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Abstract. We introduce a fast algorithm for entry-wise evaluation of the Gauss-Newton Hessian
(GNH) matrix for the fully-connected feed-forward neural network. The algorithm has a precompu-
tation step and a sampling step. While it generally requires O(Nn) work to compute an entry (and
the entire column) in the GNH matrix for a neural network with N parameters and n data points,
our fast sampling algorithm reduces the cost to O(n+d/ε2) work, where d is the output dimension of
the network and ε is a prescribed accuracy (independent of N). One application of our algorithm is
constructing the hierarchical-matrix (H-matrix) approximation of the GNH matrix for solving linear
systems and eigenvalue problems. It generally requires O(N2) memory and O(N3) work to store and
factorize the GNH matrix, respectively. The H-matrix approximation requires only O(Nro) memory
footprint and O(Nr2o) work to be factorized, where ro � N is the maximum rank of off-diagonal
blocks in the GNH matrix. We demonstrate the performance of our fast algorithm and the H-matrix
approximation on classification and autoencoder neural networks.
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1. Introduction. Consider a multilayer perceptron (MLP) with L fully con-
nected layers and n data pairs {(x0i , yi)}ni=1, where yi is the label of x0i . Given input
data point x0i ∈ Rd0 , the output of the MLP is computed via the forward pass:

(1.1) x`i = s(W` x
`−1
i ), ` = 1, . . . , L

where x`i ∈ Rd` , W` ∈ Rd`×d`−1 and s is a nonlinear activation function applied
to every entry of the input vector. Without loss of generality, Eq. (1.1) does not
have bias parameters. Otherwise, bias can be included in the weight matrix W`, and
correspondingly vector x`i is appended with an additional homogeneous coordinate of
value one. For ease of presentation, we assume constant layer size, i.e., d` ≡ d, for
` = 0, 1, 2, . . . , L, so the total number of parameters is N = d2L. Define the weight
vector consisting of all weight parameters concatenated together as

w = [vec(W1), vec(W2), . . . , vec(WL)],

where w ∈ RN and vec is the operator vectorizing matrices.
Given a loss function f(xLi , yi), which measures the misfit between the network

output and the true label, we define

F (w) =
1

n

n∑
i=1

f
(
xLi , yi

)
as the loss of the MLP with respect to the weight vector w. Note xLi is a function of
the weights w.

∗University of Texas at Austin, United States (chenchao.nk@gmail.com, biros@oden.utexas.edu).
†Technical University of Munich, Germany (s.reiz@tum.de, bungartz@tum.de).
‡Nvidia Corp., United States (b94201001@gmail.com).

1

ar
X

iv
:1

91
0.

12
18

4v
2 

 [
m

at
h.

N
A

] 
 1

4 
N

ov
 2

02
0

mailto:chenchao.nk@gmail.com
mailto:biros@oden.utexas.edu
mailto:s.reiz@tum.de
mailto:bungartz@tum.de
mailto:b94201001@gmail.com


2 C. CHEN, S. REIZ, C. YU, H.-J. BUNGARTZ, AND G. BIROS

Definition 1.1 ((Generalized) Gauss-Newton Hessian). Let Qi = 1
n ∂

2
xxf(xLi , yi)

be the Hessian of the loss function f(xLi , yi) for i = 1, 2, . . . , n, and define Q ∈ Rdn×dn
as a block diagonal matrix with Qi being the ith diagonal block. Let Ji = ∂wx

L
i ∈ Rd×N

be the Jacobian of xLi with respect to the weights w for i = 1, 2, . . . , n, and define
J ∈ Rdn×N be the vertical concatenation of all Ji. The (generalized) Gauss-Newton
Hessian (GNH) matrix H ∈ RN×N associated with the loss F with respect to the
weights w is defined as

H = JTQJ =

n∑
i=1

JTi QiJi.(1.2)

The GNH matrix is closely related to the Hessian matrix in that it is the Hessian
matrix of a particular approximation of F (w) constructed by replacing xLi with its
first-order approximation (on weights w) [30]. Importantly, the GNH matrix is always
(symmetric) positive semi-definite when the loss function f(xLi , yi) is convex in xLi
(Qi is positive semi-definite), a useful property in many applications. In addition,
for several standard choices of the loss function, the GNH matrix is mathematically
equivalent to the Fisher matrix as used in the natural gradient method.

This paper is concerned with fast entry-wise evaluation of the GNH matrix. Such
an algorithmic primitive can be used in constructing approximations of the GNH
matrix for solving linear systems and eigenvalue problems, which are useful for training
and analyzing neural networks [6, 30, 5, 34], for selecting training data to minimize the
inference variance [9], for estimating learning rates [25], for network pruning [19], for
robust training [41], for probabilistic inference [20], for designing fast solvers [7, 38, 15]
and so on.

1.1. Previous work. We classify related work into two groups. One group
avoids entry-wise evaluation of the GNH matrix and relies on the matrix-vector mul-
tiplication (matvec) with the Hessian or the GNH that is matrix-free [28, 32, 30]. For
example, the matrix-free matvec can be used to construct low-rank approximations of
the GNH matrix through the randomized singular value decomposition (RSVD) [18],
but the numerical rank may not be small [44, 11]. Other examples are the following:
[10] introduces a low-rank approximation using the Lanczos algorithm to tackle saddle
points; [36] maintains a low-rank approximation of the inverse of the Hessian based
on rank-one updates at each optimization step; [15] uses a quasi-Newton-like con-
struction of the low-rank approximation; [43, 40] study the convergence of stochastic
Newton methods combined with a randomized low-rank approximation; [41] uses a
matrix-free method with only the layers near the output layer.

The other group of methods are based on evaluating or approximating entries
on or close to the diagonal of the GNH matrix [24]. For example, [48] introduces
a recursive fast algorithm to construct block-diagonal approximations. As another
example, [31, 30] introduce the Kronecker-factored approximate curvature (K-FAC),
which is based on an entry-wise approximation of the Fisher matrix (mathematically
equivalent to the GNH for some popular loss functions). The Fisher matrix is given by
1/n
∑n
i=1 Ey[gi(y)gi(y)T ], where gi is the gradient evaluated for the ith training point

x0i , and y is sampled from the network’s predictive distribution ∝ exp(−f(xLi , y)).
In practice, an extra step of block-diagonal or block-tridiagonal approximation is
used for fast inversion purpose. The method has been tested within optimization
frameworks on modern supercomputers and has been shown to perform well [35].
However, the sampling in the K-FAC algorithm converges slowly, and block-diagonal
approximations do not account for off-diagonal information.
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1.2. Contributions. In this paper, we introduce a fast algorithm for entry-wise
evaluation of the GNH matrix H, i.e., computing

Hkm = eTk H em,

where ek and em are two canonical bases for k,m = 1, 2, . . . , N . With the fast
evaluation, we propose the hierarchical-matrix (H-matrix) approximation [4, 17] of
the GNH matrix for the MLP network, which has applications in autoencoders, long-
short memory networks, and is often used to study the potential of second-order
training methods. Notice if the matrix-free matvec is used to evaluate Hkm, the
computational cost would be O(Nn).

Our fast algorithm includes a precomputation step and a sampling step, which
reduces the cost to O(n + d) work (independent of N), where d is the output di-
mension of the network. To illustrate the idea, suppose the network employs the
mean squared loss, i.e., f(xLi , yi) = 1

2‖x
L
i − yi‖2, and therefore, the GNH matrix is

H = 1
nJJ

T , where J ∈ Rdn×N is the Jacobian of the network output with respect
to the weights. Then Hkm = 1

n (Jek)T (Jem), and only columns in the Jacobian are
required to be computed. Our precomputation algorithm exploits the structure of a
feed-forward neural network, where the gradient is back propagated layer by layer,
so the intermediate results effectively form a compressed format of the Jacobian with
O(Nn) memory. As a result, every column can be retrieved in only O(nd) time (note
every column has O(nd) entries).

To accelerate the computation of Hkm, we introduce a fast Monte Carlo sampling
algorithm. Let vk(i) denote the sub-vector in the Jacobian’s kth column corresponding
to the ith data point, and therefore, Hkm = 1

n

∑n
i=1 vk(i)T vm(i). In the sampling, we

draw c (independent of n) independent samples t1, t1, . . . , tc from {1, 2, . . . , n} with a
carefully designed probability distribution Pkm and compute an estimator

H̃km =
1

nc

c∑
j=1

vk(tj)
T vm(tj)

Pkm(tj)
.

We prove |Hkm − H̃km| = O(1/
√
c) with high probability. Note it requires only

O(n+dc) work to compute H̃km as an approximation, where d is the output dimension
of the network.

With the fast evaluation algorithm, we are able to take advantage of the exist-
ing GOFMM method [45, 46, 47] to construct the H-matrix approximation of the GNH
matrix through evaluating O(N) entries in the matrix. The H-matrix approximation
is a multilevel scheme that stores diagonal blocks and employs low-rank approxima-
tions for off-diagonal blocks in the input matrix. So previous work on the (global)
low-rank approximation and the block-diagonal approximation can be viewed as the
two extremes in the spectrum of our H-matrix approximation, which effectively works
for a broader range of problems. H-matrices are algebraic generalizations of the well-
known fast n-body calculation algorithms [3, 16] in computational physics, and they
have been applied to kernel methods in machine learning [26, 27]. An H-matrix can
be formulated as

(1.3) H = D + S + UV T

where U and V are tall-and-skinny matrices, S is a block-sparse matrix, and D is
a block-diagonal matrix with the blocks being either smaller H-matrices at the next
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Fig. 1: (a) A low-rank matrix H = UV T , where U and V are tall-and-skinny matrices;
(b) a three-level H-matrix, where blue represents dense diagonal blocks, and green,
red and orange represent off-diagonal low-rank blocks at level 1, 2 and 3, respectively;
(c) ranks of diagonal and off-diagonal blocks in an H-matrix, where every block has
size 2-by-2.

level or dense blocks at the last level. Figure 1 shows the structure of a low-rank
matrix and the hierarchically low-rank structure of H-matrices.

Given an H-matrix approximation, the memory footprint is O(Nro)
1, where N

is the matrix size or the number of weights in a network and ro is the maximum off-
diagonal rank. Compared to the O(N2) storage for the entire matrix, an H-matrix
approximation leads to significant memory savings. Once constructed, an H-matrix
can be factorized with only O(Nr2o) work, and there exists an entire class of well-
established numerical techniques [33, 39, 21, 12, 1, 8, 37]. The factorization can be
applied to a vector with O(Nro) work and be used as either a fast direct solver or a
preconditioner depending on the approximation accuracy.

To summarize, our work makes the following two major contributions:
• a fast algorithm that requires O(Nn) storage and requires O(n+ d/ε2) work

to evaluate an arbitrary entry in the GNH matrix, where N and d are the
number of parameters and the output dimension of the MLP, respectively, n
is the data size, and ε is a prescribed accuracy.

• a framework to construct the H-matrix approximation of the GNH matrix,
an analysis of the approximation accuracy and the cost, as well as comparison
with the RSVD and the K-FAC methods.

Outline. In §2 we review some background material. In §3 we present our fast
algorithm for evaluating entries in the GNH matrix. In §4 we show how to construct
the H-matrix approximation of the GNH matrix. In §5 we show numerical results,
and in §6 we conclude with further extensions. Throughout this paper, we use ‖ · ‖ to
denote the vector/matrix 2-norm and ‖ · ‖F to denote the matrix Frobenius norm.

2. Background. In this section, we review the importance of the GNH matrix
and the associated computational challenge. The GNH matrix is useful in training
and analyzing neural networks, selecting training data, estimating learning rate, and
so on. Here we focus on its use in second-order optimization to show the challenge
that is common in other applications.

2.1. Neural network training. In an MLP, the weight vector w is obtained
via solving the following constrained optimization problem (regularization on w could

1Generally speaking, there may be a log(N) or log2(N) prefactor, as for other complexity results
related to H-matrix approximations. But here we focus on the case without such prefactors.
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be added):

minF (w) = min
1

n

n∑
i=1

f
(
xLi , yi

)
subject to Eq. (1.1).

(2.1)

Recall that f is the loss function, xLi is the network output corresponding to input
x0i , which has label yi.

To solve for w in problem (2.1), a second-order optimization method solves a se-
quence of local quadratic approximations of F (w), which requires solving the following
linear systems repeatedly:

(2.2) Hp = −g,

where H is the curvature matrix (the Hessian of F (w) in the standard Newton’s
method), g = ∂wF is the gradient, and p is the update direction. Generally speaking,
second-order optimization methods are highly concurrent and could require much less
number of iterations to converge than first-order methods, which imply potentially
significant speedup on modern distributed computing platforms.

In the Gauss-Newton method, a popular second-order solver, the GNH matrix is
employed (with a small regularization) as the curvature matrix in Eq. (2.2), which can
be solved using the Conjugate Gradient method. Since the GNH is mathematically
equivalent to the Fisher matrix for several standard choices of the loss, and then the
solution of Eq. (2.2) becomes the natural gradient, a efficient steepest descent direc-
tion in the space of probability distribution with an appropriately defined distance
measure [29].

Table 1: Gradient evaluation and matrix-free matvec with the GNH matrix. Step
(a) of gradient evaluation is the forward pass in Eq. (1.1), and step (b) and (c) are
the well-known back-propagation. In the matvec, step (a) is known as the linearized
forward (x̂0i = 0), which computes Jŵ. Notations: M `

i = diag
(
ṡ(W` x

`−1
i )

)
, where ṡ

stands for the derivative; g` is the gradient for W`; ŵ = [vec(Ŵ1), . . . , vec(ŴL)] is
the input of the matvec; (Hŵ)` refers to the `th block of the output.

Evaluate gradient g Matvec with GNH: Hŵ = JTQJŵ (Definition 1.1)

(a) x`i = s
(
W` x

`−1
i

)
∀i, `

(b) zLi = ∂xf(xLi , yi), ∀i
(c) z`−1

i = WT
` M

`
i z

`
i ∀i, `

(d) g` =
∑n

i=1

(
M`

i z
`
i

)
(x`−1

i )T ∀`

(a) x̂`i = M`
i

(
W`x̂

`−1
i + Ŵ`x

`−1
i

)
∀i, `

(b) ẑLi = Qix̂
L
i ∀i

(c) ẑ`−1
i = WT

` M
`
i ẑ

`
i ∀i, `

(d) (Hŵ)` =
∑n

i=1

(
M`

i ẑ
`
i

)
(x`−1

i )T ∀`

2.2. Back-propagation & matrix-free matvec. Table 1 shows the algorithm
known as back-propagation for evaluating the gradient g = ∂wF and the matrix-free
matvec with the GNH matrix, both of which have complexity O(Nn). Both algo-
rithms can be derived by introducing Lagrange multipliers z`i and ẑ`i for the cor-
responding weights W` at every layer [13, 14]. Note a direct matvec with the full
GNH matrix would require O(N2) work, not even mentioning the amount of work to
compute the entire matrix.
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Based on the two basic ingredients, iterative solvers such as Krylov methods can
be used to solve Eq. (2.2) as in Hessian-free methods [28, 32]. However, the iteration
count for convergence can grow rapidly in the presence of ill-conditioning, in which
case fast solvers or preconditioners for Eq. (2.2) are necessary [2, 23, 30].

3. Fast computation of entries in GNH. This section presents a precompu-
tation algorithm and a fast Monte Carlo algorithm for fast computation of arbitrary
entries in the GNH matrix of an MLP network.

A naive method. Consider a GNH matrix H ∈ RN×N , where an entry Hkm can
be written as

(3.1) Hkm = eTk H em,

where ek and em are the kth and the mth columns of the N -dimensional identity
matrix. We can take advantage of the matrix-free matvec with the GNH matrix in
Table 1 to compute Hkm = eTk (Hem), which costs the same as one pass of forward
propagation plus one pass of backward propagation, i.e., O(Nn) = O(d2Ln) work.

In the following, we introduce a precomputation algorithm that reduces the cost
of evaluating an entry in the GHN to O(dn) work with O(Nn) memory, and a fast
Monte Carlo algorithm that further reduces the cost to O(n+ d/ε2) work, where ε is
a prescribed accuracy that does not depend on n nor N .

3.1. Precomputation algorithm. The motivation of our precomputation al-
gorithm is to exploit the sparsity of ek and em plus the symmetry of H in Eq. (3.1).
Recall the definition of H in Eq. (1.2), and let Qi = RTi Ri be a symmetric fac-
torization, which can be computed via, e.g., the eigen-decomposition or the LDLT
factorization with pivoting. We have

(3.2)
Hkm = eTk

(∑n
i=1 J

T
i R

T
i RiJi

)
em =

∑n
i=1(RiJiek)T (RiJiem)

:=
∑n
i=1 vk(i)T vm(i)

where vk(i) and vm(i) are two d-dimensional vectors:

(3.3) vk(i) = RiJiek, vm(i) = RiJiem,

for k,m = 1, 2, . . . , N and i = 1, 2, . . . , n. We state the following theorem and present
the precomputation algorithm in the proof.

Theorem 3.1. For an MLP network that has L fully connected layers with con-
stant layer size d (d-by-d weight matrices), every entry Hkm in the GNH matrix can
be computed in O(dn) time with a precomputation that requires O(nN) storage and
O(dnN) work.

Proof. We first compute x`−1i and M `
i = diag(ṡ(W`x

`−1
i )) via the forward pass,

i.e., step (a) of gradient evaluation in Table 1, and then we precompute and store

(3.4) C`i = RiM
L
i WLM

L−1
i WL−1 · · ·M `

i , i = 1, 2, . . . , n; ` = 1, 2, . . . , L.

Since every C`i is a d× d matrix, the total storage cost is O(d2 nL) = O(nN), where
N = d2L is the total number of weights. In addition, notice the relation that C`−1i =
C`i
(
W`M

`−1
i

)
, so they can be computed from ` = L to ` = 1 iteratively, which

requires O(d3Ln) = O(dnN) work in total. Note that the forward pass costs O(nN)
work, and that computing the symmetric factorizations for Qi cost O(d3n), which is
negligible compared to other parts of the computation.
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To complete the proof we show how to compute vk(i) as defined in Eq. (3.3) with
O(d) work. Below we use the same notations as in Table 1, and ek is the input vector
of the matvec corresponding to ŵ = [vec(Ŵ1), . . . , vec(ŴL)] in Table 1. Recall step
(a) of the matrix-free matvec (linearized forward) with the GNH in Table 1, and we
evaluate Jiek as follows.

1. Let τ =
⌈
k/d2

⌉
, µ = k mod d, and ν =

⌈
(k mod d2)/d

⌉
. Since ek has only

one nonzero entry, x̂`i = 0 for ` = 1, 2, . . . , τ − 1 because Ŵ` are all zeros

except for ` = τ . The matrix Ŵτ has only one nonzero at position (µ, ν)
(column-major ordering) as the following:


ν
...

µ . . . 1 . . .
...

 = Ŵτ .

2. Following step (a) of the matvec in Table 1, we have x̂τi = Mτ
i Ŵτx

τ−1
i at

layer τ . Denote aτi = Ŵτx
τ−1
i , and we have

x̂τi = Mτ
i a

τ
i

x̂τ+1
i = Mτ+1

i Wτ+1x̂
τ
i (since Ŵτ+1 = 0)

= Mτ+1
i Wτ+1M

τ
i a

τ
i

. . .

x̂Li = ML
i WLM

L−1
i WL−1 · · ·Mτ

i a
τ
i

3. Notice that the only nonzero entry in aτi is the µth element, which equals to
the νth element in xτ−1i . Therefore,

(3.5) vk(i) = RiJiek = Rix̂
L
i = Cτi a

τ
i ,

where Cτi a
τ
i should be interpreted as a scaling of the µth column in Cτi by

the νth element in xτ−1i , which costs O(d) work.

3.2. Fast Monte Carlo algorithm. Recall Eq. (3.2), which sums over a large
number of data points, and the idea is to sample a subset with judiciously chosen
probability distribution and scale the (partial) sum appropriately to approximate
Hkm. It is important to note that the computation of the probabilities is fast based on
the previous precomputation. The fast sampling algorithm is given in Algorithm 3.1.

Define vk = [vk(1), . . . , vk(n)] and vm = [vm(1), . . . , vm(n)] as two vectors in Rdn,
and Eq. (3.2) can be written as the inner product of the two vectors:

Hkm = vTk vm.

The following theorem shows that our sampling algorithm returns a good estimator
of Hkm, where the error is measured using ‖vk‖‖vm‖, an upper bound on |Hkm|.

Theorem 3.2 (Sampling error). Consider an MLP network that has L fully
connected layers with constant layer size d (d-by-d weight matrices). For every entry
Hkm in the GNH matrix, Algorithm 3.1 returns an estimator H̃km that

• is an unbiased estimator of Hkm, i.e., E[H̃km] = Hkm.
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Algorithm 3.1 Fast Monte Carlo Algorithm

1: Input: ‖vk(i)‖ and ‖vm(i)‖ for i = 1, 2, . . . , n.
2: Compute sampling probabilities for t = 1, 2, . . . , n:

(3.6) Pkm(t) =
‖vk(t)‖ ‖vm(t)‖∑n
j=1 ‖vk(j)‖ ‖vm(j)‖

.

3: Draw c independent random samples tj from {1, 2, . . . , n} with replacement.
4: Output:

(3.7) H̃km =
1

c

c∑
j=1

vk(tj)
T vm(tj)

Pkm(tj)
.

• its variance or mean squared error (MSE) satisfies

(3.8) Var[H̃km] = E
[
|Hkm − H̃km|2

]
≤ 1

c
‖vk‖2‖vm‖2

where c is the number of random samples.
• with probability at least 1− δ, where δ ∈ (0, 1), its absolute error satisfies

(3.9) |Hkm − H̃km| ≤
η√
c
‖vk‖‖vm‖

where η = 1 +
√

8 log(1/δ) and c is the number of random samples.

Proof. Our proof consists of the following three parts.
Unbiased estimator. Define a random variable

Xt =
vk(t)T vm(t)

P (t)

where t is a random sample from {1, 2, . . . , n} with probability distribution P (t) as
defined in Eq. (3.6). Observe that H̃km is the mean of c independent identically
distributed variables (Xt1 , Xt2 , . . . , Xtc), and thus

E[H̃km] = E[Xt] =

n∑
t=1

vk(t)T vm(t)

P (t)
P (t) = Hkm.
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Variance/MSE error. The variance or MSE error of the estimator is the following:

E
[
|Hkm − H̃km|2

]
= Var[H̃km] =

1

c
Var[Xt]

=
1

c

(
E[X2

t ]− E2[Xt]
)

=
1

c

n∑
t=1

(
vk(t)T vm(t)

P (t)

)2

P (t)− H2
km

c

≤
n∑
t=1

(
vk(t)T vm(t)

)2
c P (t)

(Drop the last term)

≤
n∑
t=1

‖vk(t)‖2‖vm(t)‖2

c P (t)
(Cauchy-Schwarz)

=
1

c

( n∑
t=1

‖vk(t)‖‖vm(t)‖
)2

(Eq. (3.6))

≤1

c

( n∑
t=1

‖vk(t)‖2
)( n∑

t=1

‖vm(t)‖2
)

(Cauchy-Schwarz)

=
1

c
‖vk‖2‖vm‖2.

Notice that with Jensen’s inequality, we also obtain a bound of the absolute error in
expectation:

(3.10) E
[
|Hkm − H̃km|

]
≤ 1√

c
‖vk‖‖vm‖.

Concentration result. We will use the McDiarmid’s (a.k.a., Hoeffding-Azuma or
Bounded Differences) inequality to obtain Eq. (3.9). See the conditions for the in-
equality in §A. Define function

F (t1, t2, . . . , tc) = |Hkm − H̃km|,

where t1, t2, . . . , tc are random samples, and we show that changing one sample ti at
a time does not affect F too much. Consider changing a sample ti to t′i while keeping

others the same. The new estimator Ĥkm differs from H̃km by only one term. Thus,

|H̃km − Ĥkm| =
∣∣∣∣vk(ti)

T vm(ti)

c P (ti)
− vk(t′i)

T vm(t′i)

c P (t′i)

∣∣∣∣
≤
∣∣∣∣vk(ti)

T vm(ti)

c P (ti)

∣∣∣∣+

∣∣∣∣vk(t′i)
T vm(t′i)

c P (t′i)

∣∣∣∣
≤ ‖vk(ti)‖‖vm(ti)‖

c P (ti)
+
‖vk(t′i)‖‖vm(t′i)‖

c P (t′i)

=
2

c

n∑
j=1

‖vk(j)‖ ‖vm(j)‖

≤ 2

c
‖vk‖‖vm‖.
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where we have used Cauchy-Schwarz inequality twice. Then, define ∆ = 2
c‖vk‖‖vm‖;

using the triangle inequality we see

|F (. . . , ti, . . .)− F (. . . , t′i, . . .)| ≤ ∆.

Finally, let γ =
√

2c log(1/δ) ∆, and we use the McDiarmid’s inequality to obtain
Eq. (3.9) as follows

Pr

[
|Hkm − H̃km| ≥

η√
c
‖vk‖‖vm‖

]
=Pr

[
|Hkm − H̃km| ≥

1√
c
‖vk‖‖vm‖+ γ

]
≤Pr [F − E[F ] ≥ γ] (Eq. (3.10))

≤exp

(
− γ2

2c∆2

)
= δ (McDiarmid’s inequality).

Remark 3.3. The error ε in the approximation of Hkm depends on only the num-
ber of random samples c (but not n) and can be made arbitrarily small as needed. In
particular, if c ≥ 1/ε2, we have

Var[H̃km] = E
[
|Hkm − H̃km|2

]
≤ ε ‖vk‖2‖vm‖2

and if c ≥ η2/ε2, then with probability at least 1− δ, where δ ∈ (0, 1)

|Hkm − H̃km| ≤ ε ‖vk‖‖vm‖.

Furthermore, the error of the entire matrix in the Frobenius norm is

‖H − H̃‖F ≤ε
√∑

k

∑
m

‖vk‖2‖vm‖2 = ε
∑
k

‖vk‖2

(3.2)
= ε

∑
k

Hkk = ε trace(H) ≤ ε
√
N ‖H‖F .

Remark 3.4. The estimator H̃km is exact using at most one sample when k = m.
The (trivial) case Hkk = 0 is implied by the situation that vkk(i) = 0 for all i;
otherwise, we have Hkk = ‖vk‖2, and the sampling probability becomes

Pkk(t) =
‖vk(t)‖2∑n
j=1 ‖vk(j)‖2

=
‖vk(t)‖2

‖vk‖2
.

Therefore, H̃kk = ‖vk(t)‖2/Pkk(t) = Hkk with any random sample t.

Theorem 3.5 (Computational cost of sampling). Given the precomputation in
Theorem 3.1, it requires O(nN) work to compute ‖vk(i)‖ for all i and k as the input
of Algorithm 3.1, and it requires O(n+d/ε2) work to compute every estimator, where
ε is a prescribed accuracy that does not depend on n.

Proof. Recall Eq. (3.5) that ‖vk(i)‖ is proportional to the norm of a column in C`i .
Since every C`i is a d-by-dmatrix, computing all the norms requiresO(d2nL) = O(nN)
work. Once all ‖vk(i)‖ have been computed, the sampling probabilities in Eq. (3.6)
and the estimator in Eq. (3.7) requires O(n) and O(d/ε2) work, respectively.
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4. H-matrix approximation. This section introduces the H-matrix approxi-
mation of the GNH matrix for the MLP. While the low-rank and the block-diagonal
approximations focus on the global and the local structure of the problem, respec-
tively, the H-matrix approximation handles both as they may be equally important.

4.1. Overall algorithm. Here we take advantage of the GOFMM method [45,
46, 47], which evaluates O(N) entries in a symmetric positive definite (SPD) matrix
H ∈ RN×N to construct the H-matrix approximation HGOFMM such that

‖H −HGOFMM‖F ≤ ε ‖H‖F ,

where ε is a prescribed tolerance.
Since GOFMM requires only entry-wise evaluation of the input matrix, we apply it

with our fast evaluation algorithm to the regularized GNH matrix (note the GNH
matrix is symmetric positive semi-definite, so we always add a small regularization
of λ times the identity matrix, where λ2 is the unit roundoff). The overall algorithm
that computes the H-matrix approximation (and approximate factorization) of the
GNH matrix using the GOFMM method is shown in Algorithm 4.1.

Algorithm 4.1 Compute H-matrix approximation of GNH with GOFMM

Require: training data {x0i }ni=1, weights in the neural network w ∈ RN
Ensure: approximation of the GNH and its factorization

1: Compute M `
i with forward propagation. (step (a) of gradient evaluation in Ta-

ble 1)
2: Compute C`i in Eq. (3.4). (Theorem 3.1: O(Nnd) work and O(Nn) storage)
3: Compute ‖vk(i)‖ in Eq. (3.5). (Theorem 3.5: O(Nn) work and O(Nn) storage)
4: Apply GOFMM and evaluate entries in the GNH matrix through Algorithm 3.1.

(Theorem 3.5: O(n+ d/ε2) work/entry)

The error analysis of Algorithm 4.1 is the following. Let H̃λ = H̃+λI be computed
by Algorithm 3.1 and λ > 0 is a regularization, and H̃GOFMM be the approximation of
H̃λ computed by GOFMM. Then the error between the output H̃GOFMM from Algorithm 4.1
and the (regularized) GNH matrix Hλ = H+λI is the following (using the triangular
equality)

‖Hλ − H̃GOFMM‖F = ‖Hλ − H̃λ + H̃λ − H̃GOFMM‖F ≤ ‖H − H̃‖F + ‖H̃λ − H̃GOFMM‖F ,

where the first term is the sampling error from Algorithm 3.1 and the second term is
the GOFMM approximation error. For simplicity, we drop the regularization parameter
for the rest of this paper.

4.2. GOFMM overview. Given an SPD matrix H, the GOFMM takes two steps to
construct theH-matrix approximation as follows. First of all, a permutation matrix P
is computed to reorder the original matrix, which often corresponds to a hierarchical
domain decomposition for applications in two- or three-dimensional physical spaces.
The recursive domain partitioning is often associated with a tree data structure T .
Unlike methods targeting applications in physical spaces, the GOFMM does not require
the use of geometric information (thus its name“geometry-oblivious fast multipole
method”), which does not exist for neural networks. Instead of relying on geomet-
ric information, the GOFMM exploits the algebraic distance measure that is implicitly
defined by the input matrix H. As a matter of fact, any SPD matrix H ∈ RN×N is
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the Gram matrix of N unknown Gram vectors {φi}Ni=1 [22]. Therefore, the distance
between two row/column indices i and j can be defined as

(4.1) dij = sin2 (∠(φi, φj)) = 1−H2
ij/(HiiHjj).

or
dij = ‖φi − φj‖ =

√
Hii − 2Hij +Hjj ,

We refer interested readers to [45] for the discussion and comparison of different dis-
tance metrics. With either definition, the GOFMM is able to construct the permutation
P and a balanced binary tree T .

The second step is to approximate the reordered matrix PTHP by

HGOFMM =

[
Hll 0

0 Hrr

]
+

[
0 Slr
Srl 0

]
+

[
0 UlrV

T
lr

UrlV
T
rl 0

]
,

where Hll and Hrr are two diagonal blocks that have the same structure as HGOFMM

unless their sizes are small enough to be treated as dense blocks, which occurs at
the leaf level of the tree T ; Slr and Srl are block-sparse matrices, and UlrV

T
lr and

UrlV
T
rl are low-rank approximations of the remaining off-diagonal blocks in H. These

bases are computed recursively with a post-order traversal of T using the interpolative
decomposition [18] and a nearest neighbor-based fast sampling scheme. There is a
trade-off here: while the so-called weak-admissibility criteria sets Slr and Srl to zero
and obtains relatively large ranks, the so-called strong-admissibility criteria selects Slr
and Srl to be certain subblocks in H corresponding to a few nearest neighbors/indices
of every leaf node in T and achieves smaller (usually constant) ranks.

Here we focus on the hierarchical semi-separable (HSS) format among other types
of hierarchical matrices. Technically speaking, the HSS format means Slr and Srl are
both zero and the bases Ulr/Vlr and Url/Vrl of a node in T are recursively defined
through the bases of the node’s children, i.e., the so-called nested bases.

We refer interested readers to [45, 46, 47] for details about the GOFMM method.

4.3. Summary & contrast with related work. We summarize the storage
and computational complexity of our H-matrix approximation method (HM), and
describe its relation with three existing methods, namely, the Hessian-free method
(HF) [28, 32], the randomized singular value decomposition (RSVD) [18] and the
Kronecker-factored Approximate Curvature (K-FAC) [30, 31]. As before, we assume
the MLP network has L layers of constant layer sizes d, so the number of weights is
N = d2L. Let n be the number of data points.

HM. The algorithm is given in Algorithm 4.1, where the first three step requires
O(Nnd) work and O(Nn) storage. Suppose the rank is ro in the H-matrix approx-
imation. The GOFMM needs to call Algorithm 3.1 O(Nro) times, which results in
O((n + d/ε2)Nro) work. Here, ε is chosen to be around the same accuracy as the
H-matrix approximation with rank ro. In addition, standard results in the HSS lit-
erature [33, 39, 21] states that the factorization requires O(Nr2o) work and O(Nro)
storage, which can be applied to solving a linear system with O(Nro) work.

MF. Unlike the other three methods, the MF does not approximate the GNH.
It takes advantage of the (exact) matrix-free matvec and utilizes the conjugate gra-
dient (CG) method for solving linear systems. It is based on the two primitives in
Table 1, where every iteration costs O(Nn) work and storage. The number of CG
iteration is generally upper bounded by O(

√
κ), where κ is the condition number of

the (regularized) GNH matrix.
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RSVD. Recall the GNH matrix H = JTQJ . Without loss of generality, assume
Q is an identity for ease of description. The algorithm is to compute an approximate
SVD of J with the following steps, which natually leads to an approximate eigenvalue
decomposition of H. First, we apply the back-propagation in Table 1 with a random
Gaussian matrix as input. Second, the QR decomposition of the result is used to esti-
mate the row space of J . Third, the linearized forward is applied to project J onto the
approximate row space, and finally, the SVD is computed on the projection. Overall,
the storage is O(Nr), and the work required is O(Nnr+Nr2 + dnr2), where r is the
numerical rank from the QR decomposition. Compared with the HM approximating
off-diagonal blocks, the RSVD approximates the entire matrix.

K-FAC. It computes an approximation of the Fisher matrix F (mathemati-
cally equivalent to the GNH for some popular loss functions). Let a column vec-
tor g = [vec(g1), . . . , vec(gL)] ∈ RN be the gradient, and F = E[g gT ] be a L-by-L
block matrix with block size d2-by-d2. Note the expectation here is taken with re-
spect to both the empirical input data distribution Q̂x0 and the network’s predictive
distribution Py|x` . In particular, the (`1, `2)-th block (`1, `2 = 1, 2, . . . , L) is given by

Fblock(`1, `2) =E[vec(g`1)vec(g`2)T ]

=E[M `1z`1(x`1−1)T
(
M `2z`2(x`2−1)T

)T
](4.2)

=E[(M `1z`1 ⊗ x`1−1)
(
M `2z`2 ⊗ x`2−1

)T
](4.3)

=E[(M `1z`1 ⊗ x`1−1)
(
(M `2z`2)T ⊗ (x`2−1)T

)
](4.4)

=E[M `1z`1(M `2z`2)T ⊗ x`1−1(x`2−1)T ](4.5)

≈E[M `1z`1(M `2z`2)T ]⊗ E[x`1−1(x`2−1)T ](4.6)

where Eq. (4.2) uses the definition of the network gradient in Table 1, Eq. (4.3) rewrites
the equation using Kronecker products, Eq. (4.4) and Eq. (4.5) use the properties
of Kronecker product, and Eq. (4.6) assumes the statistical independence between
the two terms (see Section 6.3.1 in [30]). In Eq. (4.6), the former expectation is
taken with respect to both Q̂x0 and Py|x` , and the latter is taken with respect to

Q̂x0 . To compute the first expectation, k samples are drawn from the distribution
Py|x ∝ exp(−f(xLi , y)), where xLi is the network’s output corresponding to input x0i .
In practice, an additional block-diagonal or block-tridiagonal approximation of the
inverse is employed for fast solution of linear systems. The main cost of the algorithm
is constructing, updating and inverting O(L) matrices of size d-by-d, which requires
O(d2L) = O(N) storage and O((nk+d)N) work. Overall, the approximation error of
K-FAC has three components: the error of making the assumption (4.6), the sampling
error from approximating the expectations in (4.6) and the error of block-diagonal or
block-tridiagonal approximation of the inverse.

We summarize the asymptotic complexities of the four methods discussed above
in Table 2.

5. Experimental Results. In this section, we show (1) the cost and the ac-
curacy of our H-matrix approximations, (2) the memory savings from using the pre-
computation algorithm (O(N2)→ O(Nn)), and (3) the efficiency of the fast sampling
algorithm. In Algorithm 4.1, the first two steps (precomputation) are implemented in
Matlab for the convenience of extracting intermediate values of neural networks, and
the last two steps (sampling) are implemented in C++ (GOFMM is written in C++).

Networks and datasets. We focus on classification networks and autoencoder net-
works with the MNIST and CIFAR-10 datasets. In the following, we denote networks’
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Table 2: Asymptotic complexities of the MF, the RSVD, the K-FAC and the HM
with respect to the number of weights N and the data size n (“lower order” terms
not involving Nn are dropped). We assume r, k, ro, d < n, where r, k and ro are
the parameters in the RSVD, the K-FAC and the HM, respectively, and d is the
(constant/average) layer size. In addition, κ stands for the condition number of the
GNH matrix.

MF RSVD K-FAC HM
construction - O(Nnr) O(Nnk) O(Nn(ro + d))

storage O(Nn) O(Nr) O(N) O(Nn)
solve O(Nn

√
κ) O(Nr) O(Nd) O(Nro)

layer sizes as d1→d2→. . .→dL from the input layer to the output layer. Every network
has been trained using the stochastic gradient descent for a few steps, so the weights
are not random.

1. “classifier”: classification networks with the ReLU activation and the cross-
entropy loss.

(a) N=15,910; MNIST dataset; layer sizes: 784→20→10.
(b) N=61,670; CIFAR-10 dataset; layer sizes: 3072→20→10.
(c) N=219,818; MNIST dataset; layer sizes: 784→256→64→32→10.
(d) N=1,643,498; CIFAR-10 dataset; layer sizes: 3072→512→128→32→10.

2. “AE”: autoencoder networks with the softplus activation (sigmoid activation
at the last layer) and the mean-squared loss.

(a) N=16,474; MNIST dataset; layer sizes: 784→10→784.
(b) N=64,522; CIFAR-10 dataset; layer sizes: 3072→10→3072.
(c) N=125,972; CIFAR-10 dataset; layer sizes: 3072→20→3072.

GOFMM parameters. We employ the default “angle” distance metric in (4.1) and
focus on three parameters in the GOFMM that control the accuracy of the H-matrix
approximation: (1) the leaf node size m of the hierarchical partitioning T (equivalent
to setting the number of tree levels), (2) the maximum rank ro of off-diagonal blocks,
and (3) the accuracy τ of low-rank approximations. In particular, we ran GOFMM

with two different accuracies: “low” (m = 128, ro = 128, τ = 5E−2) and “high”
(m = 1024, ro = 1024, τ = 1E−5).

GOFMM results. We report the following results for our approach.
• tbuild: time of constructing the H-matrix approximation of the GNH matrix

(not including precomputation time).
• tmatv: time of applying the H-matrix approximation to 128 random vectors.
• %K: compression rate of the H-matrix approximation, i.e., ratio between the
H-matrix storage and the GNH matrix storage.
• εF : relative error of the H-matrix approximation measured in Frobenius

norm, estimated by ‖Hx−HGOFMM x‖F /‖Hx‖F , where x ∈ RN×128 is a Gauss-
ian random matrix.

5.1. Cost and accuracy of H-matrix approximation. Table 3 shows results
of our H-matrix approximations for networks that have relatively small numbers of
parameters. The GNH matrices are computed and fully stored in memory.

As Table 3 shows, the approximation can achieve four digits’ accuracy except
for one network (two digits) when the accuracy of low-rank approximations is 1E-5.
Since we have enforced the maximum rank ro, the runtime of constructing H-matrix
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approximations (tbuild) increases proportionally to the number of network parameters,
and the compression rate scales inverse proportionally to the number of parameters.
The reported construction time tbuild includes the cost of creating an implicit tree
data structure T in GOFMM, which is less than 20% of tbuild. In addition, applying the
H-matrix approximations to 128 random vectors took less than one second for the
five networks. These H-matrix approximations can be factorized in linear time for
solving linear systems and eigenvalue problems.

Table 3: Timing (tbuild and tmatv), compression rate (%K) and accuracy (εF ) of H-
matrix approximations corresponding to low- and high-accuracy settings, respectively.
tbuild is the time of applying the GOFMM on the GNH matrices corresponding to 1000
data points. Experiments performed on one node from the Texas Advanced Comput-
ing Center “Stampede 2” system, which has two sockets with 48 cores of Intel Xeon
Platinum 8160/“Skylake” and 192 GB of RAM.

# network N accuracy tbuild tmatv %K εF

1 classifier (a) 16k low 0.24 0.03 1.80% 1.5E−1
2 high 5.74 0.11 13.59% 4.4E−4

3 classifier (b) 61k low 0.42 0.08 0.57% 4.7E−1
4 high 13.28 0.33 4.78% 4.0E−2

5 AE (a) 16k low 0.27 0.03 1.25% 1.2E−1
6 high 5.67 0.10 11.38% 6.5E−4

7 AE (b) 64k low 0.43 0.08 0.53% 5.5E−3
8 high 13.26 0.38 4.62% 6.6E−4

9 AE (c) 126k low 0.87 0.17 0.28% 4.1E−3
10 high 24.10 0.94 2.32% 5.2E−4

Comparison with RSVD and K-FAC. We implemented the RSVD using Keras
and TensorFlow for fast backpropogation, and we implemented the K-FAC in Matlab
for the convenience of extracting intermediate values. Table 4 shows the accuracies
of our method (HM), the RSVD and the K-FAC under about the same compression
rate for the low- and high-accuracy settings, respectively. For the RSVD, the storage
is rN entries, where r is the numerical rank of the (symmetric) GNH matrix, so the
compression rate is r/N . For the K-FAC, we use the relatively more accurate block
tridiagonal version. The compression rate of the K-FAC is defined as k/N , and the
reason is that the construction of the RSVD and the K-FAC requires the same number
of back-propagation if k = r (recall Table 2). So we choose k and r to be the same
value such that the corresponding compression rate of the RSVD and the K-FAC are
slightly higher than the HM.

As Table 4 shows, the H-matrix approximation achieved higher accuracy than the
RSVD and the K-FAC for most cases, especially for the high accuracy setting. For the
RSVD, suppose the eigenvalues of the GHN matrix are {σi}i, and the error of the rank-
k approximation measured in the Frobenius norm is proportional to (

∑
i>k σ

2
i )1/2.

For autoencoder (b) and (c), the spectrums of the GNH matrices decay slowly, so the
RSVD is not efficient. For the K-FAC, the approximation that the expectation of a
Kronecker product equals to the Kronecker product of expectations (Eq. (4.6)) is, in
general, not exact, impeding the overall accuracy of the method.
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Table 4: Comparison of accuracies (εF ) among the H-matrix approximation (HM),
the RSVD and the K-FAC with about the same compression rate (%K) for the low- and
high-accuracy settings, respectively. For the RSVD and the K-FAC, the compression
rate means r/N and k/N , respectively, where r is the rank and k is the number of
random samples. For all cases, the GNH matrices correspond to 10,000 data points
(n = 10, 000 in Eq. (1.2)).

HM-low HM-high RSVD-
low

RSVD-
high

K-FAC-
low

K-FAC-
high

AE(a) %K 1.23% 11.77% 1.40% 12.14% 1.40% 12.14%
εF 1.7E-1 4.7E-4 4.3E-1 5.1E-3 1.2E-1 7.3E-2

AE(b) %K 0.53% 4.62% 0.62% 4.65% 0.62% 4.65%
εF 5.7E-3 6.4E-4 8.4E-1 2.3E-1 1.7E-1 3.8E-2

AE(c) %K 0.28% 2.31% 0.32% 2.38% 0.32% 2.38%
εF 4.2E-3 4.9E-4 9.1E-1 2.1E-1 1.6E-1 4.1E-2

5.2. Memory savings. Table 5 shows the memory footprint between our pre-
computation Eq. (3.4) and the full GNH matrix, i.e., O(N2). Recall Theorem 3.1 that
the storage of our precomputation is O(nN), where n is the number of data points.

As Table 5 shows, our precomputation leads to huge memory reduction compared
with storing the full GNH matrix. This allows using the GOFMM method for networks
that have a large number of parameters. For example, the storage of the GNH matrix
for classifier (d) network requires more than 10 TB! But we were able to run GOFMM

with the compressed storage (at the price of spending O(dn) work for the evaluation
of every entry). The precomputation of Eq. (3.4) took merely about 2s and 7s,
respectively.

Table 5: Comparison of memory footprint (in single-precision) between our precom-
putation (Eq. (3.4)) and the full GNH matrix. For each network, we show the com-
pression rate and accuracy of H-matrix approximations for two levels of accuracies.
For both cases, the GNH matrices correspond to n = 10, 000 data points.

N Mours MGNH accuracy %K εF

classifier (c) 219k 191 MB 193 GB low 0.165% 3.1E−1
high 1.268% 4.2E−2

classifier (d) 1.6m 423 MB 10.8 TB low 0.012% 1.2E−1
high 0.177% 2.2E−2

5.3. Fast Monte Carlo sampling. We show the accuracy of our fast Monte
Carlo sampling scheme. The relative error measured in the Frobenius norm is between
the exact GNH matrix H and the approximation H̃ computed using Algorithm 3.1
with a prescribed number of random samples. For reference, we also run the same
sampling scheme but with a uniform probability distribution.

As Table 6 shows, when the number of random samples increases by 100×, the
accuracy improves by 10×, which confirms the standard convergence rate of Monte
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Table 6: Accuracy of our fast Monte Carlo (FMC) sampling scheme. The error
εK = ‖H − H̃‖F /‖H‖F , where H and H̃ are the exact GNH matrix and its approxi-
mation computed using K random samples in Algorithm 3.1, respectively. The exact
GNH matrices correspond to the AE (a) network with the entire MNIST dataset and
the class (a) network with the entire CIFAR-10 training dataset, respectively. The
reference uniform sampling scheme uses a uniform sampling probability instead of
Eq. (3.6) in Algorithm 3.1.

n scheme ε10 ε100 ε1,000 ε10,000

MNIST 60,000 uniform 3.6E−1 1.1E−1 3.6E−2 1.1E−2
FMC 9.7E−3 3.1E−3 9.6E−4 3.1E−4

CIFAR-10 50,000 uniform 9.7E−1 3.1E−1 9.8E−2 3.6E−2
FMC 6.1E−1 1.9E−1 6.1E−2 1.9E−2

Carlo in Theorem 3.2. Importantly, the error bound and the convergence rate do
not depend on the problem size n. Moreover, our sampling scheme outperforms the
uniform sampling by at most two orders of magnitude for the MNIST dataset. In
other words, the uniform sampling requires 100× more random samples to achieve
about the same accuracy as our sampling scheme.
H-matrix approximation with sampling. Table 7 shows the error of Algorithm 4.1

for a sequence of increasingly large number of random samples. Recall that Algo-
rithm 4.1 computes the H-matrix approximation H̃GOFMM for the (inexact) GNH ma-
trix, namely H̃ from Algorithm 3.1 . The error between the H-matrix approximation
H̃GOFMM and the exact GNH matrix, namely H is bounded as below (using the trian-
gular equality)

‖H − H̃GOFMM‖F = ‖H − H̃ + H̃ − H̃GOFMM‖F ≤ ‖H − H̃‖F + ‖H̃ − H̃GOFMM‖F ,

where the first term is the sampling error, and the second term is the H-matrix ap-
proximation error. As Table 6 shows, the former converges to zero and is independent
of the data size. Table 7 shows that the latter also converges as the sampling becomes
increasingly accurate, which justifies the overall approach.

6. Conclusions. We have presented a fast method to evaluate entries in the
GNH matrix of the MLP network, and our method is consisted of two parts: a pre-
computation algorithm and a fast Monte Carlo algorithm. While the precomputation
allows evaluating entries in the GNH matrix exactly with reduced storage, the random
sampling is based on the precomputation and further accelerates the evaluation. Let
N be the number of weights, n be the data size, and d be the constant layer size.
Our scheme requires O(n + d/ε2) work for any entry in the GNH matrix H, where
ε is the accuracy, whereas the worst case complexity to evaluate an entry exactly is
O(Nn) through the matrx-free matvec. For example, the evaluation of HN,N would
require O(Nn) work, while given our precomputation, it requires only O(n) work to
compute a diagonal entry exactly (Remark 3.4). One application of this fast diagonal
evaluation would be computing all the diagonals of H to precondition/accelerate the
training of neural networks [42]. In this paper, we focused on applying the GOFMM to
construct the H-matrix approximation for the GNH matrix. As a result, we obtain
an H-matrix and its factorization for solving linear systems and eigenvalue problems
with the GNH.
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Table 7: H-matrix approximation with sampling. The exact GNH matrices correspond
to the AE (a) network with the entire MNIST dataset and the class (a) network with
the entire CIFAR-10 training dataset, respectively. The compression rate and the
accuracy are shown for low- and high-accuracy settings, respectively.

(a) MNIST dataset (n = 60, 000 images)

10 samples 100 samples 1,000 samples 10,000 samples

accuracy %K εF %K εF %K εF %K εF

low 1.74% 2.8E−1 1.69% 1.3E−1 1.68% 1.4E−1 1.68% 6.1E−2
high 17.1% 2.2E−2 16.9% 9.5E−3 16.6% 2.7E−3 16.2% 9.6E−4

(b) CIFAR-10 training dataset (n = 50, 000 images)

10 samples 100 samples 1,000 samples 10,000 samples

accuracy %K εF %K εF %K εF %K εF

low 0.61% 9.7E−1 0.61% 5.3E−1 0.61% 4.1E−1 0.61% 4.3E−1
high 4.83% 9.7E−1 4.83% 3.6E−1 4.83% 1.9E−1 4.83% 7.3E−2

Two important directions for future research are (1) extending our method to
other types of networks such as convolutional networks, where weight matrices are
highly structured, (preliminary experiments on the VGG network show similar results
as those in Table 3) and (2) incorporating our method in the context of a learning
task, which would also require several algorithmic choices related to optimization,
such as initialization, damping and adding momentum.

Appendix A. McDiarmid’s Inequality.

Theorem A.1. Let X1, X2, . . . , Xn be independent random variables taking val-
ues in the set X . If a mapping F : Xn → R satisfies

sup
x1,...,xi,x′i,...,xn

|F (x1, . . . , xi, . . . , xn)− F (x1, . . . , x
′
i, . . . , xn)| ≤ ∆i, ∀i

where x1, . . . , xi, x
′
i, . . . , xn ∈ X , then for all ε > 0,

Pr(f − E[f ] ≥ ε) ≤ exp

(
−2ε2∑n
i=1 ∆2

i

)
.
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