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Abstract. We propose numerical schemes that enable the application of particle methods for
advection problems in general bounded domains. These schemes combine particle fields with Cartesian
tensor product splines and a fictitious domain approach. Their implementation only requires a fitted
mesh of the domain’s boundary, and not the domain itself, where an unfitted Cartesian grid is used.
We establish the stability and consistency of these schemes in W s,p-norms, s ∈ R, 1 < p ≤ ∞.
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1. Introduction. We begin by introducing a simple toy problem: let Ω ⊂ RD

be an open, bounded Lipschitz domain and let a : Ω̄ × [0, T ] → RD denote a given,
smooth velocity field. Moreover, let us for simplicity assume that a satisfies a · n = 0
on the boundary ∂Ω, such that we do not need to worry about boundary conditions.
We are then interested in solving the initial value problem for the transport equation,
i. e., given initial data u0 : Ω→ R, find u : Ω× [0, T )→ R such that:

∂u

∂t
+ (a · ∇)u = 0 in Ω× (0, T ),

u(x, 0) = u0(x) on Ω.
(1.1)

1.1. Grid-based Schemes. It is well-known that the discretization of this prob-
lem with conventional grid-based schemes such as finite differences, volumes, or
elements causes a lot of problems when a is large: for explicit time-stepping schemes
the CFL-condition forces one to use tiny time-steps. For the spatial discretization, on
the other hand, a common approach to guarantee stability is upwinding. But this
comes at the cost of introducing significant amounts of spurious, numerical viscosity:
in a numerical solution with a ≡ const an initial step function u0 quickly turns into a
“ridge” of ever decreasing slope. This is the source of many of the difficulties experi-
enced in numerical simulations of turbulent flows and computational fluid dynamics in
general. In short, while there certainly are more advanced schemes, it is fair to say
that it is very hard to construct grid-based methods that are accurate, stable, and
efficient when applied to advection problems.

1.2. Particle Methods. Particle methods like Smoothed Particle Hydrodynam-
ics (SPH) or Vortex Methods (VM) pursue a quite different approach to tackle this
problem. Here, the initial data u0 is approximated with a special quadrature rule
u0,h called particle field. It consists of weights Ui ∈ R and associated nodes xi ∈ Ω,
i = 1, . . . , N , such that for arbitrary smooth functions ϕ one has:

(1.2)

N∑
i=1

Uiϕ(xi) ≈
∫

Ω

u0ϕdx.

Equivalently, u0,h may be interpreted as a functional: u0,h =
∑N
i=1 Uiδxi , where δxi

denotes the Dirac δ-functional centered at xi. The reason for such an approximation
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Fig. 1.1. Approximation of the exponential function (blue) on the interval [0, 2]. On the left:
a highly accurate particle approximation. The particle weights, depicted by the arrows’ heights,
usually do not correlate well with the local function values. On the right: conventional smoothing of
the particle field yields a globally smooth approximation (red) of the target function’s non-smooth
zero-extension. This results in poor approximations near its discontinuities at the boundaries. The
stabilized L2-projection (brown) [17] yields an approximation of a smooth extension. It is not only
accurate on the entire interval but also extrapolates well after its ends.

is as follows. Given such discretized initial data u0,h ≈ u0, it can be shown that
the problem (1.1) is well-posed and that its unique solution is given by moving the
particles with the flow, i. e., by modifying xi over time according to:

(1.3)
dxi
dt

(t) = a
(
xi(t), t

)
i = 1, . . . , N.

The fact that this is the exact solution means that apart from the discretization of
the initial data, no further error is introduced by the spatial discretization over time.
Moreover, for a ∈ L∞

(
Wn,∞(Ω), [0, T ]

)
, n ∈ N, one can show that the advection

equation is stable in the sense that for all t ∈ [0, T ] the following holds:1

(1.4) ‖u(t)‖W s,p(Ω) . ‖u0‖W s,p(Ω), −n ≤ s ≤ n.

In this clarity these facts seem to first have been established by Raviart [21] and
Cottet [7] in the 1980s. In the context of particle methods the Dirac δ-functional
has already been mentioned in 1957 in Appendix II of Evans’ and Harlow’s work
on the Particle-in-Cell method; [15] particle methods themselves at least date back
to the early 1930s and Rosenhead’s vortex sheet computations. [22] In practice the
ODE system (1.3) is solved numerically using, e. g., a Runge–Kutta scheme and it
can be shown that there is no time-step constraint depending on the discretization
to guarantee the stability of the method. Simulations with billions of particles have
been carried out, [26] and practice has shown that particle schemes have excellent
conservation properties and are virtually free of numerical viscosity. In short, particle
methods are ideally suited for advection problems.

1.3. Particle Methods in Bounded Domains. A particle field uh can only
be interpreted as a special quadrature rule; it is important to understand that the Ui

1Here and throughout this text the notation a . b will mean that there exists a constant C > 0
independent of a, b, h, and σ such that a ≤ Cb. The variables h and σ refer to certain mesh sizes
and will be made precise later.
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are weights and not function values. In general, the Ui do not give a good picture of
the local values u(xi) of the approximated function, much like the quadrature weights
from ordinary quadrature rules do not give a good picture of the number 1. This can
for example clearly be seen on the left of Figure 1.1, where a highly accurate particle
approximation of the exponential function on the interval [0, 2] is depicted. In reality,
however, one is of course interested in function values and a particle approximation is
of little practical use. This work therefore focuses on the following two questions:

1. Given a function u, how does one construct a particle approximation uh ≈ u
and what error bounds does it fulfill? Here, h denotes some form of particle
spacing and will be defined precisely later. This problem is called particle
initialization.

2. Given a particle approximation uh ≈ u, how does one obtain a function
approximation uσ ≈ uh, and what error-bounds does it fulfill? Here, σ
denotes a smoothing length, which will also be defined precisely later. This
problem is called particle regularization.

While in the whole space case these questions are well understood, one of the
reasons why particle methods are so rarely used in engineering practice is the difficulty
to answer these questions in general bounded domains. In this work we will develop
and analyze schemes which aim two solve these problems. Our proposed solutions
will only require a mesh of the boundary ∂Ω, not of the domain Ω itself. Instead,
a simple, unfitted Cartesian mesh is used for Ω, which can be obtained easily by a
process known in computer graphics as “voxelization”.

The first problem can essentially be solved using quadrature rules. Especially
particle regularization, however, is not obvious in the presence of boundaries. The
most common approach to the regularization problem is to mollify the particle field
with a certain, radially symmetric blob-function ζσ: uσ := uh ? ζσ, where σ denotes the
radius of the blob’s core. [8, Section 2.3] These blobs are “unaware” of the boundaries
and yield poor approximations in their vicinity. In fact, this approach yields globally
smooth approximations of the zero-extension of u. Unless u itself and its derivatives
vanish on ∂Ω, however, this extension is not smooth and cannot be well approximated
with a smooth function. This is depicted on the right of Figure 1.1. In Particle-in-Cell
schemes one uses interpolation formulas to obtain a grid-based approximation of the
particle field. In the vicinity of boundaries these formulas need to be specifically
adapted to the particular geometry at hand and cannot be used for arbitrary domains.
Recently, however, Marichal, Chatelain, and Winckelmans [19] introduced a promising
interpolation scheme for general boundaries, but a rigorous error analysis seems
unavailable at this time. They also give a review of some other previous approaches
and come to the conclusion that “None of the schemes above truly succeeds in the
generation of accurate particle – or grid – values around boundaries of arbitrary
geometry.”

Recently, we proposed another approach to the regularization problem, which
is based on the L2-projection and allows a rigorous analysis. [17] First, C∞-smooth
finite-element spaces Vσ on simple uniform Cartesian grids are created, where σ denotes
the length of the cells. Then a fictitious domain approach is employed and one searches
the L2-projection of u onto Vσ. In other words one looks for uσ ∈ Vσ such that

(1.5)

∫
Ω

uσvσ dx =

∫
Ω

uvσ dx ∀vσ ∈ Vσ.

If one is only given a particle approximation uh ≈ u, the integral on the right is
replaced by

∑N
i=1 Uivσ(xi). The addition of a high-order stabilization term then
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ensures accuracy and stability of the method independent of the position of the
boundary ∂Ω relative to the Cartesian grid. It was established that the resulting uσ
then approximates a smooth extension of u and is optimal in a certain sense. The
result of this approach corresponds to the brown line on the right of Figure 1.1, and
this figure clearly highlights its accuracy at the boundaries and even beyond.

1.4. Novelty and Main Result. In this work we are going to build on and
extend the results from our previous work in several ways. The spaces Vσ from [17] have
the disadvantage that an explicit representation of their basis functions is unavailable.
As a first step we are therefore replacing these spaces with Cartesian tensor product
splines. Secondly, we extend our error analysis to general W s,p-spaces, with s ∈ R,
1 ≤ p ≤ ∞. It turns out that splines and particles seem to ideally complement each
other and it is also possible to solve the problem of initialization. The main result of this
work is summarized in Theorem 4.7. The obtained error bounds closely mirror those
given by Raviart [21] for the blob-based regularization in the whole-space case. At the
same time, our method works for general bounded domains and is faster: evaluation
of the obtained regularized field costs O(1) operations, compared to O(Nparticles) for
the blob-based approach.

2. Spaces of Functions and Functionals. In this section we will introduce
the function spaces and recall some important results that our analysis will make
use of. Throughout this text we will assume that the domain of interest Ω ⊂ RD is
an open, bounded set that satisfies the strong local Lipschitz condition; for short, a
Lipschitz domain. This assumption will in particular allow us to make use of the
Sobolev embeddings as well as the Stein extension theorem. The symbol © ⊂ RD will
be used as a placeholder for any bounded Lipschitz domain.

2.1. Sobolev Spaces of Integer Order. As usual, for n ∈ N, 1 ≤ p ≤ ∞, the
Sobolev spaces Wn,p(©) are given by:

Wn,p(©) :=
{
f :©→ R

∣∣ ∂αf ∈ Lp(©) ∀0 ≤ |α| ≤ n
}
,

‖ · ‖Wn,p(©) :=

( n∑
k=0

| · |p
Wk,p(©)

)1/p

,

| · |Wk,p(©) :=

(∑
|α|=k

‖∂α(·)‖pLp(©)

)1/p

,

(2.1)

where W 0,p(©) := Lp(©), α ∈ ND
0 denotes a multi-index, ∂α the weak derivative, and

the usual modifications for p =∞:

‖ · ‖Wn,∞(©) := max
k=0,...,n

| · |Wk,∞(©),

| · |Wk,∞(©) := max
|α|=k

‖∂α(·)‖L∞(©).
(2.2)

Whenever the index 1 ≤ p ≤ ∞ appears, we define q as its Hlder conjugate such
that 1

p + 1
q = 1. For n 6= 0 we define W−n,p(©) :=

(
Wn,q(©)

)′
to be the normed

dual of Wn,q(©), following the convention of, e. g., Brenner and Scott, [3] but opposed

to the convention W−n,p(©) =
(
Wn,q

0 (©)
)′

of Adams and Fournier. [1] We define the
norm ‖ · ‖W−n,p(©) as usual, denoting the duality paring by 〈·, ·〉:

(2.3) ‖ · ‖W−n,p(©) := sup
v∈Wn,q(©)

〈·, v〉
‖v‖Wn,q(©)

.
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2.2. Sobolev and Besov Spaces of Fractional Order. We will later introduce
spline spaces of approximation order n ∈ N. In terms of integer order Sobolev regularity,
these splines however only lie in Wn−1,p, which in the end would only allow us to
prove suboptimal results. We thus introduce intermediate spaces of fractional order,
in terms of which the splines possess the necessary amount of regularity.

We define intermediate spaces of fractional order using the “real” interpolation
method. [1, Chapter 7] In particular, for 0 < θ < 1, 1 ≤ p, p′ ≤ ∞ we define the

Besov spaces as Bθn,pp′ (©) :=
[
Lp(©),Wn,p(©)

]
θ,p′

. Here s := θn ∈ R+ measures

the smoothness and 1 ≤ p ≤ ∞ denotes the underlying Lp(©)-space. Varying the
secondary index p′ for fixed values of s and p only results in miniscule changes; bigger
values of p′ result in slightly larger spaces: Bs,pp′1

(©) ↪→ Bs,pp′2
(©), 1 ≤ p′1 ≤ p′2 ≤ ∞.

On the other hand, for every r > s and 1 ≤ p′ ≤ ∞ we have Br,pp′ (©) ↪→ Bs,p1 (©). For
p 6=∞ this definition of Besov spaces is equivalent to the one using appropriate moduli
of smoothness. (For 0 < p ≤ 1 this has been established by DeVore and Sharpley. [12,
Theorem 6.3] For 1 < p <∞ a proof can be found in Adams’ and Fournier’s book. [1,
Theorem 7.47]) For this reason local estimates can be summed up to obtain global
ones.

For non-integers s > 0 we define the Sobolev spaces of fractional order as
W s,p(©) := Bs,pp (©). For p 6=∞ these spaces coincide with the Sobolev–Slobodeckij
spaces, [12, Theorem 6.7] but unless p = 2 they differ from the fractional order Sobolev
spaces obtained by the “complex” interpolation method as defined by Adams and
Fournier. For integer values s = k the Besov spaces Bk,pp (©) do not coincide with

W k,p(©), except for the pathological case p = 2. [1, Section 7.33] However, one always
has Bs,p1 (©) ↪→ W s,p(©) ↪→ Bs,p∞ (©). For this reason, we will often first establish
our results for all integer values s = k and then conclude by interpolation to the
intermediate spaces.

The intermediate spaces with negative index are defined via interpolation, anal-
ogously to the positive case: W−θn,p(©) :=

[(
Lq(©)

)′
,
(
Wn,q(©)

)′]
θ,p

. For p 6= 1,

i. e., q 6=∞, it can be shown that they in fact are the dual spaces of the corresponding
intermediate spaces with positive index: W−s,p(©) =

(
W s,q(©)

)′
. [2, Theorem 3.7.1]

For this reason, we will sometimes exclude the case p = 1. In summary, the spaces
W s,p(©) are defined for all s ∈ R, 1 ≤ p ≤ ∞.

2.3. Sobolev Embeddings and Stein Extension. Before moving on to the
spline spaces, we recall the Stein extension theorem [25, Chapter VI, Theorem 5]: there
exists a linear extension operator E that fulfills ‖Eu‖W s,p(RD) . ‖u‖W s,p(©) for all
u ∈W s,p(©), s ≥ 0, 1 ≤ p ≤ ∞. We also will use the following variant of the Sobolev
embedding theorem: let s > D

p or s = D if p = 1. Then W s,p(©) ↪→ C(©) and

‖u‖L∞(©) . ‖u‖W s,p(©). Taking into account the secondary index of Besov spaces,

for p 6=∞ one can refine the embedding to B
D
p ,p

1 (©) ↪→ C(©). [1, Theorem 4.12 and
Theorem 7.34]

2.4. Spline Spaces. The spline spaces will be defined on uniform Cartesian
grids, which we introduce first, after which we define the spline spaces and recall some
of their properties from approximation theory.

Definition 2.1 (Cartesian Grid and Fictitious Domains). Let σ > 0 be given.
With each i ∈ ZD we associate a Cartesian grid-point xi := (i1σ, i2σ, . . . , iDσ)> and

an element Qi :=
∏D
d=1

(
idσ, (id + 1)σ

)
. We define the fictitious domain Ωσ as the

union of all elements that intersect the physical domain Ω. Furthermore we define cut
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Ω
Ωσ

Fig. 2.1. An illustration of the fictitious domain approach. The domain Ω (blue), in this
case a circle, may intersect the infinite Cartesian grid in an arbitrary manner. The fictitious
domain Ωσ (red) is defined as the union of all intersected cells. The domain Ω◦

σ in this case consists
of the four elements entirely lying in Ω. The set of faces Fσ is highlighted using bold lines. It can be
thought of forming a bridge between Ω◦

σ and the remaining elements in ΩΓ
σ.

and uncut elements ΩΓ
σ and Ω◦σ, respectively:

Ωσ := int
⋃{

closQi

∣∣ measD(Qi ∩ Ω) > 0
}
,

ΩΓ
σ := int

⋃{
closQi

∣∣Qi ∈ Ωσ ∧Qi 6⊂ Ω
}
,

Ω◦σ := int
⋃{

closQi

∣∣Qi ∈ Ωσ ∧Qi ⊂ Ω
}
.

(2.4)

The stabilization will make use of the following set of faces near the boundary:

(2.5) Fσ := {F is a face of some element Qi ∈ ΩΓ
σ and F /∈ ∂Ωσ}.

Here and in what follows we write Qi ∈ Ωσ, Qi ∈ ΩΓ
σ, and Qi ∈ Ω◦σ to refer to the

elements these domains are composed of. An illustration of these definitions is given
in Figure 2.1. We will make use of the following somewhat technical assumption: for
every Qi ∈ ΩΓ

σ there exists a finite sequence (Fi,1, Fi,2, . . . , Fi,K) ⊂ Fσ such that the
following conditions are fulfilled: every two subsequent Fi,k and Fi,k+1 are faces of a
single element Qj, the number K is bounded independent of σ and i, and the last face
Fi,K belongs to an uncut element Qi ∈ Ω◦σ. This assumption means that uncut cells
can always be reached from cells in ΩΓ

σ by crossing a bounded number of faces. For
sufficiently small σ this condition is often fulfilled with K = 1; if necessary it can be
enforced by moving additional elements from Ω◦σ to ΩΓ

σ.

Definition 2.2 (Spline Spaces). Given n ∈ N and 1 ≤ p ≤ ∞, we define the
tensor product spline space on the Cartesian grid, equipped with the Lp-norm:

V n,pσ (RD) :=
{
f : RD → R

∣∣ f |Qi
∈ Qn−1, i ∈ ZD

}
∩ Cn−2

0 (RD),

‖ · ‖V n,pσ (RD) := ‖ · ‖Lp(RD),
(2.6)

where the symbol Qn−1 refers to the space of polynomials of coordinate-wise degree
n−1 or less. For© ⊂ RD, we define V n,pσ (©) by restriction from RD to©. In analogy
to the Sobolev spaces, the normed dual of V n,qσ (©) will be denoted by V −n,pσ (©), where
q denotes the Hlder conjugate to p. Denoting as usual the duality paring by 〈·, ·〉, its
norm is thus given by:

(2.7) ‖ · ‖V −n,pσ (©) := sup
vσ∈V n,qσ (©)

〈·, vσ〉
‖vσ‖V n,qσ (©)

= sup
vσ∈V n,qσ (©)

〈·, vσ〉
‖vσ‖Lq(©)

.
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For a fixed bounded domain © and fixed values of σ > 0 and n ∈ N, these spaces
of course all have the same topology and are in this sense independent of p. In the
next sections this notation will prove to be useful, in the other cases the index p will be
omitted. It is well-known that for n ∈ N, 1 ≤ p ≤ ∞, one has V nσ (©) ⊂Wn−1,p(©).
For p 6=∞ this can be improved to V nσ (©) ⊂ Bŝ,p∞ (©), ŝ := n− 1 + 1

p = n− 1
q , and

furthermore V nσ (©) ⊂ W s,p(©) for all 0 ≤ s < ŝ. [11, 12] In particular, the spaces
V nσ (©) are not, but “almost” are embedded in Wn,1(©).

2.5. Some Properties of Splines. We now introduce some important basic
properties of the spline spaces, of which our analysis will make frequent use. For proofs
of these result, we refer to Schumakers book. [23] The B-splines form a particularly
useful basis for the spaces V nσ (©).

Definition 2.3 (B-Splines). The cardinal B-splines bn : R → R, n ∈ N, are
defined recursively via:

(2.8) b1(x) :=

{
1 x ∈ [0, 1),

0 else,
bn(x) :=

(
bn−1 ? b1

)
(x) =

∫ 1

0

bn−1(x− y) dy.

Reusing the symbol bn, the corresponding multivariate B-splines are defined coordinate-
wise as bn(x) :=

∏D
d=1 b

n(xd). For a given σ > 0, with each Cartesian grid point xi,
i ∈ ZD, we associate the shifted and scaled B-spline bnσ,i(x) := bn(x−xi

σ ). For a given

domain © ⊂ RD the corresponding index set is defined as:

(2.9) Λnσ(©) :=
{
i ∈ ZD

∣∣measD

(
supp bnσ,i ∩©

)
> 0
}
.

This basis has many desirable properties, among which are the smallest possible
support of its members supp bnσ,i =

∏D
d=1[idσ, (id + n)σ], their positivity 0 ≤ bnσ,λ ≤ 1,

the fact that they form a partition of unity
∑

i∈ZD bnσ,i ≡ 1, and most importantly the
norm equivalence that follows.

In what follows, the symbol � will refer to an arbitrary finite collection of entire
cubes from the Cartesian grid, e. g., the domains Ωσ, Ω◦σ, or ΩΓ

σ. On such domains one
can show some very useful properties, of which we will make frequent use. For proofs
of these results and further references we refer the reader to Schumaker’s book. [23]

Lemma 2.4 (Stability of the B-Spline Basis). Let � ⊂ RD be a finite collection
of entire, uncut cubes Qi from the Cartesian grid of size σ > 0. Then every function
vσ ∈ V nσ (�), n ∈ N, can be written as

(2.10) uσ =
∑

λ∈Λnσ(�)

uσ,λb
n
σ,λ,

with a uniquely determined coefficient vector uσ =
(
uσ,λ

)
λ∈Λnσ(�)

∈ `p(Λnσ(�)) =

RdimV n,pσ (�). The Lp- and `p-norms of respectively uσ and uσ are equivalent for
1 ≤ p ≤ ∞:

(2.11) σ
D
p ‖uσ‖`p . ‖uσ‖Lp(�) . σ

D
p ‖uσ‖`p .

Lemma 2.5 (Inverse Estimates). Let uσ ∈ V nσ (�), n ∈ N. On every element
Q ∈ � and for all 1 ≤ p1, p2 ≤ ∞, 0 ≤ r ≤ s, the following local inequality holds:

(2.12) ‖uσ‖W s,p1 (Q) . σ
D
p1
− D
p2 σr−s‖uσ‖W r,p2 (Q).
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Globally one has for all 1 ≤ p1, p2 ≤ ∞, 0 ≤ s < n− 1 + min{ 1
p1
, 1
p2
} or s = n− 1:

(2.13) ‖uσ‖W s,p1 (�) . σ
min{0, D

p1
− D
p2
}‖uσ‖W s,p2 (�),

and for all 1 ≤ p ≤ ∞, 0 ≤ r ≤ s < n− 1 + 1
p or s = n− 1:

(2.14) ‖uσ‖W s,p(�) . σ
r−s‖uσ‖W r,p(�).

Lemma 2.6 (Quasi-interpolator). For every n ∈ N there exists a projection
operator Pnσ : L1(�) → V nσ (�) called the quasi-interpolator. For all u ∈ W k,p(�),
k ∈ N0, 0 ≤ k ≤ n this operator fulfills:

‖u− Pnσ u‖W l,p(Q) . σ
k−l|u|Wk,p(Q̂) l ∈ {0, . . . , k}, Q ∈ �,(2.15)

|Pnσ u|W l,p(Q) . σ
k−l|u|Wk,p(Q̂) l ∈ {k, . . . , n}, Q ∈ �,(2.16)

where Q̂ = � ∩
⋃

λ∈Λnσ(Q) supp bnλ,σ is the union of the supports of all the B-splines

that do not vanish on Q. Moreover, for arbitrary 0 ≤ r < s ≤ n, 1 ≤ p′1, p
′
2 ≤ ∞ it

holds that:

(2.17) ‖u− Pnσ u‖Br,p
p′1

(Q) . σ
s−r‖u‖Bs,p

p′2
(Q̂).

Remark 2.7. This result can be improved in the sense that the right hand side of
the above inequality (2.15) only needs to involve “pure” derivatives in the coordinate
directions. [10] We will not be able to use this fact, however, because our analysis will
rely on the Stein extension theorem, which is formulated for the usual Sobolev spaces
involving mixed derivatives.

On domains � the L2(�)-projection is bounded as an operator from Lp(�) →
V n,pσ (�), 1 ≤ p ≤ ∞. [13, 9] From this fact and the stability of the B-spline basis it is
an easy task to derive the following lemma.

Lemma 2.8. Every functional f ∈ V −n,pσ (�), 1 ≤ p ≤ ∞, has a unique represen-
tative fσ ∈ V n,pσ (�) such that:

(2.18) 〈f, vσ〉 =

∫
�
fσvσ dx ∀vσ ∈ V n,qσ (�).

The norms of f and fσ are equivalent:

(2.19) ‖fσ‖Lp(�) . ‖f‖V −n,pσ (�) ≤ ‖fσ‖Lp(�).

3. Particle Initialization. In this section we discuss how to construct particle
approximations of spline functions ũh ∈ V n,ph (Ω). A particle approximation of general
functions u ∈ Lp(Ω) can then be obtained by setting ũh to a suitable approximation
of u.

3.1. Particle Approximations of Splines. As before, let Ω ⊂ RD denote an
open, bounded Lipschitz domain and let ũh ∈ V nh (Ω), h > 0, n > D, denote the
spline we want to approximate by a particle field. The condition n > D ensures
that V nh (Ω) ⊂ WD,p(Ω) for 1 ≤ p ≤ ∞, which will simplify the analysis. It is likely
that similar results can be obtained for smaller choices of n at the cost of a more
technical analysis, but we see no clear benefit from this. For each λ ∈ Λnh(Ω) we chose
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quadrature nodes xλ,i ∈ Ω∩ supp bnh,λ and associated weights wi,λ ∈ R, i = 1, . . . , Nλ,
such that:

Nλ∑
i=1

|wi,λ| ≤ CStab(nh)D,(3.1)

Nλ∑
i=1

wi,λb
n
h,λ(xλ,i)b

n
h,µ(xλ,i) =

∫
Ω

bnh,λb
n
h,µ dx ∀µ ∈ Λnh(Ω),(3.2)

where CStab ≥ 1 is a user-defined stability constraint.
All that is required to construct such quadrature rules is a mesh of the bound-

ary. For B-splines bnh,λ whose support entirely lies in Ω one can choose standard
Gauß–Legendre quadrature rules on each cell Q ∈ supp bnh,λ ⊂ Ω. For B-splines
with cut support the main difficulty is to compute the integrals on the right for
each µ with supp bnh,λ ∩ supp bnh,µ ∩ Ω 6= ∅. This can be done using the bound-

ary mesh: note that the product bnh,λb
n
h,µ is again of the form

∏D
d=1 Pd(xd), where

the Pd are certain one-dimensional, piecewise polynomials with global smoothness
Wn−1,∞. The ordinary, one-dimensional anti-derivative P1(x) :=

∫ x
−∞ P1(x′) dx′ of –

for example – P1 is known explicitly. We define the vector-valued function F(x) :=(
P1(x1)

∏D
d=2 Pd(xd), 0, 0, . . . , 0

)>
, and note that ∇·F =

∏D
d=1 Pd(xd) = bnh,λb

n
h,µ.

The divergence theorem thus allows us to convert the volume integral to a boundary
integral:

(3.3)

∫
Ω

bnh,λb
n
h,µ dx =

∫
Ω

∇ · Fdx =

∫
∂Ω

P1(x1)(e1 · n)

D∏
d=2

Pd(xd) dS(x).

On each patch of the boundary mesh the integrand on the right is Wn−1,∞-smooth.
The integral can thus be efficiently approximated with standard quadrature rules on
the boundary mesh. This is similar to the approach of Duczek and Gabbert, [14]
who successfully applied it to less smooth shape functions. Once the integrals have
been computed, quadrature rules can for example be constructed using the following
procedure:

1. Randomly scatter (additional) points xλ,i over Ω ∩ supp bnh,λ.
2. Solve the following linear programming problem for the unknown weights
wλ,i:

min

Nλ∑
i=1

wλ,i

Nλ∑
i=1

wi,λb
n
h,λ(xλ,i)b

n
h,µ(xλ,i) =

∫
Ω

bnh,λb
n
h,µ dx ∀µ ∈ Λmh (Ω),

wλ,i ≥ 0

(3.4)

3. If no solution exists that fulfils the stability criterion, go to step 1 and repeat.
Given such quadrature nodes and weights, let us denote by (cλ)λ∈Λnh(Ω) the B-spline
coefficients of ũh such that ũh =

∑
λ∈Λnh(Ω) cλb

n
h,λ. We then define the particle

approximation uh as follows:

(3.5) uh :=
∑

λ∈Λnh(Ω)

Nλ∑
i=1

wλ,icλb
n
h,λ(xλ,i)δxλ,i

.
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3.2. Error Bounds. We will identify the function ũh ∈ V n,ph (Ω) with the func-
tional

(3.6) 〈ũh, ϕ〉 :=

∫
Ω

ũhϕdx ∀ϕ ∈ Lq(Ω).

The key result of this section is the following theorem.

Theorem 3.1. The particle approximation uh from (3.5) fulfills for all 1 < p ≤ ∞,
s > D

q or s = D if q = 1:

(3.7) ‖uh‖W−s,p(Ω) . h
D
q ‖ũh‖Lp(Ωh).

Moreover, for all D
q < s ≤ n or s = D if q = 1 the following error bound holds:

(3.8) ‖ũh − uh‖W−s,p(Ω) . h
s‖ũh‖Lp(Ωh).

Proof. For arbitrary ϕ ∈W s,q(Ω) ↪→ C(Ω) it holds by Hölder’s inequality that:

(3.9)
∣∣〈uh, ϕ〉∣∣ =

∣∣∣∣ ∑
λ∈Λnh(Ω)

Nλ∑
i=1

wλ,icλb
n
h,λ(xλ,i)ϕ(xλ,i)

∣∣∣∣
≤

∑
λ∈Λmh (Ω)

‖ũh‖L∞(supp bnh,λ)‖ϕ‖L∞(supp bnh,λ∩Ω)

Nλ∑
i=1

|wλ,i|︸ ︷︷ ︸
.hD

.

Again applying Hölder’s inequality, an inverse inequality for ũh, and the Sobolev
embedding on ϕ this yields with the usual modifications for p =∞:

(3.10)
∣∣〈uh, ϕ〉∣∣ . hD

q

( ∑
λ∈Λnh(Ω)

‖ũh‖pLp(supp bnh,λ)

) 1
p
( ∑

λ∈Λnh(Ω)

‖ϕ‖qW s,q(supp bnh,λ∩Ω)

) 1
q

. h
D
q ‖ũh‖Lp(Ωh)‖ϕ‖W s,q(Ω).

This proves (3.7). For the error bound first note that:

(3.11) 〈ũh − uh, ϕ〉 = 〈ũh − uh, PnhEϕ〉︸ ︷︷ ︸
=0

+〈ũh, ϕ− PnhEϕ〉 − 〈uh, ϕ− PnhEϕ〉,

where for the second term we have:

(3.12) 〈ũh, ϕ−PnhEϕ〉 ≤ ‖ũh‖Lp(Ωh)‖Eϕ−PnhEϕ‖Lq(Ωh) . h
s‖ũh‖Lp(Ωh)‖ϕ‖W s,q(Ω).

For the last term we obtain analogous to the proof of (3.7) that

(3.13) 〈uh, ϕ− PnhEϕ〉 . h
D
q ‖ũh‖Lp(Ωh)

( ∑
λ∈Λnh(Ω)

‖Eϕ− PnhEϕ‖
q
L∞(supp bnh,λ)

) 1
q

.

We now apply the Sobolev embedding for the Besov space B
D
q ,q

1 (Ωh) ↪→ C(Ωh) and
obtain using Lemma 2.6:
(3.14)

‖Eϕ−PnhEϕ‖L∞(supp bnh,λ) . ‖Eϕ−PnhEϕ‖
B

D
q
,q

1 (supp bnh,λ)
. hs−

D
q ‖Eϕ‖

W s,q( ̂supp bnh,λ)
,
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where ̂supp bnh,λ =
⋃

µ∈Λnh(supp bnh,λ) supp bnh,µ. Inequality (3.8) now again follows by a

finite overlap argument.

One of the key features of this result is the fact that these estimates only depend
on Lp-norms of the spline ũh, similar to the results of Cohen and Perthame. [6]
Previous estimates have mostly been of the form: ‖u− uh‖W−s,p(Ω) . h

s‖u‖W s,p(Ω),
[8, Theorem A.1.1] suggesting that there might be room for improvement to h2s. This
is not the case, and we believe that this fact is not well-known in the particle method
communities. We therefore recall a theorem of Bakhvalov, [24, Chapter 4, 3] which
indicates that these estimates are in fact optimal in terms of convergence order.

Theorem 3.2 (Bakhvalov). Let Ω ⊂ RD be a bounded Lipschitz domain, n ∈ N,

n > D
2 , and let u ≡ 1. Let uh,k =

∑Nk
i=1 Ui,kδxi,k , k = 1, 2, . . ., denote a sequence

of particle approximations of u such that Nk → ∞ as k → ∞ and let us define the
average particle spacing as h := h(k) := D

√
measD(Ω)/Nk. Then for every such

sequence one has:

(3.15) ‖u− uh,k‖W−n,2(Ω) & h
n k →∞,

with the hidden constant independent of k.

Noting that the error bounds only depend on the Lp(Ωh)-norm of the function
ũh, this constraint can to some extent be bypassed by choosing n very large. This
would later allow one to chose the smoothing length σ essentially proportional to h.
On the other hand, the hidden constants in the .-notation get larger as n grows.
Furthermore, this approach would require the use of equally smooth trial spaces. The
spline spaces that we are going to employ for regularization in the next section only
have finite smoothness, however.

4. Particle Regularization. Let n ∈ N and 1 ≤ p ≤ ∞. Our approach will
make use of the following operators:

A : V n,pσ (Ωσ)→ V −n,pσ (Ωσ), 〈Auσ, vσ〉 :=

∫
Ω

uσvσ dx,

(4.1)

J : V n,pσ (Ωσ)→ V −n,pσ (Ωσ), 〈Juσ, vσ〉 := σ2n−1
∑
F∈Fσ

∫
F

s
∂n−1uσ

∂nn−1
F

{ s
∂n−1vσ

∂nn−1
F

{
dS,

(4.2)

and Aε := A+ εJ , where ε > 0 denotes a user-defined stabilization parameter. The
symbol J·K refers to the jump operator; it is the difference of the one-sided traces on
a face F . nF stands for the face’s normal vector, which in our case always coincides
with some Cartesian basis vector: nF ∈ {e1, e2, . . . , eD}. The stabilization operator
J will be called the ghost penalty. [4] The operator A effectively restricts a function
from Ωσ to Ω. We will establish that its stabilized version Aε is invertible, yielding
the approximate extension operator A−1

ε .

4.1. Continuity and Consistency. For ε = 0 the approximate extension oper-
ator A−1

0 is the L2(Ω)-projection onto V nσ (Ωσ). For ε > 0, however, A−1
ε ceases to be

a projection, but the difference to A−1
0 is small; a fact we will call consistency. The

main difference to previous analyses of the ghost penalty operator is that we consider
results in Lp-spaces for p 6= 2.
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Lemma 4.1. The ghost-penalty operator J is continuous. In other words, for all
uσ ∈ V n,pσ (Ωσ), n ∈ N, 1 ≤ p ≤ ∞, it holds that:

(4.3) ‖Juσ‖V −n,p(Ωσ) . ‖uσ‖Lp(Ωσ).

Moreover, for any u ∈W s,p(Ωσ), 0 ≤ s ≤ n, the quasi-interpolant Pnσ u of u fulfils:

(4.4) ‖JPnσ u‖V −n,p(Ωσ) . σ
s‖u‖W s,p(Ωσ).

Proof. For arbitrary uσ ∈ V n,pσ (Ωσ) and vσ ∈ V n,qσ (Ωσ) we obtain by repeatedly
using Hlder’s and the triangular inequality:

(4.5)
∣∣〈Juσ, vσ〉∣∣ = σ2n−1

∣∣∣∣∣ ∑
F∈Fσ

∫
F

s
∂n−1uσ

∂nn−1
F

{ s
∂n−1vσ

∂nn−1
F

{
dS

∣∣∣∣∣
≤ σ2n−1

( ∑
F∈Fσ

∥∥∥∥s∂n−1uσ

∂nn−1
F

{∥∥∥∥p
Lp(F )

) 1
p
( ∑
F∈Fσ

∥∥∥∥s∂n−1vσ

∂nn−1
F

{∥∥∥∥q
Lq(F )

) 1
q

with the usual modifications for p = ∞ or q = ∞. For arbitrary w ∈ W 1,p(Q),
1 ≤ p ≤ ∞, Q ∈ Ωσ an arbitrary cube from the Cartesian grid, we have the trace

estimate ‖w‖Lp(∂Q) . ‖w‖
1
q

Lp(Q)‖w‖
1
p

W 1,p(Q). [3, Lemma (1.6.6)] Together with an

inverse estimate this leads to:

∥∥∥∥s∂n−1uσ

∂nn−1
F

{∥∥∥∥
Lp(F )

. ‖uσ‖
1
q

Wn−1,p(Q(F ))‖uσ‖
1
p

Wn,p(Q(F ))

(2.12)

. σ−
1
p ‖uσ‖Wn−1,p(Q(F )),

(4.6)

∥∥∥∥s∂n−1vσ

∂nn−1
F

{∥∥∥∥
Lq(F )

. ‖vσ‖
1
p

Wn−1,q(Q(F ))‖vσ‖
1
q

Wn,q(Q(F ))

(2.12)

. σ−
1
q ‖uσ‖Wn−1,q(Q(F )).

(4.7)

The Wn,p- and Wn,q-norms in the intermediate step are to be interpreted in the
“broken”, element-wise sense and Q(F ) denotes the two elements that F is a face
of. Thus, using a finite-overlap argument, one obtains together with another appli-
cation of the inverse estimates:

∣∣〈Juσ, vσ〉∣∣ . σ2n−2‖uσ‖Wn−1,p(Ωσ)‖vσ‖Wn−1,q(Ωσ) .
‖uσ‖Lp(Ωσ)‖vσ‖Lq(Ωσ).

Let us now consider (4.4). It suffices to establish this inequality for all integer
values s ∈ {0, 1, . . . , n}; for the intermediate spaces the result then automatically
follows by interpolation. For integers s ∈ {0, . . . , n − 1} estimate (4.4) follows from∣∣〈Juσ, vσ〉∣∣ . σn−1‖uσ‖Wn−1,p(Ωσ)‖vσ‖Lq(Ωσ) by letting uσ = Pnσ u and:

(4.8) σn−1‖uσ‖Wn−1,p(Ωσ)

(2.14)

. σs‖uσ‖W s,p(Ωσ)

(2.16)

. σs‖u‖W s,p(Ωσ).

In order to show (4.4) for s = n, we need to extend J ’s domain of definition. For this,
note that the derivatives of order n − 1 of functions u ∈ Wn,p(Ωσ) are continuous
across hyper-surfaces and thus Ju = 0 for such u. In other words, J is defined as an
operator on V n,pσ (Ωσ) +Wn,p(Ωσ) and Wn,p(Ωσ) ⊂ ker J . For û := Pnσ u− u equation
(4.6) then becomes:

(4.9)

∥∥∥∥s∂n−1û

∂nn−1
F

{∥∥∥∥
Lp(F )

. ‖û‖
1
q

Wn−1,p(Q(F ))‖û‖
1
p

Wn,p(Q(F )),
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where the Wn,p(Q(F ))-norm is again to be interpreted element-wise. Now we can
make use of the approximation properties of Pnσ :

‖û‖Wn−1,p(Q(F )) = ‖u− Pnσ u‖Wn−1,p(Q(F ))

(2.15)

. σ‖u‖Wn,p(Q̂(F )),(4.10)

‖û‖Wn,p(Q(F )) = ‖u− Pnσ u‖Wn−1,p(Q(F ))

(2.15)

. ‖u‖Wn,p(Q̂(F )).(4.11)

Note that the norms on the right do not need to be interpreted element-wise, because
we have assumed u ∈Wn,p(Ωσ). Thus

(4.12)

∥∥∥∥s∂n−1û

∂nn−1
F

{∥∥∥∥
Lp(F )

. σ
1
q ‖u‖Wn,p(Q̂(F )).

Again invoking a finite-overlap argument, one thus obtains:

(4.13)
∣∣〈Jû, vσ〉∣∣ . σn‖u‖Wn,p(Ωσ)‖vσ‖Lq(Ωσ).

The claim now follows by recalling that JPnσ u = J(Pnσ u− u) = Jû.

4.2. Stability. The following core result regarding the stability properties of the
ghost penalty operator in L2 has already been established at several places in the
literature, for example by Lehrenfeld [18, Lemma 7] or Massing et al. [20, Lemma 5.1]:

Lemma 4.2. Let σ > 0 be sufficiently small and ε > 0 big enough. One then has
for all uσ ∈ V nσ (Ωσ):

(4.14) ‖uσ‖2L2(Ωσ) . ‖uσ‖
2
L2(Ω◦σ) + ε〈Juσ, uσ〉.

From this one easily obtains that A−1
ε exists and is bounded as an operator from

V −n,2σ (Ωσ)→ V n,2σ (Ωσ). We will now establish that A−1
ε also is bounded as an operator

from V −n,pσ (Ωσ)→ V n,pσ (Ωσ), 1 ≤ p ≤ ∞.

Lemma 4.3. For σ > 0 small enough and ε > 0 sufficiently large, the approximate
extension operator A−1

ε is bounded. In other words, for all f ∈ V −n,pσ (Ωσ), 1 ≤ p ≤ ∞
it holds that:

(4.15) ‖A−1
ε f‖Lp(Ωσ) . ‖f‖V −n,pσ (Ωσ).

Proof. Our proof is similar to those of Crouzeix and Thomée [9] as well as Douglas,
Dupont, and Wahlbin. [13] Because of Lemma 2.8, it suffices to consider functionals
of the form

∫
Ωσ
fvσ dx, f ∈ Lp(Ωσ). We fix an arbitrary j ∈ ZD such that Qj ∈ Ωσ.

We set fj = f on Qj and fj ≡ 0 else and define uσ,j := A−1
ε fj. We will show that

uσ,j decays at an exponential rate away from Qj. To this end we define the domains
Dj,0 := ∅, Dj,1 := Qj, and Dj,k :=

{
Qi ∈ Ωσ

∣∣ |i − j| < k
}

for all other integers k,
where | · | denotes the max-norm over ZD. Furthermore, we set:

(4.16) F j,k
σ :=

{
F ∈ Fσ

∣∣ Both elements that F is a face of are in Ωσ \Dj,k

}
.

First we note that because fj ≡ 0 outside of Qj, one has by the definition of uσ,j that
〈Aεuσ,j, vσ〉 = 〈fj, vσ〉 = 0 for all vσ ∈ V nσ (Ωσ) that vanish on Qj. We now choose
such a special vσ. Let k ≥ n and set the B-spline coefficients of vσ such that vσ = uσ,j
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on Ωσ \ Dj,k and set the remaining coefficients to zero. It follows that vσ ≡ 0 on
Dj,k−(n−1). Because 〈Aεuσ,j, vσ〉 = 0 one easily obtains that:

(4.17)

∫
Ω\Dj,k

u2
σ,j dx + εσ2n−1

∑
F∈Fj,k

σ

∫
F

s
∂n−1uσ,j

∂nn−1
F

{2

dS =

−

∫
Ω∩Dj,k

uσ,jvσ dx + εσ2n−1
∑

F∈Fσ\Fj,k
σ

∫
F

s
∂n−1uσ,j

∂nn−1
F

{ s
∂n−1vσ

∂nn−1
F

{
dS

 .

Because of Lemma 4.2 the left side of this equality can be bounded from below by
‖uσ,j‖2L2(Ωσ\Dj,k). Because vσ ≡ 0 on Dj,k−(n−1), the integral on the right can be upper

bounded by ‖uσ,j‖L2(Dj,k\Dj,k−(n−1))‖vσ‖L2(Dj,k\Dj,k−(n−1)). The same bound follows
for the sum, using the arguments in the proof of Lemma 4.1. In fact, for most choices
of j and k, this sum is empty. But clearly, by the stability of the B-spline basis, we
have ‖vσ‖L2(Dj,k\Dj,k−(n−1)) . ‖uσ,j‖L2(Dj,k\Dj,k−(n−1)). Thus, in total we obtain the
existence of a constant C > 0 such that:

(4.18) ‖uσ,j‖2L2(Ωσ\Dj,k) ≤ C‖uσ,j‖
2
L2(Dj,k\Dj,k−(n−1))

= C
(
‖uσ,j‖2L2(Ωσ\Dj,k−(n−1))

− ‖uσ,j‖2L2(Ωσ\Dj,k)

)
,

and therefore:

(4.19) ‖uσ,j‖2L2(Ωσ\Dj,k) ≤
C

1 + C
‖uσ,j‖2L2(Ωσ\Dj,k−(n−1))

.

For large values of k this argument can now be repeated on the right hand side,
leading to the existence of another constant 0 < γ < 1 such that ‖uσ,j‖2L2(Ωσ\Dj,k) .

γ2k‖uσ,j‖2L2(Ωσ). This is the desired exponential decay. Using Lemma 4.2, we get
together with the inverse estimates:

(4.20) ‖uσ,j‖2L2(Ωσ)

(4.14)

. 〈Aεuσ,j, uσ,j〉 =

∫
Qj

fuσ,j dx ≤ ‖f‖Lp(Qj)‖uσ,j‖Lq(Qj)

(2.12)

. σ
D
2 −

D
p ‖f‖Lp(Qj)‖uσ,j‖L2(Qj) ≤ σ

D
2 −

D
p ‖f‖Lp(Qj)‖uσ,j‖L2(Ωσ),

and thus ‖uσ,j‖L2(Ωσ) . σ
D
2 −

D
p ‖f‖Lp(Qj). For every i ∈ ZD, Qi ∈ Ωσ this leads to:

(4.21)

‖uσ,j‖Lp(Qi)

(2.12)

. σ
D
p−

D
2 ‖uσ,j‖L2(Qi) . σ

D
p−

D
2 γ|i−j|‖uσ,j‖L2(Ωσ) . γ

|i−j|‖f‖Lp(Qj).

Let consider the case p =∞. Noting that uσ := A−1
ε f =

∑
j uσ,j we obtain by the

triangular inequality for arbitrary i:

(4.22) ‖uσ‖L∞(Qi) . ‖f‖L∞(Ωσ)

∑
j

γ|i−j|.

Because of the grid’s uniformity and the exponential decay, the latter sum remains
bounded for any i, and therefore ‖uσ‖L∞(Ωσ) . ‖f‖L∞(Ωσ). For p = 1 we obtain
similarly:
(4.23)

‖uσ‖L1(Ωσ) =
∑
i

‖uσ‖L1(Qi) .
∑
i,j

γ|i−j|‖f‖L1(Qj)

Hölder
≤ ‖f‖L1(Ωσ) max

j

∑
i

γ|i−j|
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and thus ‖uσ‖L1(Ωσ) . ‖f‖L1(Ωσ). For 1 < p < ∞ the result now follows by the
Riesz–Thorin interpolation theorem.

4.3. Condition Numbers. In order to implement the approximate extension
operator in practice, it is important that the condition number of the corresponding
system matrix Aε remains bounded. Let us abbreviate N := dimV n,pσ (Ωσ). We may
assign a numbering 1, . . . , N to the index set Λnσ(Ωσ) and refer to the B-splines bnσ,λ
as bi, i ∈ {1, . . . , N}. The system matrix Aε ∈ RN×N is then defined via:

(4.24) e>j Aεei = 〈Aεbi, bj〉 ∀i, j ∈ {1, . . . , N},

where ei, ej ∈ RN refer to the ith and jth Cartesian basis vectors, respectively. One
easily obtains the following corollary, which guarantees that systems involving Aε can
efficiently be solved using iterative solvers.

Corollary 4.4 (Condition of Aε). The system matrix Aε ∈ RN×N is symmetric
Aε = A>ε , positive definite:

(4.25) u>σ Aεuσ & σ
D‖uσ‖2`2 ∀uσ ∈ RN ,

and well-conditioned:

(4.26) ∀uσ ∈ RN : σD‖uσ‖`p . ‖Aεuσ‖`p . σD‖uσ‖`p
=⇒ condp(Aε) = ‖Aε‖`p→`p‖A−1

ε ‖`p→`p ∼ 1.

Proof. The symmetry of Aε is obvious. With every uσ ∈ RN we associate uσ =∑N
i=1 uibi. Then, with help of the stability of the B-spline basis:

(4.27) u>σ Aεuσ = 〈Aεuσ, uσ〉
(4.14)

& ‖uσ‖2L2(Ωσ)

(2.11)

& σD‖uσ‖2`2 .

Moreover, for the lower inequality:

(4.28) σD‖uσ‖`p
(2.11)

. σ
D
q ‖uσ‖Lp(Ωσ)

(4.15)

. σ
D
q ‖Aεuσ‖V −n,p(Ωσ)

= σ
D
q sup
vσ∈V n,qσ (Ωσ)

〈Aεuσ, vσ〉
‖vσ‖Lq(Ω)

(2.11)

. σ
D
q sup
vσ∈V n,qσ (Ωσ)

v>σ Aεuσ

σ
D
q ‖vσ‖`q

= ‖Aεuσ‖`p .

Similarly, for the upper inequality:

(4.29) ‖Aεuσ‖`p = sup
vσ∈RN

v>σ Aεuσ
‖vσ‖`q

(2.11)

. sup
vσ∈RN

〈Aεuσ, vσ〉
σ−

D
q ‖vσ‖Lq(Ωσ)

(4.3)

. σ
D
q ‖uσ‖Lp(Ωσ)

(2.11)

. σD‖uσ‖`p .

4.4. Convergence. Every uΩ ∈ Lp(Ω) may be interpreted as an element of
V −n,pσ (Ωσ) by setting

(4.30) 〈uΩ, vσ〉 :=

∫
Ω

uΩvσ dx ∀vσ ∈ V n,qσ (Ωσ).

Similarly, any element of W−s,p(Ω), 0 < s < n− 1
p , can be interpreted as an element

of V −n,pσ (Ωσ) by restricting the test functions from V n,qσ (Ωσ) ⊂W s,q(Ωσ) to Ω. We
now prove that A−1

ε uΩ converges to the Stein extension on the entire fictitious domain
Ωσ at an optimal rate.
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Theorem 4.5 (Approximate Extension). Let n ∈ N, k, l ∈ N0, uΩ ∈ W k,p(Ω),
0 ≤ k ≤ n, 1 ≤ p ≤ ∞. Let σ > 0 be sufficiently small and ε > 0 big enough. Then
the approximate extension operator A−1

ε fulfills:

‖EuΩ −A−1
ε uΩ‖W l,p(Ωσ) . σ

k−l‖uΩ‖Wk,p(Ω) 0 ≤ l ≤ min{k, n− 1},(4.31)

‖A−1
ε uΩ‖W l,p(Ωσ) . σ

k−l‖uΩ‖Wk,p(Ω) k ≤ l ≤ n− 1.(4.32)

The hidden constant is independent of σ, uΩ, and how ∂Ω intersects the Cartesian
grid. If one interprets the norms on the left side of the inequalities in the broken,
element-wise sense, they also remain true for l = n.

Proof. Let us first consider (4.31) and note that
(4.33)
‖EuΩ −A−1

ε uΩ‖W l,p(Ωσ) ≤ ‖EuΩ − PEuΩ‖W l,p(Ωσ) + ‖PEuΩ −A−1
ε uΩ‖W l,p(Ωσ),

where we abbreviated P = Pnσ . The first term can be bounded as desired by (2.15)
and the continuity of the Stein extension. For the second term it suffices to consider
the case l = 0, the remaining cases then follow by the inverse estimates (2.14). Thus:

(4.34) ‖PEuΩ −A−1
ε uΩ‖Lp(Ωσ) =

∥∥A−1
ε Aε

(
PEuΩ −A−1

ε uΩ

)∥∥
Lp(Ωσ)

(4.15)

.∥∥Aε(PEuΩ −A−1
ε uΩ

)∥∥
V −n,p(Ωσ)

=
∥∥AεPEuΩ − uΩ

∥∥
V −n,p(Ωσ)

.

For this last term, we obtain for arbitrary vσ ∈ V n,qσ (Ωσ):

(4.35) 〈AεPEuΩ − uΩ, vσ〉 =

∫
Ω

(
PEuΩ − uΩ

)
vσ dx + ε〈JPEuΩ, vσ〉.

With the help of Hlder’s inequality, (2.15), and the boundedness of the Stein extension
operator, the integral can be bounded by σk‖uΩ‖Wk,p(Ω)‖vσ‖Lq(Ωσ). The same bound

follows for the second term by (4.4). Thus
∥∥AεPEuΩ−uΩ

∥∥
V −n,p(Ωσ)

. σk‖uΩ‖Wn,p(Ω)

as desired. For (4.32) we now obtain:

(4.36) ‖A−1
ε uΩ‖W l,p(Ωσ)

(2.14)

. σk−l‖A−1
ε uΩ‖Wk,p(Ωσ)

≤ σk−l
(
‖A−1

ε uΩ − EuΩ‖Wk,p(Ωσ) + ‖EuΩ‖Wk,p(Ωσ)

)
,

where the first term can now be bounded as desired by (4.31) and the second by the
continuity of the Stein extension.

Every function in V nσ (�) can be extended to RD by simply removing the restriction
on the B-splines it is composed of. Because of (2.11), one also has ‖A−1

ε uΩ‖Lp(RD) .
‖uΩ‖Lp(Ω). When considered only on the domain Ω, on the other hand, we also obtain
the following super-convergence result.

Corollary 4.6 (Super-Convergence). Under the same conditions as the previous
theorem we have for all l ∈ Z, −n ≤ l ≤ min{k, n− 1}:

(4.37) ‖uΩ −A−1
ε uΩ‖W l,p(Ω) . σ

k−l‖uΩ‖Wk,p(Ω),

The hidden constant is independent of σ, uΩ, and how ∂Ω intersects the Cartesian
grid. If one interprets the norm on the left in the broken, element-wise sense, the
statement also remains true for l = n.
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Proof. For non-negative l, this result is obtained from (4.31) by restriction from Ωσ
to Ω. Let us thus consider l < 0 and denote uσ := A−1

ε uΩ. Then, for all ϕ ∈W−l,q(Ω)

(4.38)

∫
Ω

(
uΩ − uσ

)
ϕdx =

∫
Ω

(
uΩ − uσ

)
PEϕdx︸ ︷︷ ︸

=ε〈Juσ,PEϕ〉

+

∫
Ω

(
uΩ − uσ

)(
ϕ− PEϕ

)
dx.

The second term can be bounded as desired by Hlder’s inequality, (2.15), and (4.31):

(4.39)

∫
Ω

(
uΩ − uσ

)(
ϕ− PEϕ

)
dx ≤ ‖uΩ −A−1

ε uΩ‖Lp(Ω)‖ϕ− PEϕ‖Lq(Ω)

. σk−l‖uΩ‖Wk,p(Ω)‖ϕ‖W−l,q(Ω).

For the first term note that J is symmetric: 〈Juσ, PEϕ〉 = 〈JPEϕ, uσ〉. We therefore
obtain using the same arguments as in the proof of Lemma 4.1:

(4.40) 〈JPEϕ, uσ〉 . σk−l‖PEϕ‖W−l,q(Ωσ)‖uσ‖Wk,p(Ωσ),

where for k = n the W k,p-norm on the right is to be interpreted in the “broken”,
element-wise sense. The claim now follows by applying (4.32), (2.16), and the continuity
of the Stein extension operator.

By interpolation these results also extend to the intermediate spaces. The condi-
tions become slightly technical when interpolating on k and l simultaneously, however.
On the other hand by interpolating on only one of them, one for example immediately
obtains:

‖A−1
ε uΩ − EuΩ‖Lp(Ωσ) . σ

s‖uΩ‖W s,p(Ω) 0 ≤ s ≤ n,(4.41)

‖A−1
ε uΩ − uΩ‖W s,p(Ω) . σ

n−s‖uΩ‖Wn,p(Ω) −n ≤ s ≤ n− 1.(4.42)

4.5. Application to Particle Fields. Our aim is to apply the approximate
extension operator A−1

ε to an evolving particle field W−s,p(Ω) 3 uh(t) ≈ u(t) ∈
W s,p(Ω). For this, we consider the following particle method: given n ∈ N, n > D,
and σ > 0 we will set h = 2−kσ, k ∈ N0, m = n, such that V nσ (Ω) ⊂ V mh (Ω). Given
u0 ∈ W s,p(Ω) ∩ L∞(Ω), 0 ≤ s ≤ n, 1 < p ≤ ∞, we set ũ0,h = ũ0,σ = A−1

ε u0. The
particle approximation u0,h is then constructed from ũ0,h as described in subsection 3.1.
Finally, uh(t) is defined by modifying the particle positions xi, i = 1, . . . , N according
to the system of ODEs:

(4.43)
dxi
dt

(t) = a(xi(t), t) i = 1, . . . , N.

We then obtain the following estimate for the error ‖Eu(t)−A−1
ε uh(t)‖Lp(Ωσ), which

is the main result of this article.

Theorem 4.7. Let u0 ∈ W s,p(Ω) ∩ L∞(Ω), 0 ≤ s ≤ n, 1 < p ≤ ∞, n ∈ N,
n > D, and let the given velocity field a ∈ L∞

(
Wn,∞(Ω), [0, T ]

)
be sufficiently smooth.

Let the particle approximation uh(t) be defined as described above. Then for every
t ∈ [0, T ] and for arbitrarily small δ > 0 the regularized particle field A−1

ε uh(t) fulfills
the following error bound:

(4.44) ‖Eu(t)−A−1
ε uh(t)‖Lp(Ωσ) . σ

s‖u0‖W s,p(Ω) +

(
h

σ

)n−δ
‖u0‖L∞(Ω).
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Moreover, if s = k is an integer, one has for all integers 0 ≤ l ≤ min{k, n− 1}:

(4.45) ‖Eu(t)−A−1
ε uh(t)‖W l,p(Ωσ) . σ

k−l‖u0‖Wk,p(Ω) + σ−l
(
h

σ

)n−δ
‖u0‖L∞(Ω).

Proof. Let us denote by u(t) and ũh(t) the respective exact solutions of the
advection equation with initial data u0 and ũ0,h. We can split the error into three
parts:

(4.46) ‖Eu(t)−A−1
ε uh(t)‖W l,p(Ωσ) ≤

(I)︷ ︸︸ ︷
‖Eu(t)−A−1

ε u(t)‖W l,p(Ωσ) +

‖A−1
ε

(
u(t)− ũh(t)

)
‖W l,p(Ωσ)︸ ︷︷ ︸

(II)

+ ‖A−1
ε

(
ũh(t)− uh(t)

)
‖W l,p(Ωσ)︸ ︷︷ ︸

(III)

.

By Theorem 4.5 and the stability of the advection equation (1.4) we have (I) .
σs‖u0‖W s,p(Ω) for l = 0 and respectively (I) . σk−l‖u0‖Wk,p(Ω) otherwise. For the
terms (II) and (III) it suffices to consider the case l = 0, the other cases follow by
the inverse estimate (2.14). For (II) we first make use of Lemma 4.3 to obtain (II) .
‖u(t)− ũh(t)‖V −n,p(Ωσ). By Hölder’s inequality we see that ‖u(t)− ũh(t)‖V −n,p(Ωσ) ≤
‖u(t)− ũh(t)‖Lp(Ω) and subsequently obtain by the same arguments as for the first
term that: (II) . σs‖u0‖W s,p(Ω).

For the last term we denote r := n − δ and note that because r ≥ D we have
uh ∈W−r,∞(Ω). Furthermore, one trivially has ‖ · ‖Lp(Ωσ) . ‖ · ‖L∞(Ωσ). Thus

(4.47) (III) . ‖A−1
ε

(
ũh(t)− uh(t)

)
‖L∞(Ωσ)

(4.15)

. ‖ũh(t)− uh(t)‖V −n,∞(Ωσ).

At this point we make use of the fact that we have V nσ (Ωσ) ⊂W r,1(Ωσ), n−1 < r < n;
the reason why we introduced fractional order Sobolev spaces. By inverse estimates
one obtains:

(4.48) ‖ũh(t)− uh(t)‖V −n,∞(Ωσ) = sup
vσ∈V n,1(Ωσ)

〈ũh(t)− uh(t), vσ〉/‖vσ‖L1(Ωσ)

(2.14)

. σ−r sup
vσ∈V n,1(Ωσ)

〈ũh(t)− uh(t), vσ〉/‖vσ‖W r,1(Ωσ) ≤ σ−r‖ũh(t)− uh(t)‖W−r,∞(Ω).

Now, by the stability of the advection equation (1.4) and Theorem 3.1:

(4.49) σ−r‖ũh(t)− uh(t)‖W−r,∞(Ω) . σ
−r‖ũ0,h − u0,h‖W−r,∞(Ω)

.

(
h

σ

)r
‖ũ0,h‖L∞(Ωσ) .

(
h

σ

)r
‖u0‖L∞(Ω).

When restricted to the domain Ω, it is a simple task to confirm that this result
also holds for negative l, analogous to the super-convergence result Corollary 4.6.
If one assumes that the exact solution is smooth, these results suggest choosing
h ∼ σ2 in order to balance the error contributions, similar to the earliest analyses. [16]
In that case this choice in particular implies that one essentially has (up to δ),
‖u(t) − A−1

ε uh(t)‖W−n,p(Ω) = O(σ2n) = O(hn). In other words A−1
ε uh(t) and uh(t)

asymptotically fulfill the same error bound which is the most one can expect from a
regularization scheme.
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5. Discussion and Outlook. In general, it is inherently difficult to choose h
such that the error contributions from regularization and quadrature are balanced.
In particular, one usually does not know a-priori how smooth the solution actually
is. Let us first consider the choice h = σ. Clearly, upon initialization, we have
‖ũh,0 − uh,0‖V −n,pσ (Ωσ) = 0, and it is unlikely that for small times 0 < t� T this error
immediately increases to significant levels. On the other hand, it is well-known from
computational practice that this choice of h does not lead to converging schemes for
extended periods of time. After all, the advection equation is stable in W−s,p- and
not in V −n,pσ -norms. This motivates so-called remeshed particle methods, where the
particle field is reinitialized with its regularized version after every other time-step or
so. Practice has shown that these methods seem to work well.

On the other hand, the choice h ∼ σ2 requires one to manage significantly larger
numbers of particles which at early times t do not significantly improve the method’s
accuracy. But there also is an advantage to this approach: such a particle field carries
sub-σ-scale information about small features, which can arise over time due to the
distortion of u0 by the velocity field. Furthermore, in a computer implementation it
is easy to handle large numbers of particles, as there is no connectivity involved. A
reinitialization of the particle field destroys this sub-grid information.

In practice, particle fields tend to get thinned out in some parts of the domain,
and clustered in others. In fact, being an exact solution, particle fields naturally
adapt to the flow field. It would thus also make sense to adaptively regularize. The
spline spaces discussed in this article famously form a multi-resolution analysis and
the approximate extension operator yields approximations of smooth extensions on
the whole-space. This opens up the possibility to use wavelets. One way to achieve
adaptive regularization might be to first choose h = σ and compute the regularized
particle field as discussed in this paper. Afterwards one would perform a fast wavelet
transform on the regularized particle field and filter out high-oscillatory components
with large wavelet coefficients by a thresholding procedure. Such an approach has
been used successfully before in the whole-space case [5] and might be able combine
the best of both approaches.
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