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Abstract. We present a method for optimal path planning of human walking paths in mountain-
ous terrain, using a control theoretic formulation and a Hamilton-Jacobi-Bellman equation. Previous
models for human navigation were entirely deterministic, assuming perfect knowledge of the ambient
elevation data and human walking velocity as a function of local slope of the terrain. Our model in-
cludes a stochastic component which can account for uncertainty in the problem, and thus includes a
Hamilton-Jacobi-Bellman equation with viscosity. We discuss the model in the presence and absence
of stochastic effects, and suggest numerical methods for simulating the model. We discuss two different
notions of an optimal path when there is uncertainty in the problem. Finally, we compare the optimal
paths suggested by the model at different levels of uncertainty, and observe that as the size of the
uncertainty tends to zero (and thus the viscosity in the equation tends to zero), the optimal path tends
toward the deterministic optimal path.
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1. Introduction. Optimal path planning is a classical problem in control theory
and engineering. The basic mathematical formulation of the problem includes an agent
whose movement is constrained by an equation of motion, and who desires to optimally
travel from one point to another while obeying this equation. We will consider optimal
path planning in the context of hikers traversing mountainous terrain.

Early approaches to the optimal path planning problem date back to the 1950’s and
were originally discrete in nature: discretizing the continuous domain into a weighted
graph and then employing Dijkstra’s algorithm and its many variants [12]. Several of
these discrete or semi-discrete approaches are still being developed and improved today
[18, 22, 31, 32, 37, 42]. However, since the late 1990’s, there has also been significant
interest in solving the problem using variational and partial different equation (PDE)
based models. Sethian and Vladimirsky determine optimal paths on manifolds by formu-
lating the dynamic programming principle and Hamilton-Jacobi-Bellman (HJB) equa-
tion as a continuous version of Dijkstra’s algorithm [45, 46]. In a similar approach, one
can use the level set method of Osher and Sethian [35] to resolve optimal paths [10, 39].
Alternatively, Martin and Tsai suggest a steady-state HJB formulation for determin-
ing optimal paths on manifolds which are represented computationally by unstructured
point clouds [30]. In application, variational methods for optimal path planning are ex-
tensively used in the context of self-driving vehicles. This problem was first considered
by Dubins [13] in discrete form, but later reformulated continuously, and adapted to
answer a number of questions involving impassable obstacles and reachable sets, among
others [1, 5, 27, 51]. Human movement has also been modeled using HJB equations,
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whether it be walking while expending minimal energy [17, 38], reach-avoid games like
capture-the-flag [9, 55], or pedestrian flow modeling [8].

One feature of all the models referenced above is that they are completely deter-
ministic. For example, in the simplest reach-avoid games, the strategy of each team is
known to the opposing team. Assumptions like this may not be realistic in practice,
and thus it is important to incorporate some uncertainty into the models, and this can
be done in a number of ways. In the case of reach-avoid games, Gilles and Vladimirsky
suggest paths for the attackers or defenders that minimize or maximize risk in different
ways [16]. In optimal path planning, Shen and Vladimirsky account for weather effects
on a sailboat by designing a piecewise deterministic algorithm, wherein the travel ve-
locity changes randomly but at discrete times [47]. These type of stochastic effects are
of special interest to those working on self-driving vehicles wherein misaligned axles,
miscalibrated sensors or a host of other variables could significantly perturb an opti-
mal driving path, and these can be modeled using randomness in a number of different
ways [3, 23, 26, 28, 29]. Others have suggested optimal path planning for underwater
unmanned vehicles using a stochastic drift term to account for the effects of the ocean’s
current [25, 49, 50].

In this paper, we propose a method for optimal path planning where the walking
velocity depends on the local slope in the direction of motion (and is thus anisotropic),
and there is uncertainty in the equation of motion of the traveler. That is, rather than
an ordinary differential equation, our equation of motion is a stochastic differential
equation where Brownian motion can account for uncertainty in human walking speed,
the ambient elevation data, terrain traversibility or other uncertainties. In doing so, we
follow a similar formulation as in a previous paper [39]. However, since the Hamilton-
Jacobi-Bellman equation for the stochastic case has viscosity, the level set method is no
longer applicable, so we opt for a model more rooted in control theory. This paper is
organized as follows: in section 2, we discuss the setup of our model, including some of
the underlying mathematical formalism and how it pertains to optimal path planning.
In section 3, we discuss the numerical methods which we used to simulate the model.
In section 4, we discuss the results of our simulations. Specifically, we test our model
against both synthetic data and real elevation data taken from the area surrounding El
Capitan, a mountain in Yosemite National Park. We compare two different notions of
optimal paths when stochastic effects are present. Finally, we observe that as the size
of the uncertainty tends to zero (and thus the solution of the stochastic HJB equation
tends to the viscosity solution of the ordinary HJB equation [11]), the optimal path
tends toward the deterministic optimal path.

2. Mathematical Model. We discuss the construction of our model, only briefly
mentioning the underlying control theoretic concepts. Treatments of these concepts with
varying levels of rigor can be found in several books [6, 7, 15, 33, 40]. The main insights
here are how the controlled equation of motion leads to a Hamilton-Jacobi-Bellman
equation, and how we can use this equation to determine the optimal control.

2.1. The Deterministic Optimal Path Planning Model. We consider the
problem of planning optimal walking paths in mountainous terrain. We imagine that a
hiker is standing at a point x0∈R2, and wishes to walk to a point xend∈R2. We are
given the elevation profile E :R2→R which provides the elevation at any point in space,
and velocity function V :R→ [0,∞) which measures walking velocity as a function of
slope. Here slope is in units of grade, so that slope of 1 corresponds to a 45◦ incline,
and slope of −1 corresponds to a 45◦ decline. Let x : [0,T ]→R2 represent the current
position of the hiker, where T >0 is the total walking time. Note, this terminal time
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T is a parameter which one specifies at the outset. Our control variable will be the
walking direction along the path, s : [0,T ]→S1 ..={a∈R2 : ‖a‖2 = 1}. Given all of this,
the equation of motion for our hiker is

ẋ(t) =V (∇E(x(t)) ·s(t))s(t), 0<t≤T,
x(0) =x0.

(2.1)

Note that ∇E(x) ·s represents the local slope in the walking direction.
For the cost functional, we simply consider Euclidean distance to the end point.

Given a particular control parameter s : [0,T ]→S1, define

(2.2) C[s(·)] =‖x(T )−xend‖2,

where x is constrained by (2.1). To arrive at the Hamilton-Jacobi-Bellman equation,
we invoke the dynamic programming principle, stating that to find a globally optimal
path, we need only consider paths which are locally optimal. That is, for any given
x∈R2 and t∈ (0,T ], one can consider optimal paths on the interval (t,T ] with x(t) =x.
We define the cost function by

(2.3) u(x,t) = inf
s

{
Cx,t[s(·)]

}
,

where Cx,t[s(·)] denotes the same cost functional, but restricted to paths x on the
interval (t,T ] with x(t) =x. Provided that the map x 7→V (∇E(x) ·s) is sufficiently
regular [15], one can show that the cost function u satisfies the equation

ut(x,t)+ inf
s∈S1
{V (∇E(x) ·s)[∇u(x,t) ·s]}= 0,

u(x,T ) =‖x−xend‖2.
(2.4)

This is the Hamilton-Jacobi-Bellman (HJB) equation for this control problem. Note
that this is a terminal value problem, for which we have data at time T and we solve
backwards in time on the interval [0,T ). This correspondence between the control
problem and the HJB equation will hold under the condition that x 7→V (∇E(x) ·s) is
Lipschitz with a constant which is uniform over s∈S1 [15]. In our application, this
will likely hold, but we cannot guarantee it because we will use real elevation data
E(x). Thus this may only be a formal correspondence, though empirically, the method
appears to work even when the elevation data is somewhat non-smooth. Another note
is that the infimum in (2.4) is being taken over a compact set, so again, under some
mild assumptions of continuity, this will be realized as a minimum.

The question remains of how to use (2.4) to determine the optimal control, and
thus the optimal trajectory. At each point, the optimal control is given by the infimum
in (2.4). Thus if one can solve (2.4), the optimal control s∗ is

(2.5) s∗(x,t) = argmin
s∈S1

{V (∇E(x) ·s)[∇u(x,t) ·s]} .

When this minimization problem is solved, the optimal trajectory is then resolved by
solving the differential equation

ẋ(t) =V (∇E(x(t)) ·s∗(x(t),t))s∗(x(t),t), 0<t≤T,
x(0) =x0.

(2.6)

It was mentioned above that the terminal time T is a parameter which one must
specify beforehand. It is important to note what this means for the model. Notice that
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for our cost functional, we have chosen a lump sum cost which is the distance from
the end of the path x(T ) to the desired end point xend. The optimal control problem
attempts to minimize this cost. Thus the path that we observe will be the path x whose
end point is as close to xend as possible, given time T >0. If we select T too small, the
path will not reach the end point, and in some cases this can lead to some interesting
decisions regarding how the path should be constructed. We discuss this further in
section 4.3.

2.2. The Stochastic Optimal Path Planning Model. In the above, we assume
that all data is known perfectly and that there is no uncertainty. In reality, weather
effects, instrumentation noise, incomplete elevation data or any number of other things
could cause uncertainty in the equation of motion. Accordingly, we can account for
random effects by considering a stochastic equation of motion

dXt=V (∇E(Xt) ·s(t))s(t)dt+σ(Xt,s(t))dW t, 0<t≤T
X0 =x0,

(2.7)

where W t is an ordinary two-dimensional Brownian motion whose coordinates W
(1)
t

and W
(2)
t are independent one-dimensional Brownian motions, and σ is some function

that determines the uncertainty.
In this case, we define the expected cost function

(2.8) C[s(·)] =E(‖XT −xend‖2) ,

and perform similar steps as above to arrive at a stochastic version of the Hamilton-
Jacobi-Bellman equation. That is, we localize the problem and define

(2.9) u(x,t) = inf
s

{
E
(
Cx,t[s(·)]

)}
,

where again Cx,t[s(·)] denotes the cost functional restricted to trajectories X on the
interval (t,T ] with Xt=x. A key point in the derivation of the HJB equation invokes
the chain rule for the function t 7→u(x(t),t), which explains the appearance of ut and
∇u in the HJB equation. We are now concerned with the map t→u(Xt,t) and we must

consider second order derivatives because of the fundamental relationship (dW
(i)
t )2∼dt

for i= 1,2. Thus the stochastic Hamilton-Jacobi-Bellman equation reads

ut(x,t)+ inf
s∈S1

{
V (∇E(x) ·s)[∇u(x,t) ·s]+ 1

2
σ(x,s)2∆u(x,t)

}
= 0,

u(x,T ) =‖x−xend‖2.
(2.10)

Again, this is a terminal value problem, solved backwards from t=T to t= 0. Thus
the positive sign on the diffusion is the correct sign to ensure that the diffusion has a
smoothing effect on the solution, and there is no danger of finite-time blow-up.

As above, to determine the optimal control, we solve (2.10), and at each point set

(2.11) s∗(x,t) = argmin
s∈S1

{
V (∇E(x) ·s)[∇u(x,t) ·s+

1

2
σ(x,s)2∆u(x,t)]

}
.

At this point, there is a choice as to how to construct the path. One can use the optimal
control computed from the stochastic HJB equation but simulate the deterministic path
equation

ẋ(t) =V (∇E(x(t)) ·s∗(x(t),t))s∗(x(t),t), 0<t≤T,
x(0) =x0,

(2.12)
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to arrive at an optimal path. Alternatively, to compute a single instance of a path, we
could simulate the equation

dXt=V (∇E(Xt) ·s∗(Xt,t))s
∗(Xt,t)dt+σ(Xt,s

∗(Xt,t))dW t, 0<t≤T
X0 =x0.

(2.13)

Because this is only one instance and is subject to randomness, the path will not neces-
sarily connect the points x0 and xend. However, we can average over many realizations
to arrive at an expected optimal path. This is summarized in table 1.

Table 1: The two options for how to compute optimal paths with uncertainty.

Method (i) Method (ii)

Stochastic HJB Equation (2.10) Stochastic HJB Equation (2.10)
→ control values → control values

Deterministic equation of motion (2.12) Stochastic equation of motion (2.13)
ẋ=V (∇E(x) ·s)s E

(
dXt=V (∇E(Xt) ·s)sdt+σdW t

)
→ optimal path → expected optimal path

These methods have different interpretations and may be better suited to modeling
different physical scenarios. In using method (i), the uncertainty is factored into the
planning of the route, but upon traversing the route, there is no uncertainty in the
velocity. This could model a hiker walking through a forest. The hiker does not feel
random perturbations in the walking velocity at each step; rather, the uncertainty is in
the exact form of the landscape that lies ahead. Method (ii) may be of more practical use
to a company shipping goods from one port to another, wherein each boat that makes
the trip will actually feel random perturbations in velocity due to wind or currents. We
will use both methods to compute paths and compare the results in section 4.

2.3. Our Model. In order to simulate the model, we simply need to determine
some parameter values, specifically those of E,V and σ. For the elevation data E,
we will begin by using synthetic elevation data which is mostly flat but with a few
“mountains” included which we would expect the hiker to avoid. After this, we will
use real elevation data in the area surrounding El Capitan, a large granite cliff face in
Yosemite National Park in California. We will specify the elevation data which we use
for each simulation in section 4.

For the walking velocity function, we use a modified version of the function of
Irmischer and Clarke [19]. Our specific velocity function is [39]:

(2.14) V (S) = 1.11exp

(
− (100S+2)2

2345

)
.

Additionally, if we use this velocity function and only consider the walking direction
∇E(x) ·s, then the walking velocity in the tangential and normal directions to the path
are completely decoupled. Thus one could walk easily in the east-west direction, even
when the grade in the north-south direction is arbitrarily steep. To prevent this, we
penalize the velocity if the grade is sufficiently steep in any direction [39].

Lastly, one must determine the exact form of the uncertainty σ in the stochastic
equation of motion. For our purposes, we take σ constant, so that we model uncertainty
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in the walking velocity in a general sense without specifying the exact nature of the
uncertainty. As a consequence, if we reconsider (2.10), we notice that the viscosity term
is independent of the control variable s, and thus the equation can be re-written

ut(x,t)+
σ2

2
∆u(x,t)+ inf

s∈S1
{V (∇E(x) ·s)[∇u(x,t) ·s]}= 0,

u(x,T ) =‖x−xend‖2.
(2.15)

This case is interesting because now the optimal control is resolved exactly as in the
deterministic case, and (2.15) is reminiscent of the viscous Hamilton-Jacobi equation
considered by Crandall and Lions [11] when establishing the vanishing viscosity method
for Hamilton-Jacobi equations. Thus if our Hamiltonian

(2.16) H(x,p) ..= inf
s∈S1
{V (∇E(x) ·s)[p ·s]}

is continuous, we expect that the solution u(σ) to equation (2.15) will converge to the
viscosity solution u of (2.4) as σ↘0 [11]. Again, continuity of H(x,p) will depend
on the nature of the elevation data, but we can observe this convergence empirically
by considering the optimal path constructed by the the method at varying levels of
uncertainty σ.

Other modeling decisions could be made. For example one could consider a running
cost, allow for infinite horizon time, or allow σ to depend on x and s (perhaps accounting
for local slope as with the velocity function). We chose our cost functional and finite
horizon time in analogy with the previous level set model for deterministic path planning
[39]. With these decisions, the HJB equation remains time-dependent, and can thus be
approximated very simply at high-order accuracy using techniques like ENO and WENO
[24, 36]. As stated above, we will discuss the ramifications of this decision in section
4.3. Likewise, choosing σ constant simplifies the numerics in that it allows the diffusion
to be resolved implicitly as seen in section 3.2. Alternatively, if one wishes to have
σ(x,s), it will likely be difficult to resolve the diffusion implicitly, and a steady-state,
infinite horizon time formulation like those in [30, 55] may be necessary. This would also
require more involved numerical schemes; one could likely use a modified fast marching
[45, 46, 53] or fast sweeping method [20, 52]. Indeed, in the latter reference [52], a
fast sweeping scheme is specifically applied to an anisotropic Eikonal equation which
describes geodesic distance on the graph of a smooth function.

3. Numerical Methods. There are several numerical concerns that must be
addressed in order to simulate these equation; both general concerns for numerical
Hamilton-Jacobi equations and specific concerns relating to our model. We begin by
discussing general notions for solving Hamilton-Jacobi type equations numerically.

3.1. An Explicit Scheme for (2.4). We consider a general Hamilton-Jacobi equa-
tion of the form

(3.1) ut+H(ux,uy) = 0, x∈R2, t>0,

with initial data at t= 0. Our Hamiltionian (2.16) depends also on x, but for the sake
of numerical methods, this is unimportant, so we suppress it here to simplify notation.
Since solutions of Hamilton-Jacobi equations have kinks [4, 11, 34], näıve forward, back-
ward and centered differencing methods may fail to accurately simulate the equation.
Accordingly, in a numerical scheme, one must replace the Hamiltonian H(ux,uy) with
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a numerical Hamiltonian Ĥ(u+x ,u
−
x ,u

+
y ,u

−
y ) which deftly combines the forward differ-

ences u+x ,u
+
y and backwards differences u−x ,u

−
y so as to smooth the solution, minimize

oscillation near kinks, track the characteristics, or otherwise capture the dynamics of
the equation.

Following Osher and Shu [36], we use the Godunov numerical Hamiltonian

(3.2) ĤG(u+x ,u
−
x ,u

+
y ,u

−
y ) = ext

u∈I(u−
x ,u

+
x )

ext
v∈I(u+

y ,u
−
y )
H(u,v)

where

(3.3) I(a,b) = [min(a,b),max(a,b)] and ext
x∈I(a,b)

=

{
mina≤x≤b if a≤ b,
maxb≤x≤a if a>b.

These minima and maxima are designed to track the characteristics of the equation,
thus accurately approximating the Hamiltonian without resorting to excessive numerical
diffusion as is present in the Lax-Friedrichs scheme; we comment on this further later.
Osher and Shu [36] suggest a method for approximating ux and uy with forward and
backward difference schemes which are accurate to arbitrarily high order, though we
opt for first order approximations which suffice in this application. In the absensce of
viscosity, we then explicitly integrate (3.1) in time using explicit Euler time stepping.

Specifically while (2.4) has infinite spatial domain, for the purpose of simulating it,
we draw some box [a,b]× [c,d] containing the points x0 and xend. We also invert the
time variable, so that we instead solve for u(x,y,T − t) on the interval t∈ (0,T ]. Next
discritize this box, and the time interval uniformly:

xi=a+ i
(b−a)

N
, i= 0,1,. ..,N,

yj = c+j
(d−c)
M

, j= 0,1,. ..,M,

tk =
kT

K
, k= 0,1,. ..,K.

(3.4)

Then if ukij
..=u(xi,yj ,T − tk), our explicit time stepping scheme is

(3.5) ukij =uk−1ij +∆tĤG(u+x ,u
−
x ,u

+
y ,u

−
y )k−1ij

for i= 1,. ..,N−1,j= 1,. ..,M−1 and k= 1,. ..,K, where ∆t ..=T/K. Note, the positive
sign in front of ĤG in (3.5) is due to the time inversion; this would ordinarily be negative
when moved to the right hand side of (2.4). If one is resolving the spatial derivatives
to higher order accuracy and desires to maintain this accuracy, one can easily replace
the explicit Euler time integration with a higher order Runge-Kutta scheme [36].

The layers of nodes corresponding to i= 0,i=N,j= 0 or j=M are necessarily
boundary layers, because for example, we cannot compute the backwards difference
approximation u−x at the nodes where i= 0. Thus after evaluating (3.5) at each time
step, we must enforce some artificial boundary condition, which is not prescribed in the
differential equation, but is rather a purely numerical consideration. We use the bound-
ary conditions suggested by Kao et al. [20] which extrapolate while also attempting to
minimize oscillation and prevent information from entering through the boundary:

uk0,j = min(max(2uk1,j−uk2,j ,uk2,j),uk−10,j ),

ukN,j = min(max(2ukN−1,j−ukN−2,j ,ukN−2,j),uk−1N,j ),

uki,0 = min(max(2uki,1−uki,2,uki,2),uk−1i,0 ),

uki,M = min(max(2uki,M−1−uki,M−2,uki,M−2),uk−1i,M ).

(3.6)

7



For our particular application, the maximum velocity at which information flows
along characteristics is Vmax

..= maxSV (S) = 1.11, and so this scheme will be stable so
long as the parameters (∆x,∆y,∆t) ..=

(
b−a
N , d−cM , TK

)
satisfy the CFL condition [34]:

(3.7) ∆t ·Vmax

(
1

∆x
+

1

∆y

)
<1.

3.2. A Semi-Implicit Scheme for (2.15). In order to numerically simulate the
reaction-diffusion equation (2.15), one could simply insert the centered difference ap-
proximation to ∆u and continue with the explicit Euler time stepping. However, this
will require exceedingly small time discretization, since the stability condition for for-
ward Euler time stepping for a diffusion operator is of the form ∆t=O((∆x)2,(∆y)2).
Instead, we resolving the diffusion implicitly. Thus, our scheme for (2.15) is

(3.8) ukij−
σ2∆t

2∆x
(u+x −u−x )kij−

σ2∆t

2∆y
(u+y −u−y )kij =uk−1ij +∆tĤG(u+x ,u

−
x ,u

+
y ,u

−
y )k−1ij .

Since implicit Euler time stepping for diffusion is unconditionally stable, our dis-
cretization is still only bound by the CFL condition (3.7). For larger values of σ, the
resulting diffusion will smooth the solution u, and thus sophisticated numerical Hamil-
tonians are probably no longer necessary. However, we have implemented this scheme
as stated, so that as σ↘0, the semi-implicit scheme (3.8) reverts to the explicit scheme
(3.5), and there are no stability issues. We note that this semi-implicit scheme is only
available when the uncertainty σ in the equation of motion is independent of the con-
trol variable. If σ depends on s, then the Hamilton-Jacobi-Bellman equation takes the
form (2.10), and in this case the Hamiltonian cannot be decoupled from the diffusion
term. Thus one would have to resort to explicit time stepping methods, or use alternate
numerical methods such as pseudospectral methods [48].

3.3. Implementation Concerns. One may question why we have decided to
use the Godunov scheme, since for the purposes of implementation, something like
the Lax-Friedrichs numerical Hamiltonian may be easier. Indeed, the Lax-Friedrichs
Hamiltonian in given by

(3.9) ĤLF (u+x ,u
−
x ,u

+
y ,u

−
y ) =H

(
u+x +u−x

2
,
u+y +u−y

2

)
− α1

2
(u+x −u−x )− α2

2
(u+y −u−y ),

where α1,α2 are bounds on the derivatives of H with respect to the first or second
arguement, respectively [36]. The Lax-Friedrichs scheme works by adding numerical
diffusion, thus in essence changing equation (3.1) to

(3.10) ut−ε∆u+H(ux,uy) = 0,

where ε=O(∆x,∆y). In most applications, this is acceptable, since the Lax-Friedrichs
Hamiltonian still provides a first order accurate approximation to the Hamilton-Jacobi
equation. However, in our case, adding diffusion at level ε to the Hamilton-Jacobi
equation is akin to adding uncertainty in the equation of motion at level ε1/2. For
example, in the discretization we will use, the numerical diffusion would be on the order
of 0.01, which would correspond to uncertainty in the equation of motion on the order
of 0.1 m/s. This is a nontrivial level of uncertainty, representing roughly one tenth
of the maximum walking velocity. For this reason, minimally diffusive schemes are
necessary for our application. A similar roadblock arises when using level set methods,
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especially when the geometry of the level sets is a crucial aspect of the model like in
shock-capturing, image-processing [14] or recent deforestation models [2]. In these cases,
numerical diffusion becomes noticeable when level set velocity is near zero.

If the Hamiltonian H is relatively simple, the minima and maxima in the Go-
dunov Hamiltonian can be resolved exactly. For example, in the special case that
H(u,v) =h(u2,v2) and h is monotone in each argument, the Godunov scheme simplifies
significantly [39]. In our application, this situation arises when the elevation is flat so
that ∇E≡0, and our Hamiltonian (2.16) becomes H(x,∇u) =−Vmax‖∇u‖2. In general,
our Hamiltonian is much more complicated. In order to implement the Godunov scheme
for our Hamiltonian, we must resolve three minima or maxima: the minimum involved in
the definition of the Hamiltonian, and the two minima/maxima involved in the scheme
itself. We resolve all this minima and maxima discretely, by simply sampling points and
choosing the correct one. As long as the error from this descrete optimization remains
on the order of ∆x and ∆y, the scheme will remain accurate to first order. The level
of resolution needed for the discrete optimization depends somewhat on the problem,
but empirically it appears that the most important facet is the regularity of the eleva-
tion data E. This makes intuitive sense: for less smooth elevation, the minimization in
(2.16) taken with respect to the walking direction will require finer resolution to resolve.
Likewise, for less smooth elevation, the discontinuities in the derivative of the solution
u become more severe. Thus the optimization sets in the Godunov scheme, which have
the form I(u+x ,u

−
x ) and I(u+y ,u

−
y ), become larger.

4. Simulations & Results. We implemented our model in MATLAB using the
numerical schemes (3.5, 3.8) to solve the Hamilton-Jacobi-Bellman equations (2.4, 2.15),
and the forward Euler method to solve the equation of motion (2.12). In the following
figures, we will display elevation contours ranging from blue signifying low elevation to
yellow signifying high elevation. The starting point x0 will be marked with a green star
and the desired end point xend will be marked with a red star. The lines representing
the walking paths will be plotted in colors ranging from green, symbolizing simulations
with smaller σ values, to red, symbolizing larger σ values.

4.1. Synthetic Elevation Data. We began by testing our model against simple
synthetic data. In figure 1, we have computed optimal paths with several different
levels of uncertainty σ. Referring to table 1, we are using method (i) to compute the
optimal paths. That is, we are using the stochastic HJB equation to determine the
optimal control values, but then computing the path using the deterministic equation
of motion. In this example, the elevation is flat except for two large mountains which
lie between the starting point and end point.

In the deterministic case, plotted in figure 1a, the path curves around the mountains
as one would expect: the walking velocity is significantly hampered by the change in
elevation, so it is more efficient to avoid those regions. In this case, we see that the
optimal path suggested by our algorithm is not particularly sensitive to small changes
in σ. The path in figure 1b which has σ= 0.2 looks very similar to that in figure 1a
which has σ= 0. However, as σ becomes larger, we do see significant changes in the
path. The path in figure 1f where σ= 1 is significantly different from the deterministic
case. Here the uncertainty is on roughly the same order as the walking velocity. With
this level of uncertainty, one could imagine walking through a forest in a very dense
fog. In planning the path, this algorithm suggests that you walk directly toward your
destination and adjust as necessary when obstacles arise.

Next, we consider method (ii) from table 1; that is, we simulate the stochastic
equation of motion many times and compute the average path. Specifically, we simulate
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(a) σ= 0.0 (b) σ= 0.2 (c) σ= 0.4

(d) σ= 0.6 (e) σ= 0.8 (f) σ= 1.0

Fig. 1: Optimal paths using different σ values. End time T = 3.8 for each plot.

the equation L times, resulting in paths {x`(t)}L`=1 which are resolved at the same
discrete time points, but with some randomness due to the Brownian motion. We
then define the average path x(t) = 1

L

∑L
`=1x`(t). We are still using the forward Euler

method for the stochastic ODE and since the coefficient in front of the Brownian motion
is independent of Xt, this corresponds with the Milstein method which exhibits strong
and weak convergence at first order [21]. In each of the following results, we have
simulated the equation of motion 10000 times. Results are displayed in figures 2a-2c.
The black line represents the average optimal path and the colored lines represent three
individual realizations of the stochastic equation of motion. Here as σ gets larger, the
individual realizations become less meaningful, but the average path is still somewhat
smooth and roughly connects the starting point to the ending point.

We also calculate a form of confidence interval to evaluate how close a single real-
ization is likely to be to the average. To do this, at each point (x,y) along the average
path, we calculate the standard deviation (δx,δy) in each of the coordinates. Then at
each point, we plot in light grey the ellipse centered at (x,y) with radii (δx,δy) in the
x or y direction, respectively. As we travel along the path plotting these ellipses, the
grey envelope represents the set of points within one standard deviation of the average
path. This is seen in figures 2d-2f. In these plots the average path is plotted as a solid
black line. Now we also display the path which was computed using method (i) using a
dotted green line. For small σ, the average path and the determistic path match fairly
well. For larger σ, they begin to diverge, but the walking strategy seems similar: for
larger σ, the average paths take a much more direct approach, cutting corners more
closely, or walking directly over the mountains. In each case, the deterministic path
stays well within one standard deviation of the average path. Notice that as σ gets
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(a) σ= 0.2 (b) σ= 0.5 (c) σ= 0.8

(d) σ= 0.2 (e) σ= 0.4 (f) σ= 0.8

Fig. 2: (a) - (c) Average path over 10000 trials (black), and three realizations of the
stochastic equation of motion (colored) at different levels of uncertainty σ. (d) - (f)
Average path (black) with standard deviation (grey), and the path computed using
method (i) (dotted green).

larger, the standard deviation grows very quickly so that in figure 2f the set of possible
paths within one standard deviation of the average is quite large, and it may simply be
that method (i) provides a more reasonable solution in this application.

4.2. Real Elevation Data. Seeing that our model works correctly for simplified
elevation data, we tested the model against real elevation in the area surrounding the
mountain El Capitan in Yosemite National Park. The elevation profile of El Capitan,
along with the starting an ending points, is pictured in figure 3. Notice that directly in
between the starting and ending points, the contour lines lie close together, indicating a
sheer cliff face. The starting point is near the summit of the mountain, and the ending
point is in the valley to the south of the mountain, so any walking path should choose
the gentler grades to the east or west of the cliff face.

Indeed, this is exactly what we observe, as seen in figure 4. These paths were
determined using method (i), the deterministic equation of motion. In these simulations
all the scales in the problem are completely genuine. The region displayed in these figures
is a rectangle roughly 5 kilometers east-to-west and 6 kilometers north-to-south. The
starting and ending points are roughly 2 kilometers apart and the terrain is mountainous,
and so several thousand seconds are required to traverse a path connecting the points.
Here, the elevation data is much less smooth, and this leads to a greater sensitivity to
small changes in σ. Figure 4b shows that at σ= 0.05, the optimal path looks largely
the same as in the deterministic case, displayed in figure 4a. However, when σ= 0.3,
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(a) The south-facing cliff face of El Capitan (b) The elevation profile of El Capitan.

Fig. 3: El Capitan, Yosemite National Park, California1

the optimal path is quite different, as seen in figure 4f.
One significant note here: at different levels of σ, there are different optimal terminal

times T . Recall, the parameter T must be chosen before simulating the model. In the
case of the synthetic data in figure 1, the terminal time T is not particularly sensitive to
changes in σ, since qualitatively the paths are all similar and the amount of time that
is “wasted” by taking a non-optimal path is not significant. In that case, we set T = 3.8
and any path with σ∈ [0,1] had sufficient time to reach the endpoint. This is not the
case in figure 4, where small changes in σ lead to more significant qualitative changes in
the paths. Indeed, the greedy strategy of taking a more direct route and then adjusting
as necessary can be very costly in the case of El Capitan where it is very easy to get
stuck in regions of severe grades, and be nearly unable to move. In this case, if one
is reasonably uncertain about walking velocity as in figure 4f, the algorithm suggests
one should allow ample time, and take a safer route which more deliberately avoids
regions with large changes in elevation. Because this route is significantly different, it
requires a terminal time of roughly T = 15550 seconds, as opposed to a terminal time
closer to T = 6800 seconds as in figure 4a. For larger values of σ (for example σ>0.5),
the path will not make it down the mountain even given exorbitantly large terminal
time, because it will walk too close to the cliff, become stuck, and have insufficient time
to adjust. We say more about the role of the parameter T , especially as it pertains to
impassable obstacles such as the El Capitan cliff face, in section 4.3.

As in the previous section, we would also like to use method (ii) to construct a
path. In figures 5a-5c, we plot the average path along with three realizations in the case
that σ= 0.05,0.1 and 0.2. When σ= 0.05,0.1, each of these realizations is fairly close to
the average path, and the results are similar to those obtained using method (i). We
have also included the region which is one standard deviation away from the average
path, as seen in figures 5d-5f. Even when σ is very small, the variance in how the paths
descend the mountain is fairly large. This is because small perturbations in that region
will more qualitatively change the course of path. The results for σ= 0.2—displayed
in figures 5c,5f—do not seem particularly meaningful. In this case, the uncertainty in

1Image courtesy of Mike Murphy, uploaded to Wikipedia Commons under Share-Alike license:
https://commons.wikimedia.org/wiki/File:Yosemite El Capitan.jpg
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(a) σ= 0.00, T ≈6800 (b) σ= 0.05, T ≈6850 (c) σ= 0.10, T ≈7500

(d) σ= 0.15, T ≈7550 (e) σ= 0.20, T ≈8950 (f) σ= 0.30, T ≈15550

Fig. 4: Optimal paths descending El Capitan using different σ values.

the walking velocity is large enough that if the path approaches the large cliff face, the
random perturbation can cause the path to move down the cliff. In this region, the
walking velocity is approximately zero, and so the random effects are the driving force
for the movement. In those simulations, a large enough portion of the paths descended
the cliff in this manner, leading to a skewed average path, and an enormously large
standard deviation. Similar problems may arise whenever there are regions where the
walking velocity is very small. In such cases, it seems that using the deterministic
equation of motion with the stochastic control values (as in figure 4) will give a much
more meaningful result.

4.3. Impassable Obstacles and the Role of the Parameter T . We remarked
in section 2.1 that different choices for the terminal time T can lead to qualitative
changes in how the path is constructed. We can observe this in the example of El
Capitan. In figure 6, we used σ= 0 so that the model is fully deterministic, and we
simulated the model with two different terminal times T . In figure 6a, we see that with
terminal time T ≈2000 seconds, the path simply walks to the cliff face and stays put.
However, given T ≈6800 seconds, the path descends the eastern slope and finds the
desired end point as seen in figure 6b

We can recreate this scenario using synthetic elevation data by placing a large
wall directly between the starting point and end point as in figure 7. The elevation
is incredibly steep in the colored region, meaning that any optimal path would surely
avoid the wall. In figure 7b, where T = 4.25, this is exactly the behavior we observe; the
path curves around the obstacle. However, in figure 7a, where T = 2, the path walks
toward the obstacle, stopping at the edge because velocity is near zero there.

Recall, our model constructs the path which ends as close (in Euclidean distance)
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to the desired end point as possible in the time allotted. When T = 2 in figure 7a, there
is not enough time to walk around the wall and instead, to get as close to the desired
end point as possible, the path walks directly toward the wall. When situations like

(a) σ= 0.05 (b) σ= 0.1 (c) σ= 0.2

(d) σ= 0.05 (e) σ= 0.1 (f) σ= 0.2

Fig. 5: (a) - (c) Average path over 10000 trials (black), and three realizations of the
stochastic equation of motion (colored) at different levels of uncertainty σ. (d) - (f)
Average path (black) with standard deviation (grey), and the path computed using
method (i) (dotted green).

(a) Optimal path given T = 2000 seconds. (b) Optimal path given T = 6800 seconds.

Fig. 6: Optimal paths in the vicinity of El Capitan with different terminal times.
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(a) Optimal path given T = 2 seconds. (b) Optimal path given T = 4.25 seconds.

Fig. 7: Optimal paths using different end time values. The colored region is a wall.

this arise, there is some critical amount of time T ∗>0 such that, given T >T ∗, the path
will walk around the obstacle, but given T <T ∗, the path will walk toward the obstacle
because it will not be able to get close enough to the end point if it walks around.

We can see this more explicitly if we plot the actual control values s∗(x,t) as well,
as is done in figure 8. In this example, the critical time is roughly T ∗= 3.4, so we
have plotted the path created by the algorithm with final time of T = 3.5, but we have
plotted the path at times t= 0,0.7,1.4,2.1. The arrows in the pictures are the values
of s∗(x,t). Notice that in figure 8a, there appears to be a discontinuity in the optimal
control value. The deciding factor for whether the path will walk around the wall or
walk toward the wall is where the starting point lies relative to this discontinuity. As
time advances, the discontinuity in s∗(x,t) propagates, and since the starting point lies
below the discontinuity, the path follows the arrows and walks around the obstacle. In
the case when T = 2, the starting point is above the discontinuity, and thus the path
walks toward the obstacle, rather than around it.

Discontinuities in s∗(x,t) are to be expected and relate to non-uniqueness of the
optimal path. If x0 lay directly on the discontinuity in s∗(x,0), then either walking
around the obstacle or toward it would be equally optimal, since both would result in
a path that ends the same distance from the desired end point. Mathematically, one
reason to expect discontinuities in s∗(x,t) is because s∗(x,t) is closely related to the
gradient ∇u(x,t) of the solution to the HJB equation. Indeed, in the case of isotropic
motion (that is, when the equation of motion has the form ẋ=f(x)s), we will have
s∗(x,t) =−∇u(x,t)/‖∇u(x,t)‖2. When the motion is anisotropic, as is the case in our
model, the relationship between s∗(x,t) and ∇u(x,t) is no longer so explicit, but we
can still anticipate that discontinuities in ∇u(x,t) will give rise to discontinuities in
s∗(x,t), and as stated above, we expect the solutions of Hamilton-Jacobi equations to
have discontinuities in their derivatives [4, 11, 34].

When we add uncertainty, the path planning strategy becomes more greedy, walking
directly toward the end point and adjusting to avoid obstacles as is seen in figure 1.
When there is a wall, this strategy is costly because if one walks toward the wall, there
may be insufficient time to adjust the route, and thus the critical time T ∗ required to
walk around the wall increases rapidly. This is why the large increase in T is necessary
in the example of El Capitan in figure 4. We observe the same behavior in this synthetic
example with the wall, though the increase in T as not as pronounced as in the case of
El Capitan. In figure 9a, we set σ= 0.3 and notice that to wrap around the wall and
reach the end point, the optimal path computed using method (i) requires an end time
of T = 4.75 rather than T = 4.25 in the deterministic case. In figure 9b, we use method
(ii), computing the average path over 10000 trials, and the path cuts through the wall
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(a) t= 0.0 (b) t= 0.7

(c) t= 1.4 (d) t= 2.1

Fig. 8: The discontinuity in the control value s∗(x,t) propagates as time increases

(a) Method (i), σ= 0.3, T = 4.75. (b) Method (ii), average path, standard de-
viation and three realizations.

Fig. 9: Optimal paths around the wall with uncertainty.

since enough individual paths were pushed off course due to the random perturbations,
as is seen with the pink path in the figure. As in figure 5f, an individual could not
realistically traverse the average path, since the wall is impassable. Thus, it seems that
method (i) gives to a more practical result.

The dependence of the model on the parameter T is a major qualitative difference
between this optimal path planning model and the model presented in [39]. That model
deals only with the fully deterministic case, and uses a level set formulation wherein
level sets representing optimal travel evolve outward from the starting point, and the
terminal time T is defined as the time required for the level sets to envelop the end
point. However, when we add uncertainty to the model, we introduce diffusion in the
HJB equation and lose the level set intepretation of the equation. Thus while the model
in [39] has the advantage of not depending on T , this model is more generally applicable.

4.4. Convergence to the Deterministic Path as σ↘0. As stated in sec-
tion 2.3, given mild regularity conditions on our Hamiltonian, the solution to the
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stochastic HJB equation (2.15) will converge to the viscosity solution to the ordinary
HJB equation (2.4) as σ↘0 [11]. We can see this empirically, not by observing the
solution itself, but by examining the optimal path suggested by our algorithm at dif-
ferent levels of σ. This is shown in figure 10. Here we have plotted many paths on
the same figure, each computed using method (i) with a different σ value. As before,
paths plotted in green were computed using smaller σ values, and those in red were
computed using larger σ values. In figure 10a, we see a very clear color gradient: the
red paths computed with larger σ clearly tend toward the green path as σ decreases
to zero. In figure 10b, this is less obvious, especially since, for larger σ, the path takes
a qualitatively different route. However, we do see that for smaller σ (greener paths),
there is a tendency toward the deterministic optimal path.

5. Conclusions. Path planning algorithms have wide-reaching applications in self-
driving vehicles, reach-avoid games, pedestrian flow modeling and many other areas.
Many previous models for path planning are completely deterministic, while in reality
stochastic effects may be present and can significantly alter the motion along the path.

In this paper we develop a method for optimal path planning of human walk-
ing paths in mountainous terrain using a control theoretic approach and a Hamilton-
Jacobi-Bellman (HJB) equation and allowing for uncertainty in the controlled equation
of motion. The walking speed in our model depends on local slope in the direction of
travel, giving rise to an anisotropic control problem. In the HJB equation, the uncer-
tainty presents itself in the form of diffusion, leading to a viscous Hamilton-Jacobi-type
equation. We suggest numerical methods for solving these equations, opting for a semi-
implicit numerical scheme with a minimally diffusive numerical Hamiltonian, since any
spurious numerical diffusion could be intepreted as nontrivial amounts of uncertainty
in the equation of motion. After solving the HJB equation numerically, we suggest two
methods for resolving the optimal path. First, we use the optimal control values re-
solved via the stochastic HJB equation, but simulate a deterministic equation of motion.
This could simulate a person walking through a dark room or a dense forest, wherein

(a) Convergence of paths with synthetic el-
evation data.

(b) Convergence of paths at El Capitan.

Fig. 10: As σ↘0, the stochastic optimal path converges back to the deterministic
optimal path.
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they are cognizant of some uncertainty as they are planning the route, but do not feel
random perturbations in velocity as they walk along a path. Second, we integrate the
stochastic differential equation many times and arrive at a single path by averaging the
results. This could model scenarios such as underwater unmanned vehicles, wherein the
traveler actually feels the stochastic effects on the travel velocity.

We test our algorithm, including both methods for resolving the path, with syn-
thetic elevation data first, and then with real elevation data in the area surrounding El
Capitan. We compare these two notions of optimal path, and conclude that in the case
of real elevation data or impassable barriers, the first notion gives a more meaningful
result. We also observe that in these cases, there will be discontinuities in the optimal
control parameter and, especially in the presence of large walls, the position of these
discontinuities can determine the walking strategy. Finally, we simulate the model at
different levels of uncertainty in the equation of motion and observe that as uncertainty
tends to zero, the optimal path path suggested by the model converges back to the
deterministic optimal path.
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The elevation data for Yosemite National Park was downloaded from the United
States Geological Survey national map viewer [54]. The data was processed and re-
formatted using QGIS, an open source geological data processing tool [41]. The data
was imported into MATLAB using TopoToolbox [43, 44].
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