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A SYSTEMATIC UPSCALING OF NONLINEAR CHEMICAL
UPTAKE WITHIN A BIOFILM∗

MOHIT P. DALWADI† AND JOHN R. KING‡

Abstract. When modeling transport of a chemical species to a colony of bacteria in a biofilm,
it is computationally expensive to treat each bacterium even as a point sink, let alone to capture
the finite nature of each bacterium. Instead, models tend to treat the bacterial and extracellular
matrix domains as a single phase, over which an effective bulk uptake is imposed. In this paper,
we systematically derive the effective equations that should govern such a system, starting from the
microscale problem of a chemical diffusing through a colony of finite-sized bacteria, within which
the chemical species can also diffuse. The uptake within each bacterium is a nonlinear function
of the concentration; across the bacterial membrane the concentration flux is conserved and the
concentration ratio is constant. We upscale this system using homogenization via the method of
multiple scales, investigating the two distinguished limits for the effective uptake and the effective
diffusivity, respectively. This work is a natural sequel to Dalwadi et al. [SIAM J. Appl. Math.,
78 (2018), 1300–1329], the main difference in this current work being nonlinear uptake within the
bacteria and a general partition coefficient across the bacterial membrane. The former results in a
significantly more involved general asymptotic analysis, and the latter results in the merging of two
previous distinguished limits. We catalogue the different types of microscale behavior that can occur
in this system and the effect they have on the observable macroscale uptake. In particular, we show
how the nonlinearities in microscale uptake should be modified when upscaled to an effective uptake
and how different microscale uptake properties and behaviors, such as chemically depleted regions
within the bacteria, can lead to the same observed uptake.

Key words. homogenization, multiscale, distinguished limits, effective uptake, quiescent core,
depleted core
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1. Introduction. The majority of bacteria live communally in biofilms, which
can help them survive in hostile environments [11]. This can be a hindrance to
humans, since biofilms cause a significant proportion of microbial infections in the
body and tend to be extremely resistant to antibiotics [10, 28]. To understand how
to deal with biofilms, it is important to understand how chemicals are absorbed by
the bacteria within.

While mathematical modeling can be used to help answer questions involving
bacterial chemical uptake, the vast separation of bacterial (0.1 – 10µm) and biofilm
(0.1 – 10 cm) lengthscales [16] means that it is prohibitively expensive to include small
bacterial regions of uptake in computational models over the lengthscale of a biofilm.
A common way to circumvent this issue is by not differentiating between the fluid and
bacterial regions in a computational model, treating both regions as a combined single-
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1724 MOHIT P. DALWADI AND JOHN R. KING

phase domain and imposing an effective bulk chemical sink over this domain to model
the combined effect of many small bacterial regions. While this is certainly a useful
mathematical resolution to the problem, it is not always clear how this effective sink
should relate to the microscale uptake. For example, how should a nonlinear form of
pointwise bacterial uptake transform into an effective bulk uptake? While one might
expect the form of uptake to be preserved during an upscaling for weak uptake, the
effective results from upscaling are less intuitive when the uptake is stronger. The goal
of this paper is to understand and quantify this upscaling procedure in a systematic
manner, in terms of the system functions and parameters.

To this end, in this paper we systematically upscale the microscale problem of
unsteady chemical diffusion past a locally periodic array of spherical bacteria that
act as volumetric sinks with nonlinear kinetics, governed by the reaction-diffusion
equation

∂C

∂t
= ∇ · (D̃∇C)− F̃ (C).(1)

Here, D̃ is a piecewise-constant function which is discontinuous across each bacterial
membrane, and the uptake F̃ (C) > 0 depends on the concentration within each
bacterium, but vanishes outside each. We impose a continuous concentration flux
across the bacterial membrane, but allow the concentration to be discontinuous across
the membrane, coupling the concentration by imposing a constant concentration ratio,
also known as a partition coefficient. We provide a schematic of the set-up in Figure 1.

Our main goal in this paper is to determine the effective uptake for the upscaled
system when the effective uptake balances diffusion over the biofilm lengthscale, since
this yields a balance of transport mechanisms in the upscaled equation. To upscale
this problem, we use mathematical homogenization via the method of multiple scales
as outlined in, for example, [2, 13, 26]. We derive and investigate the two distinct
distinguished limits in the system for the effective uptake and the effective diffusivity,
respectively. As different microorganisms will have different microscale parameters, it
is helpful to retain the generality provided by the distinguished limit in our analysis.

The work presented here is a natural sequel to [9], in which we considered a
subcase of (1) involving a linear uptake function and a unitary partition coefficient,
the latter resulting in a continuous concentration across the entire domain. The lin-
ear form of the uptake function in [9] meant that we were able to derive analytic
expressions for the effective uptake. However, this linearity also meant that the ef-
fective uptake was always a linear function (or functional, in Case 2 therein) of the
macroscale concentration. For nonlinear uptake, there is no guarantee that the form
of the nonlinearity will be preserved during the upscaling procedure, and understand-
ing this is one goal of this paper. In [9] we found that there were three distinguished
limits in the system, one for the effective diffusivity (Case 1) and two for the effective
uptake (Cases 2 and 3). As one might expect, the inclusion of a general nonlinear
uptake in this current work makes the subsequent analysis significantly more involved,
and general closed-form solutions are not possible. Instead, noting that it is unlikely
that many systems of interest are exactly in the distinguished limit, we systemati-
cally consider sublimits of the reduced system we derive for the effective uptake. The
presence of a nonunitary partition coefficient means that the two distinguished limits
for effective uptake in [9] are actually sublimits of a single distinguished limit for the
effective uptake in this work (Case I). To distinguish between the cases in each paper,
we use Roman numerals to discuss the two cases we consider in this paper and Arabic
numerals to discuss the three cases from [9].
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There has been a great deal of work in the upscaling of solute transport prob-
lems in general, with applications ranging from cell growth in tissue engineering [20],
through crystal precipitation/dissolution [30], drug transport in tissue [27], drug de-
livery to tumors [21], and the electrical activity of cells [23], to solute sorption in soil
[22]. Given their ubiquitous nature, significant effort has gone into proving rigorous
uniqueness and convergence results for the upscaling of multiscale solute transport
problems, e.g., [14].

In each of the papers mentioned in the above paragraph, the structure of the
periodic microscale is general within the analysis (although several impose specific
microscale structures when performing numerical simulations). This generality is
valuable in that it allows homogenized equations to be calculated in terms of general
cell problems; however, it also means that effective terms are not derived explicitly.

We consider spherical bacteria (cocci) whose radius can vary slowly over the
macroscale, allowing us to model a bacterial density that varies over the lengthscale
of the biofilm. While classical homogenization requires a strictly periodic microscale
geometry, we use the modern framework that allows one to consider problems with
a locally periodic microscale, i.e., a microscale that varies over the macroscale [3,
23, 30, 31]. The general formulation of this method typically requires a different cell
problem to be solved at every point in the macroscale rather than just once for the
entire problem, as is the case for classic homogenization. We circumvent this issue
by following the examples of [3, 7, 8] and imposing a specific one-parameter shape
on the microstructure, namely, spheres. Moreover, investigating spherical bacteria
maximizes the analytic progress we are able to make in determining the effective
uptake, yielding greater physical insight into the possible system behaviors.

The structure of this paper is as follows. We present a dimensional description of
the bacterial uptake model in section 2, which we subsequently nondimensionalize. We
then formulate the problem to be upscaled via homogenization theory in section 3.
We upscale this problem for the distinguished limit of effective uptake (Case I) in
section 4, exploit parameter groupings to reduce the complexity of the steady version
of this problem, and present some numerical results of the reduced system. In certain
scenarios, the bacteria can exhibit chemical-depleted cores; we investigate the onset
of this regime in section 5. We then investigate various sublimits of the distinguished
limit for effective uptake in section 6. Finally, we discuss the implications of our
results and conclude in section 7. For completeness, we also present an upscaling of
this problem for the distinguished limit of effective diffusivity (Case II) in Appendix A.

2. Model description. We consider the Fickian diffusion and nonlinear uptake
of a chemical species through a colony of bacteria within an extracellular matrix
(ECM) which represents a biofilm. Our goal is to systematically upscale the problem
over the lengthscale of the bacteria (which we refer to as the microscale) to an effective
problem valid over the lengthscale of the bacterial colony (which we refer to as the
macroscale) and to investigate what can be deduced about the microscale uptake from
macroscale measurements of the effective uptake.

We track the chemical field in terms of its molar concentration, defined in the
ECM and bacterial phases as c̃ and C̃, respectively. These concentrations are de-
pendent variables of the independent variables of space x̃ and time t̃. We assume
that the chemical species diffuses through the ECM with constant diffusivity Dm,
and through the bacteria with constant diffusivity Db. Additionally, we assume that
the uptake occurs only within the bacteria, as some general function of the concen-
tration f̃(C̃). While we aim to consider as general an uptake function as possible, to
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1726 MOHIT P. DALWADI AND JOHN R. KING

ensure physically relevant uptake we restrict our analysis to systems where there is
no uptake when there is no chemical species, i.e., f̃(0) = 0, and where an increase in
concentration cannot cause a decrease of uptake, i.e., f̃ is a nondecreasing function
of C̃.

For simplicity, we model the bacteria as a collection of spheres whose centers are
located on a cubic lattice at a distance εl apart, where ε is a small dimensionless
parameter and l is the typical length of the entire domain. To model a bacterial
density that can vary in space across the colony, we allow the radii of the bacteria
to vary slowly in space. Hence, a bacterium centered at x̃ has radius R̃(x̃), with the
constraint 2R̃ < εl for nonoverlapping spheres. The bacterial and ECM phases are
denoted as Ωb ⊂ R3 and Ωm ⊂ R3, respectively. We denote the entire spatial domain
as Ω = Ωb ∪ Ωm ⊂ R3, noting that Ωb ∩ Ωm = ∅. Finally, we denote the boundary
between the two phases as ∂Ωb, which we refer to as the “bacterial membrane,” or
just “membrane.” We emphasize that the bacterial phase is disconnected and that
the ECM phase is multiply connected.

We assume that the concentrations across the bacterial membrane are coupled
through a constant partition coefficient K and through continuity of concentration
flux. We assume that the concentration field is initially known and consistent with the
coupling conditions discussed above and that any (initial) spatial variations occur over
the lengthscale of the colony rather than that of the bacteria. The setup we describe
here is similar to that in [9], but now with a nonlinear uptake and a general partition
coefficient instead of a linear uptake and unitary partition coefficient, respectively.
We will show that the former change causes markedly different macroscale behavior
compared to [9], while the latter causes different distinguished asymptotic limits.

Mathematically, we have the dimensional problem

∂c̃

∂t̃
= Dm∇2c̃ for x̃ ∈ Ωm,

∂C̃

∂t̃
= Db∇2C̃ − f̃(C̃) for x̃ ∈ Ωb,(2a)

c̃ = KC̃, n ·Dm∇c̃ = n ·Db∇C̃ for x̃ ∈ ∂Ωb,(2b)

c̃(x̃, 0) = c̃init(x̃) for x̃ ∈ Ωm, C̃(x̃, 0) = c̃init(x̃)/K for x̃ ∈ Ωb,(2c)

where n is the unit normal of the bacterial membrane pointing into the surrounding
ECM. The function c̃init(x̃) appearing in the initial conditions (2c) is continuous across
the bacterial membrane and allows for a slow variation of the chemical concentration
in space. To close the system (2), we also require boundary conditions at the external
boundary of Ω. However, to keep the generality of our analysis we will not impose a
specific form in this paper.

It is helpful to discuss parameter values for the problem we have introduced.
Spherical bacteria, known as cocci, have a typical diameter of around 2R̃ ≈ 1µm, and
an approximate cell spacing of εl ≈ 2− 20µm [9, 16, 17]. It is possible to obtain the
diffusion coefficient of a given chemical within water; for example, the diffusivity of
dissolved oxygen within water is approximately 2×10−9 m2s−1 at room temperature.
In a similar manner, the partition coefficients for many different chemicals across
an octanol/water interface is well-known, and these can vary across many orders
of magnitude [15]. However, it is significantly more difficult to obtain diffusivity,
partition coefficient, and uptake measurements involving cytoplasm, partly due to
the difficulties in isolating and imaging a single bacterium. For this reason, and in
order to present a more general analysis of the problem, it will be instructive to
consider the various distinguished asymptotic limits of this problem.
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x ∈ Ω

O(1)

ε

1

y ∈ ω(x)

∂ω

ωm

ωb

∂ωb

R(x)

Fig. 1. A two-dimensional projection of the three-dimensional problem. The full problem is
shown in the left-hand figure, and the cell problem (with y ∈ [−1/2, 1/2]3) is shown in the right-hand
figure. The pink regions denote the bacteria and the blue region denotes the ECM.

2.1. Dimensionless equations. We scale the variables via x̃ = lx, t̃ = (l2/Dm)t,
R̃ = εlR, (c̃, C̃, c̃init) = c∞(c, C, cinit), and f̃(C̃) = (c∞Dm/l

2)f(C), where c∞ is a
characteristic concentration scale in the ECM, to yield the dimensionless equations

∂c

∂t
= ∇2c for x ∈ Ωm,

∂C

∂t
= D∇2C − f(C) for x ∈ Ωb,(3a)

c = KC for x ∈ ∂Ωb,(3b)

n · ∇c = n ·D∇C for x ∈ ∂Ωb,(3c)

c(x, 0) = cinit(x) for x ∈ Ωm, C(x, 0) = cinit(x)/K for x ∈ Ωb,(3d)

where D = Db/Dm is the ratio of chemical diffusivity in the ECM to that in the
bacteria. We do not specify the asymptotic orders of these dimensionless parameters
yet, but our interest will be in the distinguished asymptotic limits where the timescale
of effective uptake balances the timescale of macroscale diffusion in the ECM, in which
t = O(1).

In dimensionless units, the bacteria now form a cubic lattice of spheres whose
centers are a distance of ε apart, and a bacterium centered at x has radius εR(x). A
schematic of this set-up is shown in Figure 1.

3. Deriving effective equations. Our goal is to upscale the governing equa-
tions (3) using a homogenization procedure via the method of multiple scales. Essen-
tially, we introduce the additional spatial variable

y =
x− bxc

ε
− b,(4)

where we treat x and y as independent. In (4), we introduce the constant translation
vector b = (1/2, 1/2, 1/2) for notational purposes. Thus, the microscale variable
y ∈ [−1/2, 1/2]3 is defined within a unit cell ω(x), centered around one bacterium,
and our dependent variables are now c(x,y, t) and C(x,y, t). As is standard in
homogenization via the method of multiple scales, the extra freedom that arises from

D
ow

nl
oa

de
d 

09
/1

6/
20

 to
 8

1.
10

7.
22

6.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1728 MOHIT P. DALWADI AND JOHN R. KING

introducing y is later removed by imposing that the problem is 1-periodic in each
component of y.

Within each cell, we define several regions for convenience. The bacterium and
ECM phases are defined as ωb(x) and ωm(x), respectively. The spherical bacterial
membrane between these two phases is defined as ∂ωb(x). Finally, the cubic outer
boundary of the cell is defined as ∂ω. These regions are all labeled in Figure 1.

We are interested in deriving effective governing equations for the experimen-
tally measurable concentration ĉ(x, t), the intrinsic-averaged concentration within the
ECM, defined as

ĉ(x, t) =
1

|ωm(x)|

∫

ωm(x)

c(x,y, t) dy,(5)

where |ωm| is the volume of the ECM phase in one cell.
Treating each dependent variable as a function of both x and y, the spatial

derivatives transform as follows:

∇ 7→ ∇x +
1

ε
∇y,(6)

where ∇x and ∇y refer to the nabla operator in the x- and y-coordinate systems,
respectively. The spatial transformation (6) also causes the unit normal on the bound-
ary to transform (as also occurs in, for example, [3, 30]). This can be seen by defining
the function χ(x,y) = ‖y‖−R(x), noting that the bacterial membrane is defined by
χ = 0 and thus n = ∇χ/‖∇χ‖, then using (6) to yield

n 7→ ny − ε∇xR
‖ny − ε∇xR‖

,(7)

where ny = y/‖y‖. This transformation is also known as the level-set framework
[31].

Using the transformations (6)–(7), the dimensionless governing equations (3) be-
come

ε2
∂c

∂t
= (∇y + ε∇x) · (∇y + ε∇x) c for y ∈ ωm(x),(8a)

ε2
∂C

∂t
= D (∇y + ε∇x) · (∇y + ε∇x)C − ε2f(C) for y ∈ ωb(x),(8b)

c = KC for y ∈ ∂ωb(x),(8c)

(ny − ε∇xR) · (∇y + ε∇x) c = (ny − ε∇xR) ·D (∇y + ε∇x)C for y ∈ ∂ωb(x),
(8d)

c(x,y, 0) = cinit(x) for y ∈ ωm(x), C(x,y, 0) = cinit(x)/K for y ∈ ωb(x),
(8e)

c periodic for y ∈ ∂ω,(8f)

where (8f) is required to remove secular terms, as is standard in the method of multiple
scales.

We are interested in the physical scenarios in which the effective uptake balances
the macroscale diffusion over the timescale of the latter, t = O(1). We summarize
two different balances which yield a distinguished asymptotic limit in the macroscale
problem in Table 1. In order to get a sense of from where these asymptotic limits
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Table 1
The scalings for the two distinguished asymptotic limits. Case I is the distinguished limit for

the effective uptake, and Case II is the distinguished limit for the effective diffusivity. Note that
|ωb| ∼ R3 has already been scaled by ε3 so that it is of the same asymptotic order as the periodic-cell
size when |ωb| = O(1).

D f |ωb| K C

Case I O(ε6) O(1/ε6) O(ε6) O(ε6) O(1/ε6)
Case II O(1) O(1) O(1) O(1) O(1)

arise, it is helpful to use (3) to consider the removal rate of the total chemical species
in the system, in the absence of any source/sink at the external boundary

∂

∂t

(∫

ωm

cdx+

∫

ωb

C dx

)
= −

∫

ωb

f(C) dx.(9)

When bacterial uptake occurs over the entire bacterium and not just within a bound-
ary layer near the bacterial membrane, we see from (9) that an uptake timescale of
t = O(1) occurs when f(C)|ωb| = O(1), noting that |ωm| = O(1) and c = O(1) (the
latter being true away from any boundary layer near an external boundary). Addi-
tionally, the coupling conditions (8c)–(8d) also yield KC = O(1) and DC = O(1).
The remaining scalings arise through seeking a balance between diffusion and uptake
at leading-order within each bacterium, as will be seen through our analysis.

4. Case I: Distinguished limit for the effective uptake. The distinguished
limit for the effective uptake occurs when the timescale of microscale uptake balances
that of macroscale diffusion, retaining as many terms from the governing equation
(8) at leading-order as possible. Preserving the timescale of macroscale diffusion, this
distinguished limit occurs when the bacteria are very sparse (R � 1), the pointwise
uptake is very strong f(C)� 1, the chemical species has a strong preference for the
bacterial cytoplasm (K � 1), and the chemical diffusivity within the cytoplasm is
very small (D � 1). With appropriate scalings that we discuss below, we are able
to retain all terms at leading-order within the bacterial domain. Investigating this
distinguished limit will allow us to derive the effective uptake in its most general form.
We can then explore relevant sublimits to obtain physical insight into this system.
This distinguished limit for the effective uptake contains Cases 2 and 3 from [9] as
asymptotic sublimits.

4.1. Asymptotic structure. The formal scalings we consider are C = C̄/ε6,
D = ε6D̄, R = ε2R̄, f(C) = f̄(C̄)/ε6, and K = ε6K̄, where the new inner variables are
labeled with an overline and are each of O(1). These scalings ensure that the leading-
order inner problem within the bacterium retains all terms at leading-order. Note that
we have already scaled R with the microscale variable, so in terms of dimensionless
macroscale variables we are considering the case where the radius scales with the cube
of the small parameter of periodicity, the critical case in [6, 18].

In this section, our analysis involves upscaling the governing equations (3) using
a combination of boundary layer analysis and homogenization via the method of
multiple scales. There are three important asymptotic regions in this problem. The
first is the outer region, x = O(1). This is the lengthscale over which we want
to determine an effective equation which systematically accounts for the bacterial
uptake. Thus in the outer region the bacterial uptake appears as a bulk effect from
our homogenization procedure. The second (intermediate) region is the cell region,
x = O(ε). This region will yield the cell problem and, in this region, the bacterial
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1730 MOHIT P. DALWADI AND JOHN R. KING

Fig. 2. A two-dimensional projection of the asymptotic structure of the three-dimensional
problem, involving the distinguished limit for the effective uptake. The full problem in the outer
region is shown in the left figure, the center figure denotes the cell region (with y ∈ [−1/2, 1/2]3),
and the rightmost figure denotes the inner region within the cell region (with Y ∈ R3 and r = ‖Y ‖).
In the cell region, the effect of the bacterial sink appears as a delta function, and not through the
problem geometry. The strength of this sink is determined by solving the problem in the inner region.

uptake appears as a point sink. The third and final region is the inner region, x =
O(ε3). In this region, the finite nature of a bacterium is apparent, and it appears as
a region of O(1) volume surrounded by ECM, within which we must solve a coupled
concentration problem. The solution from the inner region will determine the strength
of the point sink in the cell region, which will determine the effective uptake over the
outer region. A schematic of these three regions is given in Figure 2.

4.2. Homogenization. Using the scalings discussed above, we rewrite the equa-
tions (8) in the cell region as follows:

ε2
∂c

∂t
= (∇y + ε∇x) · (∇y + ε∇x) c for ‖y‖ > ε2R̄ and ‖y‖∞ < 1/2,(10a)

∂C̄

∂t
= ε4D̄ (∇y + ε∇x) · (∇y + ε∇x) C̄ − f̄(C̄) for ‖y‖ < ε2R̄,(10b)

c = K̄C̄ for ‖y‖ = ε2R̄,(10c)

(
ny − ε3∇xR̄

)
· (∇y + ε∇x) c =

(
ny − ε3∇xR̄

)
· D̄ (∇y + ε∇x) C̄ for ‖y‖ = ε2R̄,

(10d)

c(x,y, 0) = cinit(x) for ‖y‖ > ε2R̄ and ‖y‖∞ < 1/2,(10e)

C̄(x,y, 0) = cinit(x)/K̄ for ‖y‖ < ε2R̄,(10f)

c periodic for ‖y‖∞ = 1/2,(10g)

where ‖ · ‖ is the Euclidean norm and ‖ · ‖∞ is the maximum norm. We cannot obtain
a solution for C̄ by simply expanding in powers of ε, since the bacterial domain in (10)
depends on the small parameter ε. Instead, we seek an inner solution to the system
about a (small) bacterium at the origin, in which ‖y‖ = O(ε2). In the next section,
we show that the inner solution only affects the governing equation for c in the cell
region at O(ε2). Thus, substituting the asymptotic expansion c(x,y, t) ∼ c0(x,y, t)+
εc1(x,y, t) + ε2c2(x,y, t) into (10a) implies that c0 = c0(x, t) and c1 = c1(x, t).
Therefore, the average concentration (5) behaves as ĉ ∼ c0. We now investigate the
inner region.
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4.3. Inner region. To move into this region we scale y = ε2Y , where Y ∈ R3.
We define this inner region as ωin(x), where the dependence on x arises from the
radius of the bacterium in this domain. From (10), the relevant leading-order system
is

∇2
Y c = 0 for r > R̄(x),(11a)

∂C̄

∂t
= D̄∇2

Y C̄ − f̄(C̄) for 0 < r < R̄(x),(11b)

c = K̄C̄ ∂c

∂r
= D̄

∂C̄

∂r
for r = R̄(x),(11c)

c→ c0(x, t) ∼ ĉ(x, t) as r →∞,(11d)

C̄ = cinit(x)/K̄ for r < R̄(x) at t = 0,(11e)

where r = ‖Y ‖. The far-field condition (11d) arises from matching with the cell
region using van Dyke’s matching principle [29].

We now reduce the system (11) to a closed system for C̄ in terms of the effective
concentration ĉ and the microscale parameters. This is possible since the bacteria are
spherical, so (11a) and (11d) imply

c = c0(1−B/r)(12)

for some function B(x, t). Substituting the solution (12) into the interfacial conditions
(11c), we obtain

C̄ =
c0
K̄

(
1− B(x, t)

R̄

)
, D̄

∂C̄

∂r
=
c0B(x, t)

R̄2
for r = R̄(x).(13)

We are able to remove B from (13) by combining both equations, allowing us to derive
the following Robin boundary condition for C̄,

K̄C̄ + R̄D̄
∂C̄

∂r
= ĉ(x, t) for r = R̄(x),(14a)

and we note this also tells us that B = (ĉ − K̄C̄|r=R̄)/R̄. Thus, we have derived a
reduced problem which consists of solving a single nonlinear parabolic equation in
a finite domain (11b), with a Robin boundary condition on the bacterial membrane
(14a), and a symmetry condition at the bacterium center

∂C̄

∂r
= 0 for r = 0.(14b)

Solving the closed inner system (11b), (14) will allow us to determine the effective
uptake over the macroscale domain. We show in section 4.4 that this is equal to the
total flux in the far-field, so it is helpful to define the functional

ν[ĉ] := 4π lim
r→∞

r2 ∂c

∂r
= 4πR̄2D̄

∂C̄

∂r

∣∣∣∣
r=R̄

,(15)

which, we shall show later, defines the effective uptake in the upscaled problem. Given
the form of ν and the boundary condition (14a), we are able to make the following
general statement about ν, no matter the specific details of the pointwise nonlinear
uptake function. Given that C̄ and ∂C̄/∂r are both nonnegative, (14a) implies that
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1732 MOHIT P. DALWADI AND JOHN R. KING

0 6 D̄∂C̄/∂r 6 ĉ/R̄ at the cell membrane. Hence, from (15) we may obtain the
bounds

0 6 ν[ĉ] 6 4πR̄ĉ.(16)

Since the closed problem we have derived in this section represents the distin-
guished limit for the effective uptake, we will return to it later to investigate its
steady states further, after we understand how this problem relates to the effective
uptake over the macroscale.

4.4. Higher-order cell region problem. Given the far-field form of the con-
centration field in the inner problem (12), we must introduce a Dirac delta function
into the cell region problem (10) at O(ε2) to match appropriately. This represents the
effect of the bacterial uptake region over the cell region. From this, the O(ε2) terms
from (10) are

∂ĉ

∂t
= ∇2

yc2 +∇2
xĉ− δ̂(y)ν[ĉ] for y ∈ ω,(17a)

c2 periodic for y ∈ ∂ω,(17b)

where we have used ĉ ∼ c0.
Integrating (17a) over the periodic cell and applying the periodic boundary con-

ditions (17b), we obtain the effective equation for the intrinsic-averaged concentration

∂ĉ

∂t
= ∇2

xĉ− ν[ĉ],(18a)

where ν is defined in (15) and is derived by solving (11b) with boundary conditions
(14). The initial condition for this system is

ĉ(x, 0) = cinit(x),(18b)

which arises from substituting (10e) into (5). We note that the effective uptake here
is of O(1), and hence the macroscale uptake balances macroscale diffusion.

The effective diffusivity in Case I is one, corresponding to that of pure ECM and
representing the fact that chemical diffusivity within the cytoplasm is unimportant
when the bacteria are very small. A nontrivial effective diffusivity arises in Case II,
which we present in Appendix A.

To give an idea of the form of the effective uptake ν[ĉ], we give the solution to the
inner problem (11b) with boundary conditions (14) for a linear uptake, f̄(C̄) = µ̄C̄.
The analysis is similar to that of Cases 2 and 3 in [9], where we solely consider linear
uptake, in which reduced versions of this inner problem are derived. In this case, C̄
can be solved for as follows,

C̄ =
ĉ

K̄ −
2

R̄D̄r

∞∑

n=1

sinλnR̄ sinλnr

λ2
n

e−(µ̄+D̄λ2
n)t

∫ t

0

(
∂ĉ

∂τ
+ µ̄ĉ

)
e(µ̄+D̄λ2

n)τ dτ,(19a)

where the eigenvalues are the countably infinite positive solutions to the following
transcendental equation,

(K̄ − D̄) sinλnR̄+ D̄λnR̄ cosλnR̄ = 0.(19b)
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From (19), we may deduce the following form for the effective uptake:

ν[ĉ] =
8πK̄
D̄R̄

∞∑

n=1

sin2 λnR̄

λ2
n

e−(µ̄+D̄λ2
n)t

∫ t

0

(
∂ĉ

∂τ
+ µ̄ĉ

)
e(µ̄+D̄λ2

n)τ dτ.(20)

We see from (20) that the system history is important for the functional ν. Given the
integral in (20), we expect this memory property to have a smoothing influence for ν.

As the problem we have presented in section 4 represents the distinguished limit
for the effective uptake, it will be instructive to investigate the inner problem and how
it affects the effective uptake in more detail. The analysis of its steady state is the
remaining focus of this paper, so it is helpful to present the reduced steady problem.

4.5. System reduction. To simplify our analysis of how the effective uptake
depends on the inner problem, we consider the steady problem. Since all the steady
states of this system are stable (Appendix B) and we expect the effective uptake to
smooth out its history, the steady state is of fundamental interest.

The steady-state version of the inner problem (11b), (14) is

0 =
D̄

r2

∂

∂r

(
r2 ∂C̄

∂r

)
− f̄(C̄) for 0 < r < R̄(x),(21a)

∂C̄

∂r
= 0 for r = 0, K̄C̄ + R̄D̄

∂C̄

∂r
= ĉ(x) for r = R̄(x),(21b)

and the effective uptake over the macroscale is the total concentration flux into this
system (15). As the macroscale parameter x only appears as a parameter in this inner
problem, for notational purposes we henceforth suppress any functional dependence
on x.

We are able to scale out several of the parameters in the system (21) by intro-
ducing r = R̄r, C̄ = (ĉ/D̄)w, and f̄(C̄) = ĉF (w)/R̄2 to transform (21) into

0 =
1

r2

∂

∂r

(
r2 ∂w

∂r

)
− F (w) for 0 < r < 1,(22a)

∂w

∂r
= 0 for r = 0, kw +

∂w

∂r
= 1 for r = 1,(22b)

where k = K̄/D̄. Under this scaling the effective uptake (15) becomes

ν[ĉ] = 4πR̄ĉ
∂w

∂r

∣∣∣∣
r=1

.(23)

Restricting the problem to the steady state means the effective uptake reduces from
a functional to a function of ĉ. However, since w may have a nonlinear dependence
on ĉ through the scalings of w and F , the effective uptake will still have a nonlinear
dependence on ĉ in general.

To contextualize our asymptotic results in the following sections, it is helpful to
understand how our scaling transforms a power-law uptake. Such an uptake can arise
via, e.g., the law of mass action [19], with homopolymerization. For example, if ĉ
were a monomer that had to be dimerized before uptake, we could have a power-law
uptake with exponent 2. Alternatively, if ĉ were a dimer that had to be dissociated
before uptake, we could have a power-law uptake with exponent 1/2. A power-law
uptake is transformed as follows:

f̄(C̄) = µ̄C̄β 7→ F (w) = µwβ with µ =
µ̄R̄2ĉβ−1

D̄β
.(24)
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(a) (b)

Fig. 3: Solutions to the system (22) using a power-law uptake of the form F (w) = µwβ , with (a) k = 1 and (b)
k = 0.1.

∂w

∂r
= 0 for r = 0, kw +

∂w

∂r
= 1 for r = 1,(22b)342

343

where k = K̄/D̄. Under this scaling the effective uptake (15) becomes344

ν[ĉ] = 4πR̄ĉ
∂w

∂r

∣∣∣∣
r=1

.(23)345

346

Restricting the problem to the steady state means the effective uptake reduces from a functional to a function347

of ĉ. However, since w may have a nonlinear dependence on ĉ through the scalings of w and F , the effective348

uptake will still have a nonlinear dependence on ĉ in general.349
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f̄(C̄) = µ̄C̄β 7→ F (w) = µwβ , with µ =
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.(24)355
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In particular, we note that large ĉ corresponds to large µ if β > 1 and to small µ if β < 1, with vice versa for357

small ĉ.358

4.5.1. Numerical results. We can solve the system (22) in MATLAB for given uptake function F (w)359

and parameter k, using the in-built boundary-value solver bvp5c, which essentially iterates an initial guess for360

the solution (we use w = 1/k) until the numerical solution falls below a specified relative error tolerance (10−3361

in our simulations). As one might expect, a larger µ corresponds to a smaller w (Figure 3). However, in terms of362

the power-law uptake given in (24), the relationship between the size of w and β is non-monotonic. In addition,363

the uptake is non-Lipschitz when β < 1, and this can result in a situation where the bacterial core is depleted of364

the chemical species, as shown in the µ = 102, β = 0.5 cases in Figure 3. Despite the fundamental change in the365

nature of the solution at the onset of core depletion, we are still able to approximate the solution numerically366

using the method outlined above, since we iterate to within a specified error tolerance. However, we note that367

we would need to take significantly more care with our numerical method if we wanted to determine the position368

of the free boundary. We explore the onset of the free-boundary regime in more detail in §5.369

The important quantity from this analysis is ∂w/∂r evaluated at r = 1, which is fundamentally related370

to the effective uptake over the entire colony of bacteria from (23). As one may expect, the effective uptake371

increases as µ increases (Figure 4). However, this increase has severe diminishing returns since ∂w/∂r is bounded372
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Fig. 3. Solutions to the system (22) using a power-law uptake of the form F (w) = µwβ with
(a) k = 1 and (b) k = 0.1.

In particular, we note that large ĉ corresponds to large µ if β > 1 and to small µ if
β < 1, and vice versa for small ĉ.

4.5.1. Numerical results. We can solve the system (22) in MATLAB for given
uptake function F (w) and parameter k, using the in-built boundary-value solver
bvp5c, which essentially iterates an initial guess for the solution (we use w = 1/k)
until the numerical solution falls below a specified relative error tolerance (10−3 in our
simulations). As one might expect, a larger µ corresponds to a smaller w (Figure 3).
However, in terms of the power-law uptake given in (24), the relationship between the
size of w and β is nonmonotonic. In addition, the uptake is non-Lipschitz when β < 1,
and this can result in a situation where the bacterial core is depleted of the chemical
species, as shown in the µ = 102, β = 0.5 cases in Figure 3. Despite the fundamental
change in the nature of the solution at the onset of core depletion, we are still able
to approximate the solution numerically using the method outlined above, since we
iterate to within a specified error tolerance. However, we note that we would need
to take significantly more care with our numerical method if we wanted to determine
the position of the free boundary. We explore the onset of the free-boundary regime
in more detail in section 5.

The important quantity from this analysis is ∂w/∂r evaluated at r = 1, which is
fundamentally related to the effective uptake over the entire colony of bacteria from
(23). As one may expect, the effective uptake increases as µ increases (Figure 4).
However, this increase has severe diminishing returns since ∂w/∂r is bounded above
by 1, as predicted by (16). Since ∂w/∂r evaluated at r = 1 appears to vary smoothly
as the parameters in the system vary smoothly, the onset of a concentration-depleted
bacterial core for certain parameter values does not have a significant effect on the
effective uptake, despite the drastic change in the microscale problem.

To understand these observations in more detail, we investigate the system ana-
lytically in the remainder of the paper, interrogating various sublimits of the problem.
We start by investigating the onset of the depleted bacterial core.

5. Depleted core. As noted in section 4.5.1, there exist solutions in which the
bacteria contain a concentration-depleted core. In this section, we characterize the
onset of this behavior for a power-law uptake with the form F (w) = µwβ for 0 < β < 1
in the system (22). That is, in this section we solely consider uptake functions with
a non-Lipschitz power-law form. After the onset of the core-depletion regime, the
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(a) (b)

Fig. 4: The derivative of the solution to the system (22), evaluated at the boundary r = 1, which feeds into the
effective uptake over the entire system, as defined in (23). We use a power-law uptake of the form F (w) = µwβ ,
with (a) β = 0.5 and (b) β = 2.

above by 1, as predicted by (16). Since ∂w/∂r evaluated at r = 1 appears to vary smoothly as the parameters373

in the system vary smoothly, the onset of a concentration-depleted bacterial core for certain parameter values374

does not have a significant effect on the effective uptake, despite the drastic change in the microscale problem.375

To understand these observations in more detail, we investigate the system analytically in the remainder of376

the paper, interrogating various sub-limits of the problem. We start by investigating the onset of the depleted377

bacterial core.378

5. Depleted core. As noted in §4.5.1, there exist solutions in which the bacteria contains a concentration-379

depleted core. In this section, we characterize the onset of this behaviour for a power-law uptake with the form380

F (w) = µwβ for 0 < β < 1 in the system (22). That is, in this section we solely consider uptake functions381

with a non-Lipschitz power-law form. After the onset of the core-depletion regime, the system becomes a free-382

boundary problem. That is, depletion means that (22) is only valid in rc < r < 1, with w = 0 for 0 < r < rc. At383

the free boundary r = rc, we may close the problem and prescribe rc by imposing continuity of concentration384

and concentration flux, i.e. w(rc) = 0 and w′(rc) = 0. As this regime represents a fundamental change in the385

solution structure, it is helpful to be able to calculate the point at which this occurs; the onset of this regime is386

the subject of this section.387

There is a critical surface in (β, k, µ) parameter space that separates the original fixed-boundary problem388

and the free-boundary problem outlined above. This critical surface occurs at the onset of the depletion regime,389

which corresponds to rc = 0. At this point, (22) can be solved using the power-law solution390

w =

(
µ(1− β)2r2

2(3− β)

) 1
1−β

for 0 < r < 1,(25)391
392

which defines the following critical surface in (β, k, µ) parameter space393
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(
k +

2

1− β

)1−β
=
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(1− β)2
.(26)394

395

From the scalings in (24), we see that µ has an inherent β-dependence. Hence, we use the pre-scaled396

variables in §4.5 (essentially replacing k with K̄/D̄ and µ with µ̄R̄2ĉβ−1/D̄β) to illustrate the onset of the397

depletion regime in Figure 5. We see that increasing µ̄R̄2 has the effect of increasing the domain of parameter398

space in which depletion can occur. Moreover, there is a critical value of µ̄R̄2 above which the critical line399

becomes non-monotonic in (ĉ, β)-space. Additionally, we note that the critical value of ĉ becomes very small as400

β → 1−.401

To quantify these observations, we calculate the following asymptotic results (in terms of the pre-scaled402
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Fig. 4. The derivative of the solution to the system (22), evaluated at the boundary r = 1,
which feeds into the effective uptake over the entire system, as defined in (23). We use a power-law
uptake of the form F (w) = µwβ with (a) β = 0.5 and (b) β = 2.

system becomes a free-boundary problem. That is, depletion means that (22) is only
valid in rc < r < 1 with w = 0 for 0 < r < rc. At the free boundary r = rc,
we may close the problem and prescribe rc by imposing continuity of concentration
and concentration flux, i.e., w(rc) = 0 and w′(rc) = 0. As this regime represents a
fundamental change in the solution structure, it is helpful to be able to calculate the
point at which this occurs; the onset of this regime is the subject of this section.

There is a critical surface in (β, k, µ) parameter space that separates the original
fixed-boundary problem and the free-boundary problem outlined above. This critical
surface occurs at the onset of the depletion regime, which corresponds to rc = 0. At
this point, (22) can be solved using the power-law solution

w =

(
µ(1− β)2r2

2(3− β)

) 1
1−β

for 0 < r < 1,(25)

which defines the following critical surface in (β, k, µ) parameter space:

µ

(
k +

2

1− β

)1−β
=

2(3− β)

(1− β)2
.(26)

From the scalings in (24), we see that µ has an inherent β-dependence. Hence,
we use the prescaled variables in section 4.5 (essentially replacing k with K̄/D̄ and
µ with µ̄R̄2ĉβ−1/D̄β) to illustrate the onset of the depletion regime in Figure 5. We
see that increasing µ̄R̄2 has the effect of increasing the domain of parameter space
in which depletion can occur. Moreover, there is a critical value of µ̄R̄2 above which
the critical line becomes nonmonotonic in (ĉ, β)-space. Additionally, we note that the
critical value of ĉ becomes very small as β → 1−.

To quantify these observations, we calculate the following asymptotic results (in
terms of the prescaled variables in section 4.5) for the onset of the depletion regime:

ĉ ∼ µ̄R̄2(K̄ + 2D̄)

6D̄

[
1 + β

(
log

µR̄2

6D̄
− 5K̄ + 4D̄

3(K̄ + 2D̄)

)]
as β → 0+,(27a)

ĉ ∼ 2D̄
√
e

1− β

(
µ̄R̄2(1− β)2

4D̄

) 1
1−β

as β → 1−.(27b)
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Fig. 5. The critical lines defining the onset of depletion for different uptake strength, calculated
from the nonlinear algebraic equation (26). Depletion occurs to the left of each critical line. We
transform µ into µ̄ using (24) and use K̄ = 1, D̄ = 1 throughout. In terms of these parameters,
the critical value where the extent of the depletion zone starts to increase as β is increased is
µ̄R̄2 = 6e ≈ 16.31, from (28). We use values of µ̄R̄2 ∈ {1, 10, 6e, 20, 30}. The dashed black lines
denote the small β results (27a).

From (27a), we see that there is a critical value of µ̄ = µ̄∗, where ∂ĉ/∂β = 0 on
the critical line at β = 0. Across this critical value, the critical line switches from
being monotonic in parameter space to being nonmonotonic, as seen in Figure 5. This
critical value is given by

µ̄∗ =
6D̄

R̄2
exp

(
5K̄ + 4D̄

3(K̄ + 2D̄)

)
.(28)

While there is an exponential dependence in (28), the value of µ̄∗ is not especially
sensitive to the parameter values in the system. This is because the argument of the
exponential in (28) can only take values within (2/3, 5/3), so the exponential term can
only vary by a factor of e. For the parameter values used in Figure 5, µ̄∗ = 6e ≈ 16.31.
With regard to our observation above regarding the extent of the depletion regime
as β → 1−, we may deduce from (27b) that the depletion regime does exist for all
0 < β < 1, but that its extent becomes exponentially small as β → 1−.

6. Asymptotic limits of Case I. In this section we investigate various asymp-
totic limits of the system (22) and deduce how these limits affect the effective uptake.
We then discuss how these results apply to different physical limits in the system.
We discuss the three main cases of fast (F � w), moderate (F = O(w)), and slow
(F � w) uptake separately, as we will show that they each exhibit distinct behavior.
We name these cases in reference to the speed of their uptake timescales compared to
the timescale of diffusive transport across a single bacterium, in dimensional terms.
In each case, we identify and use the asymptotic size of k that gives a distinguished
limit for that case, in order to keep our analysis as general as possible. However,
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HOMOGENIZATION OF NONLINEAR CHEMICAL UPTAKE 1737

we also consider sublimits of k where instructive. As opposed to the power-law form
assumed in section 5, our analysis in this section applies to general nonlinear uptake
functions F (w), though we will discuss how our results apply to power-law uptakes
where relevant.

6.1. Fast uptake: F � w. In the case of fast uptake, there is a boundary layer
near the membrane within the bacterium, through which the concentration rapidly
decreases, and therefore w must be small to allow the derivative in the boundary
condition (22b) to balance one of the additional terms. We have a full distinguished
limit if k � 1, and we show the reasoning for this below. Performing this scaling
analysis systematically, we may derive the scalings r = 1− δρ, w = δW , and F (w) =
G(W )/δ, where δ satisfies the implicit equation

δF (δ) = 1.(29)

Since F (z) � z here, we emphasize that δ � 1. We also scale k = κ/δ to obtain a
distinguished limit, and the reason for this scaling will be made apparent below. In
our new boundary layer coordinate, ρ = 0 corresponds to the bacterial membrane and
ρ > 0 corresponds to the bacterial domain.

From the scalings presented above, we obtain the leading-order system

0 =
∂2W

∂ρ2
−G(W ) for ρ > 0,(30a)

κW − ∂W

∂ρ
= 1 for ρ = 0,(30b)

W → 0 for ρ→∞.(30c)

We obtain the last condition via asymptotic matching, noting that W will become
asymptotically smaller away from the interface in order to obtain a balance between
uptake and diffusion in the bulk bacterial domain.

We can in the usual way solve (30) implicitly, by first multiplying (30a) by ∂W/∂ρ
and integrating with respect to ρ:

(
∂W

∂ρ

)2

= 2

∫ W

0

G(s) ds,(31)

where we have invoked (30c) (and additionally ∂W/∂ρ→ 0 as ρ→∞). For later use,
we note that combining (30b) and (31) leads to the following implicit representation
of W (0):

(1− κW (0))
2

= 2

∫ W (0)

0

G(s) ds.(32)

Since the left-hand side of (32) monotonically decreases from 1 to 0 as W (0) increases
from 0 to 1/κ, and the right-hand side monotonically increases from a value of 0 to
a positive value as W (0) increases from 0 to 1/κ, (32) has a unique solution W (0) ∈
(0, 1/κ).

As W decreases when we move into the bacterial domain, we may rewrite (31) as

∂W

∂ρ
= −

√
2

∫ W

0

G(s) ds,(33)
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1738 MOHIT P. DALWADI AND JOHN R. KING

Fig. 6. The solution to the nonlinear equation (39) for a power-law uptake. We plot 1−κW (0),
which is related to the effective uptake through (36). We use values of β ∈ {0.2, 0.5, 1, 2, 5}, noting
that W (0) = 1/(1 + κ) for β = 1.

which we can integrate to obtain the following implicit representation for W ,

∫ W (0)

W

du√
2
∫ u

0
G(s) ds

= ρ,(34)

recalling that W (0) is defined in (32).
The implicit solution (34) is not necessarily valid through the entire boundary

layer if the uptake function is non-Lipschitz. In such scenarios, the representation
(34) is valid only for 0 < ρ < ρ∗ with W ≡ 0 for ρ > ρ∗, resulting in a chemi-
cally depleted core. We are able to calculate this critical point in closed form as
follows:

ρ∗ :=

∫ W (0)

0

du√
2
∫ u

0
G(s) ds

.(35)

Although we can use the implicit representation (34) to obtain the effective uptake
(23), it is simpler to use the leading-order boundary condition (30b) to deduce that,
in the superlinear case,

ν[ĉ] ∼ 4πR̄ (1− κW (0)) ĉ,(36)

where W (0) ∈ (0, 1/κ) is the unique solution to (32). Hence, in the fast-uptake case
we have reduced the problem of determining the effective uptake to the problem of
solving a nonlinear algebraic equation (32) in terms of the nonlinear uptake function
G. We show ν/4πR̄ĉ = 1− κW (0) for a power-law uptake in Figure 6.
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There are some further reductions of complexity possible for asymptotic limits of
the scaled partition coefficient κ in the nonlinear equation (32). In particular,

ν[ĉ] ∼ 4πR̄ĉ if κ→ 0+, ν[ĉ] ∼


4πR̄

√
2

∫ 1/κ

0

G(s) ds


 ĉ if κ→∞,(37)

and we note that the effective uptake decreases as κ increases. In the small-κ limit,
the effective uptake is bounded above and independent of all parameters in the system
except the bacterial radius and external concentration. Moreover, in the same limit
the effective uptake is insensitive to the form of the nonlinear pointwise uptake. This
insensitivity in the observable effective uptake belies the radically different behavior
possible on the microscale; it is striking that the macroscale behavior can be the same
even when there are fundamental differences in the microscale behavior such as, for
example, the presence or absence of a chemically depleted core within a bacterium.

In the specific case where the uptake satisfies a power law, with F (w) = µwβ for

β > 0, fast uptake occurs when µ� 1. In this case, we see from (29) that δ = µ−
1

β+1 ,
and the implicit solution (34) can be made explicit:

W =

(
(W (0))

1−β
2 +

(β − 1)ρ√
2(β + 1)

) 2
1−β

.(38)

From (32), W (0) satisfies the nonlinear equation

(1− κW (0))
2

=
2 (W (0))

β+1

β + 1
for W (0) ∈ (0, 1/κ).(39)

When 0 < β < 1, the solution (38) is only valid for 0 < ρ < ρ∗, with critical depletion
point

ρ∗ =

√
2(β + 1) (W (0))

β+1

(1− β)
2 ,(40)

and, as stated previously, W ≡ 0 for for ρ > ρ∗ when depletion occurs.
In terms of the effective uptake (36), we note that κ is scaled with δ, which is a

function of ĉ. Therefore, the effective uptake will scale with ĉ in a manner that must
be determined by solving (39). However, we can use our general asymptotic results
(37) for extreme values of κ to note the following results in terms of the prescaled
parameters in section 4.5,

(41)

ν[ĉ] ∼ 4πR̄ĉ if
K̄β+1

µ̄D̄R̄2ĉβ−1
� 1,

ν[ĉ] ∼ 4πR̄2

√
2µ̄D̄

(β + 1)K̄β+1
ĉ
β+1
2 if

K̄β+1

µ̄D̄R̄2ĉβ−1
� 1,

and we note that the separate requirement of fast uptake, µ � 1, corresponds to
µ̄R̄2ĉβ−1/D̄β � 1. We see from (41) that the effective uptake can scale from anywhere
between the bacterial radius to the bacterial surface area. Additionally, we note
that a pointwise power-law uptake with exponent β can result in an effective uptake
that scales as ĉ(β+1)/2 in the large-K̄ limit and can scale linearly with the effective
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1740 MOHIT P. DALWADI AND JOHN R. KING

concentration in the small-K̄ limit. Therefore, we can infer that observing a power-law
dependence on the concentration in the effective uptake does not mean the pointwise
uptake satisfies the same power-law form, even for a linear effective uptake. If the
order of magnitude of physical bacterial parameters is known, our results can be used
to infer details of the microscale uptake, given observations of the effective uptake for
a varying concentration.

6.2. Moderate uptake: F = O(w). For a balanced uptake, there is a distin-
guished limit when k = O(1). In this scenario, the full system is (22), so we cannot
make generic analytic progress. In the asymptotic limit k � 1, the boundary condi-
tion at the cell membrane (22b) reduces to a Neumann condition. In this case, even
though we cannot obtain a general reduced solution for w, we are able to use this
simplification of (22b) to immediately deduce that the effective uptake (23) becomes

ν[ĉ] ∼ 4πR̄ĉ as k → 0+.(42)

In the asymptotic limit of k � 1, (22b) reduces to the Dirichlet condition kw = 1
with w = O(1/k). If kF (1/k) = O(1) in this sublimit, we would still have to solve
the remaining system numerically to determine the effective uptake. If not, we could
use the results we provide for fast (section 6.1) or slow (section 6.3) uptake.

For completeness, we also present the steady results for the linear case where
F (w) = µw. While we give a representation of the solution and effective uptake in
(19)–(20) for the full time-dependent problem, the steady solution can be written in
terms of analytic functions, avoiding the need for an infinite sum. In the steady linear
case, (21) is solved by

w =
sinh
√
µr

r
(
(k − 1) sinh

√
µ+
√
µ cosh

√
µ
) ,(43)

which is similar to the equivalent result obtained in [9], but now including the effect
of the scaled partition coefficient k. The corresponding effective uptake (23) is

ν[ĉ] =
4πR̄ĉ

1 +
k

√
µL
(√
µ
)
,(44)

where L is the Langevin function, defined as

L(z) = coth z − 1

z
.(45)

We can therefore deduce that if the pointwise uptake is linear in the intrinsic con-
centration, the effective uptake will be linear in the effective concentration. In terms
of the prescaled parameters in section 4.5, we note that F (w) = µw corresponds to
f̄(C̄) = µC̄ with µ = µR̄2/D̄. As the strength of the linear pointwise uptake becomes
large and µ → ∞, the effective uptake in (44) scales as ν ∼ 4πR̄ĉ and carries no
information about the underlying microscale uptake. We also note that as µ → 0+,
the effective uptake in (44) scales as ν ∼ |ωb|µĉ/K, scaling with bacterial volume.

6.3. Slow uptake: F � w. In the case of slow uptake within the bacteria, the
asymptotic solution to (22) is a constant plus a small correction to account for this
slow uptake. From this, we pose the following asymptotic ansatz for w:

w(r) = A+ F (A)W1(r) + O(F (A)F ′(A)),(46)
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where A is a constant to be determined. There is a full distinguished limit if A =
O(1/k) � 1 with F (1/k) = O(1), and we show the reasoning for this below. Sub-
stituting (46) into (22), the leading-order system implies that A is indeed constant.
The value of this constant can be determined by closing the system at the next order,
which is

0 =
1

r2

∂

∂r

(
r2 ∂W1

∂r

)
− 1 for 0 < r < 1,(47a)

∂W1

∂r
= 0 for r = 0, kA+

∂W1

∂r
F (A) = 1 for r = 1.(47b)

The second condition in (47b) shows why we require the balances A = O(1/k) � 1
with F (1/k) = O(1) for a distinguished limit. We can solve (47) for W1 up to a
constant B, as follows:

W1 =
1

6

(
r2 −B

)
.(48)

The boundary condition at the bacterial membrane (47b) then yields the following
nonlinear equation for A:

kA+
F (A)

3
= 1.(49)

We note that (49) could alternatively be derived by invoking the divergence theorem
on the full inner problem (22), in conjunction with the ansatz (46). As A and F (A)
are both monotonic increasing functions of A, there is exactly one solution to (49)
with A > 0. Using the results (46) and (48) to determine the effective uptake (23),
we obtain

ν[ĉ] =
4

3
πR̄ĉF (A).(50)

We have therefore reduced the problem of determining the effective uptake to the
problem of solving the nonlinear algebraic equation (49) for a given uptake function
F . We are also able to reduce the complexity further in various limits. First, if
k � F (A)/A, then A ∼ 1/k, and the effective uptake can simply be read off from
(50). Second, if k � F (A)/A and F (s) > 3 as s → ∞, then (49) asymptotically
reduces to A = F−1(3). That is, as the pointwise uptake increases, the effective
uptake behaves as ν[ĉ] ∼ 4πR̄ĉ and conveys no information about the microscale
uptake to the macroscale.

Although we do not need to determine B in order to obtain results about the
effective uptake, it can be obtained by going to O(F (A)F ′(A)) in the asymptotic
expansion (46). For completeness, but omitting the details for brevity, we thereby
obtain

B =
3

5

F ′(A) + 5k

F ′(A) + 3k
∈ (0.6, 1).(51)

In terms of the prescaled parameters of section 4.5, the effective uptake (23) is

ν[ĉ] = |ωb|f̄(ĉA/D̄),(52a)

where A satisfies the nonlinear equation (49), which can also be rewritten as

K̄
D̄
A+

R̄2f̄(ĉA/D̄)

3ĉ
= 1.(52b)
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1742 MOHIT P. DALWADI AND JOHN R. KING

Since f̄(z)� z, in order for both terms on the right-hand side of (52b) to contribute
to A we require 3K̄/R̄2 = O(f̄(ĉA/D̄)/(ĉA/D̄)). If this is not the case, we may obtain
the following asymptotic results for the effective uptake:

ν[ĉ] ∼ |ωb|f̄(ĉ/K̄) if K̄ � R̄2

3
f̄(ĉ/K̄),(53a)

ν[ĉ] ∼ 4πR̄ĉ if ĉ� R̄2

3
f̄(ĉ/K̄).(53b)

Hence, the effective uptake in this case can scale from bacterial volume to radius, and
from a nonlinear function of the concentration that mirrors the pointwise uptake to
a linear function of concentration which carries no information about the underlying
microscale uptake.

7. Discussion. We systematically upscale the microscale problem of a chemical
species diffusing through an extracellular matrix containing a locally periodic array of
spherical bacteria, modeling a biofilm. The chemical can diffuse within the bacteria,
which also act as volume sinks of the chemical species, with general nonlinear kinet-
ics. Across the cell membrane, the concentration ratio is a prescribed constant and
the concentration flux is conserved. Using homogenization via the method of mul-
tiple scales, we derive effective reaction-diffusion equations over the macroscale that
systematically account for the microscale bacterial details. Through an asymptotic
analysis, we investigate the distinguished limits for the effective uptake in section 4
(Case I) and the effective diffusivity in Appendix A (Case II), in each case where the
effective uptake balances the macroscale diffusion over the timescale of the latter. In
the key sublimits of fast and slow uptake within the bacteria, we reduce the problem
of determining the effective uptake (which generally involves solving a nonlinear PDE)
to that of solving a nonlinear algebraic equation for each case. These results represent
the effective uptake and diffusivity that should be imposed in biofilm models involv-
ing chemical uptake, as they have been systematically derived in terms of microscale
bacterial properties.

The distinguished limit for the effective uptake is a double-porosity model [1] in
the sense that it occurs when the diffusivity varies greatly between the inside and
the outside of the bacteria, by a factor that depends on the separation of scales in
the problem. Upscaling this double-porosity model results in two coupled partial
differential equations, one for the macroscale diffusion which includes a term that
accounts for the microscale uptake, the latter being determined by solving a coupled
problem on the microscale. However, as this distinguished limit involves several differ-
ent microscale parameters, there are many physically relevant sublimits where these
macroscale equations will decouple. As such, in section 6 we investigate in detail the
steady version of the reduced system that governs the effective uptake, in an effort
to catalogue the different types of behavior that this system can exhibit. We show
that the effective uptake over the macroscale, the lengthscale over which uptake is
measured, can have a very different form from the actual nonlinear pointwise uptake
occurring within the bacteria.

In terms of dimensional quantities, the steady effective equations we derive in
Case I (for a distinguished limit of effective uptake) have the following form:

Dm∇2c̃ = ν̃[c̃],(54)

where ν̃ is the dimensional version of the effective uptake we calculate in various
asymptotic limits, and we define the system parameters in section 2. Fast and slow
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uptake (investigated in sections 6.1 and 6.3, respectively) correspond to the timescale
of uptake compared to the timescale of diffusion across the bacteria, i.e., R̃2/Db �
C̃/f̃(C̃) and R̃2/Db � C̃/f̃(C̃), respectively. For fast uptake, we deduce that

ν̃[c̃] ∼ 4πR̃2

(εl)3

√
2Db

∫ ζ[c̃]

0

f̃(s) ds,(55a)

where ζ[c̃] satisfies the following nonlinear equation:

(c̃−Kζ)
2

=
2R̃2Db

D2
m

∫ ζ

0

f̃(s) ds.(55b)

For slow uptake, we deduce that

ν̃[c̃] ∼ 4πR̃3

3(εl)3
f̃(η[c̃]),(56a)

where η[c̃] satisfies the following nonlinear equation:

f̃(η[c̃]) +
3DmK
R̃2

η[c̃] =
3Dmc̃

R̃2
.(56b)

As can be deduced from (55)–(56), for a strong pointwise uptake the observed uptake
appears as a linear function of concentration, even though the microscale behavior
is very different in each limit. In this case, the effective uptake is bounded above
and cannot be improved by increasing the pointwise uptake through, for example, a
genetic modification to up-regulate enzymes associated with an uptake of the chemical
of interest. Moreover, (55)–(56) show that a nonlinear observed uptake may have a
significantly different nonlinear form compared to the actual pointwise uptake, e.g., a
different exponent in a power-law uptake.

As our upscaling procedure results in an effective reaction-diffusion equation, non-
trivial steady solutions are possible for suitable boundary conditions. Moreover, since
the coefficients of this effective equation can depend on the spatial coordinate, a wide
range of interesting steady-state behaviors are possible. For example, in the limit-
ing behavior given in (41b), it is the square root of the microscale uptake coefficient
which is important at the macroscale. This demonstrates that a very wide class of
effective uptake functions are possible at the macroscale, depending on what type of
heterogeneity is present at the microscale.

The results we derive in this paper provide a cautionary tale for anyone attempting
to infer microscale kinetics occurring within bacteria from macroscale observations or
trying to use experimental results of enzyme kinetics measured in a cell-free environ-
ment to model bacterial uptake in, for example, biofilms. In general, when modeling
the chemical uptake over a colony of bacteria, the mathematical form of the uptake
requires careful thought. In this paper, we systematically derive the correct uptake
to impose in terms of the bacterial properties and the measured results from cell-free
enzyme assays. Moreover, our results show that the inverse problem of understanding
the microscale uptake from macroscale observations is ill-posed in general. For exam-
ple, there are several different types of microscale behavior that lead to an observed
effective uptake which is linear with chemical concentration. The microscale problem
could involve chemically depleted zones for fast non-Lipschitz pointwise uptake, as
shown in sections 5 and 6.1; the partition coefficient could be much smaller than the
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ratio of bacterial-to-ECM diffusivity for slow uptake, as shown in section 6.3, or the
pointwise uptake could simply be inherently linear, as shown in section 6.2.

In both Cases I and II, the leading-order concentration within the ECM does
not depend on the microscale variable over the lengthscale of bacterial separation,
except very close to the bacteria in Case I. This means that our results are not
restricted to bacteria arranged in a cubic lattice. In fact, due to their leading-order
independence of the microscale, our effective uptake results will formally hold for any
Bravais lattice of spheres, with an appropriate factor to account for the relative phase
volumes. Moreover, since the distinguished limit for effective uptake does not include
any information about neighboring bacteria, we also expect our effective uptake results
to hold for randomly placed bacteria, again with an appropriate factor to account for
the relative phase volumes. However, we expect the effective diffusivity we calculate to
strongly depend on the microscale structure, as the geometry of the cell problem will
change. It would be interesting to formally investigate this problem with stochastically
placed bacteria, using the framework of [4, 5, 24, 25], for example.

The difference in microscale dependence of the effective diffusivity and uptake
can be understood by considering the classical homogenization of a one-dimensional
reaction-diffusion equation (see, for example, [12, section 5.2]), where the effective
diffusivity is determined to be the harmonic average of the periodic diffusivity and
the effective uptake is determined to be the arithmetic average of the periodic up-
take. The harmonic average causes the effective diffusivity to be very sensitive to low
diffusivity regions. In higher dimensions, this also causes a sensitivity on the relative
positions of such regions, as low diffusivity trapping regions will have a greater effect
on effective diffusivity. The same is not true for the effective uptake, which remains as
an arithmetic average of the (weak) pointwise uptake for higher dimensions. Thus the
effective uptake in the classical case only depends on the microscale structure through
an appropriate factor to account for the relative phase volumes. We note that our
work in Case II can be applied directly to more general periodic arrays of arbitrary
bacterial shapes; the relevant effective diffusion coefficients can be obtained from (68c)
by solving the cell problem (64) for different geometries. However, although the gen-
eral reduced inner problem we derive in (11) does hold for arbitrary bacterial shapes,
the reduced boundary condition (14a) does not: this is because we require spherical
bacteria to derive (14a), exploiting the separability of Laplace’s equation in spherical
coordinates. As such, we expect that further analytic progress could be made for
bacterial shapes defined by a surface in other separable coordinate systems, such as
ellipsoidal bacteria, as considered in the appendix of [9].

A more generalized version of the partition coupling condition across the bacterial
membrane (3b) is

Π (c−KC) = n · ∇c(57)

for constant permeability Π. The condition (57) can be formally derived by a suit-
able asymptotic analysis of a membrane of finite thickness which is thin compared
to the two outer domains it separates; it is a statement about concentration flux be-
ing proportional to the concentration difference across the membrane, accounting for
chemical preference towards a particular phase. The boundary condition (3b) is a
sublimit of (57) in the limit of Π→∞. If we were to use (57) instead of (3b), the full
generality of (57) would appear in the distinguished limit of Case I using the current
scalings of Case I (see Table 1) in addition to Π = O(1/ε3). This added generality
does not affect matters significantly; it simply modifies (14a), the boundary condition
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we derive on the bacterial membrane to close the problem, to the following:

K̄C̄ +

(
R̄+

1

ε3Π

)
D̄
∂C̄

∂r
= ĉ(x, t) for r = R̄(x).(58)

Replacing the scaling we make in section 4.5 with r = R̄r, C̄ = (ε3ΠR̄ĉ/D̄(1 +
ε3ΠR̄))w, and f̄(C̄) = ε3ΠĉF (w)/R̄(1 + ε3ΠR̄), we recover the previous scaled equa-
tions (22) with k = ε3ΠR̄K̄/D̄(1+ε3ΠR̄). Under this new scaling the previous effective
uptake (23) is replaced with

ν[ĉ] = 4πR̄2

(
ε3Π

1 + ε3ΠR̄

∂w

∂r

∣∣∣∣
r=1

)
ĉ.(59)

For Case II, the full generality of (57) would appear using the current scalings of Case
II (see Table 1) in addition to Π = O(1/ε). In this case, the final upscaled equation
(68) would still hold, but now with the boundary condition (64b) in the cell problem
being replaced with

ny · (∇yξi − ei) =
εΠ

K (ξi − Ξi) for y ∈ ∂ωb(x).(60)

Therefore, the results we derive in this paper can easily be modified to account for
the more general coupling condition (57) instead of (3b).

We neglect any advection in this work, in order to focus on the distinguished limits
that arise with diffusion and uptake as the dominant transport processes. Although
this may appear to restrict our analysis to stagnant bacterial colonies, our results
can actually be applied to a broader range of physical set-ups, including nonmotile
microorganisms in the presence of a background flow. This is because nonmotile
microorganisms will simply be advected with the flow, i.e., there is no relative move-
ment between the flow and the microorganism motion, and in the frame of reference
of the background flow, our analysis pertains as long as the lengthscale of fluid shear
is significantly larger than the bacterial lengthscale.

In this paper, we investigate and quantify how the effective uptake and diffusiv-
ity depend on microscale bacterial properties. We show how a nonlinear pointwise
uptake is transformed into an observable macroscale uptake with different nonlinear
properties and how significantly different microscale behaviors can still result in the
same observed uptake. Additionally, we show how the relative size of a nonunitary
partition coefficient can affect in which of the observed uptake regimes one finds one-
self. We emphasize that the reaction-diffusion system we consider is not restricted to
bacteria; it can also be applied to many other single-celled microorganisms, such as
cyanobacteria, microalgae, protozoa, and yeast. Moreover, the microscale framework
we upscale in this paper is fairly general—diffusive transport past finite-volumetric
sinks with a general nonlinear uptake. We hope that the framework and results we
present here will be used and extended to other related problems in a wide range of
physical applications.

Appendix A. Case II: The distinguished limit for the effective diffusiv-
ity. The distinguished limit for the effective diffusivity occurs when all dimensionless
parameters in the system are of O(1). While this limit is only a slight modification
of the general classical case [12, section 5.3], now including an arbitrary partition
coefficient across the internal boundary, it does provide the distinguished limit for
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the effective diffusivity. We therefore include the analysis for completeness. This case
contains Case 1 from [9] as a sublimit.

To proceed, we introduce the asymptotic expansions

c = c0(x,y, t) + εc1(x,y, t) + ε2c2(x,y, t) + O(ε3)(61)

with the equivalent for C, substitute these into (8), and equate terms of equal mag-
nitude.

At O(1), we obtain solutions which are independent of y, and thus c0 = c0(x, t)
and C0 = C0(x, t) with c0 = KC0 and c0(x, 0) = KC0(x, 0) = cinit(x). To close the
problem at leading-order, we must derive a solvability condition from higher asymp-
totic orders.

The O(ε) terms in (8) yield

0 = ∇2
yc1 for y ∈ ωm(x), 0 = D∇2

yC1 for y ∈ ωb(x),(62a)

c1 = KC1, ny · (∇yc1 +∇xc0) = Dny · (∇yC1 +∇xC0) for y ∈ ∂ωb(x),(62b)

c1 periodic for y ∈ ∂ω.(62c)

We can express solutions to (62) in the form

c1(x,y, t) = −ξ(x,y) · ∇xc0(x, t) + c̆1(x, t),(63a)

C1(x,y, t) = −Ξ(x,y) · ∇xC0(x, t) + C̆1(x, t),(63b)

where c̆1 and C̆1 are functions of x and t only that we do not need to calculate to
obtain the leading-order homogenized problem. The components ξi and Ξi of the
functions ξ and Ξ satisfy the cell problems

0 = ∇2
yξi for y ∈ ωm(x), 0 = D∇2

yΞi for y ∈ ωb(x),(64a)

ξi = Ξi for y ∈ ∂ωb(x),(64b)

ny ·
(
∇yξi −

D

K∇yΞi

)
=

(
1− D

K

)
ny · ei for y ∈ ∂ωb(x),(64c)

ξi periodic for y ∈ ∂ω,(64d)

where ei is the unit vector in the yi-direction. The cell problem (64) depends on two
parameters: the ratio D/K, which appears explicitly in the cell problem, and R, the
bacterial radius.

Finally, the O(ε2) terms in (8) yield

∂c0
∂t

= ∇y · (∇yc2 +∇xc1) +∇x · (∇yc1 +∇xc0) for y ∈ ωm(x),(65a)

∂C0

∂t
= D∇y · (∇yC2 +∇xC1) +D∇x · (∇yC1 +∇xC0)− f(C0) for y ∈ ωb(x),

(65b)

c2 = KC2 for y ∈ ∂ωb(x),(65c)

ny · (∇yc2 +∇xc1)−∇xR · (∇yc1 +∇xc0)

= D (ny · (∇yC2 +∇xC1)−∇xR · (∇yC1 +∇xC0)) for y ∈ ∂ωb(x),(65d)

c2 periodic for y ∈ ∂ω.(65e)
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To derive effective equations for the averaged concentration (5), we integrate (65a)
over ωm(x) and (65b) over the domain ωb(x), sum the results, then apply the diver-
gence theorem with the boundary conditions (65d)–(65e) to obtain

(66)

∫

ωm(x)

∂c0
∂t

dy +

∫

ωb(x)

∂C0

∂t
dy =

∫

ωm(x)

∇x · (∇yc1 +∇xc0) dy

−
∫

∂ωb(x)

∇xR · (∇yc1 +∇xc0) ds+D

∫

ωb(x)

∇x · (∇yC1 +∇xC0) dy

−D
∫

∂ωb(x)

∇xR · (∇yC1 +∇xC0) ds−
∫

ωb(x)

f(C0) dy,

where ds is the surface element of the bacterial membrane ∂ωb(x). Using the Reynolds
transport theorem to combine the first and second integrals on the right-hand side of
(66) as well as the third and fourth integrals, we obtain

|ωm(x)|∂c0
∂t

+ |ωb(x)|∂C0

∂t
= ∇x ·

∫

ωm(x)

(∇yc1 +∇xc0) dy

+D∇x ·
∫

ωb(x)

(∇yC1 +∇xC0) dy − |ωb(x)|f(C0).(67)

We note that (67) could also have been obtained by summing the integrals of the full
governing equations (8a) and (8b) over their respective domains, using the coupling
condition (8d), and applying the asymptotic ansatz (61).

To obtain a governing equation for the intrinsic averaged concentration ĉ, we first
note that ĉ ∼ c0, which follows from the leading-order independence of c0 on y. We
then use (63) to deduce that ∇yc1 = −(JT

ξ )∇xc0 and ∇yC1 = −(JT
Ξ)∇xC0. Here,

(JT
ξ )ij = ∂ξj/∂yi and (JT

Ξ)ij = ∂Ξj/∂yi are the transposes of the Jacobian matrices
of ξ and Ξ, respectively, these being the vector solutions to the cell problems defined
in (64). Using these results, recalling that c0 = KC0 from the leading-order equations
and that |ωm| + |ωb| = 1, we can rearrange (67) to obtain a leading-order governing
equation for ĉ

∂ĉ

∂t
=

1

α̂(x)
∇x ·

(
D̂(x)∇xĉ

)
− |ωb(x)|

α̂(x)
f(ĉ/K), ĉ(x, 0) = cinit(x).(68a)

Here, we define

α̂(x) = 1 +
1−K
K |ωb(x)|(68b)

and the homogenized diffusion tensor

D̂(x) =

(
1 +

D −K
K |ωb|

)
I−

∫

ωm(x)

JT
ξ dy − D

K

∫

ωb(x)

JT
Ξ dy,(68c)

where I is the three-dimensional identity matrix. Since we have spherical bacteria, the
homogenized diffusion tensor is a multiple of the identity matrix due to the symmetry
of the cell problem (64). That is,

∫

ωm(x)

JT
ξ dy =

(∫

ωm(x)

∂ξi/∂yi dy

)
I,

∫

ωb(x)

JT
Ξ dy =

(∫

ωb(x)

∂Ξj/∂yj dy

)
I

(69)
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1748 MOHIT P. DALWADI AND JOHN R. KING

Fig. 7. The ratio of the observed effective uptake
|ωb|
α̂
f(ĉ/K) to the total actual uptake within

a bacterium |ωb|f(ĉ/K) varies in terms of R and K.

for i, j = 1, 2, 3, with ξi and Ξj determined by (64). We emphasize that we do not
invoke the summation convention in (69).

We have therefore derived an upscaled equation for the concentration evolution
(68) in terms of the microscale system parameters. We see from (68a) that the effec-
tive uptake is equal to the product of the pointwise uptake, the bacterial volume, and
a modifying factor of 1/α̂. In comparison, in [9], where we consider a linear uptake
and K = 1, the effective uptake in Case 1 is the product of the pointwise uptake and
the bacterial volume with no modifying factor. As α̂→ 1 when K → 1 from (68b), we
are able to recover the limit of [9] in the current work. From the form of the effective
uptake, we can see that introducing a nonlinearity does not affect the effective uptake
significantly, as this nonlinearity is carried through the upscaling largely unscathed,
simply accounting for the partition coefficient. However, the presence of the partition
coefficient does modify the observed effective uptake in a nontrivial manner, due to
the dependence of α̂ on K (Figure 7). That is, as 1/α̂ < 1 for K < 1 and vice versa, we
may deduce that the observed uptake within a colony of bacteria will be smaller/larger
than naively assuming that the effective uptake is the product of bacterial volume and
pointwise uptake if the partition coefficient K is smaller/greater than 1, i.e., if the
concentration preference is for the cytoplasm/ECM. The reason for this discrepancy in
Case 1 is because the chemical concentration will be observed in terms of the intrinsic-
averaged concentration, whereas the measured uptake will be in terms of the moles of
chemical species removed, a quantity captured by the volumetric-averaged concentra-
tion. Indeed, this discrepancy would vanish if one considered the volumetric-averaged
concentration version instead of the intrinsic-averaged concentration version (68).

The homogenized diffusion tensor defined in (68c) will represent the most general
effective diffusivity in the system. Moreover, (68c) represents a more general effective
diffusivity than that derived in [9]. From the functional form of (68c), we see that
while introducing a nonunitary partition coefficient does have a significant effect on
the effective diffusivity, introducing a nonlinear uptake does not have any leading-
order effect.
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Appendix B. Steady state stability analysis. We consider a small time-
dependent perturbation away from a steady-state solution C̄∗(r) of (21)

C̄(r, t) = C̄∗(r) + eλtΘ(r),(70)

where Θ� C̄∗. Here, Θ satisfies the eigenvalue problem

0 =
D̄

r2

∂

∂r

(
r2 ∂Θ

∂r

)
−
(
f̄ ′(C̄∗) + λ

)
Θ for r < R̄(x)(71a)

for the eigenvalue λ, with boundary conditions

∂Θ

∂r
= 0 for r = 0, K̄Θ + R̄D̄

∂Θ

∂r
= 0 for r = R̄.(71b)

Multiplying (71a) by r2Θ and integrating over r ∈ (0, R̄) to form the Rayleigh quo-
tient, we obtain

λ = −
R̄K̄Θ2(R̄) +

∫ R̄
0
r2
(
D̄ (Θ′)2

+ f̄ ′(C̄∗)Θ2
)

dr

∫ R̄
0
r2Θ2 dr

,(72)

where we used (71b) to simplify the term outside the integrals. From (72), we may
immediately deduce that if f̄ ′(C̄∗) > 0 everywhere within the domain we have λ 6 0,
and hence any steady state is stable if f̄ ′(C̄∗) > 0. That is, any steady state is stable
if the uptake f̄(C̄) is monotonically nondecreasing. An interesting corollary of this is
that it may be possible to have unstable steady states for this problem if there are
strong inhibition effects as the concentration increases.
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