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Emmanuil H. Georgoulis ∗†‡

December 18, 2020

Abstract

This work is concerned with the development of a family of Galerkin finite element
methods for the classical Kolmogorov equation. Kolmogorov’s equation serves as a suf-
ficiently rich, for our purposes, model problem for kinetic-type equations and is charac-
terised by diffusion in one of the two (or three) spatial directions only. Nonetheless, its
solution admits typically decay properties to some long time equilibrium, depending on
closure by suitable boundary/decay-at-infinity conditions. A key attribute of the proposed
family of methods is that they also admit similar decay properties at the (semi)discrete
level for very general families of triangulations. The method construction uses ideas by
the general theory of hypocoercivity developed by Villani [24], along with judicious choice
of numerical flux functions. These developments turn out to be sufficient to imply that the
proposed finite element methods admit a priori error bounds with constants independent
of the final time, despite Kolmogorov equation’s degenerate diffusion nature. Thus, the
new methods provably allow for robust error analysis for final times tending to infinity.
The extension to three spatial dimensions is also briefly discussed.

1 Introduction

Degenerate parabolic problems in kinetic modelling are often characterised by the explicit
presence of diffusion/dissipation in some of the spatial directions only, yet may still admit
decay properties to some long time equilibrium. The development of Galerkin finite element
methods for such problems satisfying provably also such decay properties is, remarkably, an
unexplored area. This is despite the potential attraction that general, possibly highly non-
uniform or adaptive, grid approximations can bring to kinetic simulations, especially those
concerning expansive long-time simulation phenomena. Aiming to contribute in this direction,
we shall develop and analyse a new class of Galerkin finite element methods for a simple kinetic
equation, equipped with suitable closures by known boundary/periodicity conditions from the
literature. To this end, we shall be concerned with the classical Kolmogorov partial differential
equation (PDE)

Lu ≡ ut − uxx + xuy = f, in (0,∞)× Ω, (1)
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with Ω ⊂ R
2, for suitably smooth forcing f ∈ L2(R+;H

1(Ω)), and Cauchy initial data u(0, ·) =
u0 ∈ L2(Ω). The notational conventions used above are somewhat non-standard in kinetic
theory, whereby L may be written as Lf := ft − fvv + vfx with v denoting the particle
velocity variable, x the displacement/position and f the respective probability density function.
Kolmogorov showed already in 1934 that (1) admits a smooth fundamental solution outside
the pole and, hence, it is hypoelliptic, i.e., it admits a smooth solution in (0,∞)× R

2 for any
smooth initial and forcing data u0, f , respectively [17]. This may be a surprising assertion
at first sight, since there is no explicit dissipation built into the PDE in the y-variable. The
advection field (0, x)T , however, is “appropriately non-constant” so that it suffices to propagate
the built-in dissipation in the x-variable onto the entire spatial domain. In 1967, Hörmander,
in the celebrated work [15], gave a sufficient condition for hypoellipticity for a wide class of 2nd
order operators with non-negative characteristic form, which are nowadays often referred to as
Hörmander sum-of-squares operators ; interestingly, a motivating example for the developments
in [15] has, indeed, been Kolmogorov’s equation (1). Hence, although (1) may appear to be a
rather special equation at first sight, its significance as a model problem is paramount, for it
encompasses a number of pertinent structural properties of large classes of kinetic models; we
refer, e.g., to [24] for very instructive expositions.

The proof of trend to equilibrium for the directly related inhomogeneous Fokker-Planck
equation has been given by Hérau & Nier in [14] upon realising that certain entropies admit-
ting mixed derivatives (uxy or, respectively, fvx) give rise to full gradients in certain weighted
Sobolev spaces, from which Poincaré-Friedrichs inequalities (also known as spectral gap prop-
erties in this context) are sufficient to prove decay to an equilibrium distribution. Related ideas
have also been used by Eckmann & Hairer in [9] to study the spectral properties of certain
hypoelliptic operators involving degenerate diffusions and by Mouhot & Neumann [19] in the
study of kinetic models with integral-type collision operators, among others. The idea of using
entropies involving mixed derivatives was elevated to a general framework in proving decay to
equilibrium for kinetic equations by Villani [24] via the introduction of the concept of hypoco-
ercivity. Roughly speaking, hypocoercivity is the property of certain degenerate elliptic or
parabolic differential operators to yield dissipation of the solution also in the directions where
no diffusion is explicitly present. Astonishingly, sufficient conditions for hypocoercivity are
given by the rank spanned by Hörmander vector fields and their commutators with respect to
the vector field related to 1st order term [24]. Thus, sufficient conditions for hypocoercivity are
closely related, but not identical, to the classical Hörmander’s rank condition for hypoellipticity.

To fix ideas, denoting by (·, ·)L2
the inner product of L2, over some Ω ⊂ R

2, and respective
norm ‖·‖L2

:=
√

(·, ·)
L2

and, assuming suitable boundary conditions, the classical energy-type
analysis for (1) yields

1

2

d

dt
‖u(t)‖2L2

+ ‖ux‖2L2
= (f, u)L2

, (2)

for almost all t ∈ (0, tf ], for some final time tf ∈ R+, upon observing that the skew-symmetric
term (xuy, u) vanishes. A combination of Cauchy-Schwarz’ and Young’s inequalities on the last
term on the right-hand side of (2) thus yields

∫ tf

0

(f, u)L2
dt ≤ 1

2δ
‖f‖2L2(0,tf ;L2) +

δ

2
‖u‖2L2(0,tf ;L2), (3)

for any δ > 0. Therefore, Grönwall’s Lemma implies

‖u(tf)‖2L2
≤ eδtf

(

δ−1‖f‖2L2(0,tf ;L2)
+ ‖u0‖2L2

)

. (4)

Since the right-hand side of (4) is always greater than or equal to ‖u0‖2L2
for every f ∈

L2(0,∞;L2), we conclude that the basic energy estimate may be severely pessimistic as tf → ∞
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for any fixed δ > 0: for any finite final time tf > 0, the above implies that the right-hand side
of (4) will be positive away from zero for any non-trivial initial condition. Notice that when
f = 0, we can take δ → 0, yielding the stability estimate ‖u(tf)‖L2

≤ ‖u0‖L2
. This is at odds

with the fast decay to 0 observed for this problem by the solution of Kolmogorov’s equation
when equipped with suitable conditions, e.g., periodic boundary conditions or decay-to-infinity
conditions when Ω = R

2. Evidently the key culprit in the above analysis is the absence of
control in a time-integrated norm on the left-hand side of (4). The situation does not appear
to improve if different versions of Grönwall-type inequalities are applied instead.

On the other hand, for the non-degenerate parabolic equation

L̃u ≡ ut − uxx − uyy + xuy = f, in (0,∞)× Ω, (5)

with the same forcing and initial conditions, we can easily deduce the energy identity

1

2

d

dt
‖u(t)‖2L2

+ ‖∇u‖2L2
= (f, u)L2

. (6)

Assuming now the validity of a Poincaré-Friedrichs inequality of the form ‖u‖2L2
≤ CPF‖∇u‖2L2

,
and working as before, we can arrive at the estimate

1

2

d

dt
‖u(t)‖2L2

+ C−1
PF‖u‖2L2

≤ (f, u)L2
, (7)

from which, Grönwall’s Lemma implies

‖u(tf)‖2L2
≤ e−C−1

PF
tf‖u0‖2L2

+ CPF

∫ tf

0

e−C−1

PF
(tf−t)‖f(t)‖2L2

dt, (8)

whose right-hand side clearly decays exponentially as tf → ∞ when f = 0, for instance. This
is in sharp contrast with (4).

A key idea in the context of hypocoercivity, on the other hand, is to arrive at a modified
energy setting whereby Poincaré-Friedrichs inequality is valid for the original problem (1). In
our specific setting of Kolmogorov’s equation, upon considering carefully constructed families

of Hilbertian norms
√

(·, ·)hc =: ‖·‖hc :=
(

‖·‖2L2
+ ‖

√
A∇·‖2L2

)1/2
, where A ∈ R

2×2
symm are suitable

positive semidefinite matrices, it is possible to arrive at an energy estimate of the form

1

2

d

dt
‖u(t)‖2hc + c

(

‖∇u‖2L2
+ ‖ux‖2hc) ≤ (f, u)hc, (9)

for suitable/compatible boundary conditions, with c a positive constant. Crucially, if u is such
that it satisfies a Poincaré-Friedrichs inequality, we can arrive to an estimate of the form (8) for
the original, degenerate Kolmogorov’s equations. As a result, in the homogeneous case f = 0
(8) implies exponential decay as tf → ∞.

Obviously, (4) is not a satisfactory state of affairs not only at the PDE level, but also under
the prism of the numerical analysis for these problems. Indeed, almost all provably convergent,
general numerical methods which can be potentially applied to this class of PDEs use standard
energy-type arguments as in (4) for their error analysis, resulting to possibly severely pessimistic
a priori and/or a posteriori error bounds for large final times tf . Available Galerkin-type
numerical methods for (degenerate) second order evolution problems of diffusion type typically
also suffer in this respect; we non-exhaustively refer to [1, 16, 10, 4] as representative works
presenting different approaches. A numerical approach accommodating instead the functional
setting of (9), thereby taking advantage of hypocoercivity properties is, therefore, desirable.
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To the best of our knowledge, there exist only few, yet quite inspiring, exceptions which
employ hypocoercivity ideas in the context of numerical methods. In particular, the work
of Porretta & Zuazua [21] proves the hypocoercivity of classical finite difference operators dis-
cretising Kolmogorov’s equation for f = 0 on uniform spatial grids over [0,∞)×R

2. The recent
manuscript by Dujardin, Hérau, & Lafitte [8] takes the approach of [21] further by establishing
discrete versions of weighted Poincaré inequalities for difference operators, thereby showing de-
cay to equilibrium for finite difference approximations of the inhomogeneous two-dimensional
Fokker-Planck equation, which is, of course, closely related to Kolmogorov’s equation. Both
these approaches apply directly the abstract semigroup result of Villani [24, Theorem 18] to the
finite difference operators used by proving the necessary commutator properties required for its
validity. With regard to practical works, Foster, Lohéac & Tran [12] discuss the development of
a Lagrangian-type splitting method based on a carefully constructed similarity transformation
and linear finite elements over quasiuniform meshes, although no proof of decay to equilibrium
is given for the numerical method itself. Also, Bessemoulin-Chatard & Filbet [2] present design
principles for the construction of equilibrium-preserving finite volume methods for nonlinear
degenerate parabolic problems. Recently, Bessemoulin-Chatard, Herda & Rey [3] presented an
asymptotic-preserving in the diffusive limit finite volume scheme for a class of one-dimensional
kinetic equations, using the hypocoercivity framework of Dolbeault, Mouhot & Schmeiser [6].

For practical computations, one is typically forced to confine the spatial computational
domain into an open and bounded one, say Ω ⊂ R

d, d = 2, 3. If the objective is to compute
equilibrium states for the whole of Rd, the truncation of the computational domain and the
imposition of boundary conditions should be performed carefully, for it may alter the rate of
decay to equilibrium compared to the non-confined problem [12]. If one is interested instead in
computations on bounded domains as such, then the modelling often dictates the imposition
of additional boundary conditions/constraints, such as solution periodicity or far field decay.
Indeed, as hypocoercivity is manifested via certain properties of commutators of directional
derivatives appearing in the differential operator, integration by parts is an essential tool. As
a result when confined on bounded domains the very nature of boundary conditions enforced
becomes essential. As we shall see below, the imposition of boundary conditions in a fashion
allowing concepts of hypocoercivity to be ported to bounded spatial domains is a challenge
both in the PDE and the numerical analysis contexts. Indeed, to the best of our knowledge
no exhaustive study of hypocoercivity-inducing boundary conditions for problems posed on
bounded spatial domains has been carried out in the respective PDE literature.

This work is concerned with the development of a Galerkin-type finite element method
which is compatible with hypocoercivity concepts and, therefore, allows for the proof of error
bounds whose error constants do not grow as the final time tf → ∞. This is in sharp contrast
to estimates derived via standard energy arguments as discussed above; cf. (4). In particular,
as we shall show below, there will be no dependence of the error constant on the final time tf
in the setting of (9). This, in turn, will highlight theoretically any potential advantages of the
numerical methods presented below for long time computations. The construction of the finite
element method is based on a variational interpretation of the modified entropies involving
mixed derivatives of Hérau & Nier [14] and Villani [24], which are able to reveal the implicit
diffusion properties in the y-variable also. The derived modified variational problem is based on
the PDE and higher order laws stemming from the PDE and involving up to 4th order partial
derivatives, when viewed formally in strong form. The finite element method is constructed
via a Galerkin projection onto a suitable C0-finite element space subordinate to a, possibly,
highly non-uniform triangulation. The proposed method is, nevertheless, non-conforming due
to the 4th order symbol of the variational problem. To recover, therefore, the consistency of the
finite element method without compromising on the hypocoercivity properties, the variational
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form has to be enriched by carefully constructed consistent numerical fluxes over the skeleton
of the triangulation. The proposed finite element method is proven to decay to equilibrium
when f = 0, when we equip the PDE with additional natural boundary conditions; this is, to
the best of our knowledge, the first manifestation of hypocoercivity for a Galerkin scheme in
the literature. Moreover, we prove a priori error bounds in the natural norm determined by
the hypocoercivity result.

We view the developments presented below as proof of concept that Galerkin finite element
methods over general non-uniform grids can be constructed in a compatible fashion to retain
hypocoercivity properties at discrete level. This, in turn, leads to a priori error bounds which
are robust with respect to their dependence on the final time tf . Kolmogorov’s equation has
the role of a sufficiently rich model problem to highlight a new finite element methodology
for hypocoercive PDEs on bounded computational domains with view to retaining the long-
time behaviour of the exact initial/boundary value problems. Apart from the mathematical
challenge, the development of numerical methods for kinetic equations on general, possibly non-
quasi-uniform meshes has important practical ramifications. Indeed, modern applications of
kinetic equations involve the movement of large particles for which Lagrangian schemes appear
to be preferential by practitioners which greatly benefits from the ability to discretise over
unstructured, possibly moving, meshes.

The remainder of this work is structured as follows. In Section 2, we introduce a variational
formulation motivated by design concepts of hypocoercivity [24], which is shown to be coercive
with respect to an H1-equivalent norm in Section 3. A discrete bilinear form using continuous,
yet non-conforming, elements with appropriately constructed numerical fluxes ensuring the
coercivity in the discrete setting also is proposed in Section 4 and is shown to admit completely
analogous decay to equilibrium properties as the respective continuous problem in the non-
external forcing scenario. The error analysis of the proposed finite element method is given in
Section 5 along with a discussion on its properties. Finally, we present a series of numerical
experiments highlighting the predicted convergence rates by the theory; this is the content of
Section 6.

To simplify notation, we shall abbreviate the L2(ω)-inner product and L2(ω)-norm for a
Lebesgue-measurable subset ω ⊂ R

d as (·, ·)ω and ‖·‖ω, respectively. Moreover, when ω = Ω,
we shall further compress the notation to (·, ·) ≡ (·, ·)Ω and ‖·‖ ≡ ‖·‖Ω. We shall also make use
of the standard notation Hk(ω) for Hilbertian Sobolev spaces, k ∈ R.

2 A special weak formulation

The problem of closing a degenerate parabolic PDE with suitable boundary conditions is well
understood via the classical theory of linear second order equations with non-negative char-
acteristic form [11, 20]. In particular, with n(·) := (n1(·), n2(·))T denoting the unit outward
normal vector at almost every point of ∂Ω, which is assumed to be piecewise smooth and
Lipschitz, we first define the elliptic portion of the boundary

∂0Ω := {(x, y) ∈ ∂Ω : n1(x, y) 6= 0}.

On the non-elliptic portion of the boundary ∂Ω\∂Ω0, we define the inflow and outflow bound-
aries:

∂−Ω := {(x, y) ∈ ∂Ω\∂0Ω : xn2(x, y) < 0}, ∂+Ω := {(x, y) ∈ ∂Ω\∂0Ω : xn2(x, y) ≥ 0}.

(For notational brevity, we have included any characteristic portions {(x, y) ∈ ∂Ω\∂0Ω :
xn2(x, y) = 0} of the boundary into the outflow part, since their treatment is identical in what
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follows.) Introducing the notation Lu ≡ −uxx + xuy, we consider the initial/boundary-value
problem:

ut + Lu = ut − uxx + xuy = f, in (0, tf ]× Ω,

u = u0, on {0} × Ω,

u = 0, on (0, tf ]× ∂−,0Ω,

(10)

with ∂−,0Ω := ∂−Ω ∪ ∂0Ω, for tf > 0 and for f ∈ H1(Ω), noting the non-standard regularity
assumption for f . The well-posedness of the above problem is assured upon assuming that ∂−,0Ω
has positive one-dimensional Hausdorff measure [20]. It is also possible to impose Neumann-
type boundary conditions on parts of ∂0Ω; this is not done here in the interest of simplicity
of the presentation only. For a three-dimensional counterpart of the above model problem we
refer to Remark 3.1.

Let A :=

(

α β
β γ

)

be a symmetric and non-negative definite matrix with α, β, γ non-

negative parameters, and set

δ := 1− β√
αγ

; (11)

the fact that A is non-negative definite implies that 0 ≤ δ ≤ 1. Assuming sufficient regularity for
the exact solution u, so that the following calculations are well defined, (1) implies ∇ut+∇Lu =
∇f, which, tested against A∇v for any v ∈ H1(Ω), results in

(∇ut, A∇v) + (∇Lu,A∇v) = (∇f, A∇v);

here and below, we denote (·, ·) ≡ (·, ·)L2(Ω) and ‖ · ‖ ≡ ‖ · ‖L2(Ω) for brevity. Resorting to (1)
once more, after an integration by parts, we deduce the variational form

(ut, v) + (∇ut, A∇v) + (ux, vx) + (xuy, v) + (∇Lu,A∇v) = (f, v) + (∇f, A∇v), (12)

for all v ∈ H1
−,0(Ω) := {v ∈ H1(Ω) : v|∂−,0Ω = 0}. The latter will be the basis of constructing

a finite element method with the sought-after properties. To highlight the idea behind this
construction in the context of hypocoercivity, we shall now discuss the properties of the spatial
part of the operator on the left-hand side of (12), viz.,

a(u, v) := (ux, vx) + (xuy, v) + (∇Lu,A∇v). (13)

3 The hypocoercivity of a(·, ·)
We begin by somewhat modifying the approach presented in Villani [24] arriving, nevertheless,
to an effectively similar result. For accessibility, we shall first revert to (1), rather than (10),
i.e., we have Ω = R

2, assuming that |u(x, y)| → 0 as |(x, y)| → ∞; the case Ω ⊂ R
2 will be

discussed below.
Setting v = u into (13) gives

a(u, u) = ‖ux‖2 + (xuy, u) + (−uxxx + (xuy)x, αux + βuy) + (−uxxy + xuyy, βux + γuy),

which, upon integration by parts, already yields

a(u, u) = ‖ux‖2 + (uxx, αuxx + βuyx) + ((xuy)x, αux + βuy)

+ (uxy, βuxx + γuyx)− (xuy, βuxy + γuyy)

= ‖ux‖2 + α‖uxx‖2 + β‖uy‖2 + γ‖uxy‖2 + α(uy, ux) + 2β(uxy, uxx),
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noting that (xuxy, ux) = 0 = (xuy, uyy) from the divergence theorem and the decay properties
of u as |(x, y)| → ∞. Young’s and Cauchy-Schwarz’ inequalities now imply

a(u, u) ≥ (1− ǫ)‖ux‖2 +
(

α−
√

β
)

‖uxx‖2 +
(

β − α2

4ǫ

)

‖uy‖2 +
(

γ − β
3

2

)

‖uxy‖2.

Selecting α > 0, β = 4α2/9, γ = α3/3, and ǫ = 3/4, for instance, we deduce

a(u, u) ≥ 1

4
‖ux‖2 +

α

3
‖uxx‖2 +

α2

9
‖uy‖2 +

α3

27
‖uxy‖2. (14)

Another instructive choice is α > 0, β = α2, γ = α3 and ǫ = 1/2, giving

2a(u, u) ≥ ‖ux‖2 + α2‖uy‖2. (15)

Thus, remarkably, using the non-standard test function v−∇· (A∇v) for well-chosen A, results
into L providing coercivity with respect to uy also! This is a manifestation of the concept of
hypocoercivity. As briefly discussed above, the mechanics of this idea can be traced back to
the celebrated work of Hörmander [15] for sufficient conditions for hypoellipticity for second
order linear operators: the first order term is “appropriately non-constant” with respect to the
independent variables t, x, y, allowing for control also in the commutator vector field [∂x, x∂y ] =
∂y, using the usual notation [A,B] := AB − BA for a commutator of an algebraic structure.
Informally speaking, the first order vector field in conjunction with the direction of ∂x is able
to “propagate” the x-variable dissipation of L to the whole of R2, resulting to the property of
hypocoercivity [24]. Notice that the choice of α, β, γ yielding (14) corresponds to v−∇· (A∇v)
being an elliptic differential operator, while the respective choice for (15) corresponds to the
parabolic operator v −∇ · (A∇v). At this point, we prefer to remain general in the choice of
A, very much following the point of view taken by Villani [24]. Some concrete choices of A will
be needed below to fully define the ensuing numerical method.

The key second ingredient in proving solution behaviour as tf → ∞ is the availability of
a Poincaré-Friedrichs/spectral gap inequality. Such inequalities typically hold for functions in
standard Lebesgue spaces on bounded domains or for periodic ones, along with some boundary
or moment conditions. For problems posed on whole Euclidean spaces, hypocoercivity is typ-
ically manifested in appropriately weighted Lebesque spaces [24]. In the present work, we are
primarily interested in the mechanics of porting hypocoercivity into piecewise smooth Galerkin-
type solutions; as such we shall assume that we have available compatible closure/boundary
conditions for hypocoercivity to hold at the PDE level.

Boundary/closure conditions in kinetic PDE models posed on bounded domains Ω ⊂ R
d

are designed to convey various physical properties in the vicinity of boundaries, e.g., reflec-
tion, diffusion, periodicity, etc. In the case of the classical Kolmogorov equation considered
here, the x-variable is typically associated with particle velocity, while the y-variable models
position/displacement. Performing the above calculations on a bounded domain Ω instead,
integrations by parts yield

a(u, u) = ‖ux‖2 +
1

2
‖√xn2u‖2∂+Ω + ‖

√
A∇ux‖2 + β‖uy‖2 + α(uy, ux)

+ (
1

2
xn2∇u− n1∇ux, A∇u)∂Ω.

(16)

To arrive again at (14) (or (15)), it is sufficient to ensure that

(
1

2
xn2∇u− n1∇ux, A∇u)∂Ω ≥ 0. (17)
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Alternatively, it may be possible to control part of (1
2
xn2∇u − n1∇ux, A∇u)∂Ω by the non-

negative terms on the right-hand side of (16), with the remaining part to satisfy a non-negativity
condition.

We now give some specific examples. For illustration, we set Ω := (x−, x+) × (y−, y+) .
Then,

∂0Ω = {(x−, y), (x+, y) : y− ≤ y < y+}, ∂±Ω = {(x, y±) : x− < x ≤ x+}.

Further, we assume u ∈ H5/2+ε(Ω)-smoothness of the solution, ε > 0 so that the last term on
the right-hand side of (16) is well-defined; this is a reasonable assumption in this context due
to the hypoellipticity of Kolmogorov’s equation [15].

As a first example, we remove the homogeneous boundary conditions on ∂−,0Ω and, instead,
we consider the family of sufficiently smooth functions on the torus T. The continuity of
partial derivatives implies that the last term on the right-hand side of (16), together with any
additional boundary terms arising by the removal of the homogeneous boundary conditions,
vanish.

As a second example, we restrict the family of solutions to periodic functions in the diffusive
x-direction, and we further assume that u has vanishing inflow flux, viz., uy = 0. This gives

(
1

2
xn2∇u− n1∇ux, A∇u)∂0Ω = 0, (18)

since xn2 = 0 on ∂0Ω. Moreover, since n1 = 0 and uy = 0 on ∂±Ω and, observing that ux = 0
on ∂−Ω (as ux is the tangential derivative on ∂−Ω of the constant initial condition), we deduce

(
1

2
xn2∇u− n1∇ux, A∇u)∂−Ω =

1

2
(xn2∇u,A∇u)∂−Ω = 0.

Therefore, we deduce

(
1

2
xn2∇u− n1∇ux, A∇u)∂Ω = (

xn2

2
∇u,A∇u)∂±Ω =

1

2
‖
√

|xn2|A∇u‖2∂+Ω.

We refer, e.g., to [22, 8] for further discussion on additional boundary conditions. Different
combinations of assumptions are also possible to yield (17), such as vanishing second derivative
conditions across the elliptic boundary, etc.

Remark 3.1. To highlight the potential generality of the approach, we briefly consider the
three-dimensional version of Kolmogorov’s equation: for Ω ⊂ R

3, find u : (0, tf ]×Ω → R, such
that

ut + L3u = ut − uxx + xuy + yuz = f, in (0, tf ]× Ω,

u = u0, on {0} × Ω,

u = 0, on (0, tf ]× ∂−,0Ω,

(19)

for tf > 0 and f ∈ H1(Ω). Remarkably, (19) is smoothing, despite possessing explicit diffusion
in one spatial dimension only. Indeed, we have, respectively,

[∂x, b · ∇] = ∂y, [∂y, b · ∇] = ∂z ,

thereby, Hörmander’s rank condition is satisfied [15], implying that (19) is, in fact, hypoelliptic!
Moreover, since full rank is achieved via commutators involving the skew-symmetric 1st order
part b · ∇u, the PDE in (19) satisfies also the commutator hypotheses of [24, Theorem 24].
The developments discussed in this work can be transferred to this problem also with minor
modifications only.
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Returning to the case of a general polygonal domain Ω ⊂ R
2, we shall assume the validity

of the additional boundary conditions:

(1

2
xn2∇u− n1∇ux

)
∣

∣

∂Ω\∂+Ω
= 0 and n1∇ux

∣

∣

∂+Ω
= 0, (20)

for the remainder of this work, which trivially imply (17). We do so, instead of prescribing
particular additional boundary conditions; we shall clearly state if the validity of (20) is assumed
or not for the proof of various results below. We stress that, under minor modifications only,
the theory presented below can still be valid for other suitable assumptions, e.g., for periodic
solutions also by careful inspection of the proofs. The combination of suitable boundary/closure
conditions, whose nature ensures the availability of Poincaré-Friedrichs inequalities, is key in the
solution behaviour as tf → ∞. Nonetheless, in the present work, our focus is on the derivation
of Galerkin discretizations of the bilinear form a(·, ·); as such, we adopt for simplicity the
convenient setting (20) for hypocoercivity-inducing boundary conditions.

4 A finite element method

Motivated by the above discussion, we return to the variational representation (12) of problem
(10), (20) on a bounded domain Ω ⊂ R

2. For simplicity of the presentation we, henceforth,
assume that Ω is polygonal also; extension to curved domains is possible via isoparametric
versions of the finite element spaces discussed below. As is standard in discretisation by a
Galerkin type finite element method, we introduce a family of triangulations of Ω, say T ,
consisting of mutually disjoint open triangular elements T ∈ T , whose closures cover Ω̄ exactly.
Let also h : ∪T∈T T → R+ be the local meshsize function defined elementwise by h|T := hT :=
diam(T ). For simplicity, we further assume that T is shape-regular, in the sense that the
radius ρT of the largest inscribed circle of each T ∈ T is bounded from below with respect
to each element’s diameter h|T , uniformly as ‖h‖L∞(Ω) → 0 under mesh refinement. Also, we
assume that T is locally quasi-uniform in the sense that the diameters of adjacent elements are
uniformly bounded from above and below. Finally, let Γ := ∪T∈T ∂T denote the mesh skeleton,
and Γint := Γ\∂Ω.

We define the standard, continuous, finite element space subordinate to T by

Vh ≡ V p
h := {V ∈ H1

−,0(Ω) : V |T ∈ Pp(T ), T ∈ T },

with Pp(ω), ω ⊂ R
2, denoting the space of polynomials of total degree at most p over ω,

p = 2, 3, . . . . Further, we define the jump [[w]] of w across the common element interface
e := ∂T+ ∩ ∂T− of two adjacent elements T+, T−, by [[w]]|e := w|T+n|T+ + w|T−n|T− with n|T
denoting the unit outward normal vector to each point of ∂T ; correspondingly, we also define
the average {{w}}|e := (w|T+ +w|T−)/2 of w across e. Finally, for boundary faces e ⊂ ∂T ∩ ∂Ω,
we set [[w]]|e := w|Tn|T and {{w}}|e := w|T , respectively. The above jump and average definitions
are trivially extended to vector-valued functions by component-wise application.

We shall also make use of the broken Sobolev spaces Hr(Ω, T ) := {v|T ∈ Hr(T ), T ∈ T },
with respective Hilbertian norm ‖w‖Hr(Ω,T ) :=

(
∑

T∈T ‖∇rw‖2T +‖{{h}}1/2−r[[w]]‖2Γint

)1/2
, r ≥ 1.

Further, we define the broken gradient ∇T to be the element-wise gradient operator with
∇T w|T = ∇w|T , T ∈ T , for w ∈ H1(Ω, T ).

Starting from (12), we consider the spatially discrete finite element method: find U ≡
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U(t) ∈ Vh, t ∈ (0, tf ], such that

(Ut, V ) + (Ux, Vx) + (xUy, V )

+(∇Ut, A∇V ) + (A∇T Ux,∇T Vx) + (∇T (xUy), A∇V ) + sh(U, V )

= (f, V ) + (∇f, A∇V ),

(21)

for all V ∈ Vh, whereby

sh(U, V ) := −
∫

Γint∪∂−Ω

(0, x)T ·
(

α[[Ux]]{{Vx}}+ β[[Ux]]{{Vy}}+ β[[Uy]]{{Vx}}+ γ[[Uy]]{{Vy}}
)

ds

+

∫

Γint

|xn2|
2

(

κ[[Ux]] · [[Vx]] + λ[[Uy]] · [[Vy]]
)

ds

−
∫

Γint∪∂0Ω

(

{{A∇Ux}} · [∇V ]1 + {{A∇Vx}} · [∇U ]1 − τ [∇U ]1 · A[∇V ]1

)

ds,

with [v]1|e := (v|e)+n+
1 +(v|e)−n−

1 , for each internal face e and n1 denoting the first component
of the unit normal vector to e and [v]1|e := (v|e)+n+

1 , for e ⊂ ∂Ω, for some τ : Γ → R non-
negative function to be determined precisely below and user-defined parameters κ, λ ≥ 0; we
also set U(0) := Πu0 ∈ Vh, with Π : L2(Ω) → Vh denoting the orthogonal L2-projection onto
the finite element space. For brevity, we shall adopt the notation:

s1,h(w, v) :=

∫

Γint

|xn2|
2

(

κ[[wx]] · [[vx]] + λ[[wy]] · [[vy]]
)

ds.

The term s1,h(w, v) introduces numerical diffusion in the (0, x)T -direction when κ, λ > 0.
Such additional numerical diffusion may be desirable in the presence of rough initial condi-
tions. When additional numerical diffusion is not advantageous, we can choose κ, λ = 0 giving
s1,h(·, ·) ≡ 0.

As we shall see below, the stabilisation sh(·, ·) is constructed so that the method (21) is
consistent with (12) upon assuming the additional boundary conditions (20).

Lemma 4.1. Let τ : Γ → R with τ = Cτp
2/{{h}}, for Cτ > 0 large enough but independent of

h and of p. Then, for any 0 < α < 1/2, there exist 0 < γ < β < 1 and a positive constant
c0, independent of the approximate solution U ∈ Vh and of tf , such that for any 0 < ζ < 1, we
have

‖U(tf )‖2 + ‖
√
A∇U(tf )‖2 + (1− ζ)

∫ tf

0

(

c0‖U‖2 + ‖
√
A∇U‖2

)

dt

+

∫ tf

0

(

‖√xn2U‖2∂+Ω + ‖
√

xn2A∇U‖2∂+Ω

+ ‖
√
A∇T Ux‖2 + s1,h(U, U) + ‖

√
τA[∇U ]1‖2Γint∪∂0Ω

)

dt

≤ 4

ζ

∫ tf

0

(

c−1
0 ‖f‖2 + ‖

√
A∇f‖2

)

dt+ ‖Πu0‖2 + ‖
√
A∇Πu0‖2;

(22)

when f ≡ 0, we can trivially select ζ = 0 in the proof, so that the first term on the right-hand
side of (22) vanishes.

Proof. Setting V = U in (21), standard arguments give

1

2

d

dt

(

‖U‖2 + ‖
√
A∇U‖2

)

+ ‖Ux‖2 +
1

2
‖√xn2U‖2∂+Ω

+ ‖
√
A∇T Ux‖2 + (∇T (xUy), A∇U) + sh(U, U)

= (f, U) + (∇f, A∇U),

(23)
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upon observing that (xUy, U) = ‖√xn2U‖2∂+Ω/2 as U = 0 on ∂−Ω. We calculate

(∇(xUy), A∇U)T = α(Uy, Ux)T + β‖Uy‖2T + α(Ux, xUyx)T + β(Uy, xUyx)T

+ β(xUyy, Ux)T + γ(xUyy , Uy)T .

Observe now the identities

α(Ux, xUyx)T =
α

2

∫

∂T

xn2U
2
x ds, γ(Uy, xUyy)T =

γ

2

∫

∂T

xn2U
2
y ds,

β(xUyy, Ux)T = −β(xUy, Uxy)T + β

∫

∂T

xn2UxUy ds.

Then, summing over all T ∈ T , we deduce

(∇T (xUy), A∇U) = α(Uy, Ux) + β‖Uy‖2 +
1

2

∫

Γ

(0, x)T · [[αU2
x + 2βUxUy + γU2

y ]] ds. (24)

Using (24) into (23), noting that [[WV ]] = {{W}}[[V ]] + {{V }}[[W ]] on Γint for V,W ∈ Vh, and
integrating with respect to t ∈ [0, tf ], therefore, gives

‖U(tf )‖2 + ‖
√
A∇U(tf )‖2 + 2

∫ tf

0

‖
√
A∇T Ux‖2 dt+

∫ tf

0

‖√xn2U‖2∂+Ω dt

+

∫ tf

0

∫

∂+Ω

xn2(αU
2
x + 2βUxUy + γU2

y ) ds dt+ 2

∫ tf

0

(

‖Ux‖2 + α(Uy, Ux) + β‖Uy‖2
)

dt

− 4

∫ tf

0

∫

Γint∪∂0Ω

{{A∇Ux}}[∇U ]1 ds dt + 2

∫ tf

0

(

‖
√
τA[∇U ]1‖2Γint∪∂0Ω

+ s1,h(U, U)
)

dt

= 2

∫ tf

0

(

(f, U) + (∇f, A∇U)
)

dt + ‖Πu0‖2 + ‖
√
A∇Πu0‖2.

(25)

Focusing on the fifth and sixth terms on the left-hand side of (25), recalling (11), the Cauchy-
Schwarz and Young inequalities, along with elementary manipulations, imply

∫

∂+Ω

xn2(αU
2
x + 2βUxUy + γU2

y ) ds =

∫

∂+Ω

xn2|
√
A∇U |2 ds ≥ 0, (26)

and

2
(

‖Ux‖2 + α(Uy, Ux) + β‖Uy‖2
)

≥ 2(1− ǫ)‖Ux‖2 +
(

2β − α2

2ǫ

)

‖Uy‖2 = ‖
√
B∇U‖2, (27)

respectively, upon defining the diagonal matrix B = diag(2(1 − ǫ), 2β − α2/(2ǫ)), for any
0 < ǫ < 1. We, then, have

‖
√
B∇U‖2 = ‖

√
B −A∇U‖2 + ‖

√
A∇U‖2 ≥ λmin

B−A‖∇U‖2 + ‖
√
A∇U‖2,

where λmin
B−A denotes the smallest eigenvalue of B −A. There exist values 0 < γ < β such that

λmin
B−A > 0. For instance, setting β = α2, γ = α3, and ǫ = 1/2, we have det(B−A) = α2(1−2α).

A numerical investigation reveals that max0≤α≤1/2 λ
min
B−A ≈ 0.054429 attained for a value α ≈

0.35060, noting that B − A has positive determinant for 0 < α < 1/2.
Since U = 0 on ∂−,0Ω, which was assumed to be of positive one-dimensional Hausdorff

measure, the validity of a Poincaré-Friedrichs/spectral gap inequality ‖U‖2 ≤ CPF‖∇U‖2 with
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CPF ≡ CPF (Ω) positive constant, independent of U , is assured, thereby allowing us to conclude
the lower bound

‖
√
B∇U‖2 ≥ C−1

PFλ
min
B−A‖U‖2 + ‖

√
A∇U‖2. (28)

Thus, with the choices α ≈ 0.35060, β = α2, γ = α3, and ǫ = 1/2, we can select c0 =
0.054429/CPF . As we shall see below, c0 effectively represents the exponent of the exponential
decay to equilibrium; cf. Theorem 4.3 below.

Further, the symmetry of A along with the Cauchy-Schwarz inequality and a standard
inverse estimate yield, respectively,

∫

Γint∪∂0Ω

{{A∇Ux}} · [∇U ]1 ds ≤ ‖ϕ−1/2{{
√
A∇Ux}}‖Γint∪∂0Ω‖

√

ϕA[∇U ]1‖Γint∪∂0Ω

≤ ‖
√

Cinvp2/hϕ
√
A∇T Ux‖‖

√

ϕA[∇U ]1‖Γint∪∂0Ω

≤ 1

4
‖
√
A∇T Ux‖2 + ‖

√
τA[∇U ]1‖2Γint∪∂0Ω

,

(29)

using the standard inverse inequality ‖v‖2∂T ≤ Cinvp
2/hT‖v‖2T on (29), and selecting ϕ = τ ≥

4Cinvp
2/{{h}} and resorting to the local quasiuniformity of the mesh. Inserting the last two

bounds into (25) and, using the Cauchy-Schwarz inequality, setting c0 := C−1
PFλ

min
B−A, we deduce

the result for any 0 < ζ < 1; when f ≡ 0 we can trivially select ζ = 0.

We note that the specific choice of A as a function of α provided in the proof above is
not unique. As such, we have avoided providing exact values of α, β, γ in the statement of
Lemma 4.1. Nonetheless, preliminary numerical investigation shows that the choice of A does
not affect significantly the performance of the method, provided that A is chosen to ensure (28)
away from limiting values [7].

Remark 4.2. It is possible to optimise further the constant c0 by working as follows: starting
from ‖

√
B∇U‖2, we have

‖
√
B∇U‖2 = ‖

√
B − νA∇U‖2 + ν‖

√
A∇U‖2 ≥ λmin

B−νA‖∇U‖2 + ν‖
√
A∇U‖2,

for suitable ν > 0. This way it is possible to arrive at a different, possibly larger, value for
λmin
B−νA and, consequently, for c0.

The last proof highlights that the validity of the Poincaré-Friedrichs inequality is of central
importance here, and in general in the study of trend to equilibrium for kinetic equations
[22, 14, 24]. In the present context of bounded spatial domain Ω, we have taken the viewpoint
of using standard (non-weighted) integral norms. Thus the Lebesgue measure of Ω is present
in the constant c0. The extension of the above framework to general Fokker-Planck equations
on function spaces weighted by equilibrium distributions is an important question and will be
discussed elsewhere. The availability of such a Poincaré-Friedrichs inequality (also known as
spectral gap property in kinetic theory) facilitates the crucial feature of the proposed method:
the absence of an exponential term of the form exp(ctf) multiplying the data terms in the above
stability estimate. Moreover, (21) also immediately implies the decay of numerical solutions
for the respective homogeneous problem.

Theorem 4.3 (Decay via hypocoercivity). Under the hypotheses of Lemma 4.1, the finite
element method (21) for the homogeneous problem (10) with f ≡ 0 satisfies

‖U(tf )‖2 + ‖
√
A∇U(tf )‖2 ≤ e−min{1,c0}tf

(

‖Πu0‖2 + ‖
√
A∇Πu0‖2

)

,

for all tf > 0.
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Proof. Starting from (23) and using the estimates from the proof of Lemma 4.1, we arrive at
the estimate

d

dt

(

‖U‖2 + ‖
√
A∇U‖2

)

+min{1, c0}
(

‖U‖2 + ‖
√
A∇U‖2

)

≤ 0,

from which an application of Grönwall’s Lemma already implies the result.

5 Error analysis

We continue by proving a priori error bounds for (21). For brevity, we shall denote by B(·, ·) :
H5/2+ε(Ω, T )×H5/2+ε(Ω, T ) → R, ε > 0, the bilinear form given by

B(w, v) := (wx, vx) + (xwy, v) + (A∇T wx,∇T vx) + (∇T (xwy), A∇v) + sh(w, v).

Implicitly in the proof of Lemma 4.1, we proved also the following (hypo)coercivity result.

Lemma 5.1 ((Hypo)coercivity). Let

‖|w|‖ :=
(

‖
√
B∇w‖2 + ‖√xn2w‖2∂+Ω + ‖

√

xn2A∇w‖2∂+Ω

+ ‖
√
A∇T wx‖2 + ‖

√
τA[∇w]1‖2Γint∪∂0Ω

+ s1,h(w,w)
)1/2

,

with B as in the proof of Lemma 4.1. Then, ‖|·|‖ is a norm on H1
−,0(Ω) ∩ H2(Ω, T ), and we

have

B(w,w) ≥ 1

2
‖|w|‖2,

for all w ∈ Vh.

For the remaining of this work, unless explicitly stated, we assume that ǫ is away from 1
and that β ∼ α2, so that B = cBdiag(1, α

2) for a given constant 0 < cB ≤ 1. Thus, we can
take C0 = (2cB)

−1. Note that this also covers the case of A being singular, i.e., the operator
∇ ·A∇(·) being parabolic. Next, we establish the consistency of the bilinear form B.

Lemma 5.2. Assume that for the solution u of (10), (20) we have u(t, ·) ∈ H1
−,0(Ω) ∩

H5/2+ε(Ω, T ), ε > 0, for almost all t ∈ (0, tf ]. Then, for almost all t ∈ (0, tf ] and for all
V ∈ Vh, we have

(ut, V ) + (∇ut, A∇V ) + B(u, V ) = (f, V ) + (∇f, A∇V ). (30)

Proof. The proof follows by integration by parts and by the smoothness of u, noting that from
(20), we have (1

2
xn2∇u− n1∇T ux, A∇V )∂Ω\∂+Ω = 0 and (n1∇T ux, A∇v)∂+Ω = 0.

Let π : H1
−,0(Ω) → Vh, a projection operator onto the finite element space to be defined

precisely below, and set
ρ := u− πu, ϑ := πu− U.

Employing (30) and (21) with V = ϑ, gives the error equation

1

2

d

dt

(

‖ϑ(s)‖2 + ‖
√
A∇ϑ(s)‖2

)

+ B(ϑ, ϑ) = −(ρt, ϑ)− (∇ρt, A∇ϑ)− B(ρ, ϑ). (31)

We shall now construct a π, so that B(ρ, ϑ) = 0.

13



Lemma 5.3 ((Hypo)elliptic projection). Assume that B = cBdiag(1, α
2), for a given constant

0 < cB ≤ 1. For every v ∈ H1
−,0(Ω) ∩H5/2+ε(Ω, T ), ε > 0, there exists a unique πv ∈ Vh such

that
B(πv, V ) = B(v, V ), (32)

for all V ∈ Vh. Moreover, assuming further that v ∈ HkT (T ) for T ∈ T , kT ≥ 3, we have the
approximation estimate:

‖|v − πv|‖2 ≤ C(A, κ, λ)
∑

T∈T

h2sT
T

p2(kT−3)
xT |u|2HkT (T ), (33)

with sT := min{p+ 1, kT} − 2 and xT := maxx∈T{1, |x|2}, T ∈ T .

Proof. Uniqueness (and, therefore, existence due to linearity) follows from the coercivity of B
shown in Lemma 5.1. Setting now η := v−Pv and ξ := Pv−πv, with P denoting a projection
operator from H1

−,0(Ω) onto Vh with optimal approximation properties with respect to the local
meshsize h, we have

1

2
‖|ξ|‖2 ≤ B(ξ, ξ) = −B(η, ξ)

=− (ηx, ξx)− (ηy, xξ)− (
√
A∇T ηx,

√
A∇T ξx)

− (∇T (xηy), A∇ξ)− sh(η, ξ).

(34)

Now, integration by parts yields

− (ηy, xξ) = (xη, ξy)−
∫

∂+Ω

xn2ηξ ds, (35)

and
(∇T (xηy), A∇ξ)

=
∑

T∈T

(

(ηy + xηxy, αξx + βξy)T + (xηyy, βξx + γξy)T

)

= α(ηy, ξx) + β(ηy, ξy)−
∑

T∈T

(

(ηx, x(αξx + βξy)y)T + (ηy, x(βξx + γξy)y)T

)

+
∑

T∈T

∫

∂T

xn2

(

αηxξx + βηxξy + βηyξx + γηyξy
)

ds.

(36)

Observe that the last term on the right-hand side of (36) is equal to

∫

Γint∪∂−Ω

(0, x)T ·
(

α[[ηx]]{{ξx}}+ β[[ηx]]{{ξy}}+ β[[ηy]]{{ξx}}+ γ[[ηy]]{{ξy}}
)

ds

+

∫

Γint

(0, x)T ·
(

α{{ηx}}[[ξx]] + β{{ηx}}[[ξy]] + β{{ηy}}[[ξx]] + γ{{ηy}}[[ξy]]
)

ds

+

∫

∂+Ω

xn2A∇η · ∇ξ ds,

(37)

and note that the first term of (37) cancels with the first term of sh(η, ξ). Using now (35), (36)
and (37) into (34), along with standard Cauchy-Schwarz’ and Young’s inequality arguments,
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and working as in (29) gives

C−1‖|ξ|‖2

≤ ‖ηx‖2 + β−1‖xη‖2 + ‖√xn2η‖2∂+Ω + ‖
√

xn2A∇η‖2∂+Ω + ‖
√
A∇T ηx‖2

+ (α2 + β)‖ηy‖2 + ‖
√
τA[∇η]1‖2Γint

+ κ‖
√

|xn2|[[ηx]]‖2Γint
+ λ‖

√

|xn2|[[ηy]]‖2Γint

+
∑

T∈T

(

‖µ−1xηx‖T
(

α‖µ(ξx)y‖T + β‖µ(ξy)y‖T
)

+ ‖µ−1xηy‖T
(

β‖µ(ξx)y‖T + γ‖µ(ξy)y‖T
)

)

+ ‖
√

A/τ{{∇ηx}}‖2Γint
+
(

α2κ−1 + β2λ−1
)

‖√xn2{{ηx}}‖2Γint
+
(

β2κ−1 + γ2λ−1
)

‖√xn2{{ηy}}‖2Γint
,

for any µ, κ, λ > 0, for some C > 1, independent of the, relevant to the argument, pa-
rameters. Alternatively, when κ, λ = 0, we work as follows: using the inverse estimate
‖ξx‖2∂T ≤ Cp2/hT‖ξx‖2T and, similarly for ξy, we further estimate the second term on the
right-hand side of (37) to arrive instead at

C−1‖|ξ|‖2

≤ ‖ηx‖2 + β−1‖xη‖2 + ‖√xn2η‖2∂+Ω + ‖
√
A∇T ηx‖2 + (α2 + β)‖ηy‖2 + ‖

√
τA[∇η]1‖2Γ

+
∑

T∈T

(

‖µ−1xηx‖T
(

α‖µ(ξx)y‖T + β‖µ(ξy)y‖T
)

+ ‖µ−1xηy‖T
(

β‖µ(ξx)y‖T + γ‖µ(ξy)y‖T
)

)

+ C|AB−1/2|2
(

‖xn2h
−1/2{{ηx}}‖2Γint

+ ‖xn2h
−1/2{{ηy}}‖2Γint

)

+
1

4
‖
√
B∇ξ‖2,

with |·|2 denoting the matrix-2-norm. Applying the inverse estimate ‖∇v‖2T ≤ Cp4/h2
T‖v‖2T , for

v ∈ Pp(T ) on the terms containing µξ in the last two alternative estimates, selecting µ = h/p2,
and performing standard manipulations, we arrive at the combined estimate

C−1‖|ξ|‖2 ≤ ‖ηx‖2 + β−1‖xη‖2 + ‖√xn2η‖2∂+Ω + ‖
√
A∇T ηx‖2 + ‖

√
τA[∇η]1‖2Γ

+ (α2 + β)
(

‖µ−1xηx‖2 + ‖ηy‖2
)

+
(

β2 +
γ2

β

)

‖µ−1xηy‖2

+min
{

(

α2κ−1 + β2λ−1
)

‖√xn2{{ηx}}‖2Γint
+
(

β2κ−1 + γ2λ−1
)

‖√xn2{{ηy}}‖2Γint
,

C|AB−1/2|2
(

‖xn2h
−1/2{{ηx}}‖2Γint

+ ‖xn2h
−1/2{{ηy}}‖2Γint

)

}

+ κ‖
√

|xn2|[[ηx]]‖2Γint
+ λ‖

√

|xn2|[[ηy]]‖2Γint
,

which holds for any κ, λ ≥ 0. Choosing P to be an hp-optimal projection operator onto the
finite element space Vh, we can assume approximation estimates of the form

‖∇mη‖T ≤ Ch
min{p+1,k}−m
T pm−k|u|Hk(T )

for k > m, with u ∈ Hk(T ), T ∈ T (see, e.g., [23, 4] for examples of such operators). These,
together with the trace estimate ‖w‖2∂T ≤ C‖w‖T‖w‖H1(T ) and the triangle inequality ‖|ρ|‖ ≤
‖|η|‖+ ‖|ξ|‖, already imply (33).

We now show the (potentially super-)approximation for the left-hand side of (31). Such
results are typical to finite element method for parabolic problems. We shall show that this is
the case also for (21) discretising the, degenerate, Kolmogorov equation.
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Lemma 5.4. Assume that the exact solution u to (10), (20) satisfies u ∈ H1(0, tf ;H
1
−,0(Ω) ∩

H5/2+ε(Ω, T )). Then, under the hypotheses of Lemma 4.1, we have the following bound

‖ϑ(t)‖2 + ‖
√
A∇ϑ(t)‖2 + 1

2

∫ t

0

‖|ϑ|‖2 ds ≤ ‖ϑ(0)‖2 + ‖
√
A∇ϑ(0)‖2

+ 4max{1, c−2
0 }

∫ t

0

‖
√
B∇ρt‖2 ds,

(38)

for any t ∈ (0, tf ], for some positive constant C, depending only on the shape-regularity and the
local quasi-uniformity of the mesh.

Proof. Starting from (31), upon integration in time between 0 and t ∈ (0, tf ], multiplying by 2
and using standard arguments, gives

‖ϑ(t)‖2 + ‖
√
A∇ϑ(t)‖2 +

∫ t

0

‖|ϑ|‖2 ds ≤ ‖ϑ(0)‖2 + ‖
√
A∇ϑ(0)‖2

+ 2

∫ t

0

(

c−1
0 ‖ρt‖2 + ‖

√
A∇ρt‖2

)

ds

+
1

2

∫ t

0

(

c0‖ϑ‖2 + ‖
√
A∇ϑ‖2

)

ds,

(39)

recalling the notation c0 = C−1
PFλ

min
B−A. Using now (28), we deduce the result.

The above developments yield an a priori error bound in the norm appearing on the left-hand
side of (38).

Theorem 5.5. Assume that u0, u, ut ∈ H1
−,0(Ω)∩HkT (T ) for kT ≥ 3, T ∈ T , the latter two for

almost all t ∈ (0, tf ], with u being the exact solution to (10), (20). Then, under the assumptions
of Lemmata 4.1 and 5.3, the error e := u − U of the finite element method (21) satisfies the
bound:

‖e(t)‖2 + ‖
√
A∇e(t)‖2 +

∫ t

0

‖|e|‖2 ds ≤ C(A, κ, λ)
∑

T∈T

ET (u0, t, u), (40)

where

ET (u0, t, u) :=
h2sT
T xT

p2(kT−3)

(

max{1, c−1
0 }|u0|2HkT (T )

+ |ut|2L2(0,t;HkT (T ))
+ |u|2

L2(0,t;HkT (T ))

)

,

with sT := min{p+ 1, kT} − 2, and the constant C(A, κ, λ) > 0 is bounded away from +∞ for
0 < α ≤ 1/2 and all κ, λ ≥ 0 and independent of the mesh parameters and of u. Moreover,
C(A, κ, λ) is independent of the final time tf .

Proof. Working as for (28), we have

‖ϑ(0)‖2 + ‖
√
A∇ϑ(0)‖2 ≤ max{1, c−1

0 }‖
√
B∇ϑ(0)‖2

≤ 2max{1, c−1
0 }

(

‖
√
B∇ρ(0)‖2 + ‖

√
B∇(u0 − Πu0)‖2

)

.

Similarly, we also have

‖ρ(0)‖2 + ‖
√
A∇ρ(0)‖2 ≤ max{1, c−1

0 }‖
√
B∇ρ(0)‖2.
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The last two estimates can be further bounded from above by (33) and hp-approximation
bounds for the orthogonal L2-projection [18, 5], respectively. Also, from (33), we have

∫ t

0

(

‖
√
B∇ρt‖2 + ‖|ρ|‖2

)

ds ≤ C
∑

T∈T

h2sT
T xT

p2(kT−3)

(

|ut|2L2(0,t;HkT (T )) + |u|2L2(0,t;HkT (T ))

)

. (41)

Combining the above bounds with the triangle inequality recalling that u − uh = ρ + ϑ, the
result already follows.

The crucial property of the above error estimate is the independence of the respective
constant C(A, κ, λ) from the final time tf ; this is a direct consequence of the hypocoercivity-
compatible discretisation (21).

Assumption u0 ∈ H1
−,0(Ω) is a natural compatibility condition in this context. Since a

typical setting in kinetic simulation concerns initial profiles with compact support within a
computational domain Ω, u0 ∈ H1

−,0(Ω) is of significant practical relevance also. Nonetheless,
we shall now discuss the dependence of the error committed by the numerical method as tf → ∞
and we shall see that the effect of the initial condition error u0 −Πu0 diminishes exponentially
as tf → ∞. Thus, possibly incompatible initial conditions u0 ∈ H1(Ω)\H1

−,0(Ω) will have an
exponentially diminishing effect in the accuracy of the method with respect to tf .

Theorem 5.6. Assume that u, ut ∈ H1
−,0(Ω) ∩ HkT (T ) for kT ≥ 3, T ∈ T for almost all

t ∈ (0, tf ], with u being the exact solution to (10), (20), and u0 ∈ H1(Ω). Under the hypotheses
of Lemmata 4.1 and 5.3 and of Theorem 5.5, the error e := u−U of the finite element method
(21) satisfies the bound:

‖e(tf )‖2 + ‖
√
A∇e(tf )‖2 ≤ e−min{1,c0}tf

(

‖πu0 − Πu0‖2 + ‖
√
A∇(πu0 − Πu0)‖2

)

+
C(A, κ, λ)

min{1, c0}
∑

T∈T

h2sT
T xT

p2(kT−3)
HT (t, u),

(42)

where

HT (t, u) := |u(tf)|2HkT (T )
+

∫ tf

0

e−min{1,c0}(tf−t)|ut|2HkT (T )
dt,

for sT := min{p+ 1, kT} − 2, with C(A, κ, λ) independent of tf , of u, and of the mesh param-
eters.

Proof. Starting from (31), we use Lemmata 5.1 and 5.3 and, subsequently, apply (28) to arrive
at

d

dt

(

‖ϑ(t)‖2 + ‖
√
A∇ϑ(t)‖2

)

+min{1, c0}
(

‖ϑ‖2 + ‖
√
A∇ϑ‖2

)

≤ c−1
0 ‖ρt‖2 + ‖

√
A∇ρt‖2,

upon multiplication by 2. Grönwall’s Lemma, thus, implies

‖ϑ(tf)‖2 + ‖
√
A∇ϑ(tf )‖2 ≤ e−min{1,c0}tf

(

‖ϑ(0)‖2 + ‖
√
A∇ϑ(0)‖2

)

+

∫ tf

0

e−min{1,c0}(tf−t)
(

c−1
0 ‖ρt‖2 + ‖

√
A∇ρt‖2

)

dt.
(43)

As before, we also have

‖ρt‖2 + ‖
√
A∇ρt‖2 ≤ max{1, c−1

0 }‖
√
B∇ρt‖2 ≤

C(A, κ, λ)

min{1, c0}
∑

T∈T

h2sT
T xT

p2(kT−3)
|ut|2HkT (T )

.
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The last bound combined with (43) and the completely analogous estimate

‖ρ(tf )‖2 + ‖
√
A∇ρ(tf )‖2 ≤ max{1, c−1

0 }‖
√
B∇ρ(tf )‖2,

already imply the result.

Therefore, (21) admits completely analogous long time properties compared to the PDE
problem (10), (20).

Remark 5.7. The first term on the right-hand side of (43) vanishes upon altering the finite
element method (21) at t = 0 from U(0) = Πu0 to U(0) = πu0. In practical terms, this results
in a computational overhead of a stiffness matrix solve as opposed to a mass matrix one.

The a priori error estimate derived in Theorem 5.5 is optimal with respect to mesh-size h,
upon observing that the bilinear form B is the weak form of a formally 4th order differential
operator. At the same time, the highest order terms involving A of B(w, v) play the role
of “stabilisation” in this non-standard Galerkin context, resulting in increase of the spatial
operator order from second to fourth. The estimate (40) is slightly suboptimal with respect to
the polynomial degree p, as is typical in error analyses of hp-version interior penalty procedures,
such as (21), involving inverse estimates [13]. Correspondingly, the a priori error bound in
Theorem 5.6 is formally suboptimal with respect to the mesh size h by one order. For instance,
for p = 2 and kT = 3, T ∈ T , we have first order convergence with respect to the mesh-size h.
This is because the errors are measured in weaker norms than the ones appearing on the right-
hand side of (42). We view this as a reasonable price to pay for the long time robustness of the
method when tf → ∞. Indeed, in many practical scenarios, such as long time computations
of decay to equilibrium distributions, the favourable exponential dependence with respect to
tf may be preferable to a slight suboptimality in the rate of convergence with respect to the
mesh size h. Moreover, given the typically high smoothness of the exact solution u, the use of
high order finite element spaces may diminish further the practical significance of this slight
h-suboptimality.

Nevertheless, to address the aforementioned slight h-suboptimality in Theorem 5.6, one may
be tempted to consider scaling of the stabilisation terms involving A by appropriate powers of
the mesh-size h. This will reduce the stiffness matrix scaling to one of a second order operator;
this is a standard practice in classical Galerkin contexts, e.g., for streamline upwinded Petrov-
Galerkin methods for convection-dominated problems. In the present context, however, such
scaling would introduce new challenges, most important of which is that the spectral gap
constant c0 would be proportional to a negative power of h. Although such dependence may
not turn out to be catastrophic in certain scenarios, e.g., when ut decays very fast (cf., (42) in
Theorem 5.6), this is a challenging question that requires further research.

Another possibility to retrieve optimality in the rate of convergence for the method (21)
in weaker norms is the incorporation of Aubin-Nitsche type duality techniques. Using the h-
optimal error control of the (hypo)elliptic projection error ‖|u− πu|‖, along with regularity
estimates, it is conceivable that the order of convergence with respect to h and p in Theorem
5.6 can be improved, since the H1-seminorm is weaker than ‖|·|‖. Although this is classical
in parabolic problems, it appears to be a challenge in the present context of hypocoercive
operators. This is due to the non-closedness of the hypocoercivity property with respect to
the adjoint operation in the present variational context (12). This constitutes an interesting
direction for future research.
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Figure 1: Example 1. Convergence history under h-refinement for the errors ‖|e|‖ (left),
‖
√
A∇e‖L∞(0,tf ;L2(Ω)) (centre), ‖e‖L∞(0,tf ;L2(Ω)) (right), for p = 2, 3, 4, against the square root of

total space-time degrees of freedom (Total DoF)1/2.

6 Numerical experiments

We now present some basic numerical experiments aiming to verify the convergence rates pre-
dicted by the theory. For the (not studied theoretically) time discretization, we have imple-
mented a discontinuous Galerkin timestepping method of degree p − 2 with p being the local
polynomial degree of the spatial discretization; this choice formally balances the expected rates
of convergence, while maintaining a practical computational cost. For the experiments below
we have made the following parameter choices: tf = 0.5, Ω = (0, 1)2, κ = λ = 0, α = 0.35,
β = α2 , γ = α3, and Cτ = 10. We note that altering α within the permitted range does not
appear to have essential impact on the errors observed.

6.1 Example 1

We first consider the problem (10) and u0, f so that the exact solution is given by the smooth
time-independent periodic function u(t, x, y) := sin2(πx) sin2(πy). The purpose of this example
is to observe the convergence of the spatial discretization.

In Figure 1, the convergence rates under h-refinement are presented for the errors ‖|e|‖
(left), ‖

√
A∇e‖L∞(0,tf ;L2(Ω)) (centre), ‖e‖L∞(0,tf ;L2(Ω)) (right), and for local polynomial degrees

p = 2, 3, 4 against the square root of total space-time degrees of freedom (Total DoF)1/2. The
space-time subdivision is constructed by tensorizing a sequence of spatial triangular meshes of
32, 128, 512, 2,048, 8,192, and 32,768 elements with the whole time interval [0, tf ]; there is
no error in time, so one time step is sufficient. For the errors ‖|e|‖ and ‖

√
A∇e‖, we observe

convergence rates O(hp−1) as expected by the theory, while the error ‖e‖ converges at the higher
rate O(hp) although the theory currently only predicts O(hp−1).

6.2 Example 2

We now consider the problem (10) and u0, f so that the exact solution is given by the smooth
function u(t, x, y) := (2− t)−1 exp(−(x − 1/2)2 − (y − 1/2)2) sin(π(x− t)) sin2(πy). Note that
(20) is satisfied. The purpose of this experiment is to observe the convergence in the practical
setting of the discontinuous Galerkin timestepping of degree p − 2 in conjunction with p-th
polynomial degree spatial discretization (21).

The space-time subdivision is constructed by tensorizing a sequence of spatial triangular
meshes of 32, 128, 512, 2,048, and 8,192 elements with respective subdivisions of [0, tf ] into
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Figure 2: Example 2. Convergence history under h-refinement for the errors ‖|e|‖ (left),
‖
√
A∇e‖L∞(0,tf ;L2(Ω)) (centre), ‖e‖L∞(0,tf ;L2(Ω)) (right), for p = 2, 3, 4, against the cubic root

of total space-time degrees of freedom (Total DoF)1/3.

4, 8, 16, 32, and 64 time steps; notice that this choice corresponds to balanced spatial and
temporal discretization parameters. In Figure 2, the convergence rates under h-refinement are
presented for the errors ‖|e|‖ (left), ‖

√
A∇e‖L∞(0,tf ;L2(Ω)) (centre), ‖e‖L∞(0,tf ;L2(Ω)) (right), and

for local polynomial degrees p = 2, 3, 4 against the cubic root of total space-time degrees of
freedom (Total DoF)1/3. We observe convergence rates O(hp−1) for all errors. We expect that
the reduced order of convergence for the error ‖e‖L∞(0,tf ;L2(Ω)) compared to Example 1 is due
to the lower order temporal discretization.

We finally note that the behaviour of the proposed method in practical scenarios with regard
to the dependence on the final time tf is a rather subtle and interesting topic in its own right
and it will be discussed in detail elsewhere [7].
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[14] F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the Fokker-
Planck equation with a high-degree potential, Arch. Ration. Mech. Anal., 171 (2004),
pp. 151–218.
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[20] O. A. Olĕinik and E. V. Radkevič, Second order equations with nonnegative char-
acteristic form, Plenum Press, New York-London, 1973. Translated from the Russian by
Paul C. Fife.

21



[21] A. Porretta and E. Zuazua, Numerical hypocoercivity for the Kolmogorov equation,
Math. Comp., 86 (2017), pp. 97–119.

[22] H. Risken, The Fokker-Planck equation, vol. 18 of Springer Series in Synergetics,
Springer-Verlag, Berlin, second ed., 1989. Methods of solution and applications.

[23] C. Schwab, p- and hp-finite element methods, Numerical Mathematics and Scientific
Computation, The Clarendon Press, Oxford University Press, New York, 1998. Theory
and applications in solid and fluid mechanics.

[24] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), pp. iv+141.

22


	1 Introduction
	2 A special weak formulation
	3 The hypocoercivity of a(,)
	4 A finite element method
	5 Error analysis
	6 Numerical experiments
	6.1 Example 1
	6.2 Example 2


