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VANISHING VISCOSITY AND SURFACE TENSION LIMITS OF

INCOMPRESSIBLE VISCOUS SURFACE WAVES

YANJIN WANG AND ZHOUPING XIN

Abstract. Consider the dynamics of a layer of viscous incompressible fluid under the influence
of gravity. The upper boundary is a free boundary with the effect of surface tension taken into
account, and the lower boundary is a fixed boundary on which the Navier-slip condition is
imposed. It is proved that there is a uniform time interval on which the estimates independent
of both viscosity and surface tension coefficients of the solution can be established. This then
allows one to justify the vanishing viscosity and surface tension limits by the strong compactness
argument. In the presence of surface tension, the main difficulty lies in the less regularity of
the highest temporal derivative of the mean curvature of the free surface and the pressure. It
seems hard to overcome this difficulty by using the vorticity in viscous boundary layers. One
of the key observations here is to find that there is a crucial cancelation between the mean
curvature and the pressure by using the dynamic boundary condition.

1. Introduction

1.1. Formulation. We consider the motion of an incompressible viscous fluid under the influ-
ence of a uniform gravitational force in a moving domain

Ω(t) =
{
x ∈ R

3 | −b < x3 < h(t, x1, x2)
}
. (1.1)

The lower boundary of Ω(t) is assumed to be rigid and given with the constant b > 0, but the
upper boundary is a free surface that is the graph of the unknown function h : R+ × R

2 → R.
The fluid is described by its velocity and pressure, which are given for each t ≥ 0 by u(t, ·) :
Ω(t) → R

3 and p(t, ·) : Ω(t) → R, respectively. For each t > 0, (u, p, h) satisfy the free-surface
incompressible Navier-Stokes equations





∂tu+ u · ∇u+∇p− ε∆u = 0 in Ω(t)

∇ · u = 0 in Ω(t)

pn− 2εSun = ghn− σHn on {x3 = h(t, x1, x2)}
∂th = u ·N on {x3 = h(t, x1, x2)}
u3 = 0, ε(Su(−e3))i = −κεui, i = 1, 2 on {x3 = −b}

(1.2)

for Su = 1
2

(
∇u+∇ut

)
the symmetric part of the gradient of u and n = N/|N| the outward

unit normal of the free surface with N = (−∂1h,−∂2h, 1)t. ε > 0 is the viscosity, g > 0 is
the strength of gravity, σ > 0 is the surface tension coefficient and κ is the friction coefficient.
Finally, H is twice the mean curvature of the free surface given by the formula

H = ∇ ·
(

∇h√
1 + |∇h|2

)
. (1.3)

The kinematic boundary condition, the fourth equation in (1.2), implies that the free surface
is adverted with the fluid, and the dynamic boundary condition, the third equation, states the
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2 YANJIN WANG AND ZHOUPING XIN

balance of normal stress on the free surface. Note that in (1.2) we have shifted the gravitational
forcing to the boundary and eliminated the constant atmospheric pressure, patm, in the usual
way by adjusting the actual pressure p̄ according to p = p̄+ gx3 − patm. We have imposed the
Navier slip boundary condition on the fixed lower boundary. Note that setting formally ε = 0
in (1.2) it corresponds to the free-surface incompressible Euler equations.

The initial surface is given by the graph of the function h(0) = h0 : R2 → R, which yields
the initial domain Ω(0) on which the initial velocity u(0) = u0 : Ω(0) → R

3 is specified. It will
be assumed that h0 > −b and that (u0, h0) satisfy certain compatibility conditions.

The movement of the free boundary and the subsequent change of the domain create numerous
mathematical difficulties. To circumvent these, as usual, we will transform the free boundary
problem under consideration to a problem with a fixed domain and fixed boundary. Consider a
family of diffeomorphism Φ(t, ·) of the form

Φ(t, ·) : Ω = R
2 × (−b, 0) → Ω(t)

(y, z) → (y, ϕ(t, y, z)).
(1.4)

ϕ is chosen so that ∂zϕ > 0 which ensures that Φ(t, ·) is a diffeomorphism. For the fluid domain
under consideration, ϕ can be chosen as

ϕ(t, y, z) = z + η(t, y, z), (1.5)

where η is a chosen extension of h onto {z ≤ 0} defined by

η̂(t, ξ, z) =
(
1 +

z

b

)
exp (A|ξ|z)ĥ(t, ξ). (1.6)

Here ·̂ stands for the horizontal Fourier transform with respect to the y variable. It is verified
in Proposition B.1 that for given h0 if the number A > 0 is chosen sufficiently small, then

∂zϕ(0, y, z) ≥ c0 > 0 in Ω. (1.7)

Then one can reduce the problem into the fixed domain Ω by setting

v(t, y, z) = u(t,Φ(t, y, z)), q(t, y, z) = p(t,Φ(t, y, z)) in Ω. (1.8)

Set

∂ϕi = ∂i −
∂iϕ

∂zϕ
∂z, i = t, 1, 2, ∂ϕ3 = ∂ϕz =

1

∂zϕ
∂z

such that

∂iu ◦ Φ(t, ·) = ∂ϕi v, i = t, 1, 2, 3.

Then by the change of coordinates (1.4), the problem (1.2) becomes




∂ϕt v + v · ∇ϕv +∇ϕq − ε∆ϕv = 0 in Ω

∇ϕ · v = 0 in Ω

qn− 2εSϕvn = ghn − σHn on {z = 0}
∂th = v ·N on {z = 0}
v3 = 0, (Sϕve3)i = κvi, i = 1, 2 on {z = −b}.

(1.9)

Here we have naturally written (∇ϕ)i = ∂ϕi , ∆ϕ = ∂ϕi ∂
ϕ
i , ∇ϕ · v = ∂ϕi vi and S

ϕv = 1
2

(
∇ϕv +

(∇ϕv)t). Note that ∇ϕ · Sϕv = 1
2∆

ϕv for vector fields satisfying ∇ϕ · v = 0.

1.2. Previous works. Free boundary problems in fluid mechanics have been studied inten-
sively in the mathematical community. There are a huge amount of mathematical works, and
we only mention briefly some of them below. We may refer to the references cited in these
works for more proper survey of the literature. For the incompressible Navier-Stokes equations,
we refer to, for instance, Beale [6], Hataya [24], Guo and Tice [21, 22, 23] for the well-posedness
without surface tension, and Beale [7], Tani [41], Tanaka and Tani [42] for the well-posedness
with surface tension. Those well-posedness results are strongly based on the regularizing effect of
the viscosity, and the solutions are shown to be global for the small initial data [7, 42, 24, 22, 23].
Note that the surface tension has a regularizing effect on the free surface, and it enhances the
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decay rate, see [22, 23] for more discussions. For the incompressible Euler equations, the prob-
lem becomes much more difficult. The early works were focused on the irrotational fluids, which
began with the pioneering work of Nalimov [36] of the local well-posedness without surface ten-
sion for the small initial data and was generalized to the general initial data by the breakthrough
of Wu [43, 44] for the case without surface tension and by Beyer and Günther [9] for the case
with surface tension. For the irrotational inviscid fluids, certain dispersive effects can be used to
establish the global well-posedness for the small initial data; we refer to Wu [45, 46], Germain,
Masmoudi and Shatah [18], Ionescu and Pusateri [27] and Alazard and Delort [1] for the case
with gravity but without surface tension, Germain, Masmoudi and Shatah [19] and Ionescu and
Pusateri [28] for the case with surface tension but without gravity, and Deng, Ionescu, Pausader
and Pusateri [13] for the case with both gravity and surface tension. For the general incom-
pressible Euler equations without the irrotational assumption, only local well-posedness results
could be found. The first local well-posedness in 3D was obtained by Lindblad [31] for the
case without surface tension and by Coutand and Shkoller [12] for the case with (and without)
surface tension, and we also refer to Shatah and Zeng [38] and Zhang and Zhang [49].

Various approaches are used to prove those well-posedness results mentioned above, depend-
ing on whether viscosity or surface tension is presented or not. It is then very natural and
interesting to study the asymptotic behavior of vanishing these two parameters in the equa-
tions. The vanishing viscosity limit for the Navier-Stokes equations is a classical issue. When
there is no boundary, the problem has been well studied; we refer to Swann [39], Kato [29],
DiPerna and Majda [14, 15], Constantin [11] and Masmoudi [33] for example. However, in the
presence of boundaries, the situation is more complicated and the problem becomes challenging
due to the possible formation of boundary layers. In a fixed domain with the no-slip boundary
condition, there is formation of boundary layers in the vicinity of the boundary and the solu-
tion uε of the Navier-Stokes equations is expected to behavior like uε ∼ u0 + U(t, y, z/

√
ε) (we

assume the boundary is locally given by z = 0), where u0 is the solution of the Euler equations
satisfying only the impermeable boundary condition and U is some profile. In view of this small
scale behavior, it is impossible in general to get uniform strong estimates in any Sobolev spaces
containing normal derivatives. Consequently, the vanishing viscosity problem with the no-slip
boundary condition is widely open except Asano [5] and Sammartino and Caflisch [37] in the
framework of analytic initial data, Maekawa [32] for the initial vorticity located away from the
boundary and Guo and Nguyen [20] for a steady flow over a moving plane. However, when the
no-slip boundary condition is replaced by the Navier slip boundary condition, the situation be-
comes better. Indeed, now the solution is expected to behavior like uε ∼ u0 +

√
εU(t, y, z/

√
ε);

the amplitude of the boundary layer is weaker, and one can hope to get an uniform estimates
involving one normal derivative. In this case, the vanishing viscosity limit has been justified rig-
orously in Iftimie and Planas [25], Iftimie and Sueur [26], Masmoudi and Rousset [34] and Xiao
and Xin [48]. Furthermore, for some special types of Navier boundary conditions or boundaries,
uniform estimates in higher order Sobolev spaces can be obtained, see Xiao and Xin [47] and
Beirão da Veiga and Crispo [8].

Going back to the free-surface incompressible Navier-Stokes equations, since the dynamic
boundary condition can be viewed as the same type of slip boundary conditions, one has the
hope to establish the vanishing viscosity limit. For the case without surface tension and there
is no boundary below the fluid, Masmoudi and Rousset [35] justified the inviscid limit by using
the framework of their earlier work [34] and some additional techniques. Elgindi and Lee [16]
discussed the same problem for the case with fixed surface tension, however, some key points
in their arguments are not clear to us (especially before we posted the earlier version of our
paper onto arXiv on 21 April, 2015). On the other hand, for the free boundary problems, it is
also interesting to show the vanishing surface tension limit. This is supposed to be somewhat
simpler than the inviscid limit problem since the equation on the free boundary is defined
without boundary. Yet, one needs to develop the well-posedness which is uniform with respect
to surface tension, and generally this is nontrivial. These have been done for the irrotational
Euler equations, see Ambrose and Masmoudi [3, 4] and references therein; for the general Euler
equations, a priori uniform estimates have been derived in [38]. Note that these results are local
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in time. For the Navier-Stokes equations, Tan andWang [40] proved the global-in-time vanishing
surface tension limit for the small initial data. The purpose of this paper is to derive the uniform
estimates of solutions of the system (1.2) (equivalently, (1.9)) on a time interval independent of
both viscosity and surface tension coefficients. These allow one to justify the vanishing viscosity
and surface tension limits by the strong compactness argument. As a byproduct, one can get a
unified local well-posedness of the free-surface incompressible Euler equations with or without
surface tension by the inviscid limit.

2. Main results

2.1. Statement of the results. We shall use Sobolev conormal spaces on Ω as [34, 35]. Set

Zi = ∂i, i = 1, 2, Z3 = z(z + b)∂z,

which are tangent to ∂Ω. The Sobolev conormal space Hk
co is defined as

Hk
co(Ω) =

{
f ∈ L2(Ω), Zαf ∈ L2(Ω), α ∈ N

3, |α| ≤ k
}
,

where Zα = Zα1
1 Zα2

2 Zα3
3 for α ∈ N

3, with norm defined as

‖f‖k =
∑

α∈N3

|α|≤k

‖Zαf‖L2 , ‖f‖ = ‖f‖0 = ‖f‖L2 .

Similarly, W k,∞
co is defined as

W k,∞
co (Ω) =

{
f ∈ L∞(Ω), Zαf ∈ L∞(Ω), α ∈ N

3, |α| ≤ k
}

with norm
‖f‖k,∞ =

∑

α∈N3

|α|≤k

‖Zαf‖L∞ .

Hk and W k,∞ will denote for the usual Sobolev spaces on Ω, and | · |s and | · |s,∞ stand for the
standard Sobolev norms on R

2. We introduce also the spatial-time Sobolev conormal norms on
Ω as:

‖f‖2
Hm,k =

m∑

ℓ=0

∥∥∥∂ℓt f
∥∥∥
2

m+k−ℓ
, ‖f‖

Hm = ‖f‖
Hm,0 , and ‖f‖

Wm =

m∑

ℓ=0

∥∥∥∂ℓt f
∥∥∥
m−ℓ,∞

, (2.1)

and the spatial-time Sobolev norms on R
2 :

|f |
Hm,s =

m∑

ℓ=0

∣∣∣∂ℓtf
∣∣∣
2

m+s−ℓ
, |f |

Hm = |f |
Hm,0 , and |f |

Wm =
m∑

ℓ=0

∣∣∣∂ℓt f
∣∣∣
m−ℓ,∞

. (2.2)

Note that in these definitions k and m are assumed to be non-negative integers, but s is allowed
to be any real number, typically, halfs. For s ∈ R, [s] denotes the largest integer no more than s.
For the convenience, we shall use N1+d = {α = (α0, α1, . . . , αd)} to emphasize that the 0−index
term is related to temporal derivatives; for α ∈ N

1+d, we denote Zα = ∂α0
t Zα1

1 · · ·Zαd

d .
Since we will work in a high-regularity context with regularity up to m temporal derivatives,

then one needs to use the initial data (v0, h0) and the equations (1.9) to construct the initial

data ∂jt v(0) and ∂
j
th(0) for j = 1, . . . ,m, and ∂jt q(0) for j = 0, . . . ,m − 1. Such a construction

is standard and classical, so will be omitted here, see [21, 40] for more details. For our analysis,
these initial data must then satisfy various conditions which will be specified when necessary.

The aim of this paper is to get a local well-posedness result for strong solutions of (1.9)
in Sobolev conormal spaces which is valid on an interval of time independent of ε, σ ∈ (0, 1].
Note that such a result will also imply the local well-posedness for the Euler equation with or
without surface tension. As it is well-known that when there is no surface tension a Taylor sign
condition on the free boundary is needed to get local well-posedness for the Euler equation; in
the presence of surface tension, no such condition is needed. By the change of coordinates (1.4),
the Taylor sign condition reads as

− ∂ϕ0
z q0 + g ≥ c0 > 0 on {z = 0}. (2.3)
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In the below, N and n are extended to Ω̄ by

N(t, y, z) = (−∂1ϕ(t, y, z),−∂2ϕ(t, y, z), 1)t and n = N/|N|. (2.4)

Note that N(t, y, 0) = (−∂1h,−∂2h, 1)t and N(t, y,−b) = e3. Define Π = I−n⊗n, and let χ(z)
be a smooth function in R which takes the value zero in the vicinity of {z = 0} and one in the
vicinity of {z = −b}. Let ‖·‖Lp

T
X be the norm of the space Lp([0, T ];X). The following is the

statement of the a priori estimates on a time interval, independent of ε and σ, for a sufficiently
smooth solution (vε,σ, hε,σ) of (1.9).

Theorem 2.1. Let m ≥ 13. Assume that the initial data (vε,σ0 , hε,σ0 ) is given such that

|hε,σ(0)|2
Hm + σ |hε,σ(0)|2

Hm,1 + ε |hε,σ(0)|2
H

m, 12
(2.5)

+ ‖vε,σ(0)‖2
Hm + ‖∂zvε,σ(0)‖2Hm−1 + ‖∂zvε,σ(0)‖2

W
[m2 ]+2 + ε ‖∂zzvε,σ(0)‖2L∞ ≤ R0,

and that (1.7) and (2.3) hold uniformly in ε and σ. Furthermore, the following compatibility

condition

Πε,σ
0

(
Sϕε,σ

0 vε,σ0 n
ε,σ
0 − κχvε,σ0

)
= 0 on ∂Ω (2.6)

is valid. There exist T > 0 and C > 0 such that for every ε, σ ∈ (0, 1], the solution (vε,σ, hε,σ)
of (1.9) with the initial data (vε,σ0 , hε,σ0 ) satisfies the estimate

|hε,σ|2L∞
T
Hm−1,1 + σ |hε,σ|2L∞

T
Hm−1,2 + ε |hε,σ|2

L∞
T
H

m−1, 32
(2.7)

+ ‖vε,σ‖2L∞
T
Hm−1,1 + ‖∂zvε,σ‖2L∞

T
Hm−2 + ‖∂zvε,σ‖2

L∞
T
W
[m2 ]+2 + ε ‖∂zzvε,σ‖2L∞

T
L∞

+ |∂mt hε,σ|2L4
T
L2 + σ |∂mt hε,σ|2L4

T
H1 + ε |∂mt hε,σ|2L4

T
H

1
2
+ ‖∂mt vε,σ‖2L4

T
L2 + ‖∂zvε,σ‖2L4

T
Hm−1

+ σ2 |hε,σ|2
L2
T
H

m−1, 52
+ ε ‖∇vε,σ‖2L2

T
Hm−1,1 + ε ‖∇∂zvε,σ‖2L2

T
Hm−2 ≤ C.

Remark 2.2. It should be remarked that the reason for the L4-in-time estimate of ‖∂zvε,σ(t)‖Hm−1

rather than L∞ stated in Theorem 2.1 is related to the boundary control of the vorticity in vis-

cous boundary layers, which is same as the case without surface tension [35]. However, in the

presence of surface tension, as will be shown in our proof later, the pressure is of less regularity,

thus one can only prove the L4-in-time estimate rather than L∞ of the highest time derivative

term |∂mt hε,σ(t)|L2 +
√
σ |∂mt hε,σ(t)|H1 +

√
ε |∂mt hε,σ(t)|H 1

2
+ ‖∂mt vε,σ(t)‖L2, which reveals the

significant difference from the case without surface tension [35].

Remark 2.3. We emphasize that in the derivation of the estimate (2.7) in Theorem 2.1 only

the compatibility condition (2.6) is required; indeed, (2.6) is used only in deriving the bound

of ε ‖∂zzvε,σ‖2L∞
T
L∞. Since we manage to avoid the control of ε

∥∥∥∂zz∂jt vε,σ
∥∥∥
2

L∞
T
L∞

for j ≥ 1,

so no higher order compatibility conditions, i.e., time derivatives version in initial time of

(2.6), are required. However, for the local well-posedness of (1.9) one needs the following m-th

compatibility conditions:
{
∇ϕ0 · vε,σ0 = 0 in Ω, vε,σ0,3 = 0 on {z = −b}, and

∂jt
(
Πε,σ

(
Sϕε,σ

vε,σnε,σ − κχvε,σ
))

|t=0= 0 on ∂Ω, for j = 0, . . . ,m− 1.
(2.8)

See [21, 40] for more details.

Remark 2.4. Due to the construction of ∂jt v
ε,σ(0) and ∂jth

ε,σ(0) for j ≥ 1, the conditions

(2.5) and (2.8) are in fact imposed on the initial data (vε,σ0 , hε,σ0 ). In particular, they are well-

defined provided that vε,σ0 ∈ H2m(Ω) and hε,σ0 ∈ H2m+1(Σ). Given such initial data satisfying

(1.7) and (2.8), by the local well-posedness of (1.9) in [40], for fixed ε > 0 and σ > 0, one

can get a positive time T ε,σ for which a unique solution (vε,σ, hε,σ) of (1.9) achieving this

initial data exists on [0, T ε,σ] so that vε,σ ∈ C([0, T ε,σ];H2m(Ω)) ∩ L2(0, T ε,σ;H2m+1(Ω)) and

hε,σ ∈ C([0, T ε,σ];H2m+1(Σ)) ∩ L2(0, T ε,σ;H2m+3/2(Σ)) as well as the regularity of the time

derivatives of (vε,σ, hε,σ) followed by using the equations (1.9). In particular, these guarantee

all of the computations involved in the derivation of the a priori estimates of Theorem 2.1.
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As immediate consequences of the uniform estimates of Theorem 2.1, one can establish easily,
by standard compactness arguments, the justification of the inviscid limit, vanishing surface
tension limit, and any of their combinations. To illustrate this, we will present only the argument
for the inviscid limit as ε→ 0, which is stated as follows:

Theorem 2.5. Let m ≥ 13. Assume that the initial data vε,σ0 ∈ H2m(Ω) and hε,σ0 ∈ H2m+1(Σ)
satisfying the same assumptions as in Theorem 2.1. Furthermore, the m-th compatibility con-

ditions (2.8) hold. There exist T > 0 and C > 0 such that for every ε, σ ∈ (0, 1], there exists

a unique solution (vε,σ, hε,σ) of (1.9) with the initial data (vε,σ0 , hε,σ0 ) on [0, T ] satisfying the

uniform estimate (2.7). Moreover, if assume further that

vε,σ0 → vσ0 in L2(Ω) and hε,σ0 → hσ0 in L2(Σ), as ε→ 0, (2.9)

then as ε → 0, (vε,σ, hε,σ) converges to the limit (vσ, hσ), which is the unique solution to the

free-surface Euler equations




∂ϕt v + v · ∇ϕv +∇ϕq = 0 in Ω

∇ϕ · v = 0 in Ω

q = gh− σH on {z = 0}
∂th = v ·N on {z = 0}
v3 = 0 on {z = −b}

(2.10)

with the initial data (vσ0 , h
σ
0 ) on [0, T ] that satisfies the estimate

|hσ|2L∞
T
Hm−1,1 + σ |hσ|2L∞

T
Hm−1,2 + ‖vσ‖2L∞

T
Hm−1,1 + ‖∂zvσ‖2L∞

T
Hm−2 + ‖∂zvσ‖2

L∞
T
W
[m2 ]+2 (2.11)

+ |∂mt hσ |2L4
T
L2 + σ |∂mt hσ|2L4

T
H1 + ‖∂mt vσ‖2L4

T
L2 + ‖∂zvσ‖2L4

T
Hm−1 + σ2 |hσ|2

L2
T
H

m−1, 52
≤ C.

Remark 2.6. The convergence of (vε,σ, hε,σ) to (vσ, hσ) as ε→ 0 in Theorem 2.5 occurs in any

spaces which contain the set of functions obeying (2.11) as a compact subset. For the inviscid

limit, the Euler equations, by using the equation for the vorticity one can improve those integral-

in-time estimates in (2.11) to be in L∞, and one can also recover the normal regularity with

the initial data in Sobolev spaces.

2.2. Strategy of the proof. The main part of the paper will be devoted to prove Theorem
2.1, where the key step is to derive the a priori uniform estimates on a time interval small but
independent of ε, σ ∈ (0, 1] for a sufficiently smooth solution of the equations (1.9). Our ap-
proach is strongly motivated by the strategy of Masmoudi and Rousset [35] where the vanishing
viscosity limit was justified for the problem without surface tension. However, there are several
new difficulties arising in the presence of surface tension. Indeed, it has been already known for
the free-surface incompressible Euler equations that the problem with surface tension is more
difficult than the one without surface tension in certain sense, see [12] for some discussions. It is
even more so in the study of the inviscid limit for the free-surface incompressible Navier-Stokes
equations. Indeed, in the vanishing viscosity limit for each fixed σ > 0, the surface tension
serves only to provide the improved regularity of the free surface, and makes the problem hard
in the sense that first, the required nonlinear estimates are more difficult to close due to the
mean curvature term and second, the less regularity of the pressure makes the arguments much
more involved. Note that the less regularity of the free surface for the problem without surface
tension was overcome in [35] by using Alinhac good unknowns [2]. In this paper we will also
use Alinhac good unknowns so as to not taking advantage of the improved regularity of the free
surface provided by any fixed surface tension; but we need to develop some ideas to overcome
the difficulties caused by the presence of surface tension as illustrated below. As a consequence,
we will be able to deal with both the vanishing viscosity and surface tension limits.

For notational convenience we shall suppress the subscripts ε and σ below unless states
otherwise. Let N (T ) be the quantity appearing in the left hand side of (2.7), while Q(T ) be
the first two lines in (2.7). The key point is thus to get a closed a priori estimates of N (T ) on a
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small time interval independent of ε and σ in terms of the initial data. We start with the basic
physical energy identity:

1

2

d

dt

(∫

Ω
|v|2 dVt +

∫

z=0

(
g|h|2 + 2σ

(√
1 + |∇yh|2 − 1

))
dy

)
(2.12)

+ 2ε

∫

Ω
|Sϕv|2 dVt + 2κε

∫

z=−b
|v|2 dy = 0.

Here dVt stands for the volume element induced by the change of variable (1.5): dVt = ∂zϕdydz.
To get the estimates for higher order conormal energy estimates, one starts with applying the

spatial conormal derivatives Zα for α ∈ N
3 with 1 ≤ |α| ≤ m to the equations (1.9). Since the

operators ∂ϕi involve ∇ϕ, the estimate of the commutator between Zα and ∂ϕi needs a control
of ‖Zα∇ϕ‖ . |Zαh|1/2. In the absence of the surface tension this yields a loss of 1/2 derivative,

and this difficulty was overcome in Masmoudi and Rousset [35] by using a crucial cancellation
observed by Alinhac [2]. The idea in [35] is to use the good unknowns V α = Zαv − ∂ϕz vZαη
and Qα = Zαq− ∂ϕz qZαη, and some cancellation occurs when considering the equations for V α

and Qα which allows one to derive an L2 type energy estimates similar to (2.12):

1

2

d

dt

(∫

Ω
|V α|2 dVt +

∫

z=0

(
(g − ∂ϕz q)|Zαh|2 + σ |∇yZ

αh|2
)
dy

)
+ 2ε

∫

Ω
|SϕV α|2 dVt (2.13)

= −
∫

z=0
σZαH

∑

|α′|=1

Cα′

α Z
α′
N · Zα−α′

v dy −
∫

Ω
Cα(d)Zαq dVt +

∑
0
+
∑

σ
,

where, using the symmetric commutator notation [·, ·, ·] defined by (A.3),

∂zϕCα(d) = [Zα,N, ·∂zv] + [Zα, ∂zη, ∂1v1 + ∂2v2] . (2.14)

Here
∑

0 denotes the terms that can be controlled in a similar way as the case without surface
tension [35], and

∑
σ stands for the terms related to surface tension that can be controlled well

with the energy estimates σ |Zαh|21. The first two terms in the right hand side of (2.13) are
singled out in order to indicate the main difficulties for the case with surface tension. Note that
the regularity σ |Zαh|21 in the energy is not enough to control the first term. Indeed, one needs

σ2 |Zαh|23/2, i.e., there is a loss of 1/2 derivative for σ > 0. To improve the regularity of h, one

then resorts to using the normal component of the dynamic boundary condition in (1.9), i.e.,

− σH = q − gh− 2εSϕv n · n on {z = 0}, (2.15)

which requires a control of |Zαq|2−1/2. A natural way to control the pressure q is through the

elliptic problem




∆ϕq = −∇ϕ · (v · ∇ϕv) in Ω

∇ϕq ·N = −∂tv ·N− (vy · ∇y)v ·N+ ε∆ϕv ·N on {z = 0}
∇ϕq ·N = ε∆ϕv ·N on {z = −b}.

(2.16)

It should be remarked that when σ = 0, to estimate q one can use instead on the boundary
{z = 0} the Dirichlet boundary condition q = −σH + gh + 2εSϕv n · n by (2.15), see [35].
However, for σ > 0, this boundary condition can not be used to estimate q as one has not
controlled −σH yet. Note that the appearance of ∂tv in the Neumann boundary condition on
{z = 0} of (2.16) forces one to include the time derivative ∂t in Zα. So, from now on, one
takes the spatial-time conormal derivatives Zα for α ∈ N

1+3. The elliptic estimates for (2.16)

provide the control of ‖∇q‖2L2
T
Hm−1 , where the good unknown V m (i.e., V α for α0 = m) is used

to derive that ∂mt v ·N ∈ H−1/2(Σ) when estimating
∥∥∂m−1

t ∇q
∥∥2
0
. By using (2.15), the pressure

estimates then yield the control of σ2 |h|2
L2
T
H

m−1, 52
. Now one separates the estimates of (2.13)

into two cases: when α0 ≤ m − 1 or when α0 = m, and for the former case one can use these
estimates of q and h above to conclude that

‖v(t)‖2
Hm−1,1 + |h(t)|2

Hm−1,1 + σ |h(t)|2
Hm−1,2 + ε |h(t)|2

H
m−1, 32

(2.17)
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≤ C0 + Λ(Q(T ))

(
t+

∫ t

0

(
|∂mt h|2− 1

2
+ σ |∂mt h|21 + ‖∂mt v‖20 + ‖∂zv‖2Hm−1

))
.

For the case when α0 = m, (2.13) can be rewritten as

1

2

d

dt

(∫

Ω
|V m|2 dVt +

∫

z=0

(
(g − ∂ϕz q)|∂mt h|2 + σ |∇y∂

m
t h|2

)
dy

)
+ 2ε

∫

Ω
|SϕV m|2 dVt (2.18)

= −
∫

z=0
σ∂mt Hm∂tN · ∂m−1

t v dy −
∫

Ω
m∂tN · ∂m−1

t ∂zv∂
m
t q dydz +

∑
0
+
∑

σ
+
∑

q
.

Here
∑

q stands for the terms related to q, which are relatively easier to estimate than the second

term in the right hand side of (2.18). The main difficulty now is that there are no any estimates

for ∂mt q and the regularity σ |∂mt h|21 in the energy can no longer be improved by using (2.15),
hence it is difficult to bound the first two terms in the right hand side of (2.18). It should be
emphasized that for the Euler equations with surface tension one can use the vorticity equation
to prove that ∂m−1

t v ∈ H3/2(Ω) (see [12]) and Π∂mt v ∈ H−1/2(Σ) (see [10]), each of which can
be employed to control these two terms; unfortunately, both of these two estimates are difficult
to be derived in the presence of viscosity. Our approach to overcome the difficulty is to do the
integration by parts over t and z in an appropriate order to obtain a crucial cancelation. More
precisely, we integrate by parts in z first and then in t the second term to obtain

−
∫

Ω
m∂tN · ∂m−1

t ∂zv∂
m
t q dydz (2.19)

= −
∫

z=0
m∂tN · ∂m−1

t v∂mt q dy +

∫

Ω
m∂z(∂tN∂

m
t q) · ∂m−1

t v dydz

= −
∫

z=0
m∂tN · ∂m−1

t v∂mt q dy +
d

dt

∫

Ω
m∂z(∂tN∂

m−1
t q) · ∂m−1

t vdydz +
∑

0
.

Note that one does not integrate by parts in t for the first term in the last line of (2.19) since
one can not control Π∂mt v on {z = 0}. The crucial observation is that there is a cancelation
between this term and the first term in the right hand side of (2.18). Indeed, by the dynamic
boundary condition (2.15), it holds that

−
∫

z=0
σ∂mt Hm∂tN · ∂m−1

t v dy −
∫

z=0
m∂tN · ∂m−1

t v∂mt q dy (2.20)

= −
∫

z=0
m∂tN · ∂m−1

t v (g∂mt h+ 2ε∂mt (Sϕv n · n)) dy =
∑

0
.

It should be pointed out that after we posted the earlier version of our paper onto arXiv on 21
April, 2015, Elgindi and Lee [16] had used our idea here to fix some arguments in their study
of the inviscid limit for the free-surface Navier-Stokes equations for fixed σ > 0 (see page 46 of
[16]). The last difficulty in the estimates of (2.13) when α0 = m is due to the second term in
the last line of (2.19) since the control of ‖∇q(t)‖

Hm−1 is L2-in-time rather that L∞. One is
then forced to integrate in time twice (2.13) when α0 = m, and the main conclusion is that

(∫ t

0

(
‖∂mt v‖2 + |∂mt h|20 + σ |∂mt h|21 + ε |∂mt h|21

2

)2) 1
2

(2.21)

≤ C0 +Λ(Q(T ))

(
t+

∫ t

0

(
|∂mt h|20 + σ |∂mt h|21 + ‖∂mt v‖20 + ‖∂zv‖2Hm−1 + ε |∂mt h|21

2

)) 1
2

.

In order to close the argument, one needs to estimate ∂zv. We start with the conormal energy
estimates of ∂zv. As in [35], one first introduces the equivalent quantity Sn = Π(Sϕvn− κχv),
which satisfies a convention-diffusion type equation with the homogeneous Dirichlet boundary
condition. When σ = 0 one estimates only the spatial conormal derivatives of ∂zv, hence to
control the commutator between Zα and ε∆ϕv it needs only the estimate of

√
ε ‖∂zzv‖L∞ , see

[35]. However, for σ > 0 as the time derivatives involved, if one followed the arguments of [35],
one would need to control

√
ε ‖∂zzv‖Wk for certain k ≥ 1, and this would then require higher

order compatibility conditions other than (2.6). Our way to avoid this is to control instead
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ε∂zzv (and even ε∂zzzv!), and this can be done in a much more direct way, due to that we have
included the time derivatives in Zα, by using the first equation in (1.9). One can then perform
the L2 type energy estimates to conclude that

‖∂zv(t)‖2Hm−2 ≤ C0 + Λ(Q(T ))

(
t+

∫ t

0
‖∂zv‖2Hm−1

)
. (2.22)

Note that them−2 order estimate above cannot be improved to bem−1 due to the appearance
of (∇ϕ)2q in the source term in the equation for Sn, which is only in H

m−2. To get a better
estimate, following [35, 34, 47], one would proceed with the vorticity ω = ∇ϕ × v instead of Sn
to get rid of the pressure term. ω again satisfies a convention-diffusion type equation, but the
main difficulty is that it does not vanish on the boundary and its boundary value is at a low
regularity. Note that away from the boundary the conormal Sobolev norm is equivalent to the
standard Sobolev norm, so one needs only to estimate ω near the boundary. We consider only
the estimates of ω near {z = 0}, and the estimates near {z = −b} follow similarly. Let χ(z)
be smooth compactly supported near {z = 0} and equal to 1 in a vicinity of {z = 0}, and one
may regard the equation satisfied by χω as to be defined in the half space {z < 0}. To split the
difficulty, for |α| = m− 1 we set Zα(χω) = ωα

nh + ωα
h , where ω

α
h satisfies the nonhomogeneous

equation with the homogeneous boundary condition which can be handled by performing the
L2 type energy estimates and ωα

nh satisfies the homogeneous equation with the nonhomogeneous
boundary condition. Note that ωα

nh solves exactly the same problem in {z < 0} as [35] so that
one can apply directly the estimates of ωα

nh in Theorem 10.6 of [35]. This together with the
estimates of ωα

h yields

(∫ t

0
‖∂zv(t)‖4Hm−1

)1
2

≤ C0 + Λ(Q(T ))

(
t+

∫ t

0
‖∂zv‖2Hm−1

)
. (2.23)

Now we derive the L∞ estimates of ∂zv and
√
ε∂zzv. In this step, one needs to estimate only

a low number of derivatives of v, say
[
m
2

]
+ 2, while the boundary is Hm with m being as large

as needed, hence it is convenient to use a normal geodesic coordinate system in the vicinity
of the boundary so that the Laplacian has the simplest expression. Note that

√
ε∂zzv can be

controlled in the same way as [35], however, for ∂zv we will employ a different argument. Again,
it is more convenient to estimate the equivalent quantity Sn. After some computations, one
finds that ρ, an equivalent quantity of Sn near {z = 0} in the new coordinates, solves

∂tρ+w · ∇ρ− ε∂zzρ = H in {z < 0} (2.24)

for some source term H and a vector field w with w3 = 0 on the boundary. The main difficulty
in the analysis of (2.24) is the commutator between Zα and ε∂zzρ which is hard to control
when applying the maximum principle. The main idea in [35] to overcome this difficulty is to
rewrite (2.24) into a one-dimensional Fokker-Planck type equation and then use the explicit
representation of the solution. Here we will use a different argument from [35], which is much
simpler; since we have included the time derivatives in Zα, it is easy to estimate the commutator
by using again the first equation of (1.9). The main conclusion is that

‖∂zv(t)‖2
W
[m2 ]+2 + ε ‖∂zzv(t)‖2L∞ ≤ C0 + Λ(Q(T ))t. (2.25)

Combining the estimates in all these steps, we then derive the desired estimates N (T ) ≤ C0

for some T sufficiently small but independent of ε and σ. Note that the Taylor sign condition
and the condition that Φ(t, ·) is a diffeomorphism can be easily justified due to our estimates
of time derivatives. Finally we remark that for each fixed σ > 0, the Taylor sign condition is
no longer needed for the inviscid limit problem. This can be seen from (2.12) and (2.13): even
g − ∂ϕz q ≤ 0, one can use the Sobolev interpolation to get the estimates of h for each σ > 0.

We will set the conventions for notation to be used later. The Einstein convention of summing
over repeated indices will be used. Throughout the paper C > 0 will denote a generic constant
that does not depend on the data, the surface tension coefficient σ and the viscosity coefficient
ε, but can depend on the other parameters of the problem, g, κ, m ≥ 13 and Ω. We refer to
such constants as “universal”. Such constants are allowed to change from line to line. We will
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employ the notation a . b to mean that a ≤ Cb for a universal constant C > 0. Throughout
the paper, the notation Λ(·, ·) stands for a continuous increasing function in all its arguments,
independent of ε and σ and that may change from line to line, and Λ0 = Λ( 1

c0
).

The rest of the paper is organized as follows. We collect some analytic tools related to
Sobolev conormal spaces, the properties of Poisson extension and some geometric estimates
in Appendixes A, B and C, respectively. In Section 3 we study the equations satisfied by
(Zαv, Zαq, Zαh) and present the estimates of the commutators. Section 4 is devoted to de-
rive the pressure estimates using elliptic regularity in Sobolev conormal spaces, and Section
5 contains the smoothing regularity estimates of h due to viscosity and surface tension. In
Section 6, the conormal estimates of the solution are derived, and the conormal estimates for
normal derivatives are given in Section 7. In Section 8, we prove the needed L∞ estimates for
normal derivatives. Finally, the proofs of Theorems 2.1 and 2.5 are given in Sections 9 and 10,
respectively.

3. Equations satisfied by (Zαv, Zαq, Zαh)

3.1. A commutator estimate. In order to perform higher order conormal estimates, one
needs to compute the equations satisfied by (Zαv, Zαq, Zαh) for α ∈ N

1+3 with 1 ≤ |α| ≤ m,
which requires to commute Zα with each term in the equations (1.9). It is thus useful to establish
the following general expressions and estimates for commutators to be used often later.

We will not commute Zα with ∂ϕt directly. For i = 1, 2, 3, set

Zα∂ϕi f = ∂ϕi Z
αf − ∂ϕz f∂

ϕ
i Z

αη + Cα
i (f), (3.1)

where the commutator Cα
i (f) is given for α 6= 0 and i 6= 3 by

Cα
i (f) = Cα

i,1(f) + Cα
i,2(f) + Cα

i,3(f) (3.2)

with

Cα
i,1 = −

[
Zα,

∂iϕ

∂zϕ
, ∂zf

]
, (3.3)

Cα
i,2 = −∂zf

[
Zα, ∂iϕ,

1

∂zϕ

]
− ∂iϕ∂zf

[
Zα−α′

,
1

(∂zϕ)2

]
Zα′

∂zη, (3.4)

Cα
i,3 = − ∂iϕ

∂zϕ
[Zα, ∂z ]f +

∂iϕ

(∂zϕ)2
∂zf [Z

α, ∂z ]η, (3.5)

for any α′ < α with |α′| = 1. Note that for i = 1, 2 , ∂iϕ = ∂iη and that for α 6= 0,
Zα∂zϕ = Zα∂zη. For i = 3, similar decomposition for the commutator holds (basically, it
suffices to replace ∂iϕ by 1 in the above expressions). Since ∂ϕi and ∂ϕj commute, it holds that

Zα∂ϕi f = ∂ϕi (Z
αf − ∂ϕz fZ

αη) + ∂ϕz ∂
ϕ
i fZ

αη + Cα
i (f). (3.6)

It was first observed by Alinhac [2] that the highest order term of η (which is difficult to control
for the case σ = 0) will be canceled when one uses the good unknown Zαf − ∂ϕz fZαη, which
allows one to perform high order energy estimates.

Since the expressions as f/∂zϕ will appear often later, we shall first state a general estimate.
It is assumed that ∂zϕ ≥ c0

2 and |h|2,∞ ≤ 1
c0
.

Lemma 3.1. For every k ∈ N, it holds that
∥∥∥∥
f

∂zϕ

∥∥∥∥
Hk

≤ Λ

(
1

c0
, |h|

W
[k2]+1

+ ‖f‖
W
[k2]

)(
|h|

H
k, 12

+ ‖f‖
Hk

)
. (3.7)

Proof. Since ∂zϕ = 1 + ∂zη, so

f

∂zϕ
= f − f

∂zη

1 + ∂zη
= f − fF (∂zη),
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where F (x) = x/(1+x) is smooth and bounded together with all its derivatives on 1+x ≥ c0 > 0
and F (0) = 0. Consequently, the product estimate (A.1) implies that

∥∥∥∥
f

∂zϕ

∥∥∥∥
Hk

. ‖f‖
Hk + ‖f‖

Hk ‖F (∂zη)‖
W
[k2]

+ ‖f‖
W
[k2]

‖F (∂zη)‖Hk .

Notice that

‖F (∂zη)‖
W
[k2]

≤ Λ

(
1

c0
, ‖∇η‖

W
[k2]

)
,

and (A.1) implies again,

‖F (∂zη)‖Hk . Λ

(
1

c0
, ‖∇η‖

W
[k2]

)
‖∂zη‖Hk .

Hence the estimate (3.7) follows from these, (B.7) and (B.6). �

Next lemma deals with the estimates of the commutators Cα
i (f).

Lemma 3.2. For 1 ≤ |α| ≤ m, i = 1, 2, 3, it holds that

‖Cα
i (f)‖0 ≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∂zf‖

W
[m2 ]

)(
‖∂zf‖Hm−1 + |h|

H
m−1, 12

)
. (3.8)

Proof. We only present the proof for i = 1, 2, and the last case is similar and slightly easier.
First, for Cα

i,1, it follows from the commutator estimate (A.4) that

∥∥Cα
i,1

∥∥
0
.

∥∥∥∥Z
(
∂iϕ

∂zϕ

)∥∥∥∥
W
[m2 ]−1

‖Z∂zf‖Hm−2 + ‖Z∂zf‖
W
[m2 ]−1

∥∥∥∥Z
(
∂iϕ

∂zϕ

)∥∥∥∥
Hm−2

.

Consequently, (3.7) yields that

∥∥Cα
i,1

∥∥
0
≤ Λ

(
1

c0
, ‖∇ϕ‖

W
[m2 ]

+ |h|
W
[m+1

2 ] + ‖∂zf‖
W
[m2 ]

)(
‖∂zf‖Hm−1 + |h|

H
m−1, 12

+ ‖∂iη‖Hm−1

)
.

It then follows from (1.5), (B.7) and (B.6) that

∥∥Cα
i,1

∥∥
0
≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∂zf‖

W
[m2 ]

)(
‖∂zf‖Hm−1 + |h|

H
m−1, 12

)
. (3.9)

Next, for the first term in Cα
i,2, one can use similar arguments: (A.4) and (1.5) yield that

∥∥∥∥∂zf
[
Zα, ∂iϕ,

1

∂zϕ

]∥∥∥∥
0

. ‖∂zf‖L∞

(
‖Z∂iϕ‖Hm−2

∥∥∥∥
Z∂zη

(∂zϕ)2

∥∥∥∥
W
[m2 ]−1

+ ‖Z∂iϕ‖
W
[m2 ]−1

∥∥∥∥
Z∂zη

(∂zϕ)2

∥∥∥∥
Hm−2

)

and hence by using (3.7), (B.6) and (B.7), one can show that
∥∥∥∥∂zf

[
Zα, ∂iϕ,

1

∂zϕ

]∥∥∥∥
0

≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∂zf‖L∞

)
|h|

H
m−1, 12

.

By (A.2) instead of (A.4), the same estimate holds for the second term in Cα
i,2. Hence,

∥∥Cα
i,2

∥∥
0
≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∂zf‖L∞

)
|h|

H
m−1, 12

. (3.10)

It remains to estimate Cα
i,3. Notice that

[Zα, ∂z ] f =
∑

|β|≤m−1

cβ∂z(Z
βf) (3.11)

for some harmless smooth bounded functions cβ . This yields, by using again (B.6),

∥∥Cα
i,3

∥∥
0
≤ Λ

(
1

c0
, ‖∂iϕ‖L∞ + ‖∂zf‖L∞

)
(‖∂zf‖Hm−1 + ‖∂zη‖Hm−1) (3.12)

≤ Λ

(
1

c0
, |h|1,∞ + ‖∂zf‖L∞

)(
‖∂zf‖Hm−1 + |h|

H
m−1, 12

)
.

Consequently, the estimate (3.8) follows by collecting (3.9), (3.10) and (3.12). �



12 YANJIN WANG AND ZHOUPING XIN

3.2. Interior equations. We shall now derive the equations in the domain Ω satisfied by the
good unknowns V α = Zαv − ∂ϕz v Zαη and Qα = Zαq − ∂ϕz q Zαη.

Lemma 3.3. For 1 ≤ |α| ≤ m, it holds that

∂ϕt V
α + v · ∇ϕV α +∇ϕQα − 2ε∇ϕ · SϕV α (3.13)

= (∂ϕz v · ∇ϕv)Zαη − Cα(T )− Cα(q) + εDα
(
Sϕv

)
+ ε∇ϕ ·

(
Eα(v)

)
,

∇ϕ · V α = −Cα(d), (3.14)

where the commutators Cα(q), Cα(d), Eα(v) and Cα(T ) satisfy the estimates:

‖Cα(q)‖0 ≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∂zq‖

W
[m2 ]

)(
‖∂zq‖Hm−1 + |h|

H
m−1, 12

)
, (3.15)

‖Cα(d)‖0 ≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∂zv‖

W
[m2 ]

)(
‖∂zv‖Hm−1 + |h|

H
m−1, 12

)
, (3.16)

‖Eα(v)‖0 ≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∂zv‖

W
[m2 ]

)(
‖∂zv‖Hm−1 + |h|

H
m−1, 12

)
, (3.17)

‖Cα(T )‖0 ≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖v‖

W
[m2 ]

+ ‖∂zv‖
W
[m2 ]

)(
‖v‖

Hm−1 + ‖∂zv‖Hm−1 + |h|
H

m,− 1
2

)
,

(3.18)

and Dα(Sϕv) is given by

Dα
(
Sϕv

)
ij
= 2 Cα

j

(
Sϕv)ij .

It should be noted that the commutator Dα(Sϕv) will be estimated later by using the inte-
gration by parts.

Proof. First, the equations (3.13)–(3.14) follows from applying Zα to the equations (1.9). In-
deed, (3.6) implies that

Zα∇ϕq = ∇ϕQα + ∂ϕz ∇ϕqZαη + Cα(q), (3.19)

where Cα(q) = (Cα
1 (q), Cα

2 (q), Cα
3 (q))

t, and

Zα∇ϕ · v = ∇ϕ · V α + ∂ϕz ∇ϕ · vZαη + Cα(d), (3.20)

where Cα(d) =
∑3

i=1 Cα
i (vi).

Next, note that
∂ϕt + v · ∇ϕ = ∂t + vy · ∇yv + Vz∂z, (3.21)

where Vz is defined by

Vz =
1

∂zϕ
vz with vz = v ·N− ∂tϕ = v ·N− ∂tη. (3.22)

By using (3.21), one can thus get that

Zα (∂ϕt + v · ∇ϕ) v = (∂t + vy · ∇y + Vz∂z)Z
αv +

(
v · ZαN− ∂tZ

αη
)
∂ϕz v (3.23)

− ∂ϕz Z
αη
(
v ·N− ∂tη

)
∂ϕz v + Cα(T )

=
(
∂ϕt + v · ∇ϕ

)
Zαv − ∂ϕz v

(
∂ϕt + v · ∇ϕ)Zαη + Cα(T )

=
(
∂ϕt + v · ∇ϕ

)
V α + ∂ϕz (∂ϕt + v · ∇ϕ) vZαη − ∂ϕz v · ∇ϕvZαη + Cα(T ),

where the commutator Cα(T ) is defined by

Cα(T ) = [Zα, vy] ∂yv + [Zα, Vz, ∂zv] +

[
Zα, vz,

1

∂zϕ

]
∂zv +

1

∂zϕ
[Zα, v] ·N∂zv (3.24)

+ vz∂zv

[
Zα−α′

,
1

(∂zϕ)2

]
Zα′

∂zη + Vz [Z
α, ∂z ] v +

vz∂zv

(∂zϕ)2
[Zα, ∂z ] η

for any α′ < α with |α′| = 1.
It remains to compute εZα∆ϕv = 2εZα∇ϕ · (Sϕv). Note that

2Zα∇ϕ · (Sϕv) = 2∇ϕ ·
(
Zα Sϕv

)
− 2
(
∂ϕz S

ϕv
)
∇ϕ(Zαη) +Dα

(
Sϕv

)
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with Dα
(
Sϕv

)
i
= 2 Cα

j

(
Sϕv)ij , and

2Zα
(
Sϕv

)
= 2Sϕ

(
Zαv

)
− ∂ϕz v ⊗∇ϕZαη −∇ϕZαη ⊗ ∂ϕz v + Eα(v) (3.25)

with
(
Eα(v)

)
ij
= Cα

i (vj) + Cα
j (vi). Hence one deduces that

εZα∆ϕv = 2 ε∇ϕ · Sϕ(Zαv)− 2ε∇ϕ ·
(
∂ϕz v ⊗∇ϕZαη −∇ϕZαη ⊗ ∂ϕz v

)
(3.26)

− 2ε
(
∂ϕz S

ϕv
)
∇ϕ(Zαη) + εDα

(
Sϕv

)
+ ε∇ϕ ·

(
Eα(v)

)

= 2 ε∇ϕ · SϕV α − 2ε
(
∂ϕz ∇ϕ · Sϕv

)
Zαη + εDα

(
Sϕv

)
+ ε∇ϕ ·

(
Eα(v)

)
.

Consequently, these and (1.9) imply (3.13)–(3.14).
Now we estimate these commutators. First, thanks to Lemma 3.2, the estimates (3.15)–(3.17)

hold. To estimate the commutator Cα(T ) defined by (3.24), one needs to bound vz and Vz. It
follows from (B.7) that

‖vz‖
W
[m2 ]

+ ‖Vz‖
W
[m2 ]

≤ Λ

(
1

c0
, ‖v‖

W
[m2 ]

+ ‖∇η‖
W
[m2 ]

+ ‖∂tη‖
W
[m2 ]

)

≤ Λ

(
1

c0
, ‖v‖

W
[m2 ]

+ |h|
W
[m2 ]+1

)
. (3.27)

And (A.1), (B.6), and (B.7) yield that

‖Zvz‖Hm−2 . ‖Z∂tη‖Hm−2 +
(
1 + ‖∇η‖

W
[m2 ]−1

)
‖v‖

Hm−1 + ‖v‖
W
[m2 ]−1 ‖∇η‖Hm−1 (3.28)

≤ Λ
(
‖v‖

W
[m2 ]−1 + |h|

W
[m2 ]

)(
‖v‖

Hm−1 + |h|
H

m,− 1
2

)
.

With (3.28) and (3.27) in hand, by using (A.1), (3.7), (B.6) and (B.7), one can obtain that

‖ZVz‖Hm−2 .

∥∥∥∥Z
(

1

∂zϕ

)
vz

∥∥∥∥
Hm−2

+

∥∥∥∥
1

∂zϕ
Zvz

∥∥∥∥
Hm−2

(3.29)

≤ Λ

(
1

c0
, ‖v‖

W
[m2 ]

+ |h|
W
[m2 ]+1

)(
‖v‖

Hm−1 + |h|
H

m,− 1
2

)
.

Consequently, one may use (A.2), (A.4), (3.11) and (3.7) combined with (3.27)–(3.29) and also
again (B.6), (B.7), similarly as in the proof of Lemma 3.2, to conclude the estimate (3.18). �

3.3. Boundary conditions. We shall now also compute the boundary conditions satisfied by
(Zαv, Zαq, Zαh) when α3 = 0 (for α3 6= 0, Zαv = 0 on the boundary). As a preliminary, one
has the following.

Lemma 3.4. For k ∈ N:

|∇v|
Hk ≤ Λ

(
1

c0
, |h|

W
[k2]+1

+ ‖∇v‖
W
[k2]

)
(|v|

Hk,1 + |h|
Hk,1) (3.30)

and

|∇v|
Hk,s ≤ Λ

(
1

c0
, |h|

W
[k2]+2

+ ‖∇v‖
W
[k2]+1

)
(|v|

Hk,s+1 + |h|
Hk,s+1) for s = −1

2
,
1

2
. (3.31)

Proof. Note that it suffices to prove the estimates for ∂zv. Since ∇ϕ · v = 0, thus

∂zϕ (∂1v1 + ∂2v2) + ∂zv ·N = 0. (3.32)

Then for s = −1
2 ,

1
2 , (A.12) implies that

|∂zv · n|Hk,s ≤ Λ

(
1

c0
, |∇η|

W
[k2]+1

+ ‖∇yv‖
W
[k2]+1

)
(|v|

Hk,s+1 + |∇η|
Hk,s) (3.33)

≤ Λ

(
1

c0
, |h|

W
[k2]+2

+ ‖∇yv‖
W
[k2]+1

)
(|v|

Hk,s+1 + |h|
Hk,s+1) .

where the second inequality follows from Lemma B.2 and the trace estimate (A.6).
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To bound Π∂zv, we shall use the boundary conditions in (1.9) which yield

Π (Sϕvn− κχv) = 0. (3.34)

To compute Π (Sϕvn), one can use the local basis (∂y1 , ∂y2 , ∂y3) in Ωt induced by (1.4). The

induced riemannian metric is given by gij = ∂yi · ∂yj , whose inverse denoted by gij . It follows
from the definition and (1.8) that (∂yiu)(t,Φ(t, ·)) = ∂iv. Hence,

2Sun = n · ∇u+∇uknk = ∂nu+ gij∂yju · n∂yi = ∂nu+ gij∂jv · n∂yi . (3.35)

Note also that

∂nu =
N

|N| · ∇
ϕv =

|N|
∂zϕ

∂zv − ∂1ϕ∂1v − ∂2ϕ∂2v, (3.36)

one then gets from (3.34) that

Π∂zv =
∂zϕ

|N|
(
∂1ϕΠ∂1v + ∂2ϕΠ∂2v − gij∂jv · nΠ∂yi − κχΠv

)
. (3.37)

Hence, using (A.12) again shows that

|Π∂zv|Hk,s ≤ Λ

(
1

c0
, |∇ϕ|

W
[k2]+1

+ ‖∇v‖
W
[k2]+1

)
(|v|

Hk,s+1 + |h|
Hk,s+1 + |∂zv · n|Hk,s) (3.38)

≤ Λ

(
1

c0
, |h|

W
[k2]+2

+ ‖∇v‖
W
[k2]+1

)
(|v|

Hk,s+1 + |h|
Hk,s+1) .

where in the second inequality (3.33) has been used.
Consequently, we conclude the estimate (3.31) by combining (3.33) and (3.38). And (3.30)

follows similarly by using (A.1) instead of (A.12). �

We now study the dynamic boundary condition on {z = 0} and the Navier slip boundary
condition on {z = −b}.
Lemma 3.5. For 1 ≤ |α| ≤ m such that α3 = 0, it holds that on {z = 0}

2εSϕV α N− (Zαq − gZαh+ σZαH)N (3.39)

= −2εSϕvΠZαN− 2εZαh∂ϕz
(
Sϕv

)
N+ εCα(Bε),

where the commutator Cα(Bε) satisfies the estimate:

|Cα(Bε)|0 ≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∇v‖

W
[m2 ]

)
(|v|

Hm−1,1 + |h|
Hm−1,1) . (3.40)

Similarly, on {z = −b} one has that

V α
3 = 0, (SϕV αe3)i = κV α

i − Eα(v)i3, i = 1, 2, (3.41)

and

|Eα(v)|0 ≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∇v‖

W
[m2 ]

)
(|v|

Hm−1,1 + |h|
Hm−1,1) . (3.42)

Proof. Applying Zα to the dynamic boundary condition and using (3.25), one gets

ε (2Sϕ (Zαv)− ∂ϕz v ⊗∇ϕZαϕ−∇ϕZαv ⊗ ∂ϕz v + εEα(v))N− (Zαq − gZαh+ σZαH)N

= − (2εSϕv − (q − gh+ σH)I)ZαN− [Zα, 2εSϕv − (q − gh+ σH)I,N] .

= −2ε (Sϕv − Sϕvn · nI)ZαN− 2ε [Zα, Sϕv − Sϕvn · nI,N] (3.43)

≡ −2εSϕvΠZαN− 2ε [Zα, SϕvΠ,N] .

This yields (3.39) with the commutator Cα(Bε) defined by

Cα(Bε) = −Eα(v)N− 2 [Zα, SϕvΠ,N] . (3.44)

Similarly, applying Zα to the Navier slip boundary condition and noting that V α = Zαv, one
shows (3.41).

Now, it follows from (A.4), (B.7) and Lemma 3.4 that

|[Zα, SϕvΠ,N]|0 . |Z(SϕvΠ)|
Hm−2 |ZN|

W
[m2 ]−1 + |Z(SϕvΠ)|

W
[m2 ]−1 |ZN|

Hm−2 (3.45)
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≤ Λ

(
1

c0
, ‖∇η‖

W
[m2 ]

+ ‖∇v‖
W
[m2 ]

)
(|∇v|

Hm−1 + |h|
Hm−1,1)

≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∇v‖

W
[m2 ]

)
(|v|

Hm−1,1 + |h|Hm−1,1) .

On the other hand, following the proof of Lemma 3.2 and using again Lemma 3.4, one has

|Eα(v)|0 ≤ Λ

(
1

c0
, ‖∇η‖

W
[m2 ]

+ ‖∇v‖
W
[m2 ]

)
(|∇v|

Hm−1 + |∇η|
Hm−1) (3.46)

≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖∇v‖

W
[m2 ]

)
(|v|

Hm−1,1 + |h|
Hm−1,1) .

Consequently, the estimates (3.42) and (3.40) follows. �

Finally, we study the kinematic boundary condition on {z = 0}.
Lemma 3.6. For 1 ≤ |α| ≤ m such that α3 = 0, it holds that on {z = 0}

∂tZ
αh+ vy · ∇yZ

αh− V α ·N = −∂ϕz v ·NZαh+ Cα(h) (3.47)

where the commutator Cα(h) satisfies

|Cα(h)|0 ≤ Λ

(
1

c0
, |h|

W
[m2 ]+1 + ‖v‖

W
[m2 ]

)
(|h|

Hm−1,1 + |v|
Hm−1) . (3.48)

Moreover,

Cα(h) =
∑

|α′|=1

Cα′

α Z
α−α′

vy · ∇yZ
α′
h+ C̃α(h), (3.49)

and C̃α(h) satisfies the estimate:
∣∣∣C̃α(h)

∣∣∣
1
≤ Λ

(
1

c0
, |h|

W
[m2 ]+2 + |v|

W
[m2 ]+1

)
(|h|

Hm−1,2 + |v|
Hm−2,1) . (3.50)

Proof. Applying Zα to the kinematic boundary condition yields

∂tZ
αh+ vy · ∇yZ

αh− Zαv ·N = Cα(h) (3.51)

where

Cα(h) = − [Zα, vy,∇yh] . (3.52)

This yields (3.47), and the estimate (3.48) follows from (A.4). One may further single out the

highest order derivative terms according to (3.49), where C̃α(h) is defined by

C̃α(h) = −
∑

β+γ=α
β 6=0,|γ|≥2

Cβ,γZ
βvy · ∇yZ

γh. (3.53)

And the estimate (3.50) follows by using (A.1). �

4. Pressure estimates

In view of the equation (3.13), one needs to estimate the pressure q. The first equation in
(1.9) implies that

∆ϕq = −∇ϕ · (v · ∇ϕv) in Ω. (4.1)

Moreover, the dynamic boundary condition gives

q = 2εSϕv n · n+ gh− σH on {z = 0}. (4.2)

Projecting the first equation in (1.9) along N onto {z = 0} and {z = −b} yields

∇ϕq ·N = −∂tv ·N− (vy · ∇y)v ·N+ ε∆ϕv ·N on {z = 0} (4.3)

and

∇ϕq ·N = ε∆ϕv ·N on {z = −b}. (4.4)

Here in (4.4) one has used the fact that N = e3 and v3 = 0 on {z = −b}.
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Note that to solve the pressure, one has two choices of boundary conditions on {z = 0},
i.e., (4.2) and (4.3). Without surface tension, one can use the elliptic problem (4.1), (4.2) and
(4.4) to establish the regularity estimates for q. The subtlety lies in that the energy dissipation
estimates of (1.9) in the case without surface tension provide the needed estimates for those
boundary terms. When there is surface tension, however, the energy dissipation estimates do
not provide enough estimates for the boundary term −σH (which is of one half regularity less).
This would suggest that the elliptic problem (4.1), (4.2) and (4.4) is not the right choice for
estimating the pressure q in the case with surface tension. Our way to get around this difficulty
is to use instead the elliptic problem (4.1), (4.3) and (4.4). It is then noticed that this approach
forces one to estimate the time derivatives of v, that is, one needs to perform energy estimates
for the time derivatives of the solution. However, there is an essential difficulty arising: when
doing energy estimates with time derivatives up to m order, we can only obtain the estimates
of time derivatives of q up to m− 1 order due to the presence of ∂tv in (4.3). Thus the energy
estimates cannot be closed since it seems that m order time derivative of q is involved. We will
explain this and our way to overcome it in more details in Section 6.3.

It follows from the definition of ∂ϕi that

∇ϕ · v =
1

∂zϕ
∇ ·
(
Pv
)
, ∇ϕf =

1

∂zϕ
P ∗∇f, P =




∂zϕ 0 0
0 ∂zϕ 0

−∂1ϕ −∂2ϕ 1


 . (4.5)

And then ∆ϕ can be expressed as

∆ϕf = ∇ϕ · (∇ϕf) =
1

∂zϕ
∇ ·
(
E∇f

)
(4.6)

with the matrix E defined by

E =
1

∂zϕ
PP ∗ ≡




∂zϕ 0 −∂1ϕ
0 ∂zϕ −∂2ϕ

−∂1ϕ −∂2ϕ 1+(∂1ϕ)2+(∂2ϕ)2

∂zϕ


 .

Note that E is symmetric positive and that if ‖∇yϕ‖L∞ ≤ 1
c0

and ∂zϕ ≥ c0 > 0 then there

exists δ(c0) > 0 such that

EX ·X ≥ δ|X|2, ∀X ∈ R
3. (4.7)

Moreover,

‖E‖
W̃k ≤ Λ

(
1

c0
, |h|

Wk+1

)
. (4.8)

One can write

E = Id + Ẽ, Ẽ =




∂zη 0 −∂1η
0 ∂zη −∂2η

−∂1η −∂2η (∂1η)2+(∂2η)2−∂zη
∂zϕ


 ,

where ∥∥∥Ẽ
∥∥∥
H̃k

≤ Λ

(
1

c0
, |h|

W
[k2]+1

)
|h|

H
k,12

. (4.9)

Here H̃
k and W̃

k are referred to the usual spatial-time Sobolev spaces as defined similarly as
(2.1).

Since N = P ∗e3 on {z = 0,−b}, the equations (4.1)–(4.4) can be rewritten as

−∇ ·
(
E∇q

)
= F := ∂zϕ∇ϕv · ∇ϕv in Ω, (4.10)

q = G1 := 2εSϕv n · n+ gh− σH on {z = 0}, (4.11)

E∇q · e3 = G2 := −∂tv ·N− (vy · ∇y)v ·N+ ε∆ϕv ·N on {z = 0}, (4.12)

E∇q · e3 = G3 := ε∆ϕv ·N on {z = −b}. (4.13)

We shall now prove the estimates for the pressure q.
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Proposition 4.1. The following estimates hold:

‖q‖
Hk + ‖∇q‖

Hk + ‖∂zzq‖Hk−1 (4.14)

≤ Λ

(
1

c0
, |h|

W
[k2]+3

+ |h|
H
[k+7

2 ] + ‖v‖
W
[k+3

2 ] + ‖∇v‖
W
[k2]+2

+ ‖v‖
H
[k+7

2 ] + ‖∇v‖
H
[k+5

2 ]

)

×
(
|h|

H
k+1,−1

2
+ σ |h|

Hk,2 + ‖v‖
Hk+1 + ‖∇v‖

Hk + ε |v|
H

k, 32
+ ε |h|

H
k, 32

)
, for k ≥ 3;

‖q‖
Wk + ‖∇q‖

Wk + ‖∂zzq‖Wk−1 (4.15)

≤ Λ

(
1

c0
, |h|

W
[k2]+4

+ |h|
Hk+4 + ‖v‖

W
[k+5

2 ] + ‖∇v‖
W
[k2]+3

+ ‖v‖
Hk+4 + ‖∇v‖

Hk+3

)
, for k ≥ 1.

Proof. Multiplying the equation (4.10) by q and then integrating by parts over Ω, using (4.12)
and (4.13), one obtains

(E∇q,∇q)Ω = (F, q)Ω +
(
G2, q

)
z=0

−
(
G3, q

)
z=−b

. (4.16)

Here (·, ·)Ω , (·, ·)z=0 and (·, ·)z=−b denote the L2 inner products on Ω, {z = 0} and {z = −b},
respectively. It follows from the trace estimate |q| 1

2
. ‖q‖H1 and Cauchy’s inequality that

‖∇q‖20 ≤
1

η
Λ0

(
‖F‖2 +

∣∣G1
∣∣2
0
+
∣∣G2
∣∣2
− 1

2
+
∣∣G3
∣∣2
− 1

2

)
+ η ‖q‖2H1 (4.17)

for any η > 0. By the Poincaré inequality (A.8) and (4.11), one can get by taking η sufficiently
small that

‖q‖H1 ≤ Λ0

(
‖F‖+

∣∣G1
∣∣
0
+
∣∣G2
∣∣
− 1

2
+
∣∣G3
∣∣
− 1

2

)
. (4.18)

Note that if one uses solely the problem (4.1), (4.2) and (4.4) to estimate p, then one needs∣∣G1
∣∣
1
2
. This half less regularity requirement enables us to control the surface tension term by

the energy dissipation estimates.
Next, applying Zα with |α| = k to the equation (4.10) and using (4.12)–(4.13) lead to

(Zα(E · ∇q),∇Zαq)Ω = (ZαF,Zαq)Ω +
(
ZαG2, Zαq

)
z=0

−
(
ZαG3Zαq

)
z=−b

. (4.19)

Then as for (4.18), one can derive after using (4.11) that

‖q‖
Hk + ‖∇q‖

Hk ≤ Λ0

(
‖F‖

Hk +
∣∣G1
∣∣
Hk +

∣∣G2
∣∣
H

k,− 1
2
+
∣∣G3
∣∣
H

k,−1
2

(4.20)

+ ‖E · [Zα,∇] q‖0 + ‖[Zα, E] · ∇q‖0
)
.

We then estimate the commutators in the right hand side of (4.20). First, (3.11) implies that

‖E · [Zα,∇] q‖0 . ‖E‖L∞ ‖∇q‖
Hk−1 . |h|

W1 ‖∇q‖Hk−1 . (4.21)

However, the other communtator needs more attentions according to 1 ≤ k ≤ 3 or k ≥ 4.
Indeed, for 1 ≤ k ≤ 3, direct estimates by controlling the ∇q terms in L2 and E terms in L∞

yield

‖[Zα, E] · ∇q‖0 . ‖E‖
W̃k ‖∇q‖Hk−1 . |h|

Wk+1 ‖∇q‖Hk−1 . (4.22)

Plugging (4.21)–(4.22) into (4.20), by an induction argument and (4.18), one can deduce that

‖q‖
Hk + ‖∇q‖

Hk ≤ Λ

(
1

c0
, ‖E‖

W̃3

)(
‖F‖

Hk +
∣∣G1
∣∣
Hk +

∣∣G2
∣∣
H

k,−1
2
+
∣∣G3
∣∣
H

k,− 1
2
+ ‖∇q‖

Hk−1

)

≤ Λ

(
1

c0
, |h|

W4

)(
‖F‖

Hk +
∣∣G1
∣∣
Hk +

∣∣G2
∣∣
H

k,− 1
2
+
∣∣G3
∣∣
H

k,−1
2

)
. (4.23)

Since the equation (4.10) gives

∂zzq =
1

E33


F − ∂z



∑

j<3

E3,j∂jq


−

∑

i<3, j

∂i (Eij∂jq)


 , (4.24)
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in a similar way and by (4.23), one can also obtain

‖∂zzq‖Hk−1 ≤ Λ

(
1

c0
, ‖E‖

W̃k

)
(‖F‖

Hk−1 + ‖∇q‖
Hk) (4.25)

≤ Λ

(
1

c0
, |h|W4

)(
‖F‖

Hk +
∣∣G1
∣∣
Hk +

∣∣G2
∣∣
H

k,− 1
2
+
∣∣G3
∣∣
H

k,− 1
2

)
.

It then follows from (4.23) and (4.25) that for 1 ≤ k ≤ 3,

‖q‖
Hk + ‖∇q‖

Hk + ‖∂zzq‖Hk−1 (4.26)

≤ Λ

(
1

c0
, |h|

W4 + |h|
W
[k+3

2 ] + |h|
H
[k+3

2 ], 12
+ ‖F‖

H
[k+3

2 ] +
∣∣G1
∣∣
H
[k+3

2 ] +
∣∣G2
∣∣
H
[k+3

2 ],− 1
2
+
∣∣G3
∣∣
H
[k+3

2 ],− 1
2

)

×
(
|h|

H
k, 12

+ ‖F‖
Hk +

∣∣G1
∣∣
Hk +

∣∣G2
∣∣
H

k,−1
2
+
∣∣G3
∣∣
H

k,− 1
2

)
.

We now claim that (4.26) holds for all k ≥ 1. This will be proved by induction. Assume that
k ≥ 4 and that (4.26) holds for k − 1. The commutator estimate (A.2) yields that

‖[Zα, E] · ∇q‖0 . ‖ZE‖
Hk−1 ‖∇q‖

W
[k−1

2 ] + ‖ZE‖
W
[k−1

2 ] ‖∇q‖Hk−1 (4.27)

≤ Λ

(
1

c0
, |h|

W
[k+3

2 ] + ‖∇q‖
W
[k−1

2 ]

)(
|h|

H
k, 12

+ ‖∇q‖
Hk−1

)
.

Plugging (4.27) and (4.21) into (4.20) and using (4.24) again lead to

‖q‖
Hk + ‖∇q‖

Hk + ‖∂zzq‖Hk−1 ≤Λ

(
1

c0
, |h|

W
[k+3

2 ] + ‖∇q‖
W
[k−1

2 ]

)(
|h|

H
k,12

+ ‖∇q‖
Hk−1 (4.28)

+ ‖F‖
Hk +

∣∣G1
∣∣
Hk +

∣∣G2
∣∣
H

k,− 1
2
+
∣∣G3
∣∣
H

k,− 1
2

)
.

To remove the dependence of Λ on ‖∇q‖
W
[k−1

2 ] , one applies the anisotropic Sobolev embedding

estimate (A.5) and the induction assumption to obtain

‖∇q‖
W
[k−1

2 ] . ‖∂z∇q‖
H
[k+1

2 ] ‖∇q‖
H
[k+3

2 ] (4.29)

≤ Λ




1

c0
, |h|

W4 + |h|
W





[k+3
2 ]+3

2





+ |h|
H





[k+3
2 ]+3

2



, 12

+ ‖F‖
H





[k+3
2 ]+3

2





+
∣∣G1
∣∣

H





[ k+3
2 ]+3

2





+
∣∣G2
∣∣

H





[k+3
2 ]+3

2



,− 1
2

+
∣∣G3
∣∣

H





[k+3
2 ]+3

2



,− 1
2




×
(
|h|

H
[k+3

2 ], 12
+ ‖F‖

H
[k+3

2 ] +
∣∣G1
∣∣
H
[k+3

2 ] +
∣∣G2
∣∣
H
[k+3

2 ],− 1
2
+
∣∣G3
∣∣
H
[k+3

2 ],− 1
2

)

≤ Λ

(
1

c0
, |h|

W4 + |h|
W
[k+3

2 ] + |h|
H
[k+3

2 ], 12
+ ‖F‖

H
[k+3

2 ] +
∣∣G1
∣∣
H
[k+3

2 ] +
∣∣G2
∣∣
H
[k+3

2 ],− 1
2
+
∣∣G3
∣∣
H
[k+3

2 ],− 1
2

)
.

Here one has used the fact that
[
k+3
2

]
≤ k−1 since k ≥ 4, which allows one to use the induction

assumption. Plugging the estimate (4.29) into (4.28) and using the induction assumption to
estimate ‖∇q‖

Hk−1 , one thus concludes (4.26) for all k ≥ 4.
We now estimate the right hand side of (4.26) for k ≥ 3. It follows by the product estimate

(A.1) that

‖F‖
Hk = ‖∂zϕ∇ϕv · ∇ϕv‖

Hk (4.30)

≤ Λ

(
1

c0
, |h|

W
[k2]+1

+ ‖∇v‖
W
[k2]

)(
|h|

H
k,12

+ ‖∇v‖
Hk

)
.

Similarly, since k ≥ 3,

‖F‖
H
[k+3

2 ] ≤ Λ

(
1

c0
, |h|

W
[k+3

4 ]+1
+ ‖∇v‖

W
[k+3

4 ]

)(
|h|

H
[k+3

2 ], 12
+ ‖∇v‖

H
[k+3

2 ]

)
(4.31)
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≤ Λ

(
1

c0
, |h|

W
[k2]+1

+ |h|
H
[k2]+2

+ ‖∇v‖
W
[k2]

+ ‖∇v‖
H
[k+3

2 ]

)
.

By (A.1) and Lemma 3.4,
∣∣G1
∣∣
Hk = |2εSϕv n · n+ gh− σH|

Hk (4.32)

≤ Λ

(
1

c0
, |h|

W
[k2]+2

+ ‖∇v‖
W
[k2]

)
(ε |∇v|

Hk + |h|Hk + σ|h|Hk,2)

≤ Λ

(
1

c0
, |h|

W
[k2]+2

+ ‖∇v‖
W
[k2]

)
(ε |v|

Hk,1 + |h|
Hk + σ |h|

Hk,2) .

Similarly, since k ≥ 3, the trace estimate implies that

∣∣G1
∣∣
H
[k+3

2 ] ≤ Λ

(
1

c0
, |h|

W
[k+3

4 ]+2
+ ‖∇v‖

W
[k+3

4 ]

)(
ε |v|

H
[k+3

2 ],1 + |h|
H
[k+3

2 ] + σ |h|
H
[k+3

2 ],2

)
(4.33)

≤ Λ

(
1

c0
, |h|

W
[k2]+2

+ |h|
H
[k+7

2 ] + ‖∇v‖
W
[k2]

+ ‖v‖
H
[k2]+3

+ ‖∇v‖
H
[k2]+2

)
.

To estimate the most delicate term G2, we start with ε∆ϕv ·N. Note that

∆ϕv ·N = 2 (∇ϕ · Sϕv) ·N = 2∇ϕ · (SϕvN)− 2Sϕv : ∇ϕN (4.34)

and

∇ϕ · (SϕvN) = ∂1 (S
ϕvN)1 + ∂2 (S

ϕvN)2 +
1

∂zϕ
∂z (S

ϕvN) ·N. (4.35)

Hence by the estimate (A.12) with s = −1
2 ,

1
2 , one can get

|∆ϕv ·N|
H

k,− 1
2
.

∣∣∣∣
1

∂zϕ
∂z (S

ϕvN) ·N
∣∣∣∣
H

k,− 1
2

+ |SϕvN|
H

k, 12
+ |Sϕv : ∇ϕN|

H
k,− 1

2
(4.36)

≤ Λ

(
1

c0
, |h|

W
[k2]+3

+ ‖∇v‖
W
[k2]+1

+ ‖∂z (SϕvN) ·N‖
W
[k2]+1

)

×
(
|∂z (SϕvN) ·N|

H
k,−1

2
+ |∇v|

H
k,12

+ |h|
H

k,32

)
.

But

∂z (S
ϕvN) ·N = ∂z (S

ϕvN ·N)− SϕvN · ∂zN, (4.37)

and recalling the matrices P and E,

∂z (S
ϕvN ·N) = ∂z (∇ϕvN ·N) = ∂z

(
1

∂zϕ
P ∗∇vP ∗e3 · P ∗e3

)
(4.38)

= ∇ϕ(∂zv)N ·N− ∂jvi∂z(E3iP3j),

one can then deduce from (4.36) that

|∆ϕv ·N|
H

k,−1
2
≤ Λ

(
1

c0
, |h|

W
[k2]+3

+ ‖∇v‖
W
[k2]+1

+ ‖∇ϕ(∂zv)N ·N‖
W
[k2]+1

)
(4.39)

×
(
|∇ϕ(∂zv)N ·N|

H
k,− 1

2
+ |∇v|

H
k, 12

+ |h|
H

k, 32

)
.

Note further that

∇ϕ(∂zv)N ·N = ∇ϕ (∂zv ·N) ·N− (N · ∇ϕ)N · ∂zv, (4.40)

and one can compute by using ∇ϕ · v = 0 that

∇ϕ (∂zv ·N) ·N = −∇ϕ (∂zϕ(∂1v1 + ∂2v2)) ·N. (4.41)

It follows from these, (4.39) and Lemma 3.4 that

|∆ϕv ·N|
H

k,− 1
2
≤ Λ

(
1

c0
, |h|

W
[k2]+3

+ ‖∇v‖
W
[k2]+2

)(
|∇v|

H
k,12

+ |h|
H

k,32

)
(4.42)
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≤ Λ

(
1

c0
, |h|

W
[k2]+3

+ ‖∇v‖
W
[k2]+2

)(
|v|

H
k, 32

+ |h|
H

k, 32

)
.

Next, one easily has

|(vy · ∇y)v ·N|
H

k,− 1
2
≤ Λ

(
1

c0
, |h|

W
[k2]+2

+ ‖v‖
W
[k2]+2

)(
|v|

H
k, 12

+ |h|
H

k, 12

)
. (4.43)

Finally, we estimate the remaining time derivative term ∂tv ·N. One first has

|∂tv ·N|
H

k−1, 12
≤ Λ

(
1

c0
, |∇h|

W
[k−1

2 ]+1
+ ‖∂tv‖

W
[k−1

2 ]+1

)(
|∂tv|

H
k−1, 12

+ |h|
H

k−1, 32

)
(4.44)

≤ Λ

(
1

c0
, |h|

W
[k+3

2 ] + ‖v‖
W
[k+3

2 ]

)(
|v|

H
k,12

+ |h|
H

k−1, 32

)
.

It then suffices to estimate
∣∣∂kt (∂tv ·N)

∣∣
− 1

2
. However, this will lead to some difficulties since k

can be m− 1, and energy estimates yield only ∂mt v ∈ L2(Ω) which cannot ensure the control of

the H− 1
2 {z = 0} norm of ∂mt v. The key observation is that ∂mt v ·N is indeed in H− 1

2 ({z = 0}).
The way of achieving this is to use the Alinhac good unknown, returning back to k, V k+1 =
∂k+1
t v−∂ϕz v∂k+1

t η. Indeed, since ∇ϕ ·V k+1 = −Ck+1(d) with Ck+1(d) defined as in (3.14) with

Zα = ∂k+1
t , by Lemma C.3, and using the estimate (3.16) and (B.6), one gets that

∣∣∣V k+1 ·N
∣∣∣
− 1

2

≤ Λ

(
1

c0

)(∥∥∥V k+1
∥∥∥
0
+
∥∥∥∇ϕ · V k+1

∥∥∥
0

)
(4.45)

≤ Λ

(
1

c0
, ‖∇v‖L∞

)(∥∥∥∂k+1
t v

∥∥∥
0
+
∥∥∥∂k+1

t η
∥∥∥
0
+
∥∥∥Ck+1(d)

∥∥∥
0

)

≤ Λ

(
1

c0
, |h|

W
[k+1

2 ]+1
+ ‖∇v‖

W
[k+1

2 ]

)(∥∥∥∂k+1
t v

∥∥∥
0
+ |h|

H
k+1,− 1

2
+ ‖∇v‖

Hk

)
.

This in turn implies
∣∣∣∂k+1

t v ·N
∣∣∣
− 1

2

≤
∣∣∣V k+1 ·N

∣∣∣
− 1

2

+
∣∣∣N · ∂ϕz v∂k+1

t η
∣∣∣
− 1

2

(4.46)

≤ Λ

(
1

c0
, |h|

W
[k+3

2 ] + ‖∇v‖
W
[k+1

2 ]

)(∥∥∥∂k+1
t v

∥∥∥
0
+ |h|

H
k+1,− 1

2
+ ‖∇v‖

Hk

)
.

Hence, it follows from (4.44), (4.46) and the trace estimate | · |− 1
2
≤ | · | 1

2
. ‖·‖H1 that

|∂tv ·N|
H

k,−1
2
≤ |∂tv ·N|

H
k−1, 12

+
∣∣∣∂kt (∂tv ·N)

∣∣∣
− 1

2

(4.47)

≤ Λ

(
1

c0
, |h|

W
[k+3

2 ] + ‖v‖
W
[k+3

2 ] + ‖∇v‖
W
[k+1

2 ]

)(
‖v‖

Hk+1 + ‖∇v‖
Hk + |h|

H
k+1,− 1

2

)
.

Therefore, we conclude from (4.42), (4.43) and (4.47) that

∣∣G2
∣∣
H

k,− 1
2
≤Λ

(
1

c0
, |h|

W
[k2]+3

+ ‖v‖
W
[k+3

2 ] + ‖∇v‖
W
[k2]+2

)
(4.48)

×
(
‖v‖

Hk+1 + ‖∇v‖
Hk + |h|

H
k+1,−1

2
+ ε |v|

H
k, 32

+ ε |h|
H

k, 32

)
.

Similarly, since k ≥ 3, due to the trace estimates, one can get

∣∣G2
∣∣
H
[k+3

2 ],− 1
2
≤ Λ




1

c0
, |h|

W
k+3
4 +3

+ ‖v‖
W





[k+3
2 ]+3

2





+ ‖∇v‖
W

k+3
4 +2


 (4.49)

×
(
‖v‖

H
[k+3

2 ]+1
+ ‖∇v‖

H
[k+3

2 ] + |h|
H
[k+3

2 ]+1,− 1
2
+ ε |v|

H
[k+3

2 ], 32
+ ε |h|

H
[k+3

2 ], 32

)

≤ Λ

(
1

c0
, |h|

W
[k2]+3

+ |h|
H
[k+7

2 ] + ‖v‖
W
[k+3

2 ] + ‖∇v‖
W
[k2]+2

+ ‖v‖
H
[k+7

2 ] + ‖∇v‖
H
[k+5

2 ]

)
.
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Consequently, plugging the estimates (4.30)–(4.31), (4.32)–(4.33) and (4.48)–(4.49), along
with doing the the same estimates for G3 as for G2, into (4.26), we can obtain that for k ≥ 3,

‖q‖
Hk + ‖∇q‖

Hk + ‖∂zzq‖Hk−1 (4.50)

≤ Λ

(
1

c0
, |h|

W
[k2]+3

+ |h|
H
[k+7

2 ] + ‖v‖
W
[k+3

2 ] + ‖∇v‖
W
[k2]+2

+ ‖v‖
H
[k+7

2 ] + ‖∇v‖
H
[k+5

2 ]

)

×
(
|h|

H
k+1,− 1

2
+ σ |h|

Hk,2 + ‖v‖
Hk+1 + ‖∇v‖

Hk + ε |v|
H

k,32
+ ε |h|

H
k,32

)
.

This proves the estimate (4.14).
To prove (4.15), one can use the anisotropic Sobolev embedding estimate (A.5) and the trace

estimates to have that for k ≥ 1, by (4.14),

‖q‖
Wk + ‖∇q‖

Wk . ‖∇q‖
Hk+2 + ‖∂zzq‖Hk+1 (4.51)

≤ Λ

(
1

c0
, |h|

W
[k2]+4

+ |h|
H

k+9
2

+ ‖v‖
W
[k+5

2 ] + ‖∇v‖
W
[k2]+3

+ ‖v‖
H

k+9
2

+ ‖∇v‖
H
[k+7

2 ]

)

×
(
|h|

H
k+3,−1

2
+ σ |h|

Hk+2,2 + ‖v‖
Hk+3 + ‖∇v‖

Hk+2 + ε |v|
H

k+2, 32
+ ε |h|

H
k+2,32

)

≤ Λ

(
1

c0
, |h|

W
[k2]+4

+ |h|
Hk+4 + ‖v‖

W
[k+5

2 ] + ‖∇v‖
W
[k2]+3

+ ‖v‖
Hk+4 + ‖∇v‖

Hk+3

)
.

Note that one has used the fact that k + 2 ≥ 3 so that (4.14) can be used with k + 2. This,
together with (4.24) again, proves (4.15). �

5. Smoothing estimates of h

We first show the smoothing regularity estimates of h coming from viscosity.

Proposition 5.1. For every m ∈ N, ε ∈ (0, 1), it holds that

ε |h(t)|2
H

m−1, 32
≤ ε |h(0)|2

H
m−1, 32

+

∫ t

0
Λ
(
|h|

W
[m2 ]+2 + ‖v‖

W
[m2 ]+2

)(
ε |v|2

H
m−1, 32

+ ε |h|2
H

m−1, 32

)

(5.1)
and

ε |h(t)|2
H

m, 12
≤ ε |h(0)|2

H
m, 12

+

∫ t

0
Λ
(
|h|

W
[m2 ]+2 + ‖v‖

W
[m2 ]+2

)(
ε |v|2

H
m, 12

+ ε |h|2
H

m, 12

)
. (5.2)

Proof. We prove only the estimate (5.2), and the estimate (5.1) follows in the same way. Apply
Zα with α ∈ N

1+2, |α| ≤ m, to the kinematic boundary condition to get that on {z = 0}:
∂tZ

αh+ v · ∇yZ
αh− Zαv3 + [Zα, vy] · ∇yh = 0. (5.3)

Then applying further Λ
1
2 , the tangential Fourier multiplier, to (5.3) gives

∂tΛ
1
2Zαh+ v · ∇yΛ

1
2Zαh− Λ

1
2Zαv3 +

[
Λ

1
2 , vy

]
· ∇yZ

αh+ Λ
1
2 ([Zα, vy] · ∇yh) = 0. (5.4)

A standard energy estimate on the equation (5.4) yields

d

dt
|Zαh|21

2
. ‖∇yv‖L∞ |h|2

H
m, 12

(5.5)

+
(
|v|

H
m, 12

+
∣∣∣
[
Λ

1
2 , vy

]
· ∇yZ

αh
∣∣∣
0
+ |[Zα, vy] · ∇yh| 1

2

)
|h|

H
m, 12

.

Due to the commutator estimate (A.10), one has
∣∣∣
[
Λ

1
2 , vy

]
· ∇yZ

αh
∣∣∣
0
. ‖∇yv‖L∞ |h|

H
m, 12

+ ‖∇yh‖L∞ |v|
H

m, 12
. (5.6)

And the estimate (A.12) leads to

|[Zα, vy] · ∇yh| 1
2
≤

∑

|β|+|γ|=α

|β′|=1

∣∣∣Zβ−β′
Zβ′

vy · ∇yZ
γh
∣∣∣
1
2

(5.7)

. ‖v‖
W
[m2 ]+2 |h|

H
m, 12

+ |h|
W
[m2 ]+2 |v|

H
m, 12

.
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Hence, plugging the estimates (5.6) and (5.7) into (5.5) and summing over |α| ≤ m, by Cauchy’s
inequality, one can deduce that

d

dt
|h|2

H
m, 12

.
(
1 + |h|

W
[m2 ]+2 + ‖v‖

W
[m2 ]+2

)(
|v|2

H
m, 12

+ |h|2
H

m, 12

)
. (5.8)

Integrating the inequality (5.8) directly in time yields (5.2). �

Next, we show the smoothing estimates of h due to surface tension.

Proposition 5.2. For every m ∈ N, ε, σ ∈ (0, 1), it holds that

σ2 |h|2
H

m−1, 52
≤Λ

(
1

c0
, |h|

W
[m+3

2 ] + ‖∇v‖
W
[m+1

2 ]

)(
|q|2

H
m−1, 12

+ |h|2
H

m−1, 12
(5.9)

+ε2 |v|2
H

m−1, 32
+ ε2 |h|2

H
m−1, 32

)
.

Proof. Apply Zα with α ∈ N
1+2, |α| ≤ m,α0 ≤ m − 1, to the dynamic boundary condition to

have

− σZαH = Zαq − 2εZα(Sϕv n · n)− gZαh. (5.10)

Note that

ZαH = ∇y ·
(
Zα

(
∇yh√

1 + |∇yh|2

))
(5.11)

= ∇y ·
(

∇yZ
αh√

1 + |∇yh|2
+∇yhZ

α

(
1√

1 + |∇yh|2

)
+

[
Zα,∇yh,

1√
1 + |∇yh|2

])

and

Zα

(
1√

1 + |∇yh|2

)
= Zα−α′

Zα′

(
1√

1 + |∇yh|2

)
= −Zα−α′

(
∇yh · ∇yZ

α′
h

√
1 + |∇yh|2

3

)
(5.12)

= − ∇yh · ∇yZ
αh

√
1 + |∇yh|2

3 −
[
Zα−α′

,
∇yh√

1 + |∇yh|2
3

]
· ∇yZ

α′
h

for any |α′| = 1. Hence,

ZαH = σ∇y ·
(

∇yZ
αh√

1 + |∇yh|2
− ∇yh · ∇yZ

αh
√

1 + |∇yh|2
3∇yh+ C(Bα

σ )

)
, (5.13)

where

C(Bα
σ ) = −

[
Zα−α′

,
∇yh√

1 + |∇yh|2
3

]
· ∇yZ

α′
h∇yh+

[
Zα,

1√
1 + |∇yh|2

,∇yh

]
(5.14)

for any |α′| = 1. It follows that

−σ∇y ·
(

∇yZ
αh√

1 + |∇yh|2
− ∇yh · ∇yZ

αh
√

1 + |∇yh|2
3∇yh

)
= σ∇y · C(Bα

σ )+Z
αq− 2εZα(Sϕv n · n)− gZαh.

(5.15)

Then apply further Λ
1
2 to (5.15) to get

− σ∇y ·
(

∇yΛ
1
2Zαh√

1 + |∇yh|2
− ∇yh · ∇yΛ

1
2Zαh

√
1 + |∇yh|2

3 ∇yh

)
(5.16)

= σ∇y ·
([

Λ
1
2 ,

1√
1 + |∇yh|2

− 1

]
∇yZ

αh−
[
Λ

1
2 ,

∇yh√
1 + |∇yh|2

3∇yh·
]
∇yZ

αh

)

+Λ
1
2 (σ∇y · C(Bα

σ ) + Zαq − 2εZα(Sϕv n · n)− gZαh) .
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It follows from a standard energy estimate for this elliptic equation that

σ2
∫

z=0

(
|∇yΛ

1
2Zαh|2√

1 + |∇yh|2
− |∇yh · ∇yΛ

1
2Zαh|2

√
1 + |∇yh|2

3

)
dy (5.17)

= −σ2
([

Λ
1
2 ,

1√
1 + |∇yh|2

− 1

]
∇yZ

αh−
[
Λ

1
2 ,

∇yh√
1 + |∇yh|2

3∇yh·
]
∇yZ

αh,∇yΛ
1
2Zαh

)

− σ2
(
Λ

1
2C(Bα

σ ),∇yΛ
1
2Zαh

)
+
(
Λ

1
2 (Zαq − 2εZα(Sϕv n · n)− gZαh) , σΛ

1
2Zαh

)
.

Since for any vector a ∈ R
2,

|a|2√
1 + |∇h|2

− |∇yh · a|2
√

1 + |∇yh|2
3 ≥ 1

√
1 + |∇yh|2

3 |a|2, (5.18)

so Cauchy’s inequality, together with (A.11) and (A.12), since |α1|+ |α2| ≥ 1, give

σ2 |∇yh|2
H

m−1, 52
≤ Λ0

(
|q|2

H
m−1, 12

+ ε2 |Sϕv n · n|2
H

m−1, 12
+ |h|2

H
m−1, 12

(5.19)

+ σ2 |C(Bα
σ )|21

2
+ σ2

∣∣∣∣∣

[
Λ

1
2 ,

1√
1 + |∇yh|2

− 1

]
∇yZ

αh

∣∣∣∣∣

2

0

+σ2

∣∣∣∣∣

[
Λ

1
2 ,

∇yh√
1 + |∇yh|2

3∇yh·
]
∇yZ

αh

∣∣∣∣∣

2

0




≤ Λ

(
1

c0
, |h|

W
[m+3

2 ] + ‖∇v‖
W
[m+1

2 ]

)(
|q|2

H
m−1, 12

+ |h|2
H

m−1, 12

+σ2 |h|2
H

m−1, 32
+ ε2 |Sϕv n · n|2

H
m−1, 12

)
.

Using the similar arguments in the previous section, one can have

|Sϕv n · n|2
H

m−1, 12
≤ Λ

(
1

c0
, |h|

W
[m+1

2 ] + ‖∇v‖
W
[m+1

2 ]

)(
|v|

H
m−1, 32

+ |h|
H

m−1, 32

)
.

Then (5.9) follows from (5.19), the Sobolev interpolation and Young’s inequality. �

6. Conormal estimates

We shall derive a priori estimates on a time interval [0, T ε,σ] on which it is assumed that

∂zϕ ≥ c0
2
, |h|2,∞ ≤ 1

c0
and g − ∂ϕz q ≥

c0
2

on {z = 0}. (6.1)

Note in particular that this will allow one to use Lemmas C.1 and C.2.
To derive the higher order energy estimates, we shall use the good unknown V α = Zαv −

∂ϕz vZαη, α 6= 0. A key point is that the control of V α and Zαh will yield a control of Zαv:

‖Zαv‖ . ‖V α‖+ Λ

(
1

c0
, ‖∇v‖L∞

)
|Zαh|− 1

2
, ‖V α‖ . ‖Zαv‖+ Λ

(
1

c0
, ‖∇v‖L∞

)
|Zαh|− 1

2
.

(6.2)
Define

Λ∞(t) = Λ

(
1

c0
, |h(t)|

H
[m2 ]+5 + ‖v(t)‖

H
[m2 ]+5 + ‖∂zv(t)‖

H
[m2 ]+4 + ‖∂zv(t)‖

W
[m2 ]+2 + ε

1
2 ‖∂zzv(t)‖L∞

)
.

(6.3)
It will be shown then that those functions Λ(·, ·) defined in the previous three sections can be
bounded by Λ∞ for sufficiently large m, and also the elliptic estimates of q and the smoothing
estimates of h will be restated along the way. First, taking k =

[
m
2

]
for m ≥ 6 in the estimate

(4.15) yields

‖q‖
W
[m2 ]

+ ‖∇q‖
W
[m2 ]

+ ‖∂zzq‖
W
[m2 ]−1 (6.4)
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≤ Λ

(
1

c0
, |h|

W
[m4 ]+4 + |h|

H
[m2 ]+4 + ‖v‖

W
[m+10

4 ] + ‖∇v‖
W
[m4 ]+3 + ‖v‖

H
[m2 ]+4 + ‖∇v‖

H
[m2 ]+3

)
≤ Λ∞,

while taking k = m− 1 in the estimate (4.14) gives

‖q‖
Hm−1 + ‖∇q‖

Hm−1 + ‖∂zzq‖Hm−2 (6.5)

≤ Λ

(
1

c0
, |h|

W
[m+5

2 ] + |h|
H
[m2 ]+3 + ‖v‖

W
[m2 ]+1 + ‖∇v‖

W
[m+3

2 ] + ‖v‖
H
[m2 ]+3 + ‖∇v‖

H
[m2 ]+2

)

×
(
|h|

H
m,− 1

2
+ σ |h|

Hm−1,2 + ‖v‖
Hm + ‖∇v‖

Hm−1 + ε |v|
H

m−1, 32
+ ε |h|

H
m−1, 32

)

≤ Λ∞

(
|h|

H
m,− 1

2
+ σ |h|

Hm−1,2 + ‖v‖
Hm + ‖∂zv‖Hm−1 + ε |v|

H
m−1, 32

+ ε |h|
H

m−1, 32

)
.

Here one has required m ≥ 6 so that by Sobolev’s inequality

|h|
W
[m4 ]+4 . |h|

H
[m2 ]+5 ,

and that by the anisotropic Sobolev embedding estimate (A.5)

‖v‖
W
[m+3

2 ]+1
. ‖v‖

H
[m2 ]+5 + ‖∂zv‖

H
[m2 ]+4 .

It can be checked easily that all the functions Λ(·, ·) defined in Propositions 5.1 and 5.2 and
Lemmas 3.3, 3.5 and 3.6 are bounded by Λ∞, due to (6.4). Moreover, Proposition 5.1 implies
that

ε |h(t)|2
H

m−1, 32
≤ ε |h(0)|2

H
m−1, 32

+

∫ t

0
Λ∞

(
ε |v|2

H
m−1, 32

+ ε |h|2
H

m−1, 32

)
(6.6)

and

ε |h(t)|2
H

m, 12
≤ ε |h(0)|2

H
m, 12

+

∫ t

0
Λ∞

(
ε |v|2

H
m, 12

+ ε |h|2
H

m, 12

)
. (6.7)

Proposition 5.2, together with (6.5) and the trace estimate |q|
H

m−1, 12
. ‖q‖

Hm−1 + ‖∇q‖
Hm−1 ,

yields that

σ2 |h|2
H

m−1, 52
≤Λ∞

(
|h|2

H
m,− 1

2
+ σ2 |h|2

Hm−1,2 + ‖v‖2
Hm + ‖∂zv‖2Hm−1 + ε2 |v|2

H
m−1, 32

+ ε2 |h|2
H

m−1, 32

)
.

(6.8)

Since |h|2
Hm−1,2 ≤ |h|

1
5

Hm−1 |h|
4
5

H
m−1, 52

, one may improve (6.8) by using Young’s inequality to get

σ2 |h|2
H

m−1, 52
≤Λ∞

(
|h|2

H
m,− 1

2
+ ‖v‖2

Hm + ‖∂zv‖2Hm−1 + ε2 |v|2
H

m−1, 32
+ ε2 |h|2

H
m−1, 32

)
. (6.9)

Note that in the following we will use frequently these L∞ bounds involved in Λ∞.

6.1. Basic L2 estimate. We start with the estimates of (v, h) itself, that is, the case α = 0.

Proposition 6.1. For any smooth solution of (1.9), it holds that

‖v(t)‖20 + g |h(t)|20 + σ |h(t)|21 + ε

∫ t

0
‖∇v‖20 ≤ Λ0

(
‖v0‖20 + |h0|20 + σ |h0|21 +

∫ t

0
‖v‖20

)
. (6.10)

Proof. Standard energy identity yields

1

2

d

dt

∫

Ω
|v|2 dVt + ε

∫

Ω
|Sϕv|2 dVt =

∫

z=0
(2εSϕv − qI)N · v dy −

∫

z=−b
(2εSϕv − qI) e3 · v dy.

(6.11)
The Navier slip boundary condition implies that

−
∫

z=−b
(2εSϕv − qI) e3 · v dy = −

∫

z=−b
2ε(Sϕve3)ivi dy = −2κε

∫

z=−b
|v|2 dy. (6.12)

While the dynamic boundary condition and the kinematic boundary condition give
∫

z=0
(2εSϕv − qI)N · v dy = −

∫

z=0
(gh− σH)N · v dy = −

∫

z=0
(gh − σH)∂thdy (6.13)
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= −1

2

d

dt

∫

z=0
g|h|2 + 2σ

(√
1 + |∇h|2 − 1

)
dy.

Consequently,

1

2

d

dt

(∫

Ω
|v|2 dVt +

∫

z=0
g|h|2 + 2σ

(√
1 + |∇h|2 − 1

)
dy

)
(6.14)

+ 2ε

∫

Ω
|Sϕv|2 dVt + 2κε

∫

z=−b
|v|2 dy = 0.

Note that √
1 + |∇h|2 − 1 ≥ 1

2

1√
1 + ( 1

c0
)2
|∇h|2

due to (6.1), and the trace estimate

|v|2L2({z=−b}) . ‖∇v‖ ‖v‖+ ‖v‖2 .
Hence, (6.10) follows from (6.14), Lemma C.2 and Cauchy’s inequality. �

6.2. Estimate of (Zαv, Zαh) for α0 ≤ m − 1. Next, we derive the energy estimates of
(Zαv, Zαh) for 1 ≤ |α| ≤ m and α0 ≤ m− 1, that is, except the cases α = 0 or α0 = m.

Proposition 6.2. Any smooth solution of (1.9) satisfies the estimate

‖v(t)‖2
Hm−1,1 + |h(t)|2

Hm−1,1 + σ |h(t)|2
Hm−1,2 + ε |h(t)|2

H
m−1, 32

+

∫ t

0
ε ‖∇v‖2

Hm−1,1 + σ2 |h|2
H

m−1, 52

≤ Λ0

(
‖v(0)‖2

Hm−1,1 + |h(0)|2
Hm−1,1 + σ |h(0)|2

Hm−1,2 + ε |h(0)|2
H

m, 12

)
(6.15)

+

∫ t

0
Λ∞

(
|h|2

Hm−1,1 + |h|2
H

m,− 1
2
+ σ |h|2

Hm,1 + ε |h|2
H

m−1, 32
+ ‖v‖2

Hm + ‖∂zv‖2Hm−1

)
.

Proof. The energy identity for the equations (3.13)–(3.14) yields

1

2

d

dt

∫

Ω
|V α|2 dVt + 2ε

∫

Ω
|SϕV α|2 dVt = Iα

0 + Iα
b +Rα

C +Rα
S, (6.16)

where

Iα
0 =

∫

z=0
(2εSϕV α −QαI)N · V α dy (6.17)

Iα
b = −

∫

z=−b
(2εSϕV α −QαI) e3 · V α dy, (6.18)

Rα
C =

∫

Ω
((∂ϕz v · ∇ϕvZαη − Cα(T )− Cα(q)) · V α − Cα(d)Qα) dVt, (6.19)

Rα
S =

∫

Ω

(
εDα(Sϕv) + ε∇ϕ ·

(
Eα(v)

)
· V α dVt. (6.20)

We first estimate Iα
0 . The boundary condition (3.39) implies

Iα
0 =

∫

z=0

(
2εSϕV α − ZαqI + ∂ϕz qZ

αηI
)
N · V α dy (6.21)

=

∫

z=0
−(g − ∂ϕz q)Z

αhN · V α dy +

∫

z=0
σZαHN · V α dy +

∫

z=0
εCα(Bε) · V α dy

−
∫

z=0
2εSϕvΠZαN · V α dy −

∫

z=0
2εZαh∂ϕz

(
Sϕv

)
N · V α dy.

By (3.40), the third term in the right hand side of (6.21) can be bounded by
∣∣∣∣
∫

z=0
εCα(Bε) · V α dy

∣∣∣∣ ≤ Λ∞ε (|v|Hm−1,1 + |h|
Hm−1,1) |V α|0 . (6.22)
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Due to (A.11), it holds that
∣∣∣∣
∫

z=0
2εSϕvΠZαN · V α dy

∣∣∣∣ ≤ 2ε |Zα∇h|− 1
2
|SϕvΠV α| 1

2
(6.23)

≤ Λ∞ε |h|
H

m−1, 32
|V α| 1

2
.

Note that Λ∞ involves
√
ε||∂zzv||L∞ , one has

∣∣∣∣
∫

z=0
2εZαh∂ϕz (Sϕv)N · V α dy

∣∣∣∣ ≤ 2ε |Zαh|0 ‖∂ϕz (Sϕv)N‖L∞ |V α|0 (6.24)

≤ Λ∞ε
1
2 |h|Hm−1,1 |V α|0 .

For the first gravity term, one may use the boundary condition (3.47) to rewrite it as
∫

z=0
−(g − ∂ϕz q)Z

αhN · V α dy (6.25)

=

∫

z=0
−(g − ∂ϕz q)Z

αh (∂tZ
αh+ vy · ∇yZ

αh+ ∂ϕz v ·NZαh− Cα(h)) dy.

Integrating by parts in t and using (6.4) lead to
∫

z=0
− (g − ∂ϕz q) Z

αh∂tZ
αhdy ≤ −1

2

d

dt

∫

z=0
(g − ∂ϕz q) |Zαh|2 dy + Λ∞ |h|2

Hm−1,1 . (6.26)

The integration by parts in y gives
∣∣∣∣
∫

z=0
(g − ∂ϕz q)Z

αhvy · ∇yZ
αhdy

∣∣∣∣ ≤ Λ∞ |h|2
Hm−1,1 . (6.27)

Due to (3.48), one has
∣∣∣∣
∫

z=0
(g − ∂ϕz q)Z

αh (∂ϕz v ·NZαh− Cα(h)) dy

∣∣∣∣ ≤ Λ∞ |h|
Hm−1,1 (|h|Hm−1,1 + |v|

Hm−1) . (6.28)

Hence, in light of the estimates (6.26)–(6.28), one may conclude from (6.25) that
∫

z=0
−(g − ∂ϕz q)Z

αhN · V α dy (6.29)

≤ −1

2

d

dt

∫

z=0
(g − ∂ϕz q) |Zαh|2 dy + Λ∞

(
|h|2

Hm−1,1 + |v|2
Hm−1

)
.

To deal with the second term involving surface tension, one has by (5.13) that

∫

z=0
σZαHN · V α dy =

∫

z=0
σ∇y ·

(
∇yZ

αh√
1 + |∇yh|2

− ∇yh · ∇yZ
αh

√
1 + |∇yh|2

3∇yh+ C(Bα
σ )

)
N · V α dy,

(6.30)

where C(Bα
σ ) is defined by (5.14). By Lemma 3.6, one may deduce

∫

z=0
σ∇y · C(Bα

σ )N · V α dy ≤ σ |∇y · C(Bα
σ )|0 |∂tZαh+ vy · ∇yZ

αh+ ∂ϕz v ·NZαh− Cα(h)|0
≤ Λ∞σ |h|Hm−1,2 (|h|Hm,1 + |h|

Hm−1,2 + |h|
Hm−1,1 + |v|

Hm−1)

≤ Λ∞σ |h|Hm−1,2 (|h|Hm,1 + |v|
Hm−1) . (6.31)

To study the other two terms, one rewrite it as, by using the boundary condition (3.47) again,

∫

z=0
σ∇y ·

(
∇yZ

αh√
1 + |∇yh|2

− ∇yh · ∇yZ
αh

√
1 + |∇yh|2

3∇yh

)
N · V α dy (6.32)

=

∫

z=0
σ∇y ·

(
∇yZ

αh√
1 + |∇yh|2

− ∇yh · ∇yZ
αh

√
1 + |∇yh|2

3∇yh

)
(∂tZ

αh+ vy · ∇yZ
αh) dy +Rα

B1
σ
,
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where

Rα
B1
σ
=

∫

z=0
σ∇y ·

(
∇yZ

αh√
1 + |∇yh|2

+
∇yh · ∇yZ

αh
√

1 + |∇yh|2
3∇yh

)
(∂ϕz v ·NZαh− Cα(h)) dy. (6.33)

It follows from an integration by parts, (3.49) and (3.50) that

Rα
B1
σ
. σ

∣∣∣∣∣
∇yZ

αh√
1 + |∇yh|2

− ∇yh · ∇yZ
αh

√
1 + |∇h|23

∇yh

∣∣∣∣∣
0

∣∣∣∇y

(
∂ϕz v ·NZαh− C̃α(h)

)∣∣∣
0

(6.34)

+ σ

∣∣∣∣∣∇y ·
(

∇yZ
αh√

1 + |∇yh|2
− ∇yh · ∇yZ

αh
√

1 + |∇h|23
∇yh

)∣∣∣∣∣
− 1

2

∣∣Zα−α1vy · ∇yZ
α1h
∣∣
1
2

≤ Λ∞

(
σ |h|

Hm−1,2 (|h|Hm−1,2 + |v|
Hm−2,1) + σ |h|

H
m−1, 52

|v|
H

m−1, 12

)
.

Integrating by parts in both y and t, one finds that

∫

z=0
σ∇y ·

(
∇yZ

αh√
1 + |∇yh|2

− ∇yh · ∇yZ
αh

√
1 + |∇h|23

∇yh

)
∂tZ

αhdy (6.35)

= −1

2

d

dt

∫

z=0
σ

(
|∇yZ

αh|2√
1 + |∇yh|2

− |∇yh · ∇yZ
αh|2

√
1 + |∇yh|2

3

)
dy +Rα

B2
σ
,

where

Rα
B2
σ
=

1

2

∫

z=0
σ

(
∂t

(
1√

1 + |∇yh|2

)
|∇yZ

αh|2 − ∂t

(
1

√
1 + |∇yh|2

3

)
|∇yh · ∇yZ

αh|2 (6.36)

−∇yh · ∇yZ
αh

√
1 + |∇yh|2

3∇y∂th · ∇yZ
αh

)
dy

≤ Λ∞σ |h|2Hm−1,2 .

Similarly, the integration by parts twice yields

−
∫

z=0
σ∇y ·

(
∇yZ

αh√
1 + |∇yh|2

− ∇yh · ∇yZ
αh

√
1 + |∇h|23

∇yh

)
vy · ∇yZ

αhdy ≤ Λ∞σ |h|2Hm−1,2 . (6.37)

Hence, by the estimates (6.31), (6.34)–(6.37), one may conclude from (6.30) that

∫

z=0
σZαHN · V α dy ≤− 1

2

d

dt

∫

z=0
σ

(
|∇yZ

αh|2√
1 + |∇yh|2

− |∇yh · ∇yZ
αh|2

√
1 + |∇yh|2

3

)
dy (6.38)

+ Λ∞

(
σ |h|

Hm−1,2 |h|Hm,1 + σ |h|
H

m−1, 52
|v|

H
m−1, 12

)
.

Note also that Lemma A.4 implies that

|V α|0 . |v|
Hm−1,1 + Λ∞ |h|

Hm−1,1 and |V α| 1
2
. |v|

H
m−1, 32

+ Λ∞ |h|
H

m−1, 32
. (6.39)

Consequently, plugging the estimates (6.22)–(6.24), (6.29) and (6.38) into (6.21), by (6.39) and
Cauchy’s inequality, one may finish the estimates of Iα

0 as:

Iα
0 ≤− 1

2

d

dt

∫

z=0
(g − ∂ϕz q) |Zαh|2 + σ

(
|∇yZ

αh|2√
1 + |∇yh|2

− |∇yh · ∇yZ
αh|2

√
1 + |∇yh|2

3

)
dy (6.40)

+ Λ∞

(
|h|2

Hm−1,1 + |v|2
Hm−1 + σ |h|

Hm−1,2 |h|Hm,1 + σ |h|
H

m−1, 52
|v|

H
m−1, 12

+ε
(
|v|2

Hm−1,1 + |h|2
H

m−1, 32
+ |h|

H
m−1, 32

|v|
H

m−1, 32

))
.
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It also follows from (3.42) and (6.39) that Iα
b admits the following bound:

Iα
b = −

∫

z=−b
(2εSϕV αe3)i · V α

i dy = −
∫

z=−b
2ε (κV α

i − Eα(v)i3) · V α
i dy (6.41)

≤ Λ∞ε (|V α|0 + |v|
Hm−1,1 + |h|

Hm−1,1) |V α|0
≤ Λ∞ε

(
|v|2

Hm−1,1 + |h|2
Hm−1,1

)
.

Next, the commutator RC is estimated by using (3.18), (3.15), (3.16), (6.2), (6.5) and (6.4)
as

Rα
C ≤ Λ∞ ((‖Zαη‖+ ‖Cα(T )‖+ ‖Cα(q)‖) ‖V α‖+ ‖Cα(d)‖ ‖Qα‖) (6.42)

≤ Λ∞

(
|h|

H
m,− 1

2
+ ‖v‖

Hm−1 + ‖∇v‖
Hm−1 + ‖∇q‖

Hm−1

)(
‖v‖

Hm−1,1 + |h|
H

m−1, 12

)

+Λ∞

(
‖∇v‖

Hm−1 + |h|
H

m−1, 12

)(
‖q‖

Hm−1,1 + |h|
H

m−1, 12

)

≤ Λ∞

(
|h|

H
m,− 1

2
+ σ |h|

Hm−1,2 + ‖v‖
Hm + ‖∇v‖

Hm−1 + ε |v|
H

m−1, 32
+ ε |h|

H
m−1, 32

)

×
(
‖v‖

Hm−1,1 + ‖∇v‖
Hm−1 + |h|

H
m−1, 12

)
.

It remains to estimate the commutator Rα
S . First, it follows from the integration by parts,

(3.17) and (3.42) that
∫

Ω
ε∇ϕ(Eα(v)

)
· V αdVt = −

∫

Ω
ε Eα(v) · ∇V αdVt +

∫

z=0
ε Eα(v)N · V α dy (6.43)

≤ Λ∞ε
((

‖∇v‖
Hm−1 + |h|

H
m−1, 12

)
‖∇V α‖+ (|h|

Hm−1,1 + |v|
Hm−1,1) |V α|0

)
.

Next, for the first term, one actually has to estimate

Rα
Si = ε

∫

Ω
Cα
j (S

ϕv)ijV
α
j dVt (6.44)

= ε

∫

Ω
Cα
j,1(S

ϕv)ijV
α
j dVt + ε

∫

Ω
Cα
j,2(S

ϕv)ijV
α
j dVt + ε

∫

Ω
Cα
j,3(S

ϕv)ijV
α
j dVt

:= Rα,1
Si +Rα,2

Si +Rα,3
Si

due to (3.2). For Rα,1
Si , by (3.3), it suffices to estimate terms like

ε

∫

Ω
Zβ
(∂jϕ
∂zϕ

)(
Z γ̃∂z(S

ϕv)ij
)
V α
j dVt,

where β and γ̃ are such that β 6= 0, γ̃ 6= 0 and |β| + |γ̃| = m. By using (3.11), one can reduce
the problem to the estimate of

ε

∫

Ω
cγZ

β
(∂jϕ
∂zϕ

)
∂z
(
Zγ(Sϕv)ij

)
V α
j dVt

with β as before (thus |β| ≤ m− 1) and |γ| ≤ |γ̃| ≤ m− 1. The integration by parts shows that
it suffices to estimate three types of terms:

I1 = ε

∫

Ω
Zβ
(∂jϕ
∂zϕ

)
Zγ(Sϕv)ij ∂zV

α
j dVt,

I2 = ε

∫

Ω

(
∂zZ

β
(∂jϕ
∂zϕ

))
Zγ(Sϕv)ijV

α
j dVt,

and

I3 = ε

∫

z=0
Zβ
(∂jϕ
∂zϕ

)
Zγ(Sϕv)ijV

α
j dy.

For I1 and I2, since β 6= 0, it follows from (A.1), (3.7) and Lemma B.2 that

|I1| ≤ Λ∞ε
(
‖∇v‖

Hm−1 + |h|
H

m−1, 12

)
‖∇V α‖
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and

|I2| ≤ Λ∞ε
(
‖∇v‖

Hm−1 + |h|
H

m−1, 32

)
‖V α‖ .

By (A.1), β 6= 0 and Lemma 3.4, it holds that

|I3| ≤ Λ∞ε (|h|Hm−1,1 + |∇v|
Hm−1) |V α|0 ≤ Λ∞ε (|h|Hm−1,1 + |v|

Hm−1,1) |V α|0 .
Consequently, one can get from the previous three estimates that
∣∣∣Rα,1

Si

∣∣∣ ≤ Λ∞ε
((

‖∇v‖
Hm−1 + |h|

H
m−1, 12

)
‖∇V α‖+

(
‖∇v‖

Hm−1 + |h|
H

m−1, 32

)
‖V α‖ (6.45)

+ (|h|
Hm−1,1 + |v|

Hm−1,1) |V α|0) .
The estimate of Rα,2

Si is straightforward, one gets from the definition (3.4) that
∣∣∣Rα,2

Si

∣∣∣ ≤ Λ∞ε
1
2 |h|

H
m−1, 12

‖V α‖ . (6.46)

To estimate Rα,3
Si , one derives from (3.5) and (3.11) that

ε

∣∣∣∣
∫

Ω

∂iϕ

(∂zϕ)2
∂z
(
Sϕv)[Zα, ∂z]ϕV

α
j dVt

∣∣∣∣ ≤ Λ∞ε
1
2 |h|

H
m−1, 12

‖V α‖ .

Note that one has used again in the previous two estimates the fact that Λ∞ involves ε
1
2 ‖∂zzv‖L∞ .

For the term

ε

∫

Ω

∂iϕ

∂zϕ
V α [Zα, ∂z ](S

ϕv)dVt,

performing an integration by parts and using a similar arguments as for R1
Si show that

∣∣∣∣
∫

Ω

∂iϕ

∂zϕ
V α [Zα, ∂z ](S

ϕv)dVt

∣∣∣∣ ≤ Λ∞ε ‖∇v‖Hm−1 (‖V α‖+ ‖∇V α‖) .

Consequently,
∣∣∣Rα,3

Si

∣∣∣ ≤ Λ∞

(
ε

1
2 |h|

H
m−1, 12

‖V α‖+ ε ‖∇v‖
Hm−1 (‖V α‖+ ‖∇V α‖)

)
. (6.47)

It then follows from (6.45)–(6.47) that

ε

∣∣∣∣
∫

Ω
Dα(Sϕv) · V αdVt

∣∣∣∣ ≤ Λ∞

((
ε

1
2 |h|

H
m−1, 12

+ ε |h|
H

m−1, 32
+ ε ‖∇v‖

Hm−1

)
‖V α‖ (6.48)

+ε
(
‖∇v‖

Hm−1 + |h|
H

m−1, 12

)
‖∇V α‖+ (|h|

Hm−1,1 + |v|
Hm−1,1) |V α|0

)
.

This, together with (6.43), (6.2) and (6.39), implies that

Rα
S ≤Λ∞

((
ε

1
2 |h|

H
m−1, 12

+ ε |h|
H

m−1, 32
+ ε ‖∇v‖

Hm−1

)(
‖v‖

Hm−1,1 + |h|
H

m−1, 12

)
(6.49)

+ε
(
‖∇v‖

Hm−1 + |h|
H

m−1, 12

)
‖∇V α‖+ |h|2

Hm−1,1 + |v|2
Hm−1,1

)
.

We can now finish the proof of the proposition. By the estimates (6.40)–(6.42) and (6.49),
the trace estimates

|v|
H

m−1, 12
. ‖v‖

Hm−1 + ‖∇v‖
Hm−1 and |v|

Hm−1,1 . ‖∇v‖
1
2

Hm−1,1 ‖v‖
1
2

Hm−1,1 + ‖v‖
Hm−1,1 , (6.50)

using Cauchy’s inequality, one may deduce from (6.16) that

1

2

d

dt
Eα + 2ε

∫

Ω
|SϕV α|2 dVt (6.51)

≤ Λ∞

(
|h|2

Hm−1,1 + σ |h|
Hm−1,2 |h|Hm,1 + σ |h|

H
m−1, 52

(‖v‖
Hm−1,1 + ‖∇v‖

Hm−1)

+ |h|2
H

m,− 1
2
+ ‖∇v‖2

Hm−1 + ‖v‖2
Hm + ε |h|2

H
m−1, 32

+ ε |v|
H

m−1, 32

(
‖v‖

Hm−1,1 + ‖∇v‖
Hm−1 + |h|

H
m−1, 32

)

+ε
(
‖∇v‖

Hm−1 + |h|
H

m−1, 12

)
‖∇V α‖

)
,
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where

Eα :=

∫

Ω
|V α|2 dVt +

∫

z=0
(g − ∂ϕz q) |Zαh|2 + σ

(
|∇yZ

αh|2√
1 + |∇yh|2

− |∇yh · ∇yZ
αh|2

√
1 + |∇yh|2

3

)
dy. (6.52)

It follows from (6.2), the Taylor sign condition in (6.1) and (5.18) that

‖Zαv‖2 + |Zαh|20 + σ |Zαh|21 ≤ Λ

(
1

c0

)
Eα.

One can use the Korn inequality of Lemma C.2 and (6.2) to get that

‖∇V α‖2 ≤ Λ

(
1

c0

)(∫

Ω
|SϕV α|2 dVt + ‖v‖2

Hm−1,1 + |h|2
H

m−1, 12

)
.

On the other hand, by the definition of V α,

ε ‖∇Zαv‖2 ≤ ε ‖∇V α‖2 +Λ∞

(
ε ‖h‖2

H
m−1, 32

+ ‖h‖2
H

m−1, 12

)
.

Then integrating (6.51) in time, using the trace estimate |v|
H

m−1, 32
. ‖∇v‖

Hm−1,1 + ‖v‖
Hm−1,1

and Cauchy’s inequality, together with (6.10), one deduces that

‖v(t)‖2
Hm−1,1 + |h(t)|2

Hm−1,1 + σ |h(t)|2
Hm−1,2 + ε

∫ t

0
‖∇v‖2

Hm−1,1 (6.53)

≤ Λ0

(
‖v(0)‖2

Hm−1,1 + |h(0)|2
Hm−1,1 + σ |h(0)|2

Hm−1,2

)

+

∫ t

0
Λ∞

(
|h|2

Hm−1,1 + σ |h|
Hm−1,2 |h|Hm,1 + σ |h|

H
m−1, 52

(‖v‖
Hm−1,1 + ‖∇v‖

Hm−1)

+ |h|2
H

m,− 1
2
+ ‖∇v‖2

Hm−1 + ‖v‖2
Hm + ε |h|2

H
m−1, 32

)
.

This, together with (6.6), (6.9) and Cauchy’s inequality, leads to (6.15). �

6.3. Estimate of (∂mt v, ∂
m
t h). We now derive the energy estimates of (∂mt v, ∂

m
t h), that is, the

case α0 = m.

Proposition 6.3. Any smooth solution of (1.9) satisfies the estimate
∫ t

0

(
‖∂mt v‖20 + |∂mt h|20 + σ |∂mt h|21 + ε |h|2

H
m, 12

)2
+

∫ t

0

(
ε

∫ s

0
‖∇∂mt v‖20

)2

(6.54)

≤ tΛ0

(
‖∂mt v(0)‖20 + |∂mt h(0)|20 + σ |∂mt h(0)|21 + ε |h(0)|2

H
m, 12

)2

+ t

(∫ t

0
Λ∞

(
|h|2

Hm + σ |h|2
Hm,1 + ‖v‖2

Hm + ‖∂zv‖2Hm−1 + ε ‖∇v‖2
Hm−1,1 + ε |h|2

H
m, 12

))2

+

∫ t

0
Λ∞

(
|h|2

H
m−1, 12

+ σ |h|2
Hm−1,2 + ‖v‖2

Hm−1,1 + ‖∂zv‖2Hm−2

)

×
(
|h|2

H
m,− 1

2
+ σ |h|2

Hm,1 + ‖v‖2
Hm + ‖∂zv‖2Hm−1 + ε2 |v|2

H
m−1, 32

+ ε2 |h|2
H

m−1, 32

)
.

Proof. In the current case, (6.16) can be restated as:

1

2

d

dt

∫

Ω
|V m|2 dVt + 2ε

∫

Ω
|SϕV m|2 dVt = Im

0 + Im
b +Rm

Q +Rm
C +Rm

S , (6.55)

where

Im
0 =

∫

z=0
(2εSϕV m −QmI)N · V m dy, (6.56)

Im
b = −

∫

z=0
(2εSϕV m −QmI) e3 · V m dy, (6.57)

Rm
Q = −

∫

Ω
Cm(d)∂mt q dVt, (6.58)
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Rm
C =

∫

Ω
((∂ϕz v · ∇ϕv∂mt η − Cm(T )− Cm(q)) · V m + Cm(d)∂ϕz q∂

m
t η) dVt, (6.59)

Rm
S =

∫

Ω
(εDm(Sϕv) + ε∇ϕ · Em(v)) · V m dVt. (6.60)

Here V m = ∂mt v − ∂ϕz v∂mt η, Q
m = ∂mt q − ∂ϕz v∂mt η, and Cm(·) are those commutators Cα(·) for

the case α0 = m. Note that we have singled out the term Rm
Q from Rm

C .

We first estimate Im
0 , which can be rewritten as (similar to (6.21))

Im
0 =

∫

z=0
−(g − ∂ϕz q)∂

m
t hN · V m dy +

∫

z=0
σ∂mt HN · V m dy +

∫

z=0
εCm(Bε) · V m dy (6.61)

−
∫

z=0
2εSϕvΠ∂mt N · V m dy −

∫

z=0
2ε∂mt h∂

ϕ
z

(
Sϕv

)
N · V m dy.

Following the analysis in (6.22)–(6.24), one can bound the last three terms in (6.61) by

Λ∞

(
ε (|v|

Hm−1,1 + |h|
Hm−1,1) |V m|0 + ε |h|

H
m, 12

|V m| 1
2
+ ε

1
2 |h|

Hm |V m|0
)
. (6.62)

As (6.29), one deduces
∫

z=0
−(g − ∂ϕz q)∂

m
t hN · V m dy (6.63)

≤ −1

2

d

dt

∫

z=0
(g − ∂ϕz q) |∂mt h|2 dy + Λ∞

(
|h|2

Hm + |v|2
Hm−1

)
.

However, as explained in Section 2, one can not use the arguments leading to (6.38) to estimate∫
z=0 σ∂

m
t HN · V m dy since there is one half regularity loss for ∂mt h so that it is difficult to

control the following term, after using the kinematic boundary condition,

−
∫

z=0
σ∂mt Hm∂tN · ∂m−1

t v dy. (6.64)

The crucial observation here is that, this term will be cancelled out from estimating the term
Rm

Q defined by (6.58). So the estimates of this term will be postponed till we estimate Rm
Q .

Similarly as (6.41), Im
b admits the bound

Im
b ≤ Λ∞ε (|V m|0 + |v|

Hm−1,1 + |h|
Hm−1,1) |V m|0 . (6.65)

We now estimate Rm
Q . Note carefully that there is no any estimates of ∂mt q, so one needs to

integrate by parts in t. To continue, one needs more explicit expression of Cm(d). Indeed, we
will use a variant of (3.2). It follows from the divergence free condition that

∂zϕ (∂1v1 + ∂2v2) + ∂zv ·N = 0.

Applying ∂mt to the above and using the definition of Cm(d), one gets that

∂zϕCm(d) = [∂mt ,N, ·∂zv] + [∂mt , ∂zη, ∂1v1 + ∂2v2] . (6.66)

Moreover, to integrate by parts in t, one needs to single out in Cm(d) the highest m− 1 order
time derivatives terms and use the following decomposition

∂zϕCm(d) = Cm(d)1 + Cm(d)2 + Cm(d)3 + Cm(d)4 + Cm(d)5 (6.67)

with

Cm(d)1 =m∂tN · ∂m−1
t ∂zv, (6.68)

Cm(d)2 =m∂t∂zη∂
m−1
t (∂1v1 + ∂2v2), (6.69)

Cm(d)3 =m∂m−1
t N · ∂t∂zv, (6.70)

Cm(d)4 =m∂m−1
t ∂zη∂t(∂1v1 + ∂2v2), (6.71)

Cm(d)5 =
m−2∑

ℓ=2

Cℓ
m

(
∂ℓtN · ∂m−ℓ

t ∂zv + ∂ℓt∂zη · ∂m−ℓ
t (∂1v1 + ∂2v2)

)
. (6.72)
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Accordingly,

Rm
Q = −

∫

Ω
(Cm(d)1 + Cm(d)2 + Cm(d)3 + Cm(d)4 + Cm(d)5) ∂

m
t q dydz. (6.73)

The fifth term in (6.73) can be easily treated by the integration by parts in t as

−
∫

Ω
Cm(d)5∂

m
t q dydz = − d

dt

∫

Ω
Cm(d)5∂

m−1
t q dydz +Rm

5 , (6.74)

with

Rm
5 =

∫

Ω
∂tCm(d)5∂

m−1
t q dydz ≤ Λ∞

(
|h|

H
m−1, 12

+ ‖∂zv‖Hm−2

)∥∥∂m−1
t q

∥∥ . (6.75)

Integrate by parts in t to write the fourth term as

−
∫

Ω
Cm(d)4∂

m
t q dydz = − d

dt

∫

Ω
Cm(d)4∂

m−1
t q dydz +Rm

4 , (6.76)

where, by further integrating by parts in z and the trace theory,

Rm
4 =

∫

Ω
m
(
∂mt ∂zη∂t(∂1v1 + ∂2v2) + ∂m−1

t ∂zη∂
2
t (∂1v1 + ∂2v2)

)
∂m−1
t q dydz (6.77)

=

∫

z=0
m∂mt h∂t (∂1v1 + ∂2v2) ∂

m−1
t q dy −

∫

Ω
m∂mt η∂z

(
(∂1v1 + ∂2v2) ∂

m−1
t q

)
dydz

+

∫

Ω
m∂m−1

t ∂zη∂
2
t (∂1v1 + ∂2v2)∂

m−1
t q dydz

≤ Λ∞

(
|∂mt h|− 1

2

∣∣∂m−1
t q

∣∣
1
2
+ ‖∂mt η‖

∥∥∂m−1
t q

∥∥
H1 +

∥∥∂m−1
t ∂zη

∥∥ ∥∥∂m−1
t q

∥∥
)

≤ Λ∞ |h|
H

m,− 1
2

∥∥∂m−1
t q

∥∥
H1 .

Similarly, integrate by parts in both t and y to bound the second and third terms by

−
∫

Ω
(Cm(d)2 + Cm(d)3) ∂

m
t q dydz = − d

dt

∫

Ω
(Cm(d)2 + Cm(d)3) ∂

m−1
t q dydz +Rm

2,3, (6.78)

where

Rm
2,3 =

∫

Ω
∂t (Cm(d)2 + Cm(d)3) ∂

m−1
t q dydz (6.79)

≤ Λ∞

(
|h|

H
m−1, 12

+ ‖v‖
Hm + ‖∇v‖

H2

) ∥∥∂m−1
t q

∥∥
H1 .

Finally, we turn to the most delicate term, the one involving Cm(d)1 in (6.73). Integrate by
parts in z first to get

−
∫

Ω
Cm(d)1∂

m
t q dydz = −

∫

z=0
m∂tN · ∂m−1

t v∂mt q dy+

∫

Ω
m∂z (∂

m
t q∂tN) · ∂m−1

t v dydz. (6.80)

Then integrate by parts in t to obtain
∫

Ω
m∂z (∂

m
t q∂tN) · ∂m−1

t v dydz =
d

dt

∫

Ω
m∂z

(
∂m−1
t q∂tN

)
· ∂m−1

t v dydz +Rm
1 , (6.81)

with

Rm
1 = −

∫

Ω
m∂z

(
∂m−1
t q∂tN

)
· ∂mt v +m∂z

(
∂m−1
t q∂2tN

)
· ∂m−1

t v dydz (6.82)

≤ Λ∞ ‖v‖
Hm

∥∥∂z∂m−1
t q

∥∥ .
Note carefully that we integrate by parts in z first rather than in t since there is no estimates
of ∂mt v on the boundary. This also indicates the difficulty in controlling the first term in the
right hand side of (6.80) since one can no longer integrate by parts in t. Recall here that there
was also one term out of control, that is, (6.64). Our crucial observation is that there is a
cancelation between them since q = gh − σH + 2εSϕv n · n on {z = 0}. This motivates us to
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estimate together the first term in (6.80) and the second surface tension term in (6.61), by the
kinematic boundary condition,

∫

z=0
σ∂mt HN · V m dy −

∫

z=0
m∂tN · ∂m−1

t v∂mt q dy (6.83)

=

∫

z=0
σ∂mt H

(
N · V m +m∂tN · ∂m−1

t v
)
dy

−
∫

z=0
m∂tN · ∂m−1

t v (g∂mt h+ 2ε∂mt (Sϕv n · n)) dy

=

∫

z=0
σ∂mt H

(
∂m+1
t h+ vy · ∇y∂

m
t h+ ∂ϕz v ·N∂mt h− C̃m(h)

)
dy

−
∫

z=0
m∂tN · ∂m−1

t v (g∂mt h+ 2ε∂mt (Sϕv n · n)) dy,

where C̃m(h) is the commutator C̃α(h) defined by (3.53) for the case α0 = m. Note that the
last term in (6.83) can be estimated as follows, thanks to Lemma 3.4,

−
∫

z=0
m∂tN · ∂m−1

t v (g∂mt h+ 2ε∂mt (Sϕv n · n)) dy (6.84)

≤ Λ∞

∣∣∂m−1
t v

∣∣
1
2

(
|∂mt h|− 1

2
+ ε |∂mt (Sϕv n · n)|− 1

2

)

≤ Λ∞

∣∣∂m−1
t v

∣∣
1
2

(
|∂mt h|− 1

2
+ ε |h|

H
m, 12

+ ε |v|
H

m, 12

)
.

The integration by parts and (3.50) yield
∫

z=0
σ∂mt H

(
∂ϕz v ·N∂mt h− C̃m(h)

)
dy (6.85)

≤ σ

∣∣∣∣∣∂
m
t

(
∇yh√

1 + |∇yh|2

)∣∣∣∣∣
0

∣∣∣∇y

(
∂ϕz v ·N∂mt h− C̃m(h)

)∣∣∣
0

≤ Λ∞σ |h|Hm,1 (|∂mt h|1 + |h|
Hm−1,2 + |v|

Hm−2,1) .

It follows from (5.13) and (5.14) that
∫

z=0
σZαH

(
∂m+1
t h+ vy · ∇y∂

m
t h
)
dy (6.86)

=

∫

z=0
σ∇y ·

(
∇y∂

m
t h√

1 + |∇yh|2
− ∇yh · ∇y∂

m
t h√

1 + |∇yh|2
3∇yh+ C(Bm

σ )

)
(
∂m+1
t h+ vy · ∇y∂

m
t h
)
dy,

where

C(Bm
σ ) = −

[
∂m−1
t ,

∇yh√
1 + |∇yh|2

3

]
· ∇y∂th∇yh+

[
∂mt ,

1√
1 + |∇h|2

,∇yh

]
. (6.87)

Similarly as (6.35)–(6.37), one can deduce that
∫

z=0
σ∇y ·

(
∇y∂

m
t h√

1 + |∇yh|2
− ∇yh · ∇y∂

m
t h√

1 + |∇yh|2
3∇yh

)
(
∂m+1
t h+ vy · ∇y∂

m
t h
)
dy (6.88)

≤ −1

2

d

dt

∫

z=0
σ

(
|∇y∂

m
t h|2√

1 + |∇yh|2
− |∇yh · ∇y∂

m
t h|2√

1 + |∇yh|2
3

)
dy + Λ∞σ |h|2Hm,1 .

Integrate by parts in both t and y to have
∫

z=0
σ∇y · (C(Bm

σ )) ∂m+1
t hdy ≤ − d

dt

∫

z=0
σC(Bm

σ ) · ∇y∂
m
t hdy +

∫

z=0
σ∂tC(Bm

σ ) · ∇y∂
m
t hdy

≤ − d

dt

∫

z=0
σC(Bm

σ ) · ∇y∂
m
t hdy + Λ∞σ |h|2Hm,1 . (6.89)
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One easily has
∫

z=0
σ∇y · (C(Bm

σ )) vy · ∇y∂
m
t hdy ≤ Λ∞σ |h|Hm−1,2 |h|Hm,1 . (6.90)

Hence, by the estimates (6.84), (6.85), (6.88)–(6.90), one may conclude from (6.83) that
∫

z=0
σ∂mt HN · V m dy −

∫

z=0
m∂tN · ∂m−1

t v∂mt q dy (6.91)

≤ −1

2

d

dt

∫

z=0
σ

(
|∇y∂

m
t h|2√

1 + |∇yh|2
− |∇yh · ∇y∂

m
t h|2√

1 + |∇yh|2
3

)
dy − d

dt

∫

z=0
σC(Bm

σ ) · ∇y∂
m
t hdy

+ Λ∞

(
σ |h|2

Hm,1 + σ |h|
Hm,1 |v|Hm−2,1 +

∣∣∂m−1
t v

∣∣
1
2

(
|∂mt h|− 1

2
+ ε |h|

H
m, 12

+ ε |v|
H

m, 12

))
.

This in particular finishes the estimates of the second surface tension term in (6.61) and Rm
Q ,

which can be stated as follows:
∫

z=0
σ∂mt HN · V m dy +Rm

Q (6.92)

≤ −1

2

d

dt

∫

z=0
σ

(
|∇y∂

m
t h|2√

1 + |∇yh|2
− |∇yh · ∇y∂

m
t h|2√

1 + |∇yh|2
3

)
dy − d

dt
Gm

+ Λ∞

(
σ |h|2

Hm,1 + σ |h|
Hm,1 |v|Hm−2,1 +

∣∣∂m−1
t v

∣∣
1
2

(
|∂mt h|− 1

2
+ ε |h|

H
m, 12

+ ε |v|
H

m, 12

))

+ Λ∞

(
|h|

H
m−1, 12

+ ‖v‖
Hm + ‖∇v‖

H2

)∥∥∂m−1
t q

∥∥
H1 ,

where

Gm =

∫

Ω
(Cm(d)2 + Cm(d)3 + Cm(d)4 + Cm(d)5) ∂

m−1
t q dydz (6.93)

−
∫

Ω
m∂z

(
∂m−1
t q∂tN

)
· ∂m−1

t v dydz +

∫

z=0
σC(Bm

σ ) · ∇y∂
m
t hdy.

It remains to estimates the commutators Rm
C and Rm

S . It follows from (3.18), (3.15), (3.16),
(6.2), (6.5) and (6.4) that

Rm
C ≤ Λ∞ ((‖∂mt η‖+ ‖Cm(T )‖+ ‖Cm(q)‖) · V m + ‖Cm(d)‖ ‖∂mt η‖) (6.94)

≤ Λ∞

(
|h|

H
m,− 1

2
+ ‖v‖

Hm−1 + ‖∇v‖
Hm−1 + ‖∇q‖

Hm−1

)
(‖V m‖+ ‖∂mt η‖)

≤ Λ∞

(
|h|

H
m,− 1

2
+ σ |h|

Hm−1,2 + ‖v‖
Hm + ‖∇v‖

Hm−1 + ε |v|
H

m−1, 32
+ ε |h|

H
m−1, 32

)

×
(
‖v‖

Hm + |h|
H

m,− 1
2

)
.

Similarly as (6.49), it holds that

Rm
S ≤Λ∞

((
ε

1
2 |h|

H
m−1, 12

+ ε |h|
H

m−1, 32
+ ε ‖∇v‖

Hm−1

)(
‖v‖

Hm + |h|
H

m,−1
2

)
(6.95)

+ε
(
‖∇v‖

Hm−1 + |h|
H

m−1, 12

)
‖∇V m‖+ (|h|

Hm−1,1 + |v|
Hm−1,1) (|h|Hm + |v|

Hm)
)
.

We can now finish the proof of the proposition. As a consequence of (6.62), (6.63), (6.65),
(6.92), (6.94), (6.95) and Cauchy’s inequality, one may deduce from (6.16) that

1

2

d

dt
Em +

d

dt
Gm + 2ε

∫

Ω
|SϕV m|2 dVt (6.96)

≤ Λ∞

(
|h|2

Hm + σ |h|2
Hm,1 + ‖∇v‖2

Hm−1 + ‖v‖2
Hm + ε |v|2

Hm + ε |h|2
H

m, 12

+ε |v|
H

m, 12

(
‖v‖

Hm + ‖∇v‖
H2 + |h|

H
m, 12

)
+ ε

(
‖∇v‖

Hm−1 + |h|
H

m−1, 12

)
‖∇V m‖

)
,
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where

Em :=

∫

Ω
|V m|2 dVt+

∫

z=0
(g − ∂ϕz q) |∂mt h|2+σ

(
|∇y∂

m
t h|2√

1 + |∇yh|2
− |∇yh · ∇y∂

m
t h|2√

1 + |∇yh|2
3

)
dy. (6.97)

Similarly as (6.53), by the trace estimates

|v|
H

m, 12
. ‖v‖

Hm + ‖∇v‖
Hm and |v|

Hm . ‖∇v‖
1
2
Hm ‖v‖

1
2
Hm + ‖v‖

Hm ,

using Cauchy’s inequality and (6.7), one can then deduce that

‖∂mt v(t)‖2 + |∂mt h(t)|20 + σ |∂mt h(t)|21 + ε |h(t)|2
H

m, 12
+ ε

∫ t

0
‖∇∂mt v‖20 (6.98)

≤ Λ0

(
‖∂mt v(0)‖2 + |∂mt h(0)|20 + σ |∂mt h(0)|21 + ε |h(0)|2

H
m, 12

)
− Gm

+

∫ t

0
Λ∞

(
|h|2

Hm + σ |h|2
Hm,1 + ‖v‖2

Hm + ‖∂zv‖2Hm−1 + ε ‖∇v‖2
Hm−1,1 + ε |h|2

H
m, 12

)
.

Note that

−Gm ≤ Λ∞

((
|h|

H
m−1, 12

+ |v|
Hm−1,1 + ‖∂zv‖Hm−2

) ∥∥∂m−1
t q

∥∥
H1 + σ |h|

Hm−1,2 |h|Hm,1

)
. (6.99)

In contrast to the previous case, the difficulty here is that
∥∥∂m−1

t q
∥∥
H1 and hence −Gm are not

in L∞([0, T ]) but only in L2([0, T ]). Our basic idea is to integrate in time twice. Indeed, we
take the square and then integrate in time to have, by Cauchy’s inequality,
∫ t

0

(
‖∂mt v‖2 + |∂mt h|20 + σ |∂mt h|21 + ε |h|2

H
m, 12

)2
+

∫ t

0

(
ε

∫ s

0
‖∇∂mt v‖20

)2

(6.100)

≤ tΛ0

(
‖∂mt v(0)‖2 + |∂mt h(0)|20 + σ |∂mt h(0)|21 + ε |h(0)|2

H
m, 12

)2
+

∫ t

0
|Gm|2

+ t

(∫ t

0
Λ∞

(
|h|2

Hm + σ |h|2
Hm,1 + ‖v‖2

Hm + ‖∂zv‖2Hm−1 + ε ‖∇v‖2
Hm−1,1 + ε |h|2

H
m, 12

))2

.

It follows from (6.99) and (6.5) that
∫ t

0
|Gm|2 ≤

∫ t

0
Λ∞

((
|h|2

H
m−1, 12

+ |v|2
Hm−1,1 + ‖∂zv‖2Hm−2

)(
|h|

H
m,− 1

2
+ σ |h|

Hm−1,2 (6.101)

+ ‖v‖
Hm + ‖∂zv‖Hm−1 + ε |v|

H
m−1, 32

+ ε |h|
H

m−1, 32

)2
+ σ2 |h|2

Hm−1,2 |h|2Hm,1

)

≤
∫ t

0
Λ∞

(
|h|2

H
m−1, 12

+ σ |h|2
Hm−1,2 + |v|2

Hm−1,1 + ‖∂zv‖2Hm−2

)

×
(
|h|2

H
m,− 1

2
+ σ |h|2

Hm,1 + ‖v‖2
Hm + ‖∂zv‖2Hm−1 + ε2 |v|2

H
m−1, 32

+ ε2 |h|2
H

m−1, 32

)
.

We thus conclude (6.15) by plugging the estimate (6.101) into (6.100). �

7. Normal derivative estimates

In view of the conormal estimates in Propositions 6.2 and 6.3 in Section 6, the next main
step is to estimate ‖∂zv‖Hm−1 .

Recall the definition of Λ∞ from (6.3) and all the facts of the L∞ controls elaborated in
the beginning of Section 6. Note that Λ∞ involves only

√
ε ‖∂zzv‖L∞ . For the case without

surface tension [35] that involves only the spatial derivatives, this is sufficient for deriving
the normal derivative estimates since in such situation applying the product or commutator
estimates to control the commutators resulting from the viscosity term needs only the control
of

√
ε ‖∂zzv‖L∞ . However, in the current case that involves the time derivatives, following

the arguments of [35] would require the control of
√
ε ‖∂zzv‖Wk for some k ≥ 1. Recall from

Proposition 9.8 in [35] that deriving the bound of
√
ε ‖∂zzv‖L∞ requires a crucial use of the heat

kernel and the first order compatibility condition Sn|t=0 = 0 on the boundary. Hence, to control
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√
ε ‖∂zzv‖Wk , it seems to involve much more delicate use of the various properties of the heat

kernel for the time differentiated problems; furthermore, it should require more compatibility
conditions of initial data.

Our key observation here is that since in the vicinity of the boundary the solution behaves as
v(t, x) ∼ v0(t, x) +

√
εU(t, y, z/

√
ε), it indicates that there may be better control of ε∂zzv (and

even ε∂zzzv!) in Sobolev conormal spaces. This is indeed the case as shown in the following
lemma.

Lemma 7.1. It holds that

ε ‖∂zzv‖
W
[m2 ]+1 + ε ‖∂zzzv‖

W
[m2 ]

≤ Λ∞ (7.1)

and for k ≤ m− 1:

ε ‖∂zzv‖Hk ≤ Λ∞

(
ε
(
‖∂zv‖Hk,1 + |h|

H
k,32

)
+ ‖∂zv‖Hk + ‖v‖

Hk+1 + |h|
H

k+1,− 1
2
+ ‖∇q‖

Hk

)
(7.2)

and

ε ‖∂zzzv‖Hk−1 ≤ Λ∞

(
ε
(
‖∇v‖

Hk−1,2 + |h|
H

k−1, 52

)
+ |h|

H
k, 12

(7.3)

+ ‖∂zv‖Hk + ‖v‖
Hk,1 + ‖∇q‖

Hk−1,1 + ‖∂z∇q‖Hk−1

)
.

Proof. It follows from the first equation in (1.9), (3.21) and (4.6) that

ε∂zzv =
1

E33


−ε

∑

j<3

∂z (E3,j∂jv)− ε
∑

i<3, j

∂i (Eij∂jv) + ∂zϕ (∂tv + vy · ∇yv) + vz∂zv + ∂zϕ∇ϕq


 .

(7.4)

This implies that, since vz = 0 on the boundary,

ε ‖∂zzv‖
W
[m2 ]+1 ≤ Λ

(
1

c0
, ε
(
‖∇∇yv‖

W
[m2 ]+1 + |h|

W
[m2 ]+3

)
+ |h|

W
[m2 ]+2 (7.5)

+ ‖∂zv‖
W
[m2 ]+1 + ‖v‖

W
[m2 ]+2 + ‖∇q‖

W
[m2 ]+1

)
≤ Λ∞.

Applying ∂z to (7.4), using the estimate (7.5), one deduces

ε ‖∂zzzv‖
W
[m2 ]

≤ Λ

(
1

c0
, ε
(
|h|

W
[m2 ]+3 +

∥∥∇2∇yv
∥∥
W
[m2 ]

)
+ |h|

W
[m2 ]+2 (7.6)

+ ‖∂zv‖
W
[m2 ]+1 + ‖v‖

W
[m2 ]+2 + ‖∂z∇q‖

W
[m2 ]

+ ‖∇q‖
W
[m2 ]

)
≤ Λ∞,

where one has used the fact that, since vz = 0 on the boundary,

‖∂z(vz∂zv)‖
W
[m2 ]

≤ ‖∂zvz∂zv‖
W
[m2 ]

+ ‖vz∂zzv‖
W
[m2 ]

= ‖∂zvz∂zv‖
W
[m2 ]

+

∥∥∥∥
1

z(z + b)
vzZ3∂zv

∥∥∥∥
W
[m2 ]

. ‖∂zvz‖
W
[m2 ]

‖∂zv‖
W
[m2 ]

+ ‖∂zvz‖
W
[m2 ]

‖∂zv‖
W
[m2 ]+1 . (7.7)

Combining (7.5) and (7.7) proves the estimates (7.1).
The estimates (7.2)–(7.3) follow by a similar argument as that for (7.1). Indeed, it follows

from (7.4) and (A.1) that for k ≥ m− 1,

ε ‖∂zzv‖Hk ≤ Λ∞

(
ε
(
‖∇∇yv‖Hk + |h|

H
k,32

)
+ |h|

H
k, 12

+ ‖∂zv‖Hk + ‖v‖
Hk+1 + |h|

H
k+1,− 1

2
+ ‖∇q‖

Hk

)
.

This yields (7.2). Now applying Zi, i = 1, 2, 3 to (7.4) and then using (A.1) again lead to

ε ‖∂zzv‖Hk−1,1 ≤ Λ∞

(
ε
(
‖∇∇yv‖Hk−1,1 + |h|

H
k−1, 52

)
+ |h|

H
k−1, 32

(7.8)

+ ‖∂zv‖Hk−1,1 + ‖v‖
Hk,1 + |h|

H
k,12

+ ‖∇q‖
Hk−1,1

)
.

Then applying ∂z to (7.4) and using the estimate (7.1) and the similar observation as in (7.7)
give

ε ‖∂zzzv‖Hk−1 ≤ Λ∞

(
ε
(∥∥∇2∇yv

∥∥
Hk−1 + |h|

H
k−1, 52

)
+ |h|

H
k−1,32

(7.9)
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+ ‖∂zv‖Hk + ‖v‖
Hk−1,1 + |h|

H
k,12

+ ‖∂z∇q‖Hk−1 + ‖∇q‖
Hk−1

)
.

Combining (7.9) and (7.8) thus proves the estimate (7.3). �

Lemma 7.1 then allows one to derive the normal derivative estimates.

7.1. Estimate of ‖∂zv‖Hm−2. As in Section 8 of [35], one defines

Sn = Π(Sϕvn− κχv) . (7.10)

The main advantages of this quantity are that

Sn = 0 on {z = 0,−b} (7.11)

and that the following estimates hold:

Lemma 7.2. For every k ≥ 0:

‖∂zv‖Hk ≤ Λ∞

(
‖Sn‖Hk + |h|

H
k, 12

+ ‖v‖
Hk,1

)
(7.12)

and

‖∂zzv‖Hk ≤ Λ∞

(
‖∂zSn‖Hk + |h|

H
k,32

+ ‖v‖
Hk,2

)
. (7.13)

Proof. We start with the estimate (7.12). The normal component of ∂zv is given by, due to the
divergence free condition,

∂zv · n = −∂zϕ|N| (∂1v1 + ∂2v2) . (7.14)

Then it follows from (A.1) and Lemma B.2 that

‖∂zv · n‖Hk ≤ Λ∞

(
‖v‖

Hk,1 + |h|
H

k,12

)
. (7.15)

It thus suffices to estimate the tangential components of ∂zv. Recall from the derivation of
(3.37) that

Π∂zv =
∂zϕ

|N|
(
∂1ϕΠ∂1v + ∂2ϕΠ∂2v + 2Sn − gij∂jv · nΠ∂yi − κχΠv

)
, (7.16)

which follows from the derivation of (3.37). Hence, by (A.1) and Lemma B.2, one has

‖Π∂zv‖Hk ≤ Λ∞

(
‖v‖

Hk,1 + |h|
H

k, 12
+ ‖Sn‖Hk + ‖∂zv · n‖Hk

)
. (7.17)

Thus the estimate (7.12) follows from combining (7.15) and (7.17).
The estimate (7.13) follows from applying ∂z to (7.14) and (7.16), employing a similar argu-

ment as for (7.12) and using (7.12). �

In light of Lemma 7.2, we then turn to estimate Sn instead of ∂zv. It follows from the first
equation in (1.9) that

∂ϕt ∇ϕv + (v · ∇ϕ)∇ϕv + (∇ϕv)2 + (∇ϕ)2 q − ε∆ϕ∇ϕv = 0. (7.18)

Taking the symmetric part of (7.18) yields

∂ϕt S
ϕv + (v · ∇ϕ)Sϕv +

1

2

(
(∇ϕv)2 + ((∇ϕv)t)2

)
+ (∇ϕ)2 q − ε∆ϕ(Sϕv) = 0. (7.19)

Consequently,
∂ϕt Sn + (v · ∇ϕ)Sn − ε∆ϕ(Sn) = FS (7.20)

where
FS = F 1

S + F 2
S + F 3

S + F 4
S (7.21)

with

F 1
S = −1

2
Π
(
(∇ϕv)2 + ((∇ϕv)t)2

)
n+ (∂tΠ+ v · ∇ϕΠ)Sϕvn+ΠSϕv (∂tn+ v · ∇ϕn) (7.22)

+ κ (∂ϕt + v · ∇ϕ) (χΠv),

F 2
S = −Π

(
(∇ϕ)2 q

)
n, (7.23)
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F 3
S = −ε (∆ϕΠ)Sϕvn− εΠSϕv∆ϕn, (7.24)

F 4
S = −2ε∂ϕi Π∂

ϕ
i (Sϕvn)− 2εΠ(∂ϕi (Sϕv) ∂ϕi n)− εκ∆ϕ(χΠv). (7.25)

Note that the pressure estimates in (6.5) indicate that at most, one can estimate only ‖Sn‖Hm−2

and hence ‖∂zv‖Hm−2 at this stage. However, we shall prove a control of ‖∂zv‖Hm−1 based on
the vorticity equation in the next subsection.

Proposition 7.3. Any smooth solution of (1.9) satisfies the estimate

‖Sn‖2Hm−2 + ε

∫ t

0
‖∇Sn‖2Hm−2 (7.26)

≤ Λ0 ‖Sn(0)‖2Hm−2 +

∫ t

0
Λ∞ε

2
(
‖∇v‖2

Hm−2,2 + |h|2
H

m−2, 52

)

+

∫ t

0
Λ∞ |h|2

H
m−1, 12

+ σ2 |h|2
Hm−2,3 + ‖v‖2

Hm−1,1 + ‖∂zv‖2Hm−2,1 + ‖Sn‖2Hm−2 .

Proof. We start with the estimates of FS . It follows from (A.1) and Lemma B.2 that
∥∥F 1

S

∥∥
Hm−2 ≤ Λ∞

(
‖∇v‖

Hm−2 + |h|
H

m−1, 12
+ ‖v‖

Hm−2

)
, (7.27)

∥∥F 2
S

∥∥
Hm−2 ≤ Λ∞ ‖∇q‖

Hm−2,1 , (7.28)
∥∥F 3

S

∥∥
Hm−2 ≤ Λ∞ε

(
‖∇v‖

Hm−2 + |h|
H

m−2, 52

)
, (7.29)

∥∥F 4
S

∥∥
Hm−2 ≤ Λ∞ε

(
|h|

W
[m2 ]−1+2

∥∥∇2v
∥∥
Hm−2 + |h|

H
m−2, 32

∥∥∇2v
∥∥
W
[m2 ]−1

)
(7.30)

≤ Λ∞

(
ε ‖∇v‖

Hm−2,1 + ‖∂zv‖Hm−2 + ‖v‖
Hm−1 + |h|

H
m−1,− 1

2
+ ‖∇q‖

Hm−2 + |h|
H

m−2, 32

)
.

Here in the second inequality of (7.30), one has used (7.1) and (7.2) with k = m− 2. Hence,

‖FS‖Hm−2 ≤ Λ∞

(
ε
(
‖∇v‖

Hm−2,1 + |h|
H

m−2, 52

)
+ ‖∂zv‖Hm−2 + ‖v‖

Hm−1 + |h|
H

m−1, 12
+ ‖∇q‖

Hm−2,1

)
.

(7.31)
It follows from applying 1

∂zϕ
Zα(∂zϕ·) for |α| ≤ m− 2 to (7.20), (3.21) and (4.6) that

∂ϕt Z
αSn + (v · ∇ϕ)ZαSn − ε∆ϕZαSn = ZαFS + CS , (7.32)

where the commutator is given by

CS = C1
S + C2

S (7.33)

with

C1
S =

1

∂zϕ
[Zα, ∂zϕ] (∂t + vy · ∇y)Sn + [Zα, vy] · ∇ySn + [Zα, vz] ∂zSn (7.34)

:= C1
S1 + C1

S2 + C1
S3

and

C2
S = −ε 1

∂zϕ
[Zα,∇] ·

(
E∇Sn

)
− ε

1

∂zϕ
∇ ·
(
[Zα, E]∇Sn

)
− ε

1

∂zϕ
∇ ·
(
E[Zα,∇

]
Sn
)

(7.35)

:= C2
S1 + C2

S2 + C2
S3.

Since ZαSn = 0 on the boundary, one can obtain

1

2

d

dt

∫

Ω
|ZαSn|2 dVt + ε

∫

Ω
|∇ϕZαSn|2 dVt =

∫

Ω
(ZαFS + CS) · ZαSn dVt. (7.36)

The right hand side of (7.36) can be estimated as follows. (7.31) implies immediately that
∫

Ω
ZαFS · ZαSn dVt ≤ Λ∞

(
ε
(
‖∂zv‖Hm−2,1 + |h|

H
m−2, 52

)
+ ‖∂zv‖Hm−2 (7.37)

+ ‖v‖
Hm−1 + |h|

H
m−1, 12

+ ‖∇q‖
Hm−2,1

)
‖Sn‖Hm−2 .
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Next, we estimate the part involving C1
S . (A.2) yields

∥∥C1
S1

∥∥+
∥∥C2

S1

∥∥ ≤ Λ∞

(
‖v‖

Hm−2 + ‖Sn‖Hm−2 + |h|
H

m−2, 12

)
. (7.38)

Additional care is needed to estimate
∥∥C1

S3

∥∥, since ∂zSn can not be controlled. By expanding
the commutator and using (3.11), one sees clearly that it suffices to estimate terms of the form

∥∥∥Zβvz∂zZ
γSn

∥∥∥

with |β|+ |γ| ≤ m− 2, |γ| ≤ m− 3. Since

Zβvz∂zZ
γSn =

1

z(z + b)
ZβvzZ3Z

γSn,

which can be further rewritten as a sum of terms of the form

cβ̃Z
β̃

(
1

z(z + b)
vz

)
Z3Z

γSn, (7.39)

where cβ̃ are harmless bounded functions and |β̃| ≤ |β|. Indeed, this comes from the fact that

Z3

(
1

z(z+b)

)
= − 2z+b

z(z+b) . If β̃ = 0, since (3.22) implies that vz = 0 on the boundary, then
∥∥∥∥cβ̃Z

β̃

(
1

z(z + b)
vz

)
Z3Z

γSn

∥∥∥∥ . ‖∂zvz‖L∞ ‖Sn‖Hm−2 .

If β̃ 6= 0, one can use (A.1) to obtain that
∥∥∥∥cβ̃Z

β̃

(
1

z(z + b)
vz

)
Z3Z

γSn

∥∥∥∥

.

∥∥∥∥Z
(

1

z(z + b)
vz

)∥∥∥∥
W
[m−3

2 ]
‖Z3Sn‖Hm−3 +

∥∥∥∥Z
(

1

z(z + b)
vz

)∥∥∥∥
Hm−3

‖Z3Sn‖
W
[m−3

2 ] .

Observe that by again that vz = 0 on the boundary,
∥∥∥∥Z
(

1

z(z + b)
vz

)∥∥∥∥
W
[m−3

2 ]
. ‖∂zvz‖

W
[m2 ]
.

On the other hand, since
∥∥∥∥Z
(

1

z(z + b)
vz

)∥∥∥∥
Hm−3

.

∥∥∥∥
1

z(z + b)
Zvz

∥∥∥∥
Hm−3

+

∥∥∥∥
1

z(z + b)
vz

∥∥∥∥
Hm−3

,

it suffices to estimate∥∥∥∥
1

z(z + b)
ZβZvz

∥∥∥∥ ,
∥∥∥∥

1

z(z + b)
Zβvz

∥∥∥∥ , |β| ≤ m− 3.

Indeed, since vz = 0 on the boundary, it follows from the Hardy inequality that
∥∥∥∥

1

z(z + b)
ZβZvz

∥∥∥∥ .
∥∥∥∂zZβZvz

∥∥∥ and

∥∥∥∥
1

z(z + b)
Zβvz

∥∥∥∥ .
∥∥∥∂zZβvz

∥∥∥ .

We have thus proven that
∥∥C1

S3

∥∥ ≤ ‖∂zvz‖
W
[m2 ]

‖Sn‖Hm−2 + ‖Sn‖
W
[m2 ]

‖∂zvz‖Hm−2 .

By Lemma B.2, it holds that

‖∂zvz‖
W
[m2 ]

≤ Λ∞ and ‖∂zvz‖Hm−2 ≤ Λ∞

(
‖v‖

Hm−2 + ‖∂zv‖Hm−2 + |h|
H

m−1, 12

)
.

Hence, ∥∥C1
S3

∥∥ ≤ Λ∞

(
‖v‖

Hm−2 + ‖∂zv‖Hm−2 + |h|
H

m−1, 12
+ ‖Sn‖Hm−2

)
. (7.40)

This together with (7.38) yields
∫

Ω
C1
S · ZαSn dVt ≤ Λ∞

(
‖v‖

Hm−2 + ‖∂zv‖Hm−2 + |h|
H

m−1, 12
+ ‖Sn‖Hm−2

)
‖Sn‖Hm−2 . (7.41)
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Next, we shall estimate the term involving C2
S . As mentioned in the beginning of this section,

we need to employ a different argument from Proposition 8.3 in [35]. Due to (3.11) to handle
the term involving C2

S1, it suffices to estimate

ε

∫

Ω
Zβ∂z

(
E∇Sn

)
· ZαSn dydz

with |β| ≤ m− 3, which can be reduced to the estimate of

ε

∫

Ω

(
Zβ′

∂zEZ
β′′∇Sn + Zβ′

EZβ′′
∂z∇Sn

)
· ZαSn dydz

with β′ + β′′ = β. It follows from (A.1), (7.1) and (7.2) with k = m− 3 that

ε
∥∥∥Zβ′

∂zEZ
β′′∇Sn

∥∥∥ . ‖∂zE‖
W
[m−3

2 ] ε ‖∇Sn‖Hm−3 + ‖∂zE‖
Hm−3 ε ‖∇Sn‖

W
[m−3

2 ] (7.42)

≤ Λ∞

(
ε ‖∂zv‖Hm−3,1 + ‖∂zv‖Hm−3 + ‖v‖

Hm−2 + |h|
H

m−2,− 1
2
+ ‖∇q‖

Hm−3 + |h|
H

m−3, 32

)
,

and (7.3) with k = m− 2 implies that

ε
∥∥∥Zβ′

EZβ′′
∂z∇Sn

∥∥∥ . ‖E‖
W
[m−3

2 ] ε ‖∂z∇Sn‖Hm−3 + ‖E‖
Hm−3 ε ‖∂z∇Sn‖

W
[m−3

2 ] (7.43)

≤ Λ∞

(
ε
(
‖∇v‖

Hm−3,2 + |h|
H

m−3, 52

)
+ |h|

H
m−2, 12

+ ‖∂zv‖Hm−2 + ‖v‖
Hm−2,1 + ‖∇q‖

Hm−3,1 + ‖∂z∇q‖Hm−3

)
.

Thus,
∫

Ω
C2
S1 · ZαSn dVt ≤Λ∞

(
ε
(
‖∇v‖

Hm−3,2 + |h|
H

m−3, 52

)
+ |h|

H
m−2, 12

(7.44)

+ ‖∂zv‖Hm−2 + ‖v‖
Hm−2,1 + ‖∇q‖

Hm−3,1 + ‖∂z∇q‖Hm−3

)
.

By expanding the second commutator C2
S2, one sees that it suffices to estimate terms of the

form

ε

∫

Ω
∇ ·
(
ZβEZγ∇Sn

)
· ZαSn dydz

with β + γ = α, β 6= 0. If γ = 0 and hence β = α, since ZαSn = 0 on the boundary, one can
then integrate by parts to get

∣∣∣∣ε
∫

Ω
∇ · (ZαE∇Sn) · ZαSn dydz

∣∣∣∣ =
∣∣∣∣ε
∫

Ω
ZαE∇Sn · ∇ZαSn dydz

∣∣∣∣ (7.45)

≤ ε ‖ZαE‖ ‖∇Sn‖L∞ ‖∇ZαSn‖ ≤ Λ∞ |h|
H

m−2, 12
ε

1
2 ‖∇ZαSn‖ ,

where in the last inequality one has used the fact that Λ∞ involves
√
ε ‖∂zzv‖L∞ . If γ 6= 0 and

hence 1 ≤ |β| ≤ m− 3, then one can expand ∇·, by (A.1) and Lemma 7.1, to estimate

ε

∫

Ω

(
Zβ∇EZγ∇Sn + ZβEZγ∇2Sn

)
· ZαSn dydz.

It follows from (A.1), (7.1) and (7.2) with k = m− 3 that

ε
∥∥∥Zβ∇EZγ∇Sn

∥∥∥ . ‖Z∇E‖
W
[m2 ]−2 ε ‖Z∇Sn‖Hm−4 + ‖Z∇E‖

Hm−4 ε ‖Z∇Sn‖
W
[m2 ]−2 (7.46)

≤ Λ∞

(
ε ‖∂zv‖Hm−3,1 + ‖∂zv‖Hm−3 + ‖v‖

Hm−2 + |h|
H

m−2,− 1
2
+ ‖∇q‖

Hm−3 + |h|
H

m−3, 32

)
,

and (7.3) with k = m− 2 that

ε
∥∥∥ZβEZγ∇2Sn

∥∥∥ . ‖ZE‖
W
[m2 ]−2 ε

∥∥Z∇2Sn
∥∥
Hm−4 + ‖ZE‖

Hm−4 ε
∥∥Z∇2Sn

∥∥
W
[m2 ]−2 (7.47)

≤ Λ∞

(
ε
(
‖∇v‖

Hm−3,2 + |h|
H

m−3, 52

)
+ |h|

H
m−2, 12

+ ‖∂zv‖Hm−2 + ‖v‖
Hm−2,1 + ‖∇q‖

Hm−3,1 + ‖∂z∇q‖Hm−3

)
.
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Hence,
∫

Ω
C2
S2 · ZαSn dVt ≤ Λ∞

(
ε
(
‖∇v‖

Hm−3,2 + |h|
H

m−3, 52

)
+ |h|

H
m−2, 12

+ ‖∂zv‖Hm−2 + ‖v‖
Hm−2,1

+ ‖∇q‖
Hm−3,1 + ‖∂z∇q‖Hm−3

)
‖Sn‖Hm−2 + Λ∞ |h|

H
m−2, 12

ε
1
2 ‖∇ZαSn‖ .

(7.48)

To handle the term involving C2
S3, due to (3.11), one needs to estimate

ε

∫

Ω
∇ ·
(
EZβ∂zSn

)
· ZαSn dydz

with |β| ≤ m− 3, which can be bounded easily by using (7.2) with k = m− 3 and (7.3) with
k = m− 2 so that∫

Ω
C2
S3 · ZαSn dVt ≤ Λ∞

(
ε
(
‖∇v‖

Hm−3,2 + |h|
H

m−3, 52

)
+ |h|

H
m−2, 12

+ ‖∂zv‖Hm−2 (7.49)

+ ‖v‖
Hm−2,1 + ‖∇q‖

Hm−3,1 + ‖∂z∇q‖Hm−3

)
‖Sn‖Hm−2 .

In view of (7.44), (7.48), (7.49), one has actually proven that
∫

Ω
C2
S · ZαSn dVt ≤ Λ∞

(
ε
(
‖∇v‖

Hm−3,2 + |h|
H

m−3, 52

)
+ |h|

H
m−2, 12

+ ‖∂zv‖Hm−2 + ‖v‖
Hm−2,1

+ ‖∇q‖
Hm−3,1 + ‖∂z∇q‖Hm−3

)
‖Sn‖Hm−2 +Λ∞ |h|

H
m−2, 12

ε
1
2 ‖∇ZαSn‖ .

(7.50)

Consequently, by (7.37), (7.41) and (7.50), one deduces from (7.36) that

1

2

d

dt

∫

Ω
|ZαSn|2 dVt + ε

∫

Ω
|∇ϕZαSn|2 dVt (7.51)

≤ Λ∞

(
ε
(
‖∇v‖

Hm−2,1 + |h|
H

m−2, 52

)
+ ‖Sn‖Hm−2 + ‖∂zv‖Hm−2 + ‖v‖

Hm−1

+ |h|
H

m−1, 12
+ ‖∇q‖

Hm−2,1 + ‖∂z∇q‖Hm−3

)
‖Sn‖Hm−2 + Λ∞ |h|

H
m−2, 12

ε
1
2 ‖∇ZαSn‖ .

To conclude, one can use Lemma C.1 to replace ‖∇ϕSn‖Hm−2 by ‖∇Sn‖Hm−2 in the left hand
side and then use Cauchy’s inequality to absorb the last term. On the other hand, one can
follow the derivation of (6.5) to get that

‖q‖
Hm−2,1 + ‖∇q‖

Hm−2,1 + ‖∂zzq‖Hm−2

≤ Λ∞

(
|h|

H
m−1, 12

+ σ |h|
Hm−2,3 + ‖v‖

Hm−1,1 + ‖∇v‖
Hm−2,1 + ε ‖∇v‖

Hm−2,2 + ε |h|
H

m−2, 52

)
,

which reduces the order of time derivatives to the spatial derivatives. Finally, we integrate the
resulting inequality in time to obtain (7.26). �

7.2. Estimate of ‖∂zv‖Hm−1. Note that Proposition 7.3 only provides the control of ‖∂zv‖Hm−2 ,
and this is due to the appearance of (∇ϕ)2q in the source term in the equation of Sn. To get
around this, a natural way is to use the vorticity instead of Sn.

Set ω = ∇ϕ × v. Then

ω × n =
1

2

(
∇ϕv n− (∇ϕv)tn

)
= Sϕv n− (∇ϕv)tn, (7.52)

and hence by (3.35),

ω × n =
1

2
∂nu− gij

(
∂jv · n

)
∂yi .

Consequently, as in Lemma 7.2 one can get that

‖∂zv‖Hm−1 ≤ Λ∞

(
‖v‖

Hm−1,1 + |h|
H

m−1, 12
+ ‖ω‖

Hm−1

)
. (7.53)

It then suffices to estimate ‖ω‖
Hm−1 . Before proceeding further, one has the following observa-

tion.
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Lemma 7.4. For any smooth cut-off function χ such that χ = 0 in a vicinity of ∂Ω, we have

‖χω‖Hk . ‖f‖k+1 . (7.54)

Proof. It follows directly by the fact that away from the boundary ∂Ω the conormal Sobolev
norm ‖·‖k is equivalent to the Hk norm. �

Hence, one needs only to estimate ω near the boundary ∂Ω. For sake of brevity, we consider
only the estimates near {z = 0}, and the estimates near {z = −b} may follow in the same way
and a bit simpler. One notes that the first equation in (1.9) implies

∂ϕt ω + v · ∇ϕω − ω · ∇ϕv = ε∆ϕω. (7.55)

We choose the cut-off function χ(z) ∈ [0, 1] which is smooth compactly supported near {z = 0}
and takes the value 1 in a vicinity of {z = 0}. Then we have

∂ϕt (χω) + v · ∇ϕ(χω)− (χω) · ∇ϕv = ε∆ϕ(χω) +
(
Vz∂zχ

)
ω − 2ε∇ϕχ · ∇ϕω − ε∆ϕχω. (7.56)

As in the previous subsection, applying 1
∂zϕ

Zα(∂zϕ·) for |α| ≤ m− 1 to (7.56) yields

∂ϕt Z
α(χω) + (v · ∇ϕ)Zα(χω)− ε∆Zα(χω) = F. (7.57)

Here F is given by

F = Zα
(
χω · ∇ϕv +

(
Vz∂zχ

)
ω − 2ε∇ϕχ · ∇ϕω − ε∆ϕχω) + CS, (7.58)

where CS is given, as in (7.33), by

CS = C1
S + C2

S (7.59)

with

C1
S =

1

∂zϕ
[Zα, ∂zϕ] (∂t + vy · ∇y) (χω) + [Zα, vy] · ∇y(χω) + [Zα, vz] ∂z(χω) (7.60)

:= C1
S1 + C1

S2 + C1
S3

and

C2
S = −ε 1

∂zϕ
[Zα,∇] ·

(
E∇(χω)

)
− ε

1

∂zϕ
∇ ·
(
[Zα, E]∇(χω)

)
− ε

1

∂zϕ
∇ ·
(
E[Zα,∇

]
(χω)

)

:= C2
S1 + C2

S2 + C2
S3. (7.61)

Since χ(z) is compactly supported near {z = 0}, we may regard the equation (7.57) as to be
defined in {z < 0} by extending the functions smoothly outside Ω. The main difficulty lies in
that the vorticity does not vanish on the boundary {z = 0}. Thus, set

Zα(χω) = ωα
nh + ωα

h , (7.62)

where ωα
nh sloves 




∂ϕt ω
α
nh + (v · ∇ϕ)ωα

nh − ε∆ϕωα
nh = F in {z < 0}

ωα
nh = 0 on {z = 0}
ωα
nh|t=0 = Zα(χω)(0)

(7.63)

and ωα
h solves 




∂ϕt ω
α
h + (v · ∇ϕ)ωα

h − ε∆ϕωα
h = 0 in {z < 0}

ωα
h = Zαω on {z = 0}
ωα
h |t=0 = 0.

(7.64)

The estimate of ωα
nh is given as follows.

Proposition 7.5. For |α| ≤ m− 1, the solution ωα
nh of (7.63) satisfies the estimate

‖ωα
nh(t)‖20 + ε

∫ t

0
‖∇ωα

nh‖20 ≤Λ0 ‖ω(0)‖2Hm−1 +

∫ t

0
Λ∞ε

2
(
‖∇v‖2

Hm−1,1 + |h|2
H

m−1, 32

)
(7.65)

+

∫ t

0
Λ∞

(
|h|2

H
m−1, 12

+ ‖∂zv‖2Hm−1 + ‖v‖2
Hm−1,1 + ‖ωα

nh‖20
)
.
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Proof. Since ωα
nh = 0 on the boundary, it follows from (7.63) that

1

2

d

dt

∫

Ω
|ωα

nh|2 dVt + ε

∫

Ω
|∇ϕωα

nh|2 dVt =

∫

Ω
F · ωα

nh dVt. (7.66)

We now estimate the right hand side of (7.66). (A.1) implies that

‖Zα (χω · ∇ϕv)‖ ≤ Λ∞ (‖ω‖
Hm−1 + ‖∇ϕv‖

Hm−1) ≤ Λ∞

(
‖ω‖

Hm−1 + ‖∇v‖
Hm−1 + |h|

H
m−1, 12

)
.

(7.67)
By the cut-off function χ, one has similarly
∥∥Zα

((
Vz∂zχ

)
ω − 2ε∇ϕχ · ∇ϕω − ε∆ϕχω)

∥∥ ≤ Λ∞

(
‖v‖

Hm−1,1 + ε ‖v‖
Hm−1,2 + ε |h|

H
m−1, 32

)
.

(7.68)
To estimate the part involving CS , one first can change Sn into χω and m into m+1 in (7.50)
to get

∫

Ω
C2
S · ωα

nh dVt ≤ Λ∞

(
ε
(
‖∇v‖

Hm−2,2 + |h|
H

m−2, 52

)
+ |h|

H
m−1, 12

(7.69)

+ ‖∂zv‖Hm−1 + ‖v‖
Hm−1,1

)
‖ωα

nh‖+ Λ∞ |h|
H

m−1, 12
ε

1
2 ‖∇ωα

nh‖ .

For the part involving C1
S, one can change Sn into ω and m into m+ 1 in (7.38) to obtain

∥∥C1
S1

∥∥+
∥∥C2

S1

∥∥ ≤ Λ∞

(
‖v‖

Hm−1 + ‖ω‖
Hm−1 + |h|

H
m−1, 12

)
. (7.70)

The commutator C1
S3 requires much more care. Indeed, one can not change m into m + 1 in

(7.40) since it would involve |h|
H

m, 12
. As in (7.39), this commutator can be expanded into a

sum of terms of the form

cβZ
β

(
1

z(z + b)
vz

)
Z3Z

γω

such that |β|+ |γ| ≤ m− 1, |γ| ≤ m− 2. As the arguments in previous sections, by (A.1) and
vz = 0 on the boundary that, one deduces

∥∥∥∥Z
β

(
1

z(z + b)
vz

)
Z3Z

γω

∥∥∥∥ ≤ Λ∞

(
‖ω‖

Hm−2,1 +

∥∥∥∥Z
(

1

z(z + b)
vz

)∥∥∥∥
Hm−2

)
(7.71)

≤ Λ∞

(
‖ω‖

Hm−2,1 +

∥∥∥∥
1

z(z + b)
vz

∥∥∥∥
Hm−1

)
.

It follows from vz = 0 on the boundary and the Hardy inequality that, since vz = v ·N− ∂tη,∥∥∥∥
1

z(z + b)
vz

∥∥∥∥
Hm−1

. ‖∂zvz‖Hm−1 (7.72)

≤ Λ∞

(
‖∂zv‖Hm−1 + ‖v‖

Hm−1 + |h|
H

m−1, 12

)
+

∑

|α|=m−1

‖v · ∂zZαN− ∂zZ
α∂tη‖ ,

where the last term requires furthermore analysis. Due to (1.6), it holds that

|Z3η̂| . |χ̃(|ξ|z)ĥ|
where χ̃ has a slightly bigger support than χ. Hence Z3 acts as a zero order operator:

‖∇Z3η‖ . |h| 1
2
. (7.73)

This yields that if α3 6= 0, one gains at least one derivative, and thus,

‖v · ∂zZαN− ∂zZ
α∂tη‖ ≤ Λ∞

(
|h|

H
m−2, 32

+ |∂th|
H

m−2, 12

)
≤ Λ∞ |h|

H
m−1, 12

. (7.74)

Hence it suffices to estimate this term for the case with |α| = m − 1 and α3 = 0. Note that
(1.6) implies that

η =
(
1 +

z

b

) 1

z2
ψ
( ·
z

)
⋆y h :=

(
1 +

z

b

)
ψz ⋆y h, (7.75)
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where ⋆y stands for the convolution in the y variable and ψ is in L1(R2). Then

v · ∂zZαN− ∂zZ
α∂tη =− 1

b
(vy · ψz ⋆y ∇yZ

αh+ ψz ⋆y ∂tZ
αh) (7.76)

−
(
1 +

z

b

)
∂z (vy · ψz ⋆y ∇yZ

αh+ ψz ⋆y ∂tZ
αh) := Tα = Tα1 + Tα2.

It is clear that

‖Tα1‖ ≤ Λ∞

(
|h|

H
m−1, 12

+ |∂th|
H

m−1,− 1
2

)
≤ Λ∞ |h|

H
m,− 1

2
. (7.77)

For the second term, one can separate it into two cases. For −b < z ≤ − b
2 , then

Tα2 = − 1

bz
Z3 (vy · ψz ⋆y ∇yZ

αh+ ψz ⋆y ∂tZ
αh) .

It then follows from (7.73) that

‖Tα2‖L2({−b≤z≤− b
2
}) ≤ Λ∞

(
|h|

H
m−1, 12

+ |∂th|
H

m−1,− 1
2

)
≤ Λ∞ |h|

H
m,− 1

2
. (7.78)

For − b
2 ≤ z < 0, Tα2 can be written as

Tα2 = −
(
1 +

z

b

)
(vy(t, y, 0) · ∂z (ψz ⋆y ∇yZ

αh) + ∂z (ψz ⋆y ∂tZ
αh)) +R, (7.79)

where

|R| ≤ Λ∞|z(z + b)| |∂z (ψz ⋆ Z
α∇h)| ≤ Λ∞ |Z3 (ψz ⋆ Z

α∇h)| .
By using (7.73) again, one can get that

‖R‖L2(Ω∩{− b
2
≤z<0}) ≤ Λ∞ |h|

H
m−1, 12

. (7.80)

To estimate the first term in (7.79), one notes that

vy(t, y, 0) · ∂z (ψz ⋆y ∇yZ
αh) + ∂z (ψz ⋆y ∂tZ

αh) = ∂z (ψz ⋆y (vy(t, y, 0) · ∇yZ
αh+ ∂tZ

αh))

+ ∂z

(∫

R2

(
vy(t, y, 0) − vy(t, y

′, 0)
)
· ψz(y − y′)∇yZ

αh(t, y′)

)
.

For the second term in the right hand side of the above, one can employ the Taylor formula for
vy to get that

∣∣(vy(t, y, 0) − vy(t, y
′, 0))∂zψz(y − y′)

∣∣ ≤ Λ∞
1

z2
ψ̃

(
y − y′

z

)
,

where ψ̃ is still an L1 function. This yields that

sup
z∈(− b

2
,0)

∣∣∣∣∂z
(∫

R2

(
vy(t, y, 0)− vy(t, y

′, 0)
)
· ψz(y − y′)∇yZ

αh(t, y′)

)∣∣∣∣
0

≤ Λ∞ |h|
H

m−1, 12
. (7.81)

For the first term, one shall use (3.47) to get

vy · ∇yZ
αh+ ∂tZ

αh = −∂ϕz v ·NZαh+ Cα(h) + V α ·N,
which implies, since |α| = m− 1,

|vy · ∇yZ
αh+ ∂tZ

αh| 1
2
≤ Λ∞

(
|v|

H
m−1, 12

+ |h|
H

m−1, 12

)
.

It thus holds that

‖∂z (ψz ⋆y (vy(t, y, 0) · ∇yZ
αh− ∂tZ

αh))‖ . |vy · ∇yZ
αh− ∂tZ

αh| 1
2

(7.82)

≤ Λ∞

(
|v|

H
m−1, 12

+ |h|
H

m−1, 12

)
,

Collecting all the estimates (7.80)–(7.82), one deduces from (7.79) that

‖Tα‖L2(Ω∩{z≥− b
2
}) ≤ Λ∞

(
|v|

H
m−1, 12

+ |h|
H

m−1, 12

)
. (7.83)
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In view of the estimates (7.71), (7.72), (7.74), (7.77), (7.78) and (7.83), by the trace estimates,
one finally gets ∥∥C1

S3

∥∥ ≤ Λ∞

(
‖∂zv‖Hm−1 + ‖v‖

Hm−1,1 + |h|
H

m−1, 12

)
. (7.84)

As a consequence of (7.67)–(7.70), (7.84) and Lemma C.1, we deduce from (7.66) that

‖ωα
h (t)‖2 + ε

∫ t

0
‖∇ωα

h‖2 ≤ Λ0 ‖ω(0)‖2Hm−1 +

∫ t

0
Λ∞

(
ε
(
‖∇v‖

Hm−2,2 + |h|
H

m−2, 52

)
(7.85)

+ |h|
H

m−1, 12
+ ‖∂zv‖Hm−1 + ‖v‖

Hm−1,1

)
‖ωα

nh‖+ Λ∞ε
1
2 |h|

H
m−1, 12

‖∇ωα
h‖ .

We then conlude the proposition by using Cauchy’s inequality. �

It remains to estimate ωα
h of (7.64). Note that Lemma 3.4 and the trace estimate imply that

√
ε

∫ t

0
|Zαω|20 ≤

√
ε

∫ t

0
Λ∞

(
|v|2

Hm−1,1 + |h|2
Hm−1,1

)
(7.86)

≤ √
ε

∫ t

0
Λ∞

(
‖∇v‖

Hm−1,1 ‖v‖Hm−1,1 + ‖v‖2
Hm−1,1 + |h|2

Hm−1,1

)
.

Thus the main difficulty will be to handle the non-homogeneous boundary value problem, (7.64),
whose boundary value is at a low level of regularity (it is L2

t,y and no more) due to (7.86). This
creates two difficulties: the first is that one cannot lift the boundary condition easily and perform
a standard energy estimate; the second one is that due to the lower regularity of the boundary
estimate, one cannot expect an estimate of ‖ωα

h‖ in L∞(0, T ) independent of ε, as was well
explained in Section 10.2 of [35]: in using the model of the heat equation, one may expect a

control in H
1
4 (0, T ) ⊂ L4(0, T ).

Proposition 7.6. Assume that Λ∞(t) +
∫ t
0 ‖∂zzv‖1,∞ ≤M for M > 0. Then for |α| ≤ m− 1,

the solution ωα
h of (7.64) satisfies the estimate

‖ωα
h‖2L4

T
L2 ≤ Λ(M)

∫ T

0

(
‖v‖2

Hm−1,1 + |h|2
Hm−1,1

)
+ ε

∫ T

0
‖∇v‖2

Hm−1,1 . (7.87)

Proof. Owing to the cut-off function χ, the situation here of (7.64), which is defined in the half
space {z < 0}, is exactly same as Section 10.2 in [35], thus this proposition is a restatement of
Proposition 10.4 in [35]. For completeness, we will sketch the main idea and some steps of the
proof and state our estimates with a slight modification.

First, it is convenient to eliminate the convection term in (7.64) by considering Lagrangian

coordinates. Define a parametrization of Ω̃(t) := {x3 < h(t, x1, x2)}, X(t, ·) : {z < 0} 7→ Ω̃(t),
by {

∂tX(t, x) = u(t,X(t, x)) = v(t,Φ(t, ·)−1 ◦X)

X(0, x) = Φ(0, x),
(7.88)

where the map Φ(t, ·) is defined by (1.4). Note that here v is a smooth extension onto {z < 0}
and hence u is the corresponding smooth extension onto Ω̃(t). Denote J(t, x) = |det ∇X(t, x)|
for the Jacobian of the change of coordinates. Then J(t, x) = J0(x) by the divergence free
condition. Define

Ωα = e−γtωα
h (t,Φ

−1 ◦X), (7.89)

where γ > 0 is a large parameter to be chosen. Then Ωα solves

a0
(
∂tΩ

α + γΩα
)
− ε∂i (aij∂jΩ

α) = 0 in {z < 0}. (7.90)

Here a0 = |J0|
1
2 and the matrix (aij) is defined by

(aij) = |J0|
1
2P−1 with Pij = ∂iX · ∂jX.

Due to the assumption Λ∞(t) +
∫ t
0 ‖∂zzv‖1,∞ ≤ M , Lemma 10.5 in [35] holds. Then the

following estimates hold:

‖J‖W 1,∞ +
∥∥J−1

∥∥
W 1,∞ ≤ Λ0, (7.91)
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‖∇X‖L∞ + ‖∂t∇X‖L∞ ≤ Λ(M)etΛ(M), (7.92)

‖∇X‖1,∞ + ‖∂t∇X‖1,∞ ≤ Λ(M)etΛ(M), (7.93)
√
ε
∥∥∇2X

∥∥
1,∞

+
√
ε
∥∥∂t∇2X

∥∥
L∞ ≤ Λ(M)(1 + t)etΛ(M). (7.94)

Indeed, the estimate (7.91) follows directly by J(t, x) = J0(x). Next, (7.88) implies that

∂t∇X = ∇v∇Φ−1∇X (7.95)

and hence

‖∇X‖L∞ ≤ ‖∇X(0)‖L∞ + Λ0

∫ t

0
‖∇v‖L∞ ‖∇X‖L∞ ≤ Λ0 + Λ(M)

∫ t

0
‖∇X‖L∞ .

This yields the first part of (7.92) by the Gronwall inequality. Next, applying one spatial
conormal derivative to (7.95), one can get

‖∇X‖1,∞ ≤ ‖∇X(0)‖1,∞ +Λ0

∫ t

0
‖∇v‖1,∞ ‖∇X‖1,∞ ≤ Λ0 + Λ(M)

∫ t

0
‖∇X‖1,∞ .

and hence the first part of (7.93) follows from the Gronwall inequality. The estimates hold also
for the time derivative in (7.92) and (7.93) by using again the equation (7.95). To prove (7.94),
one applies

√
ε∂xi

to (7.95) to find that

∂t
√
ε∂xi

∇X =
√
ε
(
∂xi

∇v∇Φ−1∇X +∇v∂xi
∇Φ−1∇X +∇v∇Φ−1∂xi

∇X
)
. (7.96)

It follows from (7.93) that

√
ε
∥∥∇2X

∥∥
1,∞

≤ Λ(M)(1 + t) + Λ(M)

∫ t

0

√
ε
∥∥∇2X

∥∥
1,∞

+ Λ(M)eΛ(M)t

∫ t

0

√
ε
∥∥∇2v

∥∥
1,∞

and hence, by using the assumption
∫ t
0 ‖∂zzv‖1,∞ ≤M ,

√
ε
∥∥∇2X

∥∥
1,∞

≤ Λ(M)(1 + t)eΛ(M)t + Λ(M)

∫ t

0

√
ε‖∇2X‖1,∞

and so the first part of (7.94) follows from the Gronwall inequality. For the second part of (7.94),
it follows by using again (7.96) and the fact that Λ∞ involves the control of

√
ε
∥∥∇2v

∥∥
L∞ .

As consequences of the estimates (7.91)–(7.94), one gets

a0 ≥ m, a3,3 ≥ m, (aij) ≥ c0Id (7.97)

by a suitable choice of m and c0 depending on M for t ∈ [0, 1] and that

‖(a0, aij)‖L∞ +
√
ε ‖∂z(a0, aij)‖L∞ ≤ Λ(M), (7.98)

‖∂t,y(a0, aij)‖L∞ +
√
ε ‖∂t,y∇aij‖L∞ ≤ Λ(M). (7.99)

Note that these coefficients are lack of uniform regularity with respect to normal variables. To
get the estimates for solutions of (7.90), the authors in [35] use the paradifferential calculous to
prove Theorem 10.6 in [35], which yields that there exists γ0 depending only on M such that
for γ ≥ γ0, the solution of (7.90) satisfies the estimate

‖Ωα‖2
H

1
4
T
L2

≤ √
εΛ(M)

∫ T

0
|Ωα|20 . (7.100)

By the Minkowski inequality and the one-dimensional Sobolev embedding H
1
4 ⊂ L4,

‖Ωα‖2L4
T
L2 . ‖Ωα‖2L2L4

T
. ‖Ωα‖2

L2H
1
4
T

= ‖Ωα‖2
H

1
4
T
L2
,

one then has

‖Ωα‖2L4
T
L2 ≤ √

εΛ(M)

∫ T

0
|Ωα|20 . (7.101)

This and (7.89) show that

‖ωα
h‖2L4

T
L2 ≤ Λ(M)

√
ε

∫ T

0
|Zαω|20 .
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Thus (7.87) follows from (7.86) and Cauchy’s inequality. �

8. L∞ estimates

In order to close the a priori estimates, we shall now estimate the L∞ norms contained in Λ∞,

‖∂zv‖
W
[m2 ]+2 and

√
ε ‖∂zzv‖L∞ , and

∫ t
0

√
ε ‖∂zzv‖1,∞ that was used in Proposition 7.6. We will

prove that they can be bounded in terms of the quantities in the left hand side of the estimates
of Propositions 7.3 and 6.2, which will then be shown to be in L∞ in time.

The key point is to use again the quantity Sn, and one has the following:

Lemma 8.1. For any k ∈ N:

‖∂zv‖Wk ≤ Λ

(
1

c0
, |h|

Wk+1

)
(‖Sn‖Wk + ‖v‖

Wk+1) . (8.1)

Also, √
ε ‖∂zzv‖L∞ ≤ Λ0

(√
ε ‖∂zSn‖L∞ + ‖Sn‖1,∞ + ‖v‖2,∞

)
(8.2)

and √
ε ‖∂zzv‖1,∞ ≤ Λ0

(√
ε ‖∂zSn‖1,∞ + ‖Sn‖2,∞ + ‖v‖3,∞

)
. (8.3)

Proof. This follows again from (7.14) and (7.16). �

As a consequence of Lemma 8.1, it suffices to estimate Sn. Similarly as in Section 7.2, one
may need only to estimate Sn near {z = 0}. In this step, as in [34, 35], it is convenient to
use a coordinate system where the Laplacian has the simplest expression. We shall thus use a
normal geodesic coordinate system in the vicinity of ∂Ω. Note that this coordinate system has
not been used before since it requires more regularity for the boundary: to get an Hm (or Cm)
coordinate system, the boundary needs to be Hm+1 (or Cm+1). Nevertheless, at this step, this
is not a problem since one needs only to estimate a low number of derivatives of the velocity,
say

[
m
2

]
+ 2, while the boundary is Hm and m can be as large as needed. We shall choose the

cut-off function χ in order to get a well defined coordinate system in the vicinity of {z = 0}.
Define a different parametrization of the vicinity of {z = 0} by

Ψ(t, ·) : {z < 0} → Ω(t)

(y, z) 7→
(
y
h(t, y)

)
+ znb(t, y),

(8.4)

where nb = Nb/|Nb| is the unit exterior normal with Nb = (−∂1h,−∂2h, 1). Note that Ψ(t, ·)
is a diffeomorphism from R

2 × (−δ, 0) to a vicinity of ∂Ω(t) for some δ which depends only on
c0, and for every t ∈ [0, T ε,σ] thanks to (6.1). By this parametrization, the induced Riemannian
metric has the block structure

g(t, y, z) =

(
g̃(t, y, z) 0

0 1

)
. (8.5)

Hence, the Laplacian in this coordinate system reads:

∆gf = ∂zzf +
1

2
∂z
(
ln |g|

)
∂zf +∆g̃f, (8.6)

where |g| denotes the determinant of the matrix g and ∆g̃ is defined by

∆g̃f =
1

|g̃| 12
∑

1≤i, j≤2

∂yi
(
g̃ij |g̃| 12 ∂yjf

)
. (8.7)

To use this coordinate system, one shall first localize the equation for Sϕv in a vicinity of
{z = 0}. Set

Sχ = χ(z)Sϕv, (8.8)

where χ(z) ∈ [0, 1] is smooth compactly supported near {z = 0} and takes the value 1 in a
vicinity of {z = 0}. (7.19) yields that

∂ϕt S
χ + (v · ∇ϕ)Sχ − ε∆ϕSχ = FSχ in {z < 0}, (8.9)
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where

FSχ = Fχ + Fv (8.10)

with

Fχ =
(
Vz∂zχ

)
Sϕv − ε∇ϕχ · ∇ϕSϕv − ε∆ϕχSϕv, (8.11)

Fv = −χ
(
Dϕ)2q − χ

2

(
(∇ϕv)2 + ((∇ϕv)t)2

)
. (8.12)

Next, define implicitly S̃ in Ω̃(t) by S̃(t,Φ(t, y, z)) = Sχ(t, y, z). Then (8.9) yields

∂tS̃ + u · ∇S̃ − ε∆S̃ = FSχ(t,Φ(t, ·)−1) in Ω̃(t). (8.13)

Finally, define SΨ in {z < 0} by SΨ(t, y, z) = S̃(t,Ψ(t, y, z)) ≡ Sχ(t,Φ(t, ·)−1 ◦ Ψ). It then
follows from (8.14) and (8.6) that

∂tS
Ψ+w·∇SΨ−ε

(
∂zzS

Ψ+
1

2
∂z
(
ln |g|

)
∂zS

Ψ+∆g̃S
Ψ
)
= FSχ(t,Φ−1◦Ψ(t, ·)) in {z < 0}, (8.14)

where the vector field w is given by

w = χ(∇Ψ)−1
(
u(t,Ψ)− ∂tΨ

)
≡ χ(∇Ψ)−1

(
v(t,Φ−1 ◦Ψ)− ∂tΨ

)
. (8.15)

Note that SΨ is compactly supported in z in a vicinity of {z = 0}. The function χ(z) is a
function with a slightly larger support such that χSΨ = SΨ. The introduction of this function
allows to have w also supported in a vicinity of {z = 0}. Note that on {z = 0}, w3 = 0. Indeed,
since

∇Ψ(t, y, 0) =




1 0 nb
1

0 1 nb
2

∂1h ∂2h nb
3


 , (8.16)

thus for any Y ∈ R
3,

((∇Ψ(t, y, 0))−1Y )3 = Y · nb. (8.17)

Hence, (8.15) implies that on {z = 0},

w3 = v · nb − ∂thn
b
3 =

1

|Nb|
(
v ·Nb − ∂th) = 0 (8.18)

thanks to the kinematic boundary condition.
Now, set

SΨ
n
(t, y, z) = Πb(t, y)SΨ(t, y, z)nb(t, y) (8.19)

with Πb = Id−nb⊗nb. Note that Πb and nb are independent of z. Moreover, since the equation
(8.14) is compactly supported in z in a vicinity of {z = 0}, this yields that SΨ

n
solves

∂tS
Ψ
n
+ w · ∇SΨ

n
− ε
(
∂zz +

1

2
∂z
(
ln |g|

)
∂z
)
SΨ
n
= FΨ

n
in {z < 0}, (8.20)

where

FΨ
n

= ΠbFSχnb + FΨ,1
n

+ FΨ,2
n

(8.21)

with

FΨ,1
n

=
(
(∂t + wy · ∇y)Π

b
)
SΨnb +ΠbSΨ

(
∂t + wy · ∇y)n

b, (8.22)

FΨ,2
n

= −εΠb
(
∆g̃S

Ψ
)
nb. (8.23)

On {z = 0}, SΨ
n

= Sn = 0. Furthermore, it is convenient to eliminate the term ε∂z ln |g|∂z in
the equation (8.20). Set

ρ = |g| 14SΨ
n
, (8.24)

then

∂tρ+ w · ∇ρ− ε∂zzρ = H in {z < 0}, (8.25)

where

H = |g| 14
(
FΨ
n

+ Fg

)
with Fg = ρ|g|− 1

2 (∂t + w · ∇ − ε∂zz) |g|
1
4 . (8.26)

Trivially, on {z = 0}, ρ = 0.
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8.1. Estimate of ‖∂zv‖
W
[m2 ]+2. We now establish the first L∞ estimate. Note that it is equiv-

alent to estimate Sn or SΨ
n

or ρ. Indeed, by the definition (8.19), using the chain rule and the
fact that Z is tangent to {z = 0}, one has

∥∥SΨ
n

∥∥
Wk ≤ Λ

(
1

c0
, |h|

Wk+1

)∥∥∥ΠbSϕv nb
∥∥∥
Wk

.

Since |Π−Πb|+ |n− nb| = O(z) in the vicinity of {z = 0}, thus
∥∥SΨ

n

∥∥
Wk ≤ Λ

(
1

c0
, |h|

Wk+1

)
(‖Sn‖Wk + ‖v‖

Wk+1) . (8.27)

Similar arguments show that

‖Sn‖Wk ≤ Λ

(
1

c0
, |h|

Wk+1

)(∥∥SΨ
n

∥∥
Wk + ‖v‖

Wk+1

)
. (8.28)

On the other hand, it is easy to see that it is equivalent to estimate ρ or SΨ
n
. By (8.1), it thus

suffices to estimate ρ.
Set

Λ̃∞(t) = Λ

(
1

c0
, |h|

H
[m2 ]+7 + ‖∇v‖

W
[m2 ]+2 + ‖v‖

H
[m2 ]+7 + ‖∇v‖

H
[m2 ]+6

)
. (8.29)

Proposition 8.2. For m ≥ 13, it holds that

‖ρ(t)‖
W
[m2 ]+2 . ‖ρ(0)‖

W
[m2 ]+2 +

∫ t

0
Λ̃∞ (1 + ε ‖∇Sn‖Hm−2) . (8.30)

Proof. Apply Zα, for α ∈ N
1+3 with |α| = k ≤

[
m
2

]
+ 2, to (8.25) to obtain

∂tZ
αρ+ w · ∇Zαρ− ε∂zzZ

αρ = ZαH + CS in {z < 0}, (8.31)

where

CS = C1
S + C2

S (8.32)

with

C1
S = [Zα, wy] · ∇yρ+ [Zα, w3] · ∂zρ := CSy + CSz and C2

S = −ε [Zα, ∂zz] ρ. (8.33)

The maximum principle on (8.31) yields that, since Zαρ = 0 on {z = 0},

‖Zαρ‖L∞ ≤ ‖Zαρ(0)‖L∞ +

∫ t

0
(‖ZαH‖L∞ + ‖CS‖L∞) . (8.34)

The right hand side of (8.34) can be estimated as follows. For the commutator C1
S , the direct

estimates yield

‖CSy‖L∞ . ‖wy‖Wk ‖ρ‖Wk . (8.35)

To estimate CSz, by expanding the commutator and using (3.11), one needs to estimate terms
of the form ∥∥∥Zβw3∂zZ

γρ
∥∥∥
L∞

with β + γ ≤ α and |γ| ≤ |α| − 1. Since w3 = 0 on {z = 0}, so
∥∥∥Zβw3∂zZ

γρ
∥∥∥
L∞

=

∥∥∥∥
Zβw3

z(z + b)
Z3Z

γρ

∥∥∥∥
L∞

. ‖∂zw3‖Wk ‖ρ‖Wk . (8.36)

For the commutator C2
S, using (3.11) repeatedly leads to

− [Zα, ∂zz] ρ = ∂z ([Z
α, ∂z] ρ) + [Zα, ∂z ] ∂zρ (8.37)

=
∑

|β|≤k−1

∂z

(
cβ∂z(Z

βρ)
)
+

∑

|β|≤k−1

cβ∂z(Z
β∂zρ)

=
∑

|β′|≤k−1

cβ′Zβ′
∂zρ+

∑

|β′|≤k−1

c̃β′Zβ′
∂zzρ.
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Hence, ∥∥C2
S

∥∥
L∞ . ε ‖∂zρ‖Wk−1 + ε ‖∂zzρ‖Wk−1 . (8.38)

Note that using the equation (8.25) implies

ε ‖∂zzρ‖Wk−1 ≤ ‖∂tρ+ w · ∇ρ−H‖
Wk−1 ≤ ‖ρ‖

Wk + ‖w · ∇ρ‖
Wk−1 + ‖H‖

Wk−1 . (8.39)

Recall from (7.1) that

ε ‖∂zρ‖Wk−1 ≤ εΛ

(
1

c0
, |h|

Wk+1

)∥∥∇2v
∥∥
Wk−1 ≤ Λ∞. (8.40)

As (8.35) and (8.36),

‖w · ∇ρ‖
Wk−1 .

(
‖wy‖Wk + ‖∂zw3‖Wk

)
‖ρ‖

Wk . (8.41)

Thus, ∥∥C2
S

∥∥
L∞ .

(
1 + ‖wy‖Wk + ‖∂zw3‖Wk

)
‖ρ‖

Wk + ‖H‖
Wk−1 + Λ∞. (8.42)

Consequently, in light of the estimates (8.35), (8.36) and (8.42) into (8.34), one obtains

‖ρ‖
Wk . ‖ρ(0)‖

Wk +

∫ t

0
‖H‖

Wk +
(
1 + ‖wy‖Wk + ‖∂zw3‖Wk

)
‖ρ‖

Wk + Λ∞. (8.43)

Now we estimate H. Note first that
∥∥∥|g| 14Fg

∥∥∥
Wk

≤ Λ

(
1

c0
, ‖ρ‖

Wk + ‖w‖
Wk + |h|

Wk+3

)
.

Next, it follows from (8.22) and (8.23) that
∥∥∥|g| 14FΨ,1

n

∥∥∥
Wk

≤ Λ

(
1

c0
, |h|

Wk+2 + ‖w‖
Wk + ‖∇v‖

Wk

)

and ∥∥∥|g| 14FΨ,2
n

∥∥∥
Wk

≤ εΛ

(
1

c0
, |h|

Wk+3

)
‖∇v‖

Wk+2 .

Using (8.11) and (8.12), the fact that Fχ is supported away from {z = 0} and Lemma 7.4, one
gets ∥∥∥|g| 14ΠbFχnb

∥∥∥
Wk

≤ Λ

(
1

c0
, |h|

Wk+2 + ‖v‖
Hk+4

)

and ∥∥∥|g| 14ΠbFvn
b
∥∥∥
Wk

≤ Λ

(
1

c0
, |h|

Wk+2 + ‖∇v‖
Wk

)(
1 +

∥∥∇2q
∥∥
Wk

)
.

Recalling (8.27), (8.22) and (8.11), and collecting these estimates, one arrives at

‖H‖
Wk ≤ Λ

(
1

c0
, |h|

Wk+3 + ‖v‖
Hk+4 + ‖∇v‖

Wk

)(
1 + ε ‖∇v‖

Wk+2 +
∥∥∇2q

∥∥
Wk

)
. (8.44)

Recall from (4.15) that

∥∥∇2q
∥∥
W
[m2 ]+2 ≤ Λ

(
1

c0
, |h|

W
[m+6

4 ]+4
+ |h|

H
[m2 ]+7 + ‖∇v‖

W
[m+6

4 ]+3
+ ‖v‖

H
[m2 ]+7 + ‖∇v‖

H
[m2 ]+6

)

≤ Λ

(
1

c0
, |h|

W
[m2 ]+5 + |h|

H
[m2 ]+7 + ‖∇v‖

W
[m2 ]+2 + ‖v‖

H
[m2 ]+7 + ‖∇v‖

H
[m2 ]+6

)
(8.45)

if m ≥ 10. Hence, (8.43) implies

‖ρ‖
W
[m2 ]+2 . ‖ρ0‖

W
[m2 ]+2 +

∫ t

0
Λ

(
1

c0
, |h|

H
[m2 ]+7 + ‖∇v‖

W
[m2 ]+2 + ‖v‖

H
[m2 ]+7 + ‖∇v‖

H
[m2 ]+6

)

×
(
1 + ε ‖∇v‖

W
[m2 ]+4

)
. (8.46)

Then the desired estimates (8.29) follows for m ≥ 13 so that
[
m
2

]
+ 4 + 1 ≤ m− 2. �
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8.2. Estimate of
√
ε ‖∂zzv‖L∞. The next L∞ estimate is the only place where one needs to

use the compatibility condition (2.6) on the initial data. As in the previous subsection, by (8.2),
one can reduce the problem to the estimate of

√
ε ‖∂zρ‖L∞ .

Proposition 8.3. Assume that the initial data satisfies the compatibility condition Sn(0) = 0
on {z = 0}. Then it holds that for m ≥ 6,

√
ε ‖∂zρ(t)‖L∞ .

√
ε ‖∂zρ0‖L∞ +

∫ t

0

Λ∞√
t− τ

. (8.47)

Proof. The proof follows the spirit of the proof of Proposition 9.8 in [35]. Recall that ρ satisfies
(8.25) in {z < 0} with ρ = 0 on {z = 0}. Note that one can not apply

√
ε∂z to (8.25) and then

use the maximum principle due to boundary condition. We shall use a precise description of
the solution of (8.25). Indeed, one can use the one-dimensional heat kernel of {z < 0}:

G(t, z, z′) =
1√
4πεt

(
e−

(z−z′)2

4εt − e−
(z+z′)2

4εt

)
(8.48)

to write that

√
ε∂zρ(t, y, z) =

∫ +∞

0

√
ε∂zG(t, z, z

′)ρ0(y, z
′)dz′ (8.49)

+

∫ t

0

√
ε∂zG(t− τ, z, z′)

(
H(τ, y, z′)− w · ∇ρ

)
dz′dτ.

Since ρ0 = 0 on {z = 0}, thanks to the compatibility condition, one can integrate by parts the
first term to obtain

√
ε ‖∂zρ(t)‖L∞ .

√
ε ‖∂zρ0‖L∞ +

∫ t

0

1√
t− τ

(‖H‖L∞ + ‖w · ∇ρ‖L∞) . (8.50)

Next, it follows from (8.44) with k = 0 that

‖H‖L∞ ≤ Λ∞

(
1 +

∥∥∇2q
∥∥
L∞

)
≤ Λ∞. (8.51)

On the other hand, as (8.41),

‖w · ∇ρ‖L∞ ≤
(
‖wy‖L∞ + ‖∂zw3‖L∞

)
‖ρ‖1,∞ ≤ Λ∞. (8.52)

Consequently, plugging (8.51) and (8.52) into (8.50) yields that

√
ε ‖∂zρ(t)‖L∞ .

√
ε ‖∂zρ0‖L∞ +

∫ t

0

Λ∞√
t− τ

, (8.53)

which completes the proof. �

8.3. Estimate of
√
ε ‖∂zzv‖1,∞. The last L∞ estimate is the one that was used in Proposition

7.6. By (8.3), one can again reduce the problem to the estimate of
√
ε ‖∂zρ‖1,∞.

Proposition 8.4. For m ≥ 6, it holds that:
∫ t

0

√
ε ‖∂zρ‖1,∞ .

√
t ‖ρ0‖1,∞ + t

∫ t

0

Λ∞√
t− τ

. (8.54)

Proof. We will use a different argument from the proof of Lemma 9.9 in [35]. A direct use of
the Duhamel formula (8.49) yields

√
ε ‖∂zρ‖1,∞ .

1√
t
‖ρ0‖1,∞ +

∫ t

0

1√
t− τ

(
‖H‖1,∞ + ‖w · ∇ρ‖1,∞

)
. (8.55)

Next, it follows as the previous arguments that

‖H‖1,∞ ≤ Λ∞

(
1 +

∥∥∇2q
∥∥
1,∞

)
≤ Λ∞ (8.56)

and

‖w · ∇ρ‖1,∞ ≤ Λ∞

(
‖wy‖2,∞ + ‖∂zw3‖2,∞

)
‖ρ‖2,∞ ≤ Λ∞. (8.57)
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Consequently,

√
ε ‖∂zρ‖1,∞ .

1√
t
‖ρ0‖1,∞ +

∫ t

0

Λ∞√
t− τ

. (8.58)

Integration in time yields
∫ t

0

√
ε ‖∂zρ‖1,∞ .

√
t ‖ρ0‖1,∞ + t

∫ t

0

Λ∞√
t− τ

. (8.59)

which completes the proof of the proposition. �

9. Proof of Theorem 2.1

In this section, collecting the estimates obtained in Sections 6–8, we can prove Theorem 2.1
in the similar way as that for Theorem 1.1 of [35] with slight modifications.

Recall N (T ) and Q(T ). For two parameters R and c0 to be chosen 1/c0 ≪ R, define

T ε,σ
∗ = sup

T>0

{
T ∈ [0, 1] | N (t) ≤ R, |h(t)|2,∞ ≤ 1

c0
, ∂zϕ(t) ≥

c0
2

(9.1)

and g − ∂ϕz q(t) ≥
c0
2

on {z = 0}, ∀t ∈ [0, T ].
}
.

Proposition 8.4 yields
∫ T

0

√
ε ‖∂zzv‖1,∞ ≤ Λ(R). (9.2)

This allows one to use Proposition 7.6, which together with Propositions 6.2, 6.3, 7.3, 8.2 and
8.3 implies that, by a suitable linear combination,

N (t) ≤ Λ

(
1

c0
, R0

)
+ Λ(R)

(
T

1
2 +W(T ) +W(T )

1
2

)
, (9.3)

where

W(T ) :=

∫ T

0

(
|∂mt h|20 + σ |∂mt h|21 + ‖∂mt v‖20 + ‖∂zv‖2Hm−1

)
.

It follows from the Cauchy-Schwarz inequality that

W(T ) ≤ N (T )T
1
2 ≤ RT

1
2 . (9.4)

Hence, one deduces from (9.3) that

N (t) ≤ Λ

(
1

c0
, R0

)
+ Λ(R)T

1
4 . (9.5)

On the other hand, since N (T ) involves time derivatives, one gets easily that

|h(t)|2,∞ ≤ |h(0)|2,∞ + Λ(R)T, (9.6)

∂zϕ(t) ≥ ∂zϕ(0) − Λ(R)T (9.7)

and

g − ∂ϕz q(t) ≥ g − ∂ϕz q(0) − Λ(R)T. (9.8)

Consequently, one can choose c0 so that |h(0)|2,∞ ≤ 1
2c0

and then R = 2Λ
(

1
c0
, R0

)
, then there

exists T∗ which depends only on R so that for T ≤ min(T∗, T
ε,σ
∗ ),

N (t) ≤ 3R

4
, ∂zϕ(t) ≥

3c0
4
, |h(t)|2,∞ ≤ 3

4c0
and g − ∂ϕz q(t) ≥

3c0
4

on {z = 0}, ∀t ∈ [0, T ].

This yields T ε,σ
∗ ≥ T∗ by the definition (9.1) and also the estimate (2.7). The proof of Theorem

2.1 is thus completed. �
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10. Proof of Theorem 2.5

In this section, we will prove Theorem 2.5 by first proving the uniform in ε and σ local well-
posedness of (1.9) and then showing the inviscid limit. Consider the initial data vε,σ0 ∈ H2m(Ω)
and hε,σ0 ∈ H2m+1(Σ) satisfying the assumptions in Theorem 2.5. Then for fixed ε > 0 and
σ > 0, according to the existence result of [40], by the m-th compatibility conditions (2.8) one
can get a positive time T ε,σ for which a unique solution (vε,σ, hε,σ) of (1.9) achieving this initial
data exists on [0, T ε,σ].

As in [35], an important remark is that if N (T1) < +∞, then the solution above can be
continued on [0, T2], T2 > T1 with N (T2) < +∞. Indeed, if N (T1) < +∞, one can use the
parabolic regularity for (1.9) on [T1/2, T1] as [7] to get that the solution actually is smooth
on [T1/2, T1] and in particular, one finds that vε,σ(T1) ∈ H2m(Ω) and hε,σ(T1) ∈ H2m+1(Σ)
and that the m-th compatibility conditions (2.8) hold at the time T1. These allow one to use
again the existence result of [40] to continue the solution. Consequently, by this remark, from
Theorem 2.1 one has the uniform estimate N (T ) ≤ C and hence that the solution (vε,σ, hε,σ)
actually exists on [0, T ].

The uniform estimate N (T ) ≤ C allows one to deduce that as ε → 0, up to extraction
of a subsequence, (vε,σ, hε,σ) converges to a limit (vσ, hσ) in the norms of any spaces which
contain the set of functions obeying (2.11) as a compact subset (recalling that we have the time
derivatives estimates in N (T )). These convergences are more than sufficient for one to pass to
the limit in (1.9) for each t ∈ [0, T ]. Then one finds that the limit (vσ, hσ) is a strong solution of
the free-surface Euler equations (2.10) on [0, T ] that takes the initial data (vσ0 , h

σ
0 ) and satisfies

the estimate (2.11). Note that, one can prove, as in [35, 16], the uniqueness of solutions to (2.10)
satisfying (2.11). This implies in turn that the whole family (vε,σ, hε,σ) converges to (vσ, hσ).
The proof of Theorem 2.5 is thus completed. �

Appendix A. Sobolev conormal spaces

We recall the Sobolev conormal spaces Hm and W
m from (2.1).

Lemma A.1. The following product and commutator estimates hold.

(i) For |α|+ |β| = k ≥ 0:
∥∥∥ZαfZβg

∥∥∥ . ‖f‖
Hk ‖g‖

W
[k2]

+ ‖f‖
W
[k2]

‖g‖
Hk . (A.1)

(ii) For |α| = k ≥ 1:

‖[Zα, f ] g‖ . ‖Zf‖
Hk−1 ‖g‖

W
[k−1

2 ] + ‖Zf‖
W
[k−1

2 ] ‖g‖Hk−1 (A.2)

(iii) For |α| = k ≥ 2, define the symmetric commutator

[Zα, f, g] = Zα(fg)− Zαf g − fZα g. (A.3)

Then

‖[Zα, f, g]‖ . ‖Zf‖
Hk−2 ‖Zg‖

W
[k2]−1

+ ‖Zf‖
W
[k2]−1

‖Zg‖
Hk−2 . (A.4)

Proof. The product estimate (A.1) follows by controlling the product with the lower order
derivative term in L∞ and the higher order derivative term in L2. To prove the commutator
estimate (A.2), one uses the Leibnitz formula to expand

[Zα, f ] g =
∑

β+γ=α
β 6=0

Cβ,γZ
βfZγg.

Since β 6= 0, one can write Zβ = Zβ−β′
Zβ′

with |β′| = 1. Then (A.1) yields
∥∥∥Zβ−β′

Zβ′
fZγg

∥∥∥ .
∥∥∥Zβ′

f
∥∥∥
Hk−1

‖g‖
W
[k−1

2 ] +
∥∥∥Zβ′

f
∥∥∥
W
[k−1

2 ] ‖g‖Hk−1 .

This proves (A.2). The commutator estimate (A.4) can be proved in the same way. �
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We shall also use the Sobolev tangential spaces defined by

Hs
tan(Ω) =

{
f ∈ L2(Ω), ‖f‖Hs

tan
= ‖Λsf‖L2 <∞

}
, s ∈ R,

where Λs is the tangential Fourier multiplier by
(
1 + |ξ|2

) s
2 , ξ ∈ R

2. Note that

‖f‖Hs
tan

. ‖f‖k for s ≤ k, k ∈ N.

Lemma A.2. The following anisotropic Sobolev embedding and trace estimates hold.

(i) For s1 + s2 > 2, s3 + s4 > 2:

‖f‖L∞ . ‖∂zf‖
1
2

H
s1
tan

‖f‖
1
2

H
s2
tan

+ ‖f‖
1
2

H
s3
tan

‖f‖
1
2

H
s4
tan

. (A.5)

(ii) For s1 + s2 = s3 + s4 = 2s:

|f |s . ‖∂zf‖
1
2

H
s1
tan

‖f‖
1
2

H
s2
tan

+ ‖f‖
1
2

H
s3
tan

‖f‖
1
2

H
s4
tan

. (A.6)

Proof. We need to modify the proof of Proposition 2.2 in [35] since our domain here is of finite
depth. To get the anisotropic Sobolev embedding estimate (A.5), one first notes that

∣∣∣f̂(ξ, z)
∣∣∣ ≤

∣∣∣f̂(ξ, z′)
∣∣∣+
(∫ z

−z′
2
∣∣∣∂z f̂(ξ, x3)

∣∣∣
∣∣∣f̂(ξ, x3)

∣∣∣ dx3
) 1

2

.

Integrating the inequality above with respect to z′ ∈ (−b, 0) yields
∣∣∣f̂(ξ, z)

∣∣∣ .
∫ 0

−b

∣∣∣f̂(ξ, z′)
∣∣∣ dz′ +

(∫ 0

−b

∣∣∣∂z f̂(ξ, x3)
∣∣∣
∣∣∣f̂(ξ, x3)

∣∣∣ dx3
) 1

2

.

Hence, it follows from the Cauchy-Schwarz inequality and the fact that s1+ s2 > 2, s3+ s4 > 2
that

‖f‖L∞ ≤ sup
z∈(−b,0)

∫

R2
ξ

∣∣∣f̂(ξ, z)
∣∣∣ dξ

.

∫

R2
ξ

∫ 0

−b

∣∣∣f̂(ξ, z′)
∣∣∣ dξdz′ + b

∫

R2
ξ

(∫ 0

−b

∣∣∣∂z f̂(ξ, x3)
∣∣∣
∣∣∣f̂(ξ, x3)

∣∣∣ dx3
) 1

2

dξ

.

(∫ 0

−b

∫

R2
ξ

(1 + |ξ|)s3+s4
∣∣∣f̂(ξ, z)

∣∣∣
2
dξdz

) 1
2

+

(∫

R2
ξ

(1 + |ξ|)s1+s2

∫ 0

−b

∣∣∣∂z f̂(ξ, z)
∣∣∣
∣∣∣f̂(ξ, z)

∣∣∣ dzdξ
) 1

2

. ‖Λs3f‖ 1
2 ‖Λs4f‖ 1

2 + ‖∂zΛs1f‖ 1
2 ‖Λs2f‖ 1

2 .

To prove the trace estimate (A.6), since s1 + s2 = 2s, one may write

|f(·, 0)|2Hs =
∣∣f(·, z′)

∣∣2
Hs +

∫

R2
y

∫ 0

z′
2∂zΛ

sf(z, y)Λsf(z, y)dzdy (A.7)

=
∣∣f(·, z′)

∣∣2
Hs +

∫

R2
y

∫ 0

z′
2∂zΛ

s1f(z, y)Λs2f(z, y)dzdy

Integrating the equality above with respect to z′ ∈ (−b, 0) and using the Cauchy-Schwarz
inequality give the desired estimate. �

Following similar arguments, we also have the following Poincaré inequality.

Lemma A.3. It holds that

‖f‖ . |f |0 + ‖∂zf‖ . (A.8)

Proof. The proof of the estimate (A.6) with s1 = s2 = s = 0 also leads to

‖f‖ . |f |0 + ‖∂zf‖
1
2 ‖f‖ 1

2 .

Then the Poincaré inequality (A.8) follows by Cauchy’s inequality. �
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We also recall the classical product and commutator estimates in R
2:

Lemma A.4. The followings hold.

|Λs(fg)|L2 . |f |L∞ |Λsg|L2 + |g|L∞ |Λsf |L2 for s ≥ 0, (A.9)

|[Λs, f ]∇yg|L2 . |∇yf |L∞ |Λsg|L2 + |∇yg|L∞ |Λsf |L2 for s ≥ 0, (A.10)

|fg| 1
2
. |f |1,∞ |g| 1

2
and |fg|− 1

2
. |f |1,∞ |g|− 1

2
. (A.11)

Proof. These estimates (A.9) and (A.10) are classical, see [30] for example. Note that

|fg|0 . |f |L∞ |g|0 and |fg|1 . |f |1,∞ |g|1 ,
the estimate (A.11) follows by the theory of interpolation and duality. �

Note that Lemma A.1 also holds on R
2, while we also need the following for half regularities.

Lemma A.5. For |α| + |β| = k ≥ 0:
∣∣∣ZαfZβg

∣∣∣
s
. |f |

Hk,s |g|
W
[k2]+1

+ |f |
W
[k2]+1

|g|
Hk,s , s = −1

2
,
1

2
. (A.12)

Proof. The estimate (A.12) follows by using (A.11) to control the product with the higher order
derivative term in Hs and the lower order derivative term in W 1,∞. �

Appendix B. Poisson extension

We recall the extension η of h onto {z ≤ 0} defined by (1.6) with parameter A > 0 in the
following form

η(y, z) =
(
1 +

z

b

)
ζ(y, z) with ζ̂(ξ, z) = exp (A|ξ|z)ĥ(ξ). (B.1)

We first verify that ϕ defined by (1.5) is a diffeomorphism.

Proposition B.1. Assume that h0 ∈ Hs({z = 0}), s > 5/2 and h0 > −b. Then there exists

sufficiently small A > 0 such that

∂zϕ0 ≥ 1

2

(
1 +

1

b
h0

)
> 0 in Ω. (B.2)

Proof. Note that
∣∣∣∂z ζ̂(ξ, z)

∣∣∣ ≤
∣∣∣∂z ζ̂(ξ, z′)

∣∣∣+
∫ z

z′

∣∣∣∂2z ζ̂(ξ, x3)
∣∣∣ dx3. (B.3)

Integrating the inequality above with respect to z′ ∈ (−b, 0), one can deduce

b ‖∂zζ‖L∞ ≤ b sup
z∈[−b,0]

∫

R2
ξ

∣∣∣∂z ζ̂(ξ, z)
∣∣∣ dξ ≤

∫ 0

−b

∫

R2
ξ

∣∣∣∂z ζ̂(ξ, z)
∣∣∣ dz +

∫ 0

−b

∫

R2
ξ

∣∣∣∂2z ζ̂(ξ, z)
∣∣∣ dz.

For s > 1, it then follows from the Cauchy-Schwarz inequality and the definition (B.1) that

∫ 0

−b

∫

R2
ξ

∣∣∣∂z ζ̂(ξ, z)
∣∣∣ dz .

(∫ 0

−b

∫

R2
ξ

(1 + |ξ|)2s
∣∣∣∂z ζ̂(ξ, z)

∣∣∣
2
dz

) 1
2

= A

(∫

R2
ξ

(1 + |ξ|)2s|ξ|2
∣∣∣ĥ(ξ)

∣∣∣
2
∫ 0

−b
exp (2A|ξ|z)dz

) 1
2

= A

(∫

R2
ξ

(1 + |ξ|)2s|ξ|2
∣∣∣ĥ(ξ)

∣∣∣
2 1− exp (2A|ξ|z)

2A|ξ| dz

) 1
2

. A
1
2 |h|s+ 1

2

and

∫ 0

−b

∫

R2
ξ

∣∣∣∂z ζ̂(ξ, z)
∣∣∣ dz .

(∫ 0

−b

∫

R2
ξ

(1 + |ξ|)2s
∣∣∣∂z ζ̂(ξ, z)

∣∣∣
2
dz

) 1
2
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= A2

(∫

R2
ξ

(1 + |ξ|)2s|ξ|4
∣∣∣ĥ(ξ)

∣∣∣
2
∫ 0

−b
exp (2A|ξ|z)dz

) 1
2

. A
3
2 |h|s+ 3

2
.

We thus deduce

‖∂zζ‖L∞ . A
1
2 |h|s+ 3

2
. (B.4)

Now we prove (B.2). It follows from the definitions (1.5) and (B.1) that

∂zϕ0 = 1 +
1

b
ζ0 +

(
1 +

1

b

)
∂zζ0. (B.5)

By (B.4), this yields that for s > 5
2 ,

∂zϕ0 ≥ 1 +
1

b
h0 +

1

b
(ζ0 − h0) +

(
1 +

1

b

)
∂zζ0

≥ 1 +
1

b
h0 −

(
2 +

1

b

)
‖∂zζ0‖L∞ ≥ 1 +

1

b
h0 −A

1
2

(
2 +

1

b

)
|h0| 5

2
≥ 1

2

(
1 +

1

b
h0

)

if A has been chosen sufficiently small. �

We also have the following well-known estimates for η.

Lemma B.2. For s ∈ R:

‖η‖Hs . |h|s− 1
2
. (B.6)

For k ∈ N:

‖η‖W k,∞ . |h|k,∞ . (B.7)

Proof. One deduces in the same way as Proposition 3.1 in [35] that

‖∇ζ‖Hs . |h|s+ 1
2
, s ∈ R and ‖η‖W k,∞ . |h|k,∞ , k ∈ N.

Then the estimates (B.6)–(B.7) follow by noting that η = (1 + z
b )ζ for z ∈ [−b, 0]. �

Appendix C. Some geometric estimates

We recall that the control of quantities like
∫
Ω |∇ϕf |2dVt yields a control of the standard H1

norm of f .

Lemma C.1. Assume that ∂zϕ ≥ c0 and ‖∇ϕ‖L∞ ≤ 1
c0

for some c0 > 0, then

‖∇f‖2 ≤ Λ0

∫

Ω
|∇ϕf |2 dVt. (C.1)

Proof. We refer to Lemma 2.8 in [35]. �

We also need the Korn type inequality to control the energy dissipation term.

Lemma C.2. Assume that ∂zϕ ≥ c0 and ‖∇ϕ‖L∞ +
∥∥∇2ϕ

∥∥
L∞ ≤ 1

c0
for some c0 > 0, then

‖∇v‖2 ≤ Λ0

(∫

Ω
|Sϕv|2 dVt + ‖v‖2

)
. (C.2)

Proof. We refer to Proposition 2.9 in [35]. �

Finally, we will also need the following H−1/2 boundary estimates for functions satisfying
v ∈ L2 and ∇ϕ · v ∈ L2.

Lemma C.3. If ‖∇ϕ‖L∞ ≤ 1
c0

for some c0 > 0, then

|v ·N|− 1
2
≤ Λ0 (‖v‖+ ‖∇ϕ · v‖) . (C.3)
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Proof. We adapt the proof of Lemma 3.3 in [21]. We will only prove the result on {z = 0}. Let
ψ ∈ H1/2, and let ψ̃ ∈ H1(Ω) be a bounded extension. Then

∫

z=0
ψv ·N =

∫

Ω
∇ϕ · (ψ̃v)dVt =

∫

Ω

(
∇ϕψ̃ · v + ψ̃∇ϕ · v

)
dVt

≤ Λ0

(∥∥∥ψ̃
∥∥∥ ‖∇ϕ · v‖+

∥∥∥∇ψ̃
∥∥∥ ‖v‖

)
≤ Λ0 |ψ| 1

2
(‖v‖+ ‖∇ϕ · v‖) .

Then the estimate (C.3) follows from this inequality above by taking the supremum over all ψ
so that |ψ| 1

2
≤ 1. �
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