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Abstract

Stochastic models of chemical reaction networks are an important tool to describe and analyze
noise effects in cell biology. When chemical species and reaction rates in a reaction system
have different orders of magnitude, the associated stochastic system is often modeled in a
multiscale regime. It is known that multiscale models can be approximated with a reduced
system such as mean field dynamics or hybrid systems, but the accuracy of the approximation
remains unknown. In this paper, we estimate the probability distribution of low copy species
in multiscale stochastic reaction systems under short-time scale. We also establish an error
bound for this approximation. Throughout the manuscript, typical mass action systems are
mainly handled, but we also show that the main theorem can extended to general kinetics,
which generalizes existing results in the literature. Our approach is based on a direct analysis
of the Kolmogorov equation, in contrast to classical approaches in the existing literature.

1 Introduction
Consider a reaction network with a discrete number of copies for each species, a problem of in-
creasing importance in cell biology. The evolution of the copy number of each chemical species
can be modeled using a continuous-time, discrete-space Markov process, and stochastic effects
are well known to be present. The time evolution of this system can be computed by solving the
so-called Kolmogorov equation, but this direct approach is rarely useful because of its high dimen-
sionality. Therefore computational and analytic methods for estimating the distribution associated
with a stochastic reaction network system have been developed [4, 7, 8, 14, 16, 17, 18, 19, 25, 26].

In a stochastic system, some chemical species can have much higher molecular counts that the
others. Furthermore, the intensity of each reaction can also vary over several orders of magnitude.
For example, suppose A and B are proteins interacting in the network system

A+B
κ1−−⇀↽−−
κ2N

2A
κ3←− C, (1)
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with the initial conditions A(0) = 1, B(0) = N and C(0) = 10. Here N is a large scaling
parameter, and it could mean the Avogadro number 6 × 1023, the total mass of the system, or the
volume of the container where the reaction takes place. Letting X(t) = (A(t), B(t), C(t)) be the
stochastic process associated with the reaction network at time t, we suppose that the intensities
of the reactions A + B → 2A, 2A → A + B and C → 2A are λA+B→2A(X(t)) = κ1A(t)B(t),
λ2A→A+B(X(t)) = κ2NA(t)(A(t) − 1) and λC→2A(X(t)) = κ3C(t), respectively. Note that
around t = 0, the intensity of C → ∅ is much smaller than the intensities of the other reactions.
Thus we can expect that reaction C → 2A is rarely fired and hence the copy number of C evolves
in slow-time scale.

As shown in the example above, due to the size of intensities, the dynamics of each species in
a reaction system can have different time scales. If the size of species and the size of intensities
satisfy a particular balance condition, then the system can be decomposed into two or more sub-
systems, each of which converges to a lower dimensional system as the scaling parameter tends to
infinity [4, 17]. Depending on the time scale, the limiting system of the subsystems could be either
a stochastic, deterministic or piece-wise deterministic model [1, 4, 12, 16, 17].

In this paper, we show that a multiscale stochastic model under a short-term timescale con-
verges in distribution to an associated reduced model. To illustrate this, we consider the toy
model in (1). By modeling system (1) with a continuous time Markov process, the holding time
for the next reaction is exponentially distributed with rate λA+B→2A(X(t)) + λ2A→A+B(X(t)) +
λC→2A(X(t)). Hence the expected holding time until the next reaction around t = 0 is of order
1
N

. This indicates that the number of reactions fired within [0, T
N

] is of constant order on aver-
age for T > 0. This amount of transitions is substantial for the low copy species A and C, but
it is too small to considerably fluctuate the concentration of B, B(t)

N
, within [0, T

N
]. In this vein,

for the scaled process (A(t)), B(t)
N
, C(t)), we can approximately freeze B(t)

N
at B(0)

N
= 1. Then

the dynamics of species A(t/N) in the original system (1) under the short-term timescale can be
approximated with a reduced system A

κ1−⇀↽−
κ2

2A.

In general, we show that for some θ0 > 0, the short-term distribution pN(t/N θ0) of the original
network system converges to the distribution p(t) of the limiting reduced system for any t in a
compact time interval [0, T ], as the scaling parameter N tends to infinity. The main theoretic tools
for this result rely on a direct calculation using the Kolmogorov equation, and this allows us to
obtain the error bound

sup
t∈[0,T ]

|pN(U, t/N θ0)− p(U, t)| ≤ c

Nν
. (2)

Here U is an arbitrary subset of the state space, and the constants c > 0 and ν ∈ (0, 1) are
independent of U .

For the main theorem and relevant lemmas, we assume that the associated stochastic system
for a reaction system is under mass-action kinetics. However, the main result can be extended to
general kinetics such as Michealis-Mentum kinetics and hill type functions. Furthermore since the
proof of the main theorem does not require network structural restrictions, this convergence result
holds not only for bimolecular chemical reaction systems, but also for higher order reaction sys-
tems with general kinetics. Instead of structural restrictions, we assume that the reduced reaction
system admits a stationary distribution with a finite moment condition. Since the finite moment
condition of the reduced network system guarantees the non-explosivity of the original multiscale
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model. Therefore the error bound (2) holds for any time T . By showing this error bound, this work
provides a addition to previous related studies of multiscaling limits.

This manuscript has the following outline. In Section 2 we introduce the basic notions of a
stochastic system for a reaction network. In the same section, we also provide a multiscale frame-
work for the stochastic model and introduce the idea of network projection. Key lemmas and the
main theorem of this paper including proofs are introduced in Section 3. In section 4, we discuss
some extension of the main result for general kinetics. In Section 5, in order to demonstrate how
the main theorem can be applied for practical models, we provide various examples of biological
models such as a futile cycle, a system of yeast polarization, p53 response to DNA damage and a
population model with three species. In Appendix A, a table of notations used in the entire paper
is provided. In Appendix B proofs of some technical lemmas are given.

2 Preliminaries

2.1 Stochastic Reaction Networks
In this section, we provide a mathematical description of chemical reaction networks, with an
emphasis on their associated stochastic dynamics. A reaction network is a graphical configura-
tion consisting of constituent species, complexes (that is, combinations of species), and reactions
between complexes. A triple (S, C,R) represents a reaction network where S, C andR are collec-
tions of species, complexes and reactions, respectively.

Definition 2.1. A reaction network is defined with a triple of finite sets (S, C,R) such that

1. the species set S = {S1, S2, . . . , Sd} contains the species belonging to the reaction network,

2. the complex set C = {y1, y2, . . . , yc} contains complexes yk, where for each k,

yk =
d∑
i=1

ykiSi for some non-negative integers yik, and

3. the reaction setR = {R1, R2, . . . , Rr} consists of ordered pairs (y, y′) such that y, y′ ∈ C.

In the graphical configuration of a reaction network (S, C,R), we represent complexes y, y, . . . ∈
C by nodes, and we use directed edges y → y′ to denote reactions (y, y′) ∈ R. In order to define a
dynamical system associated with a reaction network (S, C,R), we denote a complex yk by either
a linear combination of species such as

∑d
i=1 ykiSi or a d-dimensional vector yk = (yk1, . . . , ykd)

T ,
interchangeably. In case yki = 0 for all i, the corresponding complex yk =

∑d
i=1 ykiSi is denoted

by ∅ in the graphical configuration of the reaction network.

Example 2.1. Consider the following reaction network describing a substrate-enzyme system with
a protein dilution:

S + E 
 C → E + P, P → ∅.

For this reaction network, S = {S,E,C, P}, C = {S + E,C,E + P, ∅} and R = {S + E →
C,C → S + E,C → E + P, P → ∅}. 4
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We now describe the stochastic dynamics of a reaction network using a continuous time, dis-
crete state Markov process. At any time t, the counts of each species are given by a d-dimensional
vector X(t) = (X1(t), . . . , Xd(t)) ∈ Zd≥0. The transitions of the Markov process are determined
by the given reactions. In order to define the transition probabilities, we use state-dependent inten-
sity (or propensity) functions λk : Zd≥0 → R≥0 of the reaction yk → y′k. For example, the reaction
yk → yk induces a transition from a given state z into the state z + yk − yk with intensity λk(z).
More generally, we have

P (X(t+ ∆t) = z + y′ − y | X(t) = z) =
∑

yk→y′k∈R
y′k−yk=y′−y

λk(z)∆t+ o(∆t), (3)

for each state z in the state space S of the associated Markov process X . The copy number of a
species S at time t will be denoted by S(t). Let p(z, t) = P (X(t) = z), for a given state z and
time t. Then p(z, t) solves the so-called Kolmogorov forward equation, also known as the chemical
master equation:

d

dt
p(z, t) =

∑
k

λk(z − y′k + yk)p(z − y′k + yk, t)−
∑
k

λk(z)p(z, t), (4)

where
∑

k denotes the sum over all reactions in R. A stationary distribution π is a positive sta-
tionary solution of the Kolmogorov equation above such that

∑
z π(z) = 1.

The usual choice of intensity λk(x) of a reaction yk → y′k in a network (S, C,R) with rate
constant κk is

λk(x) = κkx
(y), (5)

where n(k) = n · (n−1) · · · (n−k+1) for non-negative integer vector n, k , n(k) = 0 if n < k, and
u(v) =

∏d
i=1 u

(vi)
i for u ∈ Zd, v ∈ Zd≥0. This choice of intensities is called stochastic mass action

kinetics. An analogous deterministic mass action kinetics for a reaction yk → yk is xyk , where we
define uv =

∏d
i=1 u

vi
i for u, v ∈ Rd

≥0.
The stochastic process X(t) also has another representation, so-called random time change

representation. [21]

X(t) = X(0) +
∑
k

Yk

(∫ t

0

λk(X(s))ds

)
(y′k − yk), (6)

where Yk’s are independent unit Poisson random variables.
In the graph associated to a reaction network, the rate constants κ typically appear next to the

reaction arrow as in y κ−→ y′. Through this manuscript, we model a reaction system using mass-
action kinetics so that each reaction intensity λk = λk(x) = κkx

(yk), k = 1, . . . r. For a given
reaction network (S, C,R), we denote byK the set of reaction intensities λk. We simply denote by
(S, C,R,K) the system associated with the reaction network (S, C,R) withK and call it a reaction
system. Using this framework, the probabilities (3) describe the dynamics of the stochastic process
X(t) associated with the reaction system (S, C,R,K).
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2.2 Multiscaling for Reaction Networks
In this section, we describe how to carry out a multiscaling procedure for a given stochastic reaction
system. We use a similar notation as in the work by Kang and Kurtz [17]. Let N be a scaling
parameter, which could be interpreted as either the volume of the system, Avogadro’s number, or
any biological parameter. We use the conventional big Θ notion: for a real-valued sequence an

an = Θ(nγ) if and only if there exists c > 0 such that
1

c
≤ |an|

nγ
≤ c for all n.

LetXN(t) = (XN
1 (t), . . . , XN

d (t)) be a stochastic process associated with (S, C,R,K). Assuming
that each species may have a different magnitude of initial abundance, we scale XN(t) by using
two sets of scaling exponents,

{αi : Si ∈ S} and {βk : yk → y′k ∈ R}. (7)

Each αi represents the size of the abundance of species Si such that XN
i (0) = Θ(Nαi). If αi = 1,

then N−αiXi(t) may represent the concentration of Si at time t. For simplicity, we assume that
XN
i (0) = Nαiz0

i for some z0
i ∈ R≥0. We also assume that the rate constant of the reactions

have different orders of magnitude so that we have scaled rate constants Nβkκk for each reaction
yk → y′k ∈ R.

By the representation (6), the scaled process ZN
i (t) = N−αiXi(t), i = 1, 2, . . . , d, solves

ZN
i (t) = ZN

i (0) +
∑
k

Yk

(∫ t

0

Nβkλk(X
N(s))ds

)
(y′k,i − yk,i)

Nαi
, (8)

where Yk’s are i.i.d. unit Poisson random variables.
For additional details on the definition and uses of multiscaling in stochastic and deterministic

systems, see [4, 12, 16, 17, 28].

2.3 Order of reaction intensities under a short-term timescale
In this section we show that any multi-scale reaction system admits at most constant order of
reaction intensities under a certain short-term timescale. For a multiscale processXN(t) associated
with reaction system (S, C,R,K), let θ0 be the maximum order of reaction intensities. That is,

θ0 = max{θk : Nβkλk(X
N(0)) = Θ(N θk)} = max

k
{βk + yk · α}, (9)

where α = (α1, . . . , αd).
We consider time-scaled model ZN,γ

i (t) := ZN(Nγt). Then by (8) with a change of variable,
ZN,γ satisfies that

ZN,γ
i (t) = ZN(Nγt) = ZN(0) +

∑
k

Yk

(∫ Nγt

0

λNk (ZN(s))ds

)
(y′k,i − yk,i)

Nαi

= ZN,γ(0) +
∑
k

Yk

(∫ t

0

λN,γk (ZN,γ(s))ds

)
(y′k,i − yk,i)

Nαi
(10)
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where

λN,γk (z) = Nγ+βk

d∏
i=1

Nyk,iαizi

(
zi −

1

Nαi

)(
zi −

2

Nαi

)
· · ·
(
zi −

yk,i − 1

Nαi

)

= Nγ+βk+yk·α
d∏
i=1

zi

(
zi −

1

Nαi

)(
zi −

2

Nαi

)
· · ·
(
zi −

yk,i − 1

Nαi

) (11)

for z ∈ Rd
≥0. Note that since ZN,γ

i (0) = Θ(1) for each i, each scaled intensity λNk (ZN,γ(0)) is
Θ(γ + βk + yk · α). For the set of intensities K = {λk : yk → y′k ∈ R} of the original system X ,
we associate the set of scaled intensities λN,γk in (10) with ZN,γ and denote by KN,γ .

2.4 Projection of Multiscale Reaction Systmes
We can reduce (S, C,R,KN) to consider only the dynamics of a subset of S by using network pro-
jection, which broadly speaking consists of the removal of species from the network as described
for the example (1) in Introduction, and the subsequent merging of complexes if needed.

For a given system (S, C,R,K), to formally define the network projection we introduce two
projection functions for complexes and reactions in (S, C,R). Let XN be the stochastic process
associated with (S, C,R,K). We decompose the set of species as S = SL∪SH , where SL = {Si ∈
S : XN

i (0) = Θ(1)} and SH = S \ SL correspond to species with low and high initial counts,
respectively. We enumerate them as SL = {S1, S2, . . . , Sd} and SH = {Sd+1, Sd+2, . . . , Sd+r}.
Let qL : Zd+r → Zd and qH : Zd+r → Zr be projection functions such that for each v =
(v1, . . . , vd, vd+1, . . . , vd+r)

T ∈ Zd+r,

qL(v) = (v1, v2, . . . , vd)
T ∈ Zd and qH(v) = (vd+1, vd+2, . . . , vd+r)

T ∈ Zr. (12)

We demonstrate the usage of qL and qH with the network (1) for which we set SL = {A,C} and
SH = {B}. Since the associated vector for the complex y = A+B in (1) is y = (1, 1, 0)T , we have
qL(y) = (1, 0) and qH(y) = 1. Using a slight abuse of notation, we also denote qL(A + B) = A
and qH(A + B) = B. In the same way, for the reaction A + B → ∅, qL defines the projected
reaction qL(A+B)→ qL(∅), which is identical to A→ ∅.

Let (S, C,R,KN) be a given multiscale system. Then by using qL and qH we define the pro-
jected system (SL, CL,RL,KL). Reactions inRL are chosen pertaining to the scale of the reaction
intensities in KN because reactions of lower order intensities can be neglected. Let ZN,γ(t) be
the stochastic process associated with (S, C,R,KN) and let θ0 be the maximum reaction intensity
order (9). Then we decompose

R = R0 ∪Rc
0 where R0 = {yk → y′k : λk(Z

N(0)) = Θ(θ0)}, (13)

and we define the set of projected reactions as

RL = {qL(yk)→ qL(y′k) : yk → y′k ∈ R0 and qL(yk) 6= qL(y′k)}. (14)

The set of complexes of the projected network CL is fully characterized with the complexes in-
volved in the reactions inRL.
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To defined the reaction intensities of the scaled process ZN,γ(t) associated with the projected
network, we first decompose the reaction intensities defined in (11) and then we fix the species in
SH at their initial state. For a given KN , each mass-action intensity λN,γk for a reaction yk → y′k is
decomposed as λN,γk (z) = κkλL,k(qL(z))λN,γH,k(qH(z)) for each z ∈ Rd+r

≥0 , where

λL,k(z) = qL(z)(qL(yk)), and

λN,γH,k(z) = Nγ+βk+yk·α
d+r∏
i=d+1

zi

(
zi −

1

N

)
· · ·
(
zi −

yk,i − 1

N

)
.

(15)

Let ZN,γ(0) = z0 = (z0
` , z

0
h) such that z0

` ∈ Zd≥0 and z0
h ∈ Rr

≥0. Then by fixing qH(ZN,γ(t)) at z0
h,

we define the reaction intensities of the projected system as

KL =
{
λ̄u(x) = κ̄ux

(ȳu) : ȳu → ȳ′u ∈ RL

}
, (16)

where

κ̄u =
∑

yk→y′k∈R
qL(yk)=ȳu,qL(y′k)=ȳ′u

κksk, and sk = lim
N→∞

λN,γH,k(z
0
h).

κ̄u serves a reaction rate constant of the projected system. Note that each λ̄u in KL is scale-free.

Remark 2.1. The summation in the definition of κ̄u is to consider the case that multiple reactions
inR are projected in to a single reaction ȳu → ȳ′u inRL.

Remark 2.2. For each x ∈ Zd≥0, by definition of λL,k we have x(ȳu) = λL,k(x) for any k such that
qL(yk) = ȳu. Hence letting ku be such that qL(yku) = ȳu, KL can be represented differently as
KL =

{
λ̄u(x) = κ̄uλku(x) : ȳu → ȳ′u ∈ RL

}
.

Remark 2.3. If yk → y′k ∈ R0, then −θ0 + βk + yk · α = 0 by the definition of θ0 in (9). Hence
for yk → y′k ∈ R0

sk = lim
N→∞

λN,−θ0H,k (qH(ZN,−θ0(0))

= lim
N→∞

N−θ0+βk+yk·α
r∏
i=1

z0
h,i

(
z0
h,i −

1

N

)
· · ·
(
z0
h,i −

qH(yk)i − 1

N

)
= (z0

h)
qH(yk)

.

If yk → y′k ∈ Rc
0, otherwise, then sk = 0 since −θ0 + βk + yk · α < 0.

We demonstrate the projection of a reaction system with an example.

Example 2.2. Consider a stochastic processXN(t) associated with a reaction network (S, C,R,K)
such that

A+B
κ1/N−−−⇀↽−−−
κ2

2B, A+ C
κ3−→ 2C, 3C

κ4/N2

−−−⇀↽−−−
κ5N

A, B
Nκ6−−→ ∅.

Suppose that XN
A (0) = XN

B (0) = 2 and XN
C (0) = 3N . Then to reduce the scaled system ZN , note

that S = SL∪SH with SL = {A,B} and SH = {C}. To findRL, note that θ0 = 1 and the reaction

7



intensities of A + C → 2C, 3C 
 A and B → ∅ are belonging to R0. Therefore, by projecting
those reactions with qL, we obtain

RL = {A→ ∅, ∅ → A,B → ∅},

here note that two reactions A+C → 2C and A→ 3C are merged into the same reaction A→ ∅.
Finally, by (16)

KL = {λ̄A→∅(x) = (s3κ3 + s5κ5)xA, λ̄∅→A(x) = s4κ4, λ̄B→∅(x) = s6κ6xB}

can be defined for each x = (xA, xB) ∈ Z2
≥0 by freezing ZN,−θ0

C (t) at ZN,−θ0
C (0) = 3. To compute

s3, note that β3 = 0 and y3 · α = 1. Then as shown in Remark 2.3, for the initial condition
z0 = (1, 2, 3) of the scaled process ZN,−θ0

s3 = qH(z0)qH(y3) = 3, s4 = qH(z0)qH(y4) = 27

s5 = qH(z0)qH(y5) = 1, s6 = qH(z0)qH(y6) = 1.

Therefore (SL, CL,RL,KL) is described with

A
3κ3+κ5−−−−⇀↽−−−−

27κ4
∅ κ6←− B

3 Main Results
In this section, we introduce our main results. In [4, 17], it was shown that if the scaling exponents
αi, βk, and γ in (10) satisfy certain balance conditions, then species of high abundance follow
a system of differential equations with random coefficients, and the species of low abundance
follow a piece-wise deterministic Markov process. In this paper, for a given XN(t) with scaling
parameters αk, βk, we consider = ZN,−θ0(t) under slow-timescale. Under this timescale, we show
that the species in SL approximately follow the projected system (SL, CL,RL,KL) as the scaling
parameter tends to infinity. We further investigate the accuracy of this approximation, which has
not been investigated in the previous work.

3.1 Main Theorem
For a scaled process ZN,−θ0(t) associated with (S, C,R,KN), let Z(t) be the stochastic pro-
cess associated with the projected system (SL, CL,RL,KL,s) as defined in Section 2.4 such that
Z(0) = qL(ZN,γ(0)). We denote by pN(·, t) and p(·, t) the probability density of ZN,−θ0 and Z,
respectively. Throughout this paper, we always assume that S = SL ∪ SH such that SL = {Si ∈
S | XN

i (0) = Θ(1)} and SH = {Si ∈ S | XN
i (0) = Θ(N)}. We further assume that the stochastic

system Z(t) associated with the projected network (SL, CL,RL,KL) is irreducible and admits a
stationary distribution π such that ∑

x∈Zd≥0

∑
u

λ̄u(x)2π(x) <∞. (17)

This condition is required to exclude irregular behavior of Z and in turn ZN,−θ0 such as explosion.
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Theorem 3.1. For each t, ZN,−θ0(t) converges to Z in distribution as N → ∞. Furthermore,
there exists constants c > 0 and ν ∈ (0, 1) such that for any measurable set A ⊂ Rd+r

≥0

sup
t∈[0,T ]

∣∣pN (A, t)− p(AL, t)
∣∣ ≤ cmax{1, T 2}

N ν
for any T > 0,

where AL = {qL(z) | z ∈ A}.

Remark 3.1. Two lemmas are required to complete the proof of Theorem 3.1. We introduce the
lemmas in Section 3.2.

Proof. Lemma 3.5 shows that for any M > 0 there exists a compact set SM = SL,M × SH,M
satisfying (i) SL,M ⊂ Zd≥0, SH,M ⊂ Rr

≥0 and (ii) for any t there exists c1 > 0 such that

pN(ScM , t) ≤
c1 max{1, t2}

M2
and p(ScL,M , t) ≤

c1 max{1, t2}
M2

. (18)

By using this we split the set A as A = (A ∩ SM) ∪ (A ∩ ScM). Thus we have

|pN(A, t)− p(AL, t)|
= |pN(A ∩ SM , t) + pN(A ∩ ScM , t)− p(AL ∩ SL,M , t)− p(AL ∩ ScL,M , t)|
≤ |pN (A ∩ SM , t)− p(AL ∩ SL,M , t) |+ pN(ScM , t) + p(ScL,M , t).

Lemma 3.7 shows that there exist positive constants c2 and c3 such that

|pN (A ∩ SM , t)− p(AL ∩ SL,M , t) | ≤
c2M

c3

N
max{1, t2} (19)

Thus if we choose M = Nρ for some ρ <
1

c3

, then by (18) and (19), the result follows with

c = c1 + c2 and ν = min{2ρ, 1− ρc3}.

Figure 1 shows a schematic procedure of the proof of Theorem 3.1.

3.2 Lemmas
In this section, we provide two main lemmas (Lemma 3.5 and 3.7) used in the proof of Theorem
3.1. We further introduce additional lemmas required to proof the main lemmas. We use the usual
∞-norm and 1-norm for vectors in Zm. That is, for v ∈ Zm

‖v‖∞ = max{vi : i = 1, 2, . . . ,m} and ‖v‖1 =
m∑
i=1

|vi|.

Note that the state space of ZN,−θ0 is a subset of Zd≥0 × Rr
≥0. Note further that the state space

of (ZN
d+1, . . . , Z

N
d+r) depends on the scaling parameter N , as ZN,−θ0

i (t) =
XN
i (t/N−θ0 )

N
for i =

d+1, . . . , d+r. We denote the state space of ZN,−θ0 by S`×Sh such that S` ⊆ Zd≥0 and Sh ⊆ Rr
≥0,

where qL(ZN,−θ0(t)) ∈ S` and qH(ZN,−θ0(t)) ∈ Sh.

9



is small.

is small.

Figure 1: A schematic description of the proof of the main theorem.

In the rest of this manuscript, for z ∈ Rd+r
≥0 we denote z` = qL(z) and zh = qH(z). Then we

define SM = SL,M × SH,M such that

SL,M = {z` ∈ S` : ‖z`‖∞ ≤M}, and

SH,M =

{
zh ∈ Sh :

∣∣λNH,k(zh)− sk∣∣ ≤ M

N
for any yk → y′k ∈ R0

}
,

(20)

where M = Nρ for arbitrary ρ ∈ (0, 1). As shown in Figure 1, one of the key ideas for the main
theorem is to show that ZN stays in the compact set SM within a finite time interval [0, T ] with
high probability. In the following lemmas, we show that the probability of ZN,−θ0 escaping SM is
low if N is sufficiently large.

Lemma 3.2. For each yk → y′k ∈ R, let ȳu → ȳ′u ∈ RL such that qL(yk) = ȳu and qL(y′k) = ȳ′u.
Then there exist ν1, ν2, c > 0 such that for any z ∈ SM

(i)
∣∣∣∣λN,−θ0k (z)− skκk

κ̄u
λ̄u(z`)

∣∣∣∣ ≤ κkλL,k(z`)
1

Nν1
if yk → y′k ∈ R0,

(ii) λN,−θ0k (z) ≤ c

N ν2
if yk → y′k ∈ Rc

0, and

(iii)
(

1− c

Nν1

)∑
u

λ̄u(z`) ≤
∑
k

λN,−θ0k (z) ≤
(

1 +
c

N ν1

)∑
u

λ̄u(z`) +
c

N ν2
.

for N sufficiently large, where sk and κ̄u are defined as (16).

The following lemma shows that the number of transitions of Z by time t is on average less
than max{1, t2} assuming (17).

Lemma 3.3. Let J(t) be the number of jumps of Z by time t. If (17) holds, then there exists a
constant c such that

E(J(t)2) ≤ cmax{1, t2} for any t.

10



Remark 3.2. This guarantees that Z is non-explosive meaning that if we let Tn be the n the
transition time of Z, then lim

n→∞
Tn = ∞ almost surely. Then Z does not transition infinitely many

times on any finite time interval [0, T ], which means Z is uniquely well-defined process satisfying
(6) with the intensity functions λ̄u.

Now we investigate how many transitions are required for ZN,−θ0(t) to escape the set SM . In
the following lemmas, we use the floor function bxc that is the greatest integer less than x.

Lemma 3.4. Let τNr be the first time for brc th transition of ZN,−θ0 . Then there exists a constant
c > 0 such that pN(ScM , t) ≤ P (τNcM < t) for M = Nρ with arbitrary ρ ∈ (0, 1) as long as N is
sufficiently large.

Remark 3.3. Let τr be the first time for brc th transition ofZ. Then as shown in the proof of Lemma
3.4, {z` : |z` − z0

` | ≤ c′′′M} ⊆ SL,M for some c′′′ > 0. Therefore p(SL,M , t) ≤ P (τc′′′M < t).

Now, Lemma 3.2 and Lemma 3.4 are combined to show (18). Before we introduce Lemma
3.5, we remind that Z(t) is irreducible. Therefore every state of Z is non-absorbing meaning that∑

u λ̄u(z`) > 0 for any state z. Since λ̄u is a non-zero polynomial as defined in (16), it follows that

min
z`

∑
u

λ̄u(z`) > 0, and so min
z

∑
k

λN,−θ0k (z) > 0. (21)

Lemma 3.5. For any t there exists c > 0 and ν0 > 0 that

pN(ScM , t) ≤
c1 max{1, t2}

N ν0
and p(ScL,M , t) ≤

c1 max{1, t2}
Nν0

.

Proof. Let the two stopping times τNM and τM be defined as Lemma 3.4 and Remark 3.3. Then
pN(ScM , t) ≤ P (τNcM < t) and p(ScL,M , t) ≤ P (τcM < t) for some c > 0. Hence we show the
bounds for PN(τNcM < t) and P (τcM < t).

Let PathM ′ be a collection of all possible bcMc = M ′ consecutive reactions in R for ZN

started at ZN(0) = (z0
` , z

0
h). Each element η ∈ PathM ′ is an ordered set of M ′ reactions in R.

That is,
η = {y(η, 1)→ y′(η, 1), . . . , y(η,M ′)→ y′(η,M ′)} ,

where y(η, i)→ y′(η, i) ∈ R for each i. We define w(η, j) be a state after j consecutive jumps in
η from ZN,−θ0(0) = (x`, xh). That is,

w(η, j) = ZN(0) +

j∑
i=1

(y′(η, i)− y(η, i)) = (w(η, j)`, w(η, j)h) (22)

for j = 1, 2, . . . ,M ′, where

w(η, j)` =

(
z0
` +

j∑
i=1

qL(y′(η, i)− y(η, i))

)
and

w(η, j)h =

(
z0
h +

j∑
i=1

qH(y′(η, i)− y(η, i))

)
.

11



Note that w(η, j) ∈ SM since we choose c as ZN,−θ0 needs at least M ′ transitions to escape SM .
Let PathM ′,0 = {η : y(η, i) → y′(η, i) ∈ R0 for each i}. Then for η ∈ PathM ′,0 we denote
by Aη represent the event of M ′ consecutive jumps for ZN,−θ0 along the ordered reactions in
η ∈ PathM ′ . Let also Āη the event of M ′ consecutive jumps for Z along the ordered reactions
qL(y(η, 1))→ qL(y′(η, 1)), . . . , qL(y(η,M ′))→ qL(y′(η,M ′)).

We now show two key steps. First, conditioning on the event Aη, the stopping time τNcM is sum
of exponential distributions TNi with rate λN(w(η, j)) [27], where λN,−θ0(z) =

∑
k λ

N,−θ0
k (z).

More precisely,

P (τNcM < t|Aη) = P

(
M ′∑
i=1

TNi < t

)
, (23)

where TNi ’s are independent exponential distributions with the rate λN,−θ0(w(η, i)). Lemma 3.2
(iii) implies that λN(z) ≤ 2λ̄(z`) for z ∈ SM , where λ̄(z`) =

∑
u λ̄(z`). Then this combined with

(23) implies that

P (τNcM < t|Aη) ≤ P

(
M ′∑
i=1

Ti < t/2

)
= P

(
τcM < t/2|Āη

)
, (24)

where Ti’s are independent exponential distributions with the rate
∑

u λ̄u(w(η, i)`).
Second, note that for each η ∈ PathM ′ , the eventAη occurs if and only if the reaction y(η, i)→

y′(η, i) fires at each state w(η, i) among all reactions inR. This implies that

P (Aη) =
M ′∏
i=1

λN,−θ0η,i (w(η, i))

λN,−θ0(w(η, i))
,

where λNη,i is the intensity function of the reaction y(η, i)→ y′(η, i). Lemma 3.2 (i) and the fact that
λL,k(z`) = 1

κ̄u
λ̄u(z`) if qL(yk) = ȳu imply that there exists c > 0 such that for each η ∈ PathM ′,0

λN,−θ0η,i (w(η, i)) ≤
(
skκk
κ̄u

+
κk

κ̄uNν1

)
λ̄η,i(w(η, i)`) ≤

(
1 +

c

Nν1

)
λ̄η,i(w(η, i)`) (25)

for some c > 0, where λ̄η,i denotes the intensity of qL(y(η, i)) → qL(y′(η, i)). Then Lemma 3.2
(iii) and (25) further imply that there exists c > 0 such that for each η ∈ PathM ′,0

P (Aη) ≤

((
1 + c

Nν1

)(
1− c

Nν1

))cM M ′∏
i=1

λ̄η,i(w(η, i)`)

λ̄(w(η, i)`)
=

((
1 + c

Nν1

)(
1− c

Nν1

))cM

P (Āη), (26)

For η ∈ PathcM ′,0, a reaction y(η, i)→ y′(η, i) ∈ Rc
0 for some i. Then

P

 ⋃
η∈Pathc

M′,0

Aη

 ≤ P (a reaction in Rc
0 fires at a state lying in SM)

≤ max
z∈SM

max
yk→y′k∈R

c
0

λN,−θ0k (z)

λN,−θ0(z)
.
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Hence by Lemma 3.2 (ii) and (21)

P

 ⋃
η∈Pathc

M′,0

Aη

 ≤ c

N ν2
(27)

for some c > 0.
Consequently, by (24), (26) and (27) there exists c > 0 such that

P (τNcM < t) = P

τNcM < t,
⋃

η∈PathM′,0

Aη

+ P

τNcM < t,
⋃

η∈Pathc
M′,0

Aη

 (28)

≤
∑

η∈PathM′,0

P (τNcM < t|Aη)P (Aη) +
c

Nν2

≤

((
1 + c

Nν1

)(
1− c

Nν1

))cM ∑
η∈PathM′,0

P (τcM < t/2|Āη)P (Āη) +
c

N ν2

≤

((
1 + c

Nν1

)(
1− c

Nν1

))rM

P (τcM < t/2) +
c

Nν2
. (29)

Finally, we let J(t) be the number of jumps of Z by time t as we define in Lemma 3.5. Then,
applying the Chebyshev’s inequality and the result of Lemma 3.5, we have

P (τcM < t/2) ≤ P (J(t/2) > cM) ≤ E(J(t/2)2)

(cM)2
≤ c′max{1, t2}

M2
, (30)

for some c′ > 0. Recall that M = Nρ. Then we have

lim
N→∞

((
1 + c

Nν1

)(
1− c

Nν1

))rM

= 1, (31)

because ν1 = 1 − ρ as shown in the proof of Lemma 3.2. We further recall that ν2 in Lemma 3.2
tends to 1, as ρ→ 0. Thus we choose ρ sufficiently small. Then by (29)–(31), the desired bounds
follow with some ν0.

With Lemma 3.5, we can conclude that both ZN,−θ0 and Z likely stay in SM and SL,M , respec-
tively within [0, t] as long as N is sufficiently large. As the confined set SM and SL,M have finitely
many states, by using this advantage we can compare the probability densities of the two processes
confined onto SM and SL,M , respectively. To compare the two probability densities, we use the
following multi dimensional Gronwall’s inequality [9].

Lemma 3.6. Suppose for any vector u0 ∈ Rn
≥0 with ‖u0‖1 = 1, a system of differential equation{

d
dt
u(t) = Au,

u(0) = u0,
(32)
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admits a unique solution u(t) ∈ Rn
≥0 such that ui(t) ≥ 0 for each i and ‖u(t)‖1 = 1 for any t.

Suppose v satisfies d
dt
v(t) ≤ Av(t) + b for some b ∈ Rn. Then for each t,

v(t) ≤ tb+ t2Āb,

where Ā is an n× n matrix such that Āij = maxk,mAkm.

As two probability densities pN and p solve two similar systems of ordinary differential equa-
tion, respectively, Lemma 3.6 helps finding the distance between the two densities.

Lemma 3.7. For any t and for any A ⊂ Rd+r
≥0 , there exist c > 0, c′ > 0 and ν ′0 > 0 such that

|pN (A ∩ SM , t)− p(AL ∩ SL,M , t) | ≤
cM c′ max{1, t2}

Nν′0
,

where AL = {qL(z) : z ∈ A}.

Proof. The probability density p(z`, t) of Z(t) satisfies the Kolomogorov forward equation (chem-
ical master equation) (4)

d

dt
p(z`, t) =

∑
u

λ̄u(z` − ȳ′u + ȳu)p(z` − ȳ′u + ȳu, t)−
∑
u

λ̄u(z`)p(z`, t). (33)

By considering p(t) = {p(z, t)}z`∈SL,M as a column vector, (33) is equivalent to

d

dt
p(t) = LMp(t) + bMin − bMout, (34)

where LM is an |SL,M |× |SL,M |matrix, and bMout and bMin are column vectors. The ij entry LM(i, j)
with i 6= j is the transition rate from the j th state to the i th state in SL,M , and LM(i, i) =
−
∑

j L
M(i, j). The the vector bMin represents the in-flow from ScL,M to SL,M , and hence it is

defined as for the i the state z` ∈ SL,M , the i th entry is

bMin (i) =
∑
ȳu→ȳ′u

z`−ȳ′u+ȳu∈ScL,M

λ̄u(z` − ȳ′u + ȳu)p(z` − ȳ′u + ȳu, t) (35)

For any z` ∈ SL,M , the state z` − ȳ′u + ȳu belongs to SL,rM for some r > 1. Hence λ̄u(z` −
ȳ′u + ȳu) ≤ cMmaxk ‖ȳu‖1 because λ̄u is a polynomial of degree ‖ȳu‖1. Moreover, by applying
Lemma 3.4 and Lemma 3.5 for rM instead of M , we have p(z`− ȳ′u + ȳu, t) ≤ cmax{1,t2}

Nν3
for some

ν0 ∈ (0, 1). Therefore with a sufficiently small ρ, each entry bMin (i) is less than c
Nν3

for some c > 0
and ν3 ∈ (0, 1). In the same way, we can show also that there exist c > 0 and ν4 ∈ (0, 1) such that
bMout(i) ≤ c

Nν4
for each i. Hence we have the following componentwise inequality from (34):

LMp(t)− bN1 ≤
d

dt
p(t) ≤ LMp(t) + bN1 , (36)

where bN1 is a column vector with each entry c
Nν3

.
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Now we turn to the Kolomogorov forward equation for pN(z, t). We first recall that as defined
in (10), the reaction vector of ZN,−θ0 is scaled so that the transition for each entry is

y′k,i−yk,i
Nαi

. Thus
we denote this scaled reaction vector by y′Nk − yNk . Then for each z ∈ SM , the distribution pN(z, t)
satisfies

d

dt
pN(z, t) =

∑
k

λN,−θ0k (z − y′Nk − yNk )pN(z − y′Nk + yNk , t)−
∑
k

λN,−θ0k (z)pN(z, t). (37)

Then we show that the two differential equations (37) and (33) are similar with Lemma 3.2. Note
that as we discussed above, some state z−y′k+yk in (37) may be outside SM . However, such states
can be encompassed by SrM for some r > 1, and Lemma 3.2 still holds for SrM with different
constant c. Hence we can apply Lemma 3.2 for each z − y′k + yk ∈ ScM .

Let pNL (z`, t) =
∑

z∈A∩SM
qL(z)=z`

pN(z, t), which represents the probability density of the projected

process qL(ZN(t)). For each z ∈ SrM , if yk → y′k ∈ R0, then Lemma 3.2 (i) implies that
λN,−θ0k (z) ≤ skκk

κ̄u
λ̄u(z`) + κkλL,k(z`)

1
Nν1

. Since λL,k(z`) ≤ (cM)maxk ‖yk‖∞ for any z` ∈ SL,rM ,
there exists c > 0 such that for any z` ∈ SL,rM ,∑

z∈A∩SM
qL(z)=z`

∑
yk→y′k∈R0

λNk (z − y′Nk − yNk )pN(z − y′Nk − yNk , t)

≤
∑
u

λ̄u(z` − ȳ′u + ȳu)p
N
L (z` − ȳ′u + ȳu, t) + c

Mmaxk ‖yk‖∞

N ν1
.

(38)

Lemma 3.2 (ii) further implies that∑
z∈A∩SM
qL(z)=z`

∑
yk→y′k∈R

c
0

λN,−θ0k (z)pN(z, t) ≤ cMmaxk ‖yk‖∞

N ν2
(39)

Hence by using (38) and (39), we take
∑

z∈A∩SM
qL(z)=z`

in (37) to show that for sufficiently small ρ there

exists c > 0 and ν4 ∈ (0, 1) such that for any z` ∈ SL,M

d

dt
pNL (z`, t)

=
∑

z∈A∩SM
qL(z)=z`

(∑
k

λN,−θ0k (z − y′Nk − yN)pN(z − y′Nk + yNk , t)−
∑
k

λN,−θ0k (z)pN(z, t)

)

≤
∑
u

λ̄u(z` − ȳu + ȳu)p
N(z` − ȳ′u + ȳu, t)−

∑
u

λ̄u(z`)p
N(z`, t) +

c

Nν4
.

Hence as we derived (36), we have the following componentwise inequaility for the column vector
pNL (t) = {pNL (z`, t)}z`∈SL,M : for some c > 0 and ν5 ∈ (0, 1)

LMpNL (t)− bN2 ≤
d

dt
pNL (t) ≤ LMpNL (t) + bN2 ,
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where bN2 is a column vetor with each entry c
Nν4

. By combining these inequalities with (36), we
have

LM(pNL (t)− p(t))− bN ≤ d

dt
(pNL (t)− p(t)) ≤ LM(pNL (t)− p(t)) + bN , (40)

with a vector bN such that each entry bN(i) is c
Nν5

for some c > 0 and ν5 ∈ (0, 1).
Then we complete this proof applying Lemma 3.6 for (40). Note first that a system of differ-

ential equation {
d
dt
u(t) = LMu,

u(0) = u0,

admits a unique solution u(t) when ‖u0‖1 = 1 because we can regard LM as the transition rate
matrix of a continuous time Markov chain defined on SL,M . Hence applying Lemma 3.6 for (40)
with v(t) = pNL (t)− p(t) and v(t) = p(t)− pNL (t) respectively, we have

|pNL (t)− p(t)| ≤ tbN + t2|SL,M |LMmaxbN ,

where LMmax is the maximum entry of LM . Each entry of LM is either the reaction intensity λ̄u(z`)
or finite sum of λ̄u(z`) at some z` ∈ SL,M . Hence LMmax can be bound by cMmaxu ‖ȳu‖1 for some
c > 0 because maxu maxz`∈SL,M λ̄u(z`) ≤ cMmaxu ‖ȳu‖1 for some c > 0. Furthermore note that
|SL,M | ≤Md and each entry of bN is c

Nν4
. Hence for each z` ∈ SL,M , we have

|pN(A ∩ SM , t)− p(AL ∩ SL,M , t)| ≤
∑

z`∈SL,M

|pNL (z`, t)− p(z`, t)| ≤
cM c′ max{1, t2}

N ν′0

with sufficiently small ρ and some ν ′0 ∈ (0, 1).

4 Theorem 3.1 with general kinetics
Theorem 3.1 can hold for a reaction system under general kinetics as long as the scaled reaction
intensities (11) satisfy the following conditions.

(CD1) The scaled reaction intensity for ZN,γ(t) is also decomposed as following: for z such that
qL(z) ∈ Zd≥0 and NqH(z) ∈ Zr≥0

λN,γk (z) = κkλL,k(qL(z))λN,γH,k(qH(z)).

(CD2) λL,k grows polynomially: for any k, there exist positive constants c1 such that

λL,k(z`) ≤ c1‖z`‖c2∞ for any z` ∈ Zd≥0.

(CD3) The limit limN→∞ λ
N,γ
H,k(zh) exists for each zh ∈ Rr

≥0 and we denote this limit by λ̄H,k(zh).
Furthermore if |z − z0| ≤ M

N
, then

|λ̄H,k(zh)− sk| ≤
M

N
and |λN,γH,k(zh)− λ̄H,k(zh)| ≤

1

N
,

where sk = limN→∞ λ
N,γ
H,k(z

0
h) with an initial condition z0

h ∈ Rr
≥0,.
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Remark 4.1. Conditions (CD1)–(CD3) hold under the stochastic mass action kinetics (5).

Remark 4.2. Polynomials, MichaelisMenten kinetics, hill functions and logarithms satisfy (CD2)
and (CD3).

Note that Lemma 3.4 can be proved by using conditions (CD1)–(CD3) without properties of
mass action kinetics. The other lemmas still hold without further modifications in the proofs. Thus
for general kinetics satisfying conditions (CD1)–(CD3), Theorem (3.1) holds.

5 Examples
We apply Theorem 3.1 for several multiscale biological systems. In the follow examples, the
probability density of low order species in SL can be approximated with explicit forms.

5.1 Futile Cycle
A futile cycle system (41) appears in [11, 22] as an example for computing rare event probabilities.
In the system, species S2 is transformed to S5 through intermediate species S3, and this transfor-
mation is catalyzed with S1. In the opposite way, S4 catalyzes the transform of S5 to S2 with the
intermediate form S6. We added synthesis and degradation of the catalysts S1 and S6 to the original
model.

S1 + S2
κ1−→ S3, S3

κ2−→ S1 + S2, S3
κ3−→ S1 + S5

S4 + S5
κ4−→ S6, S6

κ5−→ S4 + S5, S6
κ6−→ S4 + S2,

∅ κ7−⇀↽−
κ8
S1, ∅ κ9−−⇀↽−−

κ10
S6.

(41)

Let N be the scaling parameter. We set the initial copies of the species as S2, S3, S5 and S6

have initially high copies and S1 and S4 have initially low copies. In particular, XN
i (0) = N

for i = 2, 5, 6, XN
3 (0) = 2N , XN

1 (0) = 2 and XN
4 (0) = 1. Hence SL = {S1, S4} and SH =

{S2, S3, S5, S6}. We choose the same rate constants as used in [11, 22], and we assume that the
scaling parameter βk = 0 for all the reaction rate constants so that κi = 0.1 for i = 3, 6 and κi = 1
otherwise.

Under the mass-action kinetics, the initial reaction intensities are
λ1(XN(0)) = κ1X

N
1 (0)XN

2 (0) = κ12N , λ2(XN(0)) = κ2X
N
3 (0) = κ22N , and so on. Note

that λk(XN(0)) = Θ(N) for each yk → y′k ∈ R0, so the maximum order of the initial reaction
intensity is θ0 = 1. By definition ofR0 (13), the reactions are classified intoR0 andRc

0 whereRc
0

contains the 7 and 8 th reactions, and the other reactions belong toR0.
We consider the scaled process ZN,−θ0(t) such that ZN,−θ0)i(t) = N−αiXN(N−θ0t). We also

consider the projected system (SL, CL,RL,KL). By fix all the species SH at their initial values,
we obtain the parameter sk for the projected system such that

s1 = lim
N→∞

λN,−θ0H,1 (ZN,−θ0(0)) = lim
N→∞

Nβ1+y1·α

N θ0

XN
2 (0)

N
= 1,
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and so on. Thus as shown in Section 2.4 the projected system (SL, CL,RL,KL) is defined as

S1
κ1−−−−−⇀↽−−−−−

2(κ2+κ3)
∅ κ5+κ6−−−⇀↽−−−

κ4
S4. (42)

Both S1 and S4 in (42) follow a simple birth-death process and hence the stationary distribution of
Z is a Poisson distribution so that the condition (17) holds. Furthermore, unlikely in the original
model (41), probability densities of species S1 and S5 at time t are analytically tractable as it
is shown in [15] that the time evolution of the probabilities for a linear birth-death process is
a convolution of Poisson distributions and multinomial distributions. Thus we can analytically
approximate the dynamics of the species in SL of the original system (41). Figure 2A displays the
density function of S1 for ZN,−θ0(10) and the reduced system Z(10) with N = 100. Figure 2B
displays the accuracy of the approximation indicating the convergence rate in the scaling parameter
N as proved in Theorem 3.1.

5.2 Yeast Polarization
In this section, we consider a signal-transduction pathway (43), which was introduced in [11]. In
the system, species G, so-called ‘G-proten’, serves an important role in yeast polarization [24]. G
goes through a separation-dephosphorylation-rebind cycle, as the 5th,6th and 7th reactions describe
in (43), respectively. And this cycle is activated by ligand-receptor binding.

∅
κ1/N−−−⇀↽−−−
κ2/N

R, L+R
κ3/N−−−→ RL+ L, RL

κ4/N−−−→ R, ,

RL+G
κ5−→ Ga +Gbg Ga

κ6/N−−−→ Gd,

Gd +Gbg
κ7−→ G, ∅ κ8−→ RL.

(43)

We model this yeast polarization system with a multiscale stochastic mass-action system. Let
N be the scaling parameter. We suppose that the initial copies of ligand L, protein G and its
subunit Gbg are Θ(1), and other species have the copy numbers of order N . More precisely, for
a multiscale process XN(t) associated with (43), we set XN

R (0) = N,XN
L (0) = 2, XN

RL(0) =
N,XN

G (0) = 5, XN
Gα

(0) = N,XN
Gbg

(0) = 5 and XN
Gd

(0) = N . As described in (43), we scale the
rate constants (see the caption of Figure 2 for the values of κi’s). Then by computing the reaction
intensities at XN(0), we have the maximum order of reaction intensity θ0 and then we classify the
reactions intoR0 = {yk → y′k : k = 5, 7} andRc

0.
We approximate the scaled process ZN,−θ0(t) under slow-timescale with the projected system

(SL, CL,RL,KL). The parameters sk defined around (16) are

s5 = lim
N→∞

λN,−θ0H,5 = lim
N→∞

N−θ0+β5+y5·αZN,−θ0
RL (0) = 1,

s7 = lim
N→∞

λN,−θ0H,7 = lim
N→∞

N−θ0+β7+y7·αZN,−θ0
Gd

(0) = 1.

Then the projected system is

G
κ5−⇀↽−
κ7
Gbg. (44)
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The stochastic process Z(t) = (ZG(t), ZGbg(t)) associated with (44) admits a finite state space as
the total quantity of G and Gbg is preserved. Hence (17) hold. Furthermore the probability density
function can be analytically derived as p(t) = µe−Qt where Q is the transition matrix of Z defined
on {(z1, z2) : z1 + z2 = ZG(0) + ZGbg(0) = 10} and µ is the initial distribution of Z such that
µ(5, 5) = 1. We show model reduction in Figure 2CD with almost the same rate constants used
in [11]. In Figure 2C, letting N = 1000, we compare the probability densities of Gbg of ZN,−θ0

associated with (43) and its reduced system Z associated with (44) at time t = 10. Figure 2D
furthermore shows the convergence rate of the approximation.

5.3 p53 response to DNA damage
Network (45) describes signaling pathway and negative feedback for activating p53 proteins in
damages DNA, which is introduced in [5]. When DNA is damages, signaling kinases (S) such as
ATM and Chk2 convert inactive p53 protein (P0) to active p53 protein (P). The p53 protein also
represses itself by the negative feedback loop with the Mdm2 protein (M). Another negative feed-
back loop between p53, the signal and inhibitor (I) is also present in this system. See a schematic
description of this system in [5, Figure 1B]

P0 + S
Nκ1−−→ P + S,

P0 +M
κ2−→M, P +M

κ3−→M,

P
κ4−→ P +M, P

κ5−→ P + I,

S +M
κ6/N−−−→ S, S + I

κ7−→ I,

P
κ8−−⇀↽−−
Nκ9
∅ κ10−−⇀↽−−

κ11
M, S

κ12−−⇀↽−−
κ13
∅ κ14←−− I.

(45)

To match the initial setting used in [5], we assume that the inhibitor has low copies at the begin-
ning. Furthermore we assume that P0 and P have also initially low copies. Precisely, XN

P0
(0) =

5, XN
P0

(0) = 0, XN
I (0) = 1, XN

N (0) = N and XN
S (0) = 5N . Hence SL = {P0, P, I} and

SH = {M,S}. For each state x = (xP0 , xP , xS, xM , xI), the reaction intensities λ1 and λ7 contain
hill-functions as

λ1(x) = Nκ1xP0

xS
xS + c1

, and λ7(x) = κ7xS
xI

xI + c2

,

for some positive constants c1 and c2. The other intensities follow the mass-action kinetics (5).
Under the scaled rate constants shown in (45). Then the maximum order θ0 of the intensities is
1 so that R0 contains reaction 1, 2, 3, 6, 7, 9, 11 and 12. For the process ZN,−θ0(t) under slow-
timescale, the associated projected network (SL, CL,RL,KL) is

P0
s1κ1−−−−−−−→ P

s8κ8 ↘↖ s2κ2 ↙s3κ3
∅

where the parameters sk’s are defined as in (16). Especially for the non-mass action intensity
λN1 (ZN,−θ0(0)) we have

s1 = lim
N→∞

λN,−θ0H,1 (qH(ZN,−θ0(0)) = N−θ0+β1
N

N + c1

= 1.
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Figure 2: AB. Model reduction for the futile system (41). Parameters are κ3 = 0.1 and κ6 = 0.1,
and κi = 1 otherwise. The probability density of the original model is calculated with 105

times of Gillespie’s simulations [13]. A. Comparison of the distributions P (SN,−θ01 (t) = z`))
and P (S1(t) = z`) at t = 100 with N = 104. B. Convergence d(N) = |P (ZN,−θ0(t) ∈
A) − P (Z(t) ∈ A)| as N increases for A = {S1 = 3 or 4} at t = 100. CD. Model reduc-
tion for the yeast polarization system (43). Parameters are κ1 = 3.8, κ2 = 40, κ3 = 42, κ4 =
10, κ5 = 0.011, κ6 = 10, κ7 = 1 and κ8 = 3.21. The probability density of the original
model is calculated with 107 times of Gillespie’s simulations. C. Comparison of the distribu-
tions P (GN,−θ0

bg (t) = z`)) and P (Gbg(t) = z`) at t = 10 with N = 103. D. Convergence
of d(N) = |P (ZN,−θ0(t) ∈ A) − P (Z(t) ∈ A)| as N increases for A = {S1 = 3 or 4} at
t = 100. EF. Model reduction for the system of p53 response (45). The parameters κi are
1.1, 0.6, 0.3, 0.3, 3.4, 4.5, 4.1, 0.6, 1.1, 0.9, 1.9, 3.2, 3.2, and 3.0 for i = 1, 2 . . . , 14, respectively.
Furthermore c1 = 4.7 and c2 = 1.9. Each parameter is sampled uniformly in [0, 5]. 107 Gille-
spie’s simulations are used to estimate the probability densities of the original and reduced mod-
els. E. Comparison of the distributions P (PN,−θ0

1 (t) = z`)) and P (P (t) = z`) at t = 100 with
N = 105. F. Convergence d(N) = |P (PN,−θ0(t) ∈ A) − P (P (t) ∈ A)| as N increases for
A = {P = 3 or 4} at t = 100. GH. Model reduction for the population model (46). The pa-
rameters κi are 0.5, 1.7, 3.9, 4.6, 2.7, 1.9, 6.1, 2.4, and 1.5 for i = 1, 2 . . . , 9, respectively. Each
parameter is sampled uniformly in [0, 5]. We sampled 105 trajectories with Gillespie’s algorithm
to estimate the probability densities of the original and reduced models. G. Comparison of the
distributions P (BN,−θ0(t) = z`)) and P (B(t) = z`) at t = 150 with N = 105. H. Convergence
d(N) = |P (BN,−θ0(t) ∈ U) − P (B(t) ∈ U)| as N increases for U = {B ≥ 10} at t = 150.
The yellow straight lines in BDFH indicate that the convergence rate of d(N) to 0 is in Θ( 1

Nν ) for
some ν ∈ (0, 1).

Note that these intensities under non-mass action kinetics satisfy (CD1)–(CD3). Let Z(t) be the
stochastic process associated with (SL, CL,RL,KL). The time evolution of the probability density
of Z(t) is analytically intractable. However, it can be shown that the probability density converges
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to a unique stationary distribution, which can be explicitly derived. (SL, CL,RL,KL) satisfies
special network structure, so-called zero deficiency and weakly reversible, and hence its stationary
distribution is a product form of Poisson distributions [2, Theorem 6.1]. See Appendix for more
details.

Figure 2E displays the probability distribution of the original and reduced models along with
Poisson distribution of rate µ = 2.4, which is the average of P in (SL, CL,RL,KL). A commodity
machine was used to simulate the samples in parallel (parfor in Matlab with 6 workers) and took
317 sec for the original model and 2.4 sec for the reduced model. We also show the convergence
of the original model in Figure 2E.

5.4 Three species Lotka-Volterra model with migration
We consider a multiscale Lotka-Volterra population model (46) with the scailing parameter N .
There exists three species in the network where A is the lowest level prey, B is the middle level
species, and C is the top level predator.

B
κ1−⇀↽−
κ2
∅, A

κ3/N−−−⇀↽−−−
κ4
∅, C

κ5−⇀↽−
κ6
∅,

A
κ7/N−−−→ 2A, A+B

κ8/N−−−→ 2B, B + C
κ9−→ 2C.

(46)

We use non-mass action kinetics for the reactions A+B → 2B and B+C → 2C to model ‘weak
hunting’ of B and C such that for each x = (xA, xB, xC),

λ8(x) =
κ8

N
xA
√
xB and λ9(x) = κ9 log(xBxC + 1).

The other reaction intensities obey the mass-action kinetics. We assume that SL = {B,C} and
SH = {A} as XN

A (0) = N , XN
B (0) = 10 and XN

C (0) = 10. Under the scaled rate constants shown
in (46), the maximum order of the reaction intensities θ0 is 0, and every reaction belongs to R0.
Note that we assumed that slow birth and slow degradation of A so that the associated reaction rate
constants for the 3rd and 7th reactions are of order 1

N
.

For the scaled process ZN,−θ0(t), the scaled reaction intensities are decomposed as defined in
(15), especially for each z = (zA, zB, zC) λN,−θ0H,8 = Nβ8+y8·αzA, λL,8 = κ8

√
zB, λN,−θ0H,9 = 1 and

λL,9 = κ9 log(zBzC + 1). Hence (CD1)–(CD3) hold.
Now we consider the projected system. As the the reactionA+B → 2B obeys non-mass action

kinetics involvingA ∈ SH , parameter the s8 is especially computed as s8 = limN→∞ λ
N
H,8(ZN,−θ0(0)) =

1. Hence the projected system is

B
κ1−⇀↽−
κ2
∅, C

κ5−⇀↽−
κ6
∅ B

κ8−→ 2B, B + C
κ9−→ 2C. (47)

Let Z(t) be the stochastic process associated with (47) In Appendix, we show how to use the
Foster-Lyapunov criterion [23] to verify that a stationary distribution π of Z exists and how π
meets the condition (17). The approximation and convergence rates of species B is shown in
Figure 2G and H. A commodity machine was used to approximate the probability densities in
parallel (parfor in Matlab with 6 workers) and took 174 sec for the original model and 70 sec for
the reduced model.
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6 Discussion
When a stochastic biochemical reaction system contains species with different orders of abun-
dance, one can model the system using a multiscaling approach. We have shown in this paper
that a multiscale stochastic reaction a short-term timescale can be approximated using a reduced
stochastic system with a specific error bound.

The scaling regime we considered in this paper is a special case of the scaling under the so-
called species balance condition, which was introduced in [17]. More general multiscaling limits of
stochastic reactions introduced by Kurtz and others rely on the law of large numbers and relative
compactness of probability measures in a metric spaces [1, 4, 17, 21]. This general framework
covers a wide range of multiscaling limits, but the convergence rate in the general case remains
unknown. Instead of the classical methods, here we have used a direct analysis of the Kolmogorov
forward equation, and we also use the state space truncation through FSP to exploit the distance
between two probability measures more explicitly.

One of the key steps for the main result was to show that the concentrations of the order N
species are confined near the initial concentrations. To do this, we showed that the multiscale model
is non-explosive by assuming that the reduced system admits a stationary distribution satisfying a
finite moment condition. Indeed, this assumption implies the tightness of the family of multiscale
stochastic processes, which in turn implies the relative compactness of the sequence of probability
measures. This assumption is also closely related to some technical conditions on stoichiometric
coefficients such as the binary or unary conditions assumed in [1, 17].

We can generalize the rate of the convergence in the main result if all the moments of the
stationary distribution π in 17 are finite. Based on a suggestion by Chaojie Yuan for this case, we
used the BurkholderDavisGundy inequality [6] and were able to prove inductively the alternative
result that E(J(t)m) ≤ ctm in Lemma 3.3. By combining this result with the other lemmas with
slight modifications, it follows that

|pN(A,Rr
≥0, t)− p(A, t)| ≤

cmax{1, tm}
Nν

for any ν ∈ (0, 1).

The main result in this paper can shed light on the applicability of multiscaling model approx-
imations for the analysis of stochastic reaction systems. In the analysis that we proposed for the
multiscale model reduction, the convergence of the probability measure has been exhibited more
explicitly than in the existing literature. The main result can also strengthen the applicability of
this theoretical framework to practical problems in systems biology such as rational circuit design
and the study of absolute robustness [20].
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Appendix A: Table of symbols

Symbol Meaning
S, C,R and K Set of species, complexes, reaction and reaction intensities, respectively

Xi(t) The count of i th species at time t
XN(t) A multiscale stochastic model associated with a reaction network
ZN,γ(t) A scaled process

d Number of species of low initial copies
r Number of species of high initial copies

Zd≥0 {x ∈ Zd : xi ≥ 0 for each i}
Rr
≥0 {z ∈ Rr : zi ≥ 0 for each i}

pN(·, t) Probability density function of ZN,−θ0(t)
p(·, t) Probability density function of Z(t)
n(k) n(n− 1) · · · (n− k + 1)1n≥k for non-negative integers n and k
u(v)

∏d
i=1 u

(vi)
i for u, v ∈ Zd≥0

uv
∏d

i=1 u
vi
i for u, v ∈ Rd

≥0

SL Set of species such that Xi(0) = Θ(1)
SH Set of species such that Xi(0) = Θ(N)
λk Reaction intensity of XN associated with the k th reaction.
λN,γk Reaction intensity of ZN,γ associated with the k th reaction (11).

λL,k, λN,γH,k Decomposition of λN,γk (15).

y′N − yN The scaled reaction vector with the i th component
y′k,i−yk,i
Nαi

Appendix B: Proof of Lemmas in Section 3.2
Proof of Lemma 3.2. Suppose first that yk → y′k ∈ R0. As defined in (15), we use the decompo-
sition of λN,−θ0k (z) = κkλL,k(z`)λ

N,−θ0
H,k (zh). As we discussed in Remark 2.2, the intensities of Z

can be calculated as λ̄u(z`) = κ̄u(z`)
(ȳu) = κ̄uλL,k(z`) if qL(yk) = ȳu. Hence by definition of SM

in (20), ∣∣∣∣λN,−θ0k (z)− skκk
κ̄u

λ̄u(z`)

∣∣∣∣ = κkλL,k(z`)
∣∣∣λN,−θ0H,k (zh)− sk

∣∣∣
≤ κkλL,k

M

N
= κkλL,k

1

N1−ρ ,

(48)

for each z ∈ SM . Therefore (i) follows with ν1 = 1− ρ.
To show (ii), we recall that −θ0 + βk + yk · α < 0 for each yk → y′k ∈ Rc

0, which implies that
for ZN,−θ0(0) = z0

sk = lim
N→∞

N−θ0+βk+yk·α
d+r∏
i=d+1

z0
i

(
z0
i −

1

N

)
· · ·
(
z0
i −

yi − 1

N

)
= 0.

Thus (ii) follows with ν2 = 1− ρ(maxk ‖qL(yk)‖∞ + 1) by choosing sufficiently small ρ ∈ (0, 1)
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for M = Nρ because for z ∈ SM

λN,−θ0k (z) ≤ κkλL,k(z`)
M

N
≤ κkM

‖qL(yk)‖∞M

N
= κk

1

N ν2
.

Lastly, to show that (iii) we note that
∑

y→y′∈R0

skκkλL,k(z) =
∑
u

κuλ̄u(z). Then by (i) and (ii)

there exists c > 0 such that for any z ∈ SM∑
k

λN,−θ0k (z) =
∑

yk→y′k∈R0

λN,−θ0k (z) +
∑

yk→y′k∈R
c
0

λN,−θ0k (z)

≤
∑

yk→y′k∈R0

∣∣∣∣λN,−θ0k (z)− skκk
κ̄u

λ̄u(z`)

∣∣∣∣+
∑

yk→y′k∈R0

skκk
κ̄u

λ̄u(z`)

+
∑

yk→y′k∈R
c
0

λN,−θ0k (z)

≤
∑

yk→y′k∈R0

κkλL,k(z`)

N ν1
+

∑
yk→y′k∈R0

skκk
κ̄u

λ̄u(z`) +
c

N ν2

≤ c

N ν1

∑
u

λ̄u(z`) +
∑
u

λ̄u(z`) +
c

Nν2
=
(

1 +
c

N ν1

)∑
u

λ̄u(z`) +
c

Nν2
.

Then by (21), the upper bound of
∑

k λ
N,−θ0
k (z) follows. The lower bound also holds as∑

k

λN,−θ0k (z) ≥
∑

yk→y′k∈R0

λN,−θ0k (z)

≥
∑

yk→y′k∈R0

(
λN,−θ0k (z)− skκk

κ̄u
λ̄u(z`)

)
+

∑
yk→y′k∈R0

skκk
κ̄u

λ̄u(z`)

≥ −
∑

yk→y′k∈R0

κkλL,k(z`)

N ν1
+

∑
yk→y′k∈R0

skκk
κ̄u

λ̄u(z`)

≥
(
− c

N ν1
+ 1
)∑

u

λ̄u(z`)

Proof of Lemma 3.3. By the random-time representation (6),

J(t) =
∑

ȳu→ȳ′u∈RL

Yu

(∫ t

0

λ̄u(Z(s))ds

)
, where Yu are independent unit Poisson random variables.

Note that for each u,

Yu

(∫ t

0

λ̄u(Z(s))ds

)
−
∫ t

0

λ̄u(Z(s))ds
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is a Martingale process [3]. We denote by Mu(t) this Martingale. Then the quadratic variation of
Mu(t) is [Mu](t) = Yu

(∫ t
0
λ̄u(Z(s))ds

)
. Since M2

u(t)− [Mu](t) is a martingale [3], we have that
by using Jansen’s inequality

E

(
Yu

(∫ t

0

λ̄u(Z(s))ds

)2
)
≤ 2E(Mu(t)

2) + 2E

((∫ t

0

λ̄u(Z(s))ds

)2
)

≤ 2E([Mu](t)) + 2tE

(∫ t

0

λ̄u(Z(s))2ds

)
(49)

For a fixed initial value Z(0) = z0, there exists c > 0 such that P (Z(s) = z) ≤ cπ(z) for any
z because

π(z) =
∑
x

P (Z(s) = z | Z(0) = x)π(x) ≥ P (Z(s) = z)π(z0).

This implies that by 17, we have

E([Mu](t)) = E

(
Yu

(∫ t

0

λ̄u(Z(s))

))
=

∫ t

0

∑
x

∑
u

λ̄u(x)P (Z(s) = x)ds

≤ c1

∑
x

λ̄u(x)π(x)t ≤ c′1t,

with some positive constants c1 and c′1. Similarly,

E

(∫ t

0

λ̄u(Z(s))2ds

)
=

∫ t

0

∑
x

λ̄u(x)2P (X(s) = x)ds

≤ c′2

∫ t

0

∑
x

λ̄u(x)2π(x)ds ≤ c2t,

with some positive constants c2 and c′2. Applying these to (49), it follows that

E

(
Yu

(∫ t

0

λ̄u(Z(s))ds

)2
)
≤ c′max{1, t2},

with some positive constant c′.
Finally the result follows since by Jansen’s inequality we have that there exists a positive con-

stant c such that

E(J(t)2) ≤ |RL|
∑
u

E

((
Yu

(∫ t

0

λ̄u(Z(s))ds

))2
)
≤ cmax{1, t2},

Proof of Lemma 3.4. It is suffice to show that at least cM transitions are required for ZN,−θ0(t) to
escape SM . Let ZN,−θ0(0) = z0 be the initial state. We first show that {zh : |zh − z0

h| < cM
N
} ⊆
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SH,M for some c > 0. Note that if yk → y′k ∈ R0, then sk = (z0
h)
qH(yk) and −θ0 + βk + yk ·α = 0.

Then there exist c′ > 0 and c′′ > 0 such that for any yk → y′k ∈ R0 if zh = z0
h + η with |η| ≤ c′M

N
,

then

|zqH(yk)
h − sk| = |(z0

h + η)qH(yk) − sk| ≤ c′′|η| ≤ M

2N
, and∣∣∣zqH(yk)

h − λN,−θ0H,k (zh)
∣∣∣ =

∣∣∣∣∣
r∏
i=1

z
yk,d+i
h,i −

r∏
i=1

zh,i

(
zh,i −

1

N

)
· · ·
(
zh,i −

yk,d+i − 1

N

)∣∣∣∣∣
≤ c′′

N
.

This implies that for yk → y′k ∈ R0 if |zh − z0
h| ≤ c′M

N
then∣∣∣λN,−θ0H,k (zh)− sk

∣∣∣ ≤ ∣∣∣zqH(yk)
h − sk

∣∣∣+
∣∣∣zqH(yk)
h − λN,−θ0H,k (zh)

∣∣∣ ≤ M

N
,

for sufficiently large N . Hence {zh : |zh − z0
h| < cM

N
} ⊆ SH,M . Furthermore {z` : |z` − z0

` | ≤
c′′′M} ⊆ SL,M for some c′′′ > 0 when N is sufficiently large. Therefore

{z` : |z` − z0
` | ≤ c′M} ×

{
zh : |zh − z0

h| < c′′′
M

N

}
⊂ SM .

Since the transition size for each entry ZN,−θ0
i of the scaled process transitions by a single reaction

is Θ(N−αi), this implies that ZN,−θ0(t) needs at least bcMc transitions for some c > 0 to escape
SM .

Proof of Lemma 3.6. d
dt
v(t) ≤ Av(t) + b can be written as

v(t) ≤ tb+

∫ t

0

Av(s)ds

allowing that the inequality holds component-wisely. Then by the multivariable Gronwall’s in-
equality [10],

v(t) ≤ tb+ t

∫ t

s

V (t, s)Abds,

where V (t, s) satisfies

V (t, s) = I +

∫ t

s

AV (x, s)dx,

allowing the equality holds component-wisely. By taking time-derivative, we notice that i th col-
umn of V (t, s) is a solution u of the system of differential equation (32) with ui(s) = 1 and
uj(s) = 0 if j 6= i. Therefore by the hypothesis in the statement, each column of V (t, s) is a posi-
tive vector and the sum of the entries is equal to 1 for t ≥ s. Hence it implies that V (t, s)Ab ≤ Āb
for t ≥ s. Thus for each t, the result follows.
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