k can be represented
536 as the difference between the dynamical states that are obtained when the prior
537 analysis ac,(C )1 is propagated by an imperfect model M and the true prior state x,(:“fe)

538 is propagated by the perfect model Mie:
539 (3.10) x,(gb) — ngme) M(:Egl)l) M (M)

540 The forecast error can then be decomposed into one part that is due to the propagation
541  of the uncertainty error associated with the prior analysis state M (:ck 1) M (ztrue),
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and a second part that represents the true model error, E = M (x}"¢) — M (xm¢),
during the propagation from the prior time:

b rue rue rue rue
(311) o —a{™ = (M(@f?) - M(af)) + (M(@f) — M (af) ).

Taking the variance on both sides of (3.11), and using

(3.12) ¢t = Var(M () — M(z§75))
and
(3.13) g% = Var(M(xi) — MU (a7)),

we obtain the total variance of the forecast error:
@) := Var (x,(cb) — :cgme))
(3.15) = "% + g™ 2. Cov(M(af,) = M(a{I"), M(ai™s) = M (@)

It is a standard approach in data assimilation to assume that the initial condition un-
certainty and true model error are uncorrelated [50], which means that the covariance
term on the righthand side of (3.15) will equal zero and therefore the total variance
of the forecast error can be given by

total __ _state model
(3.16) q =q +4q ;

where ¢*%%*¢ reflects the influence of the variance of the estimate of the prior analysis

propagated to the current analysis time using the model equations, and ¢™°%! is the
variance in the model error E due to the use of an imperfect numerical model.

If some error estimators such as those shown in Theorem 2.1 are available, we
can employ (3.16) to estimate ¢*°** and then use it to improve the estimate of the
analysis during a given data assimilation step. Though we typically will not know
g****¢ in a complex real-world system, the development of a method that can be used
to estimate the time-varying model error E, and thus the variance ¢™°%!, allows us
to employ a lower fixed ¢*'%*¢ in our approach. This outcome is better than having
to use a larger fixed ¢*%®*¢, which would otherwise be the case, because that would
lead to an overestimate of the total error variance. In general, it will not be possible
to carry out a full assessment of the model error due to incomplete knowledge of the
governing equations; however, Theorem 2.1 shows that the model error asymptotically
depends on the model variables, here in particular, z1(pg, to). We can therefore employ
nonlinear model error estimators to diagnose such dependencies as follows.

ITI. We begin with a general example where we study the estimation of a error
that depends on the model state z and time t. We model the dependence on the
states using basis functions ¢,(x), x € R™, with £ = 1,..., N;. The dependence on
time is modeled using basis functions ¥, k = 1, ..., N;. Let us assume an ansatz of
the form

é k
(3.17) ) =33 B9 eel@)un(t), = eR”, teR,

{=1 k=1

for the model error E;. For illustrative purposes, the functions ¢y (t) could be rep-
resented by sin(¢) and cos(t) or by higher order trigonometric functions, whereas the
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functions @y (x) could be represented by the polynomial terms in Theorem 2.1. In this
situation, the terms would correspond to wp(z) = x§1m§2x§3, with &1, &9, &3 counted
by ¢ = 1,....Np, ¥1(t) = 1, and ¥, (t) = 0 for & > 1. The coefficients ﬁg,z are the
unknown coeflicients linking the true dynamics with the numerical model.

If we then observe the model error E;(x,t) for a selection of states (x[n],t[n]),
n = 1,...,N,, such that the linear independence of ¢, on x[n] is satisfied and a set
t[n] € [0,T] such that the linear independence of v, is satisfied on this set, we know
that the linear system

(3.18) Ei(zln)) =Y 37 89 eelaln)) vi(tn)),

(=1 k=1

n=1,..., N, has at most one solution for each j = 1,...,n. It may be overdetermined
if N, > Ny - Ni, and if the data is inconsistent would have no exact solution. In that
case, we can use least squares methods to calculate approximate solutions.

Let us also discuss the case of non-uniqueness for the calculation of the bias cor-
rection coefficients. This situation can arise if two or more variables in the dynamical
system under consideration are correlated. For example, the z; and xo variables in
the L63 system display strong correlations in parts of the trajectory. Though the non-
unique solution will not affect the quality of the bias estimate for the time interval
used to calculate the coeflicients, it could potentially lead to large errors if these coef-
ficients are used outside of the training period. Thus, we note that: 1) for time-local
estimation of model biases, the consequences of non-uniqueness should be small, and
2) when the bias estimation tool is employed for longer time periods or for forecasting,
it is important to have training periods that include conditions representative of the
full climatology of the dynamical model.

ITI. Here, we illustrate the utility of the generalized framework developed in the
previous section by applying it to the L63 model. First, let us assume that the true
evolution of a hypothetical dynamical system, represented by M?"“¢ depends on a
particular parameter that varies with time, but that limitations in our understanding
of the physical system means that it is assigned a constant value in the imperfect
numerical model M used to represent the true dynamical system. An example is the
dependence of the parameter p in the coupled L63 model described in Section 2.1, for
which we have worked out the behavior of the model error for small time intervals 0t
and small changes §p of p in Section 2.2. For this particular system, we observe the
dependence of the error

(3.19) E(3p) := [[2[p] — lpo] |

on the model state x = (x1,x2,x3) in Theorem 2.1, where pg is the true value at a
given time tg in M %¢ and p is the constant value used by the imperfect model M.
This dependence leads to the error estimate for the coupled L63 system:

(3.20) E(6p) = 23 (po, to) - 6p> - 6t° + O(6p” - 5t*),

where we added the squares of (2.5), (2.6), and (2.7), and then absorbed the higher
order terms into the O(§p? - 6t*) term. It can be seen in (3.20) that the leading error
term is proportional to #7, which means that the expected model error is largest when
the system state is located near the tips of the butterfly wings.

For this work, we use the analysis z(*) from each assimilation step as an approx-
imation of the true state z(*"“¢) because the true state is unknown in a real-world
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NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION FOR DATA ASSIMILATION 17

system. Note that this approximation means that we will be unable to recover the
full model error; however, because z(® will be pulled toward the observations, we
will still be able to estimate part of the model error under the assumption that the
observations have small errors. The current model error F; of the component z; of
the state z € R™ is approximated by:

a b
(3.21) E; = [z\” — 2",

where j = 1,2, 3 corresponds to the three variables in the L63 system. Let us assume
that knowledge of those parts of the system leading to model error at a specific time
is such that after some manipulation the model error can be rewritten in the form of
a triple sum:

Ncoef
022 B Y ot
£1,62,§3=0

with coefficients ag)@’gs, £1,82,83 = 0, ..., Neoep, where Neoes is the total number of
coefficients determined by the maximum order of the polynomial and the number of
model variables under consideration. For the L.63 system containing three variables,
Neoey = 10 for a 2nd order polynomial. The model error can be expressed as in (3.22)
if we know that a hidden model exists but that we do not know the dependence of the
true system because we cannot derive the asymptotics of the model equations. The
ansatz (3.22) assumes some polynomial dependence of this relationship on the model
variables x € R", as we have shown to be the case for the coupled L63 system. We
also assume that the model errors do not have a temporal dependence such that the
basis functions 1y (¢) in (3.17) can be set to 1.

Next, given a sequence of states z[n] and their corresponding model errors E;[n]
for n = 1, ..., Ngtates Over some period of time, the above estimate leads to a linear
system of equations:

(3.23) Aa) = ¢

for the Nuoey x 1 coefficient vector ald) = (af’) o, al) o, al) o, oy 1, a¥’) g, ..)T, where
the sub-indices correspond to the polynomial order for the predictors (x1,x9, x3) and
the superscript denotes the model variable ;. For example, the zeroth order coeffi-
cient for the x; variable is denoted as 0‘(()%()),07 whereas the second order coefficient for

. . 1 . .
the x1 - 2 mixed term is denoted as a&io. Then, A is an Ngtgtes X Neoer matrix

containing the N¢oc¢ polynomial terms for each observation:
3.24 A= AU = (:vfl 252 [n]xs? )
( ) ! [77] 2 [n] 3 [n] n=1,...;Nstates; 51762753:0)"'7NCD€f

where n counts the rows and &1,&2,&3 are subsequently ordered as column indices
consistent with the ordering of the components of «, and

(3.25) g=q" = (Ej[n]>n:1,...,N

states

is the Ngiqtes X 1 vector containing the model errors, with row index . Finally, we can
find the coefficients « that best fit the system of equations by solving the quadratic
minimization problem, which leads to:

(3.26) a=(ATA)1ATy.
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3.4. Parameter Estimation. We begin this section by noting that the asymp-
totics for the coupled L63 model shown in Theorem 2.1 reveal that the error, E;, for
each model variable j = 1,2, 3 is proportional to the size of the hidden parameter dp,
which means that the diagnosed conditional model bias should also be proportional
to this parameter. In practice, however, this is not an easy relationship to capture
because their proportionality depends in a very dynamic way on the current state of a
modeling system characterized by chaotic behavior. Thus, without explicit knowledge
of the model variables and the relationship between them and dp, it is impossible to
draw conclusions about the size of Jp.

However, based on the nonlinear model error estimators given by (2.5) - (2.7),
we expect that the coefficient vector « in (3.22) will also be proportional to the size
of the model bias. This vector depends on the average size of the analysis increment
z(@ — 2(®) during a sequence of data assimilation steps rather than on the model
state. The explicit dependence, unknown in general, is part of the estimation of the
coefficients. Thus, we obtain a tool that can be used to dynamically diagnose the
average size of the unknown parameter §p by computing the mean of the coefficient
vector a for each model variable z; = 1,2, 3. This leads to the following estimates for
dp:

(3.27)

Bpling (1) & 100 o(t) or Spl, (1) ~ c20’s o(8) or B, () =~ esafy o(t)
where ¢; = 2/0(6t)2, co = 1/5t, and c3 = 1/(6t)?, and we now need to carry out the
bias estimation over time intervals [t — At, ¢t + At] with some At > 0 for which dp can
be considered a constant.

Many prior studies have performed parameter estimation within data assimilation
systems, primarily through use of an augmented state vector and based on statistical
assumptions about the distribution of the model parameter (|7, 1, 40, 37, 12, 60, 66,
65, 70, 64, 39]). These studies have generally shown that reasonably accurate parame-
ter estimates can be obtained if the data assimilation statistics are used to estimate a
single model parameter. Unlike these previous studies, however, our approach uses the
asymptotics of the model dynamics to provide a functional form for the relationship
between the unknown model parameter and the estimated model error when accumu-
lated over a sequence of assimilation cycles. We will demonstrate in Section 4.4 that
this simple diagnostic tool provides a reasonable approach to parameter estimation
for the dynamical system under consideration.

4. Numerical Results using the L63 Model. The purpose of this section is
to use the L63 model to perform numerical experiments that demonstrate the validity
of the model error identification and correction methods developed in the previous
sections and their use within a data assimilation system. We begin by showing in
Section 4.1 that the error asymptotics developed in Theorem 2.1 accurately represent
the behavior of the L63 model and that they are able to capture the rapid evolution
of the model error in each of the state variables. We then demonstrate in Section
4.2 that the model error asymptotics can be used to improve the model background
error covariance matrix B through inclusion of a dynamic component that captures
the current model errors. It is then shown in Section 4.3 that the coefficients of the
nonlinear asymptotical expansion can be reasonably estimated by solving a regularized
least squares minimization problem without explicit a priori knowledge of the error
behavior. This is accomplished through use of a polynomial expansion of the model
variables. Finally, we show in Section 4.4 that the p parameter can be reconstructed
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using the bias correction coefficient vector. Moreover, it is shown that it is possible
to reconstruct this parameter using the analysis increments that are readily available
in all data assimilation systems.

4.1. Analysis of the Asymptotic Error Estimators for the L63 Model.
In this section, we assess the ability of the asymptotics derived in Theorem 2.1 to
accurately capture the rapid evolution of model errors in the coupled L63 system
during a cycled data assimilation experiment covering N; = 600 assimilation cycles
with an assimilation frequency d0t,ssim = 0.06. Though the true p parameter in
the coupled L63 system varies with time following (2.4), it was set to a constant
value (p = 28) during the data assimilation experiment to represent a dynamic and
unknown model bias. Output from the truth simulation employing the time-varying
p parameter was used to generate observations with zero measurement error (e = 0)
for (z1,x2,x3), which were then assimilated using a 3DVAR system. The analysis
z(@ during a given assimilation cycle was determined using:

(4.1) o =+ BHT(R+ HBHT) ™} (y = H(x")),

where H = I, the observation error covariance matrix R was given the form of the
identity matrix scaled by the factor r,

(4.2) R=r-1,

and the background error covariance matrix B was given the form:

(l‘gb) . xgtrue))z 0 0
(43) B= 0 (2 — lre)y2 0 :
0 0 (:17:(31)) . wgtTue))Q

with z(®) being the background state, (#"%¢) being the true dynamical state obtained
from the truth simulation, and the diagonal elements of B containing the model error
variances. We chose to use a diagonal matrix here because it is a reasonable place to
start and, as is shown in this section, still has a positive impact on the assimilation
performance. Given the strong correlations between errors in the z; and x5 variables
(see Fig. 3), it is possible that including the off-diagonal elements would have led to
even better results; however, their inclusion in the B matrix is left for future work.
Note that even though this is a perfect observation experiment, we chose to set the
scaling factor r to a small non-zero value so that we could use the data assimilation
system rather than directly inserting the observations into the model. This approach
maintains consistency with the other experiments presented in this section and is a
reasonable approach because we generally would not know that the observations are
perfect in a real data assimilation system and therefore would likely still assume that
the observation errors come from a Gaussian distribution.

Figure 3 shows the evolution of the true p parameter and the model errors
21 g0 gl and 2P — 2™ during the assimilation experiment.
The true error for each model variable is shown in blue, whereas the model errors
estimated using the asymptotic error estimators in (2.5) - (2.7) are depicted by the
red dashed lines. For the asymptotic model error estimates, x1(po,to) is taken to be
its instantaneous value at each assimilation time. Inspection of the error time series
(Figs. 3a-c) reveals that the asymptotic error estimators are able to accurately cap-
ture the magnitude of the true errors in the model background, as well as their rapid
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changes with time, when all other errors in the system are eliminated. The model
errors display more rapid variations than the p parameter (Fig. 3d) because the time
step used by the coupled model is five times faster than that used in the hidden model
S2 to perturb p. The true p parameter oscillates in a quasi-periodic manner for an
extended period of time either below or above p = 28, with occasional transitions be-
tween values less than or greater than this threshold as the hidden model driving the
changes in pye propagates from one wing of the butterfly to the other (see Fig. 2a).
These quasi-periodic oscillations could be thought of as representing biases associated
with the diurnal or seasonal cycles in atmospheric models.
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Fic. 3. Time series showing the evolution of the true model error (blue lines) and asymptotic
error estimations (red dashed lines) for the (a) x1, (b) z2, and (c) x3 model state variables and
for the (d) ptrue parameter (red line) for an experiment lasting Ny = 600 assimilation cycles with
Otassim = 0.06 and the measurement error € set to zero.

4.2. Using Bias Estimators to Improve Assimilation Performance. The
development of methods to accurately estimate the model background error covari-
ance matrix B is important for all data assimilation algorithms. In this section, we
demonstrate that the assimilation quality, as measured using OMB statistics, can be
improved through inclusion of appropriate model error estimators during the data as-
similation step. We also examine the optimality of using either a fixed or dynamically
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varying B matrix and assess the influence of the observation error on these estimates.

For this exercise, we performed cycled 3DVAR data assimilation experiments
using two versions of the L63 model where we chose to use a constant dp = 1 in the
truth simulation or where we allowed Jp to vary with time based on the influence of
the hidden system S2 described in Section 2.1. The first version is used to represent
a situation where a given parameter that does not vary in the real world is assigned
the wrong constant value in the numerical model. Here, we assume that we know the
asymptotics describing the sensitivity of the model to small perturbations in p, but
that we do not know the correct scaling factor ¢ for dp. In other words, we know the
true value of §p only up to a constant ¢ € R, which includes the case of a constant but
unknown dp. For brevity, this section only includes results for the scenario in which
dp is allowed to vary with time. Note that even though the errors in the asymptotic
estimates will be larger in this situation because the maximum size of dp is larger, the
conclusions regarding the importance of using the dynamically varying B matrix are
the same for the experiments using the constant and time-varying dp perturbations.

To assess the sensitivity to the matrix B, we initially performed an experiment
where a constant covariance matrix of the form B = b-I € R3*3 was used during
each assimilation cycle, where b is used to scale the identity matrix. We then searched
for the constant b that produced the smallest OMB errors averaged over N; = 600
assimilation cycles. Finally, we repeated the search using a dynamical B matrix, which
as in (3.16), is the sum of a constant matrix as in (3.12) and a dynamical part as given
by the term (3.13) that is computed using the model error estimators described in
Theorem 2.1. The form of B = By at time ti, with the index k£ = 1,2,..., N; of
analysis steps, is chosen as:

10 0 errory 0 0
(4.4) B,=b-1 0 1 0 | + 0 errors 0 ,
0 01 0 0 errar;k

where the diagonal elements in the second part of (4.4) are defined as:

(4.5) errory ), = c-0.5-0-x1(po, tx) - (61)% - Spi
(4.6) errorg, = ¢ - 1(po, tk) - 0t - O py
(4.7 errorsy, = c- x5 (po, tx) - (1)* - dpy

Equations (4.5) - (4.7) correspond to the model first guess errors for 1,22, and x3,
respectively, for each assimilation time ¢;. The numerical experiments evaluated in
this section were carried out using ¢ = 1.

Two examples illustrating the relationship between the size of b and the average
model first guess errors when using either the constant or dynamic estimates for B
during the assimilation experiments are shown in Fig. 4. The first example (Fig.
4a) has relatively frequent assimilation cycles (0tgssim = 0.02) and small random
observation errors (¢ = 0.2), whereas the observation errors are larger (e = 0.5) and
the observations are assimilated less frequently (dt,ssim = 0.04) during the second
example (Fig. 4b). Random errors added to each observation were drawn from a
Gaussian distribution scaled by the value of € chosen for each case.

In both examples, the behavior of the relationship shown in Fig. 4 is well-known
in the field of inverse problems where a regularization that is too small increases the
influence of the observation errors and a regularization that is too large will not be
able to fully exploit the new information provided by the observations. The optimal
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Fic. 4. Scan of the average model first guess errors plotted as a function of the size of b when
the background error covariance matriz B is a multiple of the identity matriz (B = b-1) (black
dashed line) or when it is obtained using the dynamic B estimator presented in (4.4) (blue dotted
line). Panels (a) and (b) show results from experiments using assimilation update intervals dtgssim
and random observation errors € set to (tgssim = 0.02,¢ = 0.2) and (dtgssim = 0.04,e = 0.5),
respectively. The first guess error statistics were computed using output from 600 time steps.

B, which varies depending upon the observation and model errors present during a
given assimilation cycle, will lead to the smallest first guess errors. Of importance for
this discussion is that the smallest first guess errors for both examples occur when
the dynamic B matrix is used. It is also evident that the optimal size of b decreases
when the dynamical error estimators are used to scale B because they are better able
to capture the actual errors in the model background during each assimilation cycle.
Together, these examples demonstrate that it is highly desirable to employ dynamical
estimators of the model first guess error in data assimilation algorithms.

4.3. Numerical Estimation of the Bias Estimator Polynomial Coeffi-
cients. In this section, we investigate the determination of the model bias estimator
coefficients « using output from cycled 3DVAR experiments employing different as-
similation intervals and observation error magnitudes. For these experiments, we
employ the dynamical background error covariance matrix B shown in (4.4) during
each data assimilation cycle, with the dynamic model errors for (x1,x2, x3) computed
using the asymptotic error estimators in (4.5) - (4.7) with the scaling factor ¢ set to
1. Sensitivity tests revealed that the model error coefficients were stable over a broad
range of values for the scaling factor b; therefore, for convenience, it was set to 0.1
during the experiments discussed in this section. This behavior and the chosen value
for b are consistent with the results shown in Fig. 4.

Experimentation also revealed that the matrix A used to determine the bias cor-
rection coefficients a in (3.26) is ill-posed with singular values smaller than 10~* and
a condition number larger than 10*. Therefore, to improve its conditioning, Tikhonov
regularization was used by replacing the least squares estimator AT = (AT A)~"1 AT in
(3.26) with the Tikhonov inverse:

(4.8) Q = (Qpegl + AT A)71AT

where o4 is the Tikhonov regularization parameter. Sensitivity tests showed that
setting a., to a small value (107°) provided the most accurate results. This means
that the bias correction coefficients for a given model variable can be determined
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using:
(4.9) a = (gl + ATA) 71 AT

Table 1 shows results computed using truth-minus-background statistics accu-
mulated over N; = 600 assimilation cycles for two experiments, including one where
perfect observations (¢ = 0) were assimilated at dt4ssim = 0.01 time intervals (left
columns) and a second experiment where random errors were added to the observa-
tions (¢ = 0.01) and the assimilation interval was increased to dtqssim = 0.02. The
scaling factor r for the observation error covariance matrix in (4.2) was set to 107°
and 1074, respectively, for each of these experiments, with §p for a given time step
obtained from the hidden system S2 described in Section 2.1. The coeflicients of the
polynomial expansion of the model bias are computed separately for each model vari-
able (1,22, 23). Here, we have used all polynomial terms up to the 2nd order when
computing the dynamic B matrix in (4.4) because of the presence of the x? term
in the asymptotics shown in (3.20). To ease interpretation of the results, we have
included dp and the constant 0.5, o, dt, and (dt?) terms as they appear in (4.5), (4.6),
and (4.7) such that the estimation outcomes shown in Table 1 should be either 0 or
1 depending upon whether or not a given term is in the polynomial expansion. This
means that the reconstructed bias correction coefficient v .econ(1,0,0) should equal
one for z1 and 2, Qrecon(2,0,0) should equal one for x3, and all of the other a,.ccon
values should be zero.

Inspection of Table 1 shows that the maximum error for each state variable
(z1,22,23) is 8% (e.g., Qrecon = 0.92) for the experiment in which perfect obser-
vations were assimilated, and that the errors for most of the remaining au.ccon terms
are very small. This demonstrates that the bias correction coefficients can be accu-
rately estimated in this situation such that the only remaining sources of error are
likely associated with numerical discretization errors or the exclusion of higher order
polynomial terms from the asymptotical expansion (e.g., higher than the 2nd order).
The error in each a¢con term increases during the second experiment where measure-
ment errors were added to the observations prior to their assimilation. Even so, the
results show that the method is still able to identify the dominant terms and that
it is possible to obtain reasonable estimates for the bias correction coefficients in the
presence of observation error. Finally, other experiments were performed where the
size of the observation error and the length of the assimilation cycling interval were
varied, with all of the experiments showing similar effects to those demonstrated in
Table 1 if reasonable observation errors and cycling intervals were used.

4.4. Reconstruction of the p Parameter. In this section, we explore the
effectiveness of using the bias correction coefficient vector a to reconstruct the p
parameter within the data assimilation system. The truth simulation for this partic-
ular exercise was performed using the coupled L63 model described in Section 2.1.
A cycled data assimilation experiment covering N; = 600 assimilation cycles with
Otgssim = 0.04 was then performed using observations from the truth simulation.
Given that the true state of a real-world system is unknown, here we choose to use
the analysis-minus-background difference as a proxy for the model error ¢ in (3.26)
because the model background z(®) and model analysis 2(*) are both readily available
from data assimilation systems.

Because p varies with time in the coupled L63 system used to perform the truth
simulation, it is not advantageous to use assimilation statistics accumulated over a
long time period to estimate the value of this parameter for a specific assimilation
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Exp1 Exp 2
for x; for xo for x3 for xq for xo for x5
Qrecon(0,0,0)  4.94E-02 -5.30E-03 -4.06E-03 1.16E-01 -7.26E-03 -1.28E-01
Qrecon(1,0,0) 0.92 1.06  2.37E-03 0.76 1.16 -5.95E-01
Qrecon(2,0,0)  -2.57E-04  4.08E-05 1.03 9.79E-03  1.52E-03 0.94
Qrecon(0,1,0)  2.38E-02 -4.92E-02  1.31E-02 2.65E-02 -1.13E-01 -2.45E-01
Qrecon(0,2,0)  3.13E-04 -2.35E-05 -3.94E-03 2.32E-03 -1.84E-04 5.25E-02
Qrecon(0,0,1)  -1.11E-02  6.09E-04 -4.77E-02 1.88E-04 5.97E-03 -1.30E-01
Qrecon(0,0,2)  2.13E-04 -1.85E-05  2.86E-03 -8.31E-04 -3.04E-04 3.10E-03
Qrecon(1,1,0) -1.88E-04 -3.84E-06 -4.02E-02 -9.54E-03 -9.32E-04 -2.04E-01
Qrecon(1,0,1)  3.54E-03 -4.07E-04  4.04E-04 5.71E-03 -2.03E-03  2.42E-03
Qrecon(0,1,1)  -2.21E-03  -4.42E-05 -1.08E-04 -4.80E-03  6.95E-05  3.10E-02
TABLE 1

Reconstructed bias correction coefficients (recon) for each model variable (z1,xz2,z3) deter-
mianed using (3.23) and truth-minus-background statistics accumulated over 600 assimilation cycles
for two experiments employing different observation errors and assimilation update intervals. The
Oth to 2nd order terms are shown in each row. Columns 2-4 and 5-7 show the results for experi-
ments employing (8tgssim = 0.01;¢ =0) and (§tgssim = 0.02;¢ = 0.01), respectively. The Tikhonov
regularization parameter areq was set to 10~5 for both experiments.

cycle. Instead, we compute the coefficient vector a using output from 10 consecutive
assimilation cycles rather than from the full assimilation period. This length was
chosen as a balance between the desire to acquire a large enough sample to robustly
estimate dp and the need to use a short enough time period to ensure that the instan-
taneous dp values during a given time interval do not deviate strongly from the mean
dp over that interval. To ease comparison to the reconstructed mean Jp, the average
of the individual Jp estimates obtained using the simple diagnostic tools shown in
(3.27) are used to represent the true mean dp over each time period. Together, these
choices are consistent with the constraints that would be encountered in a real-world
data assimilation system.

Figure 5 shows the evolution of the instantaneous model errors x:(Lb) — xga), :Béb) -
(a)

x5 ', and ng) — a:ga), along with the actual and reconstructed values for dp for three
experiments employing different observation errors. The images on the left show
the true error for each model variable in blue, whereas the dashed red lines show the
model errors estimated using the asymptotic error estimators in Theorem 2.1. For the
images on the right, the black and blue lines denote the true instantaneous and true
mean dp values, respectively, whereas the red lines depict the corresponding mean dp
estimates reconstructed using the a vector. Results are shown for three experiments
assimilating observations with measurement errors e = {0,0.02, and 0.04} and scaling
factors r = {0.0004, 0.0004, and 0.0016} for the observation error covariance matrices.

Inspection of the time series in Fig. 5 reveals that the mean dp values recon-
structed from the coefficient vector a accurately capture the magnitude and evolution
of the true dp for the case where the assimilated observations have zero measurement
error (Fig. 5b). The asymptotic error estimators also do an excellent job representing
the true model errors during this experiment (Fig. 5a). As the observation error
increases, however, the model error time series become more noisy (Fig. 5c, e) and
the accuracy of the §p reconstruction decreases due to the increased noise (Fig. 5d,
f). The errors in the dp reconstruction are largest for time periods when the true
dp reaches a local minimum or maximum because the rapid variation with time dur-
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ing those situations makes it more difficult to properly reconstruct dp. Regardless,
these results show that it is possible to use the coefficient vector a to obtain useful
information about the trajectory of dp during the truth simulation. Because the true
state was not used during this exercise, these results also demonstrate that reasonable
parameter and model bias estimates can be obtained using differences between the
model analysis and background states. This is important because whereas the true
state of a real-world system is generally unknown, the model analysis and background
states are both readily available from data assimilation systems.

5. Conclusions. In this study, we have examined the behavior of dynamic model
errors and their influence on the quality of the model analysis and first guess during
cycled data assimilation experiments using the L.63 model and a 3DVAR data assim-
ilation system. We showed that conditional model biases due to errors in the speci-
fication of a model parameter can be represented as a polynomial function that can
be estimated using the model background-minus-truth or background-minus-analysis
statistics for the realistic situation where the modeling system consists of polynomial
forcing terms. We have also suggested a regularized least squares regression method
to estimate the model biases and then described how these model error estimators
could be used in the data assimilation system to improve the accuracy of the model
analysis and first guess.

We have carried out all derivations, estimations, and numerical experiments using
the well-known L63 model to demonstrate the validity and feasibility of the ideas
developed during this study. The L63 model allows us to study all parts of the system,
bias estimators, and tools in a detailed way that would not be possible if we had used
a full physics numerical model while still being able to represent the chaotic nonlinear
characteristics of the real atmosphere. The results showed that the asymptotics are
indeed a valid method to estimate an important part of the model first guess error,
and that their use in data assimilation has the potential to improve the accuracy of the
model background and analysis. We showed that model error estimators computed
using the difference between the model background and analysis, which are readily
available from all assimilation systems, are an effective way to estimate model error. In
this framework, the model analysis serves as an approximation of the true state, which
is unknown in a real-world system. Reasonable results can be achieved even when
relatively large errors are present in the observations if Tikhonov regularization is
employed during the estimation of the polynomial model error coefficients. Finally, we
also show that the polynomial model bias coefficient vector can be used to reconstruct
dp during the assimilation experiments.

In the current work, we have restricted our attention to a small-scale system
containing three state variables. Real-world NWP models and data assimilation sys-
tems have much deeper complexity and their dimensions are much larger than the
system used here. Thus, future work is necessary to investigate the validity of the
above ideas in high-dimensional models and to determine if the methods developed
during this study can improve the representation of the background error covariance
matrix B used by such systems. For the experiments presented in this paper, all of
the state variables were observed during each assimilation cycle, which of course is
not possible in a real data assimilation system. It will be important to evaluate the
utility of the method when the observation uncertainty is higher or the measurements
do not observe the full state of the model. It is reasonable to expect that it will be
more difficult to estimate the model errors in such situations. It is also possible that
the size of the initial condition uncertainty relative to the model error could impact
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Fic. 5. (a) Time series showing the evolution of the model error given by the first guess minus
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(dashed red line). Here, 6t = 0.04 and ¢ = 0. (b) Time series showing the evolution of the true
dp (black line). The mean ép parameter computed over intervals of 10 assimilation cycles is shown
by the dashed blue line, with the corresponding dynamic estimation computed using the mean bias
correction coefficients shown by the red lines. (c-d) Same as (a-b), except for the case where the
assimilation experiment was performed using 6t = 0.04 and € = 0.02. (e-f) Same as (a-b), except
for the case where the assimilation experiment was carried out using 6t = 0.04 and ¢ = 0.04.

This manuscript is for review purposes only.



965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

994
995
996

997

998

999
1000

1008
1009
1010
1011
1012
1013
1014

NONLINEAR CONDITIONAL MODEL BIAS ESTIMATION FOR DATA ASSIMILATION 27

the performance of this method. For example, the model error contribution to the
forecast uncertainty will typically increase relative to the initial condition uncertainty
over longer time periods. This would suggest that the model error estimation method
may be especially useful for longer assimilation windows or when the observations are
assimilated less frequently. A final point to consider is that we already knew which
model parameter was incorrectly specified in the 1.63 model during the data assimila-
tion experiments, which made it possible for us to target its reconstruction using the
bias correction coefficient vector. Though this knowledge made the problem easier to
solve, it is still consistent with many real-world situations where it is known a priori
that a certain parameter varies with time but has been assigned a constant value in
the NWP model due to computational constraints or incomplete knowledge on how
to predict its evolution. With this knowledge, it should be possible to use the general
polynomial expansion of the model variables method developed in Section 4.3 to de-
termine if there are relationships between any of the polynomial terms and a chosen
parameter and then use that information to reconstruct the value of the parameter.

The dynamic B method developed during this study could be interpreted as
providing dynamic additive covariance inflation capturing systematic model errors
that are not represented by the static B used by variational systems nor by the
dynamic B used by hybrid and EnKF assimilation methods. Inclusion of the dynamic
model bias estimates in the B matrix could therefore make it possible to reduce
the amount of covariance inflation that is used during the data assimilation step in
EnKF systems. This is potentially advantageous because the dynamic B is computed
based on the current conditions rather than using random perturbations drawn from
a climatology as is typically done with additive covariance inflation methods. It may
also provide a complementary approach to weak-constraint 4DVAR where instead of
providing the model an additional degree of freedom through introduction of a model
error forcing term, we instead enhance the quality of the B matrix through inclusion
of the model bias estimates before it is used by the assimilation algorithm. More
detailed investigations of these and other topics are left for future work.
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