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Abstract. We consider Coulomb gas models for which the empirical measure typically concen-
trates, when the number of particles becomes large, on an equilibrium measure minimizing an
electrostatic energy. We study the behaviour when the gas is conditioned on a rare event. We
first show that the special case of quadratic confinement and linear constraint is exactly solvable
due to a remarkable factorization, and that the conditioning has then the simple effect of shifting
the cloud of particles without deformation. To address more general cases, we perform a theoret-
ical asymptotic analysis relying on a large deviations technique known as the Gibbs conditioning
principle. The technical part amounts to establishing that the conditioning ensemble is an I-
continuity set of the energy. This leads to characterizing the conditioned equilibrium measure as
the solution of a modified variational problem. For simplicity, we focus on linear statistics and
on quadratic statistics constraints. Finally, we numerically illustrate our predictions and explore
cases in which no explicit solution is known. For this, we use a Generalized Hybrid Monte Carlo
algorithm for sampling from the conditioned distribution for a finite but large system.
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1. Introduction

This section contains the main elements of the considered model, some motivations and the
plan of the paper. We consider here the so-called Coulomb gas model that, in addition to its
physical interest, shows an interesting behaviour in the limit of a large number of particles, see
for instance [14, 50, 35]. The model consists of a set of random particles Xn,1, . . . , Xn,n for n ≥ 2,
where each Xn,i belongs to Rd for some physical dimension d ≥ 2. The particles interact through
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2 DJALIL CHAFAÏ, GRÉGOIRE FERRÉ, AND GABRIEL STOLTZ

the Coulomb kernel g : Rd → R defined by

g(x) =


log 1
|x|
, if d = 2,

1
(d− 2)|x|d−2 , if d ≥ 3.

This denomination comes from the equation satisfied by the interaction g. Indeed, denoting by δ0
the Dirac mass at 0, g solves in the sense of distributions the following Poisson problem:

(1) −∆g = cdδ0, with cd = surface
(
{x ∈ Rd : |x| = 1}

)
= 2 πd/2

Γ(d/2) .

Note that lim|x|→+∞ g(x) = 0 if d ≥ 3, while lim|x|→+∞ g(x) = −∞ if d = 2. In (1) ∆ =
∑n
i=1 ∂

2
i

denotes the Laplacian operator in Rd. In addition to this pair interaction, the particles are subject
to a confining potential V : Rd → R assumed to be lower semi-continuous and such that

(2) lim
|x|→+∞

(
V (x)− 21d=2 log |x|

)
> −∞.

Following [15] or [49], under this assumption, we can define the electrostatic energy on P(Rd) by

(3) E(µ) =
∫∫

Rd×Rd

(
g(x− y) + V (x) + V (y)

2

)
µ(dx)µ(dy).

This makes sense in R ∪ {+∞} since the integrand is bounded from below thanks to the assump-
tion (2) on V . Moreover for all µ ∈ P(Rd) such that

(4)
∫

log(1 + |x|)1d=2 µ(dx) <∞,

we have

(5) E(µ) =
∫∫

Rd×Rd
g(x− y)µ(dx)µ(dy) +

∫
Rd
V (x)µ(dx);

see (20) below. The functional E has a unique minimizer on P(Rd) called the equilibrium mea-
sure [15, 49]:

(6) µ? = argmin
P(Rd)

E .

It has compact support, and if moreover V has a Lipschitz continuous derivative then it has density

(7) ∆V
2cd

on the interior of its support. In particular if V is proportional to |·|2 then µ? is uniform on a ball.
The compactness of the support of µ? comes from the strong confinement assumption (2). Note
that it is possible to consider weakly confining potentials for which the equilibrium measure still
exists but is no longer compactly supported, see for instance the spherical ensemble in [29, 16].

Let Xn = (Xn,1, . . . , Xn,n) be a random vector of (Rd)n with law

(8) Pn(dx) = e−βnHn(x1,...,xn)

Zn
dx1 · · · dxn,

where βn > 0 satisfies

(9) lim
n→∞

βn
n

= +∞,

and

(10) Hn(x1, . . . , xn) = 1
n

n∑
i=1

V (xi) + 1
n2

∑
i 6=j

g(xi − xj).

This makes sense only if

(11) Zn =
∫

(Rd)n
e−βnHn(x1,...,xn)dx1 · · · dxn <∞,
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which is the case when V satisfies

(12)
∫
Rd

e−
βn
n (V (x)−21d=2 log(1+|x|))dx <∞.

Remark 1.1. The condition (9) ensures a large deviation principle with a simple rate function.
It is possible to consider the Sanov regime βn = βn for which the rate function has an additional
classical entropy term, see for instance [14, 25, 7, 21, 32].

This model is standard in mathematical physics: Pn is a Boltzmann–Gibbs measure modelling
a gas of particles, called here a Coulomb gas, at inverse temperature βn and with Hamiltonian Hn.
The law Pn is exchangeable in the sense that Hn is symmetric in x1, . . . , xn. Indeed, it depends
on x1, . . . , xn only via the empirical measure, namely, Pn almost surely,

(13) Hn =
∫
Rd
V (x)µn(dx) +

∫∫
6=
g(x− y)µn(dx)µn(dy) with µn = 1

n

n∑
i=1

δxi ,

where the double integration runs over {(x, y) ∈ Rd × Rd |x 6= y}. A heuristic reasoning suggests
that, if βn → +∞ fast enough, under Pn the empirical measure µn should concentrate in the
limit n → +∞ on the equilibrium measure µ? that minimizes the energy E in (5)-(6). This is
intuited from the Laplace principle given the expression (8) for Pn, where Hn is defined by (13).
This intuition can be made rigorous through a large deviations principle (LDP), which can be
established in this case and many others, see for instance [5, 14, 21, 25] and the references therein.
In particular, the case d = 2 with quadratic confinement V corresponds to the well-known Ginibre
ensemble for random matrices [24, 22]. We could also consider more general interactions, such as
Riesz kernels [14, 35], discontinuous [21] or weak [29] confinement, but we stick to this setting for
ease of presentation. The technical requirements needed for extending our proofs will be pointed
out throughout the paper, and cases not covered by the theoretical analysis will be investigated
numerically in Section 4.

As large deviations are concerned with probabilities of rare fluctuations, it is possible to consider
the empirical measure of the random gas conditioned on such a fluctuation. There has been a
number of works on the behaviour of such gases conditioned on having an unusual proportion of
the particles lying in some region of the space. As an example, for d = 2 and V quadratic, [3]
reformulates the conditioned equilibrium measure through an obstacle problem. On the other
hand [26, 27] consider the rare situation in which there is a “hole” in the distribution, in other
words no particle around zero. Finally [42, 43] consider the one dimensional Wigner situation in
which an abnormal proportion of particles lie on one side of the real line. Explicit expressions can
be obtained in the latter case. The study of such conditionings is motivated by questions arising
in theoretical physics, see for instance the references in [43].

While the above mentioned works bring substantial contributions to the understanding of con-
ditioned random gas distributions, they also motivate further questions. Indeed, one may consider
more general constraints, like conditioning on the barycenter of the cloud being far away from the
origin. This may be of interest for both theoretical [3] and practical purposes (if one wants to
filter out noise conditioned on some rare event [10]). Moreover, the numerical methods proposed
in [26, 27, 43] do not seem adapted to sampling the empirical distribution conditioned on some
event – since this event is typically rare, direct rejection sampling is generally inefficient. The
goal of this paper is therefore to investigate some theoretical results on such conditioned Coulomb
gases, as well as providing an algorithm to sample conditioned distributions.

Mathematically, our aim is to consider the particles Yn = (Yn,1, . . . , Yn,n) in (Rd)n such that

(14) Yn ∼ Law
(
Xn

∣∣ ξn(Xn) ≤ 0
)
,

where ξn : (Rd)n → R, and to consider the limiting behaviour of the empirical measure

1
n

n∑
i=1

δYn,i ,

as n → +∞, depending on the confinement potential V and the constraint ξn. Instead of an
inequality constraint like (14), we may instead consider an equality constraint

Yn ∼ Law
(
Xn

∣∣ ξn(Xn) = 0
)
.
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We will generally consider inequality constraints since they naturally lead to a Gibbs conditioning
principle. Equality constraints could be considered as well by an additional limiting procedure,
see [20, Section 7.3] and the discussion in Section 3. We could also consider ξn to be Rm-valued
for some m ≥ 2 but we restrict to one dimensional constraints for ease of exposition. The cases
studied in [3, 26, 27, 42, 43] correspond to the choice

ξn(x1, . . . , xn) = µn(1U )− c,

for some measurable set U ⊂ Rd and constant c ∈ R. We will study in this paper more general
linear statistics of the form

(15) ξn(x1, . . . , xn) = µn(ϕ),

for some constraint function ϕ : Rd → R satisfying growth conditions, see Section 3.2. A particular
case of interest is when the constraint function ϕ is itself linear, namely:

(16) ϕ(x) = x · v − c,

for v ∈ Rd and c ∈ R. Indeed, when ϕ is chosen according to (16) and V is quadratic, the equilibrium
measure under conditioning is the unconditioned one translated in the direction of v. We provide
a simple proof of this result in Section 2. We next turn to more general constraints in Section 3,
proving first an abstract Gibbs conditioning principle in Section 3.1. When considering linear
statistics, we prove in Section 3.2 that conditioning Pn boils down to modifying the confinement
potential V . In Section 3.3 we consider the case of quadratic statistics, which amounts to modifying
the interaction kernel g.

In order to validate our theoretical results and explore cases in which explicit solutions are not
available, we also propose a method for sampling the law of Yn for a fixed n. Actually, sampling
probability distributions under constraint is a long standing problem in molecular dynamics and
computational statistics. Concerning molecular simulation, one can be interested in fixing some
degrees of freedom of a system like bond lengths, or the value of a so-called reaction coordinate,
typically for free energy computations – we refer e.g. to [19, 36] for more details. An example
of application in computational statistics is for instance Approximate Bayesian Computations,
see [51, 45]. Based on the Hamiltonian Monte Carlo (HMC) method used in [12] for sampling
Gibbs measures associated to Coulomb and Log-gases, we describe and implement the generalized
Hamiltonian Monte Carlo algorithm proposed in [38] for sampling probability measures on sub-
manifolds. The method is detailed in Section 4.1, and the results presented in Section 4.2 are in
agreement with the theory developed in Section 3.

Notation. We introduce some notation used throughout the paper. For all d ≥ 1 we denote by
|x| = (x2

1 + · · · + x2
d)1/2 the Euclidean norm and by x · y = x1y1 + · · · + xdyd the scalar product

on Rd. We denote by P(Rd) the set of probability measures on Rd and, for all p ≥ 1, by Pp(Rd)
those probability measures having finite p-moments in the sense that |·|p is integrable. For any
measure µ ∈ P(Rd), the support of µ is defined as supp(µ) = Rd \ A, where A is the largest open
set such that µ(A) = 0 (which may be empty). For all measurable f : Rd → R, we define

‖f‖∞ = sup
x∈Rd

|f(x)| and ‖f‖Lip = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

We define the bounded-Lipschitz distance on P(Rd) by

dBL(µ, ν) = sup
‖f‖∞≤1
‖f‖Lip≤1

∫
Rd
f d(µ− ν).

For all p ≥ 1, we define the p-Wasserstein1 distance on Pp(Rd) by

(17) dWp(µ, ν) =
(

inf
π∈Π(µ,ν)

∫∫
Rd×Rd

|x− y|pπ(dx, dy)
) 1
p

,

1Or Monge, or Kantorovich, or transportation distance.
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where Π(µ, ν) is the set of probability measures on the product space Rd × Rd with marginal
distributions µ and ν. For p ≥ 1, the application p 7→ dWp

is monotonic. Moreover, following [52],
the Kantorovich–Rubinstein duality theorems state that
(18)

dW1(µ, ν) = sup
‖f‖Lip≤1

∫
Rd
f d(µ− ν) and dWp(µ, ν)p = sup

f∈L1(µ), g∈L1(ν)
f(x)≤g(y)+|x−y|p

(∫
Rd
f dµ−

∫
Rd
g dν

)
.

For any p ≥ 1, we say that a measurable function f is dominated by |x|p when

‖f‖∞,p = sup
x∈Rd

|f(x)|
1 + |x|p <∞.

The p-Wasserstein topology is the one induced on Pp(Rd) by dWp . If (νn)n is a sequence in P(Rd)
then limn→∞ dBL(νn, ν) = 0 if and only if limn→∞

∫
fdνn =

∫
fdν for all bounded continuous

f : Rd → R. For all p ≥ 1 and all sequence (νn)n in Pp(Rd), we have limn→∞ dWp
(νn, ν) = 0 if

and only if limn→∞ dBL(νn, ν) = 0 and limn→∞
∫
|x|pdνn =

∫
|x|pdν. In other words dBL metrizes

weak convergence, while dWp metrizes weak convergence plus convergence of the p-moment, see [52].
Moreover, for any µ, ν ∈ P(Rd), we denote by µ ∗ ν the convolution of ν with µ. This probability
measure is defined by its action over test functions ϕ through

(µ ∗ ν)(ϕ) =
∫∫

Rd×Rd
ϕ(x− y)µ(dy) ν(dx).

We write X ∼ P to say that the random variable X has law P , and X
d= Y to say that the

random variables X and Y have same law. A sequence of random variables (Xn)n is exchangeable
if for any n ≥ 1 and any permutation σ of {1, . . . , n} it holds (X1, . . . , Xn) d= (Xσ(1), . . . , Xσ(n)).

We say that a sequence of random variables (Zn)n taking values in a metric space (Z,d) satisfies
a large deviations principle at speed (βn)n if, for any Borel set A ⊂ Z, it holds

(19) − inf
µ∈Å

I(µ) ≤ lim inf
n→+∞

1
βn

logP(Zn ∈ A) ≤ lim sup
n→+∞

1
βn

logP(Zn ∈ A) ≤ − inf
µ∈A

I(µ),

where the interior and closure are taken with respect to the topology induced by d, while I : Z →
[0,+∞] is lower semicontinuous and called the rate function. If I has compact level sets for the
topology induced by d, we say that I is a good rate function.

We finally recall some elements of potential theory. The interaction energy

(20) J(µ) =
∫∫

Rd×Rd
g(x− y)µ(dx)µ(dy)

is well defined and takes values in R ∪ {+∞} when µ ∈ P(Rd) satisfies (4). For d ≥ 3, this
is a consequence of the fact that the kernel g is positive. For d = 2, we use the inequality
log |x− y| ≤ log(1 + |x|) + log(1 + |y|) to write

J(µ) =
∫∫
|x−y|≤1

− log |x− y|µ(dx)µ(dy) +
∫∫
|x−y|≥1

− log |x− y|µ(dx)µ(dy)

≥
∫∫
|x−y|≤1

− log |x− y|µ(dx)µ(dy)−
∫∫
|x−y|≥1

[log(1 + |x|) + log(1 + |y|)]µ(dx)µ(dy).

The second integral on the last line is finite in view of the logarithmic integrability condition (4),
while the first one is non-negative (although possibly infinite). Next, for µ, ν ∈ P(Rd) such
that J(µ), J(ν) < +∞, we define with some abuse of notation the interaction energy J(µ, ν) by
polarization (as done in [33, Chapter I]):

J(µ, ν) = 1
2

(
J(µ) + J(ν)− J(µ− ν)

)
,

where J(µ − ν) is well defined with values in R ∪ {+∞} by [33, Theorem 1.16]. Moreover, for
any compact set K ⊂ Rd, J attains its infimum over probability measures supported on K. This
value is called the capacity of the set K [33, Chapter II]. A measurable set A has positive capacity
if it contains a compact set K and a measure µ with supp(µ) ⊂ K and such that J(µ) < +∞.
Otherwise, the set is said to have null capacity. A property is said to hold quasi-everywhere if it
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is satisfied on a set whose complementary has null capacity. Although inner and outer capacities
should be considered, we know these notions coincide for Borel sets on Rd, see [33, Theorem 2.8].
Denoting by Pc(Rd) the set of compactly supported probability measures, in accordance with [33,
Theorems 1.15 and 1.16], for any µ, ν ∈ Pc(Rd) with J(µ) < +∞ and J(ν) < +∞, it holds
J(µ− ν) = 0 if and only if µ = ν.

2. From conditioning to shifting: quadratic confinement with linear constraint

This section is devoted to the particular case where V (x) = |x|2 and the constraint is chosen
according to (15)-(16). The following theorem states that this special case is exactly solvable:
the conditioning has the effect of a shift without deformation, due to a remarkable factorization.
The proof, presented in Appendix A, is quite elegant. It is inspired from the seemingly unrelated
work [17]. The result by itself appears as a special case of the general variational approach presented
in Section 3.

Theorem 2.1 (From conditioning to shifting). Let d, n ≥ 2 and V = |·|2, so that (11) holds. Let
Xn = (Xn,1, . . . , Xn,n) and Pn be as in (8). Then the equilibrium measure µ? is the uniform law
on the centered ball of Rd of radius 1. Moreover, almost surely and for all p ≥ 1, it holds

(21) lim
n→∞

dWp

(
1
n

n∑
i=1

δXn,i , µ?

)
= 0,

regardless of the way we define the random variables Xn on the same probability space. Now let
v ∈ Rd with |v| = 1, c ∈ R, choose ϕ(x) = x · v − c and consider Yn = (Yn,1, . . . , Yn,n) with

Yn ∼ Law
(
Xn

∣∣∣∣ ϕ(Xn,1) + · · ·+ ϕ(Xn,n)
n

= 0
)
.

Then
Yn

d= Xn +
(
c− Xn,1 + · · ·+Xn,n

n
· v
)

(v, . . . , v).

Moreover, denoting by µϕ = δcv ∗ µ?, we have that almost surely and for all p ≥ 1, it holds

(22) lim
n→∞

dWp

(
1
n

n∑
i=1

δYn,i , µ
ϕ

)
= 0,

regardless of the way we define the random variables Yn on the same probability space.

The proof of Theorem 2.1 relies crucially on the quadratic nature of the confinement potential,
but remains valid whatever the pair interaction, beyond Coulomb gases, as far as it is translation
invariant. More general linear projections can be used. Indeed, if we choose ϕ(x) = p(x) − c
where p is a linear projection over a subspace E ⊂ Rd of dimension m and c ∈ Rm, the result still
holds.

Remark 2.2 (Ginibre random matrices). When d = 2 and βn = (β/2)n2 for some β > 0, the
probability distribution Pn in Theorem 2.1 is a Coulomb gas known as the β-Ginibre ensemble. It
appears also in the Laughlin fractional quantum Hall effect. The case d = 2 and β = 2 is even
more remarkable and is known as the complex Ginibre ensemble. More precisely, let M be an
n × n random matrix with independent and identically distributed complex Gaussian entries with
independent real and imaginary parts of mean 0 and variance 1/(2n). Its density is proportional
to e−nTr(MM∗). Its eigenvalues have law Pn with d = 2, βn = n2, V (x) = |x|2, see for instance [24,
Chapter 15]. Let R2 = C, v ∈ R2 with |v| = 1 and c ∈ R. The assumptions of Theorem 2.1 are
satisfied and the constraint in terms of matrices reads Tr(M) · v = nc, where we identify again C
with R2. More precisely (22) holds and the conditioned equilibrium measure reads

µϕ(dz) =
1|z−cv|≤1

π
dz.

Since the entries of M are independent, we have in particular the decomposition M = M −
diag(M) + diag(M) where M − diag(M) and diag(M) are independent. In this case we could
probably deduce the desired result on µϕ from the Gibbs conditioning principle for independent
Gaussian random variables to handle the diagonal part diag(M) conditioned on the value of
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Tr(M) = Tr(diag(M)). Some numerical experiments are provided in Section 4.2. Note that such
fixed trace random matrix models appear in the Physics literature, see for instance [1, 34].

In practice, we would like to consider a non-quadratic confinement and a non-linear constraint
function ϕ. The numerical applications presented in Section 4.2 show a much wider range of
behaviours than shifting the equilibrium measure. It turns out that the conditioning mechanism
is an instance of the Gibbs conditioning principle from large deviations theory. The purpose of the
next section is to provide proofs in this direction, which allow to derive the conditioned equilibrium
measure in more general contexts, of which Theorem 2.1 appears as a particular case.

3. A general conditioning framework

As is known from the seminal work of Ben Arous and Guionnet [5], large deviations theory
provides a natural framework to study the concentration of empirical measures of the spectrum of
random matrices and, beyond, of singularly interacting particles systems. We refer in particular
to [14, 21, 8] and references therein for recent accounts. Since large deviations theory is concerned
with estimating probabilities of rare events, conditioning on such a rare event is a natural direction
to follow. This procedure is generally referred to as Gibbs conditioning principle or maximum
entropy principle. This principle is explained for instance in [47, Section 6.3] and [20, Section 7.3].

When no conditioning is considered, we know that under mild assumptions the empirical measure
associated to the Gibbs measure (8) satisfies a LDP with rate function E . When the random gas
is considered under conditioning on an appropriate rare event, the Gibbs conditioning principle
states that the resulting conditioned empirical measures concentrate on a minimizer of E under
constraint. Proofs of this fact in our context are presented in Section 3.1. Next, Section 3.2
studies the corresponding constrained minimization problem for linear statistics, while Section 3.3
is concerned with quadratic statistics.

3.1. Gibbs conditioning. The goal of this section is to present an abstract Gibbs conditioning
principle and apply it to the Coulomb gas model. Most works considered hitherto Gibbs principles
associated to Sanov’s theorem [20, 47, 40], in other words in absence of interaction, showing
that by conditioning the empirical measure, the resulting equilibrium measure minimizes the rate
function under constraint. The same strategy can actually be applied to any exchangeable system
satisfying a large deviations principle provided the conditioning set is an I-continuity set, following
for instance [18], [20, Section 1.2] and [47, Section 5.3]. This is the purpose of the next theorem,
which can be of independent interest, and whose proof is postponed to Appendix B.

Theorem 3.1 (A Gibbs conditioning principle). Suppose that (Zn)n is a sequence of random
variables taking values in a metric space (Z,d) satisfying a large deviations principle at speed (βn)n,
and with good rate function I. Consider a closed set B which is I-continuous in the sense that
(23) inf̊

B
I = inf

B
I < +∞.

Then, the set of minimizers

(24) IB =
{
z ∈ Z : I(z) = inf

B
I
}

is a non-empty closed subset of B. Moreover, for any ε > 0, setting
Aε =

{
z ∈ Z : d(z,IB) > ε

}
,

there exists cε > 0 such that

(25) lim sup
n→+∞

1
βn

logP
(
Zn ∈ Aε

∣∣∣ Zn ∈ B) ≤ −cε.
In particular, if we assume that

∑
n e−cβn < +∞ for any c > 0, and if we define a random variable

Z ′n ∼ Law(Zn | Zn ∈ B) for all n, then almost surely
lim
n→∞

d(Z ′n,IB) = 0,

regardless of the way we define the Z ′n’s on the same probability space. Finally, in the particular
case where IB = {zB} is a singleton then almost surely it holds

lim
n→∞

Z ′n = zB = min
B

I.
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In words, (25) shows that the variables Zn conditioned on being in B concentrate on a minimizer
of I over B. It is alluring to consider a more general LDP for the conditioned empirical measure as
in [31], but the arguments proposed in [31] do not fit the case of the singular rate functional (5).
Our strategy is then to restrict to an I-continuity set B satisfying (23), which allows to use the
lower bound of the LDP, very similarly to [47].

In order to use Theorem 3.1 in the Coulomb gas setting, we start by recalling a LDP associated
with the Coulomb gas model (see [14, 21]). In order to consider unbounded constraints in what
follows, we make the following assumption.

Assumption 3.2 (Growth condition). There exist a > 0, R ∈ R and q > 1 such that
∀x ∈ Rd, V (x) ≥ a|x|q −R.

The above growth condition not only ensures that V satisfies (2), but also allows to consider a
finer topology for the LDP, see [21, Theorem 1.8]. It could certainly be relaxed under appropriate
modifications. In particular, Assumption 3.2 shows that [21, Assumption C’1] is satisfied for any
function of the form |x|p for 1 < p < q, so [21, Lemma 1.1] applies. Assumption 3.2 thus has the
following consequence. Consider an exponent p ∈ (1, q). Then, under Pn defined in (8)-(9), the
empirical measure

µn = 1
n

n∑
i=1

δxi

satisfies a large deviations principle (19) in the p-Wasserstein topology at speed (βn)n and with
the following good rate function:

E? = E − inf
Pp(Rd)

E , with inf
Pp(Rd)

E > −∞,

where E is defined in (3). The energy E has additional nice properties, which we recall below for
convenience.

Proposition 3.3 (Properties of the electrostatic energy). Let E be as in (3). Suppose that As-
sumption 3.2 holds, and take some p ∈ (1, q). Then, denoting by DE = {µ ∈ P(Rd) : E(µ) < +∞}
the domain of E, the following properties are satisfied:

• DE is convex and E is strictly convex on DE ;
• DE ⊂ Pp(Rd) and there exists a unique µ? ∈ Pc(Rd) such that

(26) E(µ?) = inf
P(Rd)

E = inf
Pp(Rd)

E = inf
Pc(Rd)

E ;

• the minimizer µ? ∈ Pc(Rd) is unique and satisfies the Euler–Lagrange conditions (where
C? = E(µ?))

(27)
{ 2g ∗ µ? + V = C?, quasi− everywhere in supp(µ?),

2g ∗ µ? + V ≥ C?, quasi− everywhere.

The domain is not empty since it contains for instance measures with a smooth density over a
compact support. For convenience, we recall a proof of these classical results in Appendix B.

Remark 3.4 (Going beyond Coulomb gases and convexity). The LDP presented here holds for
a much larger range of models than the Coulomb gas setting, see for instance [21]. However, the
assumptions in [21] do not ensure the convexity of the rate function E, which poses problems when
it comes to identifying the equilibrium measure – we thus stick to this setting here. In practice, the
convexity of E is derived from a Bochner-type positivity of the interaction potential, see [14].

We are now in position to apply Theorem 3.1 to the Coulomb gas model.

Corollary 3.5 (Gibbs conditioning for Coulomb gases). Let E be as in (3). Suppose that Assump-
tion 3.2 holds and take some p ∈ (1, q). Consider a closed set B ⊂ Pp(Rd) such that
(28) inf̊

B
E = inf

B
E < +∞,

where the interior is taken with respect to the p-Wasserstein topology. Then the set of minimizers

(29) EB =
{
µ ∈ P(Rd) : E(µ) = inf

B
E
}
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is a non-empty closed subset of B. Moreover, if Xn ∼ Pn is as in (8), and if Yn = (Yn,1, . . . , Yn,n)
is such that

Yn ∼ Law
(
Xn

∣∣µn ∈ B), with µn = 1
n

n∑
i=1

δXn,i ,

then almost surely it holds

lim
n→∞

dWp

(
1
n

n∑
i=1

δYn,i ,EB

)
= 0,

regardless of the way we define the random variables Yn on the same probability space.

The proof of Corollary 3.5, which can be found in Appendix B, is an instance of the Gibbs
conditioning principle of Theorem 3.1: the conditioned empirical measure concentrates almost
surely on a minimizer of E over B.

Next, rather than aiming at the greatest generality, we consider the case of linear and quadratic
statistics constraints, for which I-continuity can be proved and the resulting equilibrium measure
can be identified in terms of a modified version of (27).

3.2. Linear statistics. As explained in the introduction, the case of linear statistics is of partic-
ular importance. This motivates focusing first on conditioning sets B ⊂ Pp(Rd) of the form

(30) B =
{
ν ∈ Pp(Rd) : ν(ϕ) ≤ 0

}
,

for some measurable function ϕ : Rd → R. This kind of constraint was studied for example
in [3, 26, 27, 42, 43]. In particular, the Ginibre case with ϕ = 1U − c for a measurable set U ⊂ R2

and c ∈ R is considered in [3]. The choice ϕ(x) = c− x · v for v ∈ Rd has been treated in Section 2
for the related equality constraint. We consider here more general potentials V and constraint
functions ϕ. The next assumption on ϕ ensures that B is suitable for conditioning.

Assumption 3.6.
• Assumption 3.2 holds for some q > 1;
• ‖ϕ‖Lip < +∞ (and thus ‖ϕ‖∞,p < +∞ for all p ≥ 1);
• there exists µ− ∈ DE such that µ−(ϕ) < 0;
• there exists µ+ ∈ DE such that µ+(ϕ) > 0.

The existence of µ− means that the set B has non empty interior, while that of µ+ implies that
B 6= Pp(Rd), so that the constraint is not trivial. Since the Gibbs principle relies on B being an
I-continuity set, we provide a fine analysis of the minimization of E over the set B defined in (30).
We prove in particular that the minimizer is unique with compact support, and we characterize it
through an integral equation similar to (27) with an additional Lagrange multiplier. The proof of
this result is presented in Appendix C.

Theorem 3.7 (Variational characterization). Let µ? ∈ Pc(Rd) be the unconstrained equilibrium
measure as in Proposition 3.3, and let B be the set defined in (30). Suppose that Assumption 3.6
hold for some q > 1, and choose p ∈ (1, q). Then B is closed in the p-Wasserstein topology and
(31) inf̊

B
E = inf

B
E < +∞.

Moreover
EB =

{
µ ∈ P(Rd) : E(µ) = inf

B
E
}

= {µϕ} ,

where µϕ has compact support and is solution to, for some α ≥ 0,

(32)
{

2g ∗ µϕ + V + αϕ = Cϕ, quasi− everywhere in supp(µϕ),
2g ∗ µϕ + V + αϕ ≥ Cϕ, quasi− everywhere,

with Cϕ = E(µϕ). Finally, one of the two following conditions holds:
• µ? ∈ B and α = 0;
• µ? /∈ B, in which case µϕ(ϕ) = 0 and α > 0. In other words, the constraint is saturated
and the Lagrange multiplier is active.

We now have the following consequence of Corollary 3.5 and Theorem 3.7.
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Corollary 3.8 (From conditioning to confinement deformation). Suppose that Assumption 3.6
holds for some q > 1, and choose p ∈ (1, q). Consider a Coulomb gas Xn = (Xn,1, . . . , Xn,n) ∼ Pn
as in (8). Introduce Yn = (Yn,1, . . . , Yn,n) with law given by

Yn ∼ Law
(
Xn

∣∣∣∣∣ 1
n

n∑
i=1

ϕ(Xn,i) ≤ 0
)
.

Let µϕ be as in Theorem 3.7. Then almost surely it holds

(33) lim
n→∞

dWp

(
1
n

n∑
i=1

δYn,i , µ
ϕ

)
= 0,

regardless of the way we define the random variables Yn on the same probability space.

Theorem 3.7 and Corollary 3.8 show that conditioning on a linear statistics is equivalent to
changing the confinement potential V into V + αϕ where α ≥ 0 is a constant determined by
the constraint. If µ? ∈ B, α = 0 and the conditioning produces no effect. Note also that the
global Lipschitz condition on ϕ in Assumption 3.6 could possibly be relaxed. For instance, if
‖ϕ‖∞,p < +∞ for some p ∈ (1, q) we expect that a minimizing measure has compact support, and
that assuming ϕ locally Lipschitz suffices to prove Theorem 3.7. We leave these refinements to
further studies.

Remark 3.9 (Equality constraints). When considering conditioning principles, one is often in-
terested in equality constraints. It is not obvious at first sight to consider a set B defined by an
equality constraint, since its interior may well be empty. A common strategy is to use a limiting
procedure by introducing nested sets [20]. This is unnecessary here since we observe in Theorem 3.7
that either the equilibrium measure lies in B, or the constraint is saturated.

Remark 3.10 (Projection). The conditioned equilibrium measure µϕ can be interpreted as an
instance of entropic projection. These projections have been studied for a long time in the context
of the Sanov theorem, in other words independent particles or equivalently product measures without
interaction at all, see [39] and the references therein. Theorem 3.7 is therefore a precise study of
such a projection in the context of Coulomb gases under linear statistics constraints, where the
entropy is replaced by the electrostatic energy E. These remarks also apply to Section 3.3.

Remark 3.11 (Formula for constrained equilibrium measure under regularity assumptions). Sup-
pose that Assumption 3.6 holds and that V and ϕ have Lipschitz continuous derivatives. Then the
conditioned equilibrium measure µϕ which appears in Theorem 3.7 and in Corollary 3.8 satisfies

(34)

µϕ = ∆V + α∆ϕ
2cd

, almost everywhere in supp(µϕ),

µϕ = 0, almost everywhere outside supp(µϕ).

Indeed, it suffices to apply the Laplacian to both sides of (32) and use (1); see for example [49,
Proposition 2.22] for the technical details. We mention that a density is non-negative, hence

supp(µϕ) ⊂
{
x ∈ Rd

∣∣ ∆V + α∆ϕ ≥ 0
}
.

The constraint may therefore significantly change the support of the equilibrium measure.

It is now possible to come back to the translation phenomenon described in Section 2 through
the energetic approach considered in this section.

Alternative proof of Theorem 2.1. Using (34) under the assumptions of Theorem 2.1, we have
∆V = 2d and ∆ϕ = 0, so that µϕ is constant and equal to d/cd on its support. It then re-
mains to show that this support is indeed a ball of correct center and radius. For this, we observe
that, since |v| = 1,

V (x) + αϕ(x) = |x|2 + α(c− x · v) =
∣∣∣x− αv

2

∣∣∣2 + α2

4 + αc,

so that the effective confining potential is quadratic with variance 1/2 and center x0 = αv/2. By
radial symmetry around x0, µϕ must be a uniform distribution on a ball B(x0, r) centered at x0
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with radius r > 0. In order to find the value of α, we write the constraint

|B(x0, r)|−1
∫
B(x0,r)

x · v dx = c.

The left hand side of the above equation reads, by symmetry,

|B(x0, r)|−1
∫
B(x0,r)

(x− x0) · v dx+ x0 · v = |B(x0, r)|−1
∫
B(0,r)

x · v dx+ x0 · v = x0 · v.

Since x0 = αv/2 and |v|2 = 1 we obtain
α = 2c,

which leads to x0 = cv. Finally, the value of µϕ over its support is d/cd, where cd is the surface of
the sphere in dimension d. Since the volume of the sphere of radius r is equal to rcd/d, we obtain
that r = 1 and we reach the conclusion of Theorem 2.1. �

3.3. Quadratic statistics. Once the linear statistics case has been studied, it is natural to turn
to more general constraints. Considering second order statistics is a first step in this direction,
which motivates considering sets of the form, for p > 1,
(35) B =

{
ν ∈ Pp(Rd) : Q(ν) ≤ 0

}
,

where Q is the “quadratic form”

(36) Q : µ ∈ Pp(Rd) 7→
∫∫

Rd×Rd
ψ(x, y)µ(dx)µ(dy),

and ψ : Rd × Rd → R is a prescribed function. For any µ ∈ P(Rd), we denote by

Uψµ : x ∈ Rd 7→
∫
Rd
ψ(x, y)µ(dy)

the “potential” generated by µ for the interaction ψ, whenever this makes sense. We now make
some assumptions on the interaction ψ for the functional Q to define an I-continuity set B in (35).

Assumption 3.12.
• Assumption 3.2 holds for some q > 1;
• there is CLip > 0 such that, for any p ≥ 1 and µ ∈ Pp(Rd),

(37)
∥∥Uψµ ∥∥Lip ≤ CLip

(and thus
∥∥Uψµ ∥∥∞,p < +∞ for all p ≥ 1);

• ψ is symmetric, i.e. ψ(x, y) = ψ(y, x) for all x, y ∈ Rd;
• Q is convex;
• there exists µ− ∈ DE such that Q(µ−) < 0;
• there exists µ+ ∈ DE such that Q(µ+) > 0.

Before turning to the minimization under constraint, let us present a class of functions ψ for
which (37) holds.

Proposition 3.13 (Sufficient condition for (37)). Assume that ψ(x, y) = φ(x− y) for a function
φ : Rd → R satisfying ‖φ‖Lip < +∞ (and thus ‖φ‖∞,p < +∞ for any p ≥ 1). Then (37) holds
with CLip = ‖φ‖Lip.

Proof. Fix p ≥ 1. For all ν ∈ Pp(Rd) and x, x′ ∈ Rd, it holds∣∣Uψν (x)−Uψν (x′)
∣∣ ≤ ∫

Rd
|φ(x−y)−φ(x′−y)|ν(dy) ≤ ‖φ‖Lip

∫
Rd
|x−y−(x′−y)|ν(dy) = ‖φ‖Lip|x−x′|.

We thus obtain (37) with CLip = ‖φ‖Lip. �

In addition to the regularity ensured by Proposition 3.13, the convexity of Q is an important
part of Assumption 3.12. Conditions for this convexity to hold for an interaction of the form
ψ(x, y) = φ(x−y), which is related to Bochner-type positivity, are discussed at length in [6, 30, 14].
In particular, the choice ψ = g where g is defined in (1) leads to a convex Q. Assumption 3.12 then
provides a result similar to that of Theorem 3.7, now leading to a deformation of the interaction
energy. The proof can be found in Appendix D.
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Theorem 3.14 (Quadratic constraint). Let µ? ∈ P(Rd) be the unconstrained equilibrium measure
defined in Proposition 3.3. Suppose that Assumption 3.12 holds for some q > 1, fix p ∈ (1, q) and
let B be the set defined in (35). Then B is closed in the p-Wasserstein topology and
(38) inf̊

B
E = inf

B
E < +∞.

Moreover
EB =

{
µ ∈ P(Rd) : E(µ) = inf

B
E
}

=
{
µψ
}
,

where µψ has compact support and is solution to, for some α ≥ 0,

(39)

 2g ∗ µψ + 2αUψ
µψ

+ V = Cψ, quasi− everywhere in supp(µψ),

2g ∗ µψ + 2αUψ
µψ

+ V ≥ Cψ, quasi− everywhere,

with Cψ = E(µψ). Finally, one of the two following conditions holds:
• µ? ∈ B and α = 0;
• µ? /∈ B, in which case Q(µψ) = 0 and α > 0.

The quadratic constraint leads to a change in the interaction contrarily to the linear situation,
which led to a change of confinement. From Theorem 3.14, we obtain the following result.

Corollary 3.15 (From conditioning to interaction deformation). Suppose that Assumption 3.12
holds for some q > 1, and fix p ∈ (1, q). Consider a Coulomb gas Xn = (Xn,1, . . . , Xn,n) ∼ Pn as
in (8), and Yn = (Yn,1, . . . , Yn,n) with law given by

Yn ∼ Law

Xn

∣∣∣∣∣∣ 1
n2

n∑
i,j=1

ψ(Xn,i −Xn,j) ≤ 0

 .

Let µψ be the conditioned equilibrium measure as in Theorem 3.14. Then, almost surely, it holds

(40) lim
n→∞

dWp

(
1
n

n∑
i=1

δYn,i , µ
ψ

)
= 0,

regardless of the way we define the random variables Yn on the same probability space.

Remark 3.16 (Higher order constraints, convexity and regularity). From the proof of Theo-
rem 3.14, the Gibbs principle holds for a set B of the form (35) for Q convex and lower semicon-
tinuous. However, we would not be able to say much on the solution in such an abstract setting.
In particular, higher order statistics could be considered, leading to higher order convolutions, but
checking the convexity of the associated functional becomes less convenient. By lack of applications
in mind, we do not consider these higher order constraints here.

Remark 3.17 (Formula for the constrained equilibrium measure under regularity assumptions).
Suppose that Assumption 3.12 holds, V has Lipschitz continuous derivatives and ψ is C2(Rd).
Then the conditioned equilibrium measure µψ that appears in Theorem 3.14 and in Corollary 3.15
satisfies

(41)

 cdµ
ψ − α

∫
Rd

∆ψ(·, y)µψ(dy) = ∆V
2 , almost everywhere in supp(µψ),

µψ = 0, almost everywhere outside supp(µψ).

Indeed, (41) follows by applying the Laplacian on both sides of (39). Note that the expression (41)
is not explicit as in the linear constraint case of Remark 3.11 because we are not able to invert the
convolution associated to ∆ψ in general.

4. Numerical illustration

In this section we consider the problem of sampling from conditioned distributions of the form
(42) Law

(
Xn

∣∣ ξn(Xn) = 0
)
,

where ξn : (Rd)n → Rm for some m ≥ 1, and Xn is distributed according to Pn defined in (8) for n
fixed. We drop the index n on ξn in what follows to shorten the notation, and consider constraints
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taking values in Rm for generality. Note that we consider equality rather than inequality constraints
since we have seen in Sections 3.2 and 3.3 that inequality constraints are either satisfied by the
equilibrium measure or saturated.

The first contribution of this section is to propose in Section 4.1 an algorithm for sampling
from (42). In a second step, we present in Section 4.2 some numerical applications, where we
illustrate the predictions of Sections 2 and 3. This is also the opportunity to explore conjectures
which are not proved in the present paper.

4.1. Description of the algorithm. The description of the constrained Hamiltonian Monte
Carlo algorithm used for sampling follows several steps. We first make precise the structure of the
measure (42) in Section 4.1.1. Section 4.1.2 next introduces a constrained Langevin dynamics used
for sampling, while Section 4.1.3 gives the details of the numerical integration.

4.1.1. Dirac and Lebesgue measures on submanifolds. Let us first describe more precisely the struc-
ture of the constrained measure (42) by introducing the submanifoldMz associated with the z-level
set of ξ for z ∈ Rm, namely
(43) Mz =

{
x ∈ (Rd)n : ξ(x) = z

}
.

We use the shorthand notationM =M0. To define the conditioned measure, we rely on the fol-
lowing disintegration of (Lebesgue) measure formula: for any bounded continuous test function ϕ,

(44)
∫

(Rd)n
ϕ(x) dx =

∫
Rm

∫
Mz

ϕ(x)δξ(x)−z(dx) dz.

This defines for any z ∈ Rm the conditioned measure δξ(x)−z(dx), see [37, Section 2.3.2]. Since Pn
is given by (8), the constrained measure (42) can be written with the conditioned measure δξ(x)(dx)
associated withM as: for any bounded continuous ϕ,

(45) E
[
ϕ(Xn)

∣∣ ξn(Xn) = 0
]

= 1
Zξn

∫
M
ϕ(x) e−βnHn(x)δξ(x)(dx),

where Zξn is a normalizing constant. The measure of interest is therefore

(46) P ξn(dx) = e−βnHn(x)

Zξn
δξ(x)(dx).

In order to obtain a better understanding of (46), we relate the conditioned measure proportional
to δξ(x)(dx) to the volume measure induced on the submanifold M by the canonical Euclidean
metric on (Rd)n, which we denote by σM(dx), see [36, Section 3.2.1.1]. We use to this end the
co-area formula [2, 23, 37]. We denote by ∇ξ = (∇ξ1, . . . ,∇ξm) ∈ Rdn×m and introduce the Gram
matrix:
(47) G(x) = ∇ξ(x)T∇ξ(x) ∈ Rm×m,
where the superscript T denotes matrix transposition. In what follows, we assume that the Gram
matrix (47) is non-degenerate in the sense that G(x) is invertible for x in a neighborhood of M
(see [37, Proposition 2.1]).

Proposition 4.1. The measures δξ(x)(dx) and σM(dx) are related by

(48) δξ(x)(dx) = |detG(x)|− 1
2σM(dx).

In particular it holds

(49) P ξn(dx) = e−βnHξn(x)

Zξn
σM(dx),

where

(50) Hξ
n(x) = Hn(x) + Un(x), Un(x) = − 1

2βn
log |detG(x)|.

Remark 4.2 (Parametrization invariance). It seems at first sight that the definition of the condi-
tioned measure in (44) depends on the choice of parametrization of ξ, but it does not. To illustrate
this point, we consider for simplicity that m = 1 andM =

{
x ∈ (Rd)n : ξ(x) = 0

}
.

First, the induced volume measure onM does not depend on the parametrization ofM. Consider
next a smooth function F : R → R such that F (0) = 0 and F ′(0) 6= 0, and the change of
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parametrization M =
{
x ∈ (Rd)n : F

(
ξ(x)

)
= 0

}
. The gradient of the constraint at x ∈ (Rd)n is

then ∇F (ξ(x)) = F ′(ξ(x))∇ξ(x). Since ξ(x) = 0 for x ∈M, the right hand side of (48) is changed
only by a multiplicative factor |F ′(0)| 6= 0. Therefore, the conditioned probability measure (46) is
left unchanged.

The aim is therefore to sample from (49), which is not an easy task except in very particular
situations, like the one studied in Section 2. As already noted in the introduction, for the rare
events that we consider, it would not be efficient to use a direct approach based on rejection
sampling as what is done in [26, 27, 43] for inequality constraints. We thus resort to sampling on
submanifolds.

For sampling measures on submanifolds, a naive penalization of the constraint is not a good
idea in general, since the dynamics used to sample it (such as (51) below) are difficult to integrate
because of the stiffness of the penalized energy. Moreover, our problem is made harder by the
singularity of the pair interaction in the Hamiltonian (10). It is known that Hybrid Monte Carlo
schemes (relying on a second order discretization of an underdamped Langevin dynamics with
a Metropolis–Hastings acceptance rule) provide efficient methods for sampling such probability
distributions, see [12] and references therein. However, Metropolis–Hastings schemes crucially rely
on the reversibility of the proposal. An issue when combining a Metropolis–Hastings rule with a
projection on a submanifold is that reversibility may be lost, which introduces a bias. A recent
strategy has been to introduce a reversibility check in addition to the standard acception-rejection
rule, which makes the HMC scheme under constraint reversible [54, 38]. Note that [55] proposes an
interesting alternative to the scheme used here, which is however not compatible with a Metropolis
selection procedure in its current form. We thus present the algorithm as written in [38], with
some simplifications and adaptations to our context, for which we introduce next the constrained
Langevin dynamics.

4.1.2. Constrained Langevin dynamics. We define here an underdamped Langevin dynamics over
the submanifoldM, whose invariant measure has a marginal in position which coincides with (49).
We motivate using this dynamics by first considering the problem of sampling from the uncon-
strained measure Pn. For a given γ > 0, we define

(51)


dXt = Yt dt,

dYt = −∇Hn(Xt) dt− γYt dt+
√

2γ
βn

dWt,

where (Wt)t≥0 is a dn-dimensional Wiener process. In this dynamics, (Xt)t≥0 stands for a position,
while (Yt)t≥0 represents a momentum variable. Let us mention that the long time convergence of
the law of this process towards Pn (a difficult problem due to the singularity of the Hamiltonian)
can be proved through Lyapunov function techniques, see [41] for a recent account. In practice, the
singularity of g also makes the numerical integration of (51) difficult, and a Metropolis–Hastings
selection rule can be used to stabilize the numerical discretization, see [12] and references therein.
The algorithm described below makes precise how to adapt this strategy to sample measures
constrained to the submanifoldM.

Since we aim at sampling from (49), it is natural to consider the dynamics (51) with positions
constrained to the submanifold (43), that is

(52)


dXt = Yt dt,

dYt = −∇Hn(Xt) dt− γYt dt+
√

2γ
βn

dWt +∇ξ(Xt) dθt,

ξ(Xt) = 0.

In (52), (θt)t≥0 ∈ Rm is an explicit semi-martingale which plays the role of a Lagrange multiplier
enforcing the dynamics to stay on M (see [37, Equation (3.1)] for the explicit expression, which
is however not useful for numerical simulations). Let us emphasize that the position constraint
induces a hidden constraint on the momenta in (52), which reads

∀ t ≥ 0, ∇ξ(Xt)TYt = 0.
The above relation is obtained by taking the derivative of t 7→ ξ(Xt) along the dynamics (52).
This implies that momenta are tangent to the submanifold’s zero level set, which is a natural
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geometric constraint [37, 38]. However, the dynamics (52) does not sample from the conditioned
measure (42), as shown in the following proposition [37, 38].

Proposition 4.3 (Invariant measure). The dynamics (52) has a unique invariant measure with
marginal distribution in position given by

e−βnHn(x)

Z
ξ

n

σM(dx),

where Zξn is a normalization constant.

Although (52) does not sample from P ξn, we have seen in Section 4.1.1 how to fix this problem.
More precisely, Proposition 4.1 shows that the dynamics (52) run with the modified HamiltonianHξ

n

defined in (50) samples from P ξn.
However, in practice, it may be preferable not to use the gradient of Un, since it involves the

Hessian of the constraint ξ and may be cumbersome to compute. Therefore, we will not run the
dynamics (52) with the modified Hamiltonian Hξ

n but with Hn, and perform some reweighting
to correct for the bias arising from the missing factor |detG(x)|− 1

2 . As explained in Remark 4.8
below in the context of a HMC discretization, this ensures that we are sampling from the correct
target distribution while only moderately increasing the rejection rate.

4.1.3. Discretization. In order to make a practical use of (52) combined with Proposition 4.1, we
need to define a discretization scheme. We present below the strategy proposed by [38], which relies
on a second order discretization of (52) with a Metropolis–Hastings selection and a reversibility
check.

As discussed after (52), momenta are tangent to the level sets of the submanifold. We introduce
(53) ΠM⊥ = Id−∇ξ(x)G−1(x)∇ξ(x)T ∈ (Rd)n,
whose action is to project the momentum orthogonally to the submanifoldM. We next define the
RATTLE scheme, which is a second order discretization of the Hamiltonian part of (52).

Algo 4.4 (RATTLE). Starting from a configuration (xm, ym) with xm ∈M and ∇ξ(xm)T ym = 0,

(1) ym+ 1
4

= ym −
∆t
2 ∇Hn(xm);

(2) xm+ 1
2

= xm + ∆tym+ 1
4
;

(3) compute the Lagrange multiplier θm ∈ Rm associated with xm+ 1
2
to enforce the constraint,

using Algorithm 4.6 below (if convergence has been reached);

(4) project as xm+1 = xm+ 1
2

+∇ξ(xm)θm and ym+ 1
2

= ym+ 1
4

+∇ξ(xm)θm/∆t;

(5) ym+ 3
4

= ym+ 1
2
− ∆t

2 ∇Hn(xm+1);

(6) ym+1 = ΠM⊥ym+ 3
4
where the projector ΠM⊥ is defined in (53).

Finally, return (xm+1, ym+1).

A particular feature of this numerical integrator is to be reversible up to momentum reversal
(i.e. evolving (x̂m+1,−ŷm+1) with one step of RATTLE leads to (x̂m,−ŷm)), provided the same
Lagrange multipliers are found when integrating from (x̂m+1,−ŷm+1). This property is crucial
in order to simplify the Metropolis–Hastings selection rule, see Step (4) in Algorithm 4.5 below.
This is true for sufficiently small timesteps, see [28, Section VII.1.4] for further details. For larger
timesteps, some care is needed since reversibility may be lost, as we discuss below.

We can now present the algorithm used to sample the conditioned distribution by integrat-
ing (52), which runs as follows. First, the momenta ym are updated to ỹm according to the
Ornstein–Uhlenbeck process in (52) projected orthogonally to the submanifold with ΠM⊥ . Next,
we evolve the configuration (xm, ỹm) with a RATTLE step, leading to (x̂m+1, ŷm+1). However, re-
versibility may be lost in the procedure for two reasons: either it is not possible to perform one step
of RATTLE starting from (x̂m+1,−ŷm+1), or the image of (x̂m+1,−ŷm+1) differs from (xm,−ỹm);
see [38, Section 2.2.4] for a more precise discussion and graphical illustrations of these issues. In
both cases, the RATTLE move is rejected, and the configuration is updated as (xm,−ỹm) (mind
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the fact that momenta need to be reversed here when rejecting; see for instance [36, Section 2.1.4.1]
for a discussion of this point). Finally, a Metropolis–Hastings acceptance rule corrects for the time
step bias in the sampling. The full algorithm reads as follows [38].

Algo 4.5 (Constrained HMC with reversibility check). Fix T > 0, ∆t > 0, γ > 0, Kmax ≥ 1,
Niter = dT/∆te and choose an initial configuration (x0, y0) with x0 ∈ M and ∇ξ(x0)T y0 = 0
(possibly obtained by projection). Set also thresholds εrev, εN > 0, and define η∆t = e−γ∆t. For
m = 0, . . . , Niter − 1, run the following steps:

(1) resample the momenta as

ỹm = ΠM⊥

η∆tym +

√
1− η2

∆t
βn

Gm

 ,

where Gm are independent dn-dimensional standard Gaussian random variables;
(2) perform one step of the RATTLE scheme (Algorithm 4.4) starting from (xm, ỹm), pro-

viding (x̂m+1, ŷm+1) if the Newton algorithm with Kmax, εN has converged; otherwise
set (xm+1, ym+1) = (xm,−ỹm) and increment m;

(3) compute a RATTLE backward step from (x̂m+1,−ŷm+1), providing (xrev
m , yrev

m ) if the New-
ton algorithm with Kmax, εN has converged. If the Newton algorithm has not converged
or if |xm − xrev

m | > εrev, reject the move by setting (xm+1, ym+1) = (xm,−ỹm) and incre-
ment m;

(4) compute the Metropolis–Hastings ratio

(54) pm = 1 ∧ exp
[
−βn

(
Hξ
n(x̂m+1) + |ŷm+1|2

2 −Hξ
n(xm)− |ỹm|

2

2

)]
,

and set

(xm+1, ym+1) =
{

(x̂m+1, ŷm+1) with probability pm,
(xm,−ỹm) with probability 1− pm.

A particularity of our implementation with respect to [38] is that we run the dynamics with the
Hamiltonian Hn while the Metropolis–Hastings ratio (54) (Step (4) of Algorithm 4.5) is computed
with the modified Hamiltonian Hξ

n. As pointed out in Remark 4.8 below, the modification induced
by the correction term Un in (50) is generally small. Therefore, considering Hn for the dynamics
allows to avoid the computation of the Hessian of ξ, while the selection rule corrects for this small
error.

In order for our description to be complete, we define how to project the position onM (Step (3)
in Algorithm 4.4). We use a variant of Newton’s algorithm defined below.

Algo 4.6 (Newton algorithm). Consider a tolerance threshold εN > 0 and a maximal number of
steps Kmax ≥ 1. Starting from an initial position x0 /∈M and a Lagrange multiplier θ0 = 0 ∈ Rm,
the projection procedure reads as follows: while k ≤ Kmax,

(1) compute Mk = ∇ξ(x0)T∇ξ(xk) ∈ Rm×m;

(2) set θk+1 = θk −M−1
k ξ(xk);

(3) define the new position xk+1 = xk +∇ξ(x0)T θk+1;
(4) if max

(
|θk+1 − θk|, |ξ(xk)|

)
≤ εN , the algorithm has converged, else go back to Step (1).

If the algorithm has converged in k ≤ Kmax steps, return the value θk of the Lagrange multiplier.

We emphasize that a fixed direction ∇ξ(x0) is considered for projection, which is needed to
preserve the reversibility property of the final algorithm [38]. The procedure works provided the
matrix Mk defined in Step (1) is indeed invertible at each step of the inner loop, and we refer
to [38] for more details. We also mention that we can consider different stopping criteria for the
Newton algorithm (Step (4) in Algorithm 4.6), for instance by using the relative error |xk+1−xk|.
We are now ready to use Algorithm 4.5 to sample from the constrained distribution, challenge the
theoretical results of Sections 2 and 3 and explore conjectures. An example of implementation is
provided in the arXiv version of this paper [13].
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Remark 4.7 (Rejection sources). For a standard HMC scheme, rejection is only due to the
Metropolis–Hastings selection (Step (4) in Algorithm 4.5). Here, rejection can be due to the fol-
lowing reasons:

• the Newton algorithm in Step (2) (forward move) has not converged;
• the Newton algorithm in Step (3) (backward or reversed move) has not converged;
• the reversibility check in Step (3) has failed;
• the Metropolis rule in Step (4) has rejected the step.

In any case, the first step resamples the momentum variable according to the Ornstein–Uhlenbeck
process part in (51), and rejection comes with a reversal of momenta. Let us also mention that,
when the ratio (54) is computed with Hn (up to an additive constant), the Metropolis rejection
rate should scale as ∆t3. This will be the case in our situation when ξ and ϕ are linear since in
this case the additional term Un in (50) is constant. This rate of decay is confirmed by numerical
simulations (see Figure 2).

Remark 4.8 (Correction term). Proposition 4.1 shows that the Hamiltonian of the system must be
modified in order for the constrained dynamics (52) to sample from the probability distribution (46).
However, in Algorithm 4.5, we run the dynamics with Hn and perform the selection with Hξ

n. This
is motivated by the following scaling argument. Consider

ξ(x) = 1
n

n∑
i=1

ϕ(xi)

for some real-valued smooth function ϕ, which corresponds to the linear constraint situation de-
scribed in Section 3.2. In this case, the corrector term in (50) reads

Un(x) = − 1
2βn

log
(

n∑
i=1
|∇ϕ(xi)|

)
,

up to an additive constant. This means that the correction term in (50) scales like O(log(n)/n2)
when βn = βn2, whereas the remainder of the Hamiltonian is O(1). As a result, the correction
is much smaller than the Hamiltonian energy Hn, and we may neglect it in the dynamics. This
allows to avoid computing the Hessian of the constraint ξ at the price of a small increase in the
rejection rate.

4.2. Numerical results.

4.2.1. Linear statistics with linear constraint: the influence of confinement. Since one motivation
for our work was to study the trace constraint with quadratic confinement, as detailed in Section 2,
we first consider the model presented in Theorem 2.1 with d = 2, βn = n2 and

(55) ∀x ∈ R2, ϕ(x) = c− x · v, v =
(

1
0

)
.

We run Algorithm 4.5 setting n = 300, T = 106, ∆t = 0.5, γ = 1 and εN = εrev = 10−12 with
Kmax = 20. In all the simulations in dimension 2, the initial configuration is drawn uniformly
over [−1, 1]2. We first set V (x) = |x|2 and c = 1, so that according to Theorem 2.1, the conditional
law of the empirical measure µn under Pn with the constraint µn(ϕ) = 0 should converge in the
limit of large n towards a unit disk centered at (1, 0) in R2. The simulations presented in Figure 1
show a very good agreement with the expected result.

In this simple case, the Hamiltonian in (50) is only modified by a constant, so we expect the
Metropolis rejection rate (Step (5) in Algorithm 4.5) to scale like O(∆t3) when ∆t → 0. In
Figure 2, we plot this rate in log-log coordinates (setting here n = 50 to reduce the computation
time). The slope is indeed close to 3, which confirms our expectation.

In order to show that the translation phenomenon is specific to the quadratic confinement,
we first consider the case of a quartic confinement potential, namely V (x) = |x|4/4 subject to
the constraint (55) with c = 0.5. This choice for V together with ϕ defined in (55) satisfies
Assumption 3.6, so that Theorem 3.7 applies. However, no analytic solution is a priori available
because the rotational symmetry is lost. The unconstrained equilibrium measure in Figure 3 (left)
shows a depletion of the density around (0, 0). In Figure 3 (right), we observe that the shape
of the distribution is significantly modified by the constraint, and does not possess any rotational
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Figure 1. Study of the quadratic confinement for n = 300 without constraint
(left) and with the constraint (55) (right). We see that the constrained measure
is a unit disk centered at (1, 0).
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Figure 2. Study of the rejection rate of the Metropolis–Hastings selection rule
with n = 50 (Step (5) in Algorithm 4.5) in log-log coordinates. The slope of the
linear fit is about 2.9.

invariance. As could have been expected, the particles close to the origin feel a weaker confinement,
so the distribution is more concentrated near the outer edge.

Another interesting case is when the confinement is weaker than quadratic, e.g. V (x) = 2
3 |x|

3
2 ,

for which Theorem 3.7 still applies. The results are shown in Figure 4, considering again the
constraint (55) with c = 0.5. We observe that the shape of the distribution also significantly
changes by spreading in the direction of the constraint. This can be interpreted as follows: since
the confinement is stronger at the origin, the more likely way to observe a fluctuation of the
barycenter (or less costly in terms of energy) is in this case to spread the distribution.

Quite interestingly, for both potentials the distribution obtained as c → +∞ seems to reach a
limiting ellipsoidal shape, under an appropriate rescaling (figures not shown here). Studying more
precisely these limiting shapes and the rate at which they appear is an interesting open problem.

4.2.2. Other constraints in dimension two. In order to illustrate the efficiency of our algorithm
in situations richer than the linear constraint with a linear function ϕ, we now present two other
cases. First, we keep a linear constraint with V (x) = |x|2, but set

∀x ∈ R2, ϕ(x) = c− cos(5x1) + cos(5x2)
2 ,
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Figure 3. Study of the quartic confinement for n = 300 without constraint
(left) and with the constraint (55) (right). The shape of the equilibrium measure
is significantly distorted by the constraint.

Figure 4. Study of the weak confinement for n = 300 without constraint (left)
and with the constraint (55) (right). The constraint now spreads the equilibrium
measure to the right.

where x1 and x2 denote here the first and second coordinates of x ∈ R2. This choice is motivated by
Remark 3.11: since the Laplacian of ϕ takes positive and negative values, we expect the particles
to concentrate in some regions of R2, possibly leading to a phase separation. Note also that, in
order for the two last conditions in Assumption 3.6 to be satisfied, we need to choose c ∈ (−1, 1).
We set again n = 300 but ∆t = 0.4 to reduce the rejection rate. The other parameters are the
same as in Section 4.2.1. We plot in Figure 5 the result of the simulation for c = 0.2 and c = 0.5.
The particles concentrate in the regions where the cosines are higher, which seems to lead to a
phase separation when c comes close to 1.

In order to illustrate the results of Section 3.3, we consider a quadratic constraint ξ : (Rd)n → R
of the form

(56) ∀x ∈ (Rd)n, ξ(x) = 1
n2

n∑
i,j=1

ψ(xi, xj),

with, for x, y ∈ R2,

(57) ψ(x, y) = φ(x− y), and φ(x) = c− |x|.

A motivation for this choice is to modify the rigidity of the gas by constraining the particles to be
closer or farther apart one from another in average. In order to make this rigidity anisotropic, we
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Figure 5. Study of the cosine constraint for n = 300 with c = 0.2 (left) and
c = 0.5 (right). A phase separation appears as the particles are constrained to
stay around the local maxima of the cosines.

also consider (57) with
(58) ∀x ∈ R2, φ(x) = c− |x1|.
The choice (58) modifies the rigidity only in one direction. For illustration we take V (x) = |x|4/4,
n = 50, ∆t = 0.5, T = 106 (we take a lower number of particles because the constraint makes the
dynamics quite stiff). We set c = 1 for (57) and c = 0.5 for (58), which forces the particles to
move away from each other. These choices for ψ satisfy the conditions of Proposition 3.13, and
the application Q defined in (36) can be proved to be convex, so Assumption 3.12 is satisfied and
Theorem 3.14 applies. The distribution obtained for the constraint (57), presented in Figure 6
(left), shows that the more likely way for the particles to be repelled by the constraint induced
by ψ is to move away from the center and concentrate on the edge, compared to Figure 3 (left).
For the constraint (58), we clearly observe in Figure 6 (right) the effect of anisotropy.

Figure 6. Study of the quartic confinement for n = 50 with the quadratic
statistics constraint (56)-(57) where c = 1 (left), and with the constraint (58)
with c = 0.5 (right). This has to be compared to the unconstrained distribution
in Figure 3 (left).

4.2.3. A one dimensional example. We consider the Gaussian Unitary Ensemble (GUE), which is
a degenerate two-dimensional Coulomb gas for which the particles are confined on the real axis.
It corresponds in a sense to (8) with d = 1, V (x) = |x|2 but g(x) = − log |x|, and βn = n2. It is
known that the equilibrium measure is then the Wigner semi–circle law, and we refer for instance
to [5] for a large deviations study. We can apply Theorem 2.1 for the linear constraint (55). In
this case, the Wigner semi–circle law is indeed translated by a factor c (figure not shown here).
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Next, in order to illustrate a case which is not covered by our analysis, we want to sample the
spectrum of those matrices whose determinant is equal to ±1. In our context, this corresponds
to the configurations x ∈ (Rd)n with

∏n
i=1 |xi| = 1. By taking the logarithm, this constraint is

actually of the form (45) (by Remark 4.2 the conditioned probability measure (42) does not depend
on the parametrization) with

(59) ∀x ∈ (Rd)n, ξ(x) = 1
n

n∑
i=1

log |xi| − c.

We plot in Figure 7 the distribution for n = 300, T = 105 and ∆t = 0.05 for the unconstrained
log-gas, and for the constraint (59) with c = −0.5 and c = 0 for ∆t = 0.01 (starting with particles
equally spaced over the interval [−1, 1]). We observe what looks like a symmetrized Marchenko–
Pastur distribution. Actually Remark 3.11 suggests that the effective potential of the constrained
distribution is | · |2 − α log | · | for some α > 0, which is not that far from the Laguerre potential
| · | − α log | · |.

Figure 7. Study of the one dimensional log-gas for n = 300 without constraint
(top) and with the constraint (55) for c = −0.5 (middle) and c = 0 (bottom).
This corresponds to a deformation of the semi–circle distribution.
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Appendix A. Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. First, the following lemma is some sort of
quantitative Wasserstein version of [9, Lemma C.1].

Lemma A.1 (Translation). Let d ≥ 1, p ≥ 1, µ1, µ2 ∈ Pp(Rd) and ϕ : Rd → R be a measurable
function. Then for all m1,m2 ∈ Rd,

dpWp
(µ1 ∗ δm1 , µ2 ∗ δm2) ≤ 2p−1|m1 −m2|p + 2p−1dpWp

(µ1, µ2).

Moreover, if mi = a
(∫
ϕdµi

)
for i = 1, 2 and a ∈ Rd, then

dWp
(µ1 ∗ δm1 , µ2 ∗ δm2) ≤ 2

p−1
p (1 + |a|p‖ϕ‖pLip)

1
p dWp

(µ1, µ2).

Note that the right hand side is infinite if ϕ is not Lipschitz.

Proof. We have, by using the infimum formulation (17) of the distance dWp
,

dpWp
(µ1 ∗ δm1 , µ2 ∗ δm2) ≤ 2p−1|m1 −m2|p + 2p−1dpWp

(µ1, µ2),

where we used the convexity inequality |u + v|p ≤ 2p−1(|u|p + |v|p) valid for all u, v ∈ Rd. Then,
since p 7→ dWp

is monotonic for p ≥ 1, it holds

|m1 −m2| =
∣∣∣∣a(∫

Rd
ϕd(µ1 − µ2)

)∣∣∣∣ ≤ |a|‖ϕ‖LipdW1(µ1, µ2) ≤ |a|‖ϕ‖LipdWp(µ1, µ2),

which is the claimed estimate. �

The following lemma is a d-dimensional version of the factorization lemma in [17]. It expresses
a non obvious independence between the center of mass and the shape of the cloud of particles
distributed according to Pn. As noticed in [17], it reminds the structure of certain continuous spins
systems such as in [11, 44].

Lemma A.2 (Factorization). Suppose that the assumptions of Theorem 2.1 are satisfied, and
define u = (v, . . . , v) ∈ (Rd)n. Let π and π⊥ be the orthogonal projections in (Rd)n on the linear
subspaces

L = Ru and L⊥ =
{
x ∈ (Rd)n : x · u = 0

}
.

Then, abridging Xn into X, the following properties hold:
• for all x ∈ (Rd)n, denoting s(x) = x1+···+xn

n ∈ Rd, we have

π(x) = (s(x) · v)u =
(
(s(x) · v)v, . . . , (s(x) · v)v

)
,

π⊥(x) = x− π(x) = x− (s(x) · v)u =
(
x1 − (s(x) · v)v, . . . , xn − (s(x) · v)v

)
;

• π(X) and π⊥(X) are independent random vectors;
• π(X) is Gaussian with law N

(
0, n

2βn

)
u, so that s(X) · v has law N

(
0, n

2βn

)
;

• π⊥(X) has law of density proportional to x ∈ L⊥ 7→ e−βnHn(x) with respect to the trace of
the Lebesgue measure on the linear subspace L⊥ of Rdn−1.

Proof of Lemma A.2. Since |v| = 1, we have |u| =
√
n, so the orthonormal projection on L reads,

for x ∈ (Rd)n,

π(x) = x · u
|u|2

u =
(

1
n

n∑
i=1

xi · v

)
u =

(
s(x) · v

)
u.

The expression of π⊥ follows easily. For all x ∈ (Rd)n, from x = π(x) + π⊥(x) we get

|x|2 = |π(x)|2 + |π⊥(x)|2.

On the other hand, for all i, j ∈ {1, . . . , n} it holds

xi − xj = π(x)i + π⊥(x)i − π(x)j − π⊥(x)j
= s(x) + π⊥(x)i − s(x)− π⊥(x)j
= π⊥(x)i − π⊥(x)j .
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Since V (x) = |x|2, it follows that, for all x = (x1, . . . , xn) ∈ (Rd)n,

Hn(x) = 1
n
|x|2 + 1

n2

∑
i 6=j

g(xi − xj) = 1
n
|π(x)|2 +Hn

(
π⊥(x)

)
.

Now, let u1, . . . , udn be an orthogonal basis of (Rd)n = Rdn with u1 = u/
√
n ∈ L. For all x ∈ (Rd)n

we write x =
∑dn
i=1 ti(x)ui. We have π(x) = t1(x)u1 = (s(x) ·v)u and π⊥(x) =

∑dn
i=2 ti(x)ui. Then

we have, for all bounded measurable f : L→ R and g : L⊥ → R,

E
[
f
(
π(X)

)
g
(
π⊥(X)

)]
= Z−1

∫
(Rd)n

f
(
π(x)

)
g
(
π⊥(x)

)
e−

βn
n |π(x)|2 e−βnHn(π⊥(x))dx1 · · · dxn

= Z−1
(∫

R
f(t′) e−

βn
n |t
′|2dt′

)(∫
Rdn−1

g(t′′) e−βnHn(t′′)dt′′
)
,

where t′ = t1u1, dt′ = dt1, t′′ =
∑dn
i=2 tiui and dt′′ =

∏dn
i=2 dti. This concludes the proof of the

last two points of the lemma. �

We can now turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Thanks to Lemma A.2, we have, denoting again by u = (v, . . . , v) ∈ (Rd)n,

Law
(
Xn

∣∣∣∣∣ 1
n

n∑
i=1

ϕ(Xi) = 0
)

= Law
(
Xn

∣∣∣∣∣ 1
n

n∑
i=1

Xn,i · v = c

)
= Law

(
Xn

∣∣∣ s(Xn) · v = c
)

= Law
(
Xn

∣∣∣ (s(Xn) · v
)
u = cu

)
= Law

(
Xn

∣∣∣π(Xn) = cu
)

= Law
(
cu+ π⊥(Xn)

)
= Law

(
X̃n

)
,(60)

where X̃n = cu+ π⊥(Xn) = cu+Xn − π(Xn). We also have

X̃n =
((
c− s(Xn) · v

)
v+Xn,1, . . . ,

(
c− s(Xn) · v

)
v+Xn,n

)
where s(Xn) = Xn,1 + · · ·+Xn,n

n
.

In other words (recall that ϕ(x) = x · v − c)

X̃n =
(
Xn,1 −

1
n

n∑
i=1

ϕ(Xn,i)v, . . . , Xn,n −
1
n

n∑
i=1

ϕ(Xn,i)v
)
,

so that

µ̃n = 1
n

n∑
i=1

δ
X̃n,i

= µn ∗ δmn where µn = 1
n

n∑
i=1

δXn,i and mn = v

∫
ϕdµn.

Thanks to the assumptions on V and g we know that the equilibrium measure µ? is the uniform
distribution on a ball of radius 1. Now we note that ‖ϕ‖Lip ≤ 1 and

∫
ϕdµ? = c, so that by

Lemma A.1 and denoting by µϕ = δcv ∗ µ?, for all p ≥ 1,

(61) dWp
(µ̃n, µϕ) ≤ 21−1/p(1 + |v|p)1/pdWp

(µn, µ?) = 2dWp
(µn, µ?).

On the other hand, the large deviations principle – see [14, Proof of Theorem 1.1(4)] and [21]
for the fact that the condition (9) ensures that (βn)n diverges fast enough – gives, for any ε > 0,

(62)
∑
n

P
(
dBL(µn, µ?) ≥ ε

)
<∞.

Alternatively we could use the concentration of measure [15, Theorem 1.5] and get the result
for dW1 as well. This summable convergence in probability towards a non-random limit, known as
complete convergence [53], is equivalent, via Borel–Cantelli lemmas, to stating that almost surely,
limn→∞ dBL(µn, µ?) = 0, regardless of the way we defined the random variables Xn and thus the
random measures µn on the same probability space.
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In order to upgrade the convergence from dBL to dWp
for all p ≥ 1 we note that, from [15,

Theorem 1.12], there exists r0 > 0 such that, for all r ≥ r0,

(63)
∑
n

P
(

max
1≤k≤n

|Xn,k| ≥ r
)
<∞.

Now for all p ≥ 1 and all µ, ν ∈ P(Rd) supported in the ball of Rd of radius r ≥ 1, we have

dpWp
(µ, ν) ≤ (2r)p−1dW1(µ, ν) ≤ r(2r)p−1dBL(µ, ν).

Also, by combining (62) and (63), we obtain that for all p ≥ 1 and all ε > 0,

(64)
∑
n

P
(
dWp

(µn, µ?) ≥ ε
)
<∞.

By the Borel–Cantelli lemma, for all p ≥ 1, almost surely, limn→∞ dWp
(µn, µ?) = 0, regardless of

the way we define the random variables Xn on the same probability space. Finally, since p 7→ dWp

is monotonic in p, we can make the almost sure event valid for all p by taking the intersection of
all the almost sure events obtained for integer values of p.

By combining (64) with (61), we obtain that for all p ≥ 1 and ε > 0,

(65)
∑
n

P
(
dWp

(µ̃n, µϕ) ≥ ε
)
<∞.

Now if Yn is a random vector of (Rd)n such that Law(Yn) = Law(Xn | ϕ(Xn,1)+ · · ·+ϕ(Xn,n) = 0)
then, denoting by µYn = 1

n

∑n
i=1 δYn,i , using (60) and the fact that µϕ is deterministic, we get

dWp
(µYn , µϕ) d= dWp

(µ̃n, µϕ).

Therefore, from (65) we get, for all p ≥ 1 and all ε > 0,∑
n

P
(
dWp

(µYn , µϕ) ≥ ε
)
<∞.

By the Borel–Cantelli lemma, for all p ≥ 1, almost surely, limn→∞ dWp
(µYn , µϕ) = 0, regardless of

the way we define the random variables Yn on the same probability space. Finally, since dWp
is

monotonic in p, we can make the almost sure event valid for all p by taking the intersection of all
the almost sure events obtained for integer values of p. �

Note that the above proof relies crucially, via Lemma A.2, on the quadratic nature of V . However
the Coulomb nature of g is less crucial and the result should remain essentially valid provided that
the convergence to the equilibrium measure holds, for instance at the level of generality of the
assumptions of the large deviations principle in [14].

Appendix B. Proofs of Section 3.1

We start with the proof of the abstract Gibbs conditioning principle.

Proof of Theorem 3.1. Since I is a good rate function, it is lower semicontinuous with compact
level sets. The set IB defined in (24) is not empty because the infimum is finite by (23), B is closed
and I has compact level sets, so the infimum is attained at least for one measure. Moreover, IB

is closed by lower semicontinuity of I. Now, since
1
βn

logP
(
Zn ∈ Aε

∣∣∣ Zn ∈ B) = 1
βn

logP (Zn ∈ Aε ∩B)− 1
βn

logP (Zn ∈ B) ,

the result follows from an upper bound on P(Aε ∩ B) and a lower bound on P(B). The upper
bound of the large deviations principle implies that

(66) lim sup
n→+∞

1
βn

logP (Zn ∈ Aε ∩B) ≤ − inf
Aε∩B

I.

Assume first that Aε ∩B 6= ∅. Since Aε = {z ∈ Z, d(z,IB) > ε}, the lower semi-continuity of I
shows that (see [14, Section 2.5]) there exists cε > 0 for which

inf
Aε∩B

I ≥ cε + inf
B
I,
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so that

(67) lim sup
n→+∞

1
βn

logP (Zn ∈ Aε ∩B) ≤ − inf
B
I − cε.

If Aε ∩B = ∅, the infimum in the right hand side of (66) is equal to +∞ so that (67) still holds.
The lower bound for the set B reads

lim inf
n→+∞

1
βn

logP (Zn ∈ B) ≥ − inf̊
B
I.

Since B satisfies (23), it holds

lim sup
n→+∞

− 1
βn

logP (Zn ∈ B) ≤ inf
B
I,

which, together with (67), leads to (25).
Finally, if Z ′n ∼ Law(Zn | Zn ∈ B) and if we define the Z ′n’s on the same probability space then,

for all ε > 0, thanks to (9), by the Borel–Cantelli lemma,
∑
n P(Z ′n ∈ Aε) < ∞ and thus, almost

surely, Z ′n 6∈ Aε for large enough n. Since the set Aε depends on ε > 0, by taking ε → 0 with
ε ∈ Q, we obtain that almost surely, limn→∞ d(Z ′n,IB) = 0. �

We next recall elements of proof for the properties of the rate function E .

Proof of Proposition 3.3. Consider a probability measure µ ∈ DE , so∫
Rd
V (x)µ(dx) +

∫∫
Rd×Rd

g(x− y)µ(dx)µ(dy) < +∞.

Since V satisfies Assumption 3.2 and therefore beats g at infinity (in particular when d = 2), we
have ∫

Rd
|x|pµ(dx) < +∞,

for 1 < p < q. Thus DE ⊂ Pp(Rd).
The strict convexity of E is due to a Bochner-type positivity of the interaction kernel. See for

instance [48, Chapter I, Lemma 1.8], [46], or [14, Section 3] for d = 2 and [33, Theorems 1.15
and 1.16] or [14, Lemma 3.1] for d ≥ 3. The uniqueness of the minimizer follows from the strict
convexity. The compactness of its support relies on the behaviour of V at infinity, see for instance
[48, Chapter I, Theorem 1.3] for d = 2 and [14, Theorem 1.2] for d ≥ 3. Finally, since the minimizer
of E over P(Rd) has compact support, the three problems in (26) clearly coincide. �

We finally present the proof of Corollary 3.5, which is a consequence of Theorem 3.1 and the
Borel–Cantelli lemma.

Proof of Corollary 3.5. Under Pn, the empirical measure µn associated toXn satisfies a LDP in the
p-Wasserstein topology with good rate function E . Since B is assumed to be a closed continuity set
for the p-Wasserstein topology, the set EB defined in (29) is closed and non-empty by Theorem 3.1.

For simplicity we denote by

µYn = 1
n

n∑
i=1

δYn,i

the empirical measure associated to Yn, where Yn ∼ Law(Xn |µn ∈ B). For any ε > 0, we define
the set Aε as in Theorem 3.1. Then, there exists cε > 0 such that∑

n

P
(
dWp(µYn ,EB) > ε

)
=
∑
n

P
(
dWp(µn,EB) > ε

∣∣ µn ∈ B)
=
∑
n

P
(
µn ∈ Aε

∣∣ µn ∈ B)
≤ C

∑
n

e−βncε < +∞,

for some C > 0. Since βn � n thanks to (9), the Borell–Cantelli lemma implies that
lim
n→∞

dWp

(
µYn ,EB

)
= 0,

almost surely in any probability space, which concludes the proof. �
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Appendix C. Proof of Theorem 3.7

The proof is decomposed into four steps. We first show that under Assumption 3.6, the set B
is an I-continuity set for the electrostatic energy E . We next show that any minimizer of E over B
has a compact support, and hence the minimizer is actually unique. The last two steps characterize
the minimizer through (32).
Step 1: I-continuity. Let us first show that B ⊂ Pp(Rd) is closed for the p-Wasserstein topology by
showing that Bc = {µ ∈ Pp(Rd) |µ(ϕ) > 0} is open. Take µ ∈ Bc and ν such that dWp

(µ, ν) ≤ ε
1
p

for some ε > 0. By definition of the p-Wasserstein distance it holds

(68) sup
f∈L1(µ), g∈L1(ν)
f(x)≤g(y)+|x−y|p

(∫
Rd
f dµ−

∫
Rd
g dν

)
≤ ε.

Since ‖ϕ‖∞,p < +∞, for any µ, ν ∈ Pp(Rd) it holds ϕ ∈ L1(ν) ∩ L1(µ). Moreover, ‖ϕ‖Lip <
+∞ and ϕ cannot be a constant function because this would contradict the existence of µ± in
Assumption 3.6, so ‖ϕ‖Lip > 0. As a result, for |x− y| ≥ 1 we have

|ϕ(x)− ϕ(y)| ≤ ‖ϕ‖Lip|x− y| ≤ ‖ϕ‖Lip|x− y|p.

Therefore, ϕ/‖ϕ‖Lip satisfies the inf-convolution condition in (68) and we may pick f = g =
ϕ/‖ϕ‖Lip so that ∫

Rd

ϕ

‖ϕ‖Lip
dµ−

∫
Rd

ϕ

‖ϕ‖Lip
dν ≤ ε,

which becomes

ν(ϕ) ≥ µ(ϕ)− ε‖ϕ‖Lip > 0 for ε <
µ(ϕ)
‖ϕ‖Lip

.

As a result, Bc is open and B is closed for the p-Wasserstein topology.
We now prove that B is an I-continuity set, namely that (31) holds. By the same reasoning as

above, the existence of µ− ∈ DE such that µ−(ϕ) < 0 ensures that µ− ∈ B̊ (recall that µ− ∈ Pp(Rd)
by Proposition 3.3) so

inf̊
B
E < +∞.

Since B is closed and E has compact level sets, there exists µ̄ such that

E(µ̄) = inf
B
E .

If µ̄(ϕ) < 0, it holds µ̄ ∈ B̊ and the proof is complete. Thus we may assume that µ̄(ϕ) = 0 and,
by considering a minimizing sequence, for any ε > 0 we may find µε ∈ B̊ such that

(69) E(µε) ≤ inf̊
B
E + ε.

For t ∈ [0, 1], we introduce µt = tµε + (1 − t)µ̄ ∈ DE . Since µ̄(ϕ) = 0 it holds µt ∈ B̊ for any
t ∈ (0, 1]. By convexity of E on its domain we have

E(µt) ≤ tE(µε) + (1− t)E(µ̄).

We now proceed by contradiction by assuming that E(µ̄) = infB̊ E−η for some η > 0. Recalling (69)
we have, for some ε > 0 and any t ∈ (0, 1],

E(µt) ≤ t
(

inf̊
B
E + ε

)
+ (1− t)

(
inf̊
B
E − η

)
= inf̊

B
E + tε− (1− t)η.

Considering
t <

η

ε+ η
,

we obtain that µt ∈ B̊ with
E(µt) < inf̊

B
E ,

which is a contradiction. Therefore, (31) holds true.
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Step 2: the minimizer is unique and has compact support. We now show that any minimizer µϕ
has a compact support, before turning to uniqueness. We detail the proof for d ≥ 3 following [14]
by highlighting the necessary modifications, and leave the proof for d = 2 to the reader (which is
deduced from [48, Chapter I, Theorem 1.3]). We introduce

ζ = inf
B
E

and, for any compact K,
ζK = inf

BK
E , where BK = {µ ∈ B | supp(µ) ⊂ K}.

By Assumption 3.6, BK is non empty for K large enough (consider µ−( ·1K)/µ−(K) for K large
enough). By Assumption 3.2, for any constant C the set

(70) K =
{
x ∈ Rd, V (x) ≤ C

}
is compact. In all what follows, we assume that V ≥ 0. Since V is lower bounded and defined up
to a constant, there is no loss of generality in this assumption.

Let us show that ζ = ζK for C large enough when K is defined by (70). Since the infimums
on B and B̊ coincide, we can consider a measure µ ∈ B such that µ(ϕ) < 0 and E(µ) ≤ ζ + 1.
If µ(K) = 1, the measure has compact support and we are done, so we assume that µ(K) < 1.
The goal of the following computations is to build a measure µK ∈ B supported in K such that
E(µK) < E(µ); this contradiction will show that ζ and ζK are equal. Let us first show that
µ(K) > 0 for C large enough. Indeed,

ζ + 1 ≥ E(µ) =
∫
K

V dµ︸ ︷︷ ︸
≥0

+
∫
Kc

V dµ+ J(µ)︸︷︷︸
≥0

≥ C(1− µ(K)),

which shows that µ(K) > 0 if C > ζ + 1. We may therefore define the restriction

µK( · ) = µ(K ∩ · )
µ(K) .

Since µ(K) < 1, we define similarly µKc . The measure µ then reads
µ = µ(K)µK + (1− µ(K))µKc .

Moreover, we chose µ such that µ(ϕ) < 0, so it holds µK ∈ BK for C large enough. Using the
positivity of V and J (since d ≥ 3 and so g ≥ 0) and µ(K) < 1, we obtain that

E(µ) = µ(K)
∫
Rd
V dµK + (1− µ(K))

∫
Rd
V dµKc︸ ︷︷ ︸
≥C

+µ(K)2J(µK)

+ 2µ(K)(1− µ(K)) J(µK , µKc)︸ ︷︷ ︸
≥0

+(1− µ(K))2 J(µKc)︸ ︷︷ ︸
≥0

≥ µ(K)2J(µK) + µ(K)2
∫
Rd
V dµK + (1− µ(K))C

≥ µ(K)2E(µK) + (1− µ(K))C.

Let us proceed by contradiction by assuming that E(µK) ≥ E(µ), which leads to

E(µ) ≥ µ(K)2E(µ) + (1− µ(K))C.
Since E(µ) ≤ ζ + 1 we obtain

(ζ + 1)(1− µ(K)2) ≥ (1− µ(K))C.
Simplifying by 1− µ(K) we have

2(ζ + 1) ≥ C,
which is absurd for C > 2(ζ + 1). Since µK ∈ B for C large enough, this shows that ζ and ζK
coincide and that any minimizer has compact support.

In the above proof, the only modification with respect to previous works (see for instance [14])
is to check that the restricted measure µK satisfies the constraint for C large enough. This is done
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by picking the measure µ close to the minimum and such that µ(ϕ) < 0. The same strategy can
be used in the situation where d = 2 by writing

E(µ) =
∫∫

Rd×Rd

(
V (x) + V (y)

2 − log |x− y|
)
µ(dx)µ(dy),

and adapting [48, Chapter I, Theorem 1.3] since V (x) + V (y) dominates log |x− y| at infinity by
Assumption 3.2.

The minimizer is unique due to the strict convexity of E , see Proposition 3.3, and the linearity
of the constraint.
Step 3: Lagrange multiplier. We now turn to a first step towards the expression of µϕ involving a
Lagrange multiplier α. We adapt the proof of [4, Theorem 3.1] by introducing the following subset
of R2:
(71) R =

{(
E(µ)− E(µϕ) + a0, µ(ϕ) + a1

)
: a0 > 0, a1 > 0, µ ∈ DE

}
.

Since E is convex on its domain DE (which is convex), R is a non empty convex subset of R2

that does not contain (0, 0) (recall also that DE ⊂ Pp(Rd) so the constraint takes finite values).
Separating R from (0, 0) with a hyperplane (see [4, Corollary 1.41]), this ensures the existence of
(α0, α1) ∈ R2 \ {(0, 0)} such that, for any µ ∈ DE and a0, a1 > 0 it holds

α0
(
E(µ)− E(µϕ) + a0

)
+ α1

(
µ(ϕ) + a1

)
> 0.

By taking a1 → −µϕ(ϕ) ≥ 0 and µ = µϕ in the above equation, we obtain that α0 ≥ 0. Then,
choosing µ = µϕ, a0 → 0 and a1 > −µϕ(ϕ) ≥ 0 we find α1 ≥ 0. Taking a0, a1 → 0, we obtain
(72) ∀µ ∈ DE , α0E(µϕ) ≤ α0E(µ) + α1µ(ϕ).
We now prove that α0 > 0 by contradiction. If α0 = 0, (72) becomes

∀µ ∈ DE , 0 ≤ α1µ(ϕ).
Since α1 6= 0 in this case, the above equation contradicts Assumption 3.6 by taking µ = µ−, so
α0 > 0 and we may renormalize (72) into
(73) ∀µ ∈ DE , E(µϕ) ≤ E(µ) + αµ(ϕ),
where we set α = α1/α0 ≥ 0.

Finally, we show that either µϕ = µ?, in which case α = 0, or µϕ(ϕ) = 0 and α > 0. First, if
µ? ∈ B, µ? satisfies the constraint and we know from Proposition 3.3 that it solves (32) with α = 0.
Otherwise, it holds µ?(ϕ) > 0. Since E(µ?) < E(µϕ) because µ? is the unique global minimizer
of E , we then obtain from (73) with the choice µ = µ? that α > 0. Choosing next µ = µϕ in (73)
shows that µϕ(ϕ) = 0, so the minimizer actually saturates the constraint.
Step 4: potential equation. In order to derive the equation for µϕ, we follow [14, Section 4] by
introducing the modified potential and electrostatic energy, for µ ∈ P(Rd),

Vα = V + αϕ, Eα(µ) =
∫
Rd
Vα(x)µ(dx) + J(µ).

Since the case when α = 0 corresponds to no-conditioning and we already know that the equation
is satisfied by the equilibrium measure in this case, we restrict our attention to the situation in
which α > 0 and µϕ(ϕ) = 0. We define next, for any µ ∈ DE ,

∀ t ∈ (0, 1), ψ(t) = Eα
(
(1− t)µϕ + tµ

)
.

Because of (73) and the convexity of ψ, it holds ψ′(0) ≥ 0, so that

0 ≤ ψ′(0) =
∫
Rd
Vα d(µ− µϕ) + 2J(µϕ, µ− µϕ)

≤
∫
Rd
Vα dµ+ 2J(µϕ, µ)−

(∫
Rd
Vα dµϕ + 2J(µϕ)

)
≤
∫
Rd

(Vα + 2Uµϕ) dµ− Cϕ,

where we set Uµϕ = µϕ ∗ g and

Cϕ =
∫
Rd
Vα dµϕ + 2J(µϕ) =

∫
Rd

(V + 2Uµϕ) dµϕ,
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since µϕ(ϕ) = 0. The above inequality may be rewritten as

∀µ ∈ DE ,
∫
Rd

(Vα + 2Uµϕ − Cϕ) dµ ≥ 0,

which proves the second line of (32). Recall indeed that, by definition, a property holds quasi-
everywhere if and only if it holds almost surely for all probability measures with finite energy.
Moreover, the measures µ and µϕ belonging to DE ⊂ Pp(Rd), they satisfy condition (4) so that
the quantity J(µ, µϕ) is well-defined following the remark below (20).

Let us now prove the first line in (32) by contradiction. Assume that there is x ∈ supp(µϕ) such
that Vα(x) + 2Uµϕ(x) > Cϕ. Since µϕ has compact support, Uµϕ is lower semi-continuous [33,
page 59]. Since V is lower semi-continuous and ϕ is Lipschitz hence continuous, Vα+2Uµϕ is lower
semi-continuous. There exists therefore a neighborhood U of x and ε > 0 such that

∀x ∈ U , Vα(x) + 2Uµϕ(x) ≥ Cϕ + ε.

Integrating with respect to µϕ and using µϕ(ϕ) = 0 leads to

Cϕ =
∫
Rd

(Vα + 2Uµϕ) dµϕ =
∫
U

(V + 2Uµϕ) dµϕ +
∫
Rd\U

(V + 2Uµϕ) dµϕ

≥ (Cϕ + ε)µϕ(U) +
∫
Rd\U

(V + 2Uµϕ) dµϕ.

Since Vα + 2Uµϕ ≥ Cϕ quasi-everywhere and µϕ ∈ DE , the above inequality becomes

Cϕ =
∫
Rd

(Vα + 2Uµϕ) dµϕ ≥ Cϕ + εµϕ(U).

We reach a contradiction by noting that µϕ(U) > 0 since U is a neighborhood of x ∈ supp(µϕ)
(using the definition of the support), which proves the first line of (32).

Appendix D. Proof of Theorem 3.14

We outline the proof of Theorem 3.14, which follows the same lines as in the linear case.

Proof. We show below that the set B ⊂ Pp(Rd) defined in (35) is closed for the p-Wasserstein
topology under Assumption 3.12. For this, we show that Bc is open by picking µ ∈ Pp(Rd) such
that Q(µ) > 0 and using again that, for ε > 0 and ν ∈ Pp(Rd) such that dWp

(µ, ν) ≤ ε
1
p , it holds,

by (18),

(74) sup
f∈L1(µ), g∈L1(ν)
f(x)≤g(y)+|x−y|p

(∫
Rd
f dµ−

∫
Rd
g dν

)
≤ ε.

First, by Assumption 3.12, we note that for any µ, ν ∈ Pp(Rd) it holds ‖Uψµ ‖∞,p < +∞ and
‖Uψν ‖∞,p < +∞. Therefore, Uψµ ∈ L1(µ)∩L1(ν) and Uψν ∈ L1(µ)∩L1(ν) for any probability mea-
sures µ, ν with moments of order p. Next, by (37), it holds ‖Uψµ ‖Lip ≤ CLip and ‖Uψν ‖Lip ≤ CLip.
We assume for now that these norms are non-zero, so we may first choose f = g = Uψµ /‖Uψµ ‖Lip,
which leads to

(75) Q(µ)−
∫∫

Rd×Rd
ψ(x, y)ν(dx)µ(dy) ≤ ε‖Uψµ ‖Lip.

Symmetrically we take f = g = −Uψν /‖Uψν ‖Lip, which leads to

(76)
∫∫

Rd×Rd
ψ(y, x)ν(dx)µ(dy)−Q(ν) ≤ ε‖Uψν ‖Lip.

By summing (75) and (76) and using the symmetry of ψ, we obtain
(77) Q(ν) ≥ Q(µ)− ε

(
‖Uψν ‖Lip + ‖Uψµ ‖Lip

)
≥ Q(µ)− 2CLipε.

This shows that Q(ν) > 0 for ε < Q(µ)/(2CLip). To finish the argument, we consider the cases
where the Lipschitz norm of the potentials generated by µ and ν may be zero. Suppose first that
‖Uψµ ‖Lip = 0. This implies the existence of cµ ∈ R such that

(78) ∀x ∈ Rd,
∫
Rd
ψ(x, y)µ(dy) = cµ.
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Integrating the above equation with respect to µ shows that cµ = Q(µ) > 0. As a result,
if ‖Uψµ ‖Lip = 0 and ν is such that ‖Uψν ‖Lip > 0 we can consider (76), which becomes (inte-
grating (78) with respect to ν)

Q(ν) ≥ Q(µ)− ε‖Uψν ‖Lip ≥ Q(µ)− εCLip.

In this case, Q(ν) > 0 for ε < Q(µ)/CLip. Then, if ‖Uψν ‖Lip = 0 it holds, for some cν ∈ R,

(79) ∀x ∈ Rd,
∫
Rd
ψ(x, y)ν(dy) = cν .

Integrating with respect to µ and using the symmetry of ψ we obtain that cν = cµ > 0. Integrating
next (79) with respect to ν shows that Q(ν) = cµ = Q(µ) > 0. Finally, if ‖Uψµ ‖Lip > 0 but
‖Uψν ‖Lip = 0, (79) holds with cν = Q(ν) so that (75) becomes

Q(ν) ≥ Q(µ)− εCLip,

and the same conclusion follows. As a result, in any case the measures ν such that dWp(µ, ν) ≤ ε
1
p

for ε < Q(µ)/(2CLip) belong to Bc so that Bc is open and B is closed in the p-Wasserstein topology.
We next show that B is an I-continuity set. The existence of µ− ∈ DE ⊂ Pp(Rd) such that

Q(µ−) < 0 ensures that
inf̊
B
E < +∞.

Since E has compact level sets and B is closed, there exists µ̄ such that

E(µ̄) = inf
B
E .

If Q(µ̄) < 0, I-continuity is proven, so we may assume that Q(µ̄) = 0. Like in the linear case, we
may take µε ∈ B̊ such that

E(µε) ≤ inf̊
B
E + ε,

and consider the convex combination µt = tµε + (1− t)µ̄ for t ∈ (0, 1). The convexity of Q shows
that, for any t ∈ (0, 1) it holds

Q(µt) ≤ tQ(µε) + (1− t)Q(µ̄) < 0,

so that µt ∈ B̊. Proceeding by contradiction by supposing that E(µ̄) < infB̊ E , we obtain that for
t > 0 small enough it holds µt ∈ B̊ and

E(µt) < inf̊
B
E ,

which is a contradiction, proving that B is an I-continuity set.
One can next follow Step 2 of the proof of Theorem 3.7 to show that the minimizer µψ is unique

with compact support.
At this stage, the remaining statements in Theorem 3.14 can be proved as for Theorem 3.7. In

particular, we can introduce a set similar to (71) by setting

R =
{(
E(µ)− E(µϕ) + a0, Q(µ) + a1

)
: a0 > 0, a1 > 0, µ ∈ DE

}
.

The set R is convex by convexity of Q, so the same convex separation theorem can be used, and
we can show that there exists α ≥ 0 such that

∀µ ∈ DE , E(µψ) ≤ E(µ) + αQ(µ).

In this procedure, we use the existence of µ± from Assumption 3.12 in order to reproduce the
qualification of constraint argument. This leads to computations where the interaction energy J
is replaced by

Jα(µ, ν) = J(µ, ν) + α

∫∫
Rd×Rd

ψ(x, y)µ(dx)µ(dy),

from which (39) follows by mimicking Step 4 of the proof of Theorem 3.7. �

As a final comment, let us insist on the importance of the convexity of Q for the above proof to
be valid.
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