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Abstract

This paper investigates the Keller-Segel model with quadratic cellular diffusion over a disk in
R2 with a focus on the formation of its nontrivial patterns. We obtain explicit formulas of radially
symmetric stationary solutions and such configurations give rise to the ring patterns and concentric
airy patterns. These explicit formulas empower us to study the global bifurcation and asymptotic
behaviors of these solutions, within which the cell population density has δ-type spiky structures
when the chemotaxis rate is large. The explicit formulas are also used to study the uniqueness and
quantitative properties of nontrivial stationary radial patterns ruled by several threshold phenom-
ena determined by the chemotaxis rate. We find that all nonconstant radial stationary solutions
must have the cellular density compactly supported unless for a discrete sequence of bifurcation
values at which there exist strictly positive small-amplitude solutions. The hierarchy of free en-
ergy shows that in the radial class the inner ring solution has the least energy while the constant
solution has the largest energy, and all these theoretical results are illustrated through bifurcation
diagrams. A natural extension of our results to R2 yields the existence, uniqueness and closed-
form solution of the problem in this whole space. Our results are complemented by numerical
simulations that demonstrate the existence of non-radial stationary solutions in the disk.

Keywords: Keller-Segel, Quadratic Diffusion, Ring Solution, Airy Pattern

1 Introduction and Main Results
In this paper, we investigate the following system for functions (u, v) of space-time variable (x, t)

ut = ∇ · (u∇u − χu∇v), x ∈ B0(R), t > 0,
vt = ∆v − v + u, x ∈ B0(R), t > 0,
u(x, 0), v(x, 0) ≥ 0,. 0, x ∈ B0(R),
∂νu(x, t) = ∂νv(x, t) = 0, x ∈ ∂B0(R), t > 0,

(1.1)

where B0(R) ⊂ R2 is the disk centered at the origin and with a radius R, and ν is the unit outer
normal on the boundary ∂B0(R). We want to study the formation of nontrivial patterns within (1.1)
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by looking at its nonconstant steady states. In particular, we restrict our interest to the nonnegative
radially symmetric steady states (u, v) = (u(r), v(r)) with r = |x| such that

0 = (ru(u − χv)r)r, r ∈ (0,R),
0 = vrr + 1

r vr − v + u, r ∈ (0,R),
u ∈ C0([0,R]), v ∈ C2([0,R]), u(r) ≥ 0, v(r) > 0, r ∈ (0,R),∫

B0(R)
u(r)dx = M; ur(r) = vr(r) = 0 for r = 0,R.

(1.2)

Then we will obtain explicit solutions of the stationary system (1.2) and classify all of them in terms
of the value of parameter χ. These explicit formulas will be used to analyze the uniqueness and
qualitative behaviors of the steady states presented in various bifurcation diagrams as we shall see
later.

(1.1) arises as a model of chemotaxis that describes the evolution of cellular distribution at popula-
tion level due to random noise and stimulating chemical in environment. This biological phenomenon
was described through PDE systems proposed by Evelyn Keller and Lee Segel in the 1970s [43–45].
A general Keller–Segel model consists of two strongly coupled parabolic equations of (u(x, t), v(x, t)),
u the cellular population density and v the chemical concentration at space–time location (x, t)

ut = ∇ · (
random (flux)︷︸︸︷
µ∇u −

chemotactic (flux)︷    ︸︸    ︷
φ(u, v)∇v ), x ∈ Ω, t > 0,

vt =

chemical diffusion︷︸︸︷
d∆v +

chemical creation/consumption︷︸︸︷
k(u, v) , x ∈ Ω, t > 0,

(1.3)

given non-negative initial data u(x, 0), v(x, 0) ≥,. 0 over the spatial region Ω, which is usually taken
to be the whole space RN , N ≥ 1, or its bound domain with additional non-flux boundary conditions
imposed on u and v in an enclosed environment. Here µ ≥ 0 is the cellular motility and d > 0 is the
chemical diffusion rate; φ is the so-called sensitivity function and it measures intensity of chemotactic
movement due to the variation of cell population density and chemical concentration; k describes
the chemical creation and degradation rate and it can depend on the cellular density and chemical
concentration in general.

1.1 Keller-Segel Chemotaxis Models
Though bacteria may behave independently, their distribution exhibits regularities through collective
behaviors at population level. One of the most impressive experimental findings in bacterial chemo-
taxis is the self–organized cellular aggregation that initially evenly distributed cells can sense and
move along chemical distribution, and group with others into one or several spatial aggregates even-
tually. The Keller–Segel type models can capture such aggregation behavior through the blow-up
of cell density in finite or infinite time [27, 34, 36, 53], or the concentrating profiles of stationary
solutions [26, 54, 55, 60, 71, 72], and they have achieved great academic success over the past few
decades.

The studies of stationary solutions with large amplitude were initiated by the seminal works of C.-
S Lin, W.-M. Ni and I. Takagi [49, 54, 55]. They considered the stationary system of (1.3) with loga-
rithmic sensitivity and linear chemical creation and degradation rate over a general multi–dimensional
bounded domain Ω ⊂ RN , N ≥ 1 of the following form

∇ · (µ∇u − χu∇ ln v) = 0, x ∈ Ω,
ε2∆v − v + u = 0, x ∈ Ω,
∂νu = ∂νv = 0, x ∈ ∂Ω,∫

Ω
udx =

∫
Ω

vdx = ū|Ω|,

(1.4)

2



where ū is the fixed average population density from the conserved total population
∫

Ω
u(x, t)dx =∫

Ω
u0(x)dx = ū|Ω| in the time–dependent system. System (1.4) can be solved in light of the following

Neumann boundary value problem with p := χ

µ{
ε2∆w − w + wp = 0, x ∈ Ω,
∂νw = 0, x ∈ ∂Ω,

(1.5)

because if w is a positive solution of (1.5), the pair (u, v) given by

u :=
(

1
ū|Ω|

∫
Ω

w(x)pdx
)−1

wp, v :=
(

1
ū|Ω|

∫
Ω

w(x)dx
)−1

w

is a solution of (1.4). Assuming that p ∈ (1,∞) for N = 1, 2 and p ∈ (1, (N + 2)/(N − 2)) for N ≥ 3,
they proved in [49] that (1.5) has only constant solution if ε is large, and it admits nontrivial solutions
if ε is small, which are critical points of an energy functional in certain Sobolev space. Moreover, they
proceeded to prove in [54, 55] that if ε is sufficiently small, the least energy solution wε must achieve
its unique local (hence global) maximum at a single boundary point xε ∈ ∂Ω; furthermore, as ε→ 0+,
xε → x0 ∈ ∂Ω, where the mean curvature of the boundary achieves its maximum. Since then (1.5) has
been extensively studied by various authors, and the readers can find its further development in [31–
33, 50, 73, 75] and the references therein. It seems necessary to mention that this approach heavily
depends on the smallness of chemical diffusion rate ε, hence requires a primitive understanding about
the “ground-state” of the whole space counterpart of (1.5); moreover, this method is not applicable in
general when cellular growth is considered since (1.4) with cellular growth can not be converted into
a single equation any more.

In [71], X. Wang initiated a completely different approach to tackle this model directly without
converting it into a single equation. With the aid of the global bifurcation theories [58, 59, 62], this
technique is further developed and successfully applied to a wide class of Keller–Segel models in
[26, 48, 71, 72]. They take χ as a bifurcation parameter and show that the first bifurcation branch
must extend to right infinity without intersecting with the χ–axis, which implies the existence of
nonconstant steady states whenever χ surpasses a critical threshold value, given explicitly in terms
of system parameters. Moreover, by Helly’s compactness theorem, they obtained the spiky and layer
structures of the steady states when the chemotaxis rate is sufficiently large (compared to the cell
motility rate). The stability and dynamics of these spiky solutions are investigated in [25, 79]. Though
this approach is currently restricted to 1D settings, one of the advantages over the methodology in [49]
is its applicability in problems concerning cellular growth [68–70].

One very important extension of (1.3) is to include density-dependent diffusion, assuming that
cellular dispersal is anti–crowding and recedes as the population thins. For example, K. Painter and
T. Hillen [57] proposed and studied the following volume–filling model{

ut = ∇ · (D(u)∇u − S (u)∇v), x ∈ Ω, t > 0,
vt = ∆v − v + u, x ∈ Ω, t > 0, (1.6)

with D(u) = Q(u)− uQ′(u) and S (u) = uQ(u), where Q(u) denotes the density–dependent probability
that the cell reaches its neighboring sites. Systems with other general nonlinear diffusion and sensitiv-
ity functions D(u) and S (u) have been extensively studied by various authors [37–39, 64, 65, 76, 77].
In simple words, there exists a criticality of the global existence and blow–up which can be for-
mally stated as follows: assume that Ω = RN , N ≥ 2, or a bounded domain with Neumann bound-
ary conditions on u and v. Denote S (u)

D(u) ' uα for u large, then the index 2
N is critical to (1.6) in
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the sense that its solution exists globally and remains bounded in time if α < 2
N , while there may

exist solutions which blow up in finite time if α ≥ 2
N , in particular when initial cell population

is large. Other extensions such as to include different sensitivity functions, kinetics and cellular
growth have been studied by many authors. It seems necessary to mention that there are many works
[6, 14, 15, 19, 23, 24, 28, 30, 42, 46] on (1.6) in the whole space RN , the parabolic-elliptic of which
becomes a nonlinear aggregation-diffusion equation that serves as a paradigm in studying collective
animal behaviors [4, 52, 66]. There are also some works that study the dynamics of (1.6) in bounded
domain [18, 40, 78]. For a survey of the Keller-Segel models, see [35] and the references therein.
One recognizes (1.1) in the form of (1.6) with D(u) = S (u) = u. According to [37, 65], system (1.1)
has a global weak solution and this global solution is uniformly bounded in time hence blow-up does
not occur.

1.2 Main Results
In this paper, we study the existence, uniqueness and qualitative properties of radially symmetric
stationary solutions of (1.1). We shall achieve these goals by obtaining the explicit formulas of the
radial solutions. Of our concern is the stationary solutions of (1.2) that capture the cell aggregation
phenomenon within porous medium diffusion, and in particular, we will scrutinize the effects of
chemotaxis rate χ on the dynamics of (1.1) by setting the rest parameters to one.

An immediate consequence of the zero-flux boundary condition is the conservation of cell popu-
lation

M =

∫
B0(R)

u(x, t) dx =

∫
B0(R)

u(x, 0) dx = 2π
∫ R

0
u(r)r dr, for all t > 0,

thanks to which both system (1.1) and its stationary system (1.2) admit the following constant solution

(ū, v̄) :=
( M
πR2 ,

M
πR2

)
.

In contrast to previous works [49, 54, 55, 72] with non-degenerate diffusion where both u and v
are strictly positive, the appearance of degenerate diffusion in the u-equation of (1.1) and (1.2) causes
the lack of (strong) maximum principle and u does not have to be strictly positive. Indeed, we shall
see that in most cases u is compactly supported, while only for very special case does one collect
positive solutions (u, v). Here and in the sequel by compactly supported and strictly positive we refer
it for u since v is always strictly positive by maximum principle.

For simplicity of notation we introduce

χk :=
( j1,k

R

)2
+ 1, k ∈ N+, (1.7)

where j1,k is the k-th positive root of the first kind Bessel function J1 with

j1,1 ≈ 3.8317, j1,2 ≈ 7.0156, j1,3 ≈ 10.1735, j1,4 ≈ 13.3237, j1,5 ≈ 16.4706, ...

to name the first few explicit values. According to [16], if χ < χ1, the constant solution (ū, v̄) is
globally asymptotically stable with respect to (1.1) in the radial setting, therefore throughout this
paper we assume χ ≥ χ1 in order to study its nonconstant radial stationary solutions.

Concerning the stationary problem (1.2), the first set of our results can be summarized as follows:

4



Theorem 1.1. Let R > 0 and M > 0 be arbitrary constants. The following statements hold:
(i) if χ < χ1, (1.2) has only the constant solution (ū, v̄), and if χ > χ1,, χk, k ≥ 2, any solution of

(1.2) must have u be compactly supported in B0(R);
(ii) for each χ = χk, k ∈ N+, there exists a one-parameter family of solutions given by

(u(k)
ε (r), v(k)

ε (r)) = (ū, v̄) + ε(χk, 1)J0

( j1,kr
R

)
, r ∈ (0,R);−

ū
χk
≤ ε ≤

ū
−J0( j1,1)χk

(
≈

2.482ū
χk

)
; (1.8)

where u(k)
ε is strictly positive in (0,R) for each k; moreover, any strictly positive solutions of (1.2) must

be of the form (1.8);
(iii) for each χ > χ1, (1.2) admits a unique pair of nonconstant solutions (u−(r), v−(r)) and

(u+(r), v+(r)) which are explicitly given by (2.8) and (2.16); moreover, if χ ∈ (χ1, χ2), any nonconstant
solution of (1.2) must be given by one of the pair (u±, v±);

(iv) as χ → ∞, the solution u−(r) converges to the δ-function centered at the origin r = 0, and
u+(r) converges to the δ-function centered at r = R, whereas v± converge to corresponding Green’s
functions.

(i)-(iii) are presented in the bifurcation diagrams in Figure 1, and the asymptotic behaviors in (vi)
are illustrated by Figure 2 and Figure 3. We would like to point out that the novelty of quadratic
diffusion structure is utilized to obtain the explicit formulas for (1.2) as described above; more im-
portantly, besides the above-mentioned priorities, one can state more about each solution such as its
support monotonically shrinks to zero as χ goes to infinity, the inner ring u− has a smaller energy
than the outer ring u+, while both of them are smaller than that of the constant solution. Now that
our approach is constructive, we can obtain the explicit formula for any radially symmetric solution
of (1.2). We shall provide details in the coming sections.

Theorem 1.1 indicates that if χ ∈ (χ1, χ2), radially monotone solutions are uniquely given by
the pair (u±, v±) and all nonconstant radial solutions must be one of the pair. Therefore we can find
radially non-monotone solutions only for χ ≥ χ2. Indeed, our next main results state that there are
(infinitely) many radially non-monotone solutions in this case.

Theorem 1.2. Let R > 0 and M > 0 be arbitrary constants. For each χ > χ2, the following statements
hold:

(i) there exist R0(χ) and R̄0(χ) (defined by (3.1)) such that for each R0 ∈ [R0, R̄0], there exists
a non-monotone solution (ud(r), vd(r)) explicitly given by (3.2), where ud is compactly supported in
[0,R], and vd is monotone decreasing in (0,R0) and increasing in (R0,R); moreover, the support of ud

is of the form [0, r1) ∪ (r4,R] for some r1 < R0 and r4 < R − R0;
(ii) there exists χ∗2 > χ2 such that (1.2) has another solution (ui, vi) described as follows

(ii-1) for each χ ∈ (χ2, χ
∗
2], there exist a unique R̄0 and non-monotone (ui(r), vi(r)) explicitly

given by (3.5), such that ui is compactly supported in [0,R], and vi is monotone increasing in (0,R0)
and decreasing in (R0,R); moreover, the support of ui is of the form (R̄0 − r2,R] for some r2 < R̄0;

(ii-2) for each χ ∈ (χ∗2,∞), there exist a unique R∗0 and non-monotone (ui(r), vi(r)) explicitly
given by (3.8), such that ui is compactly supported in [0,R], and vi is monotone increasing in (0,R∗0)
and decreasing in (R∗0,R); moreover, the support of ui is of the form (R∗0 − r2,R∗0 + r3) for some r2 < R∗0
and r3 < R − R∗0;

(iii) for each χ ∈ (χ2, χ3), all non-monotone solutions of (1.2) must be either (ud, vd) given in (i)
or (ui, vi) given in (ii).

Non-monotone radial solutions obtained in Theorem 1.2 are illustrated in Figure 5 and Figure 6.
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It is well known that system (1.1) has the following free energy functional

E(u(x, t), v(x, t)) =
1
χ

∫
B0(R)

u2dx +

∫
B0(R)

(|∇v|2 + v2 − 2uv)dx (1.9)

which is non–increasing along the solution trajectory with its dissipation given by

dE
dt

= −
2
χ

∫
B0(R)

u|∇u − χ∇v|2dx − 2
∫

B0(R)
|vt|

2dx := I ≤ 0, for all t > 0. (1.10)

Moreover, this energy is a Lyapunov functional since steady states (us, vs) are characterized by the
zero dissipation I(us, vs) = 0. We would like to remark that to derive (1.10) one starts with an
approximation problem of (1.1) that possesses a unique solution, and then collect this inequality by
passing to this approximation limit. After establishing the explicit solutions of (1.2), we next provide
a hierarchy of free energies of these nontrivial patterns. Our results indicate that in the radial setting
the constant solution is the global minimizer of the free energy, and the inner ring solution (u−, v−) has
the least energy; moreover, the constant solution has a larger energy than any compactly supported
solution of (1.2). The significance of our results is that they hold for any χ > χ1 without further
assumptions on other system parameters. Another set of our results are summarized in the following:

Theorem 1.3. Let R > 0 and M > 0 be arbitrary. Then the following statements concerning the
explicit solutions obtained in Theorem 1.1 and Theorem 1.2 hold:

(i) for each χ > χ1, E(u−, v−),E(u+, v+) < E(ū, v̄) = E(u(k)
ε , v

(k)
ε ), given by (1.8);

(ii) for each χ > χ2, let R0 ∈ [R0, R̄0], R∗0 be given, and the solutions (ud(r; R0), vd(r; R0)) and
(ui(r), vi(r)) be obtained in Theorem 1.2. Then we have E(ud, vd),E(ui, vi) < E(ū, v̄); moreover, for
χ � 1, E(ud, vd)|R0=R̄0 → E(u−, v−) = −

M2 ln χ
4π +O(1) and E(ud, vd)|R0=R0

→ E(u+, v+) = −
M2I0(R)
2πRI1(R) +o(1);

(iii) let (ucpt, vcpt) be any solution with u being compactly supported, then E(ucpt, vcpt) < E(ū, v̄).

Theorem 1.3 provides a hierarchy of energies of the explicit solutions obtained in this paper.
These statements are illustrated by the energy diagrams in Figure 10. From the viewpoint of the free
energy, Theorem 1.3 suggests that in the radial class the inner ring solution (u−, v−) is the most stable,
while the constant solution (ū, v̄) and the bifurcation solutions (1.8) are the most unstable. Moreover,
now that (1.1) admits multiple stationary concentric rings when χ is large, the configurations with a
large inner spiky structure (spike at the origin r = 0) tend to be more stable than those with a large
outer spiky structure (spike on the boundary r = R). We would like to comment that for solution
(ud(r; R0), vd(r; R0)), the variation of R0 or χ does not necessarily induce monotonicity in the configu-
ration u in general. For instance, one does not expect a larger ‖ud(r; R0)‖L∞ for a larger χ if R0 = R0.
See the second column of Figure 5 for an illustration.

1.3 Global Stability v.s. Chemotaxis–Driven Instability
A striking difference between (1.1) and its counterpart in the whole space is that the former has the
constant pair (ū, v̄) as a solution. According to [16], this constant solution is globally asymptotically
stable if χ < χ1 and it becomes unstable as χ surpasses χ1.

First of all, we show that if χ > χ1,, χk, then any solution u must be of compact support in B0(R).
To see this, we argue by contradiction and assume that u > 0 in B0(R) for some χ > χ1,, χk. Then
the u-equation implies that u − χv equals some constant in B0(R) and the v–equation becomes

∆rv + (χ − 1)(v − v̄) = 0, r ∈ (0,R),
v ∈ C2((0,R)) ∩C1([0,R]), v(r) > 0, r ∈ (0,R),
∂rv(r) = 0, r = 0,R.
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Therefore (v − v̄, χ − 1) is an eigen–pair of −∆r in the Neumann radial class, hence we must have
that χ = χk, which is a contradiction to our assumption, therefore u must be compactly supported. In
the next, we will obtain explicit formulas of these solutions with compact support for each χ > χ1.
However, when χ = χk, (1.2) also has solutions which are positive in B0(R). Indeed, according to
our discussions above, when χ = χk, v − v̄ is a multiplier of the Neumann eigen-function J0( j1,kr

R ) of
Laplacian. Therefore, we have proved the following results.

Lemma 1.1. Let (u(r), v(r)) ∈ C0([0,R]) × C2((0,R)) be any solution of (1.2). Then for each χ > χ1,
, χk, k ∈ N+, we must have that u(x) is compactly supported in B0(R); moreover, when χ = χk, (1.2)
admits a one-parameter family of positive solutions (u(k)

ε (r), v(k)
ε (r)) explicitly given by (1.8).

It is perhaps worthwhile mentioning that one can apply bifurcation theory to establish nonconstant
solutions of (1.2) out of (ū, v̄). To see this, let us rewrite it into the abstract form F (u, v, χ) = 0 by
treating χ as the bifurcation parameter

F (u, v, χ) =


(ru(u − χv)r)r

vrr + 1
r vr − v + u∫

B0(R)
udx − M

 ,X × X × R→ Y ×Y × R,
with X := {w ∈ H2((0,R))|w′(0) = w′(R) = 0} and Y := L2((0,R)). Then it is not difficult to show
that its Fréchet derivative D(u,v)F (u0, v0, χ) is a Fredholm operator with zero index for any (u0, v0) in
a small neighbourhood of (ū, v̄), and D(u,v)F (ū, v̄, χ) satisfies the so–called transversality condition.
Therefore by the well-known Crandall-Rabinowtiz theorem on the bifurcation from simple eigen-
value [29, 62], bifurcation occurs at (ū, v̄, χk) for each k ∈ N+, and there exist a constant δ > 0 and
continuous functions (uk(r, s), vk(r, s), χk(s)) : s ∈ (−δ, δ)→ X×X×R+ such that any solution of (1.2)
around (ū, v̄, χk) must be of the form (uk, vk) = (ū, v̄) + s(χk, 1)J0( j1,kr/R) + O(s2), χk(s) = χk + O(s).
Indeed, one can further show by fitting this solution with the equations of (1.2) that both O(s2) and
O(s) are identically zeros, hence this bifurcating expansion is reduced to (1.8), which presents the
unique solution around (ū, v̄, χk). Note that the bifurcation solution has a small amplitude when χ
is around χ1, therefore to look for large amplitude solutions one needs to study (1.2) with large χ,
when the bifurcation branches are far way from (ū, v̄, χ1). However, the abstract global bifurcation
does not apply anymore due to the curse of diffusion degeneracy. In this paper, we obtain the explicit
formulas for solutions of (1.2), thanks to which the global bifurcation diagrams naturally emerge;
moreover, among others our results indicate that each branch is neither pitch-fork nor transcritical
locally, and its continuum connects the bifurcation solutions with the stationary solutions that are
compactly supported.

1.4 Paper Organization
The rest part of this paper is organized as follows. In Section 2, for each χ > χ1 we first obtain explicit
solutions of (1.2) such that u is radially monotone decreasing/increasing within its support. This gives
rise to the so-called inner/outer ring solutions. Moreover, we show that as χ tends to infinity, both
solutions converge to a Dirac-delta function, the former centered at the origin and the latter centered
on the boundary. In Section 3, we study two types of non–monotone solutions, i.e., the so-called
Mexican-hat and Volcano solutions. Our results readily imply that there are infinitely many radial
solutions once χ > χ2. Asymptotic behaviors of these solutions are also established in the large limit
of chemotaxis rate. Section 4 is an extension of the previous sections from simple and lower modes
to complex and higher modes for large χ. In particular, for an arbitrarily given but fixed χ, we classify
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all solutions of (1.2) in terms of the size of this parameter. In simple words, an intense chemotaxis
gives rise to airy patterns that have a bright central region or circle in the middle, surrounded by a
sequence of concentric rings. As an immediate consequence of the explicit solutions, section 6 is
devoted to the analysis of (1.2) over the whole space R2. We show that the problem in the whole
space has a unique radial solution which is to be explicitly given; moreover, this solution is radially
monotone with u being compactly supported in a disk. Thanks to the radial symmetry result in [19],
our results imply that this solution is actually the only stationary solution to (1.1) over the whole space
R2. In Section 5, we calculate the free energies of the stationary solutions obtained above. Our results
indicate that the inner ring has the least energy among all steady states, while the constant solution
has the largest energy. Moreover, we provide some numerical evidence on the existence of non-radial
stationary solutions of (1.1), whereas the theoretical analysis is restricted to the radial setting. Finally,
we include in Section 7 several important facts needed for the previous analysis.

2 Radially Monotone Solutions
Lemma 1.1 indicates that u is compactly supported in [0,R] whenever χ > χ1, , χk. In this section, we
will construct explicit radially decreasing and increasing solutions of (1.1), which we call the (single)
inner ring solution and the outer ring solution, respectively. These radially monotone solutions serve
as blocks that we use to construct (all) the non-monotone solutions of (1.2) other than those obtained
in (1.8). We then proceed to study their qualitative and quantitative properties with respect to the size
of chemotaxis rate. Before proceeding, we first illustrate some of our main results in this section in
Figure 1.
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Figure 1: The local bifurcation branches (solutions) at χ = χ1 and their global continuums. For each
χ > χ1, (1.2) has a unique (pair) of monotone solutions and u must be compactly supported. Left
Column: When χ = χ1, (1.8) for an interval of ε there gives a family of monotone decreasing solutions
for (1.2). This is represented by the vertical (dashed) line over χ1, and three such positive solutions a, b
and c are plotted. As χ surpasses χ1, solution u becomes compactly supported and it stays so along
the global branch. Right Column: Similarly, the positive solutions in (1.8) are plotted at a′, b′ and c′;
moreover, for each χ > χ1, outer ring u also stays compactly supported along the global branch.
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2.1 Inner Ring Solution
We first look for the radially decreasing solution such that u is supported in [0, r1) with r1 < R to be
determined. We denote this radial solution as (u−, v−) and call it the inner ring solution or inner ring for
brevity, since u− is configured as an inner ring supported over the disk B0(r1) for the original problem
(1.1). We shall see that this extends the first bifurcation branch given by (1.8) at ε = ū/(−J0( j1,1)χ1).
Now that u− > 0 in [0, r1), there exists some constant C̄ to be determined such that u− − χv− = C̄ for
r ∈ [0, r1) and u ≡ 0 for r ∈ [r1,R], hence the v–equation implies

v−rr + 1
r v−r + (χ − 1)v− + C̄ = 0, r ∈ (0, r1),

v−rr + 1
r vr − v = 0, r ∈ [r1,R],

v−r (r) = 0, r = 0,R.
(2.1)

Let us denote ω :=
√
χ − 1, then solving (2.1) gives in terms of constants Ci and C̄

v−(r) =

{
C1J0(ωr) − C̄

χ−1 , r ∈ (0, r1),
C2T0(r; R), r ∈ (r1,R),

(2.2)

where J0 is the Bessel function of the first kind and T0 is the following compound Bessel function

T0(r; R) := K1(R)I0(r) + I1(R)K0(r), (2.3)

with Iα and Kα (α = 0, 1) being modified Bessel functions of the first and second kind.
To determine C1,C2 and C̄ in (2.2), we first find r1 by enforcing the continuities of v′(r) and v′′(r)

at r = r1  −C1ωJ1(ωr1) = C2T1(r1; R),
−C1ω

2
(
J0(ωr1) − J1(ωr1)

ωr1

)
= C2

(
T0(r1; R) − T1(r1;R)

r1

)
,

where T1(r; R) := ∂rT0(r; R) = K1(R)I1(r) − I1(R)K1(r). Note that we always have T0(r; R) > 0 and
T1(r; R) < 0 in [0,R]. Therefore these identities hold if and only if r1 is a root of the algebraic equation

f (r1;ω,R) :=
ωJ0(ωr1)
J1(ωr1)

−
T0(r1; R)
T1(r1; R)

= 0. (2.4)

We now give the following lemma which promises the solvability of (2.4) for some r1 ∈ ( j0,1
ω
,

j1,1
ω

).

Lemma 2.1. For each χ > χ1 the function f (r;ω,R) in (2.4) admits a unique root r1 in ( j0,1
ω
,

j1,1
ω

),
where j0,1 ≈ 2.4048 and j1,1 ≈ 3.8317 are the first positive roots of the Bessel functions J0 and J1.

Proof. To prove this, we first see that f (r;ω,R) > 0 for all r ∈ [0, j0,1
ω

] hence (2.4) admits no root in

this interval. On the other hand, one can find that f
(

j0,1
ω

;ω,R
)

= −
T0(

j0,1
ω ;R)

T1(
j0,1
ω ;R)

> 0 and f
((

j1,1
ω

)−
;ω,R

)
=

−∞, therefore there exists at least one root r1 ∈ ( j0,1
ω
,

j1,1
ω

) since f (r;ω,R) ∈ C∞(( j0,1
ω
,

j1,1
ω

)). To show
the uniqueness of r1, we calculate

fr(r;ω,R) = −ω2 − 1 + f (r;ω,R)

>0 for any r∈(
j0,1
ω ,

j1,1
ω )︷                              ︸︸                              ︷(

−
ωJ0(ωr)
J1(ωr)

−
T0(r; R)
T1(r; R)

+
1
r

)
. (2.5)

Now we argue by contradiction and assume that r̃1 and r̃2 are two ordered adjacent roots of f (r;ω,R)
in ( j0,1

ω
,

j1,1
ω

), i.e., f (r;ω,R) is of one sign in (r̃1, r̃2). This implies fr(r̃1;ω,R) fr(r̃2;ω,R) ≤ 0 thanks to
the continuity of fr; however, fr(r̃1;ω,R) fr(r̃2;ω,R) = (ω2 + 1)2 > 1 according to (2.5), which is a
contradiction. Therefore f (r;ω,R) admits a unique root r1 ∈ ( j0,1

ω
,

j1,1
ω

) as claimed. �
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Remark 2.1. For χ ∈ (χ1, χ2), Lemma 2.1 states that there exists a unique r1 such that f (r1;ω,R) = 0
and this root r1 ∈ ( j0,1

ω
,

j1,1
ω

); however, for χ ∈ [χ2,∞), the function f (r;ω,R) admits multiple roots
besides r1. For instance, one can always find r̄2 ∈ ( j0,2

ω
,

j1,2
ω

) such that f (r̄2;ω,R) = 0; indeed in each
interval ( j0,k

ω
,

j1,k
ω

) one can find a unique r̄k such that f (r̄k;ω,R) = 0. However, all these roots are ruled
out since we look for non–negative solutions. If not, say we choose the root r̄2 as the size of support,
then u(r̄2) = 0 and the solution takes the form u−(r) = Ā1(J0(ωr)−J0(ωr̄2)) for r ∈ (0, r̄2), then one can
find from the monotonicity of J0 that u−(r) < 0 for r ∈ ( j0,2

ω
, r̄2), and this is not biologically realistic.

Similarly, one can show that the other roots of f (r;ω,R) = 0 other than r1 are not applicable, if they
exist at all. Therefore r1 ∈ ( j0,1

ω
,

j1,1
ω

) is always the unique root that we look for in (2.2).

We would like to point out that for χ < χ1, f (r;ω,R) is strictly positive in (0,R) hence admits no
root. Indeed, (1.2) has only constant solution (ū, v̄) in this case according to our discussions above.

With r1 obtained through (2.4) in Lemma 2.1, we readily have from the fact u = χv + C̄ that
u−(r) = A1

(
J0(ωr) − J0(ωr1)

)
in (0, r1), where A1 is a positive constant determined through the

conservation of total cell population 2π
∫ r1

0
u−(r)rdr = 2πA1

(
r
ω

J1(ωr) − r2

2 J0(ωr1)
)∣∣∣r1

0
= M and is

explicitly given by

A1 =
Mω

π
(
2r1J1(ωr1) − ωr2

1 J0(ωr1)
)( =

M
πr2

1 J2(ωr1)

)
. (2.6)

Since ωr1 ∈ ( j0,1, j1,1), one has thatA1 > 0 is well-defined.
To find v−(r), we combine (2.2) with the fact that u− = χv−+C̄ for r ∈ [0, r1] to see thatA1

(
J0(ωr)−

J0(ωr1)
)

= χC1J0(ωr) − C̄
χ−1 . Therefore C1 = A1

χ
and C̄ = A1(χ − 1)J0(ωr1), i.e., C̄ =

Mω2 J0(ωr1)
πr2

1 J2(ωr1) .

Moreover, by the continuity of v−(r) at r = r1, we equate A1( 1
χ
− 1)J0(ωr1) with B1T0(r1; R) and

obtain

B1 =
−Mω2J0(ωr1)

χπr2
1 J2(ωr1)T0(r1; R)

. (2.7)

To conclude, we find the solution of (1.2) described above is explicitly given by

u−(r) =

{
A1

(
J0(ωr) − J0(ωr1)

)
, r ∈ [0, r1),

0, r ∈ [r1,R], v−(r) =

{
A1

( J0(ωr)
χ
− J0(ωr1)

)
, r ∈ [0, r1),

B1T0(r; R), r ∈ [r1,R],
(2.8)

where A1 and B1 are given by (2.6) and (2.7), and T0(r; R) is (2.3). We would like to point out
that both u and v achieve the unique maximum at the origin, and are radially decreasing within their
support. We refer to (2.8) as the inner ring solutions. One sees that they extend the first (local)
bifurcation branch at χ = χ1, the global continuum of which extends to infinity and gives rise to a
unique inner ring solution for each χ > χ1. This is illustrated in Figure 1.

2.1.1 Asymptotic behavior of inner ring in the limit of χ→ ∞

We now study the effect of large chemotaxis rate χ on the qualitative behaviors of the steady state
(u−, v−) given by (2.8). First of all, we know from above that the size r1 of support of u− depends on
χ continuously, then the fact r1 ∈ ( j0,1

ω
,

j1,1
ω

) readily implies that r1 → 0+ as χ → ∞; moreover, one
infers from the conservation of total population that u−(r) → Mδ0(r), where δ0(r) is the Dirac delta
function centered at the origin, and v−(r) → M

2πI1(R)T0(r; R) accordingly. These asymptotic behaviors
suggest that intense chemotactic movement contributes the formation of spiky structures of u and v;
moreover, it gives the global extension of the first bifurcation branch(es) as we shall see in Figure 1.

We can provide some refined asymptotic properties of the profile due to, again, the explicit formula
(2.8). First of all, we show that the support of u− shrinks as the chemotaxis intensifies. With that being
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said, we will show that r1 is strictly decreasing in χ as ∂r1
∂ω

< 0 for ω > 0. To this end, one calculates
to find

∂r1

∂ω
= −

fω(r1;ω,R)
fr(r1;ω,R)

=
fω(r1;ω,R)
ω2 + 1

=
J0(ωr1)

(ω2 + 1)J1(ωr1)
+

y1(r1;ω)
(ω2 + 1)J2

1(ωr1)
,

where y1(r; w) := −ωrJ2
1(ωr)−ωrJ2

0(ωr) + J0(ωr)J1(ωr); by further computations we have y′1(r;ω) =

−
J0(ωr)J1(ωr)

r ≥ 0 in ( j0,1
ω
,

j1,1
ω

), therefore y1(r1;ω) ≤ y1( j1,1
ω

;ω) < 0 and ∂r1
∂ω
< 0 as expected.

We next show that the maximum of u−(r) is strictly increasing in χ with ∂‖u−‖L∞
∂ω

> 0. Rewrite
‖u−‖L∞ = M

π
ω2(1−J0(z))

2zJ1(z)−z2 J0(z) with z = ωr1, then we find

π

M
∂‖u−‖L∞
∂ω

=
2ω(1 − J0(z))

2zJ1(z) − z2J0(z)
+
ω2J1(z)(2J1(z) − z)
z(2J1(z) − zJ0(z))2 ·

∂z
∂ω

which, in light of the identity ∂z
∂ω

= r1 + ω∂r1
∂ω

, implies

π

M
∂‖u−‖L∞
∂ω

=
2ω(1 − J0(z))(2J1(z) − zJ0(z)) + ωzJ1(z)(2J1(z) − z)

z(2J1(z) − zJ0(z))2 +
ω3J1(z)(2J1(z) − z)
z(2J1(z) − zJ0(z))2 ·

∂r1

∂ω

≥
2ω(1 − J0(z))(2J1(z) − zJ0(z)) + ωzJ1(z)(2J1(z) − z)

z(2J1(z) − zJ0(z))2 ,

where we have applied the facts ∂r1
∂ω

< 0 and 2J1(z) ≤ z for z ∈ ( j0,1, j1,1) for the inequality. Let us
denote

y2(z) := 2(1 − J0(z))(2J1(z) − zJ0(z)) + zJ1(z)(2J1(z) − z).

Now, in order to prove ∂‖u‖L∞
∂ω

> 0, it suffices to show that y2(z) > 0 for z ∈ ( j0,1, j1,1). By straightfor-
ward calculations we find

y′2(z) =
2zJ2

1(z) + (z2 − 4)J1(z) + 4J0(z)J1(z) − 2zJ2
0(z) − z(z2 − 2)J0(z)

z
,

y′′2 (z) =
4zJ2

0(z) −
(
z3 + 4z − 6z2J1(z) + 8J1(z)

)
J0(z)

z2 +

(
z4 − 2z2 + 8 − 8zJ1(z) + 2z2J0(z)

)
J1(z)

z2 .

Thanks to the facts that |J0(z)| < 1 and |J1(z)| < 1
√

2
for z ∈ ( j0,1, j1,1), a lengthy but straightforward

calculation gives z3 + 4z−6z2J1(z) + 8J1(z) > 0 and z4−2z2 + 8−8zJ1(z) + 2z2J0(z) > 0, which lead to
y′′2 (z) > 0. This conclusion in conjunction with the results that y2( j0,1) = (4 + 2 j0,1 − j2

0,1)J1( j0,1) > 0

and y′2( j0,1) =
2 j0,1 J2

1 ( j0,1)+( j20,1−4)J1( j0,1)
j0,1

> 0 imply y′2(z) > 0 and y2(z) > 0 for all z ∈ ( j0,1, j1,1) as expected.
This finishes the proof.

Before proceeding further, we establish the asymptotic ‖u−‖L∞ = O(ω2) by first showing that
z := ωr1 → ( j0,1)+ as χ→ ∞. If not, say ωr1 → some θ ∈ ( j0,1, j1,1] as χ→ ∞, then f (r1;ω; R) given
by (2.4) becomes negative for χ sufficiently large since r1 ∈ ( j0,1

ω
,

j1,1
ω

). This is a contradiction hence
z→ j0,1 as χ→ ∞. Therefore we have that

‖u−‖L∞ =
M
π

ω2(1 − J0(z))
2zJ1(z) − z2J0(z)

=
Mχ

2π j0,1J1( j0,1)
+ O(1) as χ→ ∞.
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Figure 2: Top: the inner ring solution (u−, v−) given by (2.8) with M = 25π and R = 5 for χ = 10, 20,
50 and 100. It is observed that u−(r)→ 25πδ0(r) and v−(r)→ 0.5136T0(r; 5) as χ→ ∞; moreover, the
size r1 of support of u−(r) shrinks as O( 1

ω
) or O( 1

√
χ

) and the magnitude of u−(r) expands as O(ω2) or
O(χ). Bottom: the development of interior spikes in configuration u as χ expands. Evidently, a large
chemotaxis rate promotes the formation of an interior spike that describes the cellular aggregation.

Finally, since r1 → 0+ and ωr1 → ( j0,1)+ as χ → ∞, we have that A1 → ∞ hence u−(r) → u∞ =

Mδ0(r) pointwisely in [0,R]. On the other hand, v−(r) → v∞(r) = B∞T0(r; R) pointwisely in [0,R],
where B∞ = M

2πI1(R) thanks to the conservation of mass.
Summarizing the facts above, we have proved the following results

Proposition 2.1. For each χ > χ1, (1.2) has a solution (u−(r), v−(r)) explicitly given by (2.8) in which
u−(r) is supported over a disk B0(r1); moreover, we have the following asymptotics of the solutions in
the large limit of χ:

(i) r1, the size of support of u−, is monotone decreasing in χ and r1 → 0+ as χ→ ∞;
(ii) maxB̄0(R) u−(r) is monotone increasing in χ and maxB̄0(R) u−(r) =

Mχ

2π j0,1 J1( j0,1) + O(1) for χ � 1;
(iii) u−(r)→ Mδ0(r) and v−(r)→ M

2πI1(R)T0(r; R) pointwisely in [0,R] as χ→ ∞.

Figure 2 presents an illustration on the statements in Proposition 2.1.

2.2 Outer Ring Solution
Now we look for the other radially monotone solution of (1.2) such that the support of u(r) is an
interval [R − r2,R] for some r2 to be determined. This gives rise to a solution supported in an outer
ring and we call it the outer ring solution and denote it by (u+, v+). Note that (u−(R − r), v−(R − r)),
the reflection of (u−(r), v−(r)) about R

2 , is no longer a solution of the original problem. This is a
strong contrast to the 1D problem [5, 16] and makes the problem intricate as we shall see later. The
idea and procedure of constructing such a solution are the same above, hence we perform necessary
calculations for future reference.

Similar as above, in this setting we find that u+ ≡ 0 for r ∈ [0,R − r2) and u+ − χv+ is a constant
for r ∈ [R − r2,R], where r2 measures the size of support of u and is to be determined. Solving the
v-equation in the fashion of (2.1) gives

v+(r) =

{
C3I0(r), r ∈ [0,R − r2),
C4S 0(R − r;ω,R) − C̄

χ−1 , r ∈ [R − r2,R], (2.9)
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where S 0 is the following compound Bessel function

S 0(r;ω,R) := Y1(ωR)J0(ω(R − r)) − J1(ωR)Y0(ω(R − r)), (2.10)

with Yα (α = 0, 1) being Bessel function of the second kind. We match the continuities of v′(r) and
v′′(r) at r = R − r2 in (2.9) −C4ωS 1(r2;ω,R) = C3I1(R − r2),

−C4ω
2
(
S 0(r2;ω,R) − S 1(r2;ω,R)

ω(R−r2)

)
= C3

(
I0(R − r2) − I1(R−r2)

R−r2

)
,

and find that r2 must satisfy the following algebraic equation

f2(r2;ω,R) :=
ωS 0(r2;ω,R)
S 1(r2;ω,R)

−
I0(R − r2)
I1(R − r2)

= 0, (2.11)

where S 1(r;ω,R) := Y1(ωR)J1(ω(R − r)) − J1(ωR)Y1(ω(R − r)). Note that both S 0 and S 1 are the
so–called cylinder functions proposed by Nielsen in [56], and both have infinitely many roots that are
cross-oscillating with ... < s(k)

0 < s(k)
1 < s(k+1)

0 < s(k+1)
1 < ... → ∞. We first give the following result

which establishes the existence and uniqueness of r2 for (2.11).

Lemma 2.2. Let χ1 =
(

j1,1
R

)2
+ 1 be the same as in (1.7). Then for each χ > χ1, the function f2(r;ω,R)

in (2.11) has a unique root r2 that lies in (s(1)
0 , s(1)

1 ), where s(k)
0 and s(k)

1 are the k-th positive root of
S 0(r;ω,R) and S 1(r;ω,R), respectively.

Proof. It suffices to show that S 1(r;ω,R) admits one root in (0,R) if and only if χ > χ1. To prove the
if part, we recall the following identity from Lommel [51] (page 106)

Y1(s)J0(s) − J1(s)Y0(s) = −
2
πs
, (2.12)

which readily implies that Y1(s) and J1(s) have distinct roots. Our discussion is divided into the
following two cases. Case 1: if Y1(ωR) = 0, then we have that ωR ≥ y1,2 since ωR > j1,1 > y1,1, where
y1,k is the k-th positive root of Y1(s) with

y1,1 ≈ 2.1971, y1,2 ≈ 5.4296, y1,3 ≈ 8.5960, y1,4 ≈ 11.7491, y1,5 ≈ 14.8974, ...

to name the first few explicit values. Write τ1 := R − y1,1

ω
∈ (0,R), then one has that τ1 is the root

of S 1(r;ω,R) since S 1(τ1;ω,R) = −J1(ωR)Y1(y1,1) = 0; Case 2: if Y1(ωR) , 0, then we rewrite
S 1(r;ω,R) as

S 1(r;ω,R) = Y1(ωR)Y1(ω(R − r))
(

J1(ω(R − r))
Y1(ω(R − r))

−
J1(ωR)
Y1(ωR)

)
.

Denote y3(r) := J1(r)
Y1(r) . A direct computation using (2.12) gives that y′3(r) = − 2

πrY2
1 (r) < 0 hence y3(r)

is monotone decreasing in ∪k∈N(y1,k, y1,k+1) with y1,0 := 0. Moreover, since y3(0) = y3( j1,k) = 0 and
y3(y±1,k) = ±∞, we have that whenever ωR > j1,1 there exists at least one τ2 ∈ (0,R) such that

J1(ω(R − τ2))
Y1(ω(R − τ2))

=
J1(ωR)
Y1(ωR)

and Y1(ω(R − τ2)) , 0, therefore S 1(τ2;ω,R) = 0 as expected. This verifies the claim in both cases.
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Now we prove the only if part. Suppose that there exists s(1)
1 ∈ (0,R), then the “only if” naturally

holds when Y1(ωR) = 0 since in this case S 1(s(1)
1 ;ω,R) = −J1(ωR)Y1(ω(R − s(1)

1 )) = 0, which readily
implies Y1(ω(R − s(1)

1 )) = 0 and ωR ≥ y1,2 > j1,1. When Y1(ωR) , 0, with Y1(s) and J1(s) having
distinctive roots due to (2.12), we must have Y1(ω(R − s(1)

1 )) , 0 hence s(1)
1 satisfies y3(ω(R − s(1)

1 )) =

y3(ωR), which gives rise to ωR > j1,1 by the same arguments as above.
It remains to show that the existence of s(1)

1 and r2 in (0,R) are equivalent. Since ∂rS 0(r;ω,R) =

ωS 1(r;ω,R) and S 0(0;ω,R) < S 1(0;ω,R) = 0, it is straightforward to see that s(k)
0 < s(k)

1 . If s(1)
1 ∈

(0,R), we claim that (2.11) admits no positive root in (0, s(1)
0 ). Recall that

f2(r;ω,R) :=
ωS 0(r;ω,R)
S 1(r;ω,R)

−
I0(R − r)
I1(R − r)

,

then f2(r;ω,R) < 0 in (0, s(1)
0 ). For r ∈ (s(1)

0 , s(1)
1 ), straightforward calculations yield

∂r f2(r;ω,R) = ω2 + 1 + f2(r;ω,R)

>0︷                                        ︸︸                                        ︷(
ωS 0(r;ω,R)
S 1(r;ω,R)

+
I0(R − r)
I1(R − r)

−
1

R − r

)
, (2.13)

where “> 0” holds since sI0(s) > I1(s) for any s > 0. Note that f2(s(1)
0 ;ω,R) = −

I0(R−s(1)
0 )

I1(R−s(1)
0 )

< 0

and f2((s(1)
1 )−;ω,R) = +∞, therefore one finds that f2(r;ω,R) admits at least one root in (s(1)

0 , s(1)
1 ),

whereas the uniqueness can be verified by the same argument for Lemma 2.1. We further note that
(2.11) admits no root if s(1)

1 < (0,R). For r ∈ (s(1)
0 ,R), we can readily see that f2(s(1)

0 ;ω,R) < 0 and
f2(R−;ω,R) = −∞, and since (2.13) implies that a critical point ξ2 exists only if f2(ξ2;ω,R) < 0,
therefore f2(r;ω,R) < 0 in (s(1)

0 ,R) as a consequence. The proof completes. �

With the support size r2 obtained in (2.11), we have that u+(r) ≡ 0 for r ∈ [0,R − r2) and u+(r) =

A2

(
S 0(R − r;ω,R) − S 0(r2;ω,R)

)
for r ∈ [R − r2,R], where A2, determined by the conservation of

total cell population 2π
∫ R

R−r2
u+(r)rdr = M, is explicitly given by

A2 = −
Mω

π
(
2(R − r2)S 1(r2;ω,R) + ωr2(2R − r2)S 0(r2;ω,R)

) . (2.14)

Note that r2 ∈ (s(1)
0 , s(1)

1 ), then it follows thatA2 < 0 is well-defined.
To find v+(r), we recall that u+ = χv+ + C̄ for r ∈ [R− r2,R] for some constant C̄ to be determined

(not the same as in the previous section) and

A2

(
S 0(R − r;ω,R) − S 0(r2;ω,R)

)
= χC4S 0(R − r;ω,R) −

C̄
χ − 1

,

therefore C4 = A2
χ

and C̄ = A2(χ−1)S 0(r2;ω,R), or C̄ = −
I0(R−r2)Mω2

π
(

2(R−r2)I1(R−r2)+r2(2R−r2)I0(R−r2)
) to be specific;

moreover, the continuity of v+ at r = R − r2 impliesA2( 1
χ
− 1)S 0(r2;ω,R) = B2I0(R − r2) hence

B2 =
Mω2

πχ
(
2(R − r2)I1(R − r2) + r2(2R − r2)I0(R − r2)

) . (2.15)
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In summary, we obtain the following explicit formulas of the desired radially decreasing solution
(u+(r), v+(r))

u+(r) =

0, r ∈ [0,R − r2),
A2

(
S 0(R − r) − S 0(r2)

)
, r ∈ [R − r2,R],

v+(r) =

B2I0(r), r ∈ [0,R − r2),
A2

(
S 0(R−r)

χ
− S 0(r2)

)
, r ∈ [R − r2,R],

(2.16)
where S 0 is the compound Bessel function in (2.10), and A2 and B2 are given by (2.14) and (2.15).
The steady state given by (2.16) is called the outer ring solution or outer ring for short.

Remark 2.2. Thanks to the fact that the zeros of J1(s) and Y1(s) are cross-oscillating such that
... < y1,k < j1,k < y1,k+1 < j1,k+1 < ..., k ∈ N+, one can show that if χ > χk, S 1(r;ω,R) admits at least k
positive roots in (0,R), while there exists a unique root of (2.11) in each interval (s(k)

0 , s
(k)
1 ). However,

by the same arguments in Remark 2.1, one must restrict the unique root r2 ∈ (s(1)
0 , s(1)

1 ) as expected to
guarantee the positivity of u+(r) in [R − r2,R].

2.2.1 Asymptotic behavior of outer ring solution in the limit of χ→ ∞

Now we study the asymptotic behaviors of the outer ring solutions in the limit of large chemotaxis
rate. Before proceeding further, let us introduce the following compound Bessel functions

V0(r;ω,R) := Y0(ωR)J0(ω(R − r)) − J0(ωR)Y0(ω(R − r)), (2.17)
V1(r;ω,R) := Y0(ωR)J1(ω(R − r)) − J0(ωR)Y1(ω(R − r)). (2.18)

Then one finds by straightforward calculations

∂S 0(r;ω,R)
∂ω

= RV0(r;ω,R) −
S 0(r;ω,R)

ω
− (R − r)S 1(r;ω,R),

∂S 1(r;ω,R)
∂ω

= RV1(r;ω,R) −
2S 1(r;ω,R)

ω
+ (R − r)S 0(r;ω,R),

and infer from (2.12) that

S 0(r;ω,R)V1(r;ω,R) −V0(r;ω,R)S 1(r;ω,R) = −
4

π2ω2R(R − r)
. (2.19)

Similar as above, we first claim that r2, the size of support of u+(r), shrinks as χ increases. Accord-
ing to our previous discussions, we know from (2.11) that r2 ∈ (s(1)

0 , s(1)
1 ) is uniquely determined for

each χ > χ1 and it depends on χ continuously. We claim that ∂r2
∂ω

< 0. Indeed, since f2(r2;ω,R) = 0,
we have from (2.19)

∂r2

∂ω
= −

∂ω f2(r2;ω,R)
∂r f2(r2;ω,R)

= −
∂ω f2(r2;ω,R)

ω2 + 1

= −
S 0(r2;ω,R)S 1(r2;ω,R) + ωS 1(r2;ω,R)∂S 0(r2;ω,R)

∂ω
− ωS 0(r2;ω,R)∂S 1(r2;ω,R)

∂ω

(ω2 + 1)S 2
1(r2;ω,R)

= −

4
π2 − ω

2(R − r2)2
(
S 2

0(r2;ω,R) + S 2
1(r2;ω,R)

)
+ 2ω(R − r2)S 0(r2;ω,R)S 1(r2;ω,R)

ω(ω2 + 1)(R − r2)S 2
1(r2;ω,R)

= : −
y4(r2;ω,R)

ω(ω2 + 1)(R − r2)S 2
1(r2;ω,R)

.
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Some straightforward calculations give y′4(r;ω,R) = 2ω2(R−r)S 2
1(r;ω,R) > 0, therefore y4(r2;ω,R) >

y4(0;ω,R) = 0 and ∂r2
∂ω
< 0 as claimed. This fact implies that the size of support shrinks as chemotaxis

rate χ increases.
We next show that r2 → 0+ as χ→ ∞. To prove this, we need some refined estimates for s(1)

0 and
s(1)

1 . For this purpose let us introduce for s ∈ (0, ωR)

Cn(s) := Jn(s) cosα − Yn(s) sinα, n = 1, 2, (2.20)

with α := arctan J1(ωR)
Y1(ωR) ∈ [0, π). Then we find that ω(R − s(k)

0 ) and ω(R − s(k)
1 ) are the roots of C0(s)

and C1(s), respectively.; on the other hand, according to [61] and [74] (Chap. 15.33), all the positive
roots of (2.20) must lie in one of the intervals(

mπ +
π

4
(3 − 3n) − α, mπ +

π

4
(4 − 3n) − α

)
,m = 0, 1, 2, · · ·

Since ωR is a root of C1(s), there exists some m1 ∈ N
+ such that

ωR ∈ (m1π − α, m1π +
π

4
− α),

and the adjacent root of C1(s) lies in (ωR− 5π
4 , ωR− 3π

4 ), i.e., s(1)
1 ∈ ( 3π

4ω ,
5π
4ω ). In light of the relationship

between the roots of Cn(s), it follows that s(1)
0 ∈ (0, π

2ω ). Therefore we conclude that r2 ∈ (s(1)
0 , s(1)

1 ) ⊂
(0, 5π

4ω ), hence r2 → 0+ as χ → ∞. Indeed, we are able to provide a finer estimate r2 ∈ ( π
2ω ,

5π
4ω ) by

using the asymptotic expansions of Bessel functions and the uniform bounds of the ratios of modified
Bessel functions. The proof is given in the appendix.

Similar as before, we now show that the maximum of u+(r) is strictly increasing in χwith ∂‖u+‖L∞

∂ω
>

0 and ‖u+‖L∞ = O(ω) as χ→ ∞. Combining (2.16) with (2.14) gives

‖u+‖L∞ =
M
π2

(2 + πωRS 0(r2;ω,R)
2(R − r2)S 1(r2;ω,R) + ωr2(2R − r2)S 0(r2;ω,R)

.

Direct calculations give

π2

M
∂‖u+‖L∞

∂ω
=

2ω3S 1 (πR(R − r2)S 1 − r2(2R − r2)) ∂r2
∂ω

+ 2πRy4(r2;ω,R)

ω (2(R − r2)S 1 + ωr2(2R − r2)S 0)2

−
2
(
2(R − r2)(RV1 + (R − r2)S 0 −

2S 1
ω

) + ωr2(2R − r2)(RV0 − (R − r2)S 1)
)

(2(R − r2)S 1 + ωr2(2R − r2)S 0)2 ,

where variables (r2;ω,R) are skipped without confusing the reader. Thanks to (7.1) and (7.2), one
finds that S 1(r2;ω,R) < 2

πω
√

R(R−r2)
for any χ > χ1, and this implies (πR(R − r2)S 1 − r2(2R − r2)) < 0

because ωr2 >
π
2 . Denote

y5(r;ω,R) :=
RV1(r;ω,R) + (R − r)S 0(r;ω,R)

S 1(r;ω,R)
, y6(r;ω,R) := RV0(r;ω,R) − (R − r)S 1(r;ω,R).

with V0 and V1 given by (2.17) and (2.18), respectively. Then one easily finds that y′5(r;ω,R) =

−
y4(r;ω,R)

ω(R−r)S 2
1(r;ω,R) < 0 and y′6(r;ω,R) = ωS 1(r;ω,R)y5(r;ω,R), hence y5(r;ω,R) < y5(0;ω,R) = 0 and

y6(r;ω,R) < y6(0;ω,R) = 0 in (0, s(1)
1 ). Combining the facts that ∂r2

∂ω
< 0 and y4(r2;ω,R) > 0, we find

∂‖u‖L∞
∂ω

> 0 as expected.
One can prove that r2 → ( π

2ω )+ in the limit of χ→ ∞ (see the Appendix). This fact, together with
(7.4) and (7.5), implies that ‖u+‖L∞ = M

π2(R− π
2ω )S 1( π

2ω ;ω,R) = Mω
2π + O(1); moreover, u+(r)→ u∞ = MδR(r)

and v+(r)→ v∞ = M
2πRI1(R) I0(r) pointwisely.

Our results above are summarized in the following proposition:
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Figure 3: Top: the outer ring solution (u+, v+) with M = 25π and R = 5 for χ =10, 20, 50 and 100. One
observes that u+(r)→ 25πδR(r) and v+(r)→ 0.1027I0(r) as χ→ ∞; moreover, the size r2 of support of
u+(r) shrinks as O( 1

ω
) or O( 1

√
χ

) and the maximum of u+(r) expands as O(ω) or O(
√
χ). We would like

to mention that one always that ‖u+‖L∞ < ‖u−‖L∞ for each χ > χ1. This is presented in the bifurcation
diagram in Figure 1. Bottom: Formation and development of outer ring configuration in u as χ expands
from 10 to 100.

Proposition 2.2. For each χ > χ1, (1.2) has a solution (u+(r), v+(r)) explicitly given by (2.16) in which
u+(r) is supported over the annulus B0(R)\B0(r2). Moreover, we have the following asymptotics of the
solutions in the large limit of χ:

(i) r2, the size of support of u+, is monotone decreasing in χ and r2 → 0+ as χ→ ∞;
(ii) maxB̄0(R) u+(r) is monotone increasing in χ and maxB̄0(R) u+(r) =

M
√
χ

2π + O(1) for χ � 1;
(iii) u+(r)→ MδR(r) and v+(r)→ M

2πRI1(R) I0(r) pointwisely in [0,R] as χ→ ∞;

See Figure 3 for illustration of Proposition 2.2.

2.3 Monotone Solutions in an Annulus: An Auxiliary and Supporting Problem
Our previous results imply that for each χ > χ1, the stationary problem (1.2) has a pair of solutions
(u±, v±) explicitly given by (2.8) and (2.16), both of which have u compactly supported and radially
monotone over its support; moreover, if χ ∈ (χ1, χ2), the solution is unique in the sense that all
nonconstant solutions of (1.2) must be one of the pair; furthermore, when χ = χ2, there also exist
non-monotone solutions of (1.2) (uniquely) given by the one-parameter family of functions (1.8),
hence we assume χ > χ2 to look for radially non-monotone solutions. Similar as above, it is easy
to see that whenever χ > χ2,, χk, u(r) must be compactly supported, though the support is not
necessarily connected.

In this subsection, we prepare ourselves to study non-monotone solutions by solving (1.2) for
radially monotone solutions over (predetermined) subsets of B0(R), then we concatenate them (with
the inner ring and/or outer ring solutions when applicable) by matching the continuities of v(r) at the
interface. To be precise, let us consider a slightly general case than above such that u(r) is supported
over an annulus (a, b) for arbitrarily given b > a ≥ 0.
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We first solve (1.2) in (a, b) for (U3,V3) such that U3 is supported in (a, a + r3), for some r3 to be
determined. Solving (2.1) with (0,R) replaced by (a, b) gives the generic decreasing mode

U3(r) =

 A3

(
S 0(a − r;ω, a) − S 0(−r3;ω, a)

)
, r ∈ (a, a + r3),

0, r ∈ (a + r3, b),

V3(r) =

 A3

(
1
χ
S 0(a − r;ω, a) − S 0(−r3;ω, a)

)
, r ∈ (a, a + r3),

B3T0(r; b), r ∈ (a + r3, b),

(2.21)

where S 0 and T0 are given by (2.10) and (2.3), and r3 ∈ (0, b−a) is to be determined by the continuity
of V3(r) at r = a + r3. That being said, r3 is the first positive root of the following algebraic equation

f3(r3;ω, a, b) :=
ωS 0(−r3;ω, a)
S 1(−r3;ω, a)

−
T0(a + r3; b)
T1(a + r3; b)

= 0. (2.22)

With r3 determined by (2.22),A3 and B3 can be evaluated by the conservation of mass

A3 =
Mω

π
(
2(a + r3)S 1(−r3;ω, a) − ωr3(2a + r3)S 0(−r3;ω, a)

) ,
B3 = −

Mω2

πχ
(
2(a + r3)T1(a + r3; b) − r3(2a + r3)T0(a + r3; b)

) .
Similarly, the generic increasing mode that extends the outer ring in (0,R) to (a, b) is

U4(r) =

 0, r ∈ (a, b − r4),
A4

(
S 0(b − r;ω, b) − S 0(r4;ω, b)

)
, r ∈ (b − r4, b),

V4(r) =

 B4T0(r; a), r ∈ (a, b − r4),
A4

(
1
χ
S 0(b − r;ω, b) − S 0(r4;ω, b)

)
, r ∈ (b − r4, b),

(2.23)

where r4 ∈ (0, b − a) is the first positive root of the following algebraic equation

f4(r4;ω, a, b) :=
ωS 0(r4;ω, b)
S 1(r4;ω, b)

−
T0(b − r4; a)
T1(b − r4; a)

= 0; (2.24)

moreover, by the conservation of total population

A4 = −
Mω

π
(
2(b − r4)S 1(r4;ω, b) + ωr4(2b − r4)S 0(r4;ω, b)

) ,
B4 =

Mω2

πχ
(
2(b − r4)T1(b − r4; a) + r4(2b − r4)T0(b − r4; a)

) .
Therefore, we are left to find condition(s) on χ that guarantee the existence of r3 in (2.22) and r4

in (2.24), respectively. Our main results can be summarized into the following lemma.

Lemma 2.3. Let 0 ≤ a < b be two arbitrary constants. Denote χa,b = ω2
a,b + 1, where ωa,b is given by

ωa,b := inf
ω>

j1,1
b

{
ω ∈ R+

∣∣∣∣ J1(ωa)
Y1(ωa)

=
J1(ωb)
Y1(ωb)

}
< ∞. (2.25)

Then ωa,b ∈ [ j1,1
b ,

j1,1
b−a ] with ω0,b =

j1,1
b ; moreover, the following statements hold:

18



(i) for each χ > χa,b, (2.22) has a unique root r3 ∈ (0, s(1)
1a ) ⊂ (0, b−a), where s(1)

1a is the first positive
root of S 1(−r;ω, a) in (0, b − a), and (2.22) admits no root in (0, b − a) if χ < χa,b;

(ii) for each χ > χa,b, (2.24) has a unique root r4 ∈ (0, s(1)
1b ) ⊂ (0, b − a), where s(1)

1b is the first root of
S 1(r;ω, b) in (0, b − a), and (2.24) admits no root in (0, b − a) if χ < χa,b;

(iii) both r3 and r4 continuously depend on and monotonically decrease in χ, and ri → 0+ as χ→ ∞.

Proof. The proof is the same as that of Lemma 2.2, and we will only do it for part (i), while part (ii)
can be verified similarly. To show that f3(r;ω, a, b) has a solution r3 ∈ (0, s(1)

1a ) for each χ > χa,b, we
claim it is sufficient to show that S 1(−r;ω, a) has at least one solution in (0, b − a). Rewrite

S 1(−r;ω, a) = Y1(ωa)Y1(ω(a + r))
(

J1(ω(a + r))
Y1(ω(a + r))

−
J1(ωa)
Y1(ωa)

)
, r ∈ (0, b − a).

Thanks to the monotonicity of J1(r)
Y1(r) , for each ω > ωa,b there exists at least one number s(1)

1a in (0, b− a)
such that S 1(−s(1)

1a ;ω, a) = 0. We are now left to show that the existence of such r3 and s(1)
1a in (0, b−a)

are equivalent. To this end, we first find that ∂rS 0(−r;ω, a) = −ωS 1(−r;ω, a) and S 0(0;ω, a) <
S 1(0;ω, a) = 0, therefore s(1)

0a < s(1)
1a , where s(1)

0a is the first root of S 0(−r;ω, a) in (0, b− a). Note that if
s(1)

1a ∈ (0, b − a), then f3(r;ω, a, b) > 0 in (0, s(1)
0a ), which indicates that it has no root in (0, s(1)

0a ). Now,
for each r ∈ (s(1)

0a , s
(1)
1a ), straightforward calculations yield

∂r f3(r;ω, a, b) = −(ω2 + 1) + f3(r;ω, a, b)

>0 in (s(1)
0a ,s

(1)
1a )︷                                                 ︸︸                                                 ︷(

−
ωS 0(−r;ω, a)
S 1(−r;ω, a)

−
T0(r + a; b)
T1(r + a; b)

+
1

a + r

)
,

where “> 0” holds since T0(r + a; b) > 0 and T1(r + a; b) < 0 for r ∈ (0, b − a). Note that
f3(s(1)

0a ;ω, a, b) > 0 and f3((s(1)
1a )−;ω, a, b) = −∞, therefore one finds that f3(r;ω, a, b) admits at least

one root in (s(1)
0a , s

(1)
1a ) as claimed. By the same arguments for Lemma 2.2, one can show this root is

unique.
To show part (iii), we first verify that r3 decreases in χ. To see this, we differentiate f3(r3;ω, a, b) =

0 with respect to ω and collect

∂r3

∂ω
= −

∂ω f3(r3;ω, a, b)
∂r f3(r3;ω, a, b)

=
∂ω f3(r3;ω, a, b)

ω2 + 1

=

4
π2 − ω

2
(
S 2

0(−r3;ω, a) + S 2
1(−r3;ω, a)

)
+ 2ω(a + r4)S 0(−r3;ω, a)S 1(−r3;ω, a)

ω(ω2 + 1)(a + r3)S 2
1(−r3;ω, a)

=:
y7(r3;ω, a)

ω(ω2 + 1)(a + r3)S 2
1(−r3;ω, a)

.

We claim that the numerator y7(r3;ω, a) < 0. Indeed, we find by straightforward calculations that
∂ωy7(r3;ω, a) = −2ω2(r3 + a)S 2

1(−r3;ω, a) < 0 and y7(0;ω, a) = 0, this readily verifies the claim
hence ∂r3

∂ω
< 0 as expected. Similarly one can show the monotonicity of r4 in ω. Moreover, r3 → 0+

follows from the fact that s(1)
1a → 0+ as χ→ ∞. The lemma is proved. �

We would like to remark that, (2.22) have other roots in (0, b − a) if χ is large enough. However,
these roots can not be chosen as the size of support according to the same arguments as in Remark
2.1. When a = 0, we have that ω0,b =

j1,1
b and ωa,b →

j1,1
b as a→ 0+, then Lemma 2.3 readily recovers

the statements about the root r1 of (2.4); moreover, ωa,b → +∞ as a→ b−. We can say more about its
monotonicity as follows which will be needed for our coming analysis.
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Lemma 2.4. For each given b > 0, ωa,b defined by (2.25) is strictly increasing in a, i.e., ωa1,b < ωa2,b

if 0 ≤ a1 < a2 < b.

Proof. Let y1,k be the k-th positive root of Y1 as in the proof of Lemma 2.2. We divide our discussion
into the following two cases. Case (i): Y1(ωa,bb) = 0. Then we must have that ωa,ba = y1,k0 and
ωa,bb = y1,k0+1 for some k0 ∈ N

+. Therefore ωa,b =
y1,k0+1−y1,k0

b−a , which readily implies the desired
claim. Case (ii): Y1(ωa,bb) , 0, then we know that Y1(ωa,ba) , 0. Let us differentiate the identity
J1(ωa,ba)
Y1(ωa,ba) =

J1(ωa,bb)
Y1(ωa,bb) with respect to a, then one finds that

∂ωa,b

∂a
=

2ω
πωaY2

1 (ωa)

− 2a
πωaY2

1 (ωa) + 2b
πωbY2

1 (ωb)

=
ωY2

1 (ωb)
a
(
Y2

1 (ωa) − Y2
1 (ωb)

) ∣∣∣∣∣∣
ω=ωa,b

.

One knows that (e.g., Sec. 13. 71 in [74]) the compound Bessels function (J2
1 + Y2

1 )(r) is always
decreasing hence J2

1(ωa,bb) + Y2
1 (ωa,bb) < J2

1(ωa,ba) + Y2
1 (ωa,ba). This inequality, together with the

identity J1(ωa,ba)
Y1(ωa,ba) =

J1(ωa,bb)
Y1(ωa,bb) , readily implies that Y2

1 (ωa,ba) − Y2
1 (ωa,bb) > 0, hence ∂ωa,b

∂a > 0 in Case (ii).
The lemma is verified in both cases. �

When χ = χa,b, we see that J1(ωa)
Y1(ωa) =

J1(ωb)
Y1(ωb) and Y1(s) admits only one zero in (ωa, ωb), therefore u

is strictly positive in the annulus B0(b)\B0(a). By the same arguments for (1.8), one sees that χa,b − 1
is the principle eigenvalue of −∆r in the annulus and v is an eigenfunction hence must be a multiplier
of S 0(b−r;ω, b). Then similar as in (1.8) one sees that (1.2) has a one-parameter families of solutions
given by

(Uε(r),Vε(r)) = (ūab, v̄ab) + ε(χa,b, 1)S 0(b − r;ω, b), r ∈ (a, b);
−ūab/χa,b

S 0(b − a;ω, b)
≤ ε ≤

−ūab/χa,b

S 0(0;ω, b)
,

(2.26)
where ūa,b = v̄a,b = M

π(b2−a2) . We see that (2.26) extends (1.8) from (0,R) to (a, b) for any 0 ≤ a < b.
It seems necessary to mention that, though any constant pair (ūi, v̄i) solves the equation in (1.2)

over interval (ai, ai+1), such profile can not be concatenated into the solution that matches the mass
constraint and v can not admit a plateau profile. We have the following statement.

Corollary 2.1. Let (u, v) be any nonconstant solutions of (1.2). Then the v has at most finite many
critical points in (0,R), i.e., there does not exist an interval (a, b) such that u = v ≡ some constant in
(a, b).

Proof. Argue by contradiction. Suppose there exists (a, b) such that u ≡ v ≡ c in [a, b]. Then we
must have that a > 0 or b < R since otherwise u ≡ v ≡ ū if (a, b) = (0,R) and we are done. For
a > 0, there exists a0 ∈ [0, a) such that v′(a0) = 0 and either v is monotone decreasing or monotone
increasing in (a0, a). In the former case, we have from (2.21) that (u, v) = (U3,V3) with (a, b) = (a0, a),
therefore u(a) = limr→a− U3(a) = A3(S 0(a0 − a;ω, a0) − S 0(−r3;ω, a0)) and v(a) = limr→a− V3(a) =

A3( 1
χ
S 0(a0 − a;ω, a0) − S 0(−r3;ω, a0)), which readily implies that u(a) < v(a), however, this is a

contradiction to the assumption that u(a) = v(a) = c; in the latter case, we use (2.23) and can find that
u(a) > v(a) which is also a contradiction to our assumption. Therefore, a > 0 is impossible. Similarly
we can show that b < R is also impossible unless (a, b) = (0,R). �

It might seem redundant, but for the reader’s reference we present the
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Proof of Theorem 1.1 and Theorem 1.2.
For Theorem 1.1, (i) and (ii) follow from [16] and Lemma 1.1; (iii) and (iv) follow from Proposi-

tion 2.1 and Proposition 2.2, respectively. For Theorem 1.2, (i) follows from Lemma 3.2 and Propo-
sition 3.1; (ii-1) and (ii-2) follow from Proposition 3.2 and Proposition 3.3, respectively. Finally, (iii)
holds in light of Lemma 2.4 (with a1 = 0 and a2 =

j1,2
ω

) since χ < χ3. �

3 Radially Non-Monotone Solutions
In Section 2, for each χ ∈ (χ1,∞) we have established the inner ring solution (2.8) and the outer ring
solution (2.16), both of which converge to Dirac delta function in the limit of large chemotaxis rate;
moreover, we show that if χ ∈ (χ1, χ2), then any nonconstant radial solution of (1.2) must be either
the inner ring or the outer ring solution given above. In this section, we proceed to look for non-
monotone solutions of (1.2) and for this purpose we shall assume χ ≥ χ2 from now on. Recall that
for each χ = χk, k ≥ 2, (1.2) has solutions explicitly given by the one–parameter family bifurcation
solutions in (1.8) such that both u(r) and v(r) are positive in (0,R). We are interested in solutions that
extend the global continuum of each bifurcation branch, which consists of solutions such that u is
compactly supported. Our results in this section can be summarized as follows: for χ ∈ (χ2,∞), there
exists two classes of non-monotone solutions of (1.2), explicitly given by (3.2) and (3.5); moreover,
if χ ∈ (χk, χk+1), k ≥ 2, the sign of v′(r) changes at most (k − 1) times in (0,R).

3.1 Radially Non-Monotone Solution: The Mexican-Hat Solutions
In order to construct non-monotone solutions, we first choose some R0 ∈ (0,R) such that f (r1;ω,R0) in
(2.4) and f (r4;ω, a, b) in (2.24) are solvable with a = R0 and b = R. Then (u, v) takes the form (2.21)
with (a, b) = (0,R0) and (2.23) with (a, b) = (R0,R), and v(r) achieves its minimum at r = R0. These
radial profiles give rise to an interior in the center and an outer ring on the boundary, which we refer to
as the Mexican-hat solutions. See the left column of Figure 4 for illustration of its configuration. Then

Mexican-hat Volcano

Figure 4: Configurations u of Mexican-hat and Volcano solutions of (1.2) in disk B0(5), where R0 ≈

2.7309 in the Mexican-hat solution (3.2), and R̄∗0 ≈ 3.3831 in the Volcano solution (3.8).

we adjust the mass of each aggregate to match the regularities of v at r = R0. Before presenting the
explicit formula for this non-monotone solution, we first give the necessary and sufficient condition
on R0 which guarantees the existence of the roots r1 and r4 for (2.4) and (2.24). Indeed, there exists
one interval of such R0 which gives rise to infinitely many such non-monotone solutions described
above. We give the following lemma.
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Lemma 3.1. For each χ > χ2, let us introduce R0 and R̄0 as functions of χ by

R0 :=
j1,1

ω
and R̄0 := sup

R̃0<
j1,k
ω

{
R̃0 ∈ (0,R)

∣∣∣∣ J1(ωR̃0)
Y1(ωR̃0)

=
J1(ωR)
Y1(ωR)

, ωR ∈ ( j1,k, j1,k+1], k ≥ 2
}
. (3.1)

Then R0 < R̄0; moreover, for each R0 ∈ [R0, R̄0], f (r;ω,R0) in (2.4) admits a unique root r1 ∈ (0, j1,1
ω

]
and f4(r;ω,R0,R) in (2.24) admits a unique root r4 ∈ (0, 5π

4ω ).

Proof. We first show that R0 < R̄0. Since ωR ∈ ( j1,k, j1,k+1], we readily have that ωR̄0 ∈ ( j1,k−1, j1,k],
therefore R̄0 >

j1,k−1

ω
≥

j1,1
ω

:= R0. To prove the existence and uniqueness of r1, we see that ω =
j1,1
R0
≥

j1,1
R0

for each R0 ∈ [R0, R̄0], then Lemma 2.1 readily implies that f (r;ω,R0) in (2.4) admits a unique
root r1 ∈ ( j0,1

ω
,

j1,1
ω

]. To prove the statement for r4, we claim that χ > χR0,R for each R0 < R̄0, and then
according to part (ii) of Lemma 2.3, (2.24) with a = R0 and b = R admits a unique root r4 ∈ (0, s(1)

1 ).
To verify the claim, we observe from the definitions (2.25) and (3.1) that ω > ωR̄0,R, and then Lemma
2.4 implies ωR̄0,R > ωR0,R since R̄0 > R0. This verifies the claim and completes the proof. �

Remark 3.1. The proof above readily implies that R̄0 ∈ ( j1,k−1

ω
,

j1,k
ω

] whenever ωR ∈ ( j1,k, j1,k+1], k ≥ 2.

See Figure 7 for illustration of the verification. According to Lemma 3.1, with r1 and r4 obtained
there in hand one is able to solve (1.2) for inner ring solution over (0,R0) and outer ring solution over
(R0,R), and then concatenate them to form radially non-monotone solution in the whole region (0,R).
This is what we will show later; moreover, R0 →

j1,1
j1,2

R as χ→ χ2. Note that here r1 and r4 denote the
sizes of support of ud(r) on the left patch and right patch.

There exists one interval of such R0 which therefore gives rise to a (one-parameter) family of the
concatenated non-monotone radial solutions whenever χ > χ2. Though there is no uniqueness for this
family of solutions, we are able to present their explicit formulas with a pre-determined parameter R0

in this interval.

Remark 3.2. (i) Lemma 3.1 states that for each R0 ∈ [R0, R̄0], v(r) decreases in (0,R0) and increases
in (R0,R), hence R0 is the (unique) interior critical point of v(r) in (0,R). For each fixed χ > χ2,
it is easy to see that the valley of v(r) at R0 can neither be too close to the center nor too close to
the boundary. If one would like shift the valley sufficiently close to the center or the boundary, a
sufficiently large χ is required to this end;

(ii) continued from (i), if we set R0 arbitrary, an equivalent statement of Lemma 3.1 is that for any

χ > max
{(

j1,1
R0

)2
, ω2

R0,R

}
+ 1, with ωR0,R defined in Lemma 2.3, the conclusion there holds.

(iii) we claim that R0 → 0+ and R̄0 → R− as χ → ∞. The former is obvious; to show that later,
we recall that y1,k+1 − y1,k → π as k → ∞, therefore for sufficiently large ω, ωR − ωR̄0 ≤ 2π, hence
the later holds. We would like to mention that Lemma 3.1 holds for R0 = R0 or R̄0, however, the
asymptotic behaviors of (u, v) when R0 = R0 or R̄0 are different from those when R0 ∈ (R0, R̄0).

Now by the same arguments as above, for each χ > χ2 we can construct non-monotone solutions
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(ud(r), vd(r)) explicitly given by

ud(r) =


A1

(
J0(ωr) − J0(ωr1)

)
, r ∈ [0, r1],

0, r ∈ (r1,R − r4),
A4

(
S 0(R − r;ω,R) − S 0(r4;ω,R)

)
, r ∈ [R − r4,R],

vd(r) =


A1

(
J0(ωr)
χ
− J0(ωr1)

)
, r ∈ [0, r1],

BT0(r; R0), r ∈ (r1,R − r4),
A4

(
1
χ
S 0(R − r;ω,R) − S 0(r4;ω,R)

)
, r ∈ [R − r4,R],

(3.2)

where the coefficients, determined by the continuity of v(r) and conservation of total mass, are explic-
itly given by

A1 =
χB

1 − χ
T0(r1; R0)
J0(ωr1)

,A4 =
χB

1 − χ
T0(R − r4; R0)
S 0(r4;ω,R)

and B =
C̄1C̄2M
C̄1 + C̄2

, (3.3)

where

C̄1 :=
−ω2J0(ωr1)

πχr2
1 J2(ωr1)T0(r1; R0)

and C̄2 :=
ω2

πχ
(
2(R − r4)T1(R − r4; R0) + r4(2R − r4)T0(R − r4; R0)

) .
Moreover, one can find that the cellular population m1 within inner support disk B0(r1) and the cell
population m4 within outer support annulus B0(R)\B0(R − r4) can be explicitly presented as

m1 =
C̄2M

C̄1 + C̄2
and m4 =

C̄1M
C̄1 + C̄2

. (3.4)

Then our results can be summarized as follows.

Proposition 3.1. Assume that χ > χ2. Then for each R0 ∈ [R0, R̄0], (1.2) has a non-monotone solution
given by (3.2).

For each χ > χ2, Proposition 3.1 implies that there exists a one-parameter family of solution of
(1.2). These solutions are illustrated by shaded area of Figure 5. As R0 varies, the configuration of
the solutions are maintained while their asymptotics can be dramatically different in the large limit of
χ, in particular when R0 = R0 or R̄0 is chosen. We shall see details in the next subsection.

3.1.1 Asymptotic behaviors of the Mexican-hat solutions

Next we investigate the asymptotic behaviors of the Mexican-hat solutions in the large limit of χ. Our
result is summarized in the following lemma.

Lemma 3.2. Assume that χ > χ2 and let (ud(r), vd(r)) be the solution given by (3.2) for arbitrary
R0 ∈ [R0, R̄0]. The followings hold as χ→ ∞

(i) if R0 = R0, then

ud(r)→
{

C0, r = 0,
MδR(r), r ∈ (0,R], and vd(r)→

MI0(r)
2πRI1(R)

,

where C0 =
(J0( j1,1)−1)M

2πRI1(R)J0( j1,1) ; moreover, ud(R) = Mω
2πR + O(1) for χ � 1;
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Figure 5: Mexican-hat and Volcano solutions on their local and global bifurcation branches out of
χ ≥ χ2. Each point of the shaded area and the bold curve in the top four graphs gives a solution of (1.2),
whereas for each χ > χ2 it has a unique Volcano solution and infinitely many Mexican-hat solutions.
Our results also imply that the magnitude of a Volcano is always smaller than that of the Mexican-
hat, while the latter is monotone increasing in R0 in [R0, R̄0]. Column 1: we present at a and b the
local bifurcation solutions given by (1.8) for k = 2 with ε = 0 and ε = − 1

χ2
, respectively. When χ

surpasses χ2, solution u becomes compactly supported, and it stays so and preserves the Volcano profile
globally as illustrated by c and d. Columns 2-4 present the Mexican-hat solutions obtained in (3.2)
with R0 = R0,

j1,1
j1,2

R and R̄0 from the second to the fourth graph. In each class, compactness of support
and profile of the solution are preserved along its global branch.

(ii) if R0 ∈ (R0, R̄0), then

ud(r)→
C0M

1 + C0
δ0(r)+

M
1 + C0

δR(r) and vd(r)→
T0(r; R0)

2πR(1 + C0)T1(r; R0)
pointwisely in [0,R] as χ→ ∞,

where C0 =
I1(R0)

RT1(R;R0) ; moreover, ud(0) = C0 M
1+C0

ω2

2π j0,1 J1( j0,1) + O(1) and ud(R) = M
1+C0

ω
2πR + O(1) for χ � 1;

(iii) if R0 = R̄0, then

ud(r)→
{

Mδ0(r), r ∈ [0,R),
C0, r = R, and vd(r)→

MT0(r; R)
2πI1(R)

,

where C̄0 = M
πRI1(R) ; moreover, ud(0) = Mω2

2π j0,1 J1( j0,1) + O(1) for χ � 1;

Proof. (i) and (iii) are relatively simple and can be verified by the same fashion, and we only do for
the first case. If R0 = R0, we readily know that r1 =

j1,1
ω

; on the other hand, since r1 → 0+ as χ → ∞,
we can infer from (3.4) that m1

m4
→ 0+ hence m1 → 0+ and m4 → M−. Therefore, one can find by

straightforward calculations that ud(0) = A1(1 − J0( j1,1)) =
ω2m1(1−J0( j1,1))
−π j21,1 J0( j1,1) → C0 as claimed.

To prove (ii), we first claim that for each fixed R0 ∈ (R0, R̄0), the proportion of mass m1 and m4

approaches a positive constant C0 := I1(R0)
RT1(R;R0) . Since B1 = B4, one has for any χ > χ2

−m1

2r1T1(r1; R0) − r2
1T0(r1; R0)

=
m4

2(R − r4)T1(R − r4; R0) + r4(2R − r4)T0(R − r4; R0)
;
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on the other hand, since ωr1 → j0,1 and r4 → s(1)
0 as χ goes to infinity, one can apply the facts that

I1(0) = 0 and K1(r)− 1
r = o(r) on m1

m4
= −

r1T1(r1;R0)
(R−r4)T1(R−r4;R0) to show that m1

m4
→ C0 as χ→ ∞. Thanks to the

asymptotic behavior of u−(r) and u4(r), we conclude that ud(r)→ m1δ0(r) + m4δR(r) as described. �

3.2 Radially Non-Monotone Solutions: The Volcano Solutions
We next construct (ui(r), vi(r)) such that the solution first increases and then decreases in (0,R), hence
v(r) attains a single local maximum in (0,R) at some R∗0. In contrast to Mexican-hats where a family
of solutions are available (as R0 there varies), such R∗0 is uniquely determined, and so is the solution
(ui(r), vi(r)) as we shall see later on. This leads to a population density profile that have a volcano-
like shape, with maximal bacterial densities occurring on a ring away from the center and boundary
of the region. We call it the Volcano Solution since the configuration of u resembles a volcano pit
and it simulates the ‘volcano effect’ [9, 63] that bacteria populations regularly overshoot the peak in
chemoattractant concentration and aggregate into a stationary ring of higher density some distance
away from an optimal environment. See the right column of Figure 4 for illustration.

These solutions, contrasted with counterparts of the classical Keller-Segel models, shed the light
that degenerate diffusion that can cause a volcano effect. Let us denote χ∗2 = (ω∗2)2 + 1 with

ω∗2 := inf
w>

j1,2
R

{
ω ∈ R+

∣∣∣∣ J1(ωR)
Y1(ωR)

=
J0(ωR) − J0(ω(R − ξ))
Y0(ωR) − Y0(ω(R − ξ))

, ξ ∈ (s(2)
0 , s(2)

1 ) s.t f2(ξ;ω,R) = 0
}
.

Our results are described as follows:

Proposition 3.2. Let R and M be arbitrary. For each χ > χ2, (1.2) has a unique solution (u(r), v(r))
such that v(r) increases in (0,R∗0) and decreases in (R∗0,R) with a constant R∗0 ∈ (0,R) dependent on
χ; moreover, if χ ∈ (χ2, χ

∗
2), R∗0 = R̄0 as given by (3.1) and this solution is explicitly given by (3.5); if

χ ∈ [χ∗2,∞), this solution is explicitly given by (3.8).

The first column of Figure 5 illustrates the unique solution obtained in Proposition 3.2. We note
that the branch of solution (3.5) extends the local branch at χ = χ2; moreover, as χ expands from
χ2 to χ∗2, the support of u(r) is of the form (R∗0 − r2,R), and it attains the critical (maximum) point at
r = R̄0. The value u(R) drops as χ increases and touches zero as χ reaches χ∗2; then as χ surpasses χ∗2,
u remains compactly supported in an interval (R∗0 − r∗2,R

∗
0 + r∗3) and this interval shrinks as χ expands.

According to our discussions above, to obtain this unique solution we shall do the followings: (i)
for χ ∈ (χ2, χ

∗
2), find solution of the form (2.16) in (0, R̄0) and of the form (2.26) in (R̄0,R), and then

concatenate them at r = R̄0 by matching the C1 and C2 continuities of v(r) at r = R̄0; (ii) for χ > χ∗2,
find solution of the form (2.8) in (0,R∗0) and of the form (2.21) in (R∗0,R), and do the same as in (i).

For each χ ∈ (χ2, χ
∗
2), Lemma 2.3 implies that there exists r2 in ( π

2ω ,
5π
4ω ) such that (ui(r), vi(r)) is

of the form (2.23) with (a, b) = (0, R̄0), and ui(r) is supported in (R̄0,R]. Moreover, matching the
continuities of ui(r) and vi(r) at r = R̄0 gives for each χ ∈ (χ2, χ

∗
2)

ui(r) =

{
0, r ∈ [0, R̄0 − r2],
A2

(
S 0(R̄0 − r;ω, R̄0) − S 0(r2;ω, R̄0)

)
, r ∈ (R̄0 − r2,R],

vi(r) =

{
B2I0(r), r ∈ [0, R̄0 − r2],
A2

(
S 0(R̄0−r;ω,R̄0)

χ
− S 0(r2;ω, R̄0)

)
, r ∈ (R̄0 − r2,R],

(3.5)
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whereA2 and B2, determined by the mass M and the continuity at R̄0, are explicitly given by

A2 =
−Mω

π
(
2(R̄0 − r2)S 1(r2;ω, R̄0) + ω[R2 − (R̄0 − r2)2]S 0(r2;ω, R̄0)

) (3.6)

and

B2 =
Mω2

πχ
(
2(R̄0 − r2)T1(R̄0 − r2; R̄0) + [R2 − (R̄0 − r2)2]T0(R̄0 − r2; R̄0)

) . (3.7)

Next we consider the case χ > χ∗2. First note that ui(r) given by (3.5) is no longer a solution
since it becomes negative somewhere in (0,R). To see this, we claim that ui(R) < 0 if and only if
χ > χ∗2. Indeed, let us denote rν := R − R̄0 + r2, then S 0(r2;ω, R̄0) =

Y1(ωR̄0)
Y1(ωR) S 0(rν;ω,R), hence we

see that rν is also the second positive root of (2.11) since R̄0 satisfies (3.1). Thanks to (3.5) we find
ui(R) = −A2

Y1(ωR̄0)
Y1(ωR)

(
S 0(rν;ω,R) + 2

πωR

)
, with Y1(ωR̄0)Y1(ωR) < 0 andA2 < 0. On the other hand, we

find that ∂rν
∂ω

< 0, and S 0(r;ω,R) + 2
πωR = 0 for χ = χ∗2, therefore ui(R) < 0 if and only if χ > χ∗2 as

claimed.
The discussions above indicate that (3.5) only holds for χ ∈ (χ2, χ

∗
2], but not for χ > χ∗2. Moreover,

as χ surpasses χ∗2, u is supported in (R∗0−r∗2,R
∗
0+r∗3) for some r∗2 and r∗3 to be determined and the solution

now takes the following form

u∗i (r) =


0, r ∈ [0,R∗0 − r∗2],
A∗2

(
S 0(R∗0 − r;ω,R∗0) − S 0(r∗2;ω,R∗0)

)
, r ∈ (R∗0 − r∗2,R

∗
0 + r∗3),

0, r ∈ [R∗0 + r∗3,R],

v∗i (r) =


B∗2I0(r), r ∈ [0,R∗0 − r∗2],
A∗2

(S 0(R∗0−r;ω,R∗0)
χ

− S 0(r∗2;ω,R∗0)
)
, r ∈ (R∗0 − r∗2,R

∗
0 + r∗3),

B∗3T0(r; R), r ∈ [R∗0 + r∗3,R],

(3.8)

where r∗2 and r∗3 denote the support of u∗i (r) in (0,R∗0) and (R∗0,R), and r∗2 satisfies (2.11) with R replaced
by R0 and r∗3 satisfies (2.22) with (a, b) replaced by (R∗0,R), respectively, and

B∗2 :=
(1 − χ)A∗2

χ

S 0(r∗2;ω,R∗0)
I0(R∗0 − r∗2)

,B∗3 :=
(1 − χ)A∗2

χ

S 0(r∗2;ω,R∗0)
T0(R∗0 + r∗3; R)

andA∗2 :=
C̄3C̄4M
C̄3 + C̄4

,

where
C̄3 := −

ω

π
(
2(R∗0 − r∗2)S 1(r∗2;ω,R∗0) + ωr∗2(2R∗0 − r∗2)S 0(r∗2;ω,R∗0)

)
and

C̄4 :=
ω

π
(
2(R∗0 + r∗3)S 1(−r∗3;ω,R∗0) − ωr∗3(2R∗0 + r∗3)S 0(−r∗3;ω,R∗0)

) ;

moreover, we find from the conservation of mass that the left (half) aggregate weights m2 and the
right (half) aggregate weights m3 with

m2 =
C̄4M

C̄3 + C̄4
and m3 =

C̄3M
C̄3 + C̄4

. (3.9)

In strong contrast to (3.2) where R0 ∈ [R0, R̄0] can be chosen arbitrarily, R∗0 in (3.8) is uniquely
determined and we have the following result.
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Proposition 3.3. Assume that χ > χ∗2, and the solution of (1.2) takes the form (3.8) with some R∗0.
Then such R∗0 is unique hence the solution of this form is unique.

Proof. For the solution of the form (3.8), the continuity of v at r = R∗0 requires

G(R∗0;ω) := S 0(r∗2;ω,R∗0) − S 0(−r∗3;ω,R∗0) = 0.

We are left to verify that such R∗0 ∈ (0,R) exists and is indeed unique. According to Lemma 2.3, both
r∗2 and r∗3 exist in (0,R∗0) and (R∗0,R) respectively for each R∗0 ∈ (R0, R̄0), with R0 =

j1,1
ω

and R̄0 given by
(3.1).

We first study the limits of G as follows: as R∗0 → R+
0 , the facts ωR∗0 → j1,1 and r∗2 → R0 imply

that J1(ωR∗0)→ 0 and J0(ω(R∗0 − r∗2))→ 1, therefore we have

G
((

R0
)+;ω

)
= Y1( j1,1)(1 − J0(ω(R0 + r∗3))) > 0.

Indeed one can show that G
((

R0
)+;ω

)
> 0.2 using the estimates of Bessel functions in [47]. On the

other hand, as R∗0 → (R̄0)−, r∗3 → R − R̄0 and the definition of χR̄0,R implies that J1(ωR∗0)
Y1(ωR∗0) →

J1(ωR)
Y1(ωR) ,

therefore

G
((

R̄0
)−;ω)

=
Y1(ωR̄0)
Y1(ωR)

(
S 0(rν;ω,R) +

2
πωR

)
< 0,

where we have applied the fact that Y1(ωR̄0)Y1(ωR) < 0. Therefore, for each χ > χ∗2 there exists at
least one R∗0 ∈ (R0, R̄0) such that G(R∗0;ω) = 0.

Next we prove the uniqueness of R∗0. According to our discussions above, it is sufficient to show
that ∂G(R∗0;ω)

∂R∗0
+ 1

RG(R∗0;ω) < 0. Straightforward calculations give

∂G(R∗0;ω)
∂R∗0

=
∂S 0(r∗2;ω,R∗0)

∂R∗0
+
∂S 0(r∗2;ω,R∗0)

∂r∗2

∂r∗2
∂R∗0
−
∂S 0(−r∗3;ω,R∗0)

∂R∗0
−
∂S 0(−r∗3;ω,R∗0)

∂r∗3

∂r∗3
∂R∗0

= −
1
R

G(R∗0;ω) + ωS 1(r∗2;ω,R∗0)
(
∂r∗2
∂R∗0
− 1 +

V0(r∗2;ω,R∗0)
S 1(r∗2;ω,R∗0)

)
+ ωS 1(−r∗3;ω,R∗0)

(
∂r∗3
∂R∗0

+ 1 −
V0(−r∗3;ω,R∗0)
S 1(−r∗3;ω,R∗0)

)
.

Recall from Section 2.2 that y6(r∗2;ω,R∗0) < 0, that is, V0(r∗2;ω,R∗0)
S 1(r∗2;ω,R∗0) < 1. Now we claim that ∂r∗2

∂R∗0
≤ 0. To

see this, some tedious but straightforward calculations give

∂r∗2
∂R∗0

= −
∂R∗0

f2(r∗2;ω,R∗0)

∂r f2(r∗2;ω,R∗0)
= −

∂R∗0
f2(r∗2;ω,R∗0)

ω2 + 1
= 1 −

4
π2(ω2 + 1)R∗0(R∗0 − r∗2)S 2

1(r∗2;ω,R∗0)
,

thanks to the fact that r∗2 is a root of (2.11) with R replaced by R∗0. Then S 2
1(r∗2;ω,R∗0) ≤ 4

π2(ω2+1)R∗0(R∗0−r∗2)

implies the claim and proves the uniqueness, and we are left to verify this inequality. Denote

y8(R∗0;ω) := S 2
1(r∗2;ω,R∗0) −

4
π2(ω2 + 1)R∗0(R∗0 − r∗2)

.

First of all, one sees that y8((R0)+;ω)→ −∞. We next prove y8(R∗0;ω) ≤ 0 for each R∗0 > R0 to verify
the claim. We argue by contradiction: if not and there exists some R1 > R0 such that y8(R1;ω) = 0
and y′8(R1;ω) ≥ 0. Then we find that y′8(R1;ω) = 2S 2

1(r∗2;ω,R1)y9(r∗2;ω,R1) with

y9(r;ω,R1) :=
ω
(
V1(r;ω,R1) + S 0(r;ω,R1)

)
S 1(r;ω,R1)

−
2R1 − r

2R1(R1 − r)
,
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and further calculations give y′9(r;ω,R1) =
y10(r;ω,R1)

(R1−r)S 2
1(r;ω,R1) , where

y10(r;ω,R1) :=ω2(R1 − r)
(
S 2

1(r;ω,R1) + S 2
0(r;ω,R1)

)
− ωS 0(r;ω,R1)S 1(r;ω,R1) −

S 2
1(r;ω,R1)
2(R1 − r)

−
4

π2R1
;

moreover y10(0;ω,R1) = 0 and y′10(r;ω,R1) = −
3S 2

1(r;ω,R1)
2(R1−r)2 < 0, therefore y10(r;ω,R1) < 0 hence

y9(r;ω,R1) < y9(0;ω,R1) < 0 in (0, s(1)
1 ), which further implies that y′8(R1;ω) < 0, a contradiction.

One can use the same arguments as above to show that V0(−r∗3;ω,R∗0) > S 1(−r∗3;ω,R∗0) and
∂r∗3
∂R∗0
≥ 0 for each χ > χ∗2, then applying the facts S 1(r∗2;ω,R∗0) > 0 and S 1(−r∗3;ω,R∗0) < 0 gives us

ωS 1(r∗2;ω,R∗0)
(
∂r∗2
∂R∗0
− 1 +

V0(r∗2;ω,R∗0)
S 1(r∗2;ω,R∗0)

)
+ ωS 1(−r∗3;ω,R∗0)

(
∂r∗3
∂R∗0

+ 1 −
V0(−r∗3;ω,R∗0)
S 1(−r∗3;ω,R∗0)

)
< 0,

which indicates that the derivative of the root of G(R∗0;ω) is strictly negative and eventually gives rise
to the uniqueness of R∗0 as claimed. �

3.2.1 Asymptotic behaviors of the volcano solution

To study the asymptotics of the unique solution (3.8) as the chemotaxis rate χ goes to infinity, we first
claim that in this limit R∗0 approaches a constant R̂0 in (0,R) that satisfies

I0(R̂0)
I1(R̂0)

= −
T0(R̂0; R)
T1(R̂0; R)

. (3.10)

Note that both I0(r)
I1(r) and T0(r;R)

T1(r;R) are monotone decreasing in (0,R), hence this R̂0 is uniquely determined.
Then we will show that that ui(r) → MδR̂0

(r); moreover, our results indicate that the mass of ui(r) on
the left hand side and the right hand side of R∗0 goes to M

2 .
To prove the claim, we first observe that

I0(R∗0 − r2)S 1(r2;ω,R∗0)
I1(R∗0 − r2)

=
T0(R∗0 + r3; R)S 1(−r3;ω,R∗0)

T1(R∗0 + r3; R)
. (3.11)

Then in light of (7.5), one can apply the facts that both r2, r3 →
π

2ω as χ→ ∞ to obtain

S 1(r2;ω,R∗0)→ −S 1(−r3;ω,R∗0). (3.12)

Now that r2, r3 → 0+, we conclude that ui(r) → MδR̂0
(r), (3.11) converges to (3.10) and its root

approaches R̂0 as claimed. Furthermore, it is straightforward to see from (3.9) and (3.12) that both m2

and m3 approach M
2 . The results above are summarized into the following lemma.

Lemma 3.3. Let χ > χ∗2 and (ui, vi) be the solution given by (3.8). Then

ui(r)→ MδR̂0
(r) and vi(r)→

 M
4πR̂0I1(R̂0)

I0(r), r ∈ [0, R̂0],
− M

4πR̂0T1(R̂0;R)
T0(r; R), r ∈ (R̂0,R],

pointwisely in [0,R] as χ→ ∞,

where R̂0 ∈ (0,R) is the unique root of (3.10).
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Figure 6: Illustration of the asymptotic behaviors obtained in Lemma 3.2 and Lemma 3.3 with R = 5,
M = 25π. For each χ given, a Mexican-hat has a much larger spiky structure than the Volcano. Left
Column: the Mexican-hat solution (ud, vd) in (3.2) with R0 = 2.5 ∈ (R0, R̄0) for χ = 10, 20, 50 and
100. It is observed that ud(r) → 17.2263δ0(r) + 61.3135δR(r) as χ → ∞; Right Column: the Volcano
solution (ui, vi) in (3.8) for χ = 5, 10, 50 and 100. We find that the spike locates at R∗0 whereas
R∗0 ↗ R̂∞ ≈ 3.8696 as χ→ ∞ and ui(r)→ 25πδR̂∞ (r) as χ→ ∞.

4 Higher-Order Modes and Airy Patterns
We next demonstrate that (1.2) supports higher-order modes ring patterns for χ large. Our results
show that the indices of its modes can be tuned by adjusting the size of the chemotaxis rate. The
approach provides a path to better understand (1.1) which can have simultaneously large mode areas
and large separations between the each mode.

We continue to study the solutions that extend the local (vertical) bifurcation branch at χ = χk

which give rise to nontrivial patterns. Suppose that χ > χk, k ≥ 3. For each integer k0 ∈ [2, k], let us
define

R̄(k0)
0 := sup

R̃0<
j1,k−k0+2

ω

{
R̃0 ∈ (0,R)

∣∣∣∣ J1(ωR̃0)
Y1(ωR̃0)

=
J1(ωR)
Y1(ωR)

, ωR ∈ ( j1,k, j1,k+1], k ≥ 3
}
. (4.1)

Note that R̄0 in (3.1) is R̄(2)
0 in (4.1). Then we find (u, v) such that v′ changes sign in (0,R) for (k0 − 1)

times in the following lemma. See Figure 8 for their bifurcations.

Lemma 4.1. Suppose that χ > χk and let R̄(k0)
0 be given by (4.1). Then for each k0 ∈ [2, k], (1.2) has

a one-parameter family of solutions (u, v) such that v′ changes sign (k0 − 1) times; moreover, for any
R0 ∈ [R0, R̄

(k0)
0 ], the solution has the following explicit formula

u(k0)
d (r) =


A1

(
J0(ωr) − J0(ωr1)

)
, r ∈ [0, r1],

0, r ∈ (r1, R̄
(k0−1)
0 − r4),

A4

(
S 0(R̄(k0−1)

0 − r;ω, R̄(k0−1)
0 ) − S 0(r4;ω, R̄(k0−1)

0 )
)
, r ∈ [R̄(k0−1)

0 − r4,R],

v(k0)
d (r) =


A1

(
J0(ωr)
χ
− J0(ωr1)

)
, r ∈ [0, r1],

BT0(r; R0), r ∈ (r1, R̄
(k0−1)
0 − r4),

A4

(
1
χ
S 0(R̄(k0−1)

0 − r;ω, R̄(k0−1)
0 ) − S 0(r4;ω, R̄(k0−1)

0 )
)
, r ∈ [R̄(k0−1)

0 − r4,R],

(4.2)
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0

Figure 7: Function J1(r)
Y1(r) and an illustration of R̄(k0)

0 given by (4.1).

where the coefficients A1, A1 and B, determined by the continuity of v(r) and conservation of total
mass, are given by (3.3) with

C̄1 :=
−ω2J0(ωr1)

πχr2
1 J2(ωr1)T0(r1; R0)

, C̄2 :=
ω2

πχ
(
2(R̄(k0)

0 − r4)T1(R̄(k0)
0 − r4; R0) + [R2 − (R̄(k0)

0 − r4)2]T0(R̄(k0)
0 − r4; R0)

) ;

Figure 8: Bifurcation branches out of χ3 and their global continuums. Similar as in Figure 5, this
gives to a few classes of non-monotone solutions of (1.2) from (4.2) and (4.3) for χ large. The spatial
structure of the stationary solutions becomes complex and rich as χ increases.

moreover, there also exist solutions of the following form

u(k0)
i (r) =

 0, r ∈ [0, R̄(k0)
0 − r∗2],

A∗2

(
S 0(R̄(k0)

0 − r;ω, R̄(k0)
0 ) − S 0(r∗2;ω, R̄(k0)

0 )
)
, r ∈ (R̄(k0)

0 − r∗2,R],

v(k0)
i (r) =


B∗2I0(r), r ∈ [0, R̄(k0)

0 − r∗2],

A∗2

(
S 0(R̄(k0)

0 −r;ω,R̄(k0)
0 )

χ
− S 0(r∗2;ω, R̄(k0)

0 )
)
, r ∈ (R̄(k0)

0 − r∗2,R],

(4.3)
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where A∗2 and B∗2, determined by the mass M and the continuity at R̄(k0)
0 , are given by (3.6) and (3.7)

with R̄0 replaced by R̄(k0)
0 .

We would like to point out that, one can continue to construct more solutions following the ap-
proaches above by sending χ larger and larger. This will give rises to spatial patterns with more and
higher modes as we described above even for a fixed k0. Indeed, similar as for the Volcano solutions,
there exists some χ∗k0

> χk such that (4.3) will take a new formula such that ui touches zero at the
end point r = R as χ surpass χ∗k0

, hence it stays compactly supported of the same form as (3.8). This
results in another class of solutions for (1.2), which can be explicitly obtained but are skipped here
for brevity.

Figure 9 illustrates the airy patterns developed in (1.2). For each configuration, the circular aper-
ture has a bright central region called the airy disk, and a series of concentric rings around called the
Airy pattern. Such disk and rings phenomenon is well adopted to describe the appearance of a bright
star seen through a telescope under high magnification.

Figure 9: Airy patterns of (1.2) over B0(5) with χ = 26 and k0 = 3, 4, 5 and 6 from the left to the right.
Lemma 4.1 implies that for each k0 ≤ 7 there exists non-monotone patterns such that v′ changes sign
(k0 − 1) times. Top: plots of (u(k0)

d (r), v(k0)
d (r)); Bottom: each configuration u(k0)

d contains a bright central
region and a series of concentric rings around.

There are several observations we made when analyzing the solutions above. While rigourous
proofs are lacking, we record them here for future reference and the reader’s interest. Our analysis
suggests the following findings: suppose that the closure of support of u consists of a finite number
of disjoint components, i.e., Supp(u) = ∪N

i=1Spti, then the solution (1.2) has a freedom of N − 1 in
the sense that it can be uniquely determined by N − 1 parameters. With that being said, one readily
has that (u, v) is unique if the support of u is connected. This is well supported whenever χ is slightly
large than χk.

5 Hierarchy of Free Energies and Non-radial Solutions
Now we proceed to study the free energy (1.9) and its dissipation (1.10). This free energy allows
for a gradient flow structure of (1.1) in a product space, see [7, 8, 13, 21]. The hybrid gradient
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flow structure introduced in [7, 8] treats the evolution of the cell density in probability measures
while the evolution of the chemoattractant is done in the L2-setting. The gradient flow structure
used in probability densities follows the blueprint of the general gradient flow equations treated in
[2, 22, 41, 67]. Moreover, solutions were proved to be unique among the class of bounded densities
[21]. We would like to mention that (1.9) is a Lyapunov functional since steady states (us, vs) are
characterized by zero dissipation I(us, vs) = 0. Therefore, we readily obtain that for a steady state
(us, vs), the quantity us − χvs must be constant in each connected component of the support of the cell
density us. Note that the v–equation of (1.2) readily gives us∫

B0(R)

(
|∇vs|

2 + v2
s
)
dx =

∫
B0(R)

usvsdx.

Therefore
E(us, vs) =

1
χ

∫
B0(R)

us(us − χvs)dx. (5.1)

Moreover, since us − χvs = λi for some constants λi on each of the (possibly countably many) con-
nected components of the support of us, denoted by sppti, we have from (5.1) that

E(us, vs) =
1
χ

∑
i

∫
sppti

λiusdx. (5.2)

We now study the energy of the steady states constructed above, and in light of the explicit formulas,
we shall give a hierarchy of the energies. Among other things, we show that the constant solution has
the largest energy among all solutions and the single interior bump has the least energy in the radial
class.

5.1 Hierarchy of Free Energies
First of all, we find that the constant solution (ū, v̄) defined in (0,R) has energy

E(ū, v̄) =
(1 − χ)ū

χ
M = −

ω2M2

χπR2 ;

moreover, the one-parameter family of bifurcation solutions (1.8) have the same energy as the constant
solution since u(k)

ε (r) − χkv
(k)
ε (r) = (1 − χk)ū independent of ε

E(u(k)
ε (r), v(k)

ε (r)) = −
ω2M2

χkπR2 , k ∈ N
+.

Lemma 5.1. For each χ > χ1, we always have that E(u−, v−),E(u+, v+) < E(ū, v̄). In general, for any
annulus (a, b) and each χ > χa,b, E(U3,V3),E(U4,V4) < E(ū, v̄), where (Ui,Vi) are given by (2.21)
and (2.23).

Proof. We first prove that E(u−, v−) < E(ū, v̄) for any χ > χ1. Note that the inner ring spike (u−, v−)
given by (2.8) has energy

E(u−, v−) =
ω2M2

χπ
·

ωJ0(ωr1)
2r1J1(ωr1) − ωr2

1 J0(ωr1)
.

To show the inequality above, it suffices to prove 2r1J1(ωr1) + ω(R2 − r2
1)J0(ωr1) < 0. Because

r1 is the root of (2.4), this inequality is equivalent to 2r1T1(r1; R) + (R2 − r2
1)T0(r1; R) > 0. By
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straightforward calculations that ∂r

(
2rT1(r; R) + (R2 − r2)T0(r; R)

)
= (R2 − r2)T1(r; R) < 0 for r < R,

hence (2r1T1(r1; R) + (R2 − r2
1)T0(r1; R)) > 2RT1(R; R) = 0 and E(u−, v−) − E(ū, v̄) < 0 as expected.

The outer ring solution (u+, v+) given by (2.16) has energy

E(u+, v+) = −
ω2M2

χπ
·

ωS 0(r2;ω,R)
2(R − r2)S 1(r2;ω,R) + ωr2(2R − r2)S 0(r2;ω,R)

.

We claim that E(u+, v+) < E(ū, v̄). To see this we only show that 2S 1(r2;ω,R)−ω(R−r2)S 0(r2;ω,R) <
0, which is equivalent to 2I1(R − r2) − (R − r2)I0(R − r2) < 0 thanks to (2.11). However, this is an
immediate consequence of the recurrence relations of the modified Bessel functions (e.g.,[1])

2I1(R − r2) − (R − r2)I0(R − r2) = −(R − r2)I2(R − r2) < 0,

and this readily implies E(u+, v+) − E(ū, v̄) < 0.
Next we study the energies of the monotone solutions (U3,V3) in (2.21) and (U4,V4) in (2.23) in

an annulus (a, b). To begin with, we know that energy of the constant solution is

E(ūab, v̄ab) =
(1 − χ)ūab

χ
M = −

ω2M2

χπ(b2 − a2)
,

where (ūab, v̄ab) = M
π(b2−a2) . Thanks to (2.21) we find

E(U3,V3) =
ω2M2

χπ
·

ωS 0(−r3;ω, a)
2(a + r3)S 1(−r3;ω, a) − ωr3(2a + r3)S 0(−r3;ω, a)

.

We claim that E(U3,V3) < E(ūab, v̄ab). To this end, we only need to show that 2(a + r3)T1(a + r3; b) +(
b2 − (a + r3)2)T0(a + r3; b) > 0 in light of (2.22). Denote

y11(r; a, b) := 2(a + r)T1(a + r; b) +
(
b2 − (a + r)2

)
T0(a + r; b),

then straightforward calculations give that ∂ry11(r; a, b) =
(
b2 − (a + r)2

)
T1(a + r; b) < 0, therefore

y11(r3; a, b) > y11(b − a; a, b) = 0 as expected, hence E(U3,V3) − E(ūab, v̄ab) < 0.
To study the monotone increasing solutions (U4,V4), we first find

E(U4,V4) = −
ω2M2

χπ
·

ωS 0(r4;ω, b)
2(b − r4)S 1(r4;ω, b) + ωr4(2b − r4)S 0(r4;ω, b)

.

Denote
y12(r; a, b) := 2(b − r)T1(b − r; a) −

(
(b − r)2 − a2

)
T0(b − r; a),

then a routine computation gives that ∂ry12(r; a, b) =
(
(b − r)2 − a2

)
T1(b − r; a) > 0 for r ∈ (0, b − a),

therefore y12(r4; a, b) < y12(b − a; a, b) = 0 and this implies through (2.24) that

2(b − r4)S 1(r4;ω, b) − ω
(
(b − r4)2 − a2

)
S 0(r4;ω, b) < 0.

Therefore we have E(U4,V4) − E(ūab, v̄ab) < 0. This completes the proof. �

Now we are ready to prove the Theorem 1.3.
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(1) Energies of the steady states for χ small.
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(2) Energies of the steady states for χ large.
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Figure 10: The hierarchy of energy (1.9) for the constant, monotone ring, and non-monotone ring
solutions on the χ-axis. Our results indicate that the inner ring solution (2.8) has the least energy and
the constant solution has the largest energy among all radial solutions. Left Column: (1) the local
curves of the energy for these solutions for χ small. When χ = χ1, the constant solution has the same
energy as the bifurcation solutions (1.8) for any ε; for each χ > χ1, the energy of the inner ring is
always smaller than that of the outer ring. Indeed, the inner ring is the global minimizer of energy (1.9)
in the radial class. The Mexican-hat and Volcano solution emerge as χ surpasses χ2, and both have an
energy smaller than the constant. (2): the global curves of these energies for χ large. They suggest that
in the large limit of chemotaxis rate, the Mexican-hat solutions with a fixed R0 = R0 and R0 = R̄0 admit
energies which converge to those of the outer ring and inner ring solutions, respectively. However, we
do not illustrate this (with full details) here for the sake of succinctness. Right Column: the hierarchy
of energy listed on the left column and an illustration of the diagram. The inner ring has the least energy
and the constant has the largest energy, while exists a critical value 3.98 that outer ring has a smaller
energy than the Mexican-hat with R0 = R̄0 if χ < 3.98 and a larger energy if χ > 3.98.

Proof of Theorem 1.3. Part (i) has been proved in Lemma 5.1 and we now prove (ii) and (iii). To
show (ii), we find that

E(ui, vi) = −
M2ω3S 0(r2;ω,R∗0)/(πχ)

2(R∗0 − r2)S 1(r2;ω,R∗0) − 2(R∗0 + r3)S 1(−r3;ω,R∗0) + ω(r2
3 − r2

2 + 2R∗0(r2 + r3))S 0(r2;ω,R∗0)

hence

E(ui, vi) − E(ū, v̄) = −
M2ω2

πχ

(
1

h1(r2;ω,R∗0) + h2(r2;ω,R∗0)
−

1
R2

)
, (5.3)
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where the functions hi are given by h1(r;ω,R∗0) := 2(R∗0 − r) I1(R∗0−r)
I0(R∗0−r) + r(2R∗0 − r) and h2(r;ω,R∗0) :=

−2(R∗0 + r)T1(R∗0+r;R)
T0(R∗0+r;R) + r(2R∗0 + r). One can find that ∂rh1 =

2(R∗0−r)I2
1 (R∗0−r)

I2
0 (R∗0−r) > 0 and ∂rh2 =

2(R∗0+r)T 2
1 (R∗0+r;R)

T 2
0 (R∗0+r;R) >

0, therefore we have

h1(r2;ω,R∗0) < h1(R∗0;ω,R∗0) = (R∗0)2 and h2(R − R∗0;ω,R∗0) < h1(R∗0;ω,R∗0) = R2 − (R∗0)2.

This readily implies from (5.3) that E(ui, vi) < E(ū, v̄) as expected. The fact that E(ud, vd) < E(ū, v̄)
can be verified by the same calculations, and we skip the details here.

To find the asymptotic energies for χ � 1, we calculate

E(u−, v−) =
M2ω2

πχ

ωJ0(ωr1)
2r1J1(ωr1) − ωr2

1 J0(ωr1)

=
M2ω2

πχ

T0(r1; R)
2r1T1(r1; R) − r2

1T0(r1; R)
since r1 is a root of (2.4)

=
M2ω2

πχ

−I1(R) ln r1
2

−2I1(R) + r2
1I1(R) ln r1

2

+ O(1) since r1 →
j0,1

ω
as χ→ ∞

= −
M2 lnω

2π
+ O(1),

which is as expected; on the other hand, we compute for the Mexican-hat with R0 = R̄0

E(ud, vd)|R0=R̄0 =
m2

1ω
2

πχ

ωJ0(ωr1)
2r1J1(ωr1) − ωr2

1 J0(ωr1)
−

m2
4ω

2

πχ(R2 − R̄2
0)

=
M2ω2

πχ

ωJ0(ωr1)
2r1J1(ωr1) − ωr2

1 J0(ωr1)
+ o(1) since m1 → M and m4 → 0 as χ→ ∞

=E(u−, v−) + o(1)

also as expected; moreover, the asymptotic expansions for E(u+, v+) and E(ud, vd) with R0 = R0 can
be verified by the same calculations and we skip the details here.

We are left to verify (iii). According to Section 2 and our discussions above, in each annulus (a, b)
we have E(U3,V3),E(U4,V4) < E(ūab, v̄ab), where (Ui,Vi) and (ūab, v̄ab) are given by Section 2. Let
(ucpt, vcpt) be an arbitrary solution of (1.2) with u being compactly supported such that v has k critical
points {Ri}

k
i=1 such that

[0,R) = ∪k
i=1(Ri−1,Ri) with 0 = R0 < R1 < ... < Rk−1 < Rk = R.

Note that k must be finite since min (Ri − Ri−1) > j0,1
ω

. On each interval (Ri−1,Ri), the solution takes
the form (U3,V3) or (U4,V4). Then according to (5.2) we find that

E(ucpt, vcpt) =
1
χ

∫
B0(R)

u(u − χv)dx

=
1
χ

k∑
i=1

∫
B0(Ri)\B0(Ri−1)

u(u − χv)dx

<

k∑
i=1

E(ūRi−1Ri , v̄Ri−1Ri) =
1
χ

k∑
i=1

m2
i (1 − χ)

π(R2
i − R2

i−1)

= −
ω2

πχ

k∑
i=1

m2
i

R2
i − R2

i−1

,

35



where mi denotes the cellular mass in the i-th interval (annulus) with mi > 0 for each i and
∑k

i=1 mi =

M. Therefore, to prove (iii), it is sufficient to prove that for any partition {Ri}
k
i=1

F(k) :=
k∑

i=1

m2
i

R2
i − R2

i−1

>
M2

R2 .

First of all, this inequality holds for k = 2. Suppose that this is true for k ≥ 2, then for k + 1 we have

F(k + 1) =

k+1∑
i=1

m2
i

R2
i − R2

i−1

>
(M − mk+1)2

R2
k

+
m2

k+1

R2 − R2
k

=

(
(M − mk+1)R2 − MR2

k

)2

R2R2
k(R2 − R2

k)
+

M2

R2 >
M2

R2 ,

which implies that F(k + 1) > M2

R2 as expected. Therefore F(k) > M2

R2 for each k ∈ N+, and this finishes
the proof of Theorem 1.3. �

5.2 Non-radial Stationary Solutions: Numerical Evidence
Our studies of (1.1) have been restricted to its stationary problem (1.2) in the radial setting so far. A
natural question that arises is whether (1.1) has non-radial steady states. Though the rigorous analysis
of this problem is out of the scope of this paper, we conduct some numerical experiments to give
a confirmative answer to this question. Our numerical simulations suggest that the spatial-temporal
dynamics of (1.1) are quite intricate and phase transition is ubiquitous for large χwhence its stationary
problems admit many spiky solutions.

t = 0 t = 2.0 t = 17 t = 200

Figure 11: Formation of nontrivial stationary pattern in u(x) within (1.1) over the unit disk out of small
perturbation initial data (u0, v0) = (1, 1) + 0.01(cos 10x, sin 5y). Here we choose χ = 5 > 4.49, the latter
being the critical value after which the constant solution becomes unstable. The small-amplitude initial
data develop into a spatial pattern concentrated in the north pole in a large time.

In the three experiments, we fix the domain to be the unit disk B0(1) and initial data (u0, v0) =

(1, 1)+0.01(cos 10x, sin 5x) be small perturbations of the constant pair. Our focus is to investigate the
effects of chemotaxis rate χ on the formation of nontrivial patterns, in particular those non-radially
symmetric. According to [16], the constant solution (ū, v̄) is globally stable in generally if and only
χ < χ1, where χ1 ≈ 4.39 since 3.39 is the (approximated) principal Neumann eigen-value. In Figure
11, we study the spatial-temporal dynamics of (1.1) by choosing the chemotaxis rate χ = 5, which
is slightly larger than χ1 = 4.39. Then in a large time, (1.1) develops a spatially nontrivial steady
state which is not radial, and concentrates on the north pole in the final time. Indeed, the only radial
solution is the constant in this case according to our discussions above.

We next consider the same problem in Figure 12 with χ = 60. One observes the emergence of
spatial patterns, their developments into aggregates, and the formation of three boundary spikes, all
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t = 0 t = 1.0 t = 2.4 t = 4.0

t = 17.0 t = 18.0 t = 61.0 t = 100

Figure 12: Formation of nontrivial stationary pattern in u(x) within (1.1) under the same settings of
Figure 11 except that χ = 60. We observe the development of a nontrivial pattern at t ≈ 1.0, and then
it develops into three spikes on the boundaries, which attract each other and eventually form a stable
single boundary spike in a large time.

in a relatively short time. Then these boundary spikes keep their profiles for a quite long time before
two of them attract each other and merge into a new but larger aggregate at t ≈ 18, resulting in two
aggregates on the boundary, the small one in the west and the large one in the east. Then again, these
two spikes endure a very long time before a phase transition happens with the small spike moving
towards the large one along the boundary in a long time. They eventually merge and form a stable
aggregate located at the southeast on the boundary.

Finally, we conduct another numerical experiment of (1.1) in Figure 13 under the same conditions
as above except that χ = 300. Now the chemotaxis rate is stronger than previously, spatial patterns
emerge and develop into one interior spike and four boundary spikes in an even shorter period. Then
one of the adjacent boundary spikes attract each other and quickly merge into a single one on the
boundary at time t ≈ 2. Then this spatial pattern with one boundary spike in the west, one interior
spike, and two boundary spikes (symmetric about the x1-axis) slowly evolve; moreover, as the time
involves, the interior spike and the two boundary spikes move towards the east end and they endure
a phase transition at time t ≈ 7 when the two boundary spikes disappear. Then the interior spike
keeping moving eastwards and it touches the boundary at t ≈ 9, resulting in a large spike at the east
end and small spike at the west end. Then these two spikes stay stable for a very long time, and such
mesa-stability is not destroyed until an even longer time when the small one starts moving towards the
large one along the boundary. The phase transition occurs in a relatively short period and eventually,
the spatial pattern develops into a single stable spike on the boundary. Our numerical studies suggest
that a single boundary spike is the most stable hence has the smallest energy among all solutions. As
we mentioned earlier, a rigorous study of such non-radial solutions is out of the scope of this paper.
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t = 0 t = 0.5 t = 1.0 t = 2.0

t = 7.0 t = 8.5 t = 9.0 t = 100

Figure 13: Formation of non-radial stationary pattern in u(x) within (1.1) under the same settings as
in Figure 11 except that χ = 300. Similar as above, the time-dependent system endures several phase
transition processes, and eventually develops into the single boundary spike which is (the most) stable.

6 Quadratic Diffusion Models in the Whole Space R2

Finally, let us consider the counter-part of (1.2) in R2, the solution (U,V) of which satisfies
0 = (rU(U − χV)r)r, r ∈ (0,∞),
0 = Vrr + 1

rVr − V + U, r ∈ (0,∞),
U ∈ C0([0,∞)),V ∈ C2([0,∞)),U(r) ≥ 0,V(r) > 0, r ∈ [0,∞),∫
R2 U(r)dx = M; limr→∞U(r) = V(r) = 0.

(6.1)

Problem (6.1) is a natural extension of (1.2) with R = ∞, however not all the results about (1.2) can
be applied to the whole space by formally taking the limit. For instance, (1.2) suggests (0, 0) is the
constant solution of (6.1), which apparently does not satisfy the conservation of mass; moreover, our
coming results indicate that (6.1) has relatively simple spatial-temporal dynamics compared to (1.2).

Setting R = ∞ in (1.7), Theorem 1.1 tends to imply the solvability of (6.1) for each χ > 1. We will
verify this in this section. Before proceeding further, it seems necessary to point out that transition of
any solution of (6.1) leads to another solution, therefore for the simplicity of (uniqueness) statement
we set

max
RN
U(x) = U(0), (6.2)

then we will show that (6.1)-(6.2) has a unique solution for each χ > 1.
Note that (6.1) is the stationary problem of the following parabolic system in the radial class

ut = ∇ · (u∇u − χu∇v), x ∈ RN , t > 0,
0 = ∆v − v + u, x ∈ RN , t > 0,
u(x, 0), v(x, 0) ≥ 0,. 0, x ∈ RN ,∫
R2 u(x, 0)dx = M,

(6.3)

the second equation of which can be solved in terms of the fundamental solution of (∆ − I) in RN
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hence results in 
ut = ∇ ·

(
u∇um−1 + ∇(W ∗ u

))
, x ∈ RN , t ≥ 0,

u(x, 0) ≥,. 0, x ∈ RN ,∫
R2 u(x, 0)dx = M,

(6.4)

with m = 2 and W being the Bessel potential leading to (6.3).
System (6.4) has a delicate variational structure in the sense that it can be recognized as a gradient

flow for probability measures of the following free energy

Ef(u) :=
1
m

∫
RN

um(x)dx +
1
2

∫
RN

u(W ∗ u)(x)dx;

this free energy is also a Lyapunov functional and its minimizers are natural candidates for the station-
ary solutions of (6.4) with its variations leading to the PDE. Then the properties of stationary states
can be studied by analyzing the local or global minimizers of the free energy to start with.

To obtain the global minimizers, one can start by proving that the free energy functional is
bounded from below and the minimizing sequence is compact. However, the main challenge arises
is that the mass can be uncontrolled for the minimizing sequence due to the translational invariance
of the energy functional. Many works have been done toward the existence [10, 11, 15, 20, 23] and
uniqueness [10, 23, 46] of the global minimizers of (6.4) with attractive potential such as Newtonian
potential or Riesz potential. In general, this global minimizer is a stationary solution of (6.3), and then
one can apply the decreasing rearrangement argument to show its radial symmetry and uniqueness up
to a translation [15, 20, 23]. However, it seems to us that most studies of the stationary solutions are
concerned about the global minimizers of the free energy.

In a recent work [19], J. A. Carrillo et al. proved among others that if m > 1 and the potential
W is no more singular than Newtonian, any stationary solution of (6.4) is radially symmetric and
decreasing; moreover, if W is more singular than Newtonian, every bounded stationary solution of
(6.4) must be radially decreasing. These results apply to a very large class of aggregation-diffusion
equations without restricting to their global minimizers. However, it seems necessary to mention that
no uniqueness of the compactly-supported of u was known in [19], except for problems with certain
drift. Very recently, M. Delgadino, X. Yan and Y. Yao proved in [30] the uniqueness of m ≥ 2 with a
general potential W ∈ C∞(RN\{0}) which is no more singular than Riesz potential for some k > −N;
however, for 1 < m < 2 they demonstrated that there exist certain attractive potentials such that (6.4)
has infinitely many radially decreasing stationary solutions. In another recent work for 1 < m < 2
but with the Riesz potential, V. Calvez, J. A. Carrillo and F. Hoffmann [12] proved the uniqueness for
(6.4). Readers can find reviews of aggregation-diffusion (6.4) in [11, 17, 30].

We would like to point out that, though the potential W in [19, 30] was set to Newtonian (or
alike), the arguments there apply to (6.4) with the Bessel potential which has the same singularity
as Newtonian but with a better decay at infinity. Therefore one concludes from [19, 30] that any
stationary solution of (6.3) must be radially decreasing hence reduces to (6.1).

In this section, we study the explicit and unique solution for (6.1)-(6.2), and show that its solution
is unique, and compactly supported as naturally expected. In simple words, our results indicate that,
with W being the Bessel potential, (6.4) is equivalent as (6.1) with its stationary solution to be uniquely
and explicitly given.

6.1 Existence and Uniqueness of Stationary Solution in R2

The discussions above imply that U in (6.1) must be radial and decreasing within its support. We
claim that it must be compactly supported in R2 whenever χ > 1. Indeed, if U > 0 in R2, we can
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find that V(r) = C1J0(ωr) − C2
χ

in [0,∞) for constants Ci. Then the decaying condition V(∞) = 0
readily implies that V(r) = C1J0(ωr). However, this implies that V changes sign in (0,∞), which is
impossible. Therefore, we must have that U is compactly supported.

Now we proceed to find explicit formula of the unique solution of (6.1). With that being said, we
look for (U,V) such that U − χV = C̄ for r ∈ [0, r∗) and U ≡ 0 for r ∈ [r∗,∞). Rewriting (2.1) with
(0,R) replaced by (0,∞) gives us

Vrr + 1
rVr + (χ − 1)V + C̄ = 0, r ∈ [0, r∗),

Vrr + 1
rVr − V = 0, r ∈ [r∗,∞),

Vr(0) = 0, limr→∞V(r) = 0.
(6.5)

Solving (6.5) gives that

V(r) =

{
C1J0(ωr) − C̄

χ−1 , r ∈ [0, r∗),
C2K0(r), r ∈ [r∗,∞),

(6.6)

with r∗ to be determined. Before proceeding further, we want to point out that if χ ≤ 1, (6.1) does
not have any solution. The case χ = 1 readily holds since 0 is not an eigen-value of Neumann −∆r

(otherwise v equals some non-negative constant, which is impossible). When χ < 1, let us denote
ω̃ :=

√
1 − χ, then the explicit solution V(r) = C1I0(ω̃r) − C̄

χ−1 for r ∈ [0, r∗) and V(r) = C2K0(r) for
r ∈ [r∗,∞). In this case, the continuities of V′ and V′′ at r∗ enforce the following identity

ω̃I0(ω̃r∗)
I1(ω̃r∗)

= −
K0(r∗)
K1(r∗)

; (6.7)

however, one finds that ω̃I0(ω̃r)
I1(ω̃r) > −K0(r)

K1(r) for any r > 0, therefore (6.7) is impossible hence (6.1) does
not have any solutions if χ ≤ 1. Indeed, one can apply the results above to conclude that it has no
nonconstant solution at all.

Now for each χ > 1, the continuity of V′(r) and V′′(r) for (6.6) at r = r∗ implies −C1ωJ1(ωr∗) = −C2K1(r),

−C1ω
2
(
J0(ωr∗) − J1(ωr∗)

ωr∗

)
= C2

(
K1(r∗)

r∗ + K0(r∗)
))
,

which entails that r∗ is a root of the limiting algebraic equation of (2.4)

f (r∗;ω,∞) =
ωJ0(ωr∗)
J1(ωr∗)

+
K0(r∗)
K1(r∗)

= 0. (6.8)

As an analog of Lemma 2.1, for each χ > 1, f (r∗;ω,∞) in (6.8) admits a unique root r∗ in ( j0,1
ω
,

j1,1
ω

).
With this unique root in hand, we collect from (6.6) that

U(r) =

{
A

(
J0(ωr) − J0(ωr∗)

)
, r ∈ [0, r∗),

0, r ∈ [r∗,∞), V(r) =

{
A

( J0(ωr)
χ
− J0(ωr∗)

)
, r ∈ [0, r∗),

B K0(r), r ∈ [r∗,∞),
(6.9)

where the coefficientsA and B are explicitly given by

A =
Mω

π(2r∗J1(ωr∗) − ω(r∗)2J0(ωr∗))
and B = −

Mω2J0(ωr∗)
πχ(r∗)2J2(ωr∗)K0(r∗)

.

One sees that all the arguments and calculations for the interior spike in B0(R) holds an arbitrary R.
In summary, we have the following results:
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Theorem 6.1. If χ ≤ 1, (6.1) has no solution. For each χ > 1, (6.1)-(6.2) has one and a unique
one solution (U(r),V(r)); moreover, this solution is explicitly given by (6.9) such that U(r) is sup-
ported in the disk B0(r∗) for some r∗ ∈ ( j0,1√

χ−1
,

j1,1√
χ−1

) determined by (6.8); furthermore, the following

asymptotics hold in the large limit of χ:
(i) r∗, the size of support of U, is monotone decreasing in χ and r∗ = O( 1

√
χ
) for χ � 1;

(ii) ‖U‖L∞(R2) is monotone increasing in χ and ‖U‖L∞(R2) = O(χ) for χ � 1;
(iii) U(r)→ Mδ0(r) and V(r)→ M

2πK0(r) pointwisely in R2 as χ→ ∞.

Theorem 6.1 states that in the radial setting, the solution of (6.1)-(6.2) is uniquely and explicitly
given by (6.9). Then according to [19, 30], these statements also hold for (6.3) and we have the
followings:

Corollary 6.1. For each χ > 1, (6.3) has one and a unique one stationary solution (u, v); moreover,
this solution has the explicit formula (U(r),V(r)) in Theorem 6.1, hence it is radially symmetric, with
u being compactly supported and monotone decreasing within its support.

6.2 A Cousin Problem with Logarithmic Potential in R2

Finally, we consider the following cousin problem of the steady states of (6.3)
0 = ∇ · (U∇U − χU∇V), x ∈ R2,
0 = ∆V +U, x ∈ R2,

(U,V) ∈ C0(R2) ×C2(R2),
∫
R2U(x)dx = M.

(6.10)

It is well known that any solution of (6.10) must be radial and compactly supported such that

(U(x),V(x)) = (U(r),V(r)) andU ≡ 0 for r large.

We will explore the explicit formula for this unique solution in this subsection. It is necessary to point
out that for any constant C, (U,V + C) is a solution of (6.10) whenever (U,V) is one, therefore the
uniqueness here is understood as that of (U,Vr) as we shall see later.

Similar as above, we find that the support of U must be the form of a disk B0(r∗), therefore
U − χV = C̄ a constant in B0(r∗) and U ≡ 0 in R2\B0(r∗). Therefore the V-equation implies that
∆r(V + C̄

χ
) + χ(V + C̄

χ
) = 0 in (0, r∗) and ∆rV = 0 in (r∗,∞).

U(r) =

{
χV + C̄, r ∈ [0, r∗),
0, r ∈ (r∗,∞), V(r) =

{
C1J0(

√
χr) − C̄

χ
, r ∈ [0, r∗),

C2 ln r + C3, r ∈ (r∗,∞).

We claim that r∗ =
j0,1
√
χ
. Before showing this, we first show that C2 , 0. If not, then V ≡ C3 in

(r∗,∞) and the C1-continuity ofV(r) at r∗ implies that r∗ =
j1,1
√
χ
, which leads a contradiction to the C2

continuity ofV at r∗.
Next we enforce the C1 and C2 continuity of V(r) at r∗ and find that J0(wr∗) = 0 hence r∗ =

j0,1
√
χ

as claimed. Moreover, the integral constraint implies that C2 = − M
2π . In summary, we collect the

following explicit formula of the unique solution (U,V) to (6.10) as

U(r) =

 Mχ

2π j0,1

J0(
√
χr)

J1( j0,1) , r ∈ [0, j0,1
√
χ
),

0, r ∈ ( j0,1
√
χ
,∞),

withVr(r) =

 −
M
√
χ

2π j0,1

J1(
√
χr)

J1( j0,1) , r ∈ [0, j0,1
√
χ
),

− M
2π

1
r , r ∈ ( j0,1

√
χ
,∞).

(6.11)

In contrast to (6.1) where V describes concentration of the stimulating chemical, V can only be
uniquely determined by its derivative in the sense of (6.11). On the other hand, V becomes negative
for r sufficiently large, hence it should be understood as an attractive potential rather than a physical
chemical concentration in (6.10).
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7 Appendix
Here we establish the finer estimate r2 ∈ ( π

2ω ,
5π
4ω ) by the asymptotic expansions of Bessel functions

and the uniform bounds of the ratios of modified Bessel functions Jn(x) and Yn(x), n ∈ N. The results
in Chap 7.3 of [74] state that for any x > 0, the finite sum within the asymptotic expansions of Jn(x)
and/or Yn(x) converges to each function, with the corresponding remainders being of the same sign of
the finite sum with the last term ignored. To be precise, one has

Jn(x) =

√
2
πx

(
P(x, n) cos

(
x −

nπ
2
−
π

4
)
− Q(x, n) sin

(
x −

nπ
2
−
π

4
))
, (7.1)

Yn(x) =

√
2
πx

(
P(x, n) sin

(
x −

nπ
2
−
π

4
)

+ Q(x, n) cos
(
x −

nπ
2
−
π

4
))
, (7.2)

where P(x, n) and Q(x, n) can be presented by

P(x, n) =

s−1∑
m=0

(−1)m · (1
2 − n)2m · ( 1

2 + n)2m

(2m)!(2x)2m + ε1
(−1)s · ( 1

2 − n)2s · (1
2 + n)2s

(2s)!(2x)2s ,

for some |ε1| < 1 if 2s ≥ n − 1
2 , and

Q(x, n) =

s−1∑
m=0

(−1)m · ( 1
2 − n)2m+1 · ( 1

2 + n)2m+1

(2m + 1)!(2x)2m+1 + ε2
(−1)s · (1

2 − n)2s+1 · ( 1
2 + n)2s+1

(2s + 1)!(2x)2s+1 ,

for some |ε2| < 1 if 2s ≥ n − 3
2 . Thanks to these approximations, there exist some constants θ1, θ2, θ3

and θ4 in (0, 1) such that

P(x, 0) = 1 −
9θ1

128x2 , P(x, 1) = 1 +
15θ3

128x2 , (7.3)

Q(x, 0) = −
1
8x

+
75θ2

1024x3 , Q(x, 1) =
3
8x
−

105θ4

1024x3 .

We also want to note that the positivity of each θi is promised by the facts that the remainders after
two terms of P(x, n) and Q(x, n) are of the same sign as the sum of the first two term. Using (7.1) and
(7.2), we have

S 0

(
π

2ω
;ω,R

)
=

2

πω
√

R
(
R − π

2ω

) (
Q(ωR, 1) · P(ωR −

π

2
, 0) − P(ωR, 1) · Q(ωR −

π

2
, 0)

)
,

S 1

(
π

2ω
;ω,R

)
=

2

πω
√

R
(
R − π

2ω

) (
P(ωR, 1) · P(ωR −

π

2
, 1) + Q(ωR, 1) · Q(ωR −

π

2
, 1)

)
.

Substituting (7.3) into the above expressions, using the boundedness of θi and the fact ωR > j1,1, we
obtain from straightforward calculations

ωS 0

(
π

2ω ;ω,R
)

S 1

(
π

2ω ;ω,R
) < ω

1
2(ωR− π2 ) + 15θ3

1024ω2R2(ωR− π2 )

1 + 15θ3
128ω2R2

<
1

2(R − π
2ω )

.
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Let us recall the following inequality from [3]

I0(R − π
2ω )

I1(R − π
2ω )
≥

1 +
√

4(R − π
2ω )2 + 1

2(R − π
2ω )

,

therefore f2( π
2ω ;ω,R) < 0 implies that r2 >

π
2ω as asserted. By the same token, one can show that

s(1)
0 ∈ ( π

4ω ,
π

2ω ) and s(1)
1 ∈ ( π

ω
, 5π

4ω ) by the monotonicity of S 0(r;ω,R) and S 1(r;ω,R), and then obtain
their asymptotic expansions in terms of P(x, n) and Q(x, n).

Next, we claim that r2 → ( π
2ω )+ and s(1)

0 → ( π
2ω )− in the limit of χ → ∞. To see this, we first find

the following asymptotic behavior of Bessel functions in this limit as

S 0(r;ω,R) = −
2

πω
√

R(R − r)
cos(ωr) + O((ωR)−2), (7.4)

S 1(r;ω,R) =
2

πω
√

R(R − r)
sin(ωr) + O((ωR)−2), (7.5)

where the big O is uniform in r. These asymptotic expansions indicate that s(1)
0 → ( π

2ω )− and
s(1)

1 → ( π
ω

)+. Recall that r2 is the first positive root of (2.11), the left hand side of which approaching
− ω

tan(ωr) , the right hand side approaching the positive bound constant I0(R)
I1(R) in large χ, then an immediate

consequence of these facts is that r2 → ( π
2ω )+ as χ→ ∞, which is expected.
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