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NON-COERCIVE LYAPUNOV FUNCTIONS FOR INPUT-TO-STATE
STABILITY OF INFINITE-DIMENSIONAL SYSTEMS *

BIRGIT JACOB T, ANDRII MIRONCHENKO ¥, JONATHAN R. PARTINGTON § AND
FABIAN R. WIRTH ¥

Abstract. We consider an abstract class of infinite-dimensional dynamical systems with inputs.
For this class the significance of noncoercive Lyapunov functions is analyzed. It is shown that the
existence of such Lyapunov functions implies norm-to-integral input-to-state stability. This property
in turn is equivalent to ISS, if the system has some sort of regularity. For a particular class of linear
systems with unbounded admissible input operators, explicit constructions of noncoercive Lyapunov
functions are provided. The theory is applied to a heat equation with Dirichlet boundary conditions.

Key words. infinite-dimensional systems, input-to-state stability, Lyapunov functions, nonlin-
ear systems, linear systems.

AMS subject classifications. 35Q93, 37B25, 37L15, 93C10, 93C25, 93D05, 93D09

1. Introduction. The concept of input-to-state stability (ISS), introduced in
[40] for ordinary differential equations (ODEs), unifies the classical Lyapunov and
input-output stability theories and has broad applications in nonlinear control the-
ory, in particular to robust stabilization of nonlinear systems [8], design of nonlinear
observers [1], analysis of large-scale networks [6, 16], etc.

The influence of finite-dimensional ISS theory and a desire to develop powerful
tools for robust control of linear and nonlinear distributed parameter systems resulted
in extensions of ISS concepts to broad classes of infinite-dimensional systems, includ-
ing partial differential equations (PDEs) with distributed and boundary controls,
semilinear equations in Banach spaces, time-delay systems, etc. [5, 10, 14, 18, 19, 20],
(26, 29, 43, 38].

Currently ISS of infinite-dimensional systems is an active research area at the
intersection of nonlinear control, functional analysis, Lyapunov theory and PDE the-
ory, which brings such important techniques for stability analysis as characteriza-
tions of ISS and ISS-like properties in terms of weaker stability concepts [10, 29, 37],
constructions of ISS Lyapunov functions for PDEs with distributed and boundary
controls [26, 36, 43, 48], efficient methods for study of boundary control systems
[10, 12, 18, 20, 47], etc. For a survey on ISS of infinite-dimensional systems we refer
to [28].

It is a basic result in input-to-state stability theory that the existence of an ISS
Lyapunov function implies ISS. However, the construction of ISS Lyapunov func-
tions for infinite-dimensional systems is a challenging task, especially for systems
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2 Non-coercive Lyapunov functions for ISS of infinite-dimensional systems

with boundary inputs and/or for nonlinear systems. Already for undisturbed linear
systems over Hilbert spaces, “natural” Lyapunov function candidates constructed via
solutions of Lyapunov equations are of the form V(z) := (Px,x), where (-,-) is a
scalar product in X and P is a self-adjoint, bounded and positive linear operator,
whose spectrum may contain 0. In this case V is not coercive and satisfies only the
weaker property that V(z) > 0 for 2 # 0. Hence the question arises, whether such
“non-coercive” Lyapunov functions can be used to conclude that a given system is
ISS. A thorough study of a similar question related to characterizations of uniform
global asymptotic stability has recently been performed in [32, 31].

In [29, Section III.B] it was shown for a class of semilinear equations in Banach
spaces with Lipschitz continuous nonlinearities that the existence of a non-coercive
Lyapunov function implies ISS provided the flow of the system has some continuity
properties with respect to states and inputs at the origin and the finite-time reacha-
bility sets of the system are bounded. However, this class of systems does not include
many important systems such as linear control systems with admissible inputs opera-
tors, which are crucially important for the study of partial differential equations with
boundary inputs.

In this paper we extend the results from [29, Section IIL.B] to a broader class
of systems, which includes at least some important classes of boundary control sys-
tems. The characterizations of ISS developed in [29] will play a central role in these
developments.

We start by defining a general class of control systems in Section 2. This class
covers a wide range of infinite-dimensional systems. For this class several stability
concepts are defined which relate to the characterizations of ISS, in particular to the
characterization with the help of noncoercive Lyapunov functions. We define also
several further ISS-like properties, which we call norm-to-integral ISS and integral-
to-integral ISS. Integral-to-integral ISS has been studied in [41] and it was shown
that integral-to-integral ISS is equivalent to ISS for systems of ordinary differential
equations with sufficiently regular right hand side f. Further relations of ISS and
integral-to-integral ISS for ODE systems have been developed in [9, 21] and other
works.

Although ISS is no longer equivalent to integral-to-integral [SS for infinite-dimensio-
nal systems, we prove in Theorem 3.5 that 1SS is equivalent to norm-to-integral 1SS
for a broad class of infinite-dimensional systems provided the flow of the system has
some continuity properties w.r.t. states and inputs at the origin (CEP property) and
the finite-time reachability sets of the system are bounded (BRS property). The proof
of this criterion is performed in 3 steps. First we show that integral-to-integral ISS
implies a so-called uniform limit property. This result has been already obtained in
[29, Section ITL.B]. Next we show that integral-to-integral ISS implies local stability
of a control system provided the flow of the system is continuous w.r.t. state and
inputs at the origin. This is done in Proposition 3.4. The third and final step in the
proof of Theorem 3.5 is the application of the main result in [29].

In Section 4 we introduce non-coercive ISS Lyapunov functions for abstract con-
trol systems, and show that existence of such a function for a forward-complete system
implies norm-to-integral ISS (Proposition 4.3), and it implies 1SS provided CEP and
BRS properties are satisfied (Theorem Theorem 4.4). Derivations of these results rely
on the characterizations of ISS obtained in Section 3. In Section 4.1 we discuss the
employed definition of the ISS Lyapunov function for various common choices of input
spaces.
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In Section 5 we derive a constructive converse ISS Lyapunov theorem (Theo-
rem 5.3) for certain classes of linear systems with admissible input operators. In
particular, our results can be applied for a broad class of analytic semigroups over
Hilbert spaces generated by subnormal operators, as discussed in Section 6.2.

It is well-known that the classic heat equation with Dirichlet boundary inputs is
ISS, which has been verified by means of several different methods: [10, 18, 27]. How-
ever, no constructions for ISS Lyapunov functions have been proposed. In Section 6
we show that using the constructions developed in Theorem 5.3 one can construct
a non-coercive ISS Lyapunov function for this system. It is still an open question,
whether a coercive ISS Lyapunov function for a heat equation with the Dirichlet
boundary input exists (note, that for the system with Neumann boundary input a
coercive quadratic ISS Lyapunov function can be constructed, see [48]).

Notation: We use the following notation. The nonnegative reals are denoted by
R4 :=[0,00). The open ball of radius r around 0 in a normed vector space X is de-
noted by B, := B, x :={z € X : ||z|x <r}. Similarly, B, ;s :={u el : |Jullu <r}.
By lim we denote the limit superior. For any normed linear space X, for any S C X
we denote the closure of S by S. For a linear operator A : X — X (bounded or
densely defined unbounded), we denote by A* the adjoint of the operator A.

For a function u : Ry — U, where U is any set, we denote by ulj , the restriction
of u to the interval [0, t], that is u|g ¢ : [0,#] — U and uljg4(s) = u(s) for all s € [0,1].

Let U be a Banach space, I be a closed subset of R and p € [1,4+00). We define
the following spaces (see [13, Definition A.1.14] for details)

MRy, U) :={f: Ry — U: [ is strongly measurable},

OO ) 1/
LRy, U) = {f € MR1,U) : | fllnee, o) = ( / 1) lls) " < oo},
LRy, U) :={f € M(Ry,U) : || fllzry,v) := esssup || f(s)[lv < oo}

sERL

Identifying the functions, which differ on a set of Lebesgue measure zero, the spaces
LP(R4,U), p € [1,+00] are Banach spaces.

For the formulation of stability properties the following classes of comparison
functions are useful:

K ={y:Ry - R4| v is continuous and strictly increasing, v(0) = 0}

Koo ={vy€K|~ is unbounded }

L = {’y : Ry — Ry | v is continuous and decreasing with tlim ~(t) = 0}
o

KL ={8:R2 5 Ry| B(~t) €K, ¥t 20, f(r,) € L, ¥r > 0)

2. Preliminaries. We begin by defining (time-invariant) forward complete con-
trol systems evolving on a Banach space X.

DEFINITION 2.1. Let (X,||lx), (U, |l-|lv) be Banach spaces andUd C {f : Ry —
U} be a normed vector space which satisfies the following two azioms:

Aziom of shift invariance: For allu € U and all T > 0 we have u(- +7) € U with
Jeullee = [+ )l

Aziom of concatenation: For all uy,us € U and for allt > 0 the concatenation of
uy and us at time t

2.1) u(r) = {ul(r), if e 0,1,

us(T —1t), otherwise,
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belongs to U. Consider a map ¢ : Ry x X xU — X.
The triple ¥ = (X,U, ¢) is called a forward complete control system, if the fol-
lowing properties hold:
(¥1) Identity property: for every (x,u) € X x U it holds that ¢(0,z,u) = x.
(¥2) Causality: for every (t,x,u) € Ry x X xU, for every @ € U with u|jg g = o,
it holds that ¢(t, z,u) = ¢(t,x,0).
(£3) Continuity: for each (x,u) € X x U the map t — ¢(t,z,u), t € [0,00) is
continuous.
(34) Cocycle property: for allt,h >0, for allz € X, u € U we have
d(hyp(t,x,u),u(t + ) = ¢(t + h, z,u).
The space X is called the state space, U the input space and ¢ the transition map.
This class of systems encompasses control systems generated by ordinary differential
equations (ODEs), switched systems, time-delay systems, evolution partial differential
equations (PDEs), abstract differential equations in Banach spaces and many others.
We single out two particular cases which will be of interest.
EXAMPLE 2.2. (Semilinear systems with Lipschitz nonlinearities). Let A be the
generator of a strongly continuous semigroup (also called Cy-semigroup) (T'(t))e>0 of
bounded linear operators on X and let f: X x U — X. Consider the system

(2.2) i(t) = Az(t) + f(z(t),u(t)), wu(t)eU,

where x(0) € X. We study mild solutions of (2.2), i.e. solutions x : [0,7] — X of the
integral equation

(2.3) z(t) = T(t)z(0) + /O/T(t —8)f(z(s),u(s))ds, te]o0,7],

belonging to the space of continuous functions C([0, 7], X) for some T > 0.
For system (2.2), we use the following assumption concerning the nonlinearity f:
(i) [ : X xU — X is Lipschitz continuous on bounded subsets of X, i.e. for
all C > 0, there exists a Ly(C) > 0, such that for all z,y € Bc and for all
v € Boy, it holds that

(2.4) I[f(2,0) = £y, 0)llx < Ly (C)llz = yllx-

(i) f(z,-) is continuous for all x € X and f(0,0) = 0.

Let U := PCy(Ry,U) be the space of piecewise continuous functions, which are
bounded and right-continuous, endowed with the supremum norm: ||ul|z := sup;sg [|u(t)||v.
Then our assumptions on f ensure that mild solutions of initial value problems of the
form (2.2) exist and are unique, according to [2, Proposition 4.3.3]. For system (2.2)
forward completeness is a further assumption. If these mild solutions exist on [0, 00)
for every x(0) € X and u € PCy,(R.,U), then (X, PCy(Ry,U), ¢), defines a forward
complete control system, where ¢(t,z(0),u) denotes the mild solution at time t.

ExaMPLE 2.3. (Linear systems with admissible control operators). Consider
linear systems of the form

(2.5) (t) = Ax(t) + Bu(t), z(0)€ X, t>0,

where A is the generator of a Cy-semigroup (T'(t))t>0 on a Banach space X and B €
L(U, X _1) for some Banach space U. Here X_1 is the completion of X with respect
to the norm ||z||x_, = [[(B] — A)'z||x for some B € C in the resolvent set p(A) of
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A. The semigroup (T'(t))¢>0 extends uniquely to a Co-semigroup (T—1(t))e>0 on X_1
whose generator A_q is an extension of A, see e.g. [T]. Thus we may consider equation
(2.5) on the Banach space X_1. For every xo € X and every u € L. ([0,00),U), the
Junction x : [0,00) = X_4,

¢
z(t) :=T(t)xg +/ T_1(t — s)Bu(s)ds, t>0,
0
is called a mild solution of the system (2.5).

An operator B € L(U, X_1) is called a g-admissible control operator for (T'(t))¢>o,
where 1 < q < o0, if

¢
/ T_1(t — s)Bu(s)ds € X
0
for every t > 0 and u € L1(|0,00),U) [46]. If the operator B € L(U,X_1) is an

g-admissible control operator for (T'(t))i>o, then there exists for any t > 0 a constant
k(t) > 0 such that

(2.6) H/O T_1(t —s)Bu(s)ds|| < r(t)|lully, we LY[0,t),0),

X

see [46].

If B is oo-admissible and for every initial condition zo € X and every inpul
Junction w € L*([0,00),U) the mild solution x : [0,00) — X is continuous, then
(X, L*([0,00),U), $), where

o(t, xo,u) :=T(t)xo + /0 T_1(t — s)Bu(s)ds,

defines a forward-complete control system as defined in Definition 2.1.

REMARK 2.4. We note that, co-admissibility and continuity of all mild solutions
(-, o, u) : [0,00) = X, where g € X and u € L>([0,00),U) is implied by each of
the following conditions:

e B is g-admissible for some q € [1,00), see [46, Proposition 2.5],

e Be L(U,X_4), dim(U) < oo, X is a Hilbert space and A — X generates
for a certain A € R an analytic semigroup which is similar to a contraction
semigroup, see [12, Theorem 1].

In this article various stability concepts are needed for forward complete control
systems.

DEFINITION 2.5. Consider a forward complete control system X = (X, U, @).

1. We call0 € X an equilibrium point (of the undisturbed system) if ¢(¢,0,0) =
0 for allt > 0.

2. We say that ¥ is continuous at the equilibrium point (CEP), if 0 is an equi-
librium and for every e > 0 and for any h > 0 there exists a 6 = §(e,h) > 0,
so that

27 tel0,h] Allzllx <6 A ullw <6 = ot z,u)llx <e.

3. We say that ¥ has bounded reachability sets (BRS), if for any C > 0 and
any 7 > 0 it holds that

sup {|6(t, 2, u)|x : [z|x < C, [Jufu< C, te0,7]} < o0.
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4. System X s called uniformly locally stable (ULS), if there exist ¢ € Koo,
v € Koo and v > 0 such that for all x € B, and all uw € B, y:

(2.8) lo(t, z, u)llx < o(llzlx)+y(ulle) ¥Vt =0.

5. We say that ¥ has the uniform limit property (ULIM), if there exists v € K
so0 that for every e > 0 and for every r > 0 there exists a T = 7(e,r) such
that for all x with ||z||x < r and all w € U there is a t < T such that

(2.9) lo(t, z,u)l|x < e+ (llullw).

6. System X is called (uniformly) input-to-state stable (ISS), if there exist 8 €
KL and v € K such that for all x € X, w € U and t > 0 it holds that

<210) ||¢(t7 €, u)”X < ﬁ(”xHXt) + 7(”“”1/1)

7. We call ¥ norm-to-integral ISS if there are a € K and ¥ € K, 0 € Koo s0
that for all x € X, w € U and t > 0 it holds that

(2.11) /O a(llo(s, z, u)llx)ds < ([le]x) + to([ulle)-

For the special case of L> input spaces we introduce one more stability notion

DEFINITION 2.6. Consider a forward complete control system ¥ := (X,U, ¢) with
the input space U := L (R4, U), where U is any normed linear space.

We call 3 integral-to-integral ISS if there are o € K and ¥ € Ko, 0 € K so
that for all x € X, w e U and t > 0 it holds that

t

(2.12) [ ootz wlixds < wllel) + [ o(uts)lo)ds

0

REMARK 2.7. The CEP and BRS properties are motivated by the notions of
a robust equilibrium point and of robust forward completeness, which were widely
employed in [17], see also [32] where these concepts were used in the context of non-
coercive 1SS Lyapunov theory.

ExXAMPLE 2.8. (Linecar systems with admissible control operators) We continue
with Example 2.8, that is, we consider again equation (2.5) and assume that A gener-
ates a Co-semigroup, B € L(U, X_1) is co-admissible and for every initial condition
xo € X and every input function u € L>([0,00),U) the mild solution x : [0,00) — X
is continuous. These assumptions guarantee that (X, L*°([0,00),U), ¢), where

o(t, o, u) :=T(t)xo + /0 T_1(t — s)Bu(s)ds,

defines a forward-complete control system. The system has the following properties
1. 0 € X is an equilibrium point due to the linearity of the system,
2. (X,L>([0,00),U),$) has the CEP property, and bounded reachability sets
(BRS), which follows easily from inequality (2.6) and linearity of the system.
3. (T(t))i>0 is exponentially stable if and only if (X,L>([0,00),U),¢) is 1SS
[10, Proposition 2.10].
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4. If (T'(t))i>0 is exponentially stable, then (X, L>([0,00),U),¢) has the uni-
form limit property (ULIM), and is uniformly locally stable (ULS), which
follows from the previous item.

5. If Y = (X,L*(]0,00),U), ¢) has a so-called integral ISS property, then ¥ is
ISS [10]. To the best of the knowledge of the authors it is unknown, whether
or not the converse implication holds for every linear system (2.5).

3. Characterization of ISS in terms of norm-to-integral ISS. In this sec-
tion, we characterize input-to-state stability in terms of the norm-to-integral ISS,
which is interesting on its own right, but also it will be instrumental for the estab-
lishment of non-coercive ISS Lyapunov theorems in the next section. We start with

ProrosiTioN 3.1. If a forward complete control system is ISS, then it is norm-
to-integral ISS.

Proof. Let ¥ = (X,U,$) be a forward complete ISS control system and let
B € KL be as in Definition 2.5. By Sontag’s KL-lemma [41, Proposition 7], there are
&1, € Koo so that B(r,t) < {fl(e_tfg(r)) for all r;t € R,. ISS of 3 now implies
that there is v € Ko such that the following holds:

lo(t, o, u)llx < & (e & llallx)) +(llule)-

Define £(r) := & (37), € Ry, Using the inequality £(a +b) < &£(2a) + £(2b), which
is valid for all a,b € R4, we obtain that for all z € X, uw € ¢ and ¢ > 0 it holds that

(3.1) Ellot, =, w)llx) < e "(llzlx) + & (y(lullu)).

Integrating (3.1), we see that

/0 E(llo(s, 2, u)lx)ds < &(|lzllx) + t&r 0 v(l|uller),

which shows norm-to-integral ISS of X. O

Next we show that norm-to-integral ISS implies ISS for a class of forward-complete
control systems satisfying the CEP and BRS properties. In order to prove this, we
are going to use the following characterization of ISS, shown in [29]:

THEOREM 3.2. Let 3 = (X,U, @) be a forward complete control system. Then 3
is 1SS if and only if ¥ is ULIM, ULS, and BRS.

In [29, Proposition 8] it was shown (with slightly different formulation, but the
same proof) that

PROPOSITION 3.3. Let ¥ = (X,U, p) be a forward complete control system. If ¥
is norm-to-integral ISS, then ¥ is ULIM.

Next we provide a sufficient condition for the ULS property.

PROPOSITION 3.4. Let ¥ = (X,U, ¢) be a forward complete control system satis-
fying the CEP property. If ¥ is norm-to-integral ISS, then ¥ is ULS.

Proof. Let ¥ be norm-to-integral ISS with the corresponding «, v, o as in Defini-
tion 7.

By [29, Lemma 2] 3 is ULS if and ouly if for all £ > 0 there is a § > 0 such that

(3-2) [zllx <0 A ulley <0 A E20 = (ot z,u)llx <e.

Seeking a contradiction, assume that ¥ is not ULS. Then there is € > 0 such that for
any 0 > 0 there are € By, u € Bsy and t > 0 such that ||¢(t,z,u)||x = . Then
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there are sequences {xy tren in X, {ug}ren in U, and {tx }reny C Ry such that 2 — 0
as k — oo, up — 0 as k — oo and

H(/)(tk,,fl,‘k,uk) X =& Vk Z 1.

Since ¥ is CEP, for the above ¢ there is a §; = d1(¢,1) so that

(3-3) Iz

x <6 A ullu <o A tel0,1] = ot zu)|x <e.
Define for k£ € N the following time sequence:
ty == sup{t € [0,11] : [|o(t, 21, up) || x < 01},

if the supremum is taken over a nonempty set, and set ¢ := 0 otherwise.
Again as Y is CEP, for the above d; there is a d5 > 0 so that

(3-4) [zllx <02 A lull <02 A te[0,1] = [|o(t z,u)llx < 0.
Without loss of generality we assume that 02 is chosen small enough so that
(35) a(d1) > (3).
We now define

th = sup{t € [0, )] : |o(t, xx, u) | x < da},

if the supremum is taken over a nonempty set, and set ti := 0 otherwise.

Since uy — 0 and xp — 0 as k — oo, there is K > 0 so that |Jug|lyy < d2 and
||17k||X S 52 for k Z K.

From now on, we always assume that k > K.

Using (3.3), (3.4) and the cocycle property, it is not hard to show that for & > K it
must hold that ¢; > 2, as otherwise we arrive at a contradiction to ||¢(tx, zk, ug)||x =
€.

Assume that ¢, — ¢+ < 1. This implies (since ¢, > 2), that t. > 0. By the cocycle
property we have

[p(te: zhs ) | x = Dtk — the Dt Trs ur), un (- + )|l x-
The axiom of shift invariance justifies the inequalities
lur (- + i)l < [Jurller < 62 < 61
Since ||¢(th, zk, uk)|| x = 61, and t, — 5, < 1, we have by (3.3) that ||¢(tx, zx, ur)||x <
€, a contradiction. Hence tp — 15,1c >1forall k> K.

Analogously, we obtain that ¢} —t7 > 1 and ¢, — t7 > 2.
Define

a:i = qb(ti,a:k,uk), ui = ug(-+ ti)
and

xllc = ¢(tl]%7xk7uk)! uI]% = uk(+t119)
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Due to the axiom of shift invariance u,lc, ui € U and
luklle < lluiller < llurll < 6.
Also by the definition of #2 we have ||22||x = .
Applying (2.11), we obtain for ¢ := t; — 7 that
t—t;
/O a(llo(s, z3. ui) | x)ds < (llagllx) + e — o (lluille)
(3.6) < 9(82) + (tr — 1) ([[uler)-

On the other hand, changing the integration variable and using the cocycle property
we obtain that

ty—t3 Ly —t2 ty—t7
| atiets.at ot = [ allots.atad)lds + [ allots.otd)ds
—1

1
et

ty—t2 ty—t;,
- /0 ol b(s. 233 | )ds + /0 a(|6(s + 1 — 2,22, u2)]| x )ds

ty—ty,

th—t3
- / o(|6(s.22, u) | x)ds + / a((l6(s, 24 ub) | x )ds.
0 0

By definition of 2 and ¢} we have that

lo(s, 27, up)lx > a2, s € [t ta]
and

”¢(Saxllc»ullc)”X >01, S€ [tllcvtk]'

Continuing the above estimates and using that ¢; — ¢}, > 1 and a(d;) > a(d2), we
arrive at

ty—t3
/ a(llo(s, 7%, up)llx)ds > (th — t7)a(62) + (tx — t)c(01)
0

> (tp — 12 — Da(8z) + ().

Since t; — t7 > 2 and in view of (3.5), we derive

~tk—ti _ 42
(37) | ettt ablxs > B o) + v
)

Combining inequalities (3.6) and (3.7), we obtain

ty — 12
%a@z) < (te — tR)o(Jlurlle)-

This leads to

1
50002) <olluelu), k= K.

Finally, since limg_, oo ||ugller = 0, letting k& — co we come to a contradiction. This
shows that ¥ is ULS. O
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Now we combine the derived results into a criterion of ISS in terms of norm-to-
integral ISS.

THEOREM 3.5. Let 3 be a forward complete control system. Then X is 1SS if
and only if X is norm-to-integral 1SS and has CEP and BRS properties.

Proof. “=". Clearly, ISS implies CEP and BRS properties. By Proposition 3.1
ISS implies norm-to-integral ISS.

“«<". Propositions 3.3 and 3.4 imply that 3 is ULIM and ULS. Since ¥ is BRS,
Theorem 3.2 shows that 3 is ISS. O

Some forward complete systems have the BRS and CEP properties intrinsically,
which leads to the equivalence between ISS and norm-to-integral ISS for such classes
of systems. In particular, the following slight extension of [41, Theorem 1] holds:

COROLLARY 3.6. Let X = R" and U := L*(R4,R™). Consider ordinary
differential equations of the form

(3.8) &= f(z,u), t>0,

with f which is continuous in both variables and locally Lipschitz continuous in x.
Define ¢(-,z,u) as the mazimal solution of (3.8) with an initial condition x € R™ and
an input u € U.

Assume that (3.8) is forward complete. Then the following statements are equiv-
alent:

(i) (3.8) is ISS

(i1) (3.8) is integral-to-integral 1SS

(#ii) (3.8) is norm-to-integral 1SS

Proof. (i) < (ii). Was shown in [41, Theorem 1].

(i) < (iii). It is well-known that under made assumptions on f a forward complete
system (3.8) satisfies the BRS property (see [22, Proposition 5.1]) and CEP property.
The claim follows from Theorem 4.4 and Proposition 3.1. O

For linear systems with admissible control operators we have:

PROPOSITION 3.7. Let X and U be Banach spaces and let U := L*°([0,00),U).
Consider the system (2.5) and assume that A generates a Cy-semigroup, B € L(U, X _1)
is 0o-admissible and for every initial condition xo € X and every input u € U the
mild solution x : [0,00) — X is continuous.

Then (2.5) is ISS if and only if (2.5) is norm-to-integral ISS.

Proof. ”=". Follows by Proposition 3.1.

”<". As mentioned in Example 2.8, under the assumptions made (2.5) is a well-
posed control system satisfying CEP and BRS properties. Theorem 4.4 finishes the
proof.

Alternative proof of 7<=”. From norm-to-integral ISS of (2.5) for v = 0 the
exponential stability of the semigroup generated by A follows by means of a generalized
Datko lemma [23, Theorem 2]. As we assume that B is oo-admissible, ISS follows by
[10, Proposition 2.10]. O

3.1. Remark on input-to-state practical stability. In some cases it is im-
possible (as in quantized control) or too costly to construct a feedback that results in
an ISS closed-loop system. For these applications one defines the following relaxation
of the ISS property:

DEFINITION 3.8. A control system ¥ = (X,U, @) is called (uniformly) input-to-
state practically stable (ISpS), if there exist § € KL, v € Ko and ¢ > 0 such that for
allz € X, u el andt > 0 the following holds:

(3.9) ot =, u)llx < BUlzllx,t) +v([lull) + .
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The notion of ISpS has been proposed in [16] and has become very useful for control
in the presence of quantization errors [39, 15], sample-data control [33] to name a few
examples.

One of the requirements in Theorem 3.5 is that the CEP property holds. If this
property is not available, we can still infer input-to-state practical stability of 3, using
the main result in [24].

THEOREM 3.9. Let ¥ be a forward complete control system, which is BRS. If ¥
is norm-to-integral ISS, then ¥ is ISpS.

Proof. Proposition 3.3 implies that ¥ is ULIM. Since ¥ is also BRS, [24, Theorem
II1.1] shows that X is ISpS. O

4. Non-coercive ISS Lyapunov theorem. For a real-valued function b :
R4 — R define the right-hand upper and lower Dini derivatives at t € Ry by

— b(t+h)—b(t
D*b(t) := Tim M, Dyb(t) := lim
v —+0 h h—+0

b(t + h) — b(t)

respectively. Note that for all b: Ry — R and all ¢t € Ry it holds that
(4.1) Dtb(t) = —Do(—b(t)).

Let x € X and V be a real-valued function defined in a neighborhood of z. The
(right-hand upper) Dini derivative of V' at x corresponding to the input u € U along
the trajectories of 3 is defined by

(42)  Vul@)= DV (o(ww)| = Tm o (V(eltzu) ~ V().

= 1li
t=0 t—=+01

We need a lemma on derivatives of monotone functions.
LEMMA 4.1. Let b: Ry — R be a nonincreasing function. Then for each t € Ry
it holds that

¢ ¢
(4.3) b(t) > D+/ b(s)ds > D+/ b(s)ds > lim b(t+ h).
0 0 h—+0

Proof. Pick any ¢t > 0. By the definition of the Dini derivative and using mono-
tonicity it holds that

1 t+h t t+h
+ — — =
D /0 b(s)ds = h£m+0 5 (/0 b(s)ds /0 (s)ds hli>m+() h/
t+h
< lim / = b(t).

h—+0 h
On the other hand, we have that

t 1 t+h
D, / b(s)ds > lm + / b(t+ h)ds = Tim b(t + h).
0 h—+0 h—+40

The inequality D fot b(s)ds > Dy fg b(s)ds is clear. O
For stability analysis of nonlinear control systems, Lyapunov functions are an
essential tool.
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DEFINITION 4.2. Consider a control system ¥ = (X,U, ) with the input space
U := L®Ry,U). A continuous function V : X — Ry is called a non-coercive ISS
Lyapunov function for X, if there exist Vo, € Koo and o € K such that

(4.4) 0 <V(x) < ¢a(llzlx), VreX\{0},

and the Dini derivative of V' along the trajectories of ¥ for all x € X and u € U
satisfies

(4.5) V(@) < —a(|lz]lx) + o (|Julles)-

Moreover, if (4.5) holds just for u = 0, we call V' a non-coercive Lyapunov
function for the undisturbed system Y. If additionally there is iy € Koo so that the
following estimate holds:

(4.6) hi(llzlx) < V(z) < da(llzllx), Ve X,

then V' is called a coercive ISS Lyapunov function for X.

Note that continuity of V' and the estimate (4.4) imply that V' (0) = 0.

The next proposition shows that the norm-to-integral ISS property arises natu-
rally in the theory of ISS Lyapunov functions:

PROPOSITION 4.3. Let ¥ = (X,U,¢) be a forward complete control system.
Assume that there exists a non-coercive ISS Lyapunov function for X.. Then X is
norm-to-integral 1SS.

Proof. Assume that V' is a non-coercive ISS Lyapunov function for ¥ with the
corresponding 9, a,0. Pick any u € U and any z € X. As we assume forward
completeness of ¥, the trajectory ¢(-,z,u) exists for all ¢ > 0 and due to (4.5), we
have for any ¢ > 0 that:

(4.7) Vi (6(t,2,u)) < —al(|o(t 2, w)x) + o([lult +-)ll)-

By definition of V, and using the cocycle property for &, we have that

T = (V60 0(t . 0),ult + ) V(6(t,2,w))

Vu(t+-) (o(t, z,u))

= hliTEo % (V (p(t + h,w,u)) — V(o(t, , u)))

Defining y(t) := V(¢(t, ,u)), we see that

"/u(t-‘r') (¢(tv €z, u)) = D+y(t)7

and y(0) = V(x) due to the identity axiom of the system X.

In view of the continuity axiom of ¥, for fixed x, u the map ¢(-, z, 1) is continuous,
and thus ¢t — —a(||¢(¢, z, )| x) is continuous as well.

For ¢t > 0, define G(t) := fota(HqZ)(s,x,u)HX)ds and b(t) := o(|lu(t + -)||u). Note
that by the axiom of shift invariance, b is non-increasing. As G is continuously
differentiable, we can rewrite the inequality (4.7) as

(4.8) DTy(t) < —%G(t) +b(t).
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Pick any 7 > 0 and define b(s) = b(0) for s € [—r,0]. As b is a nonincreasing function
on [—r,00), it holds for any ¢ > 0 that b(t) < limp_,+0b(t — 7 + h), and by the final
inequality in Lemma 4.1 applied to b(- — r) we obtain

b(t) < Dy /Ot b(s —r)ds = —D7 ( - /Ot b(s — 7’)ds).
Thus, (4.8) implies that
d ¢
(4.9) DYy(t) + aG(t) + D+( - /0 b(s — T)ds) <0.

Due to

DT (fi(t) + f2(t)) < DT(f1(t)) + D™ (f2(1)),

which holds for any functions f1, fo on the real line, this implies that
t
D+ (y(t) +G(t) - / b(s — T)ds) <o.
0

It follows from [42, Theorem 2.1] that ¢t — y(t) + G(¢) — fot b(s —r)ds is nonincreasing.
As G(0) = 0, it follows that for all > 0

y(t) + G(t) - /0 b(s — r)ds < y(0) = V(2).

As b is bounded, we may pass to the limit » — 0 and obtain

t

y(t) + G /0 b(s)ds < y(0) = V(2).

Now y(t) > 0 for all t € R4, and so

t

(4.10) / a(6(s, 2, u)x )ds <iball] ) + / o(u(s + )ll)ds
<io(lellx) + to(ull).

This completes the proof. O

We can now state our main result on noncoercive ISS Lyapunov functions.

THEOREM 4.4. Let ¥ = (X,U,¢) be a forward complete control system with the
input space U := L™ (R4, U), which is CEP and BRS. If there exists a (noncoercive)
1SS Lyapunov function for 3, then 3 s ISS.

Proof. By Proposition 4.3, ¥ is is norm-to-integral ISS. The application of Theo-
rem 3.5 finishes the proof. O

4.1. Remarks on the definition of the ISS Lyapunov function. In this
section we discuss the definition of the ISS Lyapunov function, which we adopted in
this paper.

u(s) , if se[0,7],
0 , if s > 7.
We start with a restatement of the ISS Lyapunov function concept.

For any u € Y and any 7 > 0 define u,(s) :=



14 Non-coercive Lyapunov functions for ISS of infinite-dimensional systems

LEMMA 4.5. Assume that for any u € U it holds that inf < ||ur |y < ||ullu-

Then a continuous function V : X — R4 is a non-coercive ISS Lyapunov function
for the system ¥ = (X,U, ®), if and only if there exist 2,0 € Koe and o € K such
that (4.4) holds and the Dini derivative of V' along the trajectories of X for all x € X
and u € U satisfies

(4.11) V(@) < —a(lellx) + o (it ur ).

If additionally there is 1 € K so that (4.6) holds, then V is a coercive ISS
Lyapunov function for X.

Proof. <. Follows from the assumption that inf,~g [[ur[jzr < |1y for all u € U.

=-. Let a continuous function V' : X — R, be a non-coercive ISS Lyapunov
function. Pick any x € X and any u € U. Since U is a linear space, 0 € U and the
axiom of concatenation implies that u, € U for any 7 > 0. By definition of V,,, for
any 7 > 0 it holds that V, (z) = V;,_(2), and thus

V() = Vi, (2) < —a(llz]x) + o(|lurlue).

Taking infimum over 7 > 0, we obtain (4.11). O

Our definition of an ISS Lyapunov function is defined for any normed linear space
U, that allows to develop the ISS Lyapunov theory for a very broad class of systems.
However, for some input spaces this definition is far too restrictive, and for other
systems simpler and more useful restatements of the ISS Lyapunov function concept
may be more useful. The most important input spaces we consider next.

REMARK 4.6 (LP input spaces). For spaces U = LP(Ry,U), for a Banach space
U and some p € [1,+00), Definition 4.2 is far too restrictive. Indeed, for any u €
U = LP(R4,U) it holds that inf > [|ur||r = 0, and thus the inequality (4.11) reduces
to

(4.12) Vu(@) < (2] x),

which ensures a much stronger property than ISS, namely the uniform global asymp-
totic stability (for a precise definition see, e.qg., [32]).

Coercive and non-coercive ISS Lyapunov theory which is appropriate for systems
withUd = LP(R.,U), p € [1,400), has been developed in [25].

REMARK 4.7 (Piecewise continuous input functions). If U = PCy(R4,U), for a
Banach space U, then the dissipation inequality (4.11) simplifies to

(4.13) Vu(z) < —a(llz]x) + o([[u(0)[|v),

which resembles the classical dissipation inequality, used in the 1SS theory of ODE
systems. Similarly to Proposition 4.3, one can show that for a forward-complete sys-
tem 3 = (X, PCy(Ry,U),d) the existence of a non-coercive ISS Lyapunov function
implies integral-to-integral ISS.

In the rest of this section let U := L*°(Ry,U). In this case our definition of
ISS Lyapunov function seems to be the most natural. For forward complete finite-
dimensional systems with f as in the statement of Corollary 3.6, existence of a non-
coercive ISS Lyapunov function implies not only ISS, but also integral-to-integral
ISS, which follows from Proposition 4.3 and Corollary 3.6. However, for infinite-
dimensional systems we were able to show only somewhat weaker property (which
is still stronger than norm-to-integral ISS, but weaker than integral-to-integral ISS),
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see (4.10). Thus, a question remains whether existence of an ISS Lyapunov function
(coercive or non-coercive) as defined in Definition 4.2 implies integral-to-integral ISS
for forward complete systems. Although we do not have an answer to this problem,
in the following proposition we show that if an ISS Lyapunov function satisfies a
somewhat stronger dissipative estimate, then integral-to-integral ISS can be verified.

PROPOSITION 4.8. Let ¥ = (X,U,p) be a forward complete control system with
the input space U = L>*(R,,U).

Assume that there is a continuous function V. : X — Ry, o, a0 € Koy and 0 € K
such that (4.4) holds and the Dini derivative of V' along the trajectories of > for all
x € X and uw € U satisfies

(4.14) Va(w) < —a(llellx) + [Drr /OTU(||u(s)||U)ds)]T=0,

where Dy ; means that lower right-hand Dini derivative is taken with respect to the
argument T.

Then % is integral-to-integral 1SS.

Before we prove this proposition note that the estimate (4.14) implies (4.5), since
for any z € X and u € U it holds that

[Der ([ otluoons)] < [oea( [ otluods)] = ol

Thus, function V' as in Proposition 4.8 is an ISS Lyapunov function for ¥, with a
(potentially) stronger dissipative estimate.

Proof. Assume that V' is a non-coercive ISS Lyapunov function for ¥ with the
corresponding 1o, ,0. Pick any u € U and any z € X. As we assume forward
completeness of ¥, the trajectory ¢(-,z,u) exists for all ¢ > 0 and due to (4.5), we
have for any ¢ > 0 that:

(415) Vagoo (02.)) < —a(ottz,0)ll) + [P ([ ot + 5)l)ds)]

The last term can be rewritten in a simpler form:

Do / Colu(t+ 9)lo)ds)] = [Der / - o(llu(s)lo)ds)]

ot

= [Pea([ ot as)] = e [ ot

By definition of V, and using the cocycle property for &, we have that

Vu@_‘_‘) (B(t,z,u)) = h@o % (V(qf)(h7 o(t, x,u), u(t + ))) — V((ﬁ(t,a“, u)))

Tim %(V(qﬁ(t + b)) = V(6(tz,w) ).

h—+0

Defining y(t) := V(¢(t, x,u)), we see that

"/u(t+~) (@(tv €, U)) = D+y(t)7

and y(0) = V(z) due to the identity axiom of the system .
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In view of the continuity axiom of X, for fixed x, u the map ¢(-, z, u) is continuous,
and thus ¢t — —a(||¢(t, x,u)||x) is continuous as well. Hence, we can rewrite the
inequality (4.15) as

Dyt < % [ atlots,z s + 0, ([ olhutolods).

As =D ( [y o(llu(s)llv)ds) = Dt (— [ o(|lu(s)]|ir)ds), we proceed to

t

D)+ 5 [ alletsall s+ 0% (= [ allu(s)lv)s) <o.
Due to

DF(f1(t) + f2(t)) < DT (f1(t)) + DT (fa(t)),

which holds for any functions fi, fo on the real line, this implies that

t

D (y(t) + / (65,2, )| ) s — / "o(u(s)lv)ds) <o

It follows from [42, Theorem 2.1] that t — y(t)-l—f; af||lé(s, x, u)||X)d5—f; o(|lu(s)||v)ds
is nonincreasing. As G(0) = 0, for all » > 0 we have

y(t) + G(t) - /0 o([lu(s)llv)ds <y(0) = V(z) < o[zl x)-

Now y(t) > 0 for all t € Ry, and so

| atlots.zwllds <valliell) + [ alluts)fo)is

This completes the proof. O

5. Construction of ISS Lyapunov functions for linear systems with un-
bounded input operators. In the remainder of this paper we specialize to the case
of complex Hilbert spaces X and to the input spaces U := L>(R,U), where U is a
Banach space.

A classical method for construction of Lyapunov functions for exponentially stable
semigroups is the solution of the operator Lyapunov equation [4, Theorem 5.1.3]. This
method can also be used for the construction of ISS Lyapunov functions for systems
with bounded input operators [30].

The following result holds (this is a Hilbert-space version of [30, Proposition 6],
and thus we omit the proof):

PROPOSITION 5.1. Let X be a complex Hilbert space, U := L>*(R4,U), where
U is a Banach space, A generate a strongly continuous semigroup over X and let
B e L(U,X). If (2.5) is ISS, then there is an operator P = P* € L(X) so that
(Px,z) >0 for x # 0 and P solves the Lyapunov equation

(5.1) (Px, Az)  + (Az, P2) = —||7|%, =z € D(A).
Furthermore, V : X — Ry defined by
(5.2) V(z) = (Pz,x)
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is a non-coercive 1SS Lyapunov function for (2.5).

REMARK 5.2. [t is well-known that the existence of a positive solution to the
Lyapunov equation (5.1) is equivalent to the exponential stability of the semigroup
generated by A, see [4, Theorem 5.1.3], and thus to the ISS of the system (2.5) (for
admissible B). The main contribution of Proposition 5.1 is that the quadratic function
V', defined by (5.2), is also a non-coercive ISS Lyapunov function for (2.5).

Note that the operator P and the Lyapunov function V' can be chosen indepen-
dently on the bounded input operator B (the function o in the dissipative estimate
(4.5) however does depend on B). In the next theorem we derive a counterpart
of Proposition 5.1 for systems with merely admissible operators B. In contrast to
systems with bounded input operators, we need further assumptions that relate the
operators P and A.

THEOREM 5.3. Let A be the generator of a Co-semigroup (T'(t))e>0 on a complex
Hilbert space X and let U := L>®°(R4,U), where U is a Banach space.

Assume that there is an operator P € L(X) satisfying the following conditions:

(i) P satisfies

(5.3) Re(Pz,z)5 >0, xze X\{0}.

(i) Im(P) C D(A*).

(i) PA has an extension to a bounded operator on X, that is, PA € L(X). (We
also denote this extension by PA.)

(iv) P satisfies the Lyapunov inequality

(5.4) Re((PA+ A*P)z,z)y < —(z,2)y, x€ D(A),
Then for any co-admissible input operator B € L(U, X_1) the function
(5.5) V(z) :=Re(Pz,z)x

is a non-coercive ISS Lyapunov function for (2.5), which satisfies for each € > 0 the
dissipation inequality

(5.6) V(o) <(e = 1)l|zoll% + c(e)l|ull%,
where
1 N 2, (—
(5.7) c(e) 1=4—E(||A Pllrcx) + I1PAllLx)) " IAZI Bl w,x) M?

+ M| A*P| 1) [AZ1 Bl L, x) 5(0).

and £(0) = limy o £(t), where k(t) > 0 is the smallest constant satisfying

< K)o,

(5.8) ‘ .

/t T_1(t — s)Bu(s) ds
Jo

for every uw € L*([0,t),U). (The existence of the constants k(t) is implied by the
oo-admissibility of B.)

In particular, existence of a mon-coercive ISS Lyapunov function (5.5) implies
(2.5) is ISS for any co-admissible B.

REMARK 5.4. Note that we have to take the real parts of the expressions in (5.5)
and (5.4), as we deal with complex Hilbert spaces and we do not assume that P is a
positive operator on X.

REMARK 5.5. If in addition to the assumptions of Theorem 5.3 the operator P
is self-adjoint, that is, if P = P*, then equation (5.1) is equivalent to (5.4).
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Proof. Note that linear systems with admissible input operators satisfy both
the CEP and the BRS property, which follows easily from inequality (2.6). Due to
Theorem 4.4, ¥ is ISS if V' is a non-coercive ISS Lyapunov function for 3.

By the assumptions

0<V(z) < |IPlrxollzlly, =€ X\{0},

and thus (4.4) holds. It remains to show the dissipation inequality (4.5) for V.

The operator A : D(A) C X — X is densely defined as an infinitesimal generator
of a Cy-semigroup, and hence A* is well-defined and again the generator of a Cp-
semigroup, see [35, Corollary 10.6]. In particular, this implies that A* is a closed
operator. Since P € L(X), the operator S := A*P with the domain D(S) := {z €
X : Pz € D(A*)} is a closed operator, see [45, Exercise 5.6]. However, by our
assumptions Im(P) C D(A*), which implies D(S) = X, and thus S = A*P € L(X)
by the Closed Graph Theorem. In particular, the term ||A*P|(x) in (5.7) makes
sense.

For zp € X and u € L*([0,0¢),U) we have

(5.9)  V(o(t, zo,u)) — V(zo)

—Re < P <T(t)g;0 + /O T s)Bu(s)dS) ,

T(t)zo + /Ot T 1(t— s)Bu(s)ds>X —Re (Pxo,xo) x

=Re (PT'(t)xg, z0)x — Re (Pxg,x0) x

(5.10) + Re <PT(t).’L‘(), T(t):L'()>X — Re <PT(t)(L‘Q, (L‘Q>X
(5.11) +Re <PT(t):rO,/O T 1(t — s)Bu(s)ds>X
(5.12) + Re <P/Ot T_1(t — s)Bu(s)ds, T(t)m0>
b'e
(5.13) + Re <P/0 T 1(t— s)Bu(s)ds,/0 T 1(t— s)Bu(s)ds>X .

The terms in line (5.10) of the previous expression can be transformed into:
(514) Re <PT(t).LQ, T(t)1‘0>X — Re <PT(t).’L’0, .1‘0>X = Re <PT(t)l‘0, T(t).):o - 1‘0>X.

Applying [4, Theorem 5.1.3] to the operator %(P + P*), we see that the conditions (i),
(ii) and (iv) imply that A generates an exponentially stable semigroup. This implies
(see e.g. [13, Proposition 5.2.4]) that 0 € p(A) and thus A~! € L(X) exists. Further,
the exponential stability of the Cy-semigroup (T'(t))¢>o implies

||T(t)||L(X) < Meiwta t > Oa

for some constants M, w > 0. Thanks to p(A) = p(A_1) the operator A~} exists as
well.

By [7, Theorem IL5.5] the map A : D(A) — X can be continuously extended
to the linear isometry A_; which maps (X, | - ||x) onto (X_1,| - [|x_,). Hence A},
mapping (X 1, ||-||x_,) onto (X, ]|-||x), is again a linear isometry, and thus a bounded
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operator. As B € L(U,X_1), we have that A_1B € L(U, X). In particular, T_y(t —

s)A”1Bu(s) = T(t — s)A”1Bu(s) € X for all s > 0. Due to the fact, that A~] and
T_1(t — s) commute, we obtain
x

_ H /Ot T 4 (t - s)A:iBU<3>dSHX'

HA:}/tT_l(t—s)Bu(s)dsHX - H/tAjT_l(t—s)Bu(s)ds
0 0

t
< / 1Tt — )0 | A Bl o lu(s) o ds

t
g/ Mds|| A=} Bl x) llloo
0

(5.15) < Mt|AZ1 B L, x)lt|so-

Since Im(P) C D(A*), we estimate the expression in (5.11) using the Cauchy-
Schwarz inequality and (5.15)

t

Re <PT(t)1‘U, / T 1(t — s)Bu(s)d5>X
Jo
—Re <PT(t)m0, A4 / t Toi(t— s)Bu(s)ds>X
0
=Re <A*PT(t)x0, A /t T 1(t— s)Bu(s)ds>X
0

t
<||A* PT(t)zo||x - HA:} / T\ (t— s)Bu(s)dsHX
J0
(5.16) < A* Pl 1T () mollx - MEIAZL Bl L, x) 1t oe-

To bound the expression (5.12) we use again (5.15) to obtain

Re <P/Ot T 4(t— s)Bu(s)ds,T(t)x0>X

=Re <PAA—1 | /0 t T_4(t— s)Bu(s)ds,T(t)wo>X

(5.17) <IPA| L) - MHIAZIB w0 lull 1T ()20 x-

Finally, we estimate the expression (5.13) using (5.15) and « as defined in (5.8)

Re <P/(: T_1(t — s)Bu(s)ds, /O.t T_1(t — s)Bu(s)ds>X

=Re <P/OtT_1(t— s)Bu(s)ds, AA”} /OtT_l(t - s)Bu(s)ds>X

= Re <A*P/OtT1(t — 8)Bu(s)ds, A"} ; T 4(t— s)Bu(s)ds>

X
(5.18) < | A* Pl poxy s @) [ulloo - ME|AZIB| 1w,x) ||l
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Substituting (5.14), (5.16), (5.17), and (5.18) into (5.9), we obtain:

V(o(t, zo,u)) — V(zo) <Re(PT(t)zg — Pxo,x0)x + Re (PT(t)xo, T(t)x0 — To)x
+ APl Lo IT(®)zoll x - MEAZI Bl L. x)llulloo
+ I1PAllpx) - MEJAZL Bl w3 llulloo 1 T'(2) 0] x
APl ooyr(®)ulloo - MEIAZLBI| L, x)llulloo-

For 29 € X, we have A~'xy € D(A) and we obtain from the definition of the generator
A that

1 o 1 - -
},{% Re ;(PT(t)xo — Pxzg,x0)x = tlg% Re ;(PA[T(t)A Yoo — A7 wo), zo) x
= Re (PAzxo, xo)

and similarly

T T 1 * — —
}% Re (PT(t)wo, T(t)x0 — T0)x = tlg% Re ;(A PT()zo, T(t)A™ wg — A o) x
= Re <A*P.’)30, .’L‘0>X .

This implies for every € > 0 that (recall the definition of x(0) before (5.8))

V(o) = Tt 3 (V(6(t,20,u)) = V (a0))

< Re (PAzo, xo) x + Re (A" Pz, z0)
+ APl ix) lzollx | AZ1 Bl v x) M | ul| oo
+ | PA[| L) IAZ1 Bl L(w.x) M ||ul| oo [ 0] | x
+ [ A* Pl ) | AZ1 Bl qw,x) M #(0)[ul 5

= Re (PAxg,20) x + Re (A" Pxg, o)
+ [[zollx (1A Plloix) + IPAILix) A= Bl w.xy M [l oo
+ [ A* Pl Lo [AZI Bl Lw,x) M (0) [Ju]| %

Using Young’s inequality and the estimate (5.4) we proceed to

(1A*PllLix) + 1PAll ) AT B (1 x ) M?
4e

Viu(0) < — ok + ellwol% + ull3

+ |A* Pl ) IAZ1 Bl L, x) M E0) ||ullZ,,

which shows the dissipation inequality (5.6), and thus also (4.5). O

REMARK 5.6. Theorem 5.3 has been formulated as a direct Lyapunov theorem.
However, the following reformulation as a partial converse result is also possible.
Assume that (2.5) is ISS, and the solution P of the Lyapunov equation (5.1) satisfies
Im(P) C D(A*) and PA is bounded. Then (5.5) is an ISS Lyapunov function for
(2.5).

It is of virtue to compare the ISS Lyapunov theorem for bounded input operators
(Proposition 5.1) and ISS Lyapunov theorem for admissible input operators (Theo-
rem 5.3). The ISS Lyapunov function candidate considered in both these results, is
the same. What differs is the assumptions and the set of input operators, for which



Non-coercive Lyapunov functions for ISS of infinite-dimensional systems 21

this function is indeed an ISS Lyapunov function. Proposition 5.1 states that if the
semigroup, generated by A is exponentially stable, then there is an operator P, which
satisfies the assumptions (i) and (iv) of Theorem 5.3 and the condition P = P*, and
furthermore (5.2) is an ISS Lyapunov function for (2.5) for any bounded input op-
erator. Thus, the key additional assumptions which we impose in order to tackle the
unboundedness of an input operator, are the assumptions (i) and (iii). We note, that
that with these assumptions (5.5) is an ISS Lyapunov function for any oo-admissible
operator B.

6. Applications of Theorem 5.3. In this section we show applicability of
Theorem 5.3 for some important special cases. We start with sufficient conditions,
guaranteeing that Theorem 5.3 can be applied with P = —A~!. Then we show
that these sufficient conditions are fulfilled for broad classes of systems, generated by
subnormal operators. Finally, we proceed to diagonal semigroups (whose generators
are self-adjoint operators) and finally we give a construction of a non-coercive ISS
Lyapunov function for a heat equation with Dirichlet boundary inputs.

6.1. A special case: P = —A~!. In this section we give sufficient conditions
for the applicability of Theorem 5.3 with P := —A~1.

PROPOSITION 6.1. Let A be the generator of an exponentially stable Cy-semigroup
(T(t))¢>0 on a (complex) Hilbert space X and let U = L>*(Ry,U), where U is a
Banach space.

Further, assume that

(a) D(A) C D(A¥)

(b) there is § > 0 such that for every x € X we have

(6.1) Re (A" A~ a,z)x + 6)z(% >0
(¢) Re (Ax,x)x < 0 holds for every x € D(A)\{0}.
Then

(6.2) V(z):= —Re(A 'z, x)x

is an ISS Lyapunov function for (2.5) for any co-admissible operator B € L(U, X_1).
Proof. As A generates an exponentially stable semigroup, 0 € p(A) and thus

P := —A"1 € L(X). We show step by step that this choice of P satisfies all the

requirements (i)—(iv) of Theorem 5.3.

(). For any = € X\{0} there is y € D(A)\{0} so that « = Ay. Then by the

assumptions of the proposition it holds that

V(x) = —Re(y, Ay) = —Re (Ay,y) > 0.

(ii). We have Im(P) = Im(A~!) = D(A) C D(A*), which holds by our assumptions.
(iii). Trivial as PA = —1.
(iv). By assumptions there is a 6 < 1 so that

Re ((PA+ A*P)x,x)y = Re((—1 — A*A_l):r,:r>x =—(r,2)x —Re <A*A_1:L',:L'>X
< _(1 - 5) <x7$>X ’

and thus P satisfies the Lyapunov inequality up to a scaling coefficient (and P =
755 P satisfies precisely (5.4)).
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Hence all assumptions of Theorem 5.3 are satisfied, and application of Theo-
rem 5.3 shows the claim. O

REMARK 6.2. If D(A) C D(A*), then inequality (6.1) is equivalent to the exis-
tence of a constant &' < 1 satisfying

I(A+ A )el% + 3 A% > A%, =€ D(A).

If A generates a strongly continuous contraction semigroup, then (6.1) implies that the
semigroup (T'(t))e>o0 is 2-hypercontractive [11]. In particular, subnormal and normal
operators whose spectrum lie in a sector, satisfy (6.1), see Proposition 6.6.

6.2. Analytic semigroups generated by subnormal operators. In this sec-
tion we show that Theorem 5.3 can be applied to a broad class of analytic semigroups
over Hilbert spaces generated by subnormal operators.

A closed, densely-defined operator A on a Hilbert space X is called subnormal,
if there is a Hilbert space Z containing X as a subspace and a normal operator
(N,D(N)): Z — Z so that A = N|x (the restriction of N to X) and X is an invariant
subspace for N, that is, N(D(N)NX) C X. We write P for the orthogonal projection
from Z onto X. That is, up to unitary equivalence N = My, a multiplication operator
on some L?(p) space, and Az = ¢z, A*x = P(¢x). See, for example [3, Th. X.4.19].

We denote the spectrum of a linear closed operator A by o(A4). It holds that:

LEMMA 6.3. A subnormal operator A satisfies D(A) C D(A*). Further, there
exists a minimal normal extension N satisfying o(N) C o(A).

Proof. The first assertion follows from D(N) = D(N*), see [3, Prop. X.4.3]. The
second assertion is proved in [34, Theorem 2.3]. O

EXAMPLE 6.4.

1. Clearly, every normal operator on a Hilbert space is subnormal.
2. Symmetric operators on Hilbert spaces and analytic Toeplitz operators T, on
the Hardy space H*(D) are subnormal, [34].
For 0 € [0,7/2) we define

Sp:={s e C| l|arg(—s)| < 6}.

PROPOSITION 6.5. Let A be a subnormal operator on a Hilbert space X and
assume a(A) C Sy, for some 6 € [0,7/2), and B € L(C™,X_4). Then:

(i) A generates a bounded analytic Co-semigroup of contractions (T'(t))i>o0,

(it) B is co-admissible for (T'(t))e>0-
Moreover, if in addition 0 & o(A), then

(iii) A generates an exponentially stable semigroup and the system (2.5) is ISS.

Proof. Assertion (i) follows from Lemma 6.3, the fact that normal operators N
with o(N) C Sp generate bounded analytic Cyp-semigroups, see [7, Corollary 11.4.7],
and from the observation that A is the restriction of N to an invariant subspace.
The assertion (ii) has been proved in [12]. Finally, A generates an exponentially
stable semigroup since for analytic semigroups the spectral bound equals the growth
bound [7, Corollary IV.3.12], and ISS follows as B is assumed to be co-admissible, see
Example 2.8. O

We have the following important inequality for the subnormal operators:

PROPOSITION 6.6. Let A be a subnormal operator on a Hilbert space X satisfying
a(A) C Sy, for some 0 € [0,7/2). Then for § > 1 — 2cos? 0 we have

(6.3) Re (z, A%z) x + 6||Az||% >0, x € D(A?).
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Proof. Expanding (6.3) we obtain the equivalent assertion
(6.4) Re (¢z, Péz) + 0] ¢x* = 0.
and we note that (¢pxz, Pox) = (px, dx) = (¢%x, ). The left hand side of (6.4) is

(Red? + 0162z, 2) = ((2(Re §)2 + (3 — 1)[¢[2)z, ).
As the essential range of ¢ lies in o(A), we have by sectoriality
2(Re ¢)? > 2 cos?® 0]¢|?
and hence
(2(Re)* + (6 — 1)|¢|*)z, x) > 0,

for 6 >1—2cos?6. 0

Now we can derive a converse ISS Lyapunov theorem for a broad class of systems
with subnormal generators:

COROLLARY 6.7. Let A be a subnormal operator on a Hilbert space X satisfying
a(A) C Sp\{0}, for some 0 € [0,7/2). Further, let B € L(C™, X_1) and let U =
L>®(Ry,C™).

Then

(6.5) V(z):= —Re(A 'z, 2)x
is an ISS Lyapunov function for (2.5) satisfying
V(@) < —erllaoll% + callullZ,

for some constants c1,co >0 and all zg € X and u € U.

Proof. By Proposition 6.5 A generates an exponentially stable and analytic Cy-
semigroup of contractions (T'(t)):>0 and B is oc-admissible for (T(t))¢>0. Further,
Lemma 6.3 guarantees that D(A) C D(A*). As A generates a contraction semi-
group, the Lumer-Phillips theorem ensures that the operator A is dissipative (that is,
Re(Az,x) <0 for x € D(A)). This together with 0 € p(A) implies Re(Ax,z) < 0 for
x € D(A)\{0}.

Furthermore, as 0 € p(A), for all y € D(A) there is x € D(A4?) so that y = Ax
and applying Proposition 6.6 we obtain

0 < Re(x, A%z)x + 0||Az||% = Re (A*A y, ) x + 6|lyll%.

This shows (6.1).

Hence all assumptions of Proposition 6.1 are satisfied, and application of Propo-
sition 6.1 shows the claim. O

REMARK 6.8. The above corollary also holds if we replace B € L(C™, X_1) by
an oco-admissible B € L(U, X _1), where U is a Hilbert space.
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6.3. ISS Lyapunov functions for input-to-state stable diagonal systems.
Consider a linear system (2.5) with the state space

X =B(N) = {z = {an}izy : lollx = (32 kaP)”Z < ool

k=1

endowed in the usual way with the scalar product (-,-). Let U :=R.

Consider an operator A : X — X, defined by Aep = —Arey, where e is the k-th
unit vector of [3(N) and Ay € R with A\, < Aggq for all k, Ay > ¢ >0 and Ay — oo as
k — oo.

The operator A can be represented using the spectral decomposition

(6.6) Az =" =X (w,ex)ex, x € D(A),
k=1
with
(6.7) D(A) = {z € l3(N) : Z — A {x, ex) e converges}.
k=1

We have the following result:
PROPOSITION 6.9. Let A be given by (6.6)-(6.7) and B € L(C™,X_4). Then
(2.5) is ISS and

0o 1 )
(6.8) V(x) = ; -5 (@)

is a non-coercive 1SS Lyapunov function for (2.5).

Proof. By assumptions the operator A is self-adjoint with ¢(A) C (—o0,0). Thus
the assumptions of Corollary 6.7 are satisfied. Furthermore, the inverse of A is given
by

1
1. ._ Ay
(6.9) A= ,;:1 " (z,er) ex,

and thus the Lyapunov function (6.5) has the form (6.8). O
It is easy to see that P (as well as the corresponding ISS Lyapunov function V)
is not coercive since A\, — oo as k — oo.

6.4. ISS Lyapunov functions for a heat equation with Dirichlet bound-
ary input. It is well-known that a classical heat equation with Dirichlet boundary in-
puts is ISS, which has been verified by means of several different methods: [10, 18, 27].
However, no constructions for ISS Lyapunov functions have been proposed. In the
next example we show that using Theorem 5.3 one can construct a non-coercive ISS
Lyapunov function for this system.

EXAMPLE 6.10. Let us consider the following boundary control system given by
the one-dimensional heat equation on the spatial domain [0, 1] with Dirichlet boundary
control at the point 1,

z(€,t) = amee(§,1). £ €(0,1), >0,
z(0,t) =0, x(1,t) =u(t), t>0,
z(£,0) = zo(),
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where a > 0. We refer the reader to [44, Chapter 10] for the definition and properties
of boundary control systems. We choose X = L?(0,1), U = C and U := L®(R,,C).
Every boundary control system can be equivalently written in the form

&(t) = Az(t) + Bu(t),

where A generates a Cy-semigroup on X and B € L(U,X_1), see [{4. Proposition
10.1.2 and Remark 10.1.4]. For the one-dimensional heat equation on the spatial
domain [0, 1] with Dirichlet boundary conditions the operator A is given by

Af =af”, feD(A):= {fEHz(Ual) | £(0) = f(1) :0}'

Here H%(0,1) denotes the Sobolev space of functions f € L?(0,1), which have weak
derivatives of order < 2, all of which belong to L?(0,1). It is well-known that A is a
self-adjoint operator on X generating an exponentially stable analytic Cy-semigroup
on X. By [12, Theorem 1 and Proposition 5], we get B € L(U, X_1) is co-admissible,
for every xo € X and u € L>®(0,00) the corresponding mild solution is continuous
with respect to time and k(0) = 0. In [10] the following ISS-estimates have been
shown:

l2(®) 2200 < 2ol sz o) + —= lull 2= 0.0,
5 ) \/g 5

, t 1/p
2020 < 2ol oo, + ¢ ( / |u<s>|Pds) ,
0

for every xo € X, u € U, p > 2 and some constant ¢ = ¢(p) > 0. Direct application
of Corollary 6.7 shows that

V(z) = —(A"z,2)x = /01 (/:(6 - T)x(T)dT) x(€)de

is a non-coercive 1SS Lyapunov function for the one-dimensional heat equation on
the spatial domain [0,1] with Dirichlet boundary control at the point 1. In turn, the
constructed non-coercive 1SS Lyapunov function implies ISS of the considered system.

7. Conclusions. In this paper, we have investigated the question to what ex-
tent the existence of a non-coercive ISS Lyapunov function implies that a forward
complete system is input-to-state stable (ISS). It was shown that the property of
norm-to-integral ISS follows from the existence of such Lyapunov functions for a
large class of systems. Furthermore, we show that norm-to-integral ISS is equivalent
to ISS for the systems possessing the continuity of the flow map near the equilibrium
and boundedness of finite-time reachability sets. These assumptions are related to
questions of the richness of the possible dynamics both close to the origin and in the
large.

Non-coercive Lyapunov functions are to some extent natural in infinite dimen-
sions. Already Datko’s construction of quadratic Lyapunov functions V(z) = (Px, x)
for exponentially stable linear systems on Hilbert space generally leads to non-coercive
Lyapunov functions. In this work, we show that under some additional conditions,
which relate the infinitesimal generator of a semigroup and an operator P, this func-
tion V' is a non-coercive ISS Lyapunov function for a linear system with any oco-
admissible input operator. Furthermore, we have shown in this paper that for broad
classes of linear systems with unbounded input operators (including analytic systems
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with subnormal generators) the construction of Lyapunov functions using the resol-
vent at 0 as an operator P is a natural choice and one that leads to noncoercive
Lyapunov functions. As an example we have constructed an ISS Lyapunov function
for a heat equation with a Dirichlet boundary input, which seems to be the first con-
struction of an ISS Lyapunov function for this system, which was widely studied by
non-Lyapunov methods.

In a future work we plan to extend the class of systems for which explicit con-

structions are possible and to deepen our understanding of noncoercive ISS Lyapunov
functions.
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