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Abstract. In recent work (Soltani, Kilmer, Hansen, BIT 2016), an algorithm for non-negative tensor patch
dictionary learning in the context of X-ray CT imaging and based on a tensor-tensor product called
the t-product (Kilmer and Martin, 2011) was presented. Building on that work, in this paper, we
use of non-negative tensor patch-based dictionaries trained on other data, such as facial image data,
for the purposes of either compression or image deblurring. We begin with an analysis in which we
address issues such as suitability of the tensor-based approach relative to a matrix-based approach,
dictionary size and patch size to balance computational efficiency and qualitative representations.
Next, we develop an algorithm that is capable of recovering non-negative tensor coefficients given a
non-negative tensor dictionary. The algorithm is based on a variant of the Modified Residual Norm
Steepest Descent method. We show how to augment the algorithm to enforce sparsity in the tensor
coefficients, and note that the approach has broader applicability since it can be applied to the
matrix case as well. We illustrate the surprising result that dictionaries trained on image data from
one class can be successfully used to represent and compress image data from different classes and
across different resolutions. Finally, we address the use of non-negative tensor dictionaries in image
deblurring. We show that tensor treatment of the deblurring problem coupled with non-negative
tensor patch dictionaries can give superior restorations as compared to standard treatment of the
non-negativity constrained deblurring problem.
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1. Introduction. Many applications in imaging science, such as image deblurring and
image reconstruction, typically model the object to be recovered as a vector of unknowns,
and the forward operator as a matrix. Treating image and video data processing problems
using tensor approaches is yet a new, but increasingly popular and promising approach, as
suggested by recent literature [4, 13, 12, 5, 23, 19, 17, 22, 24]. However, a close look at the
increasing body of literature in which tensor decompositions are used in practice shows that
no one specific tensor decomposition has fit all these image and video applications equally
well. Indeed, here, as in many other multiway data processing and representation problems,
the type of decomposition to be employed may be quite specific to the application.

Decompositions based on a tensor-tensor product called the t-product [9] have proven to
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be particularly useful in applications where there is a natural orientation dependence to be
preserved, such as pixel or voxel position, relative to some other variable such as number of
images or time (see [4, 24] for example). The t-product is advantageous over other tensor
decompositions because of the algebraic framework induced by the definition of the t-product,
which enables the definition and computation of factorizations reminiscent of their matrix
counterparts (e.g. SVD, QR) and because the products can be computed in a straightforward
way in parallel (see also [8]).

Non-negative tensor factorizations have been introduced in the literature recently as well,
and just like the unconstrained counterparts, the type of decomposition used varies [2]. In
[22, 4], the authors consider non-negative tensor decompositions based specifically on the
t-product, the approaches in the two papers differing by the additional constraints on the
optimization as well as the algorithms proposed to compute the factorization. In [22], the
authors develop an Alternating Direction Method of Multipliers (ADMM) [1] method for
producing a non-negative patch tensor dictionary from a single, high resolution training image
with the end goal of using the dictionary in the context of X-ray CT image reconstruction.
The authors showed the method was good at producing reconstructions even for missing data
situations, and that it gave improvements over matrix-based patch dictionary learning since
the reconstructions were sparser and less sensitive to regularization parameters.

In this paper, we consider two classical problems – (lossy) image compression and image
deblurring. In both applications, the first stage is to learn a tensor patch dictionary from
multiple images of the same class using the approach in [22], and hence we review that problem
briefly. Our first new contribution deals with finding a non-negative representation under the
tensor t-product [9] of any image given a tensor dictionary. We give theoretical results and
concrete illustrations that demonstrate the superiority of a tensor-patch dictionary over the
corresponding matrix case. Then, we show how the modified residual norm steepest descent
(MRNSD), [15, 6] can be utilized for non-negative tensor coefficient recovery under the t-
product. Additionally, we introduce sparsity-inducing regularization to the algorithm that
can lead to compressed representations for images. Furthermore, we show that constraining
our image to the non-negative patch dictionary representation can lead to a new effective
debluring approach that is robust to certain model mismatches.

This paper is organized as follows. Section 2 is devoted to the introduction of background
and notation. In Section 3, we describe the process of patchification of images to make a tensor
representation, and review the dictionary learning approach presented in [22] which we will
use to generate our tensor dictionaries. In Section 4, we investigate the power of the tensor-
tensor product based representation of images vs. the traditional matrix-based approach.
The choice of parameters such as patch and dictionary sizes are relative to quality, storage
and computation time are also considered here. Following that discussion is the MRNSD
algorithm for tensors in Section 5. Here, we also discuss the incorporation of coefficient
sparsity constraints into MRNSD to allow for the compressed representation of images. In
Section 6 we give a short introduction to the image deblurring problem, explain how to
represent the unknown image in terms of the tensor dictionary, and discuss the restoration
problem that needs to be solved for the tensor coefficients. Numerical results are contained
in Section Section 7 and a discussion and list of future work is given in Section 8. Detailed
derivations for some of the claims are left to the appendicies.
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2. Notation and preliminaries. A tensor is a multidimensional array of data; a first-order
tensor is a vector and a second-order tensor is a matrix. This paper focuses on third-order
tensors (i.e., three-dimensional data), though much of the theory can be extended to higher-
order tensors. We denote tensors with script letters.

Suppose A is an ` ×m × n tensor. As depicted in Figure 1, we can divide the tensor in
several directions. Frontal slices, denoted A(k) for k = 1, . . . , n, are `×m matrices which fix
the third-dimension of A. Lateral slices, denoted ~Aj for j = 1, . . . ,m, are ` × 1 × n tensors
which fix the second-dimension of A; we consider lateral slices to be `× n matrices oriented
along the third-dimension. Tube fibers or tubes, denote aij for i = 1, . . . , ` and j = 1, . . . ,m,
are the 1×1×n mode-3 fibers of A or n×1 column vectors oriented along the third dimension.

(a) Tensor A (b) Frontal slices A(k) (c) Lateral slices ~Aj (d) Tubes aij

Figure 1. Tensor notation.

If we consider tensors as linear operators analogous to matrices, lateral slices are the
analogous to column vectors, hence the notation ~A. In particular, tensors act on lateral slices
just as matrices act on column vectors. Furthermore, lateral slices form the range and null
space of a tensor [8]. For more detailed analysis on tensor linear algebra, we reference [8].

Many of the following definitions are taken directly from [9]. Using the `×m× n tensor
A illustrated in Figure 1, we define the unfold and fold operations as follows:

(1) unfold(A) =


A(1)

A(2)

...

A(n)


`n×m

, fold(unfold(A)) = A.

The unfold function reshapes a tensor A into a block-column vector where each block is a
frontal slice. The fold function reshapes an unfolded tensor into its original structure. Notice
that the number of elements of A and unfold(A) is the same.

We now define the function circ which transforms a tensor A into a block-circulant matrix
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whose blocks are the frontal slices of A.

(2) circ (A) =


A(1) A(n) . . . A(2)

A(2) A(1) . . . A(3)

...
...

. . .
...

A(n) A(n−1) . . . A(1)


`n×mn

.

Notice that the first column of circ (A) is the unfolded tensor from Equation (1). Further-
more, notice that circ (A) has n times the number of elements of the original tensor A.
Fortunately, we need not form circ (A) explicitly.

Using (1) and (2), the t-product of two tensors is defined in [9] as follows:

Definition 2.1 (t-product). Given A is an `× p× n tensor and B is p×m× n, we define
the t-product as

A ∗B = fold (circ (A) · unfold (B)) ,

where A ∗B is an `×m× n tensor and “ ∗ ” denote the t-product.

Note that tubes commute under the t-product, and thus act analogously to scalars.
For the algorithms we describe in Section 5, we require the following two tensor norms

[10, 22].

Definition 2.2 (Frobenius norm). Suppose A is an `×m× n tensor. Then:

‖A‖2F = trace
(

(AT ∗A)(1)
)

=
n∑
k=1

m∑
j=1

∑̀
i=1

(A
(k)
ij )2.

Definition 2.3 (Sum norm). Suppose A is an `×m× n tensor. The sum norm is

‖A‖sum =
n∑
k=1

m∑
j=1

∑̀
i=1

|A(k)
ij |.

2.1. Properties of the t-product. As we alluded to above and given in [9], we can compute
the t-product (see Definition 2.1) more efficiently using the Fourier transform:

Definition 2.4 (t-product with Fourier transform). Given A is an ` × p × n tensor and B

is p×m× n, the t-product C = A ∗B can be computed as follows:

Ĉ
(i)

= Â
(i)
· B̂

(i)
for i = 1, . . . n,

where Â = fft(A, [ ], 3), C = ifft(Ĉ, [ ], 3), and fft, ifft are the one-dimensional fast
Fourier and inverse Fourier transforms, respectively, applied along the third-dimension.

Definition 2.4 can be implemented in parallel perfectly, hence is an efficient algorithm for
computing the t-product.
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An alternative perspective on the t-product will be essential to our understanding of tensor
dictionary learning in Subsection 4.2. (See also [4, 22].) Suppose ~A is an `×1×n lateral slice.
Then, squeeze(~A) rotates the lateral slice into an ` ×m matrix; the twist transformation
reverses this process (see Figure 2).

Figure 2. Illustration of squeeze and twist transformations.

Next we show how the structure imposed by the t-product impacts lateral slices.

Definition 2.5 (t-product with lateral slices). Given A is an ` × p × n tensor and B is
p×m× n, we can write the C = A ∗B as follows:

squeeze
(
~Cj

)
=

p∑
i=1

squeeze
(
~Ai

)
· circ(bTij) for j = 1, . . . ,m.

Originally, we viewed the t-product as A acting on the lateral slices of B (see Defini-
tion 2.1). The significance of Definition 2.5, originally noted in [4], is that we can consider
tubes of B to be “coefficients” of lateral slices of A. We say more about this in Section 4.2.

3. Patch Tensor Representation and Learning. We briefly discuss the general idea of
dictionary learning with tensors. For more background on matrix-based dictionary learning,
one can see [21] and the references therein. As this paper focuses on tensor formulations, we
keep our overview of the literature to describing the tools from [22] that we use here.

3.1. Image to Tensor Mapping. First, let us describe the transformation of a single two
dimensional image into a third-order tensor. Let us suppose we have one image B of size
Nr ×Nc, and we desire to consider this image in terms of p× q patches, where Nr = pnr and
Nc = qnc for some integers nr, nc, respectively. Then our Nr × Nc image can be mapped to
a p × nrnc × q third order tensor B by putting each image patch into a lateral slice of our
tensor. We choose to use a lexicographical ordering by patch columns. As seen in Figure 3,
the (1,1) patch in B is mapped to the first lateral slice in B (i.e. B:,1,:), the (2,1) patch in
B becomes the 2nd lateral slice of B, etc. Clearly, the process is completely reversible: given
the patch tensor representation of an image, we can map back to its matrix representation.

In sum, b,B,B all represent the same image, but in different formats. Relative dimensions
are summarized in Table 1 for easy reference.
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Figure 3. Illustration of tensor patchification of image (left) to construct its tensor representation (right).

Nr = nrp; Nc = ncq; M = nrnc
B B b D C

Nr ×Nc p×M × q NrNc × 1 p× s× q s×M × q
Table 1

Left three columns give the dimensions of the various representations of the same image. In the right two
columns, the image approximation in tensor form is assumed X = D ∗C, and the corresponding sizes of D and
C under this assumption are given.

3.2. Tensor-based dictionary learning. Now suppose we have a sample space of NI im-
ages, each image of size Nr×Nc. Following [22], we divide each image into patches of size p×q
and let M be the number of patches per image. Unlike matrix-based dictionary learning, we
do not vectorize each patch. Instead, we store all patches as lateral slices of a sample space
tensor Y of size p× t× q where t = NI ·M is the total number of patches (see Figure 4).

Figure 4. Illustration of tensor dictionary learning decomposition.

To ‘learn’ the dictionary representation is to minimize ‖Y−D ∗H‖2F where D ∈ Rp×s×q+ ,

H ∈ Rs×t×q+ , and s� t. Here, H contains the tensor coefficients for the tensor dictionary D.
From [22], the problem to solve is

min
D,H,U,V

1

2
‖Y−U ∗V‖2F + λ‖H‖sum + IRs×t×q+

(H) + ID(D)(3)

subject to D = U and H = V,

where D,U ∈ Rp×s×q+ and H,V ∈ Rs×t×q+ . In Equation (3), λ is a regularization parameter
and the sum norm (see Definition 2.3) promotes sparsity of the coefficient tensor H. We
denote the indicator function of a set Z as IZ . Thus, IRs×t×q+

(H) ensures the coefficients H
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are non-negative and ID ensures the dictionary D belongs to the compact and convex set (4)

(4) D ≡
{
D ∈ Rp×s×q+ | ‖~Di‖F ≤

√
pq, i = 1, . . . , s

}
.

As described in [22], we impose the extra constraint that D ∈ D (as opposed to D ∈ Rp×s×q+ )
to avoid scaling ambiguity; that is, for any β > 0, ‖Y− (β ·D) ∗ ( 1

βH)‖2F = ‖Y−D ∗H‖2F .
We will not discuss the specifics of the tensor-based ADMM algorithm in this paper; we

refer the reader to [22] for a full analysis. When optimizing (3), we project D and H into D

and Rs×t×q+ , respectively. We choose to project D into D using the infinity norm, that is:

PD(D)
(k)
ij = min(max(D

(k)
ij , 0), 1),(5)

where PD is the projection operator, an option included in the publically available code [20].

3.3. Representation/Recovery Formulation. Now suppose we have image B ∈ RNr×Nc+

which we would like to represent in terms of a dictionary we learn by solving (3). Let B be
the p×M × q be the patchified tensor representation, and D the p× s× q non-negative patch
dictionary. To represent the non-negative image via our patch dictionary, we solve

(6) min
C

1

2
‖B−D ∗ C‖2F subject to C ∈ Rs×M×q+ .

In other words, if we can determine C ≥ 0 such that B ≈D∗C, then the image approximation
is obtained by computing D ∗ C and mapping the resulting tensor back to a 2D image by
inverting the patchification process. But several issues warrant discussion before presentation
of the algorithm to solve for C. First, we need to give intuition as to why the tensor-based
approach to the image model can provide significantly different results than the a matrix-
based analogue, independent of the method produced to generate the dictionary. Then, we
need to consider choices of patch and dictionary sizes required to maximize the representation
power and harness the computational efficiencies of the tensor-based approach. These issues
are covered in the next section.

4. The Tensor Formulation: Advantages and Parameter Choices. We first explain the
power behind the tensor-based approach. Then, we discuss the choice of parameters such as
dictionary size and patch size to maximize the potential of our new method.

4.1. Tensor Superiority. In this subsection, we will assume that a patch-dictionary has
already been determined. It does not matter for the moment how that dictionary was de-
rived: our goal is to show the differences in the solution sets to the two problems of image
approximation, one based on a matrix-formulation, and one based on the tensor-formulation.

Let D ∈ Rp×s×q+ denote the dictionary in tensor form, and define D = unfold (D) ∈ Rpq×s+ .

Likewise, let B denote the patchified tensor image, and let B = unfold (B) ∈ Rpq×nrnc+ . We
have the following theorem:

Theorem 4.1. Consider the set of solutions to within a tolerance ε:

Xmat := {C ∈ Rs×nrnc+ |‖B−D ·C‖F ≤ ε}
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Xten := {C ∈ Rs×nrnc×q+ |‖B−D ∗ C‖F ≤ ε}.

Let Xmat,e denote the set of tensors of size s× nrnc × q whose first frontal slice is from Xmat
and the remaining q − 1 frontal slices are zeros. Then Xmat,e ⊂ Xten. That is, the set of
solutions of the tensor problem effectively contains the set of solutions to the matrix problem.

Proof. See [16].

This suggests that in solving the tensor problem, the solutions to the matrix problem
are achievable, and we would be able to recover those if those are optimal in the tensor
framework, as we demonstrate in Example 4.1 below. However, the tensor case may provide
better solutions by virtue of working in the tensor algebra, which we see in Example 4.2.

Example 4.1. Let B =

[
1 1
1 1

]
be a single patch (p = q = 2, nr = nc = 1) which we

interpret as the entire image, meaning B = vec(B) is 4× 1. Suppose

D =


1 0 0 0 1

4

0 1 0 0 1
2

0 0 1 0 3
4

0 0 0 1 1

 .
Set ε = 0; that is, find exact solutions c ∈ R5×1

+ such that ‖B−D · c‖ = 0. It is easily checked
that ca = [1, 1, 1, 1, 0]T and cb = [3/4, 1/2, 1/4, 0, 1]T with ‖ca‖1 = 4 and ‖cb‖1 = 5/2 are
both exact solutions of the matrix optimization problem. It is also easy to see a non-negative
solution cannot be obtained with fewer than four non-zero coefficients.

We can exactly capture these matrix solutions in the tensor framework. Let B = twist(B)
be the patch stored as a 2 × 1 × 2 lateral slice and let D = fold(D) be the equivalent tensor
dictionary of size 2 × 5 × 2. We are trying to find exact solutions C ∈ R5×1×2

+ such that
‖B−D ∗C‖ = 0. If we let C:,:,1 = ca and C:,:,2 = 0, then it is easily seen that C is a solution
of the tensor version of the problem – this solution is effectively the matrix solution, in tensor
form. However, the coefficient tensor

C:,:,1 = [1/3, 0, 0, 0, 2/3]T and C:,:,2 = [1/3, 0, 0, 0, 2/3]T ,

is a solution to the tensor version of the problem with no matrix-based analogue, and we also
observe ‖C‖sum = 2. Thus, the set of tensor solutions is bigger, and for the same number of
non-zeros in the coefficients, we can get tensor solutions of smaller sum norm.

Example 4.2. Here, we let B =

[
1 3
2 4

]
, still assuming a single patch, and we assume

D =


1 0 0 1 1
0 0 1 1 1
0 0 1 0 1
0 1 0 0 1

 ,
with D = fold(D). It is easy to verify that ther is no non-negative c that can exactly re-
cover vec(B) in the matrix case. If we set ε = 1/2, then one element of Xmat is c =
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[1/2, 7/2, 2, 0, 1/2]T with ‖c‖1 = 13/2. However, with only four non-zeros entries in our ten-
sor coefficients, we can resolve B exactly: e.g., C:,:,1 = [0, 1, 1, 0, 0]T and C:,:,2 = [0, 1, 3, 0, 0]T

satisfies B = D ∗ C, has four non-zeros, and has ‖C‖sum = 6.
This demonstrates that we can get a richer and possibly more accurate set of solutions for

the tensor representation of the problem than for the matrix version.

4.2. Parameters. In [22], the authors use a value for s that is consistent with a matrix-
based patch dictionary learning algorithm, and illustrate on some CT image examples that
when keeping s fixed, the tensor patch dictionary allows for better approximation, but oth-
erwise, the choices of s, p and q are not further discussed. Here, we explain why s ≥ p is
necessary to get good representations. We then discuss why s� p is not advantageous from
a storage perspective, and explain why s = 2p is sufficient from a qualitative point of view.

Dictionary Dimesion s. In [22], s was chosen to be a small multiple of the product pq.
The reasoning for this was that in matrix patch dictionary learning, each patch is expressed
as a vector and then approximated as a linear combination of the columns of the dictionary
matrix. Since the dictionary matrix would have pq rows, then the choice of s ≥ pq would be
required to try to ensure a spanning set. However, taking s this large for the tensor dictionary
case is in fact not necessary for reasonably sized patches, as we now explain. Further, large s
is not a good choice in terms of computational efficiency, as we show later.

From Definition (2.5), each of the N image patches is approximated as

(7) Bj ≈
s∑
i=1

Dicirc(cij), j = 1, . . . ,M,

where Bj = squeeze
(
~Bj

)
and Di := squeeze

(
~Di

)
are both in Rp×q+ and cij = CTi,j,:.

Postmultiplication of p× q matrix Di by a q × q circulant generated by the tube cij can
be written

Dicirc (cij) = c
(1)
ij Dj + c

(2)
ij DjZ + · · ·+ c

(q)
ij DZq−1,

where Z denotes the q × q circulant downshift matrix (i.e. Zq = I).
Since each term in the sum (7) admits such an expansion, after regrouping we obtain

(8) Bj ≈
s∑
i=1

c
(1)
ij Di +

s∑
j=1

c
(2)
ij DiZ + · · ·+

s∑
j=1

c
(q)
ij DiZ

q−1,

meaning the p×q non-negative patch Bj is described by a linear combination of sq, p×q non-
negative matrices, although subsets of those matrices in the expansion are related via column
shifts. We know that a spanning set for all p × q matrices would need to be of dimension
pq. We do not know if the matrices in the above expression are all independent so we do not
know if p = s is sufficient, but certainly we do need s ≥ p. We found in practice that it was
sufficient to take s a small multiple of p as long as the patch sizes were not too large. Typically
s = 2p was all that was needed in our experiments to get reasonable representations. Though
one might argue a larger value of s may result in sparser coefficients, there is a trade-off with
respect to the computational cost.
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Storage of Tensor Coefficients. Storage of the original image requires storage of NrNc

pixel values. Storage of D (assuming it is dense, which it may not be) requires pqs numbers,
while storage of C requires sqNrp

Nc
q = sNrp Nc numbers. Thus, if s = 2p, storage of C assuming

that C is dense requires 2NrNc numbers, twice the amount of storage of the image itself.
For the deblurring application, we will not be concerned with this additional storage – the
coefficients are a means to an end (namely, producing a high quality restoration). For the
compression application, however, our goal will be to produce a C that is sparse, so that only
non-zeros need to be stored.

Patch Sizes. There clearly must be a lower bound on the patch size: in the extreme
with p = q = 1, s = 1, the dictionary is only one non-zero constant and we cannot have
compression because then C is the image itself. Choosing patch sizes too small undermines
the power of the representation in (8), and since the implementation of the algorithms utilizes
FFT’s of length q, there will be too much inefficiency if q is very small (see further discussion
in Subsection 5.1). If p is too large, since we have shown we need s ≥ p, we would have a high
storage cost for the dictionary. After we discuss the algorithm, we will see that we are further
constrained by the computational impact of the choice of patch sizes.

4.3. Global Interpretation: Image Resolution vs. Patch Size. To gain intuition, we
observe that by placing all the image patches into position in the image, our tensor approxi-
mation is equivalent to the matrix representation

B ≈
s∑
j=1

(Inr ⊗Dj)


circ (cj,1) circ (cj,nr+1) · · · circ

(
cj,nr(nc−1)+1

)
circ (cj,2) circ (cj,nr+2) · · · circ

(
cj,nr(nc−1)+2

)
...

...
...

...
circ (cj,nr) · · · · · · circ (cj,nrnc)

 ,
where each circulant block in the block matrix is of size q×q, and there are nr block rows and
nc block columns. Thus, the image has a expansion in terms of a structured global dictionary
(I⊗Dj), j = 1, . . . s, although such an expansion is never computed explicitly. From this we
see that the same dictionary can be used to reconstruct the same image at different resolutions.
We illustrate this in the numerical results.

5. MRNSD for tensors. Since

‖B−D ∗ C‖2F = ‖unfold(B)− circ(D)unfold(C)‖2F .

let us (implicitly) define

v = vec(unfold(B)), c = vec(unfold(C)), and D = I⊗ circ(D).

The MRNSD algorithm ([15, 6]) was developed to solve minc≥0 ‖v −Dc‖2, so it can clearly
be applied to our formulation. Of course it would be foolish to form D explicitly. In fact, we
can use an equivalent and elegant formulation of each MRNSD step that uses all the tensor
mechanics, and therefore only requires we have a routine that performs the t-product. The
algorithm is given in Algorithm 1, and the details of the equivalence to this approach are
given in Appendix A.



TENSOR PATCH DICTIONARIES 11

Algorithm 1 MRNSD with t-product

1: Input: image B, dictionary D, initial estimate C0

2: Form gradient G0 = −DT ∗ (B−D ∗ C0)
3: for k = 0, 1, 2, . . . do
4: Sk = Ck � Gk {Form search direction (Appendix A)}
5: θk = trace[(STk ∗ Gk)(1)]/‖D ∗ Sk︸ ︷︷ ︸

Wk

‖2F {Determine optimal step size (Appendix A)}

6: αk = max{θk,min
S
(`)
ij >0

(Ck)
(`)
ij /(Sk)

(`)
ij } {Ensure step size preserves non-negativity}

7: Ck+1 = Ck − αk · Sk {Update coefficients}
8: Gk+1 = Gk − αk ·DT ∗Wk {Update gradient}
9: end for

5.1. Implementation Details. Per iteration in Algorithm 1, the dominant costs are the
two products Wk := D ∗ Sk and DT ∗Wk. Recall the t-product is computed by moving into
the Fourier domain (i.e. computing D̂, Ŝk and and their facewise matrix-matrix products).

Some computations can be reused. We note that Ŵk need not be recomputed, since those
entries are already known from computing Wk in the step size computation. Also, entries of

D̂T are known from entries of D. So we need only to assess the costs of computing D̂, Ŝk,

and the costs of doing the q, matrix-matrix products D̂
(`)
Ŝ
(`)

k and D̂T
(`)

Ŵ
(`)

.
The computational cost for the FFTs is O(s · log2(q) · (pq+ NrNc

p )), and the computational
cost for the matvecs is O(sNrNc).

Note that the cost of the matrix multiplications is independent of the patch size if we
assume serial implementation. At the other extreme, for q processors, each processor would
compute a single matrix-matrix product at sNrNcq flops, so a larger value of q is beneficial.
Either way, q should not be too small or the constant in front of the cost to perform length-q
FFTs will not be suitably amortized. We already observed s ≥ p. If s = kp for a small integer
k, the total flop count in serial is O(kp2 log2(q)q +NrNck(p+ log2(q))). Note the cost grows
more slowly for q, suggesting p ≤ q may be desirable. For sufficiently small fixed k, p, q, the
cost grows as the number of unknowns in the image.

5.2. Compression. When we reconstruct images via tensor MRNSD, we tend to generate
coefficients C which contain many small values. This is because of the efficient encoding of
information inherent in the t-product discussed previously.

We introduce a sparsity regularization to our MRNSD minimization motivated by a
proximal-operator framework [18]. We briefly outline the proximal gradient method; spe-
cific details can be found in [18]. Traditionally, proximal algorithms are a class of convex
optimization techniques solving problems of the following form:

(9) min
c
h(c) ≡ f(c) + g(c),

where f is smooth and convex and g is simple and convex. For example, f could be the
`2-norm (i.e., quadratic) and g could be an `1-regularization (i.e., piecewise-linear).

We cannot use a conventional gradient-descent algorithm in (9) because g need not be
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differentiable. Instead, we define the proximal operator of g as follows:

(10) proxg(y) = arg min
c

{
g(c) +

1

2
‖c− y‖22

}
.

The intuition behind (10) is to balance a point which minimizes a function g that is close
to another point y. This interpretation gives rise to a two-step procedure to solve (9):

1. Minimize f using gradient descent: y = ck − αk∇f(ck).
2. Find a nearby point which minimizes g: ck+1 = proxg(y).

We can apply this proximal operator framework to MRNSD with regularization. For
simplicity, we derive our method for matrix-vector products, with the understanding that we
can translate this to tensor notation in our case, as we show at the end of this section.

Ideally, we use `1-regularization to promote sparsity in our original problem:

(11) min
c≥0

1

2
‖b−Dc‖2F + λ‖c‖1.

Using MRNSD, we incorporate the non-negativity constraint into the optimization using
the mapping c = ez. However, because ez is strictly positive, simply regularizing ez will not
promote sparsity.

We incorporate the constraint into our function using the following mapping:

c = ez − ε1,

where 1 denotes the vector of all ones. This means ci > −ε and we will take ε→ 0. We now
minimize the unconstrained problem:

min
z

= 1
2‖b−D(ez − ε)‖2F︸ ︷︷ ︸

f

+λ‖ez − ε‖1︸ ︷︷ ︸
g

We compute the gradient of f and the proximal operator of g as follows:

∇f = ez � [−DT (b−D(ez − ε))]
= (c + ε)� [−DT (b−Dc)], ε→ 0.

= c� [−DT (b−Dc)]

This is the same gradient we had before. Next we consider the proximal operator:

proxg(y) = arg min
c

{
1
2‖c− y‖2F + λ‖c‖1

}
= arg min

z

{
1
2‖e

z − ε− y‖2F + λ‖ez − ε‖1
}

We solve this by computing the (sub)gradient and setting it equal to zero as follows:

ez � (ez − ε− y) + λez � sign(ez − ε) = 0.

ez − ε− y + λ · sign(ez − ε) = 0.
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We can map this back to c as follows:

c− y + λ · sign(c) = 0.

The solution to the above equation is exactly the soft-thresholding operator. Therefore,
our MRNSD iteration with encorporated `1-regularization is the following:

ck+1 = Gαk·λ[ck − αk · ck � (−DT (b−Dck))],

where Gµ is the soft-thresholding operator:

Gµ[c] =


c− µ, c > µ
0, |c| < µ
c+ µ, c < −µ.

Using the same observations as in the start of this section that allowed us to move from
the matrix formulation to the tensor formulation, we arrive at the sparsity-constrained tensor-
MRNSD formulation by changing Algorithm 1, Line 7 to the following:

Ck+1 = Gαk·λ[Ck − αk · Sk].(12)

We conclude this section by noting that we are not the first to consider augmentation of
MRNSD iterates in order to encourage sparsity. In [2], the authors suggest applying a sparsity-
type constraint to an MRNSD step. But the text was without mathematical justification, and
we found in our examples that incorporation of their suggestion did little to promote sparsity.

6. Deblurring. We briefly review the standard model for image blurring/deblurring to set
the stage for our tensor-based deblurring approach. For more background see [3].

The basic blurring model given assuming known image xtrue = vec(Xtrue) ∈ RNr×Nc+ , is

Axtrue + n = b,

where A ∈ RNrMr×NcMc is a blurring operator whose singular values decay rapidly to 0, n
is the unknown white noise vector and b is the blurred noisy image in vector form; that is,
b = vec(B) where B is Mr ×Mc. Since A and b are known but the noise is not, one might
be tempted to ignore the noise, and compute the minimum-norm, least squares solution to
Ax = b. However, the ill-conditioning of the operator renders the least squares solution
worthless, since small singular values magnify the noise present in the data.

Algorithms for computing estimates x ≈ xtrue in the presence of noise are called regular-
ization methods. Iterative solvers, such as MRNSD, can be used as regularization methods.
Consider applying MRNSD to

min
x≥0
‖b−Ax‖2.

It will produce sequences of iterates xk. Those iterates tend to exhibit semi-convergent be-
havior in that they will approximate the noise-free solution xtrue with increasing k, up to a
point. After a particular iteration, the method starts to fit the noise in b to solve the opti-
mization problem, and the solution begins to resemble the noise-contaminated solution. If the
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stopping parameter is picked before the contamination happens, the method is considered to
be a regularization method.

In our approach, we require non-negativity of the image estimate in addition to the fact
that the image be comprised from a learned, non-negative patch dictionary. In other words,
we want our image estimate (expressed as a tensor, X) to be given by X ≈D ∗Ck for Ck ≥ 0.
MRNSD can be used to treat this problem. But first we need to show that it is possible to
express the term on the right in the norm via matrix-vector products (but yet still employ
the tensor format for computational efficiency during actual implementation). Consider the
relationship between the two formats of the same image: x and X. We see that

(13) x = Pvec(unfold (X)) ≈ Pvec(unfold (D ∗ C)),

for a permutation matrix P. Now unfold (D ∗ C) = D unfold (C), where D = circ (D). So
vec(unfold (D ∗ C)) = (I⊗D)vec(unfold (C)). Thus, we can apply MRNSD to solve

min
C≥0
‖b− (AP(I⊗D)) vec(unfold (C))‖2

though in practice, we construct neither P nor I⊗D explicitly, since all the necessary compu-
tations can be done with permutation indicies and t-products with D and DT . The computa-
tional cost of one iteration is dominated by matrix-vector products with A,AT and products
with D,DT , which as we saw previously, for sufficiently small values of p, q is a small multiple
of the number of unknowns in the image (and can be efficiently parallelized).

7. Numerical Experiments. We illustrate the power of the tensor dictionaries to represent
images, both qualitatively and quantitatively. In all examples, we represent square images
and the dimensions of the image and patches are powers of two.

7.1. Power of Tensor Representations. As discussed in Section 4 and Theorem 4.1,
the tensor representations can exactly capture the matrix representations and there are a
greater number of possible tensor representations. To illustrate the advantages of using a
tensor representation, we compare the representations with either a learned tensor dictionary
D ∈ R16×32×16

+ against representations from a learned matrix dictionary D ∈ R256×512
+ . In

both cases, we use patches of size 16 × 16, either stored as lateral slices of D or as columns
of D. The number of dictionary elements in each case is twice the size of the first dimension
(i.e., the dictionaries are equally over-complete). Both dictionaries were formed solving the
ADMM formulation from images of faces in the CalTech101 database [11].

We form our representations in Figure 5 using 200 MRNSD iterations (Algorithm 1) and
we start with a random, normalized initial guess.

In Figure 5, we see the tensor representation in 5(b) is better than the matrix represen-
tation in 5(c), both numerically and qualitatively. Thus, not only are there more possible
the tensor representations (see Theorem 4.1), the representation we form is better. This is
somewhat surprising as the number of coefficients (i.e., the representation ability) for both
the tensor and matrix cases is the the same. More specifically, the sizes are the following:
the tensor coefficients C ∈ R32×1024×16

+ and the matrix coefficients C ∈ R512×1024 where 1024
is the number of patches in our original image B. A potential reason for this improved
representation is that the patches stored in the tensor dictionary D maintain some spatial



TENSOR PATCH DICTIONARIES 15

(a) Original: B ∈ R512×512
+ . (b) Ten: ‖B−D∗C‖

‖B‖ ≈ 0.03 (c) Mat: ‖B−D∗C‖
‖B‖ ≈ 0.10

Figure 5. Comparison of tensor representation 5(b) with learned D ∈ R16×32×16
+ vs. learned matrix

representation 5(c) with D ∈ R256×512
+ .

relationships typical in natural images (e.g., smooth curves) whereas the patches stored in the
matrix dictionary D are more binary (e.g., sharp edges).

7.2. Fixed Dictionary, Changing Resolution. As noted previously, independent of how
the dictionary was learned, we can employ that dictionary (assuming appropriate dimensions)
on multiple resolutions of the same image, as illustrated in Figure 6. Importantly, the fact
that the data was trained on images of a different resolution (in this case, the training data
were all 128× 128 images) is insignificant.

2048× 2048 1024× 1024 512× 512 256× 256 128× 128

Figure 6. Effects of representations with D ∈ R16×32×16
+ as the image resolution changes. The dictionary

was formed from 128 × 128 images. The top row shows the representations D ∗ C and the bottom row shows
the absolute difference |B−D ∗ C|. The resolution decreases from left to right.

In Figure 6, we notice that as the image resolution decreases, the quality of our representa-
tions decreases as well (this is borne out by our reconstruction relative error). This is because
the size of our patch relative to the image increases; i.e., each patch is representing a larger
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portion of the image, and hence is less likely to match exactly. From another perspective,
when we represent an image with a higher resolution, the dictionary patches act more like
individual pixels in the image and hence provide a more accurate representation.

7.3. Color. We can also represent color images using the same dictionary generated from
grayscale images. Suppose we have an RGB image of size Nr × Nc × 3 where the third
dimension is the number of color channels. To patchify an RGB image, we treat each channel
as a separate grayscale image from which we form patches and store as lateral slices of a
tensor. This means we have three tensors of size p ×M × q.We then concatenate the lateral
slices of the patchified tensors for each color channel to obtain our RGB patchified tensor of
size p×3M×q. In Figure 7, we depict a representation of a color image using the same tensor
dictionary D ∈ R16×32×16

+ .

(a) Original 512× 512, B. (b) Representation, D ∗ C. (c) Difference, |B−D ∗ C|.

Figure 7. Representing color images using D ∈ R16×32×16
+ . The relative error of our representation is

‖B−D ∗ C‖/‖B‖ ≈ 0.02.

7.4. Compression. In the examples, the B is N × N . If we want to talk about the
compression of a single image via the approximation B ≈ D ∗ C, we need to compute the
compression ratio

nnz(D) + nnz(C)

N2
.

However, if we are storing compressed representations of multiple images where they have
all been compressed using the same dictionary, the cost of storing the dictionary becomes
amortized over the multiple test images, so we approximate compression via nnz(C)/N2.

For a fixed patch size, we know we want s ≥ p. We can make s larger (maybe a bit larger
than 2p), and increase sparsity to a point, but too big s means too much non-uniqueness and
the optimization problem gets trickier. We can change patch size. Increasing patch size for a
fixed resolution beyond a certain point is not a good idea – we lose representability. But for
larger images, we may well want to increase the patch size if we think our representation may
be more sparse and we don’t lose much representability. If we do that, s must increase as a
small multiple of p and the cost of producing C increases.

To examine the effects of patch size on compressibility, we compare the relative error to
the approximate compression nnz(C)/N2 where N = 512 in Figure 8. We use 200 MRNSD
iterations (Algorithm 1) with the soft-thresholding step (12).
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Relative error
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Vary s | p “ q “ 16 Vary p, q | s “ 2p Fixed p “ q “ 16, s “ 32

10´2

10´1

16 ˆ 16 ˆ 16

16 ˆ 32 ˆ 16

16 ˆ 48 ˆ 16

16 ˆ 64 ˆ 16

16 ˆ 32 ˆ 8

16 ˆ 32 ˆ 32

8 ˆ 16 ˆ 8

32 ˆ 64 ˆ 32

16 ˆ 32 ˆ 64

Figure 8. Comparison of approximate compression for various dictionary sizes using sparsity-promoting
MNRSD (Algorithm 1 with (12)) and a sparsity parameter of λ = 10−10. The cyan line represents dictionaries
of the same patch size, but varying the number of dictionary elements (i.e., width). The magenta line represents
dictionary of various patch size, but the same level of of over-completeness (i.e., twice as many lateral slices as
the first patch dimension p).

There are a few key trends to notice in Figure 8. The first is that the more over-complete a
dictionary is, the more compressed the representation without significant loss of accuracy (the
cyan dictionaries). This behavior occurs because with a wider selection of dictionary patches
to select, we likely need to select fewer patches to represent an image well. However, if we
include the cost of storing these wider dictionaries, the compression ratio greatly increases
due to the width of the dictionary.

The second trend is that the larger the patch size, the more compressed the representation,
however with a significant loss of accuracy (the magenta dictionaries). This behavior occurs
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because larger patches are able to capture larger sections of an image, hence fewer patches
are required form the representation. However, the larger patches are less likely to reproduce
the original image exactly, and hence decreases the representation quality. Interestingly, if we
include the cost of storing the dictionaries with large patches, it does not significantly impact
the overall storage cost – the width of the dictionary relative to the first patch size p is a
substantially more significant factor.

7.5. Deblurring Results. We used Matlab and features in the RestoreTools Matlab tool-
box [14] as indicated.

7.5.1. Example 1. Our true image was the 512 × 512 images of the orca in Figure 9(a).
We used the grain blur in Restoretools set of example files1 to create a blurring operator A
corresponding to reflexive boundary conditions. We computed Axtrue, and added Gaussian
noise at a noise level of 1 percent to the image. The blurred, noisy image in the figure.

Convergence to regularized solutions is known to be slow with MRNSD [15], so precon-
ditioning is often used. Thus, in both the non-dictionary and dictionary reconstructions, we
used the built-in preconditioner option and used MRNSD on the preconditioned problems

min
x≥0
‖Mb−MAx‖F or min

C≥0
‖Mb−M (AP(I⊗D)) vec(unfold (C))‖F

where M denotes the preconditioner determined from the PSF and b, using the default set-
tings. The matrix P is a permutation matrix (see (13).

The algorithm needs a non-zero starting guess. In the matrix case, we used a vector of
all ones as the initial guess for x. In the tensor case, to make an equivalent comparison,
we first formed a patchified version of an image of all ones. We then multiplied that by the
tensor-pseudoinverse of D (see [8] for details) and used this for the starting guess for C.

We wanted to compare the quality of MRNSD with and without dictionaries. We do not
discuss choosing optimal truncation parameters, though we note that the semi-convergence
behavior is very much damped when using the dictionaries. We used two dictionaries derived
from different data sets at different patch sizes. The first dictionary was obtained from the
CalTech face database. We took p = q = 16 and s = 32. The second dictionary was obtained
from a collection of 60 elephant photos [11]. Here, we took p = q = 32 and s = 64.

In the figure we compare the ‘optimal’ (i.e. solution at the iterate that gave smallest
relative error against ground truth) solution with preconditioned MRNSD with no dictionary
approach against other reconstructions. In Figure 9(c), we give the optimal reconstruction for
the smaller dictionary. In Figure 9(d), we give the solution after 2000 iterations for the larger
dictionary (the error is still decreasing at this point, so it may not be an optimal stopping
point). In Figure 9(e), we averaged the solutions2 to acknowledge the fact that this image has
both fine scale features and components that are nearly uniform, so we expect that different
resolution patches would be sensitive to this fact. We address the issue of multiresolution
reconstructions in the Conclusions.

1The grain blur point-spread-function is for a 256 x 256 image, so we padded the blur by zeros to get a
PSF suitable for a 512 x 512 image.

2In fact, any convex combination of the reconstructions would have been an option.
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All dictionary based solutions gave reconstructions with smaller relative error and smaller
structured similarity as shown in the table. It is worth noting that the dictionary-based
reconstructions took longer to converge: while preconditioned MRNSD in the matrix-only case
took 63 iterations to reach the optimal solution, it took the small dictionary 1,211 iterations,
and as mentioned, we let the large dictionary case run 2000 iterations. On the other hand, this
is not an entirely fair comparison, either, since the preconditioner was constructed relative
to A, whereas in the matrix-formulation of our tensor approach, we see the structure of the
matrix-operator is quite a bit different.

(a) Original. (b) Blurred, noisy. (c) Ten. rcn p, q = 16, opt

(d) Ten. rcn. p, q = 32 (e) Combined tensor (f) Matrix Recon, opt

Figure 9. Example 1: Orca original, blurred and noisy images, and various reconstruction results.

Small Dictionary Large Dictionary Combined PMNRSD

Rel Err 0.119 0.123 0.116 0.144

SSIM 0.518 0.522 0.541 0.376
Table 2

Relative error and SSIM results for Example 1. The combined-dictionary image had slightly better relative
error and SSIM results than any other. The matrix-based, non-dictionary reconstruction has notably worse
relative error and SSIM to all the other dictionary-based reconstructions.

7.5.2. Examples 2 and 3: Underdetermined Problems. In the first illustration, our true
image was 256× 256. We wanted to simulate a situation in which the boundary conditions of
the blur were taken to be unknown. We took a symmetric Gaussian blur of discrete bandwidth
8 and σ = 3, and applied it to the true image, trimmed blurred the image by 8 pixels on all
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sides, reshaped, and added 1 percent random Gaussian noise to the data3 . This meant the
data vector was only length 2402 while the true image was 2562, indicating there are fewer
equations than unknowns.

Since the problem is underdetermined, it may be desirable to add regularization to enforce
smooth transitions between patches. For an N ×N image and p× p patches, we consider

min
C≥0

∥∥∥∥[ b
0

]
−
([

A
λL

]
P(I⊗D)

)
vec(unfold (C))

∥∥∥∥
2

, L =

[
I⊗Q
Q⊗ I

]
,

where Q could either be an (N −1)×N first order discrete derivative operator, or, in order to
minimize computation, an (Np − 1)×N matrix approximating discrete derivatives only across
patch jumps. We expect, for a suitable value of λ, some smoothing across patch boundaries.
As our results below show, there is some modest gain that can be had when including extra
regularization. However our method is relatively insensitive to choice of λ, whereas MRNSD
without regularization is not.

The dictionary used in the reconstruction was constructed from the CalTech face data
base (same as in the previous example). Patch sizes were 16 × 16 and we took s = 32 and
used 2000 iterations to obtain each reconstruction (all convergence curves were nearly flat at
this point). The original image in Figure 10(a) was obtained by cropping the Matlab image
clutteredDesk.jpg. The tensor dictionary based reconstructions for L a discrete gradient
operator with λ = 10 is in Figure 10(c); the tensor-based reconstruction with no regulariza-
tion is in Figure 10(d). The SSIM values of these were .815 and .776, respectively, showing
the insensitivity to λ and to additional regularization in general. The corresponding matrix
MRNSD reconstructions with additional regularization (for λ = 10) and without additional
regularization. Without regularization, the borders are white. The quality depends closely on
the value of the regularization parameter, which is problematic. Moreover, the same or better
quality reconstruction can be obtained using our tensor dictionary based approach without
need of choosing a λ – for example, the SSIM of the tensor-based reconstruction in (10(d))
was higher than for the matrix case for any value of λ that we tried.

In the second illustration, the blurred and noisy image of size 512×512 is given in Figure 12.
We use the same dictionary (i.e. learned from human faces) as in the previous illustration,
but this time we used a discrete bandwidth of 12, σ = 4, and 5 percent Gaussian noise. In
Figure 11, we show the relative errors for using our tensor approach with λ = 100 and patch-
smoothing regularizer, the tensor approach with λ = 0 (i.e. no smoothing across patches),
and the matrix-based MRNSD. We observe that the behavior is similar for the two tensor
classes, with a slight improvement in the error observed when using the patch-regularization
term. We note that semi-convergence behavior is observed in the matrix-based case whereas
it is not observed in the tensor cases over the first 2000 iterations. We show the matrix-based
reconstruction at the ‘optimal’ iteration count (198) in subfigure 12(e), and the reconstruction
after 2000 iterations in subfigure 12(f). Even the optimal reconstruction is qualitatively not
as good - clearly, there is a white boundary where it could not be reconstructed, and also

3To implement this process in Matlab: Let v = exp(− 1√
2σ

[0 : 7].2), and A1 = toeplitz(v). Define

T = A1∗Xtrue∗A1, and btrue = T(8 :247, 8:247), btrue = btrue(:); and b = btrue+c ·randn(length(btrue, 1))
where c is such that the noise level is 0.01.
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(a) Original. (b) Blurred, noisy. (c) Ten rcn λ = 10

(d) Ten rcn λ = 0 (e) Matrix rcn, λ = 10 (f) Matrix rcn, λ = 0

Figure 10. Example 2: Original, blurred noisy image, and various reconstructions, with and without discrete
derivative regularization for the tensor-dictionary-based and matrix reconstructions.

there are ringing and fine scale noise artifacts in other areas of the matrix-based image as
well. However, details are recovered using the tensor patch-based dictionary.

In Figure 12(d) we show a reconstruction using a different dictionary, also constructed
from face data, of size 32× 64× 32 for λ = 100 and 2000 iterations. We see that the quality
is very close to the 16× 16 patch dictionary, and there are improvements in some areas of the
image but subtle degradataion in others. As we note in the conclusions, this suggests using a
multilevel dictionary approach may improve the situation further.

Figure 11. Example 3: Convergence behavior. Horizontal axis is iteration number, vertical is relative error
in the iterate against the true image.
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(a) Blurred, Noisy. (b) Ten λ = 100, p, q = 16 (c) Ten λ = 0, p, q = 16

(d) Ten λ = 100, p, q = 32 (e) Opt. Matrix Recon (f) Matrix Recon, 2000 its

Figure 12. Example 3. blurred and noisy image, several reconstructions. In the matrix cases, note the
white border in the reconstructions due to the lack of information near the boundary.

8. Summary and Future Work. In this work, we have shown the utility of learned tensor-
patch dictionaries in the context of non-negative image representation, compression and image
deblurring applications. In all cases, once a non-negative tensor patch-dictionary is available,
we showed that the problems of compression and deblurring could be formulated in terms of
recovering the corresponding non-negative tensor coefficient object. We gave an MRNSD ten-
sor algorithm for finding the coefficient tensor, and described a modification that encourages
sparsity in the coefficient tensor. Notably, this sparsity constraint is applicable whether or not
one uses matrices or tensors in the formulation, thereby indicating the proposed approach has
broader utility than for the purpose described here. In the case of deblurring, we showed the
tensor representation is particularly effective in mitaging the effects of noise on the solution,
especially in the case of underdetermined problems and boundary effects.

Importantly, we demonstrated that the class of data on which the dictionary is trained
is surprisingly irrelevant in the context of image representation under the tensor-dictionary
formulation, as is the resolution of the training data, both in the context of image compres-
sion and image deblurring. We also discussed issues related to patch size, and the trade-offs
between sparsity, representability and computation time. We showed that a fixed dictionary
can do remarkably well on representing images at various resolutions, and even across color
channels. In our deblurring examples, we saw that the tensor dictionaries could mitigate
semi-convergence behavior. We also observed that better representations could be obtained
by convex combination of deblurred images constructed using dictionaries at different resolu-
tions, which suggests further work is needed to design a multi-level dictionary representation
that allows for better local feature description. Finally, as noted in [13, 22], the t-product
generalizes to tensors of order higher than three, so our ideas generalize to higher order.
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Recently, in [7], new tensor-tensor products have been defined which, like the t-product,
permit a linear algebraic-type framework. The tensor-patch dictionary learning and repre-
sentation approach can therefore be extended to these tensor-tensor products. Some of the
preliminary details are offered in [16]. Further investigation into which class of tensor-tensor
products provide for the best non-negative dictionaries for use in image compression and
representation still needs to be considered, and is the subject of future research.

Appendix A. Tensor-based MRNSD derivation.

Suppose C = eZ meaning C
(k)
ij = eZ

(k)
ij . We then compute the search direction S by

computing the gradient of 6 as follows:

S = ∇Z

(
1

2
‖B−D ∗ eZ‖2F

)
(14)

= eZ � (−DT ∗ (B−D ∗ eZ)).

The search direction S is exactly the gradient of (6) with the addition of a Hadamard
product � with C.

To determine the optimal step size, we solve for α as follows. For notational simplicity,
we define the residual tensor R, the gradient tensor G, and U as follows:

R = B−D ∗ C
G = −DT ∗R
U = D ∗ S

Note that UT ∗R = −ST ∗ G. We reformulate (6) using Definition 2.2 in terms of R, G, and
U as follows:

1

2
||B−D ∗ (C− α · S)||2F =

1

2
||R + α ·U||2F

=
1

2
trace[((R + α ·U)T ∗ (R + α ·U))(1)]

=
1

2
trace[(RT ∗R + 2α ·UT ∗R + α2 ·UT ∗U)(1)].

Note that typically UT ∗ R 6= RT ∗ U; however, the trace of the first frontal slice is always
equal. We made use of this fact in the last line above.

Now, we solve for α as follows:

∇α
1

2
trace[(RT ∗R + 2α ·UT ∗R + α2 ·UT ∗U)(1)] = 0

trace[(UT ∗R + α ·UT ∗U)(1)] = 0

Solving for α and rewriting in terms of D, S, and G, we get the optimal step size:

α = −trace[(UT ∗R)(1)]/trace[(UT ∗U)(1)]

= trace[(ST ∗ G)(1)]/||D ∗ S||2F .
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We add an additional constraint on the α to ensure that we never move too far along the
search direction and turn some coefficients C to negative values.

θ = trace[(ST ∗ G)(1)]/||D ∗ S||2F
α = min{θ, min

S
(k)
ij >0

(X
(k)
ij /S

(k)
ij )}.

Appendix B. Quasiconvexity of MRNSD.
From Boyd and Vandenberghe’s Convex Optimization, we have the following definition:

Definition B.1 (Quasiconvex).
A function f : Rn → R is quasiconvex if all of its sublevel sets Sα = {x ∈ Rn | f(x) ≤ α}

for α ∈ R are convex.

We first expand Φ as follows:

Φ(z) = 1
2‖De

z − b‖2F
= 1

2‖De
z‖2 + 1

2‖b‖
2
F − bTDez

Suppose for some x,y ∈ Rn and α ∈ R, s,y ∈ Sα; that is, Φ(x),Φ(y) ≤ α. We show that
θx + (1− θ)y ∈ Sα for all θ ∈ (0, 1), hence that Sα is convex and Φ is quasiconvex.

Φ(θx + (1− θ)y) =
1

2
‖Deθx+(1−θ)y‖2F +

1

2
‖b‖2F − bTDeθx+(1−θ)y

≤ θ

2
‖Dex‖2F +

1− θ
2
‖Dey‖2F +

1

2
‖b‖2F − bTDeθx+(1−θ)y by convexity

≤ θα+ (1− θ)α− bTDeθx+(1−θ)y by assumption

= α− bTDeθx+(1−θ)y

For our dictionary-learning problem, we assume D and b are non-negative because they
are composed of images. Furthermore, ez has non-negative components. Therefore,

Φ(θx + (1− θ)y) ≤ α− bTDeθx+(1−θ)y ≤ α.

Therefore, θx + (1 − θ)y ∈ Sα and Sα is convex. Because Φ is quasiconvex, gradient
descent will make progress towards a minimum (i.e., we will not be stuck at a saddle point).

Acknowledgments. The authors are extremely grateful to Dr. Sara Soltani for providing
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