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Abstract

This paper introduces a “kernel-independent” interpolative decomposition butterfly factor-
ization (IDBF) as a data-sparse approximation for matrices that satisfy a complementary low-
rank property. The IDBF can be constructed in O(N logN) operations for an N×N matrix via
hierarchical interpolative decompositions (IDs), if matrix entries can be sampled individually
and each sample takes O(1) operations. The resulting factorization is a product of O(logN)
sparse matrices, each with O(N) non-zero entries. Hence, it can be applied to a vector rapidly
in O(N logN) operations. IDBF is a general framework for nearly optimal fast matvec useful
in a wide range of applications, e.g., special function transformation, Fourier integral oper-
ators, high-frequency wave computation. Numerical results are provided to demonstrate the
effectiveness of the butterfly factorization and its construction algorithms.

Keywords. Data-sparse matrix, butterfly factorization, interpolative decomposition, operator
compression, Fourier integral operators, special functions, high-frequency integral equations.

AMS subject classifications: 44A55, 65R10 and 65T50.

1 Introduction

One of the key computational task in scientific computing is to evaluate dense matrix-vector mul-
tiplication (matvec) rapidly. Given a dense matrix K ∈ CN×N and a vector x ∈ CN , it takes
O(N2) operations to naively compute the vector y = Kx ∈ CN . There has been extensive re-
search in constructing data-sparse representation of structured matrices (e.g., low-rank matrices
[1, 2, 3, 4], H matrices [5, 6, 7], H2 matrics [8, 9], HSS matrices [10, 11], complementary low-rank
matrices [12, 13, 14, 15, 16, 17], FMM [18, 19, 20, 21, 22, 23, 24, 25], directional low-rank ma-
trices [26, 27, 28, 29], and the combination of these matrices [30, 31]) aiming for linear or nearly
linear scaling matvec. In particular, this paper concerns nearly optimal matvec for complementary
low-rank matrices.

A wide range of transforms in harmonic analysis [13, 14, 32, 33, 34, 35], and integral equations
in the high-frequency regime [30, 31] admit a matrix or its submatrices satisfying a complementary
low-rank property. For a 1D complementary low-rank matrix, its rows are typically indexed by a
point set X ⊂ R and its columns by another point set Ω ⊂ R. Associated with X and Ω are two
trees TX and TΩ constructed by dyadic partitioning of each domain. Both trees have the same
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level L+ 1 = O(logN), with the top root being the 1-th level and the bottom leaf level being the
(L+ 1)-th level. We say a matrix satisfies the complementary low-rank property if, for any node A
at level ` in TX and any node B at level L+2−`, the submatrix K`

A,B of K, obtained by restricting
the rows of K to the points in node A and the columns to the points in node B, is numerically
low-rank; that is, given a precision ε, there exists an approximation of K`

A,B with the 2-norm of
the error bounded by ε and the rank k bounded by a polynomial in logN and log 1/ε.

Points in X×Ω may be non-uniformly distributed. Hence, submatrices {K`
A,B}A,B at the same

level ` may have different sizes but they have almost the same rank. If the point distribution
is uniform, then at the `-th level starting from the root of TX , submatrices have the same size
N

2`−1 × 2`−1. See Figure 1 for an illustration of low-rank submatrices in a 1D complementary low-
rank matrix of size 16 × 16 with uniform point distributions in X and Ω. It is easy to generalize
the complementary low-rank matrices to higher dimensional space as in [16]. For simplicity, we
only present the IDBF for the 1D case with uniform point distributions and leave the extension for
non-uniform point distributions and higher dimensional cases to the reader.





















Figure 1: Hierarchical decomposition of the row and column indices of a 16 × 16 matrix. The
dyadic trees TX and TΩ have roots containing 16 rows and 16 columns respectively, and their leaves
containing only a single row or column. The partition above indicates the complementary low-rank
property of the matrix, and assumes that each submatrix is rank-1.

This paper introduces an Interpolative Decomposition Butterfly Factorization (IDBF)
as a data-sparse approximation for matrices that satisfy the complementary low-rank property.
The IDBF can be constructed in O( k

3

n0
N logN) operations for an N × N matrix K with a local

rank parameter k and a leaf size parameter n0 via hierarchical linear interpolative decompositions
(IDs), if matrix entries can be sampled individually and each sample takes O(1) operations. The

resulting factorization is a product of O(logN) sparse matrices, each of which contains O( k
2

n0
N)

nonzero entries as follows:

K ≈ ULUL−1 · · ·UhShV h · · ·V L−1V L, (1)

where h = L/2 and the level L is assumed to be even. Hence, it can be applied to a vector rapidly

in O( k
2

n0
N logN) operations. Previously, purely algebraic butterfly factorizations (in the sense that

the complementary matrix is not the discretization of a kernel function K(x, ξ) = a(x, ξ)e2πiΦ(x,ξ)

with smooth a(x, ξ) and Φ(x, ξ)) have at least O(N1.5) scaling [12, 13, 14, 16]. The IDBF is the first
purely algebraic butterfly factorization (BF) with O(N logN) scaling in both factorization
and application.

2 Interpolative Decomposition Butterfly Factorization (IDBF)

We will describe IDBF in detail in this section. For the sake of simplicity, we assume that N = 2Ln0,
where L is an even integer, and n0 = O(1) is the number of column or row indices in a leaf in the
dyadic trees of row and column spaces, i.e., TX and TΩ, respectively. Let’s briefly introduce the
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main ideas of designing O( k
3

n0
N logN) IDBF using a linear ID. In IDBF, we compute O(logN)

levels of low-rank submatrix factorizations. At each level, according to the matrix partition by the
dyadic trees in column and row (see Figure 1 for an example), there are N

n0
low-rank submatrices.

Linear IDs only require O(k3) operations for each submatrix, and hence at most O( k
3

n0
N) for each

level of factorization, and O( k
3

n0
N logN) for the whole IDBF. There are two differences between

IDBF and other BFs [12, 13, 14].

1. The order of factorization is from the leaf-root and root-leaf levels of matrix partitioning
(e.g., the left and right panels in Figure 1) and moves towards the middle level of matrix
partitioning (e.g., the middle panel of Figure 1).

2. Linear IDs are organized in an appropriate way such that it is cheap in terms of both memory
and operations to provide all necessary information for each level of factorization.

In what follows, uppercase letters will generally denote matrices, while the lowercase letters c,
p, q, r, and s denote ordered sets of indices. For a given index set c, its cardinality is written
|c|. Given a matrix A, Apq, Ap,q, or A(p, q) is the submatrix with rows and columns restricted to
the index sets p and q, respectively. We also use the notation A:,q to denote the submatrix with
columns restricted to q. s : t is an index set containing indices {s, s+ 1, s+ 2, . . . , t− 1, t}.

2.1 Linear scaling Interpolative Decompositions

Interpolative decomposition and other low-rank decomposition techniques [1, 3, 36] are important
elements in modern scientific computing. These techniques usually require O(kmn) arithmetic
operations to get a rank k = O(1) matrix factorization to approximate a matrix A ∈ Cm×n. Linear
scaling randomized techniques can reduce the cost to O(k(m + n)) [37]. [38] further shows that
in the CUR low-rank approximation A ≈ CUR, where C = A:,c, R = Ar,:, and U ∈ Ck×k with
|c| = |r| = k, if only U , c, and r are needed, there exists an O(k3) algorithm for constructing U , c,
and r.

In the construction of IDBF, we use an O(nk2) linear scaling column ID to construct V and
select skeleton indices q such that A ≈ A:,qV when n � m. Similarly, we can construct a row
ID A ≈ UAq,: in O(mk2) operations when m � n. As in [37, 38], randomized sampling can be
applied to reduce the quadratic computational cost to linear. Here we present a simple lemma of
interpolative decomposition (ID) to motivate the proposed linear scaling ID.

Lemma 2.1. For a matrix A ∈ Cm×n with rank k ≤ min{m,n}, there exists a partition of the
column indices of A, p ∪ q with |q| = k, and a matrix T ∈ Ck×(n−k), such that A:,p = A:,qT .

Proof. A rank revealing QR decomposition of A gives

AΛ = QR = Q[R1 R2], (2)

where Q ∈ Cm×k is an orthogonal matrix, R ∈ Ck×n is upper triangular, and Λ ∈ Cn×n is a
carefully chosen permutation matrix such that R1 ∈ Ck×k is nonsingular. Let

A:,q = QR1, (3)

and then
A:,p = QR2 = QR1R

−1
1 R2 = A:,qT, (4)

where
T = R−1

1 R2. (5)
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A:,p = A:,qT in Lemma 2.1 is equivalent to the traditional form of a column ID,

A = A:,q[I T ]Λ∗ := A:,qV, (6)

where ∗ denotes the conjugate transpose of a matrix. We call p and q as redundant and skeleton
indices, respectively. V can be understood as a column interpolation matrix. Our goal for linear
scaling ID is to construct the skeleton index set q, the redundant index set p, T , and Λ in O(k2n)
operations and O(kn) memory.

For a tall skinny matrix A, i.e., m � n, the rank revealing QR decomposition of A in (2)
typically requires O(kmn) operations. To reduce the complexity to O(k2n), we actually apply the
rank revealing QR decomposition to As,::

As,:Λ = QR = Q[R1 R2], (7)

where s is an index set containing tk carefully selected rows of A, where t is an oversampling
parameter. These rows can be chosen independently and uniformly from the row space as in the
sublinear CUR in [38] or the linear scaling algorithm in [37]; or they can be chosen from the
Mock-Chebyshev grids of the row indices as in [17, 39, 40]. In fact, numerical results show that
Mock-Chebyshev points lead to a more efficient and accurate ID than randomly sampled points
when matrices are from physical systems. After the rank revealing QR decomposition, the other
steps to generate T and Λ take only O(k2n) operations since R1 in (5) is an upper triangular matrix.

In practice, the true rank of A is not available i.e., k is unknown. In this case, the above
computation procedure should be applied with some test rank k ≤ n. Furthermore, we are often
interested in an ID with a numerical rank kε specified by an accuracy parameter ε, i.e.

‖A−A:,qV ‖2 ≤ O(ε) (8)

with T ∈ Ckε×(n−kε) and V ∈ Ckε×n. We can choose

kε = min{k : R1(k, k) ≤ εR1(1, 1)}, (9)

where R1 is given by the rank-revealing QR factorization in (7). Then define

T = (R1(1 : kε, 1 : kε))
−1[R1(1 : kε, kε + 1 : k) R2(1 : kε, :)] ∈ Ckε×(n−kε), (10)

and
V = [I T ]Λ∗ ∈ Ckε×n.

Correspondingly, let q be the index set such that

A:,q = QR1(1 : kε, 1 : kε),

and p be the complementary set of q, then q and V satisfy the requirement in (8). We refer to this
linear scaling column ID with an accuracy tolerance ε and a rank parameter k as (ε, k)-cID. For
convenience, we will drop the term (ε, k) when it is not necessary to specify it.

For a short and fat matrix A ∈ Cm×n with m� n, a similar row ID

A ≈ Λ[I T ]∗Aq,: := UAq,: (11)

can be devised similarly with O(k2m) operations and O(km) memory. We refer to this linear scaling
row ID as ε-rID and U as the row interpolation matrix.
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2.2 Leaf-root complementary skeletonization (LRCS)

For a complementary low-rank matrix A, we introduce the leaf-root complementary skeletonization
(LRCS)

A ≈ USV
via cIDs of the submatrices corresponding to the leaf-root levels of the column-row dyadic trees (e.g.,
see the associated matrix partition in Figure 2 (right)), and rIDs of the submatrices corresponding
to the root-leaf levels of the column-row dyadic trees (e.g., see the associated matrix partition in
Figure 2 (middle)). We always assume that IDs in this section are applied with a rank parameter
k = O(1). We’ll not specify k again in the following discussion.

Suppose that at the leaf level of the row (and column) dyadic trees, the row index set r (and
the column index set c) of A are partitioned into leaves {ri}1≤i≤m (and {ci}1≤i≤m) as follows

r = [r1, r2, · · · , rm] (and c = [c1, c2, · · · , cm]), (12)

with |ri| = n0 (and |ci| = n0) for all 1 ≤ i ≤ m, where m = 2L = N
n0

, L = log2N − log2 n0, and
L+ 1 is the depth of the dyadic trees TX (and TΩ). Figure 2 shows an example of row and column
dyadic trees with m = 16. We apply rID to each Ari,: to obtain the row interpolation matrix in its
ID and denote it as Ui; the associated skeleton indices of the ID is denoted as r̂i ⊂ ri. Let

r̂ = [r̂1, r̂2, · · · , r̂m], (13)

then Ar̂,: is the important skeleton of A and we have

A ≈


U1

U2

. . .

Um



Ar̂1,c1 Ar̂1,c2 . . . Ar̂1,cm
Ar̂2,c1 Ar̂2,c2 . . . Ar̂2,cm

...
...

. . .
...

Ar̂m,c1 Ar̂m,c2 . . . Ar̂m,cm

 := UM.

Similarly, cID is applied to each Ar̂,cj to obtain the column interpolation matrix Vj and the
skeleton indices ĉj ⊂ cj in its ID. Then finally we form the LRCS of A as

A ≈


U1

U2

. . .

Um



Ar̂1,ĉ1 Ar̂1,ĉ2 . . . Ar̂1,ĉm
Ar̂2,ĉ1 Ar̂2,ĉ2 . . . Ar̂2,ĉm

...
...

. . .
...

Ar̂m,ĉ1 Ar̂m,ĉ2 . . . Ar̂m,ĉm



V1

V2

. . .

Vm

 := USV. (14)

For a concrete example, Figure 3 visualizes the non-zero pattern of the LRCS in (14) of the com-
plementary low-rank matrix A in Figure 2.

The novelty of the LRCS is that M and S are not computed explicitly; instead, they are
generated and stored via the skeleton of row and column index sets. Hence, it only takes O( k

3

n0
N)

operations and O( k
2

n0
N) memory to generate and store the factorization in (14), since there are

2m = 2N
n0

IDs in total.
It is worth emphasizing that in the LRCS of a complementary matrix A ≈ USV , the matrix

S is again a complementary matrix. The row (and column) dyadic tree T̂X (and T̂Ω) of S is the
compressed version of the row (and column) dyadic trees TX (and TΩ) of A. Figure 4 (or 5)
visualizes the relation of TX and T̂X (or TΩ and T̂Ω) for the complementary matrix A in Figure
2. T̂X (or T̂Ω) is not compressible at the leaf level of TX (or TΩ) but it is compressible if it is
considered as a dyadic tree with one depth less (see Figure 6 for an example of a new compressible
dyadic tree with one depth less).
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Figure 2: The left matrix is a complementary low-rank matrix. Assume that the depth of the
dyadic trees of column and row spaces is 5. The middle figure visualizes the root-leaf partitioning
that divides the row index set into 16 continuous subsets as 16 leaves. The right one is for the
leaf-root partitioning that divides the column index set into 16 continuous subsets as 16 leaves.
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Figure 3: An example of the LRCS in (14) of the complementary low-rank matrix A in Figure 2.
Non-zero submatrices in (14) are shown in gray areas.

Figure 4: Left: The dyadic tree TX of the row space with leaves {ri}1≤i≤16 denoted as in (12) for
the example in Figure 2. Right: Selected important rows of TX naturally form a compressed dyadic
tree in red with leaves {r̂i}1≤i≤16 denoted as in (13).

2.3 Matrix splitting with complementary skeletonization (MSCS)

Here we describe another elementary idea of IDBF that is applied repeatedly: MSCS. A comple-
mentary low-rank matrix A (with row and column dyadic trees TX and TΩ of depth L and with
m = 2L leaves) can be split into a 2× 2 block matrix

A =

(
A11 A12

A21 A22

)
(15)

according to the nodes of the second level of the dyadic trees TX and TΩ (those nodes right
next to the root level). By the complementary low-rank property of A, we know that Aij is also
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Figure 5: Left: The dyadic tree TΩ of the column space with leaves {ci}1≤i≤16 denoted as in (12)
for the example in Figure 2. Right: Selected important columns of TΩ naturally form a compressed
dyadic tree in red with leaves {ĉi}1≤i≤16.

Figure 6: Left: The compressed dyadic tree of TX of the row space in Figure 4. Level 5 is not
compressible. Middle left: Combining adjacent leaves at Level 5, i.e., r̄i = r̂2i−1 ∪ r̂2i, forms a
compressible dyadic tree with depth 4. Middle right: the compressed dyadic tree of TΩ of the
column space in Figure 5. Level 5 is not compressible. Right: Combining adjacent leaves at Level
5, i.e., c̄i = ĉ2i−1 ∪ ĉ2i, forms a compressible dyadic tree with depth 4.

complementary low-rank, for all i and j, with row and column dyadic trees TX,ij and TΩ,ij of depth
L− 1 and with m/2 leaves.

Suppose Aij ≈ UijSijVij , for i, j = 1, 2, is the LRCS of Aij . Then A can be factorized as
A ≈ USV , where

U =

(
U11 U12

U21 U22

)
,

S =


S11

S21

S12

S22

 ,

V =


V11

V12

V21

V22

 .

(16)
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The factorization in (16) is referred as the matrix splitting with complementary skeletonization
(MSCS) in this paper. Recall that the middle factor S is not explicitly computed, resulting in
a linear scaling algorithm for forming (16). Figure 7 visualizes the MSCS of a complementary
low-rank matrix A with dyadic trees of depth 5 and 16 leaf nodes in Figure 2.
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Figure 7: The visualization of a MSCS of a complementary low-rank matrix A ≈ USV with dyadic
trees of depth 5 and 16 leaf nodes in Figure 2. Non-zero blocks in (16) are shown in gray areas.

2.4 Recursive MSCS

Now we apply MSCS recursively to get the full IDBF of a complementary low-rank matrix A (with
row and column dyadic trees TX and TΩ of depth L and with m = 2L leaves). As in (16), suppose
we have constructed the first level of MSCS and denote it as

A ≈ ULSLV L (17)

with

UL =

(
UL11 UL12

UL21 UL22

)
,

SL =


SL11

SL21

SL12

SL22

 ,

V L =


V L

11

V L
12

V L
21

V L
22

 ,

(18)

as in (16).
Suppose that at the leaf level of the row and column dyadic trees, the row index set r and the

column index set c of A are partitioned into leaves {ri}1≤i≤m and {ci}1≤i≤m as in (12). By the
rIDs and cIDs applied in the construction of (17), we have obtained skeleton index sets r̂i ⊂ ri
and ĉi ⊂ ci. Then

SLij =

Ar̂(i−1)m/2+1,ĉ(j−1)m/2+1
· · · Ar̂(i−1)m/2+1,ĉjm/2

...
. . .

...
Ar̂im/2,ĉ(j−1)m/2+1

· · · Ar̂im/2,ĉjm/2

 (19)

for i, j = 1, 2.
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As explained in Section 2.2, each non-zero block SLij in SL is a submatrix of Aij consisting of

important rows and columns of Aij for i, j = 1, 2. Hence, SLij inherits the complementary low-rank
property of Aij and is itself a complementary low-rank matrix. Suppose TX,ij and TΩ,ij are the
dyadic trees of the row and column spaces of Aij with m/2 leaves and L− 1 depth, then according
to Section 2.2, SLij has compressible row and column dyadic trees T̂X,ij and T̂Ω,ij with m/4 leaves
and L− 2 depth.

Next, we apply MSCS to each SLij in a recursive way. In particular, we divide each SLij into a
2× 2 block matrix according to the nodes at the second level of its row and column dyadic trees:

SLij =

(
(SLij)11 (SLij)12

(SLij)21 (SLij)22

)
. (20)

After constructing the LRCS of the (k, `)-th block of SLij , i.e., (SLij)k` ≈ (UL−1
ij )k`(S

L−1
ij )k`(V

L−1
ij )k`

for k, ` = 1, 2, we assemble them to obtain the MSCS of SLij as follows:

SLij ≈ UL−1
ij SL−1

ij V L−1
ij , (21)

where

UL−1
ij =

(
(UL−1

ij )11 (UL−1
ij )12

(UL−1
ij )21 (UL−1

ij )22

)
,

SL−1
ij =


(SL−1
ij )11

(SL−1
ij )21

(SL−1
ij )12

(SL−1
ij )22

 ,

V L−1
ij =


(V L−1
ij )11

(V L−1
ij )12

(V L−1
ij )21

(V L−1
ij )22

 ,

(22)

according to Section 2.3.
Finally, we organize the factorizations in (21) for all i, j = 1, 2 to form a factorization of SL as

SL ≈ UL−1SL−1V L−1, (23)

where

UL−1 =


UL−1

11

UL−1
21

UL−1
12

UL−1
11

 ,

SL−1 =


SL−1

11

SL−1
21

SL−1
12

SL−1
22

 ,

V L−1 =


V L−1

11

V L−1
12

V L−1
21

SL−1
22

 ,

(24)
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leading to a second level factorization of A:

A ≈ ULUL−1SL−1V L−1V L.

Figure 8 visualizes the recursive MSCS of SL in (23) when A is a complementary low-rank matrix
with dyadic trees of depth 5 and 16 leaf nodes in Figure 2.
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Figure 8: The visualization of the recursive MSCS of SL = UL−1SL−1V L−1 in (23) when A is a
complementary low-rank matrix with dyadic trees of depth 5 and 16 leaf nodes in Figure 2.

Comparing (17), (18), (23), and (24), we can see a fractal structure in each level of the middle
factor S` for ` = L and L− 1. For example in (24) (see Figure 8 for its visulaization), SL−1 has 4
submatrices SL−1

ij with the same structure as SL for all i and j. SL−1
ij can be factorized into a prod-

uct of three matrices with the same sparsity structure as the factorization SL ≈ UL−1SL−1V L−1.
Hence, we can apply MSCS recursively to each S` and assemble matrix factors hierarchically for
` = L, L− 1, . . . , L/2 to obtain

A ≈ ULUL−1 · · ·UhShV h · · ·V L−1V L, (25)

where h = L/2. In the `-th recursive MSCS, S` has 22(L−`+1) dense submatrices with compressible
row and column dyadic trees with m

22(L−`+1) leaves and depth L− 2(L− `+ 1). Hence, the recursive

MSCS stops after h = L/2 iterations when Sh no longer contains any compressible submatrix.
When S` is still compressible, since there are 22(L−`+1) dense submatrices and each contains
m

22(L−`+1) leaves, there are 22(L−`+1) m
22(L−`+1)m = N

n0
low-rank submatrices to be factorized. Linear

IDs only require O(k3) operations for each low-rank submatrix, and hence at most O( k
3

n0
N) for

each level of factorization, and O( k
3

n0
N logN) for the whole IDBF.

3 Numerical results

This section presents several numerical examples to demonstrate the effectiveness of the algorithms
proposed above. The first three examples are complementary low-rank matrices coming from non-
uniform Fourier transform, Fourier integral operators, and special function transforms. The last
two examples are hierarchical complementary matrices [30] from 2D Helmholtz boundary integral
methods in the high-frequency regime. All implementations are in MATLAB R© on a server com-
puter with a single thread and 3.2 GHz CPU. This new framework will be incorperated into the
ButterflyLab1 in the future.

Let {ud(x), x ∈ X} and {ua(x), x ∈ X} denote the results given by the direct matrix-vector
multiplication and the butterfly factorization. The accuracy of applying the butterfly factorization

1Available on https://github.com/ButterflyLab.
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algorithm is estimated by the following relative error

εa =

√∑
x∈S |ua(x)− ud(x)|2∑

x∈S |ud(x)|2
, (26)

where S is a point set of size 256 randomly sampled from X. In all of our examples, the oversampling
parameter t in the linear scaling ID is set to 1, and the number of points in a leave node is set to
n0 = 8. Then the number of randomly sampled grid points in the ID is equal to the rank parameter
k, which we will here also call the truncation rank.

Example 1. Our first example is to evaluate a 1D FIO of the following form:

u(x) =

∫
R
e2πıΦ(x,ξ)f̂(ξ)dξ, (27)

where f̂ is the Fourier transform of f , and Φ(x, ξ) is a phase function given by

Φ(x, ξ) = x · ξ + c(x)|ξ|, c(x) = (2 + 0.2 sin(2πx))/16. (28)

The discretization of (27) is

u(xi) =
∑
ξj

e2πıΦ(xi,ξj)f̂(ξj), i, j = 1, 2, . . . , N, (29)

where {xi} and {ξj} are uniformly distributed points in [0, 1) and [−N/2, N/2) following

xi = (i− 1)/N and ξj = j − 1−N/2. (30)

(29) can be represented in a matrix form as u = Kg, where ui = u(xi), Kij = e2πıΦ(xi,ξj) and

gj = f̂(ξj). The matrix K satisfies the complementary low-rank property with a rank parameter
k independent of the problem size N when ξ is sufficiently far away from the origin as proved in
[35, 41]. To make the presentation simpler, we will directly apply IDBF to the whole K instead
of performing a polar transform as in [35] or apply IDBF hierarchically as in [42]. Hence, due to
the non-smoothness of the Φ(x, ξ) at ξ = 0, submatrices intersecting with or close to the line ξ = 0
have a local rank increasing slightly in N , while other submatrices have rank independent of N .

Figure 9 to 11 summarize the results of this example for different grid sizes N . To compare
IDs with Mock-Chebyshev points and randomly selected points in different cases, Figure 9 shows
the results for tolerance in (9) ε = 10−6 and the truncation rank k being the smallest size of a
submatrix (i.e., k = min{m,n} for a submatrix of size m × n); Figure 10 shows the results for
ε = 10−15 and k = 30; Figure 11 shows the results for ε = 10−6 and k = 30. Note that the accuracy
of IDBF is expected to be O(ε), which may not be guaranteed, since the overall accuracy of IDBF
is determined by all IDs in a hiearchical manner. Furthermore, if the rank parameter k is too
small for some low-rank matrices, then the error of the corresponding ID will propagate through
the whole IDBF process and increase the error of the IDBF.

We see that the IDBF applied to the whole matrix K has O(N log2(N)) factorization and
application time in all cases with different parameters. The running time agrees with the scaling of
the number of non-zero entries required in the data-sparse representation. In fact, when N is large
enough, the number of non-zero entries in the IDBF tends to scale as O(N logN), which means
that the numerical scaling can approach to O(N logN) in both factorization and application when
N is large enough. IDBF via IDs with Mock-Chebyshev points is much more accurate than IDBF

11



via IDs with random samples. The running time for three kinds of parameter pairs (ε, k) is almost
the same. For the purpose of numerical accuracy, we prefer IDs with Mock-Chebyshev points with
(ε, k) = (10−15, 30). Hence, we will only present numerical results for IDs with Mock-Chebyshev
points in later examples.
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Figure 9: Numerical results for the FIO given in (29). N is the size of the matrix; nnz is the
number of non-zero entries in the butterfly factorization, err is the approximation error of the
IDBF matvec. ε = 10−6 and k is the smallest size of a submatrix (i.e., k = min{m,n} for a
submatrix of size m× n).

Example 2. Next, we provide an example of a special function transform, the evaluation of
Schlömilch expansions [43] at gk = k−1

N for 1 ≤ k ≤ N :

uk =

N∑
n=1

cnJν(gkωn), (31)

where Jν is the Bessel function of the first kind with parameter ν = 0, and ωn = nπ. It is
demonstrated in [13] that (31) can be represented via a matvec u = Kg, where K satisfies the
complementary low-rank property. An arbitrary entry of K can be calculated in O(1) operations
[44] and hence IDBF is suitable for accelerating the matvec u = Kg. Other similar examples when
ν 6= 0 can be found in [43] and they can be also evaluated by IDBF with the same operation counts.

Figure 12 summarizes the results of this example for different problem sizes N with different
parameter pairs (ε, k). The results show that IDBF applied to this example has O(N log2(N)) fac-
torization and application time. The running time agrees with the scaling of the number of non-zero
entries required in the data-sparse representation to guarantee the approximation accuracy. In fact,
when N is large enough, the number of non-zero entries in the IDBF tends to scale as O(N logN),
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Figure 10: Numerical results for the FIO given in (29). N is the size of the matrix; nnz is the
number of non-zero entries in the butterfly factorization, err is the approximation error of the
IDBF matvec. ε = 10−15 and k = 30.

which means that the numerical scaling can approach to O(N logN) in both factorization and
application when N is large enough.

Example 3. In this example, we consider the 1D non-uniform Fourier transform as follows:

uk =
N∑
n=1

e−2πıxnωkgn, (32)

for 1 ≤ k ≤ N , where xn is randomly selected in [0, 1), and ωk is randomly selected in [−N
2 ,

N
2 )

according to uniform distributions in these intervals.
Figure 13 summarizes the results of this example for different grid sizes N with different pa-

rameter pairs (ε, k). Numerical results show that IDBF admits at most O(N log2(N)) factorization
and application time for the non-uniform Fourier transform. The running time agrees with the
scaling of the number of non-zero entries required in the data-sparse representation. In fact, when
N is large enough, the number of non-zero entries in the IDBF tends to scale as O(N logN), which
means that the numerical scaling can approach to O(N logN) in both factorization and application
when N is large enough.

Example 4. The fourth example is from the electric field integral equation (EFIE) for analyzing
scattering from a two-dimensional curve. Using the method of moments on a linear segmentation
of the curve, the EFIE takes the form [12]

Zx = b,

13
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Figure 11: Numerical results for the FIO given in (29). N is the size of the matrix; nnz is the
number of non-zero entries in the butterfly factorization, err is the approximation error of the
IDBF matvec. ε = 10−6 and k = 30.

where Z is an impedance matrix with (up to scaling)

Zij =

{
wiwjH

(2)
0 (κ|ρi − ρj |), if i 6= j,

w2
i

[
1− i 2

π ln
(
γkwi

4e

)]
, otherwise,

where e ≈ 2.718, γ ≈ 1.781, κ = 2π/λ0 is the wavenumber, λ0 represents the free-space wavelength,

H
(2)
0 denotes the zeroth-order Hankel function of the second kind, wi is the length of the i-th linear

segment of the scatterer object, ρi is the center of the i-th segment.
It was shown in [12, 30] that Z admits a HSS-type complementary low-rank property, i.e., off-

diagonal blocks are complementary low-rank matrices. The method in [30] requires O(N1.5 logN)
operations to compress the impedance matrix via a slower version of butterfly factorization. Af-
ter compression, it requires O(N log2(N)) operations to apply the impedance matrix and makes
it possible to design efficient iterative solvers to solve the linear system for the impedance ma-
trix. Replacing the butterfly factorization in [30] with IDBF, we reduce the factorization time to
O(N log2(N)) as well.

Figure 15 shows the results of the fast matvec of the impedance matrix from a 2D EFIE
generated with a spiral object as shown in Figure 14 (a). We vary the number of segments N and
let κ = O(N) in the construction of Z. In the IDBF, we use the same truncation rank k = 40 and
tolerance ε = 10−4 in IDs with Mock-Chebyshev points. Numerical results verifies the O(N log2(N))
scaling for both the factorization and application of the new HSS-type butterfly factorization by
IDBF.
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Figure 12: Numerical results for the Schlömilch expansions given in (31). N is the size of the matrix;
nnz is the number of non-zero entries in the butterfly factorization, err is the approximation error
of the IDBF matvec. Top row: (ε, k) = (10−6,min{m,n}). Middle row: (ε, k) = (10−15, 30).
Bottom row: (ε, k) = (10−6, 30).

Example 5. The fifth example is from the combined field integral equation (CFIE). Similar to
the ideas in [12, 30] for EFIE, we verify that the impedance matrix of the CFIE2 by the method of
moments for analyzing scattering from 2D objects also admits a HSS-type complementary low-rank
property. Applying the same HSS-type butterfly factorization by IDBF, we obtain O(N log2(N))
scaling for both the factorization and application time for impedance matrices of CFIEs. This makes
it possible to design efficient iterative solvers to solve the linear system for the impedance matrix.
Figure 16 shows the results of the fast matvec of the impedance matrix from a 2D CFIE generated
with a round object as shown in Figure 14 (b). We vary grid sizes N with the same truncation
rank k = 40 and tolerance ε = 10−4 in IDs with Mock-Chebyshev points. Numerical results verify
the O(N log2(N)) scaling for both the factorization and application of the new HSS-type butterfly

2Codes for generating the impedance matrix are from a MATLAB package “emsolver” available at https://

github.com/dsmi/emsolver.
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Figure 13: Numerical results for the NUFFT given in (32). N is the size of the matrix; nnz is
the number of non-zero entries in the butterfly factorization, err is the approximation error of the
IDBF matvec. Top row: (ε, k) = (10−6,min{m,n}). Middle row: (ε, k) = (10−15, 30). Bottom row:
(ε, k) = (10−6, 30).

factorization by IDBF.

4 Conclusion and discussion

This paper introduces an interpolative decomposition butterfly factorization as a data-sparse ap-
proximation of complementary low-rank matrices. It represents such an N ×N dense matrix as a
product of O(logN) sparse matrices. The factorization and application time, and the memory of
IDBF all scale as O(N logN). The order of factorization is from the leaf-root and root-leaf levels
of matrix partitioning (e.g., the left and right panels in Figure 1) and moves towards the middle
level of matrix partitioning (e.g., the middle panel of Figure 1). Other orders of factorization are
also possible, e.g., an order from the root of the column space to its leaves, an order from the root
of the row space to its leaves, or an order from the middle level towards two sides. We leave the
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Figure 14: The two scatterers used in Example 4 and 5: (a) a spiral object; (b) a round object
with a hole in center which is the port.
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Figure 15: Numerical results for the 2D electric field integral equation. N is the size of the matrix;
nnz is the number of non-zero entries in the butterfly factorization, err is the approximation error
of the matvec by hierarchically applying IDBF.
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Figure 16: Numerical results for the 2D combined field integral equation. N is the size of the matrix;
nnz is the number of non-zero entries in the butterfly factorization, err is the approximation error
of the matvec by hierarchically applying IDBF.

extensions of these O(N logN) IDBFs to the reader.
As shown by numerical examples, IDBF is able to reduce the construction time of the data-
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sparse representation of the HSS-type complementary matrix in [30] from N1.5 to nearly linear
scaling. These matrices arise widely in 2D high-frequency integral equation methods.

IDBF can also accelerate the factorization time of the hierarchical complementary matrix in
[31] to nearly linear scaling for 3D high-frequency boundary integral methods. After factorization,
the application time of matrices in these two integral methods is nearly linear scaling. We leave
the trivial extension to 3D high-frequency integral methods to the reader.
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