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Abstract. In this paper we introduce a new approach to computing hidden features of
sampled vector fields. The basic idea is to convert the vector field data to a graph structure
and use tools designed for automatic, unsupervised analysis of graphs. Using a few data
sets we show that the collected features of the vector fields are correlated with the dynamics
known for analytic models which generate the data. In particular the method may be useful
in analysis of data sets where the analytic model is poorly understood or not known.

1. Introduction

Continuous mathematical models are useful to analyze and draw conclusions about com-
plicated physical systems, where values of system states are assumed to be real numbers.
However, nowadays we have countless possibilities of data collection, so scientific and in-
dustrial challenges are mostly data driven. We have only finite amount of information, so
models should be well-fitted to the observed data and also adapt properly to new, previously
unseen data. Usually it means that we have to create highly parameterized models in an
automatic way.

We propose a new method for automatic modeling of vector field data sets. In particular,
our method takes as an input a finite collection of vectors and creates a low dimensional
description of the data. The description encodes features of the observed vector field and
allows us to further analyze the physical system using a smaller amount of information.
We only require a point cloud with vectors attached at each point. There is no need to
manually model the system, e.g. via differential equations. Thanks to this we can analyze
data generated by processes for which it is hard to create a traditional model, for instance
magnetic field on the Sun surface [27].

The goal of this paper is to present the new method and to validate it on well understood
data sets. We show examples based mostly, but not only, on simulated dynamical systems.
We compare the automatically learned features with well known, analytically calculated,
properties of the systems. We also extend the analysis to a series of dynamical systems,
either given as parameterized equations or vector fields constructed from data. The presented
examples justify the usefulness of the methods. The learned features may be used as an input
to other machine learning tasks, where the original data may be viewed as vector fields,
e.g. solar flares predictions, classification of data from particle image velocimetry (PIV),
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turbulences detection. Details of the applications are beyond the scope of this paper, are in
progress, and are going to be presented elsewhere.

The paper is organized as follows: Section 1 contains the introduction, a description of
related work, and it recalls the theoretical model. In Section 2 we describe the problem
and model it as the problem of word embedding in Natural Language Processing (NLP). In
Section 3 we describe the details of the algorithm. Finally, Section 4 contains examples and
Section 5 finalizes the paper.

1.1. Related work. The computation of global dynamical information is a challenging
problem for applications. Characterization of the global dynamical structure and its changes
are fundamental in many disciplines, e.g. computational biology and engineering. Combina-
torial dynamics and computational topology are powerful tools for the task. In particular,
the tools are useful in classification of the qualitative properties of parameterized models.
The database approach [2] helps to understand models where it is difficult to measure pa-
rameters. For sampled parameters an outer approximation of the dynamics is computed
using rigorous numerical methods. The dynamics is then represented as a directed graph
and classified using the Morse decomposition and Conley indices. The method is useful when
we know the parameterized dynamical system model. Then, by rigorous simulations, we can
find all possible dynamics and match them with collected data. Recent application of the
method is applied to understand the global dynamics of gene regulatory networks [9, 15].

In experiments very often one quantity is measured - a time series - while in numerical
simulations the full state of a system is an observable. A powerful tool to reason about the
unknown system using only a partial information is the Takens embedding theorem [29].
The theorem has been used in [5, 22], together with the Conley index theory of multivalued
maps, to identify dynamics from sampled data.

A different approach to sampled dynamical systems is presented in [11]. The method
analyze data points given by an unknown self-map. The results presented in this paper
suggest that the persistent homology of eigenspaces picks up the important dynamics from
small data sample.

Problems similar to our work are considered in [28] where the input vector field is con-
verted to a piecewise constant vector field. Then the Morse decomposition is computed
for trajectories obtained using geometrical rules. A main difference, when compared to our
work, is that the method is limited to triangulated manifold surfaces and considers only the
Morse decomposition while we show a more general framework.

1.2. A combinatorial dynamical system from a sampled vector field. In this section
we recall some definitions and results from [10, 23]. As mentioned in [10] also here the
presented results may be generalized to arbitrary finite T0 topological spaces [4]. From the
viewpoint of applications, a finite topological space may be a collection of cells of a simplicial,
cubical, or general cellular complex approximating a cloud of sampled points. For the sake
of this paper we use simplicial complexes only.

Let K be a finite simplicial complex, either a geometric simplicial complex in Rd or an
abstract simplicial complex (see [24, Section 1.2, 1.3]). We consider K as a poset (K,�)
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with σ � τ if and only if σ is a face of τ (also phrased τ is a coface of σ). The poset structure
of K provides, via the Alexandrov Theorem [1], a T0 topology on K. We say that A ⊆ K
is orderly convex if for any σ1, σ2 ∈ A and τ ∈ K the relations σ1 � τ and τ � σ2 imply
τ ∈ A. We remark that orderly convex sets in K may be characterized in the language of
the associated Alexandrov topology. Namely, A ⊆ K is orderly convex if and only if it is
locally closed (see [12, Sec. 2.7.1, p. 112]) in the Alexandrov topology T K .

We define a multivector as an orderly convex subset of K and a combinatorial multivector
field (cmf in short) on K as a partition V of K into multivectors. A multivector is critical
if its Lefschetz homology is non zero (for details see [23]). The definition encompass the
combinatorial vector field of Forman [13, 14] as a special case.

Given a cmf V , we denote by [σ]V the unique V in V such that σ ∈ V . We associate with V
a combinatorial dynamical system FV : K ( K (a multi-map) given by FV(σ) := cl σ ∪ [σ]V ,
where cl σ is the clousure of σ defined by cl σ := {τ | τ � σ}.

When the dynamics which is sampled constitutes of a flow, that is, when time is continuous
as in the case of a differential equation, the sampled data may consist of a cloud of points
with a vector attached to every point. We call this a cloud of vectors. In this case the
construction of a combinatorial dynamical system is done in two steps. In the first step, the
cloud of vectors is transformed into a combinatorial vector field in the sense of Forman [13,
14] or its generalized version of a combinatorial multivector field [23]. In the second step,
the combinatorial multivector field is transformed into a combinatorial dynamical system.
Intuitively, cells of K fill the gaps between the points from the input data. The multivectors
reflect the vector field behavior from lower to higher dimensional cells. The value of FV(σ)
allows us to travel between the points. We can use either the fillings [σ]V or jump into an
area influenced by another vector using cl σ.

P Q

R S

P Q

R S

P Q

R S

P Q

R S

Figure 1. Left: A cloud of vectors. Middle: A possible combinatorial mul-
tivector field representation of the cloud of vectors. Right: The associated
combinatorial dynamical system represented as a digraph.

Figure 1(left) recall a toy example of a cloud of vectors [10]. It consists of four vectors
marked red at four points P, Q, R, S. One of possible geometric simplicial complexes with
vertices at points P, Q, R, S is the simplicial complex K consisting of triangles PQR,
QRS and its faces. A possible multivector field V on K constructed from the cloud of
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vectors consists of multivectors {P,PR}, {R,QR}, {Q,PQ}, {PQR},{S,RS,QS,QRS}.
This multivector field is indicated in Figure 1(middle) by blue arrows between centers of
mass of simplices. Note that in order to keep the figure legible, only arrows in the direction
increasing the dimension are marked. The associated combinatorial dynamical system FV
presented as a digraph is in Figure 1(right). Note that in general K and V are not uniquely
determined by the cloud of vectors. One possible method for constructing combinatorial
multivector fields from a cloud of vectors is discussed in [10, Section 7.2].

Given a combinatorial multivector field V , we define a combinatorial multivector field
graph (cmf graph in short), denoted by GV , as a directed graph with the set of vertices
V (GV) := V and the set of edges E(GV) := {([u]V , [v]V) | v ∈ FV(u)})}. For a graph
G by GT we denote the transpose of G, i.e. GT is a graph, such that V (GT ) := V (G) and
E(GT ) := {([v]V , [u]V) | ([u]V , [v]V) ∈ E(G)}. We define the forward distance (resp. backward
distance) between two vertices as the number of edges in a shortest path connecting them
in GV (resp. GT

V ).

2. Problem description

Our goal is to explore combinatorial multivector field graphs structure. We do it, by find-
ing features of multivectors, as fixed length sequences of real numbers, such that multivectors
with a similar local structure in a cmf graph have similar features. We also want to extend
the features to whole graphs, in such a way that cmf graphs representing similar combi-
natorial dynamical systems have similar features. At this point we skip formal definitions
of the similarities mentioned above and we use experimental justifications of the presented
methods. A theory of a similarity for combinatorial dynamical systems is not developed yet
and the topic is still under research. However, as long as a combinatorial dynamical system
FV reflects the dynamics of the sampled system, tools designed for graphs can be extended
to study combinatorial dynamical systems.

Let G be a collection of labeled graphs, namely each vertex v of a graph G ∈ G has a label lv
from some set of labels L ⊆ N. In Section 3.1 we propose an assignment of labels which uses
topological properties of the multivectors. Our main goal is to learn latent representations of
labels of a cmf graph GV . Namely, we want to find an encoding function Φ : L→ RD, for a
fixed dimension D, such that the codes Φ(lu) and Φ(lv) are close whenever there is a similar
local structure in GV around two multivectors u and v. We want to extend the encoding
function to graphs, namely for two cmf V1 and V2 the codes of Φ(GV1) and Φ(GV2) are close
whenever the dynamical systems which generates V1 and V2 are similar. The values of Φ
should depend on qualitative local features of the vertices and do not depend on the vertices
enumeration.

Let Wv = {w1, w2, . . . , wk} ⊆ G be a random walk rooted at v ∈ G ∈ G, i.e. v = w1 and
wi+1 is a randomly selected neighbor of wi. We explore the graph G using the DeepWalk
technique, namely short random walks, as described in [25]. The idea behind the approach
is to generalize Natural Language Processing (NLP) methods to explore graphs. In this
setting we treat labels of vertices as words and the random walks as sentences in an artificial
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language. Afterwards, we use the Continuous Skip-gram Model [19] to analyze the text
documents structure and to find Φ, such that it minimize the following log probability:

(1) minimize
Φ

− logP ({lwi−w
, . . . , lwi+w

} \ {lwi
} | Φ(lwi

)),

where w is a parameter called the window size. As we can see in (3) the goal is to predict
context based on a word without taking into account the order of words. A relaxation scheme
described in [19, 20] provides efficient algorithms to compute the latent representation of
words, the encoding Φ.

3. Algorithm

In the context of this paper we assume a family V of combinatorial multivector fields is
given. Having a cmf V ∈ V we transform it to the NLP data using the following steps:

(1) assign labels (words) to multivectors,
(2) using short random walks encode the structure of V as a text document,
(3) using NLP techniques analyze the document and extract information about the mul-

tivector fields.
Before we present detailed description of the steps we want to recall a few programming
tools.

For a set A ⊆ N by sorted(A) we mean a sequence {a1, a2, . . . , an} such that ai in A and
ai ≤ aj for each i < j. We recall that a hash function is any function h that projects data of
an arbitrary size to a value from a set with a fixed number of members [8, 18]. A good hash
function satisfies the following properties: 1) it is fast to compute; 2) it minimize collisions,
i.e. duplication of the function values. In practice programming languages (or additional
libraries) implement a hash function for each built-in data type. For a user-defined data
type a hash function may be easily defined using hashes of the data type members, e.g. for
a pair of numbers (a, b) we may define h((a, b)) := h(a)xor h(b), where xor is the bitwise
exclusive OR operation. To simplify the notation we use the symbol h regardless of the
function domain. We assume that a good hash function h with 64-bits values is given for the
following data types: natural numbers, tuples of natural numbers, list of natural numbers,
and lists of lists of natural numbers.

3.1. Topological vocabulary. The NLP procedure requires a vocabulary in order to assign
labels to the vertices of a graph. We construct labels which grasp some local, topological
properties of the vertices in the vector field. Intuitively, we obtain a labeling which is
universal, i.e. can be computed using only a multivector and its neighbors and does not
depend on the global dynamics. It is only an example of many possible labelings.

For a multivector v ∈ V , that is a vertex in GV , we first define the label of v at level (0,0),
denoted by L0,0(v), in the following way:

L0,0(v) := h(max
σ∈v

dim σ, |v|, χ(v)),
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where dim σ denotes the dimension of a cell σ, |v| stands for the cardinality of v, and χ(v)
is the Euler characteristic of v (i.e. ∑

σ∈v(−1)dimσ). We use the h function in the above
definition to obtain a number as the label of v. Formally it is not required, however it
simplified the computations and the notation.

We define the label of v at level (b,f) , denoted by Lb,f (v), in the following way:

Lb,f (v) := h(L0,0(v), sorted({L0,0(u) | u ∈ N+
f (v)}), sorted({L0,0(u) | u ∈ N−b (v)})),

where N+
f (v) (resp. N−b (v)) are sets of vertices in the forward (resp. backward) distance

from v not bigger than f (resp. b). We use the sorted function to unify the order of the
neighbors in the sets N+

f (v) and N−b (v). We emphasize that the values of L0,0 are in N
because of the hash function, so the input for the sorted function is a set of numbers. Also
the value of Lb,f is always a number because of the hash function.

Currently we use NLP methods which do not use the words (labels) structure. It means
that we can arbitrary map the tuples to numbers using a reasonable good hashing function
h. However, there are NLP methods which operates on sub-words (n-grams) [7] and more
sophisticated labelings may take advantage of a multivector neighborhood structure.

As an example we consider the multivector field V and its combinatorial dynamical system
FV presented in Figure 1. Figure 2 presents the associated graph on multivectors GV . Table 1
presents step by step calculations of the values of L1,1.

Figure 2. GV graph for the example presented in Figure 1. The nodes rep-
resent multivectors in the following order: v1 = {P,PR}, v2 = {R,QR},
v3 = {Q,PQ}, v4 = {PQR}, v5 = {S,RS,QS,QRS}.
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v simplices of v L0,0(v) N+
1 (v) N−1 (v) L1,1(v)

v1 {P, PR} h(1, 2, 0) = 5095 {v2} {v3, v4}

h(
h(1, 2, 0),
sorted(h(1, 2, 0)),
sorted(h(1, 2, 0), h(2, 1, 1))

) = 4901

v2 {R, QR} h(1, 2, 0) = 5095 {v3} {v1, v4, v5}

h(
h(1, 2, 0),
sorted(h(1, 2, 0)),
sorted(h(1, 2, 0), h(2, 1, 1), h(2, 4, 0))

) = 7355

v3 {Q, QP} h(1, 2, 0) = 5095 {v1} {v2, v4, v5}

h(
h(1, 2, 0),
sorted(h(1, 2, 0)),
sorted(h(1, 2, 0), h(2, 1, 1), h(2, 4, 0))

) = 7355

v4 {PQR} h(2, 1, 1) = 6161 {v1, v2, v3} ∅

h(
h(2, 1, 1),
sorted(h(1, 2, 0), h(1, 2, 0), h(1, 2, 0)),
∅

) = 5836

v5 {S, RS, QS, QRS} h(2, 4, 0) = 6275 {v2, v3} ∅

h(
h(2, 4, 0),
sorted(h(1, 2, 0), h(1, 2, 0)),
∅

) = 5382

Table 1. Step by step calculation of the labels at level 1 for the example
presented in Figure 1 and Figure 2. We use the standard implementation
of hash and sorted functions from the Python programming language (for
simplicity the values are taken modulo 104). We notice that the labels at level
(0, 0) cannot distinguish multivectors v1, v2, v2. However, for the labels at level
(1, 1) the labeling of v1 is different from the labelings of v2 and v3.

3.2. Corpus. A d-random multivector walk onGV from s, denoted byWd+
V (s), is a stochastic

process with random variables {W1,W2, . . . ,Wd} such that W1 = s, and Wi+1 is a vertex
chosen at random from the set N+

1 (Wi) ∪ {Wi}. The probability P (Wi+1 = u) is defined as
pu/

∑
v pv, where

(2) pv =


1, if v ∈ N+

1 (Wi) and v 6= Wi

1, if v = Wi and Wi is critical
0, otherwise.

In the above definition we can replace N+ with N− and reverse the order of the random
multivector walk. This way we define a d-random multivector walk on GV to t, denoted by
Wd−
V (t).
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Let V be a collection of combinatorial multivector fields. A (c, d)-random multivector
corpus of V is the stochastic process:

W
c,d
V

:=
⊕
V∈V
u∈V

•∈{+,−}
i∈1,...,c

Wd•
V (u),

where ⊕ denotes concatenation of sequences of the random variables. Note that in the
above definition we repeat c times the random multivector walk. We define a multivector
(f, b, c, d)-corpus of V, denoted by Lf,bWc,d

V
, as {Lf,b(W ) | W ∈ Wc,d

V
}, where Lf,b(W ) is a

label of W at level (f, b) (as defined in Section 3.1). We skip the parameters f, b, c, d if they
are clear from the context.

We treat a multivector corpus as a text document for which the labels are words and the
walks are sentences. Next, we apply NLP methods to the document. We emphasize that
the methods we use does not depend on the order of sentences, so we can take any order in
the ⊕ notation. On the other hand, the skip-gram model generates word contexts using the
sliding window technique. Hence, the order of words in a sequence is important.

3.3. Encoding. The distributional hypothesis [17] in linguistics says that it is possible to
state a linguistic structure in terms of patterns of co-occurrences, i.e. words with similar
meaning occur in the same context. It is the main idea behind representing words as elements
of a vector space. Neural network models [6, 7, 19, 20] allow us to find an encoding of words
from a large text corpus. The intuition behind the vector space elements is that the distance
between similar words is small, and the norm of a word encoding is proportional to its
importance in the corpus. In particular, we apply the methods to our artificial multivector
corpus introduced in Section 3.2.

Recall that we use the Continuous Skip-gram Model [19] to analyze text documents struc-
ture and to find Φ, such that it minimize the following log probability:
(3) minimize

Φ
− logP ({lwi−w

, . . . , lwi+w
} \ {lwi

} | Φ(lwi
)).

The model is a shallow neural network trained to predict words within a range before and
after the current word. The main parameters for the algorithm are: window size w - number
of words around current word, encoding dimension D. Intuitively, the parameter w carries
examined influence of a word to the meaning of a sentence. The parameter D controls the
number of linguistic features learned by the model. From a trained network we extract a D
dimensional representation of words, denoted by ΦD. For natural languages the parameters
values typically are: w = 5, D = 300. In our applications usually much smaller dimen-
sion is enough. In the sequel we show, that low dimensional encoding may contain useful
information.

In our context {lwi
}i is a sequence of labels in a random walk in a graph GV . It is worth to

note that, intuitively, labels represent local structures of the dynamics around multivectors
and the random walks represent trajectories. For instance we can consider random walks
generated by a constant flow and a spiral flow close to a fixed point. We expect that the
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encodings of multivectors from the two groups should be distinguishable. It is because
the local structures of multivectors on the spiral are different and richer than these on the
constant flow. It means that for a randomly chosen label a trained Skip-gram model should
be able to predict to which group the label belongs.

The goal of recently developed NLP methods is to find meaningful words encoding. Cur-
rently, there is no similar method designed directly for documents. As a workaround a com-
mon trick is to use a weighted mean of words encodings as the encoding of a document. In
our context, for a multivector field graph GV , we define ΦD

w (GV) as ∑
v∈V (GV ) wvΦD(Lf,b(v)),

where f and b are fixed and wv is a weight of v, e.g. 1
|V (GV )| or TFIDF of v (term frequency-

inverse document frequency [26]).

3.4. Implementation details. We compute the Skip-gram encoding Φ using the Fast-
Text [7] library. As we mentioned earlier, we cannot use sub-words (n-grams) in the training
phase, so the parameters minn and maxn are set to 0. For the examples presented in this
paper, if not stated otherwise, we set: learning rate to 0.01, size of the context window to 5,
dimension of word vectors to 2. The number of epochs used for training depends on the size
of the corpus. We use 1000 epoches for small corpuses in Sections 4.1 and 4.2, and 5 epochs
for large corpuses in Sections 4.3 and 4.4.

We also noticed that rare words appear close to the boundary of the sampled region. It is
because in that area the neighborhood of a multivector depends more on its location than
on the vector field structure. We skip such multivectors by checking their distance to the
region boundary. The outcome of this simplification is shown in Figure 3c, where the area
close to the boundary is white, because labels of the multivectors are not in the corpus, so
Φ maps them to zero.

4. Examples

In this section we present the methods in action. First we show toy examples which
illustrate a qualitative properties of the encodings. Later we present applications to a series
of dynamical systems analysis. Our examples are simple enough to visualize the encodings.
However, in real world applications higher values of the encoding dimension (D) and the
labeling level (Lb,f )may be required. Then, one may need to create a pipeline, where the
output of our method is only an intermediate step. We want to keep the paper simple and
more complicated applications, e.g. turbulences analysis or solar flare classifications, we are
going to present in a sequel paper. The presented examples illustrate that the methods are
able to automatically extract meaningful features from dynamical systems.

We begin with a setup for computations. For a product of k intervals I = [I−1 , I+
1 ] ×

. . . × [I−k , I+
k ] ⊆ Rk and a set of natural numbers N = {N1, . . . , Nk} ⊆ N+, we define an

(I,N) regular grid of points, denoted by R(I,N), as a set of points {(x1, . . . , xk) ∈ I | xi =
I−i + (I+

i −I
−
i )j

Ni
for j ∈ [0, Ni] ⊆ N}.

In the context of this paper we assume a family V of combinatorial multivector fields is
given. In order to present the examples we recall a possible way to construct a combinatorial
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multivector field from a cloud of vectors. Let K be a simplicial complex with vertices in
a cloud of points {pi | i = 1, 2, . . . , n} ⊆ Rd and the associated cloud of vectors {~vi | i =
1, 2, . . . , n} ⊆ Rd such that vector ~vi originates from point pi. To construct a cmf on K
one can use the algorithm CVCMF [10, Table 1] (called here CVCMFv1). The algorithm
requires an angular parameter α. We do not analyze the impact of the parameter here. We
also have a parameter-less version of the algorithm (called here CVCMFv2). We show results
obtained with the old and the new algorithms, however the new one is not published yet.

In the below examples we plot D dimensional encodings of the words obtained with the
FastText [7] implementation. On the plots we observe cone-shaped points distribution. It
suggest that it should be enough to use the encoding dimension parameter value equal to
D − 1. However, this is an outcome of the negative sampling training algorithm and this is
a phenomenon described in [21].

4.1. Example: Orbit. The main goal of this example is to show features extracted by our
method on a simple dynamical system. Consider a system given by the following equation:

(4) dx
dt = −y + x(4− x2 − y2), dy

dt = −x+ y(4− x2 − y2).

In the system phase space we observe a repelling stationary point at (0, 0) and an attracting
periodic orbit with center at (0, 0) and radius 2. We can observe this in a combinatorial
dynamical system constructed from a finite sample of the vector field using methods described
in [10, 23]. To achieve that we build a Delaunay triangulation K of a regular grid R([−4, 4]×
[−4, 4], {30, 30}). The triangulation contains 1682 triangles and 5163 simplices. To construct
a cmf V of the triangulation and vectors originates from its vertices we use the algorithm
CVCMFv1 [10, Table 1] with the parameter α = 0. The triangulation K with the discretized
periodic orbit and the repelling point of the system are presented in Figure 3a.

In the next step we label vertices of the graph GV using labels at level (1, 1), getting 153
distinct labels. Using the labeled graph we generate (1, 1, 2, 10)-corpus for which we obtain
the Skip-gram encoding Φ with parameters w = 5 and D = 2. The encodings are plotted in
Figure 3b, where each dot represents an unique word in the corpus (label in the graph). We
use RGBA color space, where the alpha channel of a point is proportional to its norm.

In Figure 3c, we show colored multivectors, where each multivector v gets color of Φ(L(v)).
We notice that the encoding Φ distinguish three regions of the phase space with following
behaviors: close to the the orbit, around the repelling point, outside the orbit.

4.2. Example: Nested orbits. Consider a system given by the following equation:
dx
dt = −0.3y((x2 + y2 − 1)− (x2 + y2 − 1)2)− x(3− 6(x2 + y2 − 1) + (x2 + y2 − 1)2),

dy
dt = 0.3x((x2 + y2 − 1)− (x2 + y2 − 1)2)− y(3− 6(x2 + y2 − 1) + (x2 + y2 − 1)2).

(5)

In the system phase space we observe an attracting stationary point at (0, 0) and two periodic
orbits with centers at (0, 0).
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Figure 3. An example of a multivector field encoding for a single orbit and
a repelling point.

In this section we show features extracted by our method from a sampled dynamical system
given by (5). As in Section 4.1 we build a combinatorial dynamical system using a Delaunay
triangulation K of a regular grid R([−4, 4]× [−4, 4], {50, 50}). To construct a cmf V of the
triangulation and vectors originates from its vertices we use the algorithm CVCMFv2. Here
we use the labels at level (2, 2) and the encoding dimension D = 3. With lower values of the
parameters we cannot distinguish multivectors on the orbits and the stationary point.

In Figure 4 we show the triangulation K, and the cmf V colored according to the encoding
of the multivectors. Afterwards, in Figure 5 we show the influence of w and d parameters.
In conclusion, for values d ≥ 20 and w ≥ 5 we can observe a clear difference between the
encodings for orbits and the stationary point.

4.3. Example: Prey-predator. In this section we use the presented methods to analyze
a series of dynamical systems. We also show the influence of the labeling levels and the
CVCMF algorithm variants. We consider a prey-predator model [16] given in the following
form:

(6) dx
dt = x(1− x

γ
)− (1− c)xy

1 + αζ + x
,

dy
dt = β[(1− c)x+ ζ]y

1 + αζ + x
− δy

where x and y denote the biomass of prey and predator respectively, and α, β, c, δ, γ, ζ are
parameters. We investigate sampled vector spaces obtained from simulations of the model
given by (6). In particular, we are interested in qualitative behavior of the model, where
α ∈ [0, 2], c ∈ [0, 0.45], β = 0.15, δ = 0.08, γ = 4, ζ = 0.2. For varying α and c we denote the
model by P (α, c).
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Figure 4. A visualization for the system generated by (5) using (2, 2, 1, 30)-
corpus and w = 10: (left) the vector field with two periodic orbits and an
attracting point marked; (middle) 3D encodings of the multivectors (RGB
colors given by a point coordinates and the alpha channel is proportional to
the point norm); (right) the multivectors field colored using the encodings.

In Figure 6 we show a decomposition of the parameter plane (α, c) obtained analytically
in [16]. Our goal is to show a correlation between the model dynamics and multivectors
encoding Φ.

Let K be a Delaunay triangulation of a regular grid R([0, 6] × [0.4, 2.4], {100, 100}). Let
Vθα,c be a cmf of K computed using the CVCMF algorithm (see beginning of Section 4)
called with K and vector field sampled from the prey-predator model P (α, c). The value of
θ controls the CVCMF algorithm version, namely:

- if θ ∈ [0, 2π], then we use CVCMFv1 with its angular parameter equals to θ,
- if θ = ∅, then we use CVCMFv2.

Let Vθ be a family of combinatorial multivector fields

{Vθα,c | (α, c) ∈ R([0, 2]× [0, 0.45], {50, 50})}, for some fixed θ.

We train the Skip-gram neural network on four corpuses described in Table 2 using the
FastText [7] library (see Section 3.4) and obtain 2-dimensional encodings for each of them.
For each corpus we present in Figure 7 the encoding of each word and the encoding of each
multivector field graph. The pictures suggest that it should be possible to distinguish more
types of the prey-predator model dynamics, i.e. the structure of the green subspace does
not arrange into a blob of points. We also observe that there is no big difference between
corpuses CII and CIII . The best separation between green and yellow points is visible for CIV ,
which suggest that our new non-parameterized algorithm CVCMFv2 finds a better partition
of a given complex into multivectors. Further research using machine learning classifiers and
higher dimensional encodings are in progress.
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(a) d = 10, w = 2. (b) d = 10, w = 5. (c) d = 10, w = 10.

(d) d = 20, w = 2. (e) d = 20, w = 5. (f) d = 20, w = 10.

(g) d = 30, w = 2. (h) d = 30, w = 5. (i) d = 30, w = 10.

Figure 5. Visual evaluation of the method for the system generated by (5).
We use following settings: D = 3, w ∈ {2, 5, 10}, (2, 2, 1, d)-corpuses for d ∈
{10, 20, 30}. For each test case we compute its own Skip-gram model and the
3D encodings. We use a multivector encoding as its RGBA color (see Figure 4).
We observe that the triangle with the attracting point at (0, 0) is not clearly
visible for d = 10, and the outer orbit merges with its neighbors for w = 2.
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Figure 6. Qualitative behavior of the model (6) according to [16]. The pa-
rameter plane (α, c) ⊆ [0, 2]× [0, 0.45] is divided into three regions: oscillatory
coexistence (yellow), stable coexistence (green), predator extinction (red).

coprus variant # of distinct words # of words in the corpus
CI = L1,1W

5,10
V

36◦ 965 3877 · 106

CII = L2,2W
5,10
V

36◦ 7979 3665 · 106

CIII = L3,3W
5,10
V

36◦ 28124 3635 · 106

CIV = L3,3W
5,10
V

∅ 96589 4825 · 106

Table 2. Multivector corpuses tested for the prey-predator model. Columns:
the number of distinct words in a corpus and the total number of words in a
corpus.

4.4. Example: Time series data. In this section we present a not obvious application of
the methods. Namely, we automatically extract features from time series data sets using an
approach inspired by [30]. The key idea is to transform a time series data into a sampled
vector field.

We assume that values of a time series lie in the range [−1, 1]. Otherwise we can re-scale
the values, e.g. using min-max scaling. Let T = {ti}n−1

i=0 ⊆ [−1, 1] be a time series. In [30] the
authors introduced the Gramian Summation Angular Field which is a transformation of T
into a gray-scale 2D image. A (i, j)-th pixel color is defined as cos(arccos(ti)+arccos(tj)). We
propose to use similar technique, but to create vectors. LetK(T ) be a Delaunay triangulation
of a regular grid R([0, n]× [0, n], {n, n}), where n is the length of T . Let αi,j := arccos(ti) +
arccos(tj) for each vertex (i, j) of the grid vertex. At each vertex (i, j) we attach a vector
vi,j := (cosαi,j, sinαi,j). Of course this is an arbitrary choice, but a further investigation of
different possibilities is beyond the scope of this paper. In Figure 8 we show a toy example.

As a first validation of the method we use Symbols dataset from the UEA & UCR Time
Series Classification Repository [3]. The dataset contains a collection of time series repre-
senting the motion on the x-axis of a hand drawing of a specified shape. We have 6 classes
of shapes and each time series has length 398.
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Figure 7. 2-dimensional encodings for the prey-predator multivector cor-
puses. Each row represents a corpus: CI , CII , CIII , CIV (top-down). First col-
umn represents encodings of labels: for each distinct label l in a multivector
corpus there is a dot at position Φ2(l). Second and third columns represents
encodings of graphs: for each V = Vθα,c ∈ Vθ there is a dot at position Φ2

w(GV),
where w is the mean (second column) or TFIDF (third column) weighting. Col-
ors of the dots correspond to the colors of (α, c) in Figure 6. We are interested
in the points distributions, so we skip values on the plots axes.
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Figure 8. Left: min-max scaled time series T = {(i − 4)2}8
i=0. Middle: on

the axes are two copies of the temporal coordinate and on the plot are the
(i, j)-vectors of T , for i, j ∈ {1, . . . , 8}. Right: a stream plot visualization of
the (i, j)-vectors. It is worth to note that the time series data is rather sparse
but yet the vector field looks smooth and it is possible to create an expressive
stream plot.

The dataset is splitted into training set of size 25 and test set of size 995. In Figure 9 we
show a few examples from the dataset. Note, that the presented vector fields do not have
critical points and only the curvature of the flows distinguish them.

We use the methods presented in the previous sections to obtain encodings of the vector
fields generated from the Symbols time series data set. To train the Skip-gram model we
use only the training set. In Figure 10 we show the encodings for the test set, where each
dot represents a time series and colors represent classes. This visualization suggest that the
method can be used in time series classification problem. We may treat an encoding as a low
dimensional vectorization of a time series and use it as an input to a classifier, e.g. SVM.
This is a work in progress and we are going to publish more research results in the future.

5. Conclusion and future work

We introduced an efficient algorithm to compute hidden features of sampled vector fields.
Our method utilizes modern machine learning techniques and provide new possibilities to
study dynamical systems. By examples we show that the technique is able to find good
characteristics of a given sampled vector field as well as collection of such fields.

We show applications of the method for a synthetic and experimental data sets. Our next
step is to use the method to analyze bigger data sets, in particular: the magnetic field at the
solar surface, time series data transformed into vector fields, velocity fields of a fluid flow
measured by particle image velocimetry. Our main goal is to use the extracted features of
vector fields as an input to other machine learning methods, e.g. SVM, decision trees, etc.
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Figure 9. Time series from the Symbols data set: one example of a series
per class and the stream plots of their vector fields.
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Figure 10. Encodings of the vector fields obtained from the Symbols time
series data set.
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We believe it will become a complementary description of a data set, useful in automatic
analysis pipelines.

We would like to thank the anonymous reviewers for their comments and valuable sugges-
tions.
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