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TWICE EPI-DIFFERENTIABILITY OF EXTENDED-REAL-VALUED
FUNCTIONS WITH APPLICATIONS IN COMPOSITE OPTIMIZATION

ASHKAN MOHAMMADI1 and M. EBRAHIM SARABI2

Abstract. The paper is devoted to the study of the twice epi-differentiablity of extended-real-valued
functions, with an emphasis on functions satisfying a certain composite representation. This will be
conducted under parabolic regularity, a second-order regularity condition that was recently utilized in [14]
for second-order variational analysis of constraint systems. Besides justifying the twice epi-differentiablity
of composite functions, we obtain precise formulas for their second subderivatives under the metric
subregularity constraint qualification. The latter allows us to derive second-order optimality conditions
for a large class of composite optimization problems.
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1 Introduction

This paper aims to provide a systematic study of the twice epi-differentiability of extend-real-
valued functions in finite dimensional spaces. In particular, we pay special attention to the
composite optimization problem

minimize ϕ(x) + g(F (x)) over all x ∈ X, (1.1)

where ϕ : X → IR and F : X → Y are twice differentiable and g : Y → IR := (−∞,+∞]
is a lower semicontinuous (l.s.c.) convex function and where X and Y are two finite dimen-
sional spaces, and verify the twice epi-differentiability of the objective function in (1.1) under
verifiable assumptions. The composite optimization problem (1.1) encompasses major classes
of constrained and composite optimization problems including classical nonlinear programming
problems, second-order cone and semidefinite programming problems, eigenvalue optimizations
problems [24], and fully amenable composite optimization problems [19], see Example 4.7 for
more detail. Consequently, the composite problem (1.1) provides a unified framework to study
second-order variational properties, including the twice epi-differentiability and second-order
optimality conditions, of the aforementioned optimization problems. As argued below, the twice
epi-differentiability carries vital second-order information for extend-real-valued functions and
therefore plays an important role in modern second-order variational analysis.

A lack of an appropriate second-order generalized derivative for nonconvex extended-real-
valued functions was the main driving force for Rockafellar to introduce in [17] the concept of
the twice epi-differentiability for such functions. Later, in his landmark paper [19], Rockafellar
justified this property for an important class of functions, called fully amenable, that includes
nonlinear programming problems but does not go far enough to cover other major classes of
constrained and composite optimization problems. Rockafellar’s results were extended in [7,10]
for composite functions appearing in (1.1). However, these extensions were achieved under a
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restrictive assumption on the second subderivative, which does not hold for constrained opti-
mization problems. Nor does this condition hold for other major composite functions related to
eigenvalue optimization problems; see [24, Theorem 1.2] for more detail. Levy in [11] obtained
upper and lower estimates for the second subderivative of the composite function from (1.1),
but fell short of establishing the twice epi-differentiability for this framework.

The authors and Mordukhovich observed recently in [14] that a second-order regularity,
called parabolic regularity (see Definition 3.1), can play a major role toward the establishment of
the twice epi-differentiability for constraint systems, namely when the outer function g in (1.1)
is the indicator function of a closed convex set. This vastly alleviated the difficulty that was
often appeared in the justification of the twice epi-differentiability for the latter framework and
opened the door for crucial applications of this concept in theoretical and numerical aspects of
optimization. Among these applications, we can list the following:

• the calculation of proto-derivatives of subgradient mappings via the connection between
the second subderivative of a function and the proto-derivative of its subgradient mapping
(see equation (3.21));

• the calculation of the second subderivative of the augmented Lagrangian function associ-
ated with the composite problem (1.1), which allows us to characterize the second-order
growth condition for the augmented Lagrangian problem (cf. [14, Theorems 8.3 & 8.4]);

• the validity of the derivative-coderivative inclusion (cf. [21, Theorem 13.57]), which has
important consequences in parametric optimization; see [15, Theorem 5.6] for a recent
application in the convergence analysis of the sequential quadratic programming (SQP)
method for constrained optimization problems.

In this paper, we continue the path, initiated in [14] for constraint systems, and show that the
twice epi-differentiability of the objective function in (1.1) can be guaranteed under parabolic
regularity. To achieve this goal, we demand that the outer function g from (1.1) be locally
Lipschitz continuous relative to its domain; see the next section for the precise definition of this
concept. Shapiro in [22] used a similar condition but in addition assumed that this function is
finite-valued. The latter does bring certain restrictions for (1.1) by excluding constrained prob-
lems as well as piecewise linear-quadratic composite problems. As shown in Example 4.7, major
classes of constrained and composite optimization problems satisfy this Lipschitzian condition.
However, some composite problems such as the spectral abcissa minimization (cf. [4]), namely
the problem of minimizing the largest real parts of eigenvalues, can not be covered by (1.1).

The rest of the paper is organized as follows. Section 2 recalls important notions of variational
analysis that are used throughout this paper. Section 3 begins with the definition of parabolic
regularity of extended-real-valued functions. Then we justify that parabolic regularity amounts
to a certain duality relationship between the second subderivative and parabolic subderivative.
Employing this, we show that the twice epi-differentiability of extended-real-valued functions
can be guaranteed if they are parabolically regular and parabolic epi-differentiable. Section 4
is devoted to important second-order variational properties of parabolic subderivatives. In par-
ticular, we establish a chain rule for parabolic subderivatives of composite functions in (1.1)
under the metric subregularity constraint qualification. In Section 5, we establish chain rules
for the parabolic regularity and for the second subderivative of composite functions, and conse-
quently establish their twice epi-differentiability. Section 6 deals with important applications of
our results in second-order optimality conditions for the composite optimization problem (1.1).
We close the paper by achieving a characterization of the strong metric subregularity of the
subgradient mapping of the objective function in (1.1) via the second-order sufficient condition
for this problem.

In what follows, X and Y are finite-dimensional Hilbert spaces equipped with a scalar product
〈·, ·〉 and its induced norm ‖ · ‖. By B we denote the closed unit ball in the space in question
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and by Br(x) := x+ rB the closed ball centered at x with radius r > 0. For any set C in X, its
indicator function is defined by δC(x) = 0 for x ∈ C and δC(x) = ∞ otherwise. We denote by
d(x,C) the distance between x ∈ X and a set C. For v ∈ X, the subspace {w ∈ X| 〈w, v〉 = 0}
is denoted by {v}⊥. We write x(t) = o(t) with x(t) ∈ X and t > 0 to mean that ‖x(t)‖/t goes
to 0 as t ↓ 0. Finally, we denote by IR+ (respectively, IR−) the set of non-negative (respectively,
non-positive) real numbers.

2 Preliminary Definitions in Variational Analysis

In this section we first briefly review basic constructions of variational analysis and generalized
differentiation employed in the paper; see [12, 21] for more detail. A family of sets Ct in X for
t > 0 converges to a set C ⊂ X if C is closed and

lim
t↓0

d(w,Ct) = d(w,C) for all w ∈ X.

Given a nonempty set C ⊂ X with x̄ ∈ C, the tangent cone TC(x̄) to C at x̄ is defined by

TC(x̄) =
{
w ∈ X| ∃ tk↓0, wk → w as k → ∞ with x̄+ tkwk ∈ C

}
.

We say a tangent vector w ∈ TC(x̄) is derivable if there exist a constant ε > 0 and an arc
ξ : [0, ε] → C such that ξ(0) = x̄ and ξ′+(0) = w, where ξ′+ signifies the right derivative of ξ at
0, defined by

ξ′+(0) := lim
t↓0

ξ(t)− ξ(0)

t
.

The set C is called geometrically derivable at x̄ if every tangent vector w to C at x̄ is derivable.
The geometric derivability of C at x̄ can be equivalently described by the sets [C−x̄]/t converging
to TC(x̄) as t ↓ 0. Convex sets are important examples of geometrically derivable sets. The
second-order tangent set to C at x̄ for a tangent vector w ∈ TC(x̄) is given by

T 2
C(x̄, w) =

{
u ∈ X| ∃ tk↓0, uk → u as k → ∞ with x̄+ tkw +

1

2
t2kuk ∈ C

}
.

A set C is said to be parabolically derivable at x̄ for w if T 2
C(x̄, w) is nonempty and for each

u ∈ T 2
C(x̄, w) there are ε > 0 and an are ξ : [0, ε] → C with ξ(0) = x̄, ξ′+(0) = w, and ξ′′+(0) = u,

where

ξ′′+(0) := lim
t↓0

ξ(t)− ξ(0)− tξ′+(0)
1
2t

2
.

It is well known that if C ⊂ X is convex and parabolically derivable at x̄ for w, then the second-
order tangent set T 2

C(x̄, w) is a nonempty convex set in X (cf. [2, page 163]). Given the function
f : X → IR := (−∞,∞], its domain and epigraph are defined, respectively, by

dom f =
{
x ∈ X| f(x) <∞

}
and epi f =

{
(x, α) ∈ X× IR| f(x) ≤ α

}
.

The regular subdifferential of f at x̄ ∈ dom f is defined by

∂̂f(x̄) =
{
v ∈ X | lim inf

x→x̄

f(x)− f(x̄)− 〈v, x− x̄〉

‖x− x̄‖
≥ 0

}
.

The subdifferential of f at x̄ is given by

∂f(x̄) =
{
v ∈ X | ∃xk

f
→ x̄, vk → v with vk ∈ ∂̂f(xk)

}
,
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where xk
f
→ x̄ stands for xk → x̄ and f(xk) → f(x̄). We say that v ∈ X is a proximal subgradient

of f at x̄ if there exists r ∈ IR+ and a neighborhood U of x̄ such that for all x ∈ U we have

f(x) ≥ f(x̄) + 〈v, x − x̄〉 −
r

2
‖x− x̄‖2. (2.1)

The set of all such v is called the proximal subdifferential of f at x̄ and is denoted by ∂pf(x̄). By
definitions, it is not hard to obtain the inclusions ∂pf(x̄) ⊂ ∂̂f(x̄) ⊂ ∂f(x̄). Given a nonempty
set C ⊂ X, the proximal and regular normal cones to C at x̄ ∈ C are defined, respectively, by

Np
C(x̄) := ∂pδC(x̄) and N̂C(x̄) := ∂̂δC(x̄).

Similarly, we define the (limiting/Mordukhovich) normal cone of C at x̄ by NC(x̄) := ∂δC(x̄).
Consider a set-valued mapping S : X ⇒ Y with its domain and graph defined, respectively, by

domS =
{
x ∈ X| S(x) 6= ∅

}
and gphS =

{
(x, y) ∈ X× Y| y ∈ S(x)

}
.

The graphical derivative of S at (x̄, ȳ) ∈ gphS is defined by

DS(x̄, ȳ)(w) =
{
v ∈ Y| (w, v) ∈ TgphS(x̄, ȳ)

}
, w ∈ X.

Recall that a set-valued mapping S : X ⇒ Y is metrically regular around (x̄, ȳ) ∈ gphS if there
are constants κ ∈ IR+ and ε > 0 such that the distance estimate

d
(
x, S−1(y)

)
≤ κd

(
y, S(x)

)
for all (x, y) ∈ Bε(x̄, ȳ)

holds. When y = ȳ in the above estimate, the mapping S is called metrically subregular at
(x̄, ȳ). The set-valued mapping S is called strongly metrically subregular at (x̄, ȳ) if there are a
constant κ ∈ IR+ and a neighborhood U of x̄ such that the estimate

‖x− x̄‖ ≤ κd(ȳ, S(x)) for all x ∈ U

holds. It is known (cf. [8, Theorem 4E.1]) that the set-valued mapping S is strongly metrically
subregular at (x̄, ȳ) if and only if we have

0 ∈ DS(x̄, ȳ)(w) =⇒ w = 0. (2.2)

Given a function f : X → IR and a point x̄ with f(x̄) finite, the subderivative function
df(x̄) : IRn → [−∞,∞] is defined by

df(x̄)(w̄) = lim inf
t↓0
w→w̄

f(x̄+ tw)− f(x̄)

t
.

Define the parametric family of second-order difference quotients for f at x̄ for v̄ ∈ X by

∆2
t f(x̄, v̄)(w) =

f(x̄+ tw)− f(x̄)− t〈v̄, w〉
1
2t

2
with w ∈ X, t > 0.

If f(x̄) is finite, then the second subderivative of f at x̄ for v̄ is given by

d2f(x̄, v̄)(w) = lim inf
t↓0

w′→w

∆2
t f(x̄, v̄)(w

′), w ∈ X.

Below, we collect some important properties of the second subderivative that are used
throughout this paper. Parts (i) and (ii) were taken from [21, Proposition 13.5] and part (iii)
was recently observed in [13, Theorem 4.1(i)].
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Proposition 2.1 (properties of second subderivative). Let f : X → IR and (x̄, v̄) ∈ X× X with

f(x̄) finite. Then the following conditions hold:

(i) the second subderivative d2f(x̄, v̄) is a lower semicontinuous (l.s.c.) function;
(ii) if d2f(x̄, v̄) is a proper function, meaning that d2f(x̄, v̄)(w) > −∞ for all w ∈ X and its

effective domain, defined by

domd2f(x̄, v̄) =
{
w ∈ X|d2f(x̄, v̄)(w) <∞

}
,

is nonempty, then we always have the inclusion

domd2f(x̄, v̄) ⊂
{
w ∈ X|df(x̄)(w) = 〈v̄, w〉

}
;

(iii) if v̄ ∈ ∂pf(x̄), then for any w ∈ X we have d2f(x̄, v̄)(w) ≥ −r‖w‖2, where r ∈ IR+ is taken

from (2.1). In particular, d2f(x̄, v̄) is a proper function.

Following [21, Definition 13.6], a function f : X → IR is said to be twice epi-differentiable
at x̄ for v̄ ∈ X, with f(x̄) finite, if the sets epi∆2

t f(x̄, v̄) converge to epi d2f(x̄, v̄) as t ↓ 0. The
latter means by [21, Proposition 7.2] that for every sequence tk ↓ 0 and every w ∈ X, there exists
a sequence wk → w such that

d2f(x̄, v̄)(w) = lim
k→∞

∆2
tk
f(x̄, v̄)(wk). (2.3)

We say that a function f : X → IR is Lipschitz continuous around x̄ relative to C ⊂ dom f
with constant ℓ ∈ IR+ if x̄ ∈ C and there exists a neighborhood U of x̄ such that

|f(x)− f(y)| ≤ ℓ ‖x− y‖ for all x, y ∈ U ∩C.

Such a function is called locally Lipschitz continuous relative to C if for every x̄ ∈ C, it is Lipschitz
continuous around x̄ relative to C. Piecewise linear-quadratic functions (not necessarily convex)
and an indicator function of a nonempty set are important examples of functions that are locally
Lipschitz continuous relative to their domains.

Proposition 2.2 (domain of subderivatives). Let f : X → IR be Lipschitz continuous around

x̄ relative to its domain with constant ℓ ∈ IR+. Then we have domdf(x̄) = Tdom f (x̄). In

particular, for every w ∈ Tdom f (x̄), the subderivative df(x̄)(w) is finite.

Proof. The inclusion domdf(x̄) ⊂ Tdom f (x̄) results directly from the definition. To prove the
opposite inclusion, pick w ∈ Tdom f (x̄). This gives us some sequences tk ↓ 0 and wk → w such
that x̄ + tkwk ∈ dom f for all k ∈ IN. Using this and the Lipschitz continuity of f around x̄
relative to its domain implies that for all k sufficiently large we have

|
f(x̄+ tkwk)− f(x̄)

tk
| ≤ ℓ‖wk‖. (2.4)

This clearly yields |df(x̄)(w)| ≤ ℓ‖w‖. Thus df(x̄)(w) is finite and so w ∈ domdf(x̄). This
gives us the inclusion Tdom f (x̄) ⊂ domdf(x̄) and hence completes the proof.

3 Twice Epi-Differetiability of Parabolically Regular Functions

This section aims to delineate conditions under which the twice epi-differenibility of extend-
real-valued functions can be established. To this end, we appeal to an important second-order
regularity condition, called parabolic regularity, which was recently exploited in [14] to study a
similar property for constraint systems. We begin with the definition of this regularity condition.
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Definition 3.1 (parabolic regularity). A function f : X → IR is parabolically regular at x̄ for

v̄ ∈ X if f(x̄) is finite and if for any w such that d2f(x̄, v̄)(w) < ∞, there exist, among the

sequences tk ↓ 0 and wk → w with ∆2
tk
f(x̄, v̄)(wk) → d2f(x̄, v̄)(w), those with the additional

property that

lim sup
k→∞

‖wk − w‖

tk
<∞. (3.5)

A nonempty set C ⊂ X is said to be parabolically regular at x̄ for v̄ if the indicator function δC
is parabolically regular at x̄ for v̄.

Although the notion of parabolic regularity was introduced first in [21, Definition 13.65], its
origin goes back to [5, Theorem 4.4], where Chaney observed a duality relationship between his
second-order generalized derivative and the parabolic subderivative, defined in [1] by Ben-Tal and
Zowe. This duality relationship was derived later by Rockafellar [18, Proposition 3.5] for convex
piecewise linear-quadratic functions. As shown in Proposition 3.6 below, the latter duality
relationship is equivalent to the concept of parabolic regularity from Definition 3.1 provided that
v̄, appearing in Definition 3.1, is a proximal subgradient. A different second-order regularity
was introduced by Bonnans, Comminetti, and Shapiro [3, Definition 3] for sets, which was later
extended in [2, Definition 3.93] for functions. It is not difficult to see that parabolic regularity is
implied by the second-order regularity in the sense of [3]; see [2, Proposition 3.103] for a proof
of this result. Moreover, the example from [2, page 215] shows that the converse implication
may not hold in general.

We showed in [14] that important sets appearing in constrained optimization problems, in-
cluding polyhedral convex sets, the second-order cone, and the cone of positive semidefinite
symmetric matrices, are parabolically regular. Below, we add two important classes of func-
tions for which this property automatically fulfill. We begin first by convex piecewise-linear
quadratic functions and then consider eigenvalues functions. While the former was justified
in [21, Theorem 13.67], we provide below a different and simpler proof.

Example 3.2 (piecewise linear-quadratic functions). Assume that the function f : X → IR with
X = IRn is convex piecewise linear-quadratic. Recall that f is called piecewise linear-quadratic
if dom f = ∪si=1Ci with s ∈ IN and Ci being polyhedral convex sets for i = 1, . . . , s, and if f has
a representation of the form

f(x) = 1
2〈Aix, x〉+ 〈ai, x〉+ αi for all x ∈ Ci,

where Ai is an n × n symmetric matrix, ai ∈ IRn, and αi ∈ IR for i = 1, · · · , s. It was proven
in [21, Propsoition 13.9] that the second subderivative of f at x̄ for v̄ ∈ ∂f(x̄) can be calculated
by

d2f(x̄, v̄)(w) =

{
〈Aiw,w〉 if w ∈ TCi

(x̄) ∩ {v̄i}
⊥,

∞ otherwise,
(3.6)

where v̄i := v̄ − Aix̄ − ai. To prove the parabolic regularity of f at x̄ for v̄, pick a vector
w ∈ IRn with d2f(x̄, v̄)(w) < ∞. This implies that there is an i with 1 ≤ i ≤ s such that
w ∈ TCi

(x̄) ∩ {v̄i}
⊥. Since Ci is a polyhedral convex set, we conclude from [21, Exercise 6.47]

that there exists an ε > 0 such that x̄ + tw ∈ Ci for all t ∈ [0, ε]. Pick a sequence tk ↓ 0 such
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that tk ∈ [0, ε] and let wk := w for all k ∈ IN. Thus a simple calculation tells us that

∆2
tk
f(x̄, v̄)(wk) =

f(x̄+ tkwk)− f(x̄)− tk〈v̄, wk〉
1
2t

2
k

=
1
2〈Ai(x̄+ tkwk), x̄+ tkwk〉+ 〈ai, x̄+ tkwk〉+ αi −

1
2〈Aix̄, x̄〉 − 〈ai, x̄〉 − αi − tk〈v̄, wk〉

1
2 t

2
k

= 〈Aiw,w〉 +
tk〈wk, v̄ −Aix̄− ai〉

1
2 t

2
k

= 〈Aiw,w〉,

which in turn implies by (3.6) that ∆2
tk
f(x̄, v̄)(wk) → d2f(x̄, v̄)(w) as k → ∞. Since (3.5) is

clearly holds, f is parabolic regular at x̄ for v̄.

Example 3.3 (eigenvalue functions). Let X = S
n be the space of n×n symmetric real matrices,

which is conveniently treated via the inner product

〈A,B〉 := trAB

with trAB standing for the sum of the diagonal entries of AB. For a matrix A ∈ S
n, we denote

by A† the Moore-Penrose pseudo-inverse of A and by eigA = (λ1(A), . . . , λn(A)) the vector of
eigenvalues of A in decreasing order with eigenvalues repeated according to their multiplicity.
Given i ∈ {1, . . . , n}, denote by ℓi(A) the number of eigenvalues that are equal to λi(A) but
are ranked before i including λi(A). This integer allows us to locate λi(A) in the group of the
eigenvalues of A as follows:

λ1(A) ≥ · · · ≥ λi−ℓi(A) > λi−ℓi(A)+1(A) = · · · = λi(A) ≥ · · · ≥ λn(A).

The eigenvalue λi−ℓi(A)+1(A), ranking first in the group of eigenvalues equal to λi(A), is called
the leading eigenvalue. For any i ∈ {1, . . . , n}, define now the function αi : S

n → IR by

αi(A) = λi−ℓi(A)+1(A) + · · ·+ λi(A), A ∈ S
n. (3.7)

It was proven in [24, Theorem 2.1] that ∂̂αi(A) = ∂αi(A) and that the second subderivative of
αi at A for any V ∈ ∂αi(A) is calculated for every W ∈ S

n by

d2αi(A,V )(W ) =

{
2〈V,W (λi(A)In −A)†W 〉 if dαi(A)(W ) = 〈X,W 〉,

∞ otherwise,
(3.8)

where In stands for the n×n identity matrix. Moreover, for anyW ∈ S
n with d2αi(A,H)(W ) <

∞ and any sequence tk ↓ 0, the proof of [24, Theorem 2.1] confirms that

∆2
tk
αi(A,V )(Wk) → d2αi(A,V )(W ) with Wk :=W − tkW (λi(A)In −A)†W.

This readily verifies (3.5) and thus the functions αi, i ∈ {1, . . . , n}, are parabolically regular at
A for any V ∈ ∂αi(A). In particular, for i = 1, the function αi from (3.7) boils down to the
maximum eigenvalue function of a matrix, namely

λmax(A) := α1(A) = λ1(A), A ∈ S
n. (3.9)

So the maximum eigenvalue function λmax is parabolically regular at A for any V ∈ ∂λmax(A).
This can be said for any leading eigenvalue λi−ℓi(A)+1(A) since we have αi(B) = λi−ℓi(A)+1(B)
for every matrix B ∈ S

n sufficiently close to A. Another important function related to the

7



eigenvalues of a matrix A ∈ S
n is the sum of the first i components of eigA with i ∈ {1, . . . , n},

namely
σi(A) = λ1(A) + · · ·+ λi(A). (3.10)

It is well-known that the functions σi are convex (cf. [21, Exercise 2.54]). Moreover, we have
σi(A) = αi(A) + σi−ℓi(A)(A). It follows from [24, Proposition 1.3] that σi−ℓi(A) is twice continu-
ously differentiable (C2-smooth) on S

n. This together with the parabolic regularity of αi ensures
that σi are parabolically regular at A for any V ∈ ∂σi(A).

To proceed further in this section, we require the concept of the parabolic subderivative,
introduced by Ben-Tal and Zowe in [1]. Let f : X → IR and let x̄ ∈ dom f and w ∈ X with
df(x̄)(w) finite. The parabolic subderivative of f at x̄ for w with respect to z is defined by

d2f(x̄)(w z) := lim inf
t↓0
z′→z

f(x̄+ tw + 1
2t

2z′)− f(x̄)− tdf(x̄)(w)
1
2 t

2
.

Recall from [21, Definition 13.59] that f is called parabolically epi-differentiable at x̄ for w if

domd2f(x̄)(w ·) =
{
z ∈ X|d2f(x̄)(w z) <∞

}
6= ∅,

and for every z ∈ X and every sequence tk ↓ 0 there exists a sequences zk → z such that

d2f(x̄)(w z) = lim
k→∞

f(x̄+ tkw + 1
2t

2
kzk)− f(x̄)− tkdf(x̄)(w)

1
2t

2
k

. (3.11)

The main interest in parabolic subderivatives in this paper lies in its nontrivial connection
with second subderivatives. Indeed, it was shown in [21, Proposition 13.64] that if the function
f : X → IR is finite at x̄, then for any pair (v̄, w) ∈ X × X with df(x̄)(w) = 〈w, v̄〉 we always
have

d2f(x̄, v̄)(w) ≤ inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
. (3.12)

As observed below, equality in this estimate amounts to the parabolic regularity of f at x̄ for v̄.
To proceed, let f : X → IR and pick (x̄, v̄) ∈ gph ∂f . The critical cone of f at (x̄, v̄) is defined
by

Kf (x̄, v̄) :=
{
w ∈ X | df(x̄)(w) = 〈v̄, w〉

}
. (3.13)

When f is the indicator function of a set, this definition boils down to the classical definition
of the critical cone for sets; see [8, page 109]. It is not difficult to see that the set Kf (x̄, v̄) is a
cone in X. Taking into account Proposition 2.1(ii), we conclude that the domain of the second
subderivative d2f(x̄, v̄) is always included in the critical cone Kf (x̄, v̄) provided that d2f(x̄, v̄)
is a proper function. The following result provides conditions under which the domain of the
second subderivative is the entire critical cone.

Proposition 3.4 (domain of second subderivatives). Assume that f : X → IR is finite at x̄
with v̄ ∈ ∂pf(x̄) and that for every w ∈ Kf (x̄, v̄) we have domd2f(x̄)(w ·) 6= ∅. Then for all

w ∈ Kf (x̄, v̄) we have

− r‖w‖2 ≤ d2f(x̄, v̄)(w) ≤ inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
<∞, (3.14)

where r ∈ IR+ is a constant satisfying (2.1). In particular, we have domd2f(x̄, v̄) = Kf (x̄, v̄).
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Proof. The lower estimate of d2f(x̄, v̄) in (3.14) results from Proposition 2.1(iii), which readily
implies that d2f(x̄, v̄)(0) = 0. This tells us that the second subderivative d2f(x̄, v̄) is proper.
Employing now Proposition 2.1(ii) gives us the inclusion domd2f(x̄, v̄) ⊂ Kf (x̄, v̄). The upper
estimate of d2f(x̄, v̄)(w) in (3.14) directly comes from (3.12). By assumptions, for any w ∈
Kf (x̄, v̄), there exists a zw so that d2f(x̄)(w zw) <∞. This guarantees that the infimum term
in (3.14) is finite. Pick w ∈ Kf (x̄, v̄) and observe from (3.14) that d2f(x̄, v̄)(w) is finite. This
yields the inclusion Kf (x̄, v̄) ⊂ domd2f(x̄, v̄), which completes the proof.

The following example, taken from [21, page 636], shows the domain of the second sub-
derivative can be the entire set Kf (x̄, v̄) even if the assumption on the domain of the parabolic
subderivative in Proposition 3.4 fails. As shown in the next section, however, this condition is
automatically satisfied for composite functions appearing in (1.1).

Example 3.5 (domain of second subderivative). Define the function f : X → IR with X = IR2

by f(x1, x2) = |x2−x
4/3
1 |−x21. As argued in [21, page 636], the subderivative and subdifferential

of f at x̄ = (0, 0), respectively, are

df(x̄)(w) = |w2| and ∂f(x̄) =
{
v = (v1, v2) ∈ IR2| v1 = 0, |v2| ≤ 1

}
,

where w = (w1, w2) ∈ IR2. It is not hard to see that v̄ = (0, 0) ∈ ∂pf(x̄). Moreover, the second
subderivative of f at x̄ for v̄ has a representation of the form

d2f(x̄, v̄)(w) =

{
−2w2

1 if w2 = 0,

∞ if w2 6= 0.

Using the above calculation tells us that Kf (x̄, v̄) = {w = (w1, w2)|w2 = 0}. Thus we have
domd2f(x̄, v̄) = Kf (x̄, v̄). However, for any w = (w1, w2) ∈ Kf (x̄, v̄) with w1 6= 0 we have

d2f(x̄)(w z) = ∞ for all z ∈ IR2,

which confirms that the assumption related to the domain of the parabolic subderivative in
Proposition 3.4 fails.

We proceed next by providing an important characterization of the parabolic regularity that
plays a key role in our developments in this paper.

Proposition 3.6 (characterization of parabolic regularity). Assume that f : X → IR is finite at

x̄ with v̄ ∈ ∂pf(x̄). Then the function f is parabolically regular at x̄ for v̄ if and only if we have

d2f(x̄, v̄)(w) = inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
(3.15)

for all w ∈ Kf (x̄, v̄). Furthermore, for any w ∈ domd2f(x̄, v̄), there exists a z̄ ∈ domd2f(x̄)(w ·)
such that

d2f(x̄, v̄)(w) = d2f(x̄)(w z̄)− 〈z̄, v̄〉. (3.16)

Proof. It follows from v̄ ∈ ∂pf(x̄) and Proposition 2.1(ii)-(iii) that the second subderivative
d2f(x̄, v̄) is a proper function and

domd2f(x̄, v̄) ⊂ Kf (x̄, v̄). (3.17)

Assume now that f is parabolically regular at x̄ for v̄. If there exists a w ∈ Kf (x̄, v̄) \
domd2f(x̄, v̄), then (3.15) clearly holds due to (3.12). Suppose now that w ∈ domd2f(x̄, v̄). By
Definition 3.1, there are sequences tk ↓ 0 and wk → w for which we have

∆2
tk
f(x̄, v̄)(wk) → d2f(x̄, v̄)(w) and lim sup

k→∞

‖wk − w‖

tk
<∞.
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Since the sequence zk := 2[wk − w]/tk is bounded, we can assume by passing to a subsequence
if necessary that zk → z̄ as k → ∞ for some z̄ ∈ X. Thus we have wk = w + 1

2tkzk and

d2f(x̄, v̄)(w) = lim
k→∞

f(x̄+ tkwk)− f(x̄)− tk〈v̄, wk〉
1
2t

2
k

= lim
k→∞

f(x̄+ tkw + 1
2 t

2
kzk)− f(x̄)− tk〈v̄, w〉

1
2 t

2
k

− 〈v̄, zk〉

≥ lim inf
k→∞

f(x̄+ tkw + 1
2t

2
kzk)− f(x̄)− tkdf(x̄)(w)

1
2t

2
k

− 〈v̄, z̄〉

≥ d2f(x̄)(w z̄)− 〈v̄, z̄〉.

Combining this and (3.12) implies that (3.15) and (3.16) hold for all w ∈ domd2f(x̄, v̄). To
obtain the opposite implication, assume that (3.15) holds for all w ∈ Kf (x̄, v̄). To prove the
parabolic regularity of f at x̄ for v̄, let d2f(x̄, v̄)(w) < ∞, which by (3.17) yields w ∈ Kf (x̄, v̄).
Employing now [21, Proposition 13.64] results in

d2f(x̄, v̄)(w) = inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
= lim inf

t↓0, w′→w
[w′−w]/t bounded

∆2
t f(x̄, v̄)(w

′).

The last equality clearly justifies (3.5), and thus f is parabolically regular at x̄ for v̄. This
completes the proof.

We next show that the indicator function of the cone of n×n positive semidefinite symmetric
matrices, denoted by S

n
+, is parabolic regular. This can be achieved via [14, Theorem 6.2] using

the theory of C2-cone reducible sets but below we give an independent proof via Proposition 3.6.

Example 3.7 (parabolic regularity of Sn+). Let S
n
− stand for the cone of n×n negative semidef-

inite symmetric matrices. For any A ∈ S
n
−, we are going to show that f := δSn

−

is parabolic
regular at A for any V ∈ NSn

−

(A). Since we have Sn+ = −S
n
−, this clearly yields the same property

for Sn+. Using the notation in Example 3.3, we can equivalently write

S
n
− =

{
A ∈ S

n|λ1(A) ≤ 0
}
, (3.18)

which in turn implies that δSn
−

(A) = δIR−
(λ1(A)) for any A ∈ S

n. If A is negative definite, i.e.,
λ1(A) < 0, then our claim immediately follows from NSn

−

(A) = {0} for this case. Otherwise,
we have λ1(A) = 0. Pick V ∈ NSn

−

(A) and conclude from (3.18) and the chain rule from
convex analysis that NSn

−

(A) = IR+∂λ1(A), which implies that V = rB for some r ∈ IR+ and
B ∈ ∂λ1(A). If r = 0, we get V = 0 and parabolic regularity of δSn

−

at A for V follows directly
from the definition. Assume now r > 0 and pick W ∈ Kf (A,V ). The latter amounts to

〈V,W 〉 = dδSn
−

(A)(W ) = 0 and W ∈ TSn
−

(A).

Employing now [2, Proposition 2.61] tells us that dλ1(A)(W ) ≤ 0. Since B ∈ ∂λ1(A) and
〈B,W 〉 = 0, we arrive at dλ1(A)(W ) = 0. We know from [21, Example 10.28] that

dλ1(A)(W ) = lim
t↓0

W ′→W

∆tλ1(A)(W
′) with ∆tλ1(A)(W

′) :=
λ1(A+ tW ′)− λ1(A)

t
.

Using direct calculations, we conclude for any t > 0 and W ′ ∈ S
n that

∆2
t δSn−(A,V )(W ′) = ∆2

t δIR−
(λ1(A), r)(∆tλ1(A)(W

′)) + r∆2
tλ1(A,B)(W ′),
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which in turn results in

d2δSn
−

(A,V )(W ) ≥ d2δIR−
(λ1(A), r)(dλ1(A)(W )) + rd2λ1(A,B)(W ).

Since r > 0, λ1(A) = 0, and dλ1(A)(W ) = 0, we conclude from [14, Example 3.4] that

d2δIR−
(λ1(A), r)(dλ1(A)(W )) = δKIR

−
(λ1(A),r)(0) = δ{0}(0) = 0.

Using this together with (3.8) brings us to

d2δSn
−

(A,V )(W ) ≥ −2r〈B,WA†W 〉 = −2〈V,WA†W 〉.

On the other hand, we conclude from (3.14) that

d2δSn
−

(A,V )(W ) ≤ −σT 2

Sn
−

(A,W )(V ) = −2〈V,WA†W 〉,

where the last equality comes from [2, page 487] with σT 2

Sn
−

(A,W ) standing for the support function

of T 2
Sn
−

(A,W ). Combining these confirms that

d2δSn
−

(A,V )(W ) = −σT 2

S
n
−

(A,W )(V ) = −2〈V,WA†W 〉 for all W ∈ Kf (A,V ).

This together with Proposition 3.6 tells us that Sn− is parabolic regular at A for V .

We are now in a position to establish the main result of this section, which states that
parabolically regular functions are always twice epi-differentiable.

Theorem 3.8 (twice epi-differenitability of parabolically regular functions). Let f : X → IR be

finite at x̄ and v̄ ∈ ∂pf(x̄) and let f be parabolically epi-differentiable at x̄ for every w ∈ Kf (x̄, v̄).
If f is parabolically regular at x̄ for v̄, then it is properly twice epi-differentiable at x̄ for v̄ with

d2f(x̄, v̄)(w) =

{
minz∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
if w ∈ Kf (x̄, v̄),

+∞ otherwise.
(3.19)

Proof. It follows from the parabolic epi-differentiability of f at x̄ for every w ∈ Kf (x̄, v̄) and
Proposition 3.4 that domd2f(x̄, v̄) = Kf (x̄, v̄). This together with (3.15) and (3.16) justifies
the second subderivative formula (3.19). To establish the twice epi-differentiability of f at x̄
for v̄, we are going to show that (2.3) holds for all w ∈ X. Pick w ∈ Kf (x̄, v̄) and an arbitrary
sequence tk ↓ 0. Since f is parabolically regular at x̄ for v̄, by Proposition 3.6, we find a z̄ ∈ X

such that
d2f(x̄, v̄)(w) = d2f(x̄)(w z̄)− 〈z̄, v̄〉. (3.20)

By the parabolic epi-differentiability of f at x̄ for w, we find a sequence zk → z̄ for which we
have

d2f(x̄)(w z̄) = lim
k→∞

f(x̄+ tkw + 1
2t

2
kzk)− f(x̄)− tkdf(x̄)(w)

1
2t

2
k

.

Define wk := w + 1
2tkzk for all k ∈ IN. Using this and w ∈ Kf (x̄, v̄), we obtain

∆2
tk
f(x̄, v̄)(wk) =

f(x̄+ tkwk)− f(x̄)− tk〈v̄, wk〉
1
2t

2
k

=
f(x̄+ tkw + 1

2t
2
kzk)− f(x̄)− tkdf(x̄)(w)

1
2t

2
k

− 〈v̄, zk〉.
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This together with (3.20) results in

lim
k→∞

∆2
tk
f(x̄, v̄)(wk) = d2f(x̄)(w z̄)− 〈v̄, z̄〉 = d2f(x̄, v̄)(w),

which justifies (2.3) for every w ∈ Kf (x̄, v̄). Finally, we are going to show the validity of (2.3)
for every w /∈ Kf (x̄, v̄). For any such a w, we conclude from (3.19) that d2f(x̄, v̄)(w) = ∞. Pick
an arbitrary sequence tk ↓ 0 and set wk := w for all k ∈ IN. Thus we have

∞ = d2f(x̄, v̄)(w) ≤ lim inf
k→∞

∆2
tk
f(x̄, v̄)(wk) ≤ lim sup

t↓0
∆2
tk
f(x̄, v̄)(wk) ≤ ∞ = d2f(x̄, v̄)(w),

which again proves (2.3) for all w /∈ Kf (x̄, v̄). This completes the proof of the Theorem.

The above theorem provides a very important generalization of a similar result obtained re-
cently by the authors and Mordukhovich in [14, Theorem 3.6] in which the twice epi-differentiability
of set indicator functions was established. It is not hard to see that the assumptions of Theo-
rem 3.8 boils down to those in [14, Theorem 3.6]. To the best of our knowledge, the only results
related to the twice epi-differentiability of functions, beyond set indicator functions, are [21, The-
orem 13.14] and [24, Theorem 3.1] in which this property was proven for the fully amenable and
eigenvalue functions, respectively. We will derive these results in Section 5 as an immediate
consequence of our chain rule for the second subderivative.

We proceed with an important consequence of Theorem 3.8 in which the proto-differentiability
of subgradient mappings is established under parabolic regularity. Recall that a set-valued map-
ping S : X ⇒ Y is said to be proto-differentiable at x̄ for ȳ with (x̄, ȳ) ∈ gphS if the set gphS is
geometrically derivable at (x̄, ȳ). When this condition holds for the set-valued mapping S at x̄
for ȳ, we refer to DS(x̄, ȳ) as the proto-derivative of S at x̄ for ȳ. The connection between the
twice epi-differentiablity of a function and the proto-differentiability of its subgradient mapping
was observed first by Rockafellar in [20] for convex functions and was extended later in [16] for
prox-regular functions. Recall that a function f : X → IR is called prox-regular at x̄ for v̄ if f is
finite at x̄ and is locally l.s.c. around x̄ with v̄ ∈ ∂f(x̄) and there are constant ε > 0 and r ≥ 0
such that for all x ∈ Bε(x̄) with f(x) ≤ f(x̄) + ε we have

f(x) ≥ f(u) + 〈v, x − u〉 − r
2‖x− u‖2 for all (u, v) ∈ (gph ∂f) ∩ Bε(x̄, v̄).

Moreover, we say that f is subdifferentially continuous at x̄ for v̄ if (xk, vk) → (x̄, v̄) with
vk ∈ ∂f(xk), one has f(xk) → f(x̄).

Corollary 3.9 (proto-differentiability under parabolic regularity). Let f : X → IR be prox-

regular and subdifferentially continuous at x̄ for v̄ and let f be parabolically epi-differentiable at

x̄ for every w ∈ Kf (x̄, v̄). If f is parabolically regular at x̄ for v̄, then the following equivalent

conditions hold:

(i) the function f is twice epi-differentiable at x̄ for v̄;
(ii) the subgradient mapping ∂f is proto-differentiable at x̄ for v̄.
Furthermore, the proto-derivative of the subgradient mapping ∂f at x̄ for v̄ can be calculated by

D(∂f)(x̄, v̄)(w) = ∂
(
1
2d

2f(x̄, v̄)
)
(w) for all w ∈ X. (3.21)

Proof. Note that v̄ ∈ ∂pf(x̄) since f is prox-regular at x̄ for v̄. Employing now Theorem 3.8
gives us (i). The equivalence between (i) and (ii) and the validity of (3.21) come from [21,
Theorem 13.40].
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4 Variational Properties of Parabolic Subderivatives

This section is devoted to second-order analysis of parabolic subderivatives of extended-real-
valued functions that are locally Lipschitz continuous relative to their domains. We pay special
attention to functions that are expressed as a composition of a convex function and a twice
differentiable function. We begin with the following result that gives us sufficient conditions for
finding the domain of the parabolic subderivative.

Proposition 4.1 (properties of parabolic subderivatives). Let f : X → IR be finite at x̄ and let

f be Lipschitz continuous around x̄ relative to its domain with constant ℓ ∈ IR+. Assume that

w ∈ Tdom f (x̄) and that f is parabolic epi-differentiable at x̄ for w. Then the following conditions

hold:

(i) domd2f(x̄)(w ·) = T 2
dom f (x̄, w);

(ii) dom f is parabolically derivable at x̄ for w.

Proof. Since w ∈ Tdom f (x̄), we conclude from Proposition 2.2 that df(x̄)(w) is finite. To
prove (i), observe first that by definition, we always have the inclusion

domd2f(x̄)(w ·) ⊂ T 2
dom f (x̄, w). (4.1)

To obtain the opposite inclusion, take z ∈ T 2
dom f (x̄, w). This tells us that there exist sequences

tk ↓ 0 and zk → z so that x̄+tkw+ 1
2 t

2
kzk ∈ dom f . Since f is parabolically epi-differentiable at x̄

for w, we have domd2f(x̄)(w ·) 6= ∅. Thus there exists a zw ∈ X such that d2f(x̄)(w zw) <∞.
Moreover, corresponding to the sequence tk, we find another sequence z′k → zw such that

d2f(x̄)(w zw) = lim
k→∞

f(x̄+ tkw + 1
2t

2
kz

′
k)− f(x̄)− tkdf(x̄)(w)
1
2t

2
k

.

Since d2f(x̄)(w zw) <∞, we can assume without loss of generality that x̄+tkw+ 1
2 t

2
kz

′
k ∈ dom f

for all k ∈ IN. Using these together with the Lipschitz continuity of f around x̄ relative to its
domain, we have for all k sufficiently large that

f(x̄+ tkw + 1
2t

2
kzk)− f(x̄)− tkdf(x̄)(w)

1
2t

2
k

=
f(x̄+ tkw + 1

2t
2
kz

′
k)− f(x̄)− tkdf(x̄)(w)
1
2t

2
k

+
f(x̄+ tkw + 1

2t
2
kzk)− f(x̄+ tkw + 1

2t
2
kz

′
k)

1
2t

2
k

≤
f(x̄+ tkw + 1

2t
2
kz

′
k)− f(x̄)− tkdf(x̄)(w)
1
2t

2
k

+ℓ‖zk − z′k‖.

Passing to the limit results in the inequality

d2f(x̄)(w z) ≤ d2f(x̄)(w zw) + ℓ‖z − zw‖, (4.2)

which in turn yields d2f(x̄)(w z) < ∞, i.e., z ∈ domd2f(x̄)(w ·). This justifies the opposite
inclusion in (4.1) and hence proves (i).

Turning now to (ii), we conclude from (4.1) and the parabolic epi-differentiability of f at x̄
for w that the second-order tangent set T 2

dom f (x̄, w) is nonempty. Moreover, it follows from [21,
Example 13.62(b)] that the parabolic epi-differentiability of f at x̄ for w yields the parabolic
derivability of epi f at (x̄, f(x̄)) for (w,df(x̄)(w)). The latter clearly enforces the same property
for dom f at x̄ for w and hence completes the proof.
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It is important to notice the parabolic epi-differentiability of f in Proposition 4.1 is essential
to ensure that condition (i) therein, namely the characterization of the domain of the parabolic
subderivative, is satisfied. Indeed, as mentioned in the proof of this proposition, inclusion
(4.1) always holds. If the latter condition fails, this inclusion can be strict. For example, the
function f from Example 3.5 is not parabolic epi-differentiable at x̄ = (0, 0) for any vector
w = (w1, w2) ∈ Kf (x̄, v̄) with w1 6= 0 since domd2f(x̄)(w ·) = ∅. On the other hand, we have
dom f = IR2 and thus T 2

dom f (x̄, w) = IR2 for any such a vector w ∈ Kf (x̄, v̄), and so condition
(i) in Proposition 4.1 fails.

Given a function f : X → IR finite at x̄, in the rest of this paper, we mainly focus on the
case when this function has a representation of the form

f(x) = (g ◦ F )(x) for all x ∈ O, (4.3)

where O is a neighborhood of x̄ and where the functions F and g are satisfying the following
conditions:

• F : X → Y is twice differentiable at x̄;
• g : Y → IR is proper, l.s.c., convex, and Lipschitz continuous around F (x̄) relative to its

domain with constant ℓ ∈ IR+.

It is not hard to see that the imposed assumptions on g from representation (4.3) implies that
dom g is locally closed around F (x̄), namely for some ε > 0 the set (dom g)∩Bε(F (x̄)) is closed.
Taking the neighborhood O from (4.3), we obtain

(dom f) ∩O =
{
x ∈ O| F (x) ∈ dom g

}
. (4.4)

It has been well understood that the second-order variational analysis of the composite form
(4.3) requires a certain qualification condition. The following definition provides the one we
utilize in this paper.

Definition 4.2 (metric subregularity constraint qualification). Assume that the function f :
X → IR has representation (4.3) around x̄ ∈ dom f . We say that the metric subregularity

constraint qualification holds for the constraint set (4.4) at x̄ if there exist a constants κ ∈ IR+

and a neighborhood U of x̄ such that

d(x,dom f) ≤ κ d(F (x),dom g) for all x ∈ U. (4.5)

By definition, the metric subregularity constraint qualification for the constraint set (4.4) at
x̄ amounts to the metric subregularity of the mapping x 7→ F (x) − dom g at (x̄, 0). The more
traditional and well known constraint qualification for (4.3) is

∂∞g
(
F (x̄)

)
∩ ker∇F (x̄)∗ = {0},

where ∂∞ϕ(x̄) stands for the singular subdifferential of ϕ : IRn → IR at x̄ ∈ domϕ defined by

∂∞ϕ(x̄) :=
{
v ∈ IRn

∣∣ (v, 0) ∈ Nepiϕ

(
x̄, ϕ(x̄)

)}
.

By the coderivative criterion from [12, Theorem 3.3], the latter constraint qualification amounts
to the metric regularity of the mapping (x, α) 7→ (F (x), α) − epi g around

(
(x̄, g(F (x̄))), (0, 0)

)
.

Since g is convex, by [12, Proposition 1.25], the aforementioned constraint qualification can be
equivalently written as

Ndom g

(
F (x̄)

)
∩ ker∇F (x̄)∗ = {0}, (4.6)

which by the coderivative criterion from [12, Theorem 3.3] is equivalent to the metric regularity
of the mapping x 7→ F (x) − dom g around (x̄, 0). Thus, for the composite form (4.3), the
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metric regularity of (x, α) 7→ (F (x), α) − epi g around
(
(x̄, g(F (x̄))), (0, 0)

)
amounts to that of

x 7→ F (x)− dom g around (x̄, 0). This may not be true if the metric regularity is replaced with
the metric subregularity; see [13, Proposition 3.1] and [13, Example 3.3] for more details and
discussions about these conditions. So, it is worth reiterating that instead of using the metric
subregularity of the epigraphical mapping, our second-order variational analysis will be carried
out under a weaker (and simpler) metric subregularity of the domain mapping.

As observed recently in [13], (4.5) suffices to conduct first- and second-order variational
analysis of (4.3) when the convex function g therein is merely piecewise linear-quadratic. In
what follows, we will show using a different approach that such results can be achieved for (4.3)
as well. We continue our analysis by recalling the following first- and second-order chain rules,
obtained recently in [13,14].

Proposition 4.3 (first- and second-order chain rules). Let f : X → IR have the composite

representation (4.3) at x̄ ∈ dom f and v̄ ∈ ∂f(x̄) and let the metric subregularity constraint

qualification hold for the constraint set (4.4) at x̄. Then the following hold:

(i) for any w ∈ X, the following subderivative chain rule for f at x̄ holds:

df(x̄)(w) = dg(F (x̄))(∇F (x̄)w);

(ii) we have the chain rules

∂pf(x̄) = ∂f(x̄) = ∇F (x̄)∗∂g(F (x̄)) and Tdom f (x̄) =
{
w ∈ X| ∇F (x̄)w ∈ Tdom g(F (x̄))

}
.

If, in addition, w ∈ Tdom f (x̄) and the function g from (4.3) is parabolically epi-differentiable at

F (x̄) for ∇F (x̄)w, then we have

z ∈ T 2
dom f (x̄, w) ⇐⇒ ∇F (x̄)z +∇2F (x̄)(w,w) ∈ T 2

dom g

(
F (x̄),∇F (x̄)w

)
. (4.7)

Moreover, dom f is parabolically derivable at x̄ for w.

Proof. The subderivative chain rule in (i) was established recently in [13, Theorem 3.4]. The
subdifferential chain rule in (ii) was taken from [13, Theorem 3.6]. As mentioned in Section 2,
the inclusion ∂pf(x̄) ⊂ ∂f(x̄) always holds. The opposite inclusion can be justified using the
aforementioned subdifferential chain rule and the convexity of g; see [13, Theorem 4.4] for a
similar result. The chain rule for the tangent cone to dom f at x̄ results from Proposition 2.2
and the subderivative chain rule for f at x̄ in (i). If in addition w ∈ Tdom f (x̄) and g is
parabolically epi-differentiable at F (x̄) for ∇F (x̄)w, then it follows from Proposition 4.1 that
dom g is parabolically derivable at F (x̄) for ∇F (x̄)w. Appealing now to [14, Theorem 4.5]
implies that dom f is parabolically derivable at x̄ for w. Finally, the chain rule (4.7) was taken
from [14, Theorem 4.5]. This completes the proof.

We continue by establishing a chain rule for the parabolic subderivative, which is important
for our developments in the next section.

Theorem 4.4 (chain rule for parabolic subderivatives). Let f : X → IR have the composite

representation (4.3) at x̄ ∈ dom f and w ∈ Tdom f (x̄) and let the metric subregularity constraint

qualification hold for the constraint set (4.4) at x̄. Assume that the function g from (4.3) is

parabolically epi-differentiable at F (x̄) for ∇F (x̄)w. Then the following conditions are satisfied:

(i) for any z ∈ X we have

d2f(x̄)(w z) = d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w)); (4.8)
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(ii) the domain of the parabolic subderivative of f at x̄ for w is given by

domd2f(x̄)(w ·) = T 2
dom f (x̄, w);

(iii) f is parabolically epi-differentiable at x̄ for w.

Proof. Pick z ∈ X and set u := ∇F (x̄)z + ∇2F (x̄)(w,w). We prove (i)-(iii) in a parallel
way. Assume that z /∈ T 2

dom f (x̄, w). As mentioned in the proof of Proposition 4.1, inclusion

(4.1) always holds. This implies that d2f(x̄)(w z) = ∞. On the other hand, by (4.7) we get
u /∈ T 2

dom g

(
F (x̄),∇F (x̄)w

)
. Employing Proposition 4.1(i) for the function g and ∇F (x̄)w ∈

Tdom g(F (x̄)) gives us

domd2g(F (x̄))(∇F (x̄)w ·) = T 2
dom g(F (x̄),∇F (x̄)w). (4.9)

Combining these tells us that d2g(F (x̄))(∇F (x̄)w u) = ∞, which in turn justifies (4.8) for every
z /∈ T 2

dom f (x̄, w). Consider an arbitrary sequence tk ↓ 0 and set zk := z for all k ∈ IN. Then we
have

d2f(x̄)(w z) ≤ lim inf
k→∞

f(x̄+ tkw + 1
2 t

2
kzk)− f(x̄)− tkdf(x̄)(w)

1
2 t

2
k

≤ lim sup
k→∞

f(x̄+ tkw + 1
2t

2
kzk)− f(x̄)− tkdf(x̄)(w)

1
2t

2
k

≤ ∞ = d2f(x̄)(w z),

which in turn justifies (3.11) for all z /∈ T 2
dom f (x̄, w).

Since g is parabolically epi-differentiable at F (x̄) for ∇F (x̄)w, Proposition 4.1(ii) tells us
that dom g is parabolically derivable at F (x̄) for ∇F (x̄)w. We conclude from Proposition 4.3
that dom f is parabolically derivable at x̄ for w. In particular, we have

T 2
dom f (x̄, w) 6= ∅. (4.10)

Pick now z ∈ T 2
dom f (x̄, w) and then consider an arbitrary sequence tk ↓ 0. Thus, by definition,

for the aforementioned sequence tk, we find a sequence zk → z as k → ∞ such that

xk := x̄+ tkw +
1

2
t2kzk ∈ dom f for all k ∈ IN. (4.11)

Moreover, since g is parabolically epi-differentiable at F (x̄) for ∇F (x̄)w, we find a sequence
uk → u such that

d2g(F (x̄))(∇F (x̄)w u) = lim
k→∞

g(F (x̄) + tk∇F (x̄)w + 1
2t

2
kuk)− g(F (x̄))− tkdg(F (x̄))(∇F (x̄)w)

1
2t

2
k

.

(4.12)
It follows from (4.7) that u ∈ T 2

dom g

(
F (x̄),∇F (x̄)w

)
. Combining this with (4.9) tells us that

d2g(F (x̄))(∇F (x̄)w u) <∞. This implies that yk := F (x̄)+ tk∇F (x̄)w+ 1
2t

2
kuk ∈ dom g for all

k sufficiently large. Remember that g is Lipschitz continuous around F (x̄) relative to its domain
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with constant ℓ. Using this together with Proposition 4.3(i), (4.11), and (4.12), we obtain

d2f(x̄)(w z) ≤ lim inf
k→∞

f(x̄+ tkw + 1
2t

2
kzk)− f(x̄)− tkdf(x̄)(w)

1
2 t

2
k

≤ lim sup
k→∞

f(x̄+ tkw + 1
2t

2
kzk)− f(x̄)− tkdf(x̄)(w)

1
2t

2
k

= lim sup
k→∞

g(F (xk))− g(F (x̄))− tkdg(F (x̄))(∇F (x̄)w)
1
2t

2
k

≤ lim
k→∞

g(yk)− g(F (x̄))− tkdg(F (x̄))(∇F (x̄)w)
1
2 t

2
k

+ lim sup
k→∞

g(F (xk))− g(yk)
1
2t

2
k

≤ d2g(F (x̄))(∇F (x̄)w u) + lim sup
k→∞

ℓ‖∇F (x̄)zk +∇2F (x̄)(w,w) − uk +
o(t2k)

t2k
‖

= d2g(F (x̄))(∇F (x̄)w u). (4.13)

On the other hand, it is not hard to see that for any z ∈ X, we always have

d2g(F (x̄))(∇F (x̄)w u) ≤ d2f(x̄)(w z).

Combining this and (4.13) implies that

d2f(x̄)(w z) = d2g(F (x̄))(∇F (x̄)w u)

and that

d2f(x̄)(w z) = lim
k→∞

f(x̄+ tkw + 1
2t

2
kzk)− f(x̄)− tkdf(x̄)(w)

1
2t

2
k

.

These prove (4.8) and (3.11) for any z ∈ T 2
dom f (x̄, w), respectively, and hence we finish the proof

of (i).
Next, we are going to verify (ii). We already know that inclusion (4.1) always holds. To derive

the opposite inclusion, pick z ∈ T 2
dom f (x̄, w), which amounts to u ∈ T 2

dom g

(
F (x̄),∇F (x̄)w

)
due

to (4.7). By (i) and (4.9), we obtain

d2f(x̄)(w z) = d2g(F (x̄))(∇F (x̄)w u) <∞.

This tells us that z ∈ domd2f(x̄)(w ·) and hence completes the proof of (ii).
Finally, to justify (iii), we require to prove the fulfillment of (3.11) for all z ∈ X and to show

that domd2f(x̄)(w ·) 6= ∅. The former was proven above and so we proceed with the proof
of the latter. This, indeed, follows from (4.10) and the characterization of domd2f(x̄)(w ·),
achieved in (ii), and thus completes the proof.

It is worth mentioning that a chain rule for parabolic subderivatives for the composite form
(4.3) was achieved in [21, Exercise 13.63] and [2, Proposition 3.42] when g is merely a proper l.s.c.
function and the basic constraint qualification (4.6) is satisfied. Replacing the latter condition
with the significantly weaker condition (4.5), we can achieve a similar result if we assume further
that g is convex and locally Lipschitz continuous relative to its domain. Another important
difference between Theorem 4.4 and those mentioned above is that the chain rule (4.8) obtained
in [2, 21] does not require the parabolic epi-differentiability of g. Indeed, the usage of the basic
constraint qualification (4.6) in [2,21] allows to achieve (4.8) via a chain rule for the epigraphs of
f and g similar to the one in (4.7), which is not conceivable under (4.5). These extra assumptions
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on g automatically fulfill in many important composite and constrained optimization problems
and so do not seem to be restrictive in our developments.

We continue by establishing two important properties for parabolic subderivatives that play
crucial roles in our developments in the next section. One notable difference between the fol-
lowing results and those obtained in Proposition 4.1 and Theorem 4.4 is that we require the
parabolic subderivative be proper. This can be achieved if the parabolic subderivative is bounded
below. In general, we may not be able to guarantee this. It turns out, however, that if the vector
w in the pervious results is taken from the critical cone to the function in question, which is a
subset of the tangent cone to the domain of that function, this can be accomplished via (3.14).
Since we only conduct our analysis in the next section over the critical cone, this will provide no
harm. Below, we first show that the parabolic subderivative of an extended-real-valued function,
which is locally Lipschitz continuous relative to its domain, is Lipschitz continuous relative to
its domain.

Proposition 4.5 (Lipschitz continuity of of parabolic subderivatives). Let ψ : X → IR be finite

at x̄ and v̄ ∈ ∂pψ(x̄), and let ψ be Lipschitz continuous around x̄ relative to its domain with

constant ℓ ∈ IR+. Assume that w ∈ Kψ(x̄, v̄) and that ψ is parabolically epi-differentiable at x̄
for w. Then the parabolic subderivative d2ψ(x̄)(w ·) is proper, l.s.c., and Lipschitz continuous

relative to its domain with constant ℓ.

Proof. Since ψ is parabolically epi-differentiable at x̄ for w, we get domd2ψ(x̄)(w ·) 6= ∅. Let
z ∈ domd2ψ(x̄)(w ·). By Proposition 3.4, we find r ∈ IR+ such that

− r‖w‖2 ≤ d2ψ(x̄ v̄)(w) ≤ d2ψ(x̄)(w z)− 〈z, v̄〉. (4.14)

This tells us that d2ψ(x̄)(w z) is finite for every z ∈ domd2ψ(x̄)(w ·) and thus the parabolic
subderivative d2ψ(x̄)(w ·) is proper. Pick now zi ∈ domd2ψ(x̄)(w ·) for i = 1, 2. By
Proposition 4.1(i), we have zi ∈ T 2

domψ(x̄, w) for i = 1, 2. Letting z := z1 and zw := z2 in (4.2)
results in

d2ψ(x̄)(w z1) ≤ d2ψ(x̄)(w z2) + ℓ‖z1 − z2‖.

Similarly, we can let z := z2 and zw := z1 in (4.2) and obtain

d2ψ(x̄)(w z2) ≤ d2ψ(x̄)(w z1) + ℓ‖z1 − z2‖.

Combining these implies that the parabolic subderivative is Lipschitz continuous relative to its
domain. By [21, Proposition 13.64], the parabolic subderivative is always an l.s.c. function,
which completes the proof.

We end this section by obtaining an exact formula for the conjugate function of the parabolic
subderivative of a convex function.

Proposition 4.6 (conjugate of parabolic subderivatives). Let ψ : X → IR be an l.s.c. convex

function with ψ(x̄) finite, v̄ ∈ ∂ψ(x̄), and w ∈ Kψ(x̄, v̄). Define the function ϕ by ϕ(z) :=
d2ψ(x̄)(w z) for any z ∈ X. If ψ is parabolically epi-differentiable at x̄ for w and parabolically

regular at x̄ for every v ∈ ∂ψ(x̄), then ϕ is a proper, l.s.c., and convex function and its conjugate

function is given by

ϕ∗(v) =

{
−d2ψ(x̄, v)(w) if v ∈ A(x̄, w),

∞ otherwise,
(4.15)

where A(x̄, w) := {v ∈ ∂ψ(x̄)|dψ(x̄)(w) = 〈v,w〉}.

18



Proof. It follows from [21, Proposition 13.64] that ϕ is l.s.c. Using similar arguments as the
beginning of the proof of Proposition 4.5 together with (4.14) tells us that ϕ is proper. Also we
deduce from [21, Example 13.62] that

epiϕ = T 2
epiψ

(
(x̄, ψ(x̄)), (w,dψ(x̄)(w))

)
,

and thus the parabolic epi-differentiability of ψ at x̄ for w amounts to the parabolic derivability
of epiψ at (x̄, ψ(x̄)) for (w,dψ(x̄)(w)). The latter combined with the convexity of ψ tells us
that epiϕ is a convex set in X× IR and so ϕ is convex.

To verify (4.15), pick v ∈ A(x̄, w). This yields v ∈ ∂ψ(x̄) = ∂pψ(x̄) and w ∈ Kψ(x̄, v),
namely the critical cone of ψ at (x̄, v). Using Proposition 3.6 and parabolic regularity of ψ at x̄
for v implies that

d2ψ(x̄, v)(w) = inf
z∈X

{
d2ψ(x̄)(w z)− 〈z, v〉

}
= −ϕ∗(v),

which clearly proves (4.15) in this case. Assume now that v /∈ A(x̄, w). This means either
v /∈ ∂ψ(x̄) or dψ(x̄)(w) 6= 〈v,w〉. Define the parabolic difference quotients for ψ at x̄ for w by

ϑt(z) =
ψ(x̄+ tw + 1

2t
2z)− ψ(x̄)− tdψ(x̄)(w)

1
2t

2
, z ∈ X, t > 0.

It is not hard to see that ϑt are proper, convex, and

ϑ∗t (v) =
ψ(x̄) + ψ∗(v)− 〈v, x̄〉

1
2t

2
+

dψ(x̄)(w)− 〈v,w〉
1
2t

, v ∈ X.

Remember that by [21, Definition 13.59] the parabolic epi-differentiability of ψ at x̄ for w
amounts to the sets epiϑt converging to epiϕ as t ↓ 0 and that the functions ϑt and ϕ are
proper, l.s.c. and convex. Appealing to [21, Theorem 11.34] tells us that the former is equivalent
to the sets epiϑ∗t converging to epiϕ∗ as t ↓ 0. This, in particular, means that for any v /∈ A(x̄, w)
and any sequence tk ↓ 0, there exists a sequence vk → v such that

ϕ∗(v) = lim
k→∞

ϑ∗tk(vk).

If v /∈ ∂ψ(x̄), then we have
ψ(x̄) + ψ∗(v)− 〈v, x̄〉 > 0.

Since ψ∗ is l.s.c., we get

lim inf
k→∞

ψ(x̄) + ψ∗(vk)− 〈vk, x̄〉
1
2 tk

+
dψ(x̄)(w) − 〈vk, w〉

1
2

≥ ∞,

which in turn confirms that

ϕ∗(v) = lim
k→∞

ϑ∗tk(vk) = lim
k→∞

1

tk

(ψ(x̄) + ψ∗(vk)− 〈vk, x̄〉
1
2 tk

+
dψ(x̄)(w) − 〈vk, w〉

1
2

)
= ∞.

If v ∈ ∂ψ(x̄) but dψ(x̄)(w) 6= 〈v,w〉, we obtain 〈v,w〉 < dψ(x̄)(w). Since we always have

ψ(x̄) + ψ∗(vk)− 〈vk, x̄〉 ≥ 0 for all k ∈ IN,

we arrive at

ϕ∗(v) = lim
k→∞

ϑ∗tk(vk) ≥ lim
k→∞

dψ(x̄)(w) − 〈vk, w〉
1
2 tk

= ∞,

which justifies (4.15) when v /∈ A(x̄, w) and hence finishes the proof.
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Proposition 4.6 was first established using a different method in [18, Proposition 3.5] for
convex piecewise linear-quadratic functions. It was extended in [7, Theorem 3.1] for any convex
functions under a restrictive assumption. Indeed, this result demands that the second sub-
derivative be the same as the second-order directional derivative. Although this condition holds
for convex piecewise linear-quadratic functions, it fails for many important functions occurring
in constrained and composite optimization problems including the set indicator functions and
eigenvalue functions. As discussed below, however, our assumptions are satisfied for all these
examples.

Example 4.7. Suppose that g : Y → IR is an l.s.c. convex function and z̄ ∈ Y.
(a) If Y = IRm, g is convex piecewise linear-quadratic (Example 3.2), and z̄ ∈ dom g, then

it follows from Example 3.2 and [21, Exercise 13.61] that g is parabolically regular at z̄
for every y ∈ ∂g(z̄) and parabolically epi-differentiable at z̄ for every w ∈ domdg(z̄),
respectively, and thus all the assumptions of Proposition 4.6 are satisfied for this function.

(b) If Y = S
m, g is either the maximum eigenvalue function λmax from (3.9) or the function

σi from (3.10), and A ∈ S
n, then by Example 3.3 g is parabolically regular at A for every

V ∈ ∂g(A). Moreover, we deduce from [23, Proposition 2.2] that g is parabolically epi-
differentiable at A for every W ∈ S

n and thus all the assumptions of Proposition 4.6 are
satisfied for these functions.

(c) If g = δC and z̄ ∈ C, where C is a closed convex set in Y that is parabolically derivable at
z̄ for every w ∈ TC(z̄) and parabolically regular at z̄ for every v ∈ NC(z̄), then g satisfies
the assumptions imposed in Proposition 4.6. This example of g was recently explored
in detail in [14] and encompasses important sets appearing in constrained optimization
problems such as polyhedral convex sets, the second-order cone, and the cone of positive
semidefinite symmetric matrices.

(d) Assume that g is differentiable at z̄ and that there exists a continuous function h : Y → IR,
which is positively homogeneous of degree 2, such that

g(z) = g(z̄) + 〈∇g(z̄), z − z̄〉+ 1
2h(z − z̄) + o(‖z − z̄‖2).

Such a function g is called twice semidifferentiable (cf. [21, Example 13.7]) and often
appears in the augmented Lagrangian function associated with (1.1); see [14, Section 8] for
more detail. This second-order expansion clearly justifies the parabolic epi-differentiability
of g at z̄ for every w ∈ Y. Moreover, one has

d2g(z̄,∇g(z̄))(w) = h(w) = d2g(z̄)(w u)− 〈∇g(z̄), u〉 for all u,w ∈ Y,

which in turn shows that g is parabolically regular at z̄ for ∇g(z̄) due to Proposition 3.6.

It is important to mention that the restrictive assumption on the second subderivative, used
in [7, Theorem 3.1], does not hold for cases (b)-(d) in Example 4.7.

5 A Chain Rule for Parabolically Regular Functions

Our main objective in this section is to derive a chain rule for the parabolic regularity of the
composite representation (4.3). This opens the door to obtain a chain rule for the second
subderivative, and, more importantly, allows us to establish the twice epi-differentiability of the
latter composite form.

Taking into account representation (4.3) and picking a subgradient v̄ ∈ ∂f(x̄), we define the
set of Lagrangian multipliers associated with (x̄, v̄) by

Λ(x̄, v̄) =
{
y ∈ Y| ∇F (x̄)∗y = v̄, y ∈ ∂g(F (x̄))

}
.
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In what follows, we say that a function f : X → IR with (x̄, v̄) ∈ gph ∂f and having the
composite representation (4.3) at x̄ satisfies the basic assumptions at (x̄, v̄) if in addition the
following conditions fulfill:

(H1) the metric subregularity constraint qualification holds for the constraint set (4.4) at x̄;
(H2) for any y ∈ Λ(x̄, v̄), the function g from (4.3) is parabolically epi-differentiable at F (x̄) for

every u ∈ Kg(F (x̄), y);
(H3) for any y ∈ Λ(x̄, v̄), the function g is parabolically regular at F (x̄) for y.

We begin with the following result in which we collect lower and upper estimates for the
second subderivative of f taken from (4.3).

Proposition 5.1 (properities of second subderivatives for composite functions). Let f : X → IR
have the composite representation (4.3) at x̄ ∈ dom f , v̄ ∈ ∂f(x̄), and let the basic assumptions

(H1) and (H2) hold for f at (x̄, v̄). Then the second subderivative d2f(x̄, v̄) is a proper l.s.c.

function with

domd2f(x̄, v̄) = Kf (x̄, v̄). (5.1)

Moreover, for every w ∈ X we have the lower estimate

d2f(x̄, v̄)(w) ≥ sup
y∈Λ(x̄,v̄)

{
〈y,∇2F (x̄)(w,w)〉 + d2g(F (x̄), y)(∇F (x̄)w)

}
, (5.2)

while for every w ∈ Kf (x̄, v̄) we obtain the upper estimate

d2f(x̄, v̄)(w) ≤ inf
z∈X

{
− 〈z, v̄〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w))

}
<∞. (5.3)

Proof. By Proposition 4.3(ii), we have ∂pf(x̄) = ∂f(x̄). Appealing now to Propositions 2.1(iii)
and 3.4 confirms, respectively, that d2f(x̄, v̄) is a proper l.s.c. function and that (5.1) holds. The
lower estimate (5.2) can be justified as [21, Theorem 13.14] in which this estimate was derived
under condition (4.6). To obtain (5.3), observe first that the basic assumption (H1) yields

w ∈ Kf (x̄, v̄) ⇐⇒ ∇F (x̄)w ∈ Kg(F (x̄), y) (5.4)

for every y ∈ Λ(x̄, v̄). Pick w ∈ Kf (x̄, v̄). Since g is parabolically epi-differentiable at F (x̄) for
∇F (x̄)w due to (H2), Theorem 4.4(iii) implies that f is parabolically epi-differentiable at x̄ for
w, and so domd2f(x̄)(w ·) 6= ∅. This combined with (3.14) and (4.8) results in (5.3) and hence
completes the proof.

While looking simple, the above result carries important information by which we can achieve
a chain rule for the second subderivative. To do so, we should look for conditions under which the
lower and upper estimates (5.2) and (5.3), respectively, coincide. This motivates us to consider
the unconstrained optimization problem

min
z∈X

−〈z, v̄〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w)). (5.5)

When the basic assumptions (H1)-(H3) are satisfied, (5.5) is a convex optimization problem for
any w ∈ Kf (x̄, v̄). Using Proposition 4.6 allows us to obtain the dual problem of (5.5) and then
examine whether their optimal values coincide. We pursue this goal in the following result.

Theorem 5.2 (duality relationships). Let f : X → IR have the composite representation (4.3)
at x̄ ∈ dom f , v̄ ∈ ∂f(x̄), and let the basic assumptions (H1)-(H3) hold for f at (x̄, v̄). Then for

each w ∈ Kf (x̄, v̄), the following assertions are satisfied:
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(i) the dual problem of (5.5) is given by

max
y∈Y

〈y,∇2F (x̄)(w,w)〉 + d2g(F (x̄), y)(∇F (x̄)w) subject to y ∈ Λ(x̄, v̄); (5.6)

(ii) the optimal values of the primal and dual problems (5.5) and (5.6), respectively, are finite

and coincide; moreover, we have Λ(x̄, v̄, w) ∩ (τB) 6= ∅, where Λ(x̄, v̄, w) stands for the set

of optimal solutions to the dual problem (5.6) and where

τ := κℓ‖∇F (x̄)‖+ κ‖v̄‖+ ℓ (5.7)

with ℓ and κ taken from (4.3) and (4.5), respectively.

Proof. Pick w ∈ Kf (x̄, v̄) and observe from (5.4) that ∇F (x̄)w ∈ Kg(F (x̄), y) for all y ∈
Λ(x̄, v̄). This together with Proposition 4.6 ensures that the parabolic subderivative of g at F (x̄)
for∇F (x̄)w is a proper, l.s.c., and convex function. Using this combined with [21, Example 11.41]
and (4.15) tells us that the dual problem of (5.5) is

max
y∈Y

〈y,∇2F (x̄)(w,w)〉 + d2g(F (x̄), y)(∇F (x̄)w) subject to y ∈ Λ(x̄, v̄) ∩D,

where D := {y ∈ Y|dg(F (x̄))(∇F (x̄)w) = 〈y,∇F (x̄)w〉}. Since ∇F (x̄)w ∈ Kg(F (x̄), y) for all
y ∈ Λ(x̄, v̄), we obtain

y ∈ Λ(x̄, v̄) ∩ D ⇐⇒ y ∈ Λ(x̄, v̄).

Combining these confirms that the dual problem of (5.5) is equivalent to (5.6) and thus finishes
the proof of (i). To prove (ii), consider the optimal value function ϑ : Y → [−∞,∞], defined by

ϑ(p) = inf
z∈X

{
− 〈v̄, z〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w) + p)

}
, p ∈ Y. (5.8)

We proceed with the following claim:
Claim.We have ∂ϑ(0) 6= ∅.
To justify the claim, we first need to show ϑ(0) ∈ IR. To do so, observe that v̄ ∈ ∂f(x̄) =

∂pf(x̄) due to Proposition 4.3(ii). Thus, it follows from Proposition 2.1(iii) and (5.3) that there
is a constant r ∈ IR+ such that for any w ∈ Kf (x̄, v̄) we have

−r‖w‖2 ≤ d2f(x̄, v̄)(w) ≤ ϑ(0) <∞,

which in turn implies that ϑ(0) ∈ IR. Next, we are going to show that

ϑ(p) ≥ ϑ(0)− τ‖p‖ for all p ∈ X, (5.9)

where τ is taken from (5.7). To this end, take (p, z) ∈ Y× X such that

up := ∇F (x̄)z +∇2F (x̄)(w,w) + p ∈ domd2g(F (x̄))(∇F (x̄)w ·).

By (4.9), we get up ∈ T 2
dom g(F (x̄),∇F (x̄)w). Define now the set-valued mapping Sw : Y ⇒ X

by
Sw(p) :=

{
z ∈ X| ∇F (x̄)z +∇2F (x̄)(w,w) + p ∈ T 2

dom g(F (x̄),∇F (x̄)w)
}
, p ∈ Y.

So, we get z ∈ Sw(p). It was recently observed in [14, Theorem 4.3] that the mapping Sw enjoys
the uniform outer Lipschitzian property at 0 with constant κ taken from (4.5), namely for every
p ∈ Y we have

Sw(p) ⊂ Sw(0) + κ‖p‖B.
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This combined with z ∈ Sw(p) results in the existence of z0 ∈ Sw(0) and b ∈ B such that
z = z0 + κ‖p‖b. It follows from (4.9) and z0 ∈ Sw(0) that

∇F (x̄)z0 +∇2F (x̄)(w,w) ∈ domd2g(F (x̄))(∇F (x̄)w ·).

Since we have
up −

(
∇F (x̄)z0 +∇2F (x̄)(w,w)

)
= p+ κ‖p‖∇F (x̄)b,

and since the parabolic subderivative d2g(F (x̄))(∇F (x̄)w ·) is Lipschitz continuous relative to
its domain due to Proposition 4.5, we get the relationships

−〈v̄, z〉+ d2g(F (x̄))(∇F (x̄)w up) ≥ −〈v̄, z0〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z0 +∇2F (x̄)(w,w))

−ℓ ‖p+ κ ‖p‖∇F (x̄)b ‖ − κ‖p‖〈v̄, b〉

≥ ϑ(0)−
(
ℓκ‖∇F (x̄)‖+ κ‖v̄‖+ ℓ

)
‖p‖,

which together with (5.7) justify (5.9). Remember that the parabolic subderivative of g at F (x̄)
for ∇F (x̄)w is a proper and convex function. This implies that the function

(z, p) 7→ −〈v̄, z〉 + d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w) + p)

is convex on X × Y. Using this together with [21, Proposition 2.22] tells us that ϑ is a convex
function on Y. Thus, we conclude from (5.9) and [14, Proposition 5.1] that there exists a
subgradient ȳ of ϑ at 0 such that

ȳ ∈ ∂ϑ(0) ∩ (τB), (5.10)

which completes the proof of the claim.
Employing now (5.10) and [2, Theorem 2.142] confirms that the optimal values of the primal

and dual problems (5.5) and (5.6), respectively, coincide and that

Λ(x̄, v̄, w) = ∂ϑ(0).

This together with (5.10) justifies (ii) and hence completes the proof.

The above theorem extends the recent results obtained in [14, Propositions 5.4 & 5.5] for
constraint sets, namely when the function g in (4.3) is the indicator function of a closed convex
set. We should add here that for constraint sets, the dual problem (5.6) can be obtained via
elementary arguments. However, for the composite form (4.3) a similar result requires using
rather advanced theory of epi-convergence.

Remark 5.3 (duality relationship under metric regularity). In the framework of Theorem 5.2,
we want to show that replacing assumption (H1) with the strictly stronger constraint qualifica-
tion (4.6) allows us not only to drop the imposed Lipschitz continuity of g from (4.3) but also
to simplify the proof of Theorem 5.2. To this end, let w ∈ Kf (x̄, v̄) and define the function

ψ(u) := d2g(F (x̄))(∇F (x̄)w u), u ∈ X.

By Proposition 4.6, ψ is a proper, l.s.c., and convex function. Employing [21, Proposition 13.12]
tells us that

Tepi g(p) + T 2
epi g

(
p, q) ⊂ T 2

epi g

(
p, q) = epiψ, (5.11)

where p :=
(
F (x̄), g(F (x̄))

)
and q :=

(
∇F (x̄)w,dg(F (x̄))(∇F (x̄)w)

)
and where the equality in

the right side comes from [21, Example 13.62(b)]. We are going to show that the validity of
(4.6) yields

Ndomψ(u) ∩ ker∇F (x̄)∗ = {0} (5.12)
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for any u ∈ domψ. To this end, pick u ∈ domψ and conclude from (5.11) and [21, Exercise 6.44]
that

Nepiψ

(
u, ψ(u)

)
⊂ NTepi g(p)

(0) ∩Nepiψ

(
u, ψ(u)

)
= Nepi g(p) ∩Nepiψ

(
u, ψ(u)

)
.

This together with (4.6) and the relationship Ndomψ(u) = ∂∞ψ(u) stemming from the convexity
of ψ confirms the validity of (5.12). Appealing now to [2, Theorem 2.165] gives another proof
of Theorem 5.2 when assumption (H1) therein is replaced with the strictly stronger constraint
qualification (4.6).

The established duality relationships in Theorem 5.2 open the door to derive a chain rule
for parabolically regular functions and to find an exact chain rule for the second subderivative
of the composite function (4.3) under our basic assumptions.

Theorem 5.4 (chain rule for parabolic regularity). Let f : X → IR have the composite repre-

sentation (4.3) at x̄ ∈ dom f , v̄ ∈ ∂f(x̄), and let the basic assumptions (H1)-(H3) hold for f
at (x̄, v̄). Then f is parabolically regular at x̄ for v̄. Furthermore, for every w ∈ X, the second

subderivative of f at x̄ for v̄ is calculated by

d2f(x̄, v̄)(w) = max
y∈Λ(x̄,v̄)

{
〈y,∇2F (x̄)(w,w)〉 + d2g(F (x̄), y)(∇F (x̄)w)

}
(5.13)

= max
y∈Λ(x̄,v̄)∩ (τB)

{
〈y,∇2F (x̄)(w,w)〉 + d2g(F (x̄), y)(∇F (x̄)w)

}
,

where τ is taken from (5.7).

Proof. It was recently observed in [13, Corollary 3.7] that the Lagrange multiplier set Λ(x̄, v̄)
enjoys the following property:

Λ(x̄, v̄) ∩ (τB) 6= ∅. (5.14)

Take w ∈ Kf (x̄, v̄). By (5.2) and Theorem 5.2(ii), we obtain

max
y∈Λ(x̄,v̄)

{
〈y,∇2F (x̄)(w,w)〉 + d2g(F (x̄), y)(∇F (x̄)w)

}
≤ d2f(x̄, v̄)(w). (5.15)

On the other hand, using (3.14), (4.8), and Theorem 5.2(ii), respectively, gives us the inequalities

d2f(x̄, v̄)(w) ≤ inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}

= inf
z∈X

{
− 〈z, v̄〉+ d2g(F (x̄))(∇F (x̄)w ∇F (x̄)z +∇2F (x̄)(w,w))

}

= max
y∈Λ(x̄,v̄)∩ (τB)

{
〈y,∇2F (x̄)(w,w)〉 + d2g(F (x̄), y)(∇F (x̄)w)

}
.

These combined with (5.15) ensure that the claimed second subderivative formulas for f at x̄
for v̄ hold for any w ∈ Kf (x̄, v̄) and that

d2f(x̄, v̄)(w) = inf
z∈X

{
d2f(x̄)(w z)− 〈z, v̄〉

}
for all w ∈ Kf (x̄, v̄).

Appealing now to Proposition 3.6, we conclude that f is parabolically regular at x̄ for v̄.
What remains is to validate the second subderivative formulas for w /∈ Kf (x̄, v̄). It fol-

lows from Theorem 4.4(iii) that f is parabolically epi-differentiable at x̄ for every w ∈ Kf (x̄, v̄)
and thus domd2f(x̄)(w ·) 6= ∅ for every w ∈ Kf (x̄, v̄). So, by Proposition 3.4 we have
domd2f(x̄, v̄) = Kf (x̄, v̄). Since the second subderivative d2f(x̄, v̄) is a proper function, we ob-
tain d2f(x̄, v̄)(w) = ∞ for all w /∈ Kf (x̄, v̄). On the other hand, we understand from (5.4)
that w /∈ Kf (x̄, v̄) amounts to ∇F (x̄)w /∈ Kg(F (x̄), y) for every y ∈ Λ(x̄, v̄). Combining
the basic assumption (H2) and Proposition 3.4 tells us that for every y ∈ Λ(x̄, v̄) we have
d2g(F (x̄), y)(∇F (x̄)w) = ∞ whenever w /∈ Kf (x̄, v̄). This together with (5.14) confirms that
both sides in (5.13) are ∞ for every w /∈ Kf (x̄, v̄) and thus the claimed formulas for the second
subderivative of f hold for this case. This completes the proof.
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A chain rule for parabolic regularity of the composite function (4.3), where g is not necessar-
ily locally Lipschitz continuous relative to its domain, was established in [2, Proposition 3.104].
The assumptions utilized in the latter result were stronger than those used in Theorem 5.4.
Indeed, [2, Proposition 3.104] assumes that g is second-order regular in the sense of [2, Defini-
tion 3.93] and the basic constraint qualification (4.6) is satisfied and uses a different approach
to derive this result. When g is a convex piecewise linear-quadratic, parabolic regularity of the
composite function (4.3) was established in [21, Theorem 13.67] under the stronger condition
(4.6). Theorem 5.4 covers the aforementioned results and shows that we can achieve a similar
conclusion under the significantly weaker condition (4.5).

As an immediate consequence of the above theorem, we can easily guarantee the twice epi-
differentiability of the composite form (4.3) under our basic assumptions.

Corollary 5.5 (chain rule for twice epi-differentiability). Let the function f from (4.3) satisfy
all the assumptions of Theorem 5.4. Then f is twice epi-differentiable at x̄ for v̄.

Proof. By Theorem 4.4(iii), f is parabolically epi-differentiable at x̄ for every w ∈ Kf (x̄, v̄).
Employing now Theorems 5.4 and 3.8 implies that f is twice epi-differentiable at x̄ for v̄.

Remark 5.6 (discussion on twice epi-differentiability). Corollary 5.5 provides a far-going exten-
sion of the available results for the twice epi-differentiability of extended-real-valued functions.
To elaborate more, suppose that f : X → IR has a composite form (4.3) at x̄ ∈ dom f . Then the
following observations hold:

(a) If X = IRn, Y = IRm, and g in (4.3) is convex piecewise linear-quadratic, then Rockafellar
proved in [18] that under the fulfillment of the basic constraint qualification (4.6), f is
twice epi-differentiable. This result was improved recently in [13, Theorem 5.2], where it
was shown that using the strictly weaker condition (4.5) in the Rockafellar’s framework [18]
suffices to ensure the twice epi-differentiability of f . Taking into account Example 4.7(a)
tells us both these results can be derived from Corollary 5.5.

(b) If X = IRn, Y = Sm, and g is either the maximum eigenvalue function λmax from (3.9) or
the function σi from (3.10), then we fall into the framework considered by Turki in [24,
Theorems 2.3 & 2.5] in which he justified the twice epi-differentiability of f . Since in
this framework we have dom g = S

m, both conditions (4.6) and (4.5) are automatically
satisfied. By Example 4.7(b), the twice epi-differentiability of f can be deduced from
Corollary 5.5.

(c) If X = IRn, Y = IRm, and g = δC with the closed convex set C taken from Example 4.7(c),
we fall into the framework considered in [14]. In this case, Corollary 5.5 can cover the
twice epi-differentiability of f obtained in [14, Corollary 5.11].

(d) If X = IRn, Y = IRm, and g is a proper, convex, l.s.c., and positively homogeneous, then we
fall into the framework, considered by Shapiro in [22]. In this case, the composite form (4.3)
is called decomposable; see [9, 22] for more detail about this class of extended-real-valued
functions. It was proven in [9, Lemma 5.3.27] that for this case of g, the composite form
(4.3) is twice epi-differentiable if it is convex and if the nondegeneracy condition for this
setting holds; see [9, Definition 5.3.1] for the definition of this condition. In this framework,
by the positive homogeneity of g and F (x̄) = 0, coming from [9, Definition 5.3.1], we
can easily show that g is parabolically regular. Moreover the assumed nondegeneracy
condition in [9, Lemma 5.3.27] yields the validity of condition (4.6). As pointed out in
Remark 5.3, the Lipschitz continuity of g in the composite form (4.3) can be relaxed when
condition (4.6) is satisfied. Since the nondegeneracy condition implies that the set of
Lagrange multipliers Λ(x̄, v̄) is a singleton, we can use estimates (5.2) and (5.3) to justify
parabolic regularity of the composite form (4.3) in the framework of [9]. This together
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with Corollary 5.5 allows to recover [9, Lemma 5.3.27]. Furthermore, we can drop the
convexity of the composite form (4.3), assumed in [9].

6 Second-Order Optimality Conditions for Composite Problems

In this section, we focus mainly on obtaining second-order optimality conditions for the com-
posite problem (1.1), where ϕ : X → IR and F : X → Y are twice differentiable and the function
g : Y → IR is an l.s.c. convex function that is locally Lipschitz continuous relative to its domain.
The latter means that for any y ∈ dom g, the function g is Lipschitz continuous around y relative
to its domain. Important examples of constrained and composite optimization problems can be
achieved when g is one of the functions considered in Example 4.7. For any pair (x, y) ∈ X×Y,
the Lagrangian associated with the composite problem (1.1) is defined by

L(x, y) = ϕ(x) + 〈F (x), y〉 − g∗(y),

where g∗ is the Fenchel conjugate of the convex function g. We begin with the following result
in which we collect second-order optimality conditions for (1.1) when our basic assumptions are
satisfied. Recall that a point x̄ ∈ X is called a feasible solution to the composite problem (1.1)
if we have F (x̄) ∈ dom g.

Theorem 6.1 (second-order optimality conditions). Let x̄ be a feasible solution to problem (1.1)
and let f := g ◦ F and v̄ := −∇ϕ(x̄) ∈ ∂f(x̄) with ϕ, g, and F taken from (1.1). Assume that

the basic assumptions (H1)-(H3) hold for f at (x̄, v̄). Then the following second-order optimality

conditions for the composite problem (1.1) are satisfied:

(i) if x̄ is a local minimum of (1.1), then the second-order necessary condition

max
y∈Λ(x̄,v̄)

{
〈∇2

xxL(x̄, y)w,w〉 + d2g(F (x̄), y)(∇F (x̄)w)
}
≥ 0

holds for all w ∈ Kf (x̄, v̄);
(ii) the validity of the second-order condition

max
y∈Λ(x̄,v̄)

{
〈∇2

xxL(x̄, y)w,w〉 + d2g(F (x̄), y)(∇F (x̄)w)
}
> 0 for all w ∈ Kf (x̄, v̄) \ {0}

(6.1)
amounts to the existence of constants ℓ > 0 and ε > 0 such that the second-order growth

condition

ψ(x) ≥ ψ(x̄) + ℓ
2‖x− x̄‖2 for all x ∈ Bε(x̄) (6.2)

holds, where ψ := ϕ+ g ◦ F .

Proof. To justify (i), note that since x̄ is a local minimum of (1.1), it is a local minimum of
ψ = ϕ + f . Moreover, −∇ϕ(x̄) ∈ ∂f(x̄) amounts to 0 ∈ ∂ψ(x̄). Thus, by definition, we arrive
at d2ψ(x̄, 0)(w) ≥ 0 for all w ∈ X. Since ϕ is twice differentiable at x̄, we obtain the following
sum rule for the second subderivatives:

d2ψ(x̄, 0)(w) = 〈∇2ϕ(x̄)w,w〉 + d2f(x̄, v̄)(w) for all w ∈ X. (6.3)

Combing these with the chain rule (5.13) proves (i).
Turing now to (ii), we infer from [21, Theorem 13.24(c)] that d2ψ(x̄, 0)(w) > 0 for all

w ∈ X \ {0} amounts to the existence of some constants ℓ > 0 and ε > 0 for which the second-
order growth condition (6.2) holds. Remember from (5.1) and (6.3) that

domd2ψ(x̄, 0) = domd2f(x̄, v̄) = Kf (x̄, v̄). (6.4)

Using these, the chain rule (5.13), and the sum rule (6.3) proves the claimed equivalence in (ii)
and thus finishes the proof.
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Remark 6.2 (discussion on second-order optimality conditions). The second-order optimality
conditions for composite problems were established in [2, Theorems 3.108 & 3.109] for (1.1)
by expressing (1.1) equivalently as a constrained problem and then appealing to the theory of
second-order optimality conditions for the latter class of problems. While not assuming that g
is locally Lipschitz continuous relative to its domain, theses results were established under con-
dition (4.6) and the second-order regularity in the sense of [2, Definition 3.93] that are strictly
stronger than condition (4.5) and the parabolic regularity, respectively, we imposed in Theo-
rem 6.1. Another major difference is that we require that g be parabolically epi-differentiable
(assumption (H2)), which was not assumed in [2]. This assumption plays an important role in
our developments and has two important consequences: 1) it makes the parabolic subderiva-
tive be a convex function and help us obtain a precise formula for the Fenchel conjugate of the
parabolic subderivative in our framework; 2) it allows to establish the equivalence between (6.1)
and the growth condition in Theorem 6.1. These facts were not achieved in [2]; indeed, [2, Theo-
rem 3.109] was written in terms of the conjugate of the parabolic subderivative and only states
that condition (6.1) implies the growth condition therein.As discussed in Remark 5.3, if we re-
place condition (4.5) with the stronger condition (4.6), the imposed Lipschitz continuity of g can
be relaxed in our developments. It is worth mentioning that the imposed Lipschitz continuity
of g relative to its domain, utilized in this paper, does not seem to be restrictive and allows us
to provide an umbrella under which second-order variational analysis for composite problems
can be carried out under condition (4.6) in the same level of perfection as those for constrained
problems. We believe that if we strengthen condition (4.6) to the metric subregularity of the
epigraphical mapping (x, α) 7→ (F (x), α) − epi g, the imposed Lipschitz continuity of g can be
relaxed in our developments.

Cominetti [7, Theorem 5.1] established second-order optimality conditions for the compos-
ite problem (1.1) similar to Theorem 6.1 without making a connection between (6.1) and the
growth condition (6.2). As mentioned in our discussion after Example 4.7, the results in [7]
were established under condition (4.6) and a restrictive assumption on the second subderiva-
tive, which does not hold for important classes of composite problems. When we are in the
framework of Remark 5.6(a), Theorem 6.1 was first achieved by Rockafellar in [19, Theorem 4.2]
under condition (4.6) and was improved recently in [13, Theorem 6.2] by replacing the latter
condition with (4.5). For the framework of Remark 5.6(b), the second-order optimality condi-
tions from Theorem 6.1 were obtained in [24, Theorem 4.2]. Finally, if we are in the framework
of Remark 5.6(c), Theorem 6.1 covers our recent developments in [14].

We end this section by obtaining a characterization of strong metric subregularity of the
subgradient mapping of the objective function of the composite problem (1.1).

Theorem 6.3 (strong metric subregularity of the subgradient mappings in composite problems).
Let x̄ be a feasible solution to problem (1.1) and let f := g ◦ F and v̄ := −∇ϕ(x̄) ∈ ∂f(x̄) with

ϕ, g, and F taken from (1.1). Assume that the basic assumptions (H1)-(H3) hold for f at (x̄, v̄)
and that both ϕ and F are C2-smooth around x̄. Then the following conditions are equivalent:

(i) the point x̄ is a local minimizer for ψ = ϕ+ f and the subgradient mapping ∂ψ is strongly

metrically subregular at (x̄, 0);
(ii) the second-order sufficient condition (6.1) holds.

Proof. We conclude from (6.3) and (6.4) that (6.1) amounts to the fulfillment of the condition

d2ψ(x̄, 0)(w) > 0 for all w ∈ X \ {0}. (6.5)

If (i) holds, we conclude from the local optimality of x̄ that d2ψ(x̄, 0)(w) ≥ 0 for all w ∈ X.
Since (ii) is equivalent to (6.5), it suffices to show that there is no w ∈ X \ {0} such that

27



d2ψ(x̄, 0)(w) = 0. Suppose on the contrary that there exists w̄ ∈ X \ {0} satisfying the latter
condition. This means that w̄ is a minimizer for the problem

minimize 1
2d

2ψ(x̄, 0)(w) subject to w ∈ X.

Since both ϕ and F are C2-smooth around x̄, we can show using similar arguments as [13,
Proposition 7.1] that ψ is prox-regular and subdifferentially continuousat x̄ for 0. This together
with the Fermat stationary principle and (3.21) results in

0 ∈ ∂
(
1
2d

2ψ(x̄, 0)
)
(w̄) = D(∂ψ)(x̄, 0)(w̄). (6.6)

Since ∂ψ is strongly metrically subregular at (x̄, 0), we deduce from (2.2) that w̄ = 0, a contra-
diction. This proves (ii).

To justify the opposite implication, assume that (ii) holds. According to Theorem 6.1(ii), x̄
is a local minimizer for ψ. Pick now w ∈ X such that 0 ∈ D(∂ψ)(x̄, 0)(w). To obtain (i), we
require by (2.2) to show that w = 0. Employing now (6.6) yields 0 ∈ ∂

(
1
2d

2ψ(x̄, 0)
)
(w). This

combined with [6, Lemma 3.7] confirms that d2ψ(x̄, 0)(w) = 〈0, w〉 = 0. Remember that (ii) is
equivalent to (6.5). Combining these results in w = 0 and thus proves (i).

The above result was first observed in [8, Theorem 4G.1] for a subclass of nonlinear pro-
gramming problems and was extended in [6, Theorem 4.6] for C2-cone reducible constrained
optimization problems and in [14, Theorem 9.2] for parabolically regular constrained optimiza-
tion problems. The theory of the twice epi-differentiability, obtained in this paper, provides an
easy path to achieve a similar result for the composite problem (1.1).

It is worth mentioning that similar characterizations as [14, Theorem 4.2] can be achieved for
the KKT system of (1.1). Furthermore, Corollary 3.9 provides a systematic method to calculate
proto-derivatives of subgradient mappings of functions enjoying the composite form (4.3), a path
we will pursue in our future research.
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