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Abstract

We establish existence and uniqueness for infinite dimensional Riccati equations
taking values in the Banach space L1(µ ⊗ µ) for certain signed matrix measures µ
which are not necessarily finite. Such equations can be seen as the infinite dimensional
analogue of matrix Riccati equations and they appear in the Linear–Quadratic control
theory of stochastic Volterra equations.
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1 Introduction

Fix d, d′,m ∈ N and µ a d× d′-matrix signed measure µ. This paper deals with the infinite
dimensional Backward Riccati equation




ΓT (θ, τ) = 0

Γ̇t(θ, τ) = (θ + τ)Γt(θ, τ)−Q−D⊤
∫
R2
+

µ(dθ′)⊤Γt(θ
′, τ ′)µ(dτ ′)D

− B⊤
∫
R+
µ(dθ′)⊤Γt(θ

′, τ)−
∫
R+

Γt(θ, τ
′)µ(dτ ′)B + St(θ)

⊤N̂−1
t St(τ),

(1.1)
where

St(τ) = C⊤

∫

R+

µ(dθ)⊤Γt(θ, τ) + F⊤

∫

R2
+

µ(dθ′)⊤Γt(θ
′, τ ′)µ(dτ ′)D,

N̂t = N + F⊤

∫

R2
+

µ(dθ)⊤Γt(θ, τ)µ(dτ)F,

and B,D ∈ R
d′×d, C,F ∈ R

d′×m, Q ∈ R
d×d and N ∈ R

m×m, and ⊤ is the transpose
operation. Here µ is not necessarily finite and satisfies

∫

R+

(
1 ∧ θ−1/2

)
|µ|(dθ) <∞, (1.2)

where |µ| denotes the total variation of µ. We look for solutions Γ : [0, T ] × R
2
+ → R

d×d

with values in L1(µ ⊗ µ) (see the precise definition in Section 2) to ensure that equation
(1.1) is well-posed.

In particular, if d = d′ = 1 and µ(dθ) =
∑n

i=1 δθni (dθ), (1.1) reduces to a n× n-matrix
Riccati equation for Γn = (Γ(θni , θ

n
j ))1≤i,j≤n, only written componentwise. Such matrix

Riccati equation appears in finite dimensional Linear-Quadratic (LQ) control theory, see
e.g. [14, chapter 7]. (One could also recover d×d-matrix Riccati equation by setting d = d′

and µ = Idδ0.)
For more general measures µ, e.g. with infinite support, (1.1) can be seen as the infinite-

dimensional extension of matrix Riccati equations and one could expect a connection with
LQ control in infinite dimension. This is indeed the case, and our motivation for studying
the Riccati equation (1.1) comes from infinite dimensional lifts of LQ control theory of
non-Markovian stochastic Volterra equations. Setting

K(t) =

∫

R+

e−θtµ(dθ), t > 0,

one can consider the controlled d-dimensional stochastic linear Volterra equation

Xt =

∫ t

0
K(t− s)

(
BXs + Cαs

)
ds+

∫ t

0
K(t− s)

(
DXs + Fαs

)
dWs,
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where W is a one dimensional Brownian motion and α is a suitable control taking its
values in R

m. Observe that the integrability condition on the measure µ allows singularity
of the kernel K at 0, and includes the case of a fractional kernel KH(t) = tH−1/2 with
Hurst parameter H ∈ (0, 1/2) with a corresponding measure µ(dθ) = cHθ

−H−1/2dθ, for
some normalizing constant cH . The linear-quadratic control problem consisting in the
minimization over α of the cost functional

J(α) = E

[ ∫ T

0

(
X⊤

t QXt + α⊤
t Nαt

)
dt
]
,

can be explicitly solved using the Riccati equation (1.1), see [2].
When D = F = 0, the Riccati equation (1.1) also enters in the computation of the

Laplace transform of tr
(∫ T

0 Z⊤
s QZsds

)
, where Z is the d × n-matrix valued Gaussian

process

Zt = Z0 +

∫ t

0
K(t− s)BZsds+

∫ t

0
K(t− s)CdW̃s, t ≥ 0,

and W̃ is a m× n matrix Brownian motion, see [1].
The Riccati equation (1.1) can be also connected to an operator Riccati equation as

follows. Denote by L1(µ) the Banach space of µ-a.e. equivalence classes of |µ|-integrable
functions ϕ : R+ → R

d′ endowed with the norm ‖ϕ‖L1(µ) =
∫
R+

|µ|(dθ)|ϕ(θ)|, by L∞(µ) the

space of measurable functions from R+ → R
d′ , which are bounded µ-a.e., and introduce

the dual pairing:

〈ϕ,ψ〉µ :=

∫

R+

ϕ(θ)⊤µ(dθ)⊤ψ(θ), (ϕ,ψ) ∈ L1(µ)× L∞(µ⊤).

Given any bounded kernel solution Γ to (1.1), let us consider the corresponding linear
integral operator Γ : [0, T ] × L1(µ) → L∞(µ⊤) defined by

(Γtϕ)(θ) =

∫

R+

Γt(θ, τ)µ(dτ)ϕ(τ), t ∈ [0, T ], ϕ ∈ L1(µ).

It is then straightforward to see that Γ solves the operator Riccati equation on L1(µ):





ΓT = 0

Γ̇t = −ΓtA
mr − (ΓtA

mr)∗ −Q−D∗ΓtD −B∗Γt − (B∗Γt)
∗

+ (C∗Γt + F ∗ΓtD)∗ (N + F ∗ΓtF )
−1 (C∗Γt + F ∗ΓtD) , t ∈ [0, T ],

(1.4)

where Amr is the mean-reverting operator acting on measurable functions ϕ ∈ L1(µ) by

(Amrϕ)(θ) = −θϕ(θ), θ ∈ R+,
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B, D are the integral operators on L1(µ) (defined similarly to Γ) induced by the constant
matrices B, D, and by misuse of notation, C, F denote the respective constant operators
on R

m induced by the matrices C, F :

(Ca)(θ) = Ca, (Fa)(θ) = Fa, θ ∈ R+, a ∈ R
m.

Here the symbol ∗ denotes the adjoint operation with respect to the dual pairing. The last
equation (1.4) is more in line with the formulation of operator Riccati equations appearing
in LQ control theory in Hilbert or Banach spaces, see [6], [7], [8], [10], [13], [12], [11], [4].

Let us also mention that a related infinite-dimensional Riccati equation appeared in [3]
for the minimization problem of an energy functional defined in terms of a non-singular
(i.e. K(0) < ∞) completely monotone kernel.

The main contribution of the paper is to establish the existence and uniqueness of a
solution to the kernel Riccati equation (1.1). The aforementioned results on the solvability
of Riccati equations in infinite dimensional spaces cannot be directly applied in our setting
for two reasons. First, they are valid for Hilbert and reflexive Banach spaces, while L1(µ) is
in general not reflexive, unless µ has finite support, and mostly apply to the cases without
multiplicative noise, i.e., D = 0, and without control on the diffusion coefficient, i.e. F

= 0, with the noticeable exception in [11]. Second, they concern the operator Riccati
equation (1.4), which is not enough for our purposes, as we still need to argue that Γ is an
integral operator induced by some bounded symmetric kernel function Γ satisfying (1.1).
We will therefore work directly on the level of the kernel Riccati equation (1.1) (which will
also be referred to as integral operator Riccati equation) by adapting the technique used
in classical finite-dimensional linear-quadratic control theory [14, Theorem 6.7.2] with the
following steps: (i) we first construct a sequence of Lyapunov solutions (Γi)i≥0 by successive
iterations, (ii) we then show the convergence of (Γi)i≥0 in L1(µ ⊗ µ), (iii) we next prove
that the limiting point is a solution to the Riccati equation (1.1), (iv) we finally prove
the continuity and uniqueness for the Riccati solution. We stress that such method has
already been applied to prove the existence of operator Riccati equations of the form (1.4)
in Hilbert spaces (see [11]) and in reflexive Banach spaces (see [4]). However, for the
kernel Riccati equation (1.1), the proof is more intricate. The reason is that we need to
establish the convergence of the kernels (Γi)i≥0 which is a stronger requirement than the
usual convergence of the operators (Γi)i≥0. As a consequence, we obtain that the sequence
of integral operators (Γi)i≥0 converges to some limit which is also an integral operator.

The paper is organized as follows. We formulate precisely our main result in Section
2. Section 3 establishes the existence of a solution to an infinite dimensional Lyapunov
equation. Section 4 is devoted to the solvability of the Riccati equation. Finally, we collect
in the Appendix some useful results.
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2 Preliminaries and main result

Let us first introduce some notations that will be used in the sequel of the paper. For
any d11 × d12-matrix valued measure µ1, and d21 × d22-matrix valued measure µ2 on
R+, the Banach space L1(µ1 ⊗ µ2) consists of µ1 ⊗ µ2-a.e. equivalence classes of |µ1| ⊗
|µ2|-integrable functions Φ : R

2
+ → R

d11×d21 endowed with the norm ‖Φ‖L1(µ1⊗µ2) =∫
R2
+

|µ1|(dθ)|Φ(θ, τ)||µ2|(dθ) <∞. For any such Φ, the integral

∫

R2
+

µ1(dθ)
⊤Φ(θ, τ)µ2(dτ)

is well defined by virtue of [9, Theorem 5.6]. We also denote by L∞(µ1 ⊗ µ2) the set of
measurable functions Φ : R2

+ → Rd11×d21 , which are bounded µ1 ⊗ µ2-a.e.

We shall prove the existence of a nonnegative symmetric kernel solution to the Riccati
equation (1.1) in the following sense.

Definition 2.1. Let Γ : R2
+ → R

d×d such that Γ ∈ L∞(µ⊗µ). We say that Γ is symmetric
if

Γ(θ, τ) = Γ(τ, θ)⊤, µ⊗ µ− a.e.

and nonnegative if
∫

R2
+

ϕ(θ)⊤µ(dθ)⊤Γ(θ, τ)µ(dτ)ϕ(τ) ≥ 0, for all ϕ ∈ L1(µ).

We denote by S
d
+(µ⊗ µ) the set of all symmetric and nonnegative Γ ∈ L∞(µ⊗ µ), and we

define on S
d
+(µ ⊗ µ) the partial order relation Γ1 �µ Γ2 whenever (Γ1 − Γ2) ∈ S

d
+(µ⊗ µ).

Remark 2.2. (On utilise cette notation dans le lemme 4.1(ii)) S
d
+(δ0 ⊗ δ0) reduces to S

d
+,

the cone of symmetric semidefinite d× d–matrices. �

Given a kernel Γ, we define the integral operator Γ by

(Γϕ)(θ) =

∫

R+

Γ(θ, τ)µ(dτ)ϕ(τ). (2.1)

Notice that when Γ ∈ L1(µ ⊗ µ), the operator Γ is well-defined on L∞(µ), and we have
Γϕ ∈ L1(µ⊤), for ϕ ∈ L∞(µ). In this case 〈Γϕ,ψ〉µ⊤ is well defined for all ϕ,ψ ∈ L∞(µ).
Moreover, when Γ ∈ L∞(µ⊗ µ), the operator Γ is well-defined on L1(µ), and we have Γϕ
∈ L∞(µ⊤) for ϕ ∈ L1(µ). In this case, 〈ϕ,Γψ〉µ is well defined for all ϕ,ψ ∈ L1(µ).

Whenever Γ ∈ L∞(µ⊗ µ) is a symmetric kernel, we have

〈ϕ,Γψ〉µ, = 〈ψ,Γϕ〉µ, ϕ, ψ ∈ L1(µ),
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and Γ is said to be symmetric. For Γ ∈ S
d
+(µ ⊗ µ), the nonnegativity reads

〈ϕ,Γϕ〉µ ≥ 0, ∀ϕ ∈ L1(µ).

The kernel Riccati equation (1.1) can be compactly written in the form

Γ̇t(θ, τ) = (θ + τ)Γt(θ, τ)−R(Γt)(θ, τ), ΓT (θ, τ) = 0 (2.2)

where we define

R(Γ)(θ, τ) = Q+D⊤

∫

R2
+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)D +B⊤

∫

R+

µ(dθ′)⊤Γ(θ′, τ)

+

∫

R+

Γ(θ, τ ′)µ(dτ ′)B − S(Γ)(θ)⊤N̂−1(Γ)S(Γ)(τ) (2.3)

with
{
S(Γ)(τ) = C⊤

∫
R+
µ(dθ)⊤Γ(θ, τ) + F⊤

∫
R2
+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)D

N̂(Γ) = N + F⊤
∫
R2
+

µ(dθ)⊤Γ(θ, τ)µ(dτ)F.
(2.4)

The following definition specifies the concept of solution to the kernel Riccati equation
(2.2).

Definition 2.3. By a solution to the kernel Riccati equation (2.2), we mean a function Γ
∈ C([0, T ], L1(µ⊗ µ)) such that

Γt(θ, τ) =

∫ T

t
e−(θ+τ)(s−t)R(Γs)(θ, τ)ds, 0 ≤ t ≤ T, µ⊗ µ− a.e. (2.5)

where R is defined by (2.3). In particular N̂(Γt) given by (2.4) is invertible for all t ≤ T .

Our main result is stated as follows.

Theorem 2.4. Let µ be a d× d′-signed matrix measure satisfying (1.2). Assume that

Q ∈ S
d
+, N − λIm ∈ S

m
+ , (2.6)

for some λ > 0. Then, there exists a unique solution Γ ∈ C([0, T ], L1(µ⊗µ)) to the kernel
Riccati equation (2.2) such that Γt ∈ S

d
+(µ ⊗ µ), for all t ≤ T . Furthermore, there exists

some positive constant M such that
∫

R+

|µ|(dτ)|Γt(θ, τ)| ≤ M, µ− a.e., 0 ≤ t ≤ T. (2.7)

The rest of the paper is dedicated to the proof of Theorem 2.4. Lemmas 4.6 and 4.7
provide the existence of a solution in C([0, T ], L1(µ⊗ µ)) such that Γt ∈ S

d
+(µ⊗ µ), for all

t ≤ T . The uniqueness statement is established in Lemma 4.8.
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3 Infinite dimensional Lyapunov equation

Fix d11, d12, d21, d22 ∈ N. For each i = 1, 2, we let µi be a di1 × di2-matrix valued measure
on R+, and we define the scalar kernel

Ki(t) =

∫

R+

e−θt|µi|(dθ), t > 0, (3.1)

which is in L2([0, T ],R) provided that µi satisfies
∫
R+

(
1 ∧ θ−1/2

)
|µi|(dθ) < ∞ (which we

shall assume in this section), see [2, Lemma A.1].

We first establish the existence and uniqueness for the following infinite dimensional
Lyapunov equation:

Ψt(θ, τ) =

∫ T

t
e−(θ+τ)(s−t)F (s,Ψs)(θ, τ)ds, t ≤ T, µ1 ⊗ µ2 − a.e. (3.2)

where

F (s,Ψ)(θ, τ) = Q̃s(θ, τ) + D̃1
s(θ)

⊤

∫

R2
+

µ1(dθ
′)⊤Ψ(θ′, τ ′)µ2(dτ

′)D̃2
s(τ)

+ B̃1
s (θ)

⊤

∫

R+

µ1(dθ
′)⊤Ψ(θ′, τ) +

∫

R+

Ψ(θ, τ ′)µ2(dτ
′)B̃2

s (τ), (3.3)

for some coefficients Q̃, B̃1, B̃2, D̃1, D̃2 satisfying suitable assumptions made precise in the
following theorem.

Theorem 3.1. Let Q̃ : [0, T ] × R
2
+ → R

d11×d21 be a measurable function and for each

i = 1, 2, B̃i, D̃i : [0, T ] × R+ → R
di2×di1 be two measurable functions. Assume that there

exists κ > 0 such that

|Q̃s(θ, τ)|+
2∑

i=1

|B̃i
s(θ)|+ |D̃i

s(θ)|
1/2 ≤ κ, dt⊗ µ1 ⊗ µ2 − a.e. (3.4)

Then, there exists a unique solution Ψ ∈ C([0, T ], L1(µ1⊗µ2)) to (3.2)-(3.3). In particular,

sup
t≤T

‖Ψt‖L1(µ1⊗µ2) <∞. (3.5)

Furthermore, there exists a constant κ′ > 0 such that
∫

R+

|µ1|(dθ)|Ψt(θ, τ)| ≤ κ′, µ2 − a.e., t ≤ T, (3.6)

∫

R+

|µ2|(dτ)|Ψt(θ, τ)| ≤ κ′, µ1 − a.e., t ≤ T. (3.7)
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Remark 3.2. Since the solution Ψ satisfies (3.5), (3.6) and (3.7), it follows that

|F (Ψ)(θ, τ)| ≤ c, dt⊗ µ⊗ µ− a.e.

for some constant c. Combined with (3.2), one gets that Ψt ∈ L∞(µ1 ⊗ µ2), for all t ≤ T .
�

The proof of Theorem 3.1 follows from the three following lemmas.

Lemma 3.3. Under the assumptions of Theorem 3.1, there exists a unique L1(µ1 ⊗ µ2)-
valued function t ∈ [0, T ] → Ψt satisfying (3.5), and such that (3.2)-(3.3) hold.

Proof. The proof is an application of the contraction mapping principle. We denote by BT

the space of measurable and bounded functions Ψ : [0, T ] → L1(µ1⊗µ2) endowed with the
norm

‖Ψ‖BT
:= sup

t≤T
‖Ψt‖L1(µ1⊗µ2) <∞.

The space (BT , ‖ · ‖BT
) is a Banach space. We consider the following family of norms on

BT :
‖Ψ‖λ := sup

t≤T
e−λ(T−t))‖Ψt‖L1(µ1⊗µ2), λ > 0.

For every Ψ ∈ BT , define a new function t 7→ (T Ψ)t by

(T Ψ)t(θ, τ) =

∫ T

t
e−(θ+τ)(s−t)F (s,Ψs)(θ, τ)ds, µ1 ⊗ µ2 − a.e.,

where F is given by (3.3). Since the norms ‖ · ‖BT
and ‖ · ‖λ are equivalent, it is enough to

find λ > 0 such that T defines a contraction on (BT , ‖ · ‖λ). We thus look for λ > 0 and
M < 1 such that

‖T Ψ− T Φ‖λ ≤M‖Ψ− Φ‖λ, Ψ,Φ ∈ BT . (3.8)

Step 1: We first prove that T (BT ) ⊂ BT . Fix Ψ ∈ BT and t ≤ T . An application of
the triangle inequality combined with the assumption (3.4) leads to

‖(T Ψ)t‖L1(µ1⊗µ2) ≤ κ

∫

R2
+

|µ1|(dθ)|µ2|(dτ)

∫ T

t
e−(θ+τ)(s−t)ds

+ κ

∫

R2
+

|µ1|(dθ)|µ2|(dτ)

∫ T

t
e−(θ+τ)(s−t)‖Ψs‖L1(µ1⊗µ2)ds

+ κ

∫

R2
+

|µ1|(dθ)|µ2|(dτ)

∫ T

t
e−(θ+τ)(s−t)

∫

R+

|µ1|(dθ
′)|Ψs(θ

′, τ)|

+ κ

∫

R2
+

|µ1|(dθ)|µ2|(dτ)

∫ T

t
e−(θ+τ)(s−t)

∫

R+

|Ψs(θ, τ
′)||µ2|(dτ

′),

= κ(It + IIt + IIIt + IVt).
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Recalling the definition (3.1), an application of Tonelli’s theorem and Cauchy–Schwarz
inequality yields

sup
t≤T

It = sup
t≤T

∫ T

t
K1(s− t)K2(s− t)ds ≤ ‖K1‖L2(0,T )‖K2‖L2(0,T ),

which is finite due to [2, Lemma A.1]. Similarly,

sup
t≤T

IIt ≤ ‖Ψ‖BT
‖K1‖L2(0,T )‖K2‖L2(0,T ) <∞.

Now, as e−τ(s−t) ≤ 1, and e−θ(s−t) ≤ 1, for s ≥ t, and θ, τ ∈ R+, another application of
Tonelli’s theorem leads to

sup
t≤T

IIIt ≤ ‖Ψ‖BT
‖K1‖L1(0,T ) <∞, and sup

t≤T
IVt ≤ ‖Ψ‖BT

‖K2‖L1(0,T ) <∞.

Combining the above inequalities proves that ‖T Ψ‖BT
<∞ and hence T : BT → BT .

Step 2: We prove that there exists λ > 0 such that (3.8) holds. Fix λ > 0 and
Ψ,Φ ∈ ST such that ‖Ψ‖λ and ‖Φ‖λ are finite. Similarly to Step 1, the triangle inequality
and Tonelli’s theorem lead to

sup
t≤T

e−λ(T−t)‖(T Ψ)t − (T Φ)t‖L1(µ1⊗µ2) ≤M(λ) sup
t≤T

e−λ(T−t)‖Ψt −Φt‖L1(µ1⊗µ2),

where

M(λ) = κ

∫ T

0
e−λs

(
K1(s) +K2(s) +K1(s)K2(s)

)
ds.

By the dominated convergence theorem,M(λ) tends to 0 as λ goes to +∞. We can therefore
choose λ0 > 0 so that (3.8) holds with M(λ0) < 1. An application of the contraction
mapping theorem yields the existence and uniqueness statement in (BT , ‖ · ‖BT

) such that
(3.2) holds, µ1 ⊗ µ2−a.e., for all t ≤ T . The interchange of the quantifiers is possible due
to the continuity of t 7→ Ψt(θ, τ) µ1 ⊗ µ2-a.e., which ends the proof.

Lemma 3.4. The function Ψ constructed in Lemma 3.3 satisfies the estimates (3.6)-(3.7).

Proof. We only prove (3.7), as (3.6) follows by the same argument. Integrating (3.2) over
the τ variable leads to

∫

R+

Ψt(θ, τ)µ2(dτ) =

∫

R+

∫ T

t
e−(θ+τ)(s−t)F (s,Ψs)(θ, τ)dsµ2(dτ), t ≤ T, µ1 − a.e.(3.9)
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Let us define the µ1-null set

N = {θ ∈ R+ : (3.9) does not hold},

and fix θ ∈ R+ \N and t ≤ T . The triangle inequality on (3.9) and assumption (3.4) yields

∫

R+

|µ2|(dτ)|Ψt(θ, τ)| ≤ κ

∫

R+

|µ2|(dτ)

∫ T

t
e−(θ+τ)(s−t)ds

+ κ

∫

R+

|µ2|(dτ)

∫ T

t
e−(θ+τ)(s−t)‖Ψs‖L1(µ1⊗µ2)ds

+ κ

∫

R+

|µ2|(dτ)

∫ T

t
e−(θ+τ)(s−t)

∫

R+

|µ1|(dθ
′)|Ψs(θ

′, τ)|ds

+ κ

∫

R+

|µ2|(dτ)

∫ T

t
e−(θ+τ)(s−t)

∫

R+

|µ2|(dτ
′)|Ψs(θ, τ

′)|ds.

Using the bound e−θ(s−t) ≤ 1, an application of Tonelli’s theorem gives

∫

R+

|µ2|(dτ)|Ψt(θ, τ)| ≤κ

(
1 + sup

s≤T
‖Ψs‖L1(µ1⊗µ2)

)∫ T

0

(
1 +K2(s)

)
ds

+ κ

∫ T

t
K2(s− t)

∫

R+

|µ2|(dτ
′)|Ψs(θ, τ

′)|ds.

(3.10)

After a change of variable, we get that the function f θ defined by

f θ(t) =

∫

R+

|µ2|(dτ)|ΨT−t(θ, τ)|, t ≤ T,

satisfies the convolution inequality

f θ(t) ≤ cT + κ

∫ t

0
K2(t− s)f θ(s)ds,

with cT = κ
(
1 + sups≤T ‖Ψs‖L1(µ1⊗µ2)

) ∫ T
0

(
1 +K2(s)

)
ds < ∞. It follows from (3.5) that

f θ(t) is finite µ1⊗dt–a.e., so that an application of the generalized Gronwall inequality for
convolution equations, see [9, Theorem 9.8.2], yields the estimate (3.7).

Lemma 3.5. Under the assumptions of Theorem 3.1, let t ∈ [0, T ] → Ψt be such that (3.2)
holds, with (3.5), (3.6) and (3.7). Then, Ψ ∈ C([0, T ], L1(µ1 ⊗ µ2)).
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Proof. We first observe that by virtue of the boundedness of the coefficients (3.4) and the
estimates (3.5), (3.6) and (3.7), we have

|F (s,Ψs)(θ, τ)| ≤ c, dt⊗ µ1 ⊗ µ2 − a.e. (3.11)

for some constant c, where F is given by (3.3). Fix s ≤ t ≤ T . Using (3.2), we write

Ψs(θ, τ)−Ψt(θ, τ) =

∫ t

s
e−(θ+τ)(u−s)F (u,Ψu)(θ, τ)ds

+

∫ T

t

(
e−(θ+τ)(u−s) − e−(θ+τ)(u−t)

)
F (u,Ψu)(θ, τ)ds

= Is,t(θ, τ) + IIs,t(θ, τ)

µ1 ⊗ µ2–a.e. Integrating over the θ and τ variables and successive applications of Tonelli’s
theorem and Cauchy–Schwarz inequality together with the bound (3.11) lead to

‖Is,t‖L1(µ1⊗µ2) ≤ c

∫ t

s
K1(u− s)K2(u− s)du

≤ c‖K1‖L2(0,t−s)‖K2‖L2(0,t−s).

By virtue of the square integrability of K1 and K2, the right hand side goes to 0 as s ↑ t.
Similarly, using also that e−(θ+τ)(u−s) ≤ e−(θ+τ)(u−t), we get

‖IIs,t‖L1(µ1⊗µ2) ≤ c

∫ T

t

(
K1(u− t)K2(u− t)−K1(u− s)K2(u− s)

)
du

= c

∫ T−t

0

(
K1(u)K2(u)−K1(t− s+ u)K2(t− s+ u)

)
du

= c

∫ T−t

0

(
K1(u)−K1(t− s+ u)

)
K2(u)du

+ c

∫ T−t

0
K1(t− s+ u)

(
K2(u)−K2(t− s+ u)

)
du

= c(1s,t + 2s,t).

The right hand side goes also to 0 as s ↑ t. To see this, an application of Cauchy–Schwarz
inequality gives

1s,t ≤

(∫ T

0

(
K1(u)−K1(t− s+ u)

)2
du

)1/2

‖K2‖L2(0,T ).

Since K1 is an element of L2, it follows from [5, Lemma 4.3] that

lim
h→0

∫ T

0
|K1(u+ h)−K1(u)|

2du = 0, (3.12)
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showing that 1s,t converges to 0 as s goes to t. Interchanging the roles of K1 and K2, we
also get the convergence 2s,t → 0 as s ↑ t. Combining the above leads to

‖Ψs −Ψt‖L1(µ1⊗µ2) → 0, as s ↑ t.

Similarly, we get the same conclusion when s ↓ t, and the proof is complete.

4 Solvability of the Riccati equation

The main goal of this section is to prove Theorem 2.4, i.e., the existence and uniqueness
of a function Γ ∈ C([0, T ], L1(µ ⊗ µ)) satisfying the kernel Riccati equation (2.5) (recall
Definition 2.1), and the estimate (2.7). This is obtained by adapting the technique used
in classical linear-quadratic control theory [14, Theorem 6.7.2] to our setting with the
following steps:

(i) Construct a sequence of Lyapunov solutions (Γi)i≥0 by successive iterations,

(ii) Establish the convergence of (Γi)i≥0 in L1(µ⊗ µ),

(iii) Prove that the limiting point is a solution to the Riccati equation (2.5),

(iv) Derive the estimate (2.7), the continuity and the uniqueness for the Riccati solution.

4.1 Step 1: Construction of a sequence of Lyapunov solutions (Γi
t)i≥0

Lemma 4.1. Let Ψ ∈ C([0, T ], L1(µ ⊗ µ)) denote the solution to the Lyapunov equation
(3.2) produced by Theorem 3.1 for the configuration

{
d11 = d21 = d, d12 = d22 = d′, µ1 = µ2 = µ,

B̃1 = B̃2 = B̃, D̃1 = D̃2 = D̃.
(4.1)

and under the condition
{

|Q̃s(θ, τ)| ≤ κ, dt⊗ µ⊗ µ− a.e.

|B̃s(θ)|+ |D̃s(θ)| ≤ κ, dt⊗ µ− a.e.
(4.2)

If Q̃t ∈ S
d
+(µ⊗ µ) for all t ≤ T , then

(i) t 7→ Ψt is a non-increasing S
d
+(µ ⊗ µ)-valued function w.r.t the order relation �µ.

(ii) t 7→
∫
R2
+

µ(dθ)⊤Ψt(θ, τ)µ(dτ) is a non-increasing S
d
+-valued function on [0, T ].
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Proof. Note that under (4.1), the Lyapunov equation (3.2) is invariant by transposition and
exchange of θ and τ . By uniqueness of the solution, we deduce that Ψt(θ, τ) = Ψt(τ, θ)

⊤,
µ⊗ µ–a.e., for all t ≤ T . Fix ϕ ∈ L1(µ) and t ≤ T , and consider the following equation

{
dỸs(θ) =

(
− θỸs(θ) +

∫
R+
B̃s(τ)µ(dτ)Ỹs(τ)

)
ds+

( ∫
R+
D̃s(τ)µ(dτ)Ỹs(τ)

)
dWs

Ỹt(θ) = ϕ(θ),

which admits a unique L1(µ)–valued solution such that

sup
t≤s≤T

E

[
‖Ỹs‖

4
L1(µ)

]
<∞, (4.3)

see [2, Theorem 4.1]. Recall the bold notation G in (2.1) for the integral operator generated
by a kernel G. Note that, by virtue of Remark 3.2, Ψs ∈ L∞(µ⊗µ), so that Ψs : L

1(µ) →
L∞(µ⊤), for all s ≤ T . This shows that s 7→ 〈Ỹs,ΨsỸs〉µ is well-defined P-a.s. An

application of Itô’s formula (see [2, Lemma 5.1]) to the process s → 〈Ỹs,ΨsỸs〉µ yields,
due to the vanishing terminal condition for Ψ, and after successive applications of Fubini’s
theorem:

0 = 〈ϕ,Ψtϕ〉µ −

∫ T

t
〈Ỹs, Q̃sỸs〉µds

+

∫ T

t

∫

R+

Ỹs(θ)
⊤µ(dθ)⊤D̃s(θ)

⊤

∫

R2
+

µ(dθ′)⊤Ψs(θ
′, τ ′)µ(dτ ′)Ỹs(τ

′)dWs

+

∫ T

t

∫

R2
+

Ỹs(θ
′)⊤µ(dθ′)⊤Ψs(θ

′, τ ′)µ(dτ ′)

∫

R+

D̃s(τ)µ(dτ)Ỹs(τ)dWs.

(4.4)

It is straightforward to check that the local martingales terms are in fact true martingales
due to the boundedness conditions (4.2), (3.6) and the moment bound (4.3). Thus, taking
the expectation on both sides of (4.4) yields that

〈ϕ,Ψtϕ〉µ = E

[∫ T

t
〈Ỹs, Q̃sỸs〉µds

]
,

which ensures the positiveness and the non increasingness of t 7→ 〈ϕ,Ψtϕ〉µ for any ϕ ∈
L1(µ), since s→ Q̃s is S

d
+(µ⊗µ)-valued. This proves Assertion (i). Next, by considering the

sequence of L1(µ)-valued functions (ϕn(θ) = z1[1/n,∞)(θ))n≥1 for arbitrary z ∈ R
d′ \ {0},

using that Ψt ∈ L1(µ⊗µ), and taking the limit, we obtain that t 7→
∫
R2
+

µ(dθ)⊤Ψt(θ, τ)µ(dτ)

is a non increasing S
d
+-valued function. This proves Assertion (ii) and concludes the proof.

From now on, we work under assumption (2.6). We construct a sequence of Lyapunov
solutions (Γi)i≥0 by induction as follows.
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• Initialization: Let Γ0 ∈ C([0, T ], L1(µ⊗µ)) be the unique solution given by Theorem 3.1
to the following Lyapunov equation





Γ0
t (θ, τ) =

∫ T
t e−(θ+τ)(s−t)F0(Γ

0
s)(θ, τ)ds,

F0(Γ)(θ, τ) = Q+D⊤
∫
R2
+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)D

+B⊤
∫
R+
µ(dθ′)⊤Γ(θ′, τ) +

∫
R+

Γ(θ, τ ′)µ(dτ ′)B.

SinceQ ∈ S
d
+, an application of Lemma 4.1-(ii) yields that F⊤

∫
R2
+

µ(dθ′)⊤Γ0
t (θ

′, τ ′)µ(dτ ′)F ∈

S
m
+ , for all t ≤ T . Combined with the assumption N − λIm ∈ S

m
+ , we obtain

N + F⊤

∫

R2
+

µ(dθ′)⊤Γ0
t (θ

′, τ ′)µ(dτ ′)F − λIm ∈ S
m
+ , t ≤ T.

• Induction: for i ∈ N, having constructed Γi ∈ C([0, T ], L1(µ ⊗ µ)) such that

N + F⊤

∫

R2
+

µ(dθ′)⊤Γi
t(θ

′, τ ′)µ(dτ ′)F − λIm ∈ S
m
+ , t ≤ T. (4.5)

and
∫

R+

|µ|(dτ)|Γi
t(θ, τ)| ≤ κ′i, µ− a.e., t ≤ T, (4.6)

for some κ′i > 0, we define

Θi
t(τ) =−

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γi
t(θ

′, τ ′)µ(dτ ′)F

)−1

(4.7)

×

(
F⊤

∫

R2
+

µ(dθ′)⊤Γi
t(θ

′, τ ′)µ(dτ ′)D + C⊤

∫

R+

µ(dθ′)Γi
t(θ

′, τ)

)
,

together with the coefficients

Q̃i
t(θ, τ) = Q+Θi

t(θ)
⊤NΘi

t(τ), B̃i
t(τ) = B +CΘi

t(τ), D̃i
t(τ) = D + FΘi

t(τ). (4.8)

Since Γi ∈ C([0, T ], L1(µ⊗ µ)), we have

sup
t≤T

‖Γi
t‖L1(µ⊗µ) <∞.

Combined with the estimate (4.6), this yields the existence of ci > 0 such that

Θi
t(θ) ≤ ci, µ− a.e., t ≤ T.
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This implies that the coefficients Q̃i, B̃i, D̃i satisfy (4.2). Therefore, Theorem 3.1 can be
applied to get the existence of a unique solution Γi+1 ∈ C([0, T ], L1(µ⊗µ)) to the following
Lyapunov equation





Γi+1
t (θ, τ) =

∫ T
t e−(θ+τ)(s−t)Fi(s,Γ

i+1
s )(θ, τ)ds,

Fi(s,Γ)(θ, τ) = Q̃i
s(θ, τ) + D̃i

t(θ)
⊤
∫
R2
+

µ(dθ′)⊤Γ(θ′, τ ′)µ(dτ ′)D̃i
t(τ)

+B̃i
t(θ)

⊤
∫
R+
µ(dθ′)⊤Γ(θ′, τ) +

∫
R+

Γ(θ, τ ′)µ(dτ ′)B̃i
t(τ),

(4.9)

such that the estimate (4.6) holds also for Γi+1. Furthermore, since Q̃i
t clearly lies in

S
d
+(µ ⊗ µ), for all t ≤ T , Lemma 4.1-(ii) yields that (4.5) is satisfied with Γi

t replaced by
Γi+1
t , for all t ≤ T . This ensures that the induction is well-defined.

4.2 Step 2: Convergence of (Γi
t)i≥0 in L1(µ⊗ µ)

Lemma 4.2. For i ∈ N and for a scalar function ξ ∈ L∞(|µ|) define the matrix-valued
functions

U i =

∫

R2
+

µ(dθ)⊤Γi(θ, τ)µ(dτ), V i(ξ) =

∫

R2
+

µ(dθ)⊤Γi(θ, τ)µ(dτ)ξ(τ).

Then,

(i)
(
U i
)
i≥0

is a non-increasing sequence (meaning U i+1
t ≤ U i

t , i ∈ N and t ≤ T ) of

monotone non-increasing functions on the space C([0, T ],Sd+), converging pointwise
to a limit denoted by U ;

(ii)
(
V i(ξ)

)
i≥0

is a uniformly bounded sequence of functions on the space C([0, T ],Rd′×d′),

converging pointwise to a limit denoted by V(ξ), for any scalar function ξ ∈ L∞(|µ|).

Proof. Throughout the proof we consider the intermediate scalar sequences

U i
t (ϕ) = 〈Γi

tϕ,ϕ〉µ⊤ and V i
t (ϕ,ψ) = 〈Γi

tϕ,ψ〉µ⊤ , t ≤ T, i ∈ N, ϕ, ψ ∈ L∞(µ),

which are well-defined since Γi
t ∈ L1(µ ⊗ µ) for all t ≤ T . We also Set Θ−1 = 0, and for

i ≥ 0, and define

∆i = Γi − Γi+1, ρi = Θi−1 −Θi,

where we recall that Θi is given by (4.7). Straightforward computations, detailed in Lemma
A.2 and Remark A.3, yield that ∆i solves the Lyapunov equation:





∆i
t(θ, τ) =

∫ T
t e−(θ+τ)(s−t)F δ

i (s,∆
i
s)(θ, τ)ds,

F δ
i (t,∆)(θ, τ) = Q̃i,δ

t (θ, τ) + D̃i
t(θ)

⊤
∫
R2
+

µ(dθ′)⊤∆(θ′, τ ′)µ(dτ ′)D̃i
t(τ)

+B̃i
t(θ)

⊤
∫
R+
µ(dθ′)⊤∆(θ′, τ) +

∫
R+

∆(θ, τ ′)µ(dτ ′)B̃i
t(τ),

(4.10)
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where

Q̃i,δ
t (θ, τ) = ρit(θ)

⊤

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γi
t(θ

′, τ ′)µ(dτ ′)F

)
ρit(τ).

• Fix i ∈ N. Since Q̃i,δ
t ∈ S

d
+(µ⊗ µ), an application of Lemma 4.1-(i) on (4.10) shows that

t 7→ ∆i
t is a non-increasing S

d
+(µ ⊗ µ)-valued function. Thus, for any ϕ ∈ L1(µ),

〈ϕ,Γ0
0ϕ〉µ ≥ 〈ϕ,Γ0

tϕ〉µ ≥ 〈ϕ,Γi
tϕ〉 ≥ 〈ϕ,Γi+1

t ϕ〉µ ≥ 0, t ≤ T, i ∈ N,

Since for all t ≤ T , Γi
t is also an element of L1(µ ⊗ µ), the density of simple functions in

L∞(µ) with respect to the uniform norm, implies that

0 ≤ U i+1
t (ϕ) ≤ U i

t (ϕ) ≤ U0
t (ϕ) ≤ U0

0 (ϕ).

for all ϕ ∈ L∞(µ). This implies that the sequence of functions (U i(ϕ))i≥0 is non-increasing,
nonnegative and converging pointwise to a limit that we denote by Ut(ϕ) for any t ∈ [0, T ].
Furthermore, t 7→ U i

t (ϕ) is continuous, for all i ∈ N and ϕ ∈ L∞(µ), thanks to the continuity
of t → Γt in L

1(µ ⊗ µ), see Lemma 3.5. The claimed statement (i) for U now follows by
evaluating with ϕ(θ) ≡ z, where z ranges through R

d′ .
• Since Γi

t−Γj
t ∈ S

d
+(µ⊗µ) for any i ≤ j, an application of the Cauchy-Schwartz inequality

(see Lemma A.1) yields

〈ϕ,
(
Γi
t − Γ

j
t

)
ψ〉2µ ≤ 〈ϕ,

(
Γi
t − Γ

j
t

)
ϕ〉µ 〈ψ,

(
Γi
t − Γ

j
t

)
ψ〉µ, ϕ, ψ ∈ L1(µ). (4.11)

Invoking once again the density of simple functions in L∞(µ) with respect to the uniform
norm and the fact that for all t ≤ T , Γt ∈ L1(µ⊗ µ), (4.11) gives

(
V i
t (ϕ,ψ) − V j

t (ϕ,ψ)
)2

≤
(
U i
t (ϕ) − U j

t (ϕ)
) (

U i
t (ψ) − U j

t (ψ)
)
, ϕ, ψ ∈ L∞(µ).

Whence, the sequence of real valued functions
(
t 7→ V i

t (ϕ,ψ)
)
i≥0

is uniformly bounded.

Furthermore, this also shows that the sequence
(
t 7→ V i

t (ϕ,ψ)
)
i≥0

is a real-valued Cauchy

sequence that converges pointwise to a limit that we denote by Vt(ϕ,ψ), for any ϕ,ψ ∈
L∞(µ). To obtain the continuity of V i(ϕ,ψ), note that Γi

t − Γi
s ∈ S

d
+(µ ⊗ µ) for any

t ≤ s and Γi
s − Γi

t ∈ S
d
+ for any s ≤ t, which allows us once again to apply the Cauchy

Schwartz inequality (see Lemma A.1) coupled with the density argument to obtain for any
s, t ∈ [0, T ]:

(
V i
t (ϕ,ψ) − V i

s (ϕ,ψ)
)2

≤
(
U i
t (ϕ)− U i

s(ϕ)
) (
U i
t (ψ) − U i

s(ψ)
)
.

Consequently, the continuity of U i(ϕ) for any ϕ ∈ L∞(µ) implies that of V i(ϕ,ψ) for
any ϕ,ψ ∈ L∞(µ). Fix ξ ∈ L∞(|µ|), the claimed statement (ii) for V(ξ) now follows by
evaluating with ϕ(θ) ≡ z and ψ(θ) = ξ(θ)z′, where z, z′ range through R

d′ .
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Lemma 4.3. There exists a constant κ > 0 such that for every i ∈ N and t ∈ [0, T ]
∣∣∣∣
∫

R+

Γi
t(θ, τ)µ(dτ)

∣∣∣∣ ≤ κ µ− a.e. (4.12)

Proof. Lemma 4.2 ensures that there exists a constant M > 0 such that for every i ∈ N

sup
t≤T

∣∣∣∣∣

∫

R2
+

µ(dθ)⊤Γi
t(θ, τ)µ(dτ)

∣∣∣∣∣ ∨ sup
t≤T

∣∣∣∣∣

∫

R2
+

e−θtµ(dθ)⊤Γi
t(θ, τ)µ(dτ)

∣∣∣∣∣ ≤M. (4.13)

Fix i ∈ N. We proceed as in the proof of Lemma 3.4 to bound the quantity git(θ) =∣∣∣
∫
R+

Γi+1
t (θ, τ)µ(dτ)

∣∣∣. By construction Γi+1 solves (4.9), so that an integration over the

τ -variable combined with (4.13) and the triangle inequality yield

gi+1
t (θ) ≤4rT + 4r

∫ T

t
(1 + |K(t− s)|)

(
gis(θ) + gi+1

s (θ)
)
ds, (4.14)

where r is a constant only depending on B,D,Q N and M . Let us now show the desired
inequality (4.12). For n ≥ 0, let us define

Gn
t (θ) = sup

i=0,...,n

∣∣∣∣
∫

R+

Γi
t(θ, τ)µ(dτ)

∣∣∣∣ .

The inequality (4.14) yields for every i ≥ 0

Gi+1
t (θ) ≤ 4rT + 4r

∫ T

t
(1 + 2|K(t− s)|)Gi+1

s (θ)ds.

Consequently, the generalized Gronwall inequality implies that there exists a constant c
only depending on B,C,D,F,N, T,K and M such that for every n ∈ N, t ∈ [0, T ] we have
|Gn

t (θ)| ≤ c for µ-almost every θ and t ∈ [0, T ].

Lemma 4.4. The sequence of functions (U i)i≥0 converges uniformly on C([0, T ],Sd+) to
its simple limit U introduced in Lemma 4.2.

Proof. From Lemma 4.2, we have that (U i)i≥0 is a non increasing sequence of continuous
functions converging pointwise to U . To obtain the uniform convergence it suffices to show
that U is continuous and apply Dini’s theorem. To do so our strategy is to show that
t 7→ Ut solves an equation whose solutions are continuous.

Step 1. Equation satisfied by U . By definition Γi+1 is solution to (4.9), thus by inte-
grating over τ, θ and applying Fubini’s theorem we get

{
U i+1
t =

∫ T
t F̃i(t, r)

(
U i+1

)
dr,

F̃i(t, r)(U
i+1) = Ii(t, r) + IIi(t, r) + IIIi(t, r) + IIIi(t, r)⊤,

(4.15)

17



where

Ii(t, r) =

∫

R2
+

e−θ(r−t)µ(dθ)⊤Q̃i
r(θ, τ)µ(dτ)e

−τ(r−t),

IIi(t, r) =

(∫

R+

e−θ(r−t)µ(dθ)⊤D̃i
r(θ)

⊤

)
U i+1
r

(∫

R+

D̃i
r(τ)µ(dτ)e

−τ(r−t)

)
,

IIIi(t, r) =

(∫

R+

e−θ(r−t)µ(dθ)⊤B̃i
r(θ)

⊤

)
V i
r(e

·(t−r)),

with B̃i, D̃i and Q̃i defined as in (4.8). The pointwise convergences and the uniform bounds
stated in Lemma 4.2 allow us to apply the dominated convergence theorem to (4.15) to get

{
Ut =

∫ T
t F̃ (t, r) (U) dr,

F̃ (t, r) (U) = I(t, r) + II(t, r) + III(t, r) + III(t, r)⊤,
(4.16)

where

I(t, r) = K(r − t)⊤QK(r − t) + Θ̃(t, r)⊤NΘ̃(t, r),

II(t, r) =
(
DK(r − t) + F⊤Θ̃(t, r)

)⊤
Ur

(
DK(r − t) + F⊤Θ̃(t, r)

)
,

III(t, r) = Vr

(
e·(t−r)

) (
BK(t− r) + C⊤Θ̃(t, r)

)
,

Θ̃(t, r) = −
(
N + F⊤UrF

)−1 (
F⊤UrDK(r − t) + C⊤Vr

(
e·(t−r)

))
.

Step 2. Continuity of t 7→ Ut. We first observe that by virtue of Lemma 4.2 t 7→ Ut

and t 7→ Vt are bounded on [0, T ] so that there exists c > 0 such that

∣∣∣F̃ (t, r)(U)
∣∣∣ ≤ c

(
1 + |K(r − t)|2

)
, t ≤ r ≤ T. (4.17)

Fixing t ≤ s ≤ T , it follows from (4.16) that

Ut − Us =

∫ s

t
F̃ (t, r) (U) dr +

∫ T

s

(
F̃ (t, r) (U)− F̃ (s, r) (U)

)
dr

= 1t,s + 2t,s.

By (4.17),

|1t,s| ≤ c
(
s− t+ ‖K‖2L2(0,s−t)

)
.
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By virtue of the square integrability of K, the right hand side goes to 0 as t ↑ s. Similarly,
using u⊤Qu− v⊤Qv = (u+ v)⊤Q(u− v), we get

|2t,s| ≤c

∫ T

s
|K(r − t)−K(r − s)| |K(r − t) +K(r − s)| dr

+ c

∫ T

s
|Vr(e

·(t−r))− Vr(e
·(s−r))|dr

≤ At,s +Bt,s,

where c is a constant. The first term can be easily handled with Cauchy-Schwarz inequality

At,s ≤2c‖K‖2L2(0,T )

∫ T

0
|K(r + s− t)−K(r)|2 dr,

which shows that At,s converges to zero as t goes to s, recall (3.12). For the second term
note that for all i ∈ N, t ≤ s ≤ r ≤ T ,

∣∣∣∣∣

∫

R2
+

µ(dθ)⊤Γi
r(θ, τ)µ(dτ)e

−τ(r−t) −

∫

R2
+

µ(dθ)⊤Γi
r(θ, τ)µ(dτ)e

−τ(r−s)

∣∣∣∣∣

≤ ess supτ ′∈R+

∣∣∣∣
∫

R+

µ(dθ)⊤Γi
r(θ, τ

′)

∣∣∣∣
∫

R+

e−τ(r−t) − e−τ(r−s)|µ|(dτ)

≤ κ
∣∣K(r − s)−K(r − t)

∣∣ ,

(4.18)

where κ is the uniform bound from Lemma 4.3 and

K(t) =

∫

R+

e−θt|µ|(dθ), t > 0. (4.19)

Taking the limit i → ∞ in (4.18) and invoking Lemma 4.2, we obtain
∣∣∣Vr(e

·(t−r))− Vr(e
·(s−r))

∣∣∣ ≤ κ
∣∣K(r − s)−K(r − t)

∣∣ .

Thus, similarly as for At,s we get that Bt,s converges to 0 as t goes to s. As a result U is
continuous.

Lemma 4.5. For any t ≤ T , (Γi
t)i≥0 is a Cauchy sequence in L1(µ⊗ µ).

Proof. Let t ≤ T and i ≤ j. Let Θj, B̃j, D̃j be defined as in (4.8) for any j ∈ N. Then
cumbersome but straightforward computations, detailed in Lemma A.2, yield that ∆i,j

t =
Γi
t − Γj

t solves the Lyapunov equation




∆ij
t (θ, τ) =

∫ T
t e−(θ+τ)(s−t)F δ

ij(s,∆
ij
s )(θ, τ)ds,

F δ
ij(t,∆)(θ, τ) = Q̃ij,δ

t (θ, τ) + D̃j−1
t (θ)⊤

∫
R2
+

µ(dθ′)⊤∆(θ′, τ ′)µ(dτ ′)D̃j−1
t (τ)

+B̃j−1
t (θ)⊤

∫
R+
µ(dθ′)⊤∆(θ′, τ) +

∫
R+

∆(θ, τ ′)µ(dτ ′)B̃j−1
t (τ)

+Sij
t (θ)

⊤ρijt (τ) + ρijt (θ)
⊤Sij

t (τ),

(4.20)
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where

ρij = Θi−1 −Θj−1,

Q̃ij,δ
t (θ, τ) = ρijt (θ)

⊤
(
N + F⊤U i

tF
)
ρijt (τ),

Sij
t (τ) = C⊤

∫

R+

µ(dθ′)⊤Γi
t(θ

′, τ) + F⊤U i
tD +

(
N + F⊤U i

tF
)
Θj−1

s (τ),

and U is defined as in Lemma 4.2. We will show that ‖∆ij
t ‖L1(µ⊗µ) → 0 as i, j → ∞ by

successive applications of Gronwall inequality and by showing that ρij is small enough. For
this, we fix ǫ > 0 and we denote by c > 0 a scalar independent of i, j, t, τ and θ that may
vary from line to line throughout the proof.

Step 1. We bound the terms |ρijt (τ)| and
∣∣∣
∫
R+

∆ij
t (θ, τ)µ(dτ)

∣∣∣. We first write

ρijt (τ) =

((
N + F⊤U j

t F
)−1

−
(
N + F⊤U i

tF
)−1

)(
F⊤U j

tD + C⊤

∫

R+

µ(dθ′)⊤Γj
t(θ

′, τ)

)

−
(
N + F⊤U i

tF
)−1

(
F⊤

(
U i
t − U j

t

)
D + C⊤

∫

R+

µ(dθ′)⊤∆ij
t (θ

′, τ)

)
.

(4.21)

By the uniform convergence of the sequence of functions
(
U i
)
i≥0

, obtained in Lemma 4.4,

one can find n′ ∈ N such that
∣∣∣U i

t − U j
t

∣∣∣+
∣∣∣∣
(
N + F⊤U j

t F
)−1

−
(
N + F⊤U i

tF
)−1

∣∣∣∣ ≤ ǫ, t ≤ T, i, j ≥ n′, (4.22)

where the bound for the second term comes from the matrix identity A−1−B−1 = B−1(B−
A)A−1. Furthermore, it follows from Lemmas 4.2 and 4.3 that

∣∣U i
t

∣∣ ∨
∣∣∣∣
∫

R+

Γi
t(θ, τ)µ(dτ)

∣∣∣∣ ≤ c, µ− a.e., t ≤ T, i ≥ 0. (4.23)

Combining the previous identity with (4.22) and (4.21) yields

|ρijt (τ)| ≤ c

(
ǫ+

∣∣∣∣
∫

R+

∆ij
s (θ, τ)µ(dτ)

∣∣∣∣
)
, µ− a.e., t ≤ T, i, j ≥ n′.

In addition, (4.23) yields that

|Θi
t(θ)| ≤ c, µ− a.e., t ≤ T, i ≥ 0, (4.24)

which in turn implies
∫

R+

e−θ(s−t)
∣∣Θi

t(θ)
∣∣ |µ|(dθ) ≤ κ′K(s− t), s ≤ t ≤ T, i ≥ 0,
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where K is given by (4.19). Fix i, j ≥ n′ and t ≤ T . Combining all the above and
integrating equation (4.20) over the τ variable leads to

∣∣∣∣
∫

R+

∆ij
t (θ, τ)µ(dτ)

∣∣∣∣ ≤ c

∫ T

t
(1 +K

2
(s− t))

(
ǫ+

∣∣∣∣
∫

R+

∆ij
s (θ, τ)µ(dτ)

∣∣∣∣
)
ds, µ− a.e.

An application of the generalized Gronwall inequality for convolution equation with R the

resolvent of c(1 +K
2
), see [9, Theorem 9.8.2], yields

∣∣∣∣
∫

R+

∆ij
t (θ, τ)µ(dτ)

∣∣∣∣ ≤ ǫc
(
T + ‖K‖2L2(0,T )

) (
1 + ‖R‖L1(0,T )

)
, µ− a.e. (4.25)

Step 2. Plugging (4.22), (4.23), (4.24), and (4.25) into (4.21), we obtain
∫

R+

e−θ(s−t)
∣∣ρijs (τ)

∣∣ |µ|(dτ) ≤r
(
ǫ
(
1 +K(s − t)

)
+ ‖∆ij

s ‖L1(µ⊗µ)

)
. (4.26)

Finally by plugging (4.23), (4.24), (4.25) and (4.26) into (4.20) and integrating over the θ
and τ variables we obtain

‖∆ij
t ‖L1(µ⊗µ) ≤c

∫ T

t

(
1 +K

2
(t− s)

) (
ǫ+ ‖∆ij

s ‖L1(µ⊗µ)

)
ds.

Another application of the generalized Gronwall inequality for convolution equations yields
that

‖∆ij
t ‖L1(µ⊗µ) ≤ ǫc

(
T + ‖K

2
‖2L2(0,T )

) (
1 + ‖R‖L1(0,T )

)
.

This proves that (Γi
t)i≥0 is a Cauchy sequence in L1(µ ⊗ µ) for every t ∈ [0, T ].

4.3 Step 3: The limiting point of (Γi
t)i≥0 solves the Riccati equation

Lemma 4.6. Assume that (2.6) holds. For each t ≤ T , denote by Γt the limiting point
in L1(µ ⊗ µ) of the sequence

(
Γi
t

)
i≥0

obtained from Lemma 4.5. Then, t → Γt solves the

Riccati equation (2.5) with

sup
t≤T

‖Γt‖L1(µ⊗µ) < +∞. (4.27)

Proof. Fix t ≤ T . By virtue of the L1(µ⊗ µ) convergence,

Γi
t(θ, τ) → Γt(θ, τ) µ⊗ µ− a.e.

Furthermore the boundedness of (i, t) 7→
∣∣∣
∫
R2
+

µ(dθ)⊤Γi
t(θ, τ)µ(dτ)

∣∣∣, (i, t, θ) 7→
∣∣∣
∫
R+

Γi
t(θ, τ)µ(dτ)

∣∣∣
and (i, t, τ) 7→

∣∣∣
∫
R+
µ(dθ)⊤Γi

t(θ, τ)
∣∣∣, see Lemmas 4.2 and 4.3, combined with equation (4.9)
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ensures that there exists a constant c > 0 such that |Γi
t(θ, τ)| ≤ c

∫ T
t e−(θ+τ)(s−t)ds ≤

(1 ∨ T )
(
1 ∧ (θ + τ)−1

)
since 1 − e−θt ≤ (1 ∨ t)

(
1 ∧ θ−1

)
. Hence the dominated conver-

gence theorem yields
∫

R2
+

µ(dθ)⊤Γi
t(θ, τ)µ(dτ) →

∫

R2
+

µ(dθ)⊤Γt(θ, τ)µ(dτ),

∫

R2
+

µ(dθ)⊤Γi
t(θ, τ) →

∫

R2
+

µ(dθ)⊤Γt(θ, τ) and

∫

R2
+

Γi
t(θ, τ)µ(dτ) →

∫

R2
+

Γt(θ, τ)µ(dτ), µ− a.e.

Thus, as i→ ∞ we have

Θi
t(θ) → Θt(θ) =

(
N + F⊤

∫

R2
+

µ(dθ)⊤Γt(θ, τ)µ(dτ)F

)−1

×

(
F⊤

∫

R2
+

µ(dθ)⊤Γt(θ, τ)µ(dτ)D + C⊤

∫

R+

Γt(θ, τ)µ(dτ)

)

Bi
t(θ) → B + C⊤Θt(θ)

Di
t(θ) → D + F⊤Θt(θ)

(4.28)

By plugging these convergences into (4.9) we obtain that the limit Γ solves

Γt(θ, τ) =

∫ T

t
e−(θ+τ)(s−t)R̃s(θ, τ)ds, µ⊗ µ− a.e. (4.29)

with

R̃t(θ, τ) =Q+Θt(θ)NΘt(τ) +

∫

R+

Γt(θ, τ)µ(dτ)
(
B + C⊤Θt(τ)

)

+
(
B + C⊤Θt(θ)

)⊤ ∫

R+

µ(dθ)⊤Γs(θ, τ)

+
(
D + F⊤Θt(θ)

)⊤ ∫

R2
+

µ(dθ)⊤Γt(θ, τ)µ(dτ)
(
D + F⊤Θt(τ)

)
.

By using the expression of Θ exhibited in (4.28), we get that R̃t(θ, τ) = R(Γt)(θ, τ), where
R is given by (2.3), so that (4.29) is the desired Riccati equation. Finally, the uniform
bounds obtained in Lemmas 4.3 and 4.4 and plugged into (4.29) imply (4.27).

4.4 Step 4: Continuity and uniqueness

We now establish the estimate (2.7) for the solutions of the Riccati equation, which in turn
implies continuity.

22



Lemma 4.7. Assume that there exists a L1(µ⊗ µ)-valued function t 7→ Γt such that (2.5)
holds with (4.27). Then, the estimate (2.7) holds and Γ ∈ C([0, T ], L1(µ⊗µ)). If in addition
Q ∈ S

d
+, then Γt ∈ S

d
+(µ⊗ µ), for all t ≤ T .

Proof. The proof of the estimate follows the same lines as that of Lemma 3.4, with constant
coefficients. The only difference is the nonlinear term

Vt(θ, τ) =

∫ T

t
e−(θ+τ)(s−t)S(Γs)(θ)

⊤N̂−1(Γs)S(Γs)(τ)ds,

which we can bound as follows. Let Ŝ(Γ)(s)(θ) = |F ||D|‖Γs‖L1(µ⊗µ)+|C|
∫
R+

|µ|(dτ ′)|Γ(θ, τ ′)|.

Integration over the τ -variable, using the bound e−θ(s−t) ≤ 1 and Tonelli’s theorem give
for a constant c that may vary from line to line
∫

R+

|µ|(dτ)|Vt(θ, τ)| ≤

∫

R+

|µ|(dτ)

∫ T

t
e−(θ+τ)(s−t)Ŝ(Γ)(s)(θ)|N−1|Ŝ(Γ)(s)(τ)ds

≤ c sup
s≤T

‖Γs‖L1(µ⊗µ)

∫ T

0
(1 +K(s))ds

+ c sup
s≤T

‖Γs‖L1(µ⊗µ)

∫ T

t
(1 +K(s− t))

∫

R+

|µ|(dτ ′)|Γs(θ, τ
′)|ds,

where K is defined as in (4.19). The first four terms appearing in
∫
R+

|µ|(dτ)|Γt(θ, τ)| lead

to inequality (3.10), with (Γ,K, µ, c) instead of (Ψ,K2, µ2, κ). Adding the previous bound
for the fifth nonlinear term yields

∫

R+

|µ|(dτ)|Γt(θ, τ)| ≤c

(
1 + sup

s∈[0,T ]
‖Γs‖L1(µ1⊗µ)

)∫ T

0

(
1 +K(s)

)
ds

+ c

∫ T

t
(1 +K(s− t))

∫

R+

|µ|(dτ ′)|Γs(θ, τ
′)|ds.

The claimed estimate now follows from the generalized Gronwall inequality for convolution
equations, see [9, Theorem 9.8.2].

To argue continuity, we recall that the Riccati equation (2.5) can be recast as a Lya-
punov equation as in (4.29). The claimed continuity is therefore a consequence of Lemma
3.5 provided that the coefficients of (4.29) are bounded, which amounts to showing that
the functions t 7→

∫
R2
+

µ(dθ)⊤Γt(θ, τ)µ(dτ) and (t, θ) 7→
∫
R+

Γt(θ, τ)µ(dτ) are bounded.

The boundedness of the former is ensured by (4.27) and that of the latter follows from
the estimate (2.7). If in addition Q ∈ S

d
+, then Lemma 4.1 applied for (4.29) yields that

Γt ∈ S
d
+(µ⊗ µ) for any t ≤ T .

Finally, exploiting once more the correspondence with the Lyapunov equation, unique-
ness for the Riccati equation is obtained as a consequence of Theorem 3.1 and Lemma 4.1.
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Lemma 4.8. There exists at most one solution to (2.5) such that (2.7) and (4.27) hold.

Proof. Let Γa and Γb be two solutions of (2.5) such that (2.7) and (4.27) hold. For i ∈ {a, b},
observe that Γi can be recast as a solution to a Lyapunov equation with bounded coefficients
in the form (4.9). As a result, ∆ = Γa − Γb can be written as a solution to the following
Lyapunov equation with bounded coefficients (see Lemma A.2 for details):





∆t(θ, τ) =
∫ T
t e−(θ+τ)(s−t)Fab(s,∆s)(θ, τ)ds,

Fab(t,∆)(θ, τ) = Qab
t (θ, τ) +Db

t (θ)
⊤
∫
R2
+

µ(dθ′)⊤∆(θ′, τ ′)µ(dτ ′)Db
t (τ)

+Bb
t (θ)

⊤
∫
R+
µ(dθ′)⊤∆(θ′, τ) +

∫
R+

∆(θ, τ ′)µ(dτ ′)B2
t (τ)

+Sab
t (θ)⊤ρabt (τ) + ρabt (θ)⊤Sab

t (τ),

(4.30)

where

ρab = Θa −Θb,

Qab
t (θ, τ) = ρabt (θ)⊤

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γa
t (θ

′, τ ′)µ(dτ ′)F

)
ρabt (τ),

Sab
t (τ) = C⊤

∫

R+

µ(dθ′)⊤Γa(θ′, τ) + F⊤

∫

R2
+

µ(dθ′)Γa
s(θ

′, τ ′)µ(dτ ′)D+

+
(
N + F⊤

∫

R2
+

µ(dθ′)Γa
s(θ

′, τ ′)µ(dτ ′)F
)
Θa

s(τ).

The fact that the coefficients are bounded comes from (2.7) and (4.27) on Γa and Γb. Now,
one can note similarly as in (4.21) that ρab can be re-written as

ρabs (τ) =−

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γa
t (θ

′, τ ′)µ(dτ ′)F

)−1

×

(
F⊤

∫

R2
+

µ(dθ′)⊤∆t(θ
′, τ ′)µ(dτ ′)D + C⊤

∫

R+

µ(dθ′)⊤∆t(θ
′, τ)

)

+



(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γb
t(θ

′, τ ′)µ(dτ ′)F

)−1

−

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γa
t (θ

′, τ ′)µ(dτ ′)F

)−1



×

(
F⊤

∫

R2
+

µ(dθ′)⊤Γb
t(θ

′, τ ′)µ(dτ ′)D + C⊤

∫

R+

µ(dθ′)⊤Γb
t(θ

′, τ)

)

= A(τ) +B(τ),
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which is linear in ∆ since B(τ) can be rewritten as

∣∣∣∣∣∣

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γb
t(θ

′, τ ′)µ(dτ ′)F

)−1

−

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γa
t (θ

′, τ ′)µ(dτ ′)F

)−1
∣∣∣∣∣∣

=

∣∣∣∣∣

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γb
t(θ

′, τ ′)µ(dτ ′)F

)−1(
F⊤

∫

R2
+

µ(dθ′)⊤
(
∆t(θ

′, τ ′)
)
µ(dτ ′)F

)

×

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γa
t (θ

′, τ ′)µ(dτ ′)F

)−1 ∣∣∣∣∣.

Consequently, ∆ = Γa − Γb is solution to a homogeneous linear Lyapunov equation with
bounded coefficients, and no affine term. Thus, the generalized Gronwall inequality for
convolution equations, see [9, Theorem 9.8.2] ensures that ‖∆t‖L1(µ⊗µ) = 0 for every t ∈
[0, T ], which proves uniqueness.

A Some elementary results

Lemma A.1. Let Ψ ∈ S
d
+(µ⊗ µ), and Ψ its corresponding linear integral operator. Then

for any ϕ,ψ ∈ L1(µ)

〈ϕ,Ψψ〉2µ ≤ 〈ϕ,Ψϕ〉µ.〈ψ,Ψψ〉µ

Proof. Since Ψ ∈ S
d
+(µ⊗ µ), then for any ϕ,ψ ∈ L1(µ) and λ ∈ R we have

∫

R2
+

(ϕ(θ) + λψ(θ))⊤ µ(dθ)⊤Ψ(θ, τ)µ(dτ) (ϕ(τ) + λψ(τ)) ≥ 0.

By expanding the square we obtain a non negative second order polynomial in λ whose
discriminant must be non positive. This combined with Ψ(θ, τ) = Ψ(τ, θ)⊤ yields the
claimed inequality.

Lemma A.2. Let (Γi)i≥0 be the sequence defined in (4.9). Then for any 1 ≤ i < j,
∆ij = Γi − Γj is solution to





∆ij
t (θ, τ) =

∫ T
t e−(θ+τ)(s−t)F δ

ij(s,∆
ij
s )(θ, τ)ds,

F δ
ij(t,∆)(θ, τ) = Qij,δ

t (θ, τ) +Dj−1
t (θ)⊤

∫
R2
+

µ(dθ′)⊤∆(θ′, τ ′)µ(dτ ′)Dj−1
t (τ)

+Bj−1
t (θ)⊤

∫
R+
µ(dθ′)⊤∆(θ′, τ) +

∫
R+

∆(θ, τ ′)µ(dτ ′)Bj−1
t (τ)

+Sij
t (θ)

⊤ρijt (τ) + ρijt (θ)
⊤Sij

t (τ),

(A.1)

25



where

ρij = Θi−1 −Θj−1,

Qij,δ
t (θ, τ) = ρijt (θ)

⊤

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γi
t(θ

′, τ ′)µ(dτ ′)F

)
ρijt (τ),

Sij
t (τ) = C⊤

∫

R+

µ(dθ′)⊤Γi(θ′, τ) + F⊤

∫

R2
+

µ(dθ′)Γi
s(θ

′, τ ′)µ(dτ ′)D+

+
(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γi
s(θ

′, τ ′)µ(dτ ′)F
)
Θj−1

s (τ).

Remark A.3. Note that when j = i+ 1, then Si(i+1) = 0. Indeed, in such case we have

Si(i+1)
s (θ) =C⊤

∫

R+

µ(dθ′)Γi
s(θ

′, τ) + F⊤

∫

R2
+

µ(dθ′)⊤Γi
s(θ

′, τ ′)Dj−1
s (τ) +NΘi

s(τ)

=C⊤

∫

R+

µ(dθ′)Γi
s(θ

′, τ) + F⊤

∫

R2
+

µ(dθ′)⊤Γi
s(θ

′, τ ′)D

+

(
N + F⊤

∫

R2
+

µ(dθ′)⊤Γi
s(θ

′, τ ′)µ(dτ ′)F

)
Θi

s(τ) = 0.

As a consequence, in the particular case where j = i + 1, ∆i = ∆i(i+1) is solution to
(4.10).

Proof. Let t ∈ [0, T ], for almost every θ, τ we have

∆ij
t (θ, τ) =Γi

t(θ, τ)− Γj
t (θ, τ)

=

∫ T

t
e−(θ+τ)(s−t)

(
Iij,δs (θ, τ) +

(
Iij,δs (τ, θ)

)⊤
+ IIij,δs (θ, τ) + IIIij,δs (θ, τ)

)
ds,
(A.2)
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where Iij,δ, IIij,δ and IIIij,δ are defined as follows

Iij,δs (θ, τ) =

∫

R+

Γi
s(θ, τ

′)µ(dτ ′)Bi−1
s (τ)−

∫

R+

Γj
s(θ, τ

′)µ(dτ ′)Bj−1
s (τ)

=

∫

R+

∆ij
s (θ, τ

′)µ(dτ ′)Bj−1
s (τ) +

∫

R+

Γi
s(θ, τ

′)µ(dτ ′)(Bi−1
s (τ)−Bj−1

s (τ))

=

∫

R+

∆ij
s (θ, τ

′)µ(dτ ′)Bj−1
s (τ) +

∫

R+

Γi
s(θ, τ

′)µ(dτ ′)Cρijs (τ)

IIij,δs (θ, τ) =Di−1
s (θ)⊤

∫

R2
+

µ(dθ′)⊤Γi
s(θ, τ)µ(dτ

′)Di−1
s (τ)−Dj−1

s (θ)⊤
∫

R2
+

µ(dθ′)⊤Γj
s(θ, τ)µ(dτ

′)Dj−1
s (τ)

=Dj−1
s (θ)⊤

∫

R2
+

µ(dθ′)⊤∆ij
s (θ, τ)µ(dτ

′)Dj−1
s (τ)

+ ρijs (θ)
⊤F⊤

∫

R2
+

µ(dθ′)⊤Γi
s(θ

′, τ ′)µ(dτ ′)Fρijs (τ)

+ ρijs (θ)
⊤F⊤

∫

R2
+

µ(dθ′)⊤Γi
s(θ

′, τ ′)Dj−1
s (τ)

+Dj−1
s (θ)⊤

∫

R2
+

µ(dθ′)⊤Γi
s(θ

′, τ ′)µ(dτ ′)Fρijs (τ)

IIIij,δs (θ, τ) = Qi−1
s (θ, τ)−Qj−1

s (θ, τ)

= ρijs (θ)
⊤Nρijs (τ) + ρijs (θ)

⊤NΘj−1
s (τ) + Θj−1

s (θ)Nρijs (τ)

By plugging the expressions of Iij,δ, IIij,δ, IIIij,δ into (A.2) we obtain (A.1).
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