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COMPLEX SOLUTIONS AND STATIONARY SCATTERING FOR THE

NONLINEAR HELMHOLTZ EQUATION

HUYUAN CHEN, GILLES EVÉQUOZ, AND TOBIAS WETH

Abstract. We study a stationary scattering problem related to the nonlinear Helmholtz
equation −∆u− k2u = f(x, u) in R

N , where N ≥ 3 and k > 0. For a given incident free
wave ϕ ∈ L∞(RN ), we prove the existence of complex-valued solutions of the form u =
ϕ + usc, where usc satisfies the Sommerfeld outgoing radiation condition. Since neither
a variational framework nor maximum principles are available for this problem, we use
topological fixed point theory and global bifurcation theory to solve an associated integral
equation involving the Helmholtz resolvent operator. The key step of this approach is
the proof of suitable a priori bounds.

1. Introduction

A basic model for wave propagation in an ambient medium with nonlinear response is
provided by the nonlinear wave equation

(1.1)
∂2ψ

∂t2
(t, x)−∆ψ(t, x) = f(x, ψ(t, x)), (t, x) ∈ R× R

N .

Considering nonlinearities of the form f(x, ψ) = g(x, |ψ|2)ψ, where g is a real-valued
function, the time-periodic ansatz

(1.2) ψ(t, x) = e−iktu(x), k > 0

leads to the nonlinear Helmholtz equation

(1.3) −∆u− k2u = f(x, u) in R
N .

Assuming in this model that nonlinear interactions occur only locally in space. we are
lead to restrict our attention to nonlinearities f ∈ C(RN × C,C) with lim

|x|→∞
f(x, u) = 0

for every u ∈ R. The stationary scattering problem then consists in analyzing solutions
of the form u = ϕ + usc, where ϕ is a solution of the homogeneous Helmholtz equation
−∆ϕ− k2ϕ = 0 and usc obeys the Sommerfeld outgoing radiation condition

(1.4) r
N−1

2

∣∣∣∣
∂usc

∂r
− ikusc

∣∣∣∣→ 0 as r = |x| → ∞

or a suitable variant of it. The function ϕ represents a given incident free wave whose
interaction with the nonlinear ambient medium gives rise to a scattered wave usc. Usually,
ϕ is chosen as a plane wave

(1.5) ϕ(x) = eik x·ξ, ξ ∈ SN−1

or as superposition of plane waves. To justify the notions of incident and scattered wave,
let us assume for the moment that the nonlinearity is compactly supported in the space

variable x. Then usc has the asymptotics usc(x) = r
1−N

2 eikrg( x
|x|)+o(r

1−N
2 ) as r = |x| → ∞

1
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with a function g : SN−1 → C (see [4, Theorem 2.5] and [7, Proposition 2.6]). For incident
plane waves ϕ as in (1.5), this leads to the asymptotic expansion

ψ(t, x) = eik(x·ξ−t) + r
1−N

2 eik(r−t)g(
x

|x|
) + o(r

1−N
2 ) as r = |x| → ∞

uniformly in t ∈ R for the corresponding time periodic solution given by the ansatz (1.2).
This expansion clearly shows the asymptotic decomposition of the wave function ψ in two
parts, of which one is propagating with constant speed k in the given direction ξ and the
other part is outward radiating in the radial direction. For a more detailed discussion
of the connection of notions of stationary and dynamical scattering, we refer the reader
to [16] and the references therein.

In the (affine) linear case f(x, u) = a(x)u + b(x), both the forward and the inverse
stationary scattering problem have been extensively studied and are reasonably well un-
derstood from a functional analytic point of view (see e.g. [4] and the references therein).
In contrast, the nonlinear setting remains widely unexplored, although it appears in im-
portant models driven by applications and therefore is receiving fastly growing attention
in recent years. Specifically, we mention the modeling of propagation and scattering of
electromagnetic waves in localized nonlinear Kerr media as considered e.g. in [3,10,24]. In
this context, the nonlinear Helmholtz equation arises from a reduction of Maxwell’s equa-
tions in the case of a linearly polarized electric field after elimination of the corresponding
magnetic field. As noted in [24], this leads to a special case of equation (1.3) given by

−∆u− k2u = ρ1Ω|u|
2u in R

N .

Here Ω ⊂ R
N is the support of the nonlinear Kerr medium and ρ is the Kerr constant given

as quotient of the Kerr coefficient of the medium and the index of refraction of the ambient
homogeneous medium. Both from a theoretical and an applied point of view, it is of great
interest to understand self-focusing and scattering effects of laser beams interacting with
localized nonlinear media, and computational approaches to these questions have been
developed e.g. in [3, 10,24].

From a theoretical point of view, the current understanding of the stationary scattering
problem for (1.3) is mainly restricted to the case of small incident waves ϕ which can
be reduced to a perturbation of an associated linear problem in suitable function spaces.
In this case, existence and well-posedness results have been obtained by Gutiérrez [12],
Jalade [13] and Gell-Redman et al. [11]. In [13], the scattering problem is studied for a
small incident plane wave and a family of compactly supported nonlinearities in dimension
N = 3. The main result in [12] yields, in dimensions N = 3, 4, the existence of solutions to
the scattering problem with small incident Herglotz wave ϕ and cubic power nonlinearity.
We recall that a Herglotz wave is a function of the type

(1.6) x 7→ ϕ(x) :=

∫

SN−1

eik(x·ξ)g(ξ) dσ(ξ) for some function g ∈ L2(SN−1).

Since plane waves of the form (1.5) cannot be written in this way, they are not admitted
in [12]. On the other hand, no asymptotic decay of the nonlinearity is required for the
approach developed in [12]. This is also the case for the approach in [11], where more
general nonlinearities are considered, while the class of admissible incident Herglotz waves
ϕ is restricted by assuming smallness measured in higher Sobolev norms on SN−1.

The main reason for the smallness assumption in the papers [11–13] is the use of
contraction mappings together with resolvent estimates for the Helmholtz operator. The



NONLINEAR HELMHOLTZ EQUATION 3

main aim of this paper is to remove this smallness assumption by means of different tools
from nonlinear analysis and new a priori estimates on the set of solutions. More precisely,
for a given solution ϕ ∈ L∞(RN ) of the homogeneous Helmholtz equation ∆ϕ + ϕ = 0
which we shall refer to as incident free wave in the following, we wish to find solutions of
(1.3) of the form u = ϕ+ usc ∈ L∞(RN ) with usc satisfying (1.4) or a suitable variant of
this radiation condition. This problem can be reduced to an integral equation involving the
Helmholtz resolvent operator Rk, which is formally given as a convolution Rkf = Φk ∗ f
with the fundamental solution

(1.7) Φk : RN \ {0} → C, Φk(x) =
i

4

( k

2π|x|

)N−2
2
H

(1)
N−2

2

(k|x|)

associated to (1.4). Here H
(1)
N−2

2

is the Hankel function of the first kind of order N−2
2 , see

e.g. [1]. It is easy to see from the asymptotics of H
(1)
N−2

2

that Φk satisfies (1.4), and the

same is true for u := Rkh = Φk ∗ h e.g. in the case where h ∈ L∞(RN ) has compact
support.

By the estimate in [12, Theorem 8] and the remark following it, an integral variant of
(1.4) is available under weaker assumptions on h. More precisely, if N = 3, 4 and 1 < p ≤
2(N+1)
N+3 or N ≥ 5 and 2N

N+4 ≤ p ≤ 2(N+1)
N+3 , then, for h ∈ Lp(RN ), the function u = Rkh is

a well-defined strong solution of the inhomogeneous Helmholtz equation −∆u− k2u = h

satisfying the following variant of the Sommerfeld outgoing radiation condition:

(1.8) lim
R→∞

1

R

∫

BR

∣∣∣∣∇u(x)− iku(x)
x

|x|

∣∣∣∣
2

dx = 0.

Hence, under appropriate assumptions on the nonlinearity f , we are led to study the
integral equation

(1.9) u = Rk(Nf (u)) + ϕ in L∞(RN )

for a given incident free wave ϕ ∈ L∞(RN ). HereNf is the substitution operator associated
to f given by Nf (u)(x) := f(x, u(x)).

To state our main results we need to introduce some more notation. It is convenient
to define 〈x〉 = (1 + |x|2)

1
2 for x ∈ R

N . For α ∈ R and a measurable subset A ⊂ R
N , we

consider the Banach space L∞
α (A) of measurable functions w : A→ C with

‖w‖L∞
α (A) := ‖〈 · 〉αw‖L∞(A) < +∞.

In particular, L∞(A) = L∞
0 (A). In the case A = R

N , we merely write ‖ · ‖L∞
α

in place
of ‖ · ‖L∞

α (RN ). For subspaces of real-valued functions, we use the notations Lp(A,R) for

1 ≤ p ≤ ∞ and L∞
α (A,R). We first note the following preliminary observation regarding

properties of the resolvent operator Rk.

Proposition 1.1. Let N > 2, α > N+1
2 and τ(α) be defined by

τ(α) =

{
α− N+1

2 if N+1
2 < α < N,

N−1
2 if α > N.

(1.10)

Then we have

(1.11) κα := sup
{∥∥|Φk| ∗ w

∥∥
L∞
τ(α)

: w ∈ L∞
α (RN ), ‖w‖L∞

α
= 1
}
<∞,
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so Rk defines a bounded linear map L∞
α (RN ) → L∞

τ(α)(R
N ). Moreover:

(i) The resolvent operator defines a compact linear map Rk : L∞
α (RN ) → L∞(RN ).

(ii) If α > N(N+3)
2(N+1) and h ∈ L∞

α (RN ), then the function u := Rkh is a strong solution

of −∆u− k2u = h satisfying (1.8). If α > N , then u satisfies (1.4).

Our first main existence result is concerned with linearly bounded nonlinearities f .

Theorem 1.2. Let, for some α > N+1
2 , the nonlinearity f : RN ×C → C be a continuous

function satisfying

(1.12) sup
|u|≤M,x∈RN

〈x〉α|f(x, u)| <∞ for all M > 0.

Moreover, suppose that one of the following assumptions is satisfied:

(f1) The nonlinearity is of the form f(x, u) = a(x)u+ b(x, u) with a ∈ L∞
α (RN ,R) and

sup
|u|≤M,x∈RN

〈x〉α|b(x, u)| = o(M) as M → +∞.

(f2) There exists Q, b ∈ L∞
α (RN ,R) with ‖Q‖L∞

α
< 1

κα
, where κα is given in (1.11),

and

|f(x, u)| 6 Q(x)|u|+ b(x) for all (x, u) ∈ R
N × C.

Then, for any given solution ϕ ∈ L∞(RN ) of the homogeneous Helmholtz equation ∆ϕ+
k2ϕ = 0, the equation (1.9) admits a solution u ∈ L∞(RN ).

Remark 1.3. (i) In many semilinear elliptic problems with asymptotically linear nonlin-
earities as in assumption (f1), additional nonresonance conditions have to be assumed to
guarantee a priori bounds which eventually lead to the existence of solutions. This is not
the case in the present scattering problem. We shall establish a priori bounds merely as
a consequence of (f1) by means of suitable nonexistence results for solutions of the linear
Helmholtz equation satisfying the radiation condition (1.8). The key assumption here is
that the function a in (f1) is real-valued.

(ii) Theorem 1.2 leaves open the question of uniqueness of solutions to (1.9). In fact,
under the sole assumptions of Theorem 1.2, uniqueness is not to be expected. If, however,
for some α > N+1

2 , the nonlinearity f ∈ C(RN × R,R) satisfies (1.12) and the Lipschitz
condition

(1.13) ℓα := sup
{
〈x〉α

∣∣∣f(x, u)− f(x, v)

u− v

∣∣∣ : u, v ∈ R, x ∈ R
N
}
<

1

κα
,

then the contraction mapping principle readily yields the existence of a unique solution
u ∈ L∞(RN ) of (1.9) for given ϕ ∈ L∞(RN ), see Theorem 6.3 below.

Next we turn our attention to superlinear nonlinearities which do not satisfy (f1)
or (f2). Assuming additional regularity estimates for f , we can still prove the existence
of solutions of (1.9) in the case where ‖ϕ‖L∞(RN ) is small. More precisely, we have the
following.

Theorem 1.4. Let, for some α > N+1
2 , the nonlinearity f : RN ×C → C be a continuous

function satisfying (1.12). Suppose moreover that the function f(x, ·) : C → C is real
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differentiable for every x ∈ R
N , and that f ′ := ∂uf : RN × C → LR(C,C) is a continuous

function satisfying

(1.14) sup
|u|≤M,x∈RN

〈x〉α‖f ′(x, u)‖LR(C,C) <∞.

Finally, suppose that f(x, 0) = 0 and f ′(x, 0) = 0 ∈ LR(C,C) for all x ∈ R
N .

Then there exists open neighborhoods U, V ⊂ L∞(RN ) of zero with the property that
for every ϕ ∈ V there exists a unique solution u = uϕ ∈ U of (1.9). Moreover, the map
V → U , u 7→ uϕ is of class C1.

The proof of this theorem is very short and merely based on the inverse function
theorem, see Section 6 below. It applies in particular to power type nonlinearities

(1.15) f(x, u) = Q(x)|u|p−2u.

More precisely, if p > 2, and Q ∈ L∞
α (RN ) for some α > N+1

2 , we find that f(x, ·) is

real differentiable for every x ∈ R
N , and f ′ = ∂uf ∈ LR(C,C) is given by f ′(x, u)v =

Q(x)
(
p
2 |u|

p−2v + p−2
2 |u|p−4u2v̄

)
, which implies that

‖f ′(x, u)‖LR(C,C) ≤ (p− 1)|Q(x)||u|p−2 for x ∈ R
N , u ∈ C.

From this it is easy to deduce that the assumptions of Theorem 1.4 are satisfied in this
case. In particular, for given ϕ ∈ L∞(RN ), Theorem 1.4 yields the existence of ǫ > 0 and
a unique local branch (−ǫ, ǫ) → L∞(RN ), λ 7→ uλ of solutions of the equation

(1.16) u = Rk(Q|u|p−2u) + λϕ in L∞(RN ).

In our next result, we establish the existence of a global continuation of this local branch.

Theorem 1.5. Let N > 3, 2 < p < 2∗, Q ∈ L∞
α (RN ,R)\{0} for some α > N+1

2 and

ϕ ∈ L∞(RN ). Moreover, let

Sϕ := {(λ, u) : λ ≥ 0, u ∈ L∞(RN ), u solves (1.16)} ⊂ [0,∞)× L∞(RN ),

and let Cϕ ⊂ Sϕ denote the connected component of Sϕ which contains the point (0, 0).

Then Cϕ \ {(0, 0)} is an unbounded subset of (0,∞) × L∞(RN ).

We note that in general the unboundedness of Cϕ does not guarantee that Cϕ intersects

{1}×R
N , since the branch given by Cϕ may blow up in L∞(RN ) at some value λ ∈ (0, 1).

In particular, under the general assumptions of Theorem 1.5, we cannot guarantee the
existence of solutions of the equation (1.9). For this, additional a priori bounds on the set
of solutions are needed. We shall find such a priori bounds in the case where Q ≤ 0 in R

N ,
which is usually refered to as the defocusing case. Moreover, we require Q to have compact
support with some control of its diameter. In the following, we let L∞

c (RN ) denote the
set of functions Q ∈ L∞(RN ) with compact support suppQ ⊂ R

N , and we let L∞
c (RN ,R)

denotes the subspace of real-valued functions in L∞
c (RN ). We then have the following

result.

Theorem 1.6. Let N > 3, 2 < p < 2∗, Q ∈ L∞
c (RN ,R)\{0} and ϕ ∈ L∞(RN ). Assume

furthermore that Q 6 0 a.e. in R
N and diam(supp Q) ≤ z(N)

k
, where z(N) denotes the

first positive zero of the Bessel function YN−2
2

of the second kind of order N−2
2 .

Then the set Cϕ given in Theorem 1.5 intersects {λ} × L∞(RN ) for every λ > 0. In
particular, (1.16) admits a solution with λ = 1.
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To put the assumption on the support of Q into perspective, we note that z(3) = π
2

since Y 1
2
(t) = −

√
2
πt

cos t for t > 0. Moreover, z(N) > z(3) for N > 3, see [1, Section 9.5].

Consequently, the assumptions of Theorem 1.6 are satisfied if Q ∈ L∞
c (RN ,R)\{0} is a

nonpositive function with diam(supp Q) < π
2k . We also refer to [1, p. 467] for a list of the

values of z(N) for 3 ≤ N ≤ 15.

It seems appropriate to compare our results with recent work on the existence of
real-valued (standing wave) solutions of (1.3). A large class of such real-valued solutions
has been detected and studied extensively in recent years by considering the associated
integral equation

(1.17) u = Ψk ∗ (Nf (u)),

where Ψk is the real part of the fundamental solution Φk, see e.g. [6, 7, 9, 20] and the
references therein. In particular, a variational approach to detect and analyze solutions
of (1.17) has been set up in [7] for the special case where the nonlinearity f is of the
form f(x, u) = Q(x)|u|p−2u with nonnegative Q ∈ L∞(RN ,R) and suitable exponents
p > 2. Variants of this variational approach have been developed further in [9, 20] under
appropriate assumptions on the nonlinearity. However, the variational methods in these
papers are of no use in the context of the integral equation (1.9) which has no variational
structure. The contrast between real standing wave solutions and complex scattering
solutions is even more glaring as we shall see that the related homogeneous equation u =
Rk[Q|u|p−2u] admits only the trivial bounded solution u ≡ 0 if p ≥ 2 and Q ∈ L∞

α (RN ,R)
for some α > N+1

2 . Indeed, we shall prove this Liouville type result in Proposition 4.2
below by adapting a nonexistence result due to Kato [15] to the present nonlinear context.

In the perturbative setting where a priori smallness assumptions are imposed, the
detection of real and complex solutions of (1.9) follows the same strategy of applying
contraction mapping arguments in suitable function spaces. In this context, we mention
the paper [19] where a variant of the contraction mapping argument of Gutiérrez [12] is
developed and used to detect continua of small real-valued solutions of (1.3) for a larger
class of nonlinearities than in [12]. More precisely, these continua are found by solving
the non-homogeneous variant u = Ψk ∗ (Q|u|p−2u) +ϕ of (1.17) for a range of given small
real-valued solutions ϕ of the homogeneous Helmholtz equation −∆ϕ− ϕ = 0.

Due to the lack of a priori smallness assumptions and the lack of a variational struc-
ture, our main results given in Theorems 1.2, 1.5 and 1.6 require a different approach than
in the above-mentioned papers. As mentioned earlier, this approach is based on topologi-
cal fixed point theory, and it therefore requires suitable a priori bounds. With regard to
this aspect, the present paper is related to [8] where continuous branches of real-valued
standing wave solutions of (1.17) have been constructed. However, while the derivation of
suitable priori bounds is the key step both in [8] and in the present paper, these bounds
are of different nature as they relate to different integral equations and to different classes
of solutions. In [8], under suitable additional assumptions on Q and p, a priori bounds are
derived for real-valued solutions of u = Ψk ∗ (Q|u|p−2u) which are positive within the sup-
port of the nonlinearity f . In contrast, here we need a priori bounds for complex solutions
of (1.9), and for this we cannot use positivity properties and local maximum principles.
Instead, the approach of the present paper is based on a Liouville theorem relying on
Sommerfeld’s radiation condition and on combining regularity and test function estimates
with local monotonicity properties of the function Ψk, see Sections 4 and 5 below.



NONLINEAR HELMHOLTZ EQUATION 7

The paper is organized as follows. In Section 2 we establish basic estimates of the re-
solvent operator Rk, and we prove Proposition 1.1. In Section 3, we show useful estimates
and regularity properties of the substitution operator associated with the nonlinearity
f(x, u). In order to apply topological fixed point theory, we first need to prove the nonex-
istence of solutions to linear and superlinear integral equations related to the operator Rk.
This will be done in Section 4. In Section 5, we then prove a priori bounds for solution
of equation (1.9) and related variants under various assumptions on the nonlinearity f .
The proof of the main theorems is then completed in Section 6. Finally, in the appen-
dix, we provide a relative a priori bound based on bootstrap regularity estimates between
Lp-spaces which is used in the proof of Theorem 1.6.

2. Estimates for the Helmholtz resolvent operator

Lemma 2.1. Let N > 2, k > 0 and for α > N+1
2 , let τ(α) be defined by (1.10). Then for

any v ∈ L∞
α (RN ) and α > N+1

2 , we have

‖|Φk| ∗ v‖L∞
τ(α)

6 C‖v‖L∞
α
, ‖|∇Φk| ∗ v‖L∞

τ(α)
6 C‖v‖L∞

α
,

where the constant C > 0 depends only on N , α and k.

Proof. In the following, the letter C > 0 always denotes constants which only depends on
N , α and k. We observe that

|Φk(x)| 6




C |x|2−N if N > 3,

C log 2
|x| if N = 2,

|∇Φk| 6 c|x|1−N for 0 < |x| 6 1

and

|Φk(x)|, |∇Φk| 6 C |x|
1−N

2 if |x| > 1.

It then follows that

|(|Φk| ∗ v)(x)| 6

∫

RN

|Φk(z)| |v(x − z)| dz

6





C‖v‖L∞
α

( ∫
B1(0)

|z|2−N 〈x− z〉−α dz +
∫
RN\B1(0)

|z|
1−N

2 〈x− z〉−α dz
)

if N > 3,

C‖v‖L∞
α

( ∫
B1(0)

log 2
|z|〈x− z〉−α dz +

∫
RN\B1(0)

|z|
1−N

2 〈x− z〉−α dz
)

if N = 2.

For |x| 6 4, it is easy to see that

|(|Φk| ∗ v)(x)| 6





C‖v‖L∞
α

( ∫
B1(0)

|z|2−N dz +
∫
RN\B1(0)

|z|
1−N

2
−α dz

)
if N > 3

C‖v‖L∞
α

( ∫
B1(0)

log 2
|z| dz +

∫
RN\B1(0)

|z|
1−N

2
−α dz

)
if N = 2,

(2.1)

and

|(|∇Φk| ∗ v)(x)| 6 C‖v‖L∞
α

( ∫

B1(0)
|z|1−N dz +

∫

RN\B1(0)
|z|

1−N
2

−α dz
)
,(2.2)

where 1−N
2 − α < −N .
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In the following, we consider |x| > 4. Since α > N+1
2 , direct computation shows that

I1 :=

{∫
B1(0)

|z|2−N 〈x− z〉−α dz if N > 3
∫
B1(0)

log 2
|z| 〈x− z〉−α dz if N = 2

6 C|x|−α ≤ C〈x〉−α.

Moreover,

I2 :=

∫

B |x|
2

(0)\B1(0)
|z|

1−N
2 〈x− z〉−α dz 6 C|x|−α

∫

B |x|
2

(0)\B1(0)
|z|

1−N
2 dz 6 C|x|−α+N+1

2 ,

I3 :=

∫

B |x|
2

(x)
|z|

1−N
2 〈x− z〉−α dz 6 C|x|−

N−1
2

∫

B |x|
2

(x)
〈x− z〉−αdz 6 C|x|−τ(α)

and

I4 : =

∫

RN\(B |x|
2

(0)∪B |x|
2

(x))
|z|

1−N
2 〈x− z〉−α dz

= |x|−α+N+1
2

∫

RN\(B 1
2
(0)∪B 1

2
(ex))

|z|
N−1

2 |z − x̂|−αdz 6 C|x|−α+N+1
2 ,

where x̂ = x
|x| . Since −τ(α) > max{−N−1

2 ,−α,−α + N+1
2 }, we may combine these

estimates with (2.1) to see that

|(|Φk| ∗ v)(x)| 6 C‖v‖L∞
α

( 4∑

j=1

Ij

)
6 C〈x〉−τ(α)‖v‖L∞

α
for all x ∈ R

N .

Moreover, noting that

Ĩ1 :=

∫

B1(0)
|z|1−N 〈x− z〉−α dz 6 C|x|−α

6 C〈x〉−α for |x| > 4,

we find by (2.2) that

|(|∇Φk| ∗ v)(x)| 6 C‖v‖L∞
α

(
Ĩ1 +

4∑

j=2

Ij

)
6 C〈x〉−τ(α)‖v‖L∞

α
for all x ∈ R

N .

The proof is thus complete. �

Proof of Proposition 1.1. (i) Clearly, Lemma 2.1 yields (1.11) and therefore the continuity
of the linear resolvent operator Rk : L∞

α (RN ) → L∞
τ(α)(R

N ), whereas the latter space is

continuously embedded in L∞(RN ). To see the compactness of Rk as a map L∞
α (RN ) →

L∞(RN ), let (un)n be a sequence in L∞
α (RN ) with

m := sup
n∈N

‖un‖L∞
α
<∞.

Moreover, let vn := Rkun = Φ ∗ un for n ∈ N. By Lemma 2.1, we then have

(2.3) ‖vn‖L∞
τ(α)

≤ Cm and ‖∇vn‖L∞
τ(α)

= ‖∇Φ ∗ un‖L∞
τ(α)

≤ Cm
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for all n ∈ N. In particular, the sequence (vn)n is bounded in C1
loc(R

N ). By the Arzelà-

Ascoli theorem, there exists v ∈ L∞
loc(R

N ) with

(2.4) vn 7→ v locally uniformly on R
N .

By (2.3), it then follows that v ∈ L∞
τ(α)(R

N ) with ‖v‖L∞
τ(α)

≤ Cm.

Moreover, for given R > 0 we have, with AR := R
N \BR(0)

‖vn−v‖L∞(AR) ≤ ‖vn‖L∞(AR)+‖v‖L∞(AR) ≤ R−τ(α)
(
‖vn‖L∞

τ(α)
+‖v‖L∞

τ(α)

)
≤ 2CmR−τ(α).

Combining this estimate with (2.4), we see that lim sup
n→∞

‖vn − v‖L∞(RN ) ≤ 2CmR−τ(α)

for every R > 0. Since τ(α) > 0, we conclude that vn → v in L∞(RN ). This shows the
compactness of the operator L∞

α (RN ) → L∞(RN ).

(ii) Let α >
N(N+3)
2(N+1) and h ∈ L∞

α (RN ). It then follows that h ∈ L
2(N+1)
N+3 (RN ). Conse-

quently, [7, Proposition A.1] implies that u = Rkh is a strong solution of −∆u− k2u = h.
Moreover, u satisfies (1.8) by the estimate in [12, Theorem 8] and the remark following it.

Finally, we suppose that α > N . In this case, the linear map

R̃k : L∞
α (RN ) → L∞

N−1

2

(RN ), v 7→ R̃k(v) :=
dRkv

dr
− ikRkv

is well-defined and bounded by Lemma 2.1. Moreover, if h ∈ L∞(RN ) has compact
support, the fact that Φk satisfies (1.4) and elementary convolution estimates show that
u = Rkh also satisfies (1.4). In the general case h ∈ L∞

α (RN ), we consider a sequence of
functions hn ∈ L∞

α (RN ) with compact support and such that hn → h in L∞
α (RN ), which

then also implies that

(2.5) R̃khn → R̃kh in L∞
N−1

2

(RN ).

Moreover, for every n ∈ N we have

lim sup
|x|→∞

|x|
N−1

2

∣∣[R̃kh](x)
∣∣ ≤ lim sup

|x|→∞
|x|

N−1
2

∣∣[R̃khn](x)
∣∣ + ‖R̃kh− R̃khn‖L∞

N−1

2

= ‖R̃kh− R̃khn‖L∞
N−1

2

,

and thus

lim sup
|x|→∞

|x|
N−1

2

∣∣[R̃kh](x)
∣∣ ≤ lim

n→∞
‖R̃kh− R̃khn‖L∞

N−1

2

= 0

by (2.5). Hence u = Rkh satisfies (1.4). �

3. Estimates for the substitution operator

Lemma 3.1. Let, for some α ∈ R, the nonlinearity f : RN × C → C be a continuous
function satisfying

(3.1) Sf,M,α := sup
|u|≤M,x∈RN

〈x〉α|f(x, u)| <∞ for all M > 0.

Then the superposition operator

Nf : L∞(RN ) → L∞
α′ (RN ), Nf (u)(x) := f(x, u(x))

is well defined, bounded and continuous for every α′ < α.
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Proof. It clearly follows from (3.1) that Nf is well defined and satisfies the estimate

‖Nf (u)‖L∞
α′

≤ ‖Nf (u)‖L∞
α

≤ Sf,M,α for M > 0 and u ∈ L∞(RN ) with ‖u‖L∞ ≤M .

To see the continuity we consider a sequence (un)n ⊂ L∞(RN ) with un → u in L∞(RN ),
and we put M := sup{‖un‖L∞ : n ∈ N}. For given R > 0 we have, with BR := BR(0)
and AR := R

N \BR,

‖Nf (un)−Nf (u)‖L∞
α′ (AR) ≤ ‖Nf (un)‖L∞

α′ (AR) + ‖Nf (u)‖L∞
α′ (AR)

≤ Rα′−α
(
‖Nf (un)‖L∞

α (AR) + ‖Nf (u)‖L∞
α (AR)

)

≤ 2Sf,M,αR
α′−α.

Moreover, since f is uniformly continuous on DR := {(x, z) ∈ R
N×C : ‖x‖ ≤ R, |z| ≤M},

we find that

‖Nf (un)−Nf (u)‖L∞(BR) = sup
|x|≤R

|f(x, un(x))− f(x, u(x))| → 0 as n→ ∞.

We thus infer that lim sup
n→∞

‖Nf (un) − Nf (u)‖L∞
α′ (R

N ) ≤ 2Sf,M,αR
α′−α for every R > 0.

Since α′ < α by assumption, we conclude that Nf (un) → Nf (u) in L
∞
α′ (RN ). This shows

the continuity of Nf : L∞(RN ) → L∞
α′ (RN ). �

Lemma 3.2. Let, for some α > N+1
2 , the nonlinearity f : RN × C → C be a continuous

function satisfying (3.1). Suppose moreover that the function f(x, ·) : C → C is real
differentiable for every x ∈ R

N , and that f ′ := ∂uf : RN × C → LR(C,C) is a continuous
function satisfying

(3.2) Tf,M,α := sup
|u|≤M,x∈RN

〈x〉α‖f ′(x, u)‖LR(C,C) <∞ for all M > 0.

Then the superposition operator Nf : L∞(RN ) → L∞
α′ (RN ) is of class C1 for α′ < α with

(3.3) N ′
f (u) := Nf ′(u) for u ∈ L∞(RN ),

where Nf ′(u) ∈ LR(L
∞(RN ), L∞

α′ (RN )) is defined by

(3.4) [N ′
f (u)v](x) := f ′(x, u(x))v(x) for v ∈ L∞(RN ), x ∈ R

N .

Proof. For the sake of brevity, we put X := L∞(RN ) and Y := L∞
α′ (RN ). By assumption

(3.2) and a very similar argument as in the proof of Lemma 3.1, the nonlinear operator

Nf ′ : X → LR(X,Y )

defined by (3.4) is well-defined, bounded and continuous. Thus, it suffices to show that
Nf is Gâteaux-differentiable, and that (3.3) is valid as a directional derivative. So let

u, v ∈ X, and let M := ‖u‖L∞ + ‖v‖L∞ . For θ ∈ R and x ∈ R
N , we estimate

∣∣∣
Nf (u+ θv)(x)−Nf (u)(x)

θ
− [Nf ′(u)v](x)

∣∣∣

=
∣∣∣f(x, [u+ θv](x))− f(x, u(x))

θ
− f ′(x, u(x))v(x)

∣∣∣

=
∣∣∣
∫ 1

0

[
f ′(x, [u+ ξθv](x))− f ′(x, u(x))

]
v(x) dξ

∣∣∣ ≤ |v(x)|gθ(x)
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with

gθ(x) := sup
ξ∈[0,1]

∥∥f ′(x, [u+ ξθv](x))− f ′(x, u(x))
∥∥
LR(C,C)

for θ ∈ R, x ∈ R
N .

Since ‖u+ τv‖L∞ ≤M for τ ∈ R, |τ | ≤ 1, we have

|gθ(x)| ≤ sup
τ∈[0,1]

‖f ′(x, [u+ τv](x))‖LR(C,C) + ‖f ′(x, u(x))‖LR(C,C) ≤ 2Tf,M,α〈x〉
−α

for |θ| ≤ 1, x ∈ R
N . Similarly as in the proof of Lemma 3.1, we now define, for given

R > 0, BR := BR(0), AR := R
N \BR, and DR := {(x, z) ∈ R

N ×C : ‖x‖ ≤ R, |z| ≤M}.
From the estimate above, it then follows

(3.5)
∥∥∥
Nf (u+ θv)−Nf (u)

θ
−Nf ′(u)v

∥∥∥
L∞
α′ (AR)

≤ 2‖v‖XTf,M,αR
α′−α.

Moreover, since, by assumption, f ′ is uniformly continuous on the compact set DR, we
find that

‖gθ‖L∞(BR) → 0 as θ → 0.

We thus conclude that

lim sup
θ→0

∥∥∥
Nf (u+ θv)−Nf (u)

θ
−M(u)v

∥∥∥
L∞
α′ (R

N )
≤ 2‖v‖X Tf,M,αR

α−α′
for every R > 0.

Since α′ < α by assumption, we conclude that
Nf (u+θv)−Nf (u)

θ
→ Nf ′(u)v in Y as θ → 0.

The proof is thus finished. �

4. Nonexistence of outgoing waves for the nonlinear Helmholtz equation

To begin this section, we recall the following nonexistence result for eigenfunctions of
Schrödinger operators with positive eigenvalue. It is a consequence of a result by Alsholm
and Schmidt [2, Proposition 2 of Appendix 3] extending earlier results due to Kato [15]:

Proposition 4.1 (see [2, Proposition 2]). Let u ∈ W
2,2
loc

(RN ,C) solve −∆u + V u = k2u

in R
N , where V ∈ L∞(RN ) satisfies

(4.1) |V (x)| 6 C〈x〉−1−ǫ for a.e. x ∈ R
N with constants C, ǫ > 0.

If

lim inf
R→∞

1

R

∫

BR(0)
(|∇u|2 + k2|u|2) dx = 0,

then there exists R > 0 such that u vanishes identically in R
N\BR(0) for some R > 0.

If, moreover, V is real-valued, then u vanishes identically in R
N .

Proof. It has been proved in [2, Proposition 2] that u vanishes identically in R
N\BR(0)

for some R > 0. Assuming in addition that V is real-valued, we then deduce by a unique
continuation result that u vanishes identically on R

N . More precisely, for u1 = Re(u) and
u2 = Im(u) we have |∆ui| 6 C|ui| on R

N with some constant C > 0. The strong unique
continuation property [14, Theorem 6.3] (see also Remark 6.7 in the same paper) therefore
implies u1 = u2 = 0 on R

N , and this concludes the proof. �

From Proposition 4.1, we shall now deduce the following nonexistence result for linear
and superlinear variants of the corresponding integral equation involving the Helmholtz
resolvent operator.
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Proposition 4.2. Let N ≥ 3, 2 ≤ p < ∞, α > N+1
2 , and let u ∈ L∞(RN ) be a solution

of

(4.2) u = Rk[Q|u|p−2u]

with a function Q ∈ L∞
α (RN ,R). Then u ≡ 0.

Proof. Let V := Q|u|p−2, so that (4.2) writes in the form

(4.3) u = Rk[V u]

We then have V ∈ L∞
α (RN ,R) and also V u ∈ L∞

α (RN ) since u ∈ L∞(RN ). Therefore
Proposition 1.1 implies that u ∈ L∞

τ(α)(R
N ) with τ(α) given in (1.10). It then follows that

V u ∈ L∞
α1
(RN ) with α1 = α + τ(α) and hence u ∈ L∞

τ(α1)
(RN ) again by Proposition 1.1.

Defining inductively αk := αk−1 + τ(αk−1) for k ≥ 2, we may iterate the application of
Proposition 1.1 to obtain that u ∈ L∞

τ(αk)
(RN ) for all k ∈ N. After a finite number of steps,

we therefore deduce from (1.10) that u ∈ L∞
N−1

2

(RN ) and therefore V u ∈ L∞
α+N−1

2

(RN ).

Since α > N+1
2 by assumption, this implies that V u ∈ L∞(RN ) ∩L1(RN ). It then follows

e.g. from [7, Proposition A.1] that u ∈ W r
loc(R

N ) ∩ L
2(N+1)
N−1 (RN ) ∩ L∞(RN ) for r < ∞,

and u is a strong solution of the differential equation

(4.4) −∆u− k2u = V u in R
N .

Moreover, by [12, Theorem 8] and the remark following it, u satisfies the Sommerfeld
outgoing radiation condition in the form given in (1.8), e.g.

(4.5) lim
R→∞

1

R

∫

BR

∣∣∣∣∇u(x)− iku(x)
x

|x|

∣∣∣∣
2

dx = 0.

We now proceed similarly as in the proof of Corollary 1 in [12]. Expanding the terms in
(4.5), the condition can be rewritten as

lim
R→∞

1

R

{∫

BR

(|∇u|2 + k2|u|2) dx− 2k

∫ R

0
Im

(∫

∂Bρ

u∇u ·
x

|x|
dσ

)
dρ

}
= 0.(4.6)

Since u ∈W
2,2
loc (R

N ) solves (4.4) in the strong sense, the divergence theorem gives
∫

∂Bρ

u∇u ·
x

|x|
dσ =

∫

Bρ

|∇u|2 dx+

∫

Bρ

u∆u dx

=

∫

Bρ

|∇u|2 dx−

∫

Bρ

(k2|u|2 + V |u|2) dx,

where the right-hand side in the last line is purely real-valued, since by assumption V =
Q|u|p−2 takes only real values. Consequently, we find

Im

(∫

∂Bρ

u∇u ·
x

|x|
dσ

)
= 0

for all ρ > 0, and plugging this into (4.6) yields

(4.7) lim
R→∞

1

R

∫

BR

(|∇u|2 + k2|u|2) dx = 0.

Moreover, since V ∈ L∞
α (RN ) and α > N+1

2 > 1, condition (4.1) is satisfied for V . Hence

Proposition 4.1 implies that u ≡ 0 on R
N . �
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5. A priori bounds for solutions

The aim of this section is to collect various a priori bounds for solutions of (1.9) under
different assumptions on the nonlinearity f .

5.1. A priori bounds for the case of linearly bounded nonlinearities. In this
subsection we focus on linearly bounded nonlinearities, and we prove the following bound-
edness property.

Proposition 5.1. Let, for some α > N+1
2 , the nonlinearity f satisfy the assumption

(5.1) sup
|u|≤M,x∈RN

〈x〉α|f(x, u)| <∞ for all M > 0

and one of the assumptions (f1) or (f2) from Theorem 1.2.

Moreover, let ϕ ∈ L∞(RN ), and let F ⊂ L∞(RN ) be the set of functions u which solve the
equation

(5.2) u = µ
(
RkNf (u) + ϕ

)
for some µ ∈ [0, 1].

Then F is bounded in L∞(RN ).

Proof. We first assume (f2). Let u ∈ F . By (5.2) and Proposition 1.1, we then have

‖u‖L∞ ≤ ‖RkNf (u)‖L∞ + ‖ϕ‖L∞ ≤
∥∥|Φ| ∗Nf (u)

∥∥
L∞
τ(α)

+ ‖ϕ‖L∞

≤ κα‖Nf (u)‖L∞
α

+ ‖ϕ‖L∞ ≤ κα

(
‖Q|u|‖L∞

α
+ ‖b‖L∞

α

)
+ ‖ϕ‖L∞

≤ κα‖Q‖L∞
α
‖u‖L∞ + κα‖b‖L∞

α
+ ‖ϕ‖L∞ .

Since κα‖Q‖L∞
α
< 1 by assumption, we conclude that

‖u‖L∞ ≤
(
1− κα‖Q‖L∞

α

)−1(
κα‖b‖L∞

α
+ ‖ϕ‖L∞

)
,

and this shows the boundedness of F .

Next we assume (f1). In this case we argue by contradiction, so we assume that
there exists a sequence (un)n in F such that cn := ‖un‖L∞ → ∞ as n → ∞. Moreover,
we let µn ∈ [0, 1] be such that (5.2) holds with u = un and µ = µn. We then define
wn := un

cn
∈ L∞(RN ), so that ‖wn‖L∞ = 1 and, by assumption (f1),

(5.3) wn = µnRk(awn + gn) +
µn

cn
ϕ with gn ∈ L∞

α (RN ), gn(x) =
b(x, cnwn(x))

cn
.

Passing to a subsequence, we may assume that µn → µ ∈ [0, 1]. Moreover, by assumption
(f1) we have

gn → 0 in L∞
α (RN ) as n→ ∞,

whereas the sequence (awn)n is bounded in L∞
α (RN ). Since also µn

cn
→ 0 as n → ∞, it

follows from the compactness of the operator Rk : L∞
α (RN ) → L∞(RN ) that, after passing

to a subsequence, wn → w ∈ L∞(RN ). From this we then deduce that

awn → aw in L∞
α (RN ),

and passing to the limit in (5.3) yields

w = µRk[aw] = Rk[µaw].
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Applying Proposition 4.2 with p = 2 and Q := µa, we conclude that w ≡ 0, but this
contradicts the fact that ‖w‖∞ = lim

n→∞
‖wn‖∞ = 1. Again, we infer the boundedness of F

in L∞(RN ). �

5.2. A priori bounds in the superlinear and defocusing case. In this subsection
we restrict our attention to the case f(x, u) = Q(x)|u|p−2u with Q ≤ 0. In this case, we
shall prove the following a priori estimate.

Proposition 5.2. Let N > 3, k > 0, 2 < p < 2∗, Q ∈ L∞
c (RN ,R)\{0} and ϕ ∈ L∞(RN ).

Assume that

(Q1) Q 6 0 a.e R
N and

(Q2) diam(supp Q) ≤ z(N)
k

, where z(N) denotes the first positive zero of the Bessel

function YN−2
2

of the second kind of order N−2
2 .

Then, there exist C = C(N, k, p, ‖Q‖∞, |supp Q|) > 0 and m = m(N, k, p) ∈ N such that
for any solution u ∈ L∞(RN ) of

(5.4) u = Rk

(
Q|u|p−2u

)
+ ϕ

we have

(5.5) ‖u‖∞ 6 C
(
1 + ‖ϕ‖(p−1)m

∞

)
.

For the proof, we first need two preliminary lemmas. The first lemma gives a sufficient
condition for the nonnegativity of the Fourier transform of a radial function. It is well
known in the case N = 3 (see for example [23]). Since we could not find any reference for
the general case, we give a proof for completeness.

Lemma 5.3. Let N > 3 and consider f ∈ L1(RN ) radially symmetric, i.e., f(x) = f(|x|),

such that f > 0 on RN . If the function t 7→ t
N−1

2 f(t) is nonincreasing on (0,∞), then

f̂ > 0 on R
N .

Proof. The Fourier transform of the radial function f is given by

f̂(ξ) = |ξ|−
N−2

2

∫ ∞

0
JN−2

2
(s|ξ|)f(s)s

N
2 ds.

Let j(ℓ), ℓ ∈ N denote the positive zeros of the Bessel function JN−2
2

of the first kind of

order N−2
2 , arranged in increasing order, and set j(0) := 0. Then, it follows that JN−2

2
> 0

in the interval
(
j(2m−2), j(2m−1)

)
and JN−2

2
< 0 in the interval

(
j(2m−1), j(2m)

)
, m ∈ N.

For ξ 6= 0, we can write therefore

∫ ∞

0
JN−2

2
(s|ξ|)f(s)s

N
2 ds =

∞∑

ℓ=1

∫ j(ℓ)

|ξ|

j(ℓ−1)

|ξ|

s
1
2JN−2

2
(s|ξ|)s

N−1
2 f(s) ds

>

∞∑

m=1

(
j(2m−1)

|ξ|

)N−1
2

f
(j(2m−1)

|ξ|

)[∫ j(2m−1)

|ξ|

j(2m−2)

|ξ|

s
1
2

∣∣JN−2
2

(s|ξ|)
∣∣ds−

∫ j(2m)

|ξ|

j(2m−1)

|ξ|

s
1
2

∣∣JN−2
2

(s|ξ|)
∣∣ds
]

=

∞∑

m=1

|ξ|−
3
2

(
j(2m−1)

|ξ|

)N−1
2

f
(j(2m−1)

|ξ|

)[∫ j(2m−1)

j(2m−2)

t
1
2

∣∣JN−2
2

(t)
∣∣dt−

∫ j(2m)

j(2m−1)

t
1
2

∣∣JN−2
2

(t)
∣∣dt
]
,



NONLINEAR HELMHOLTZ EQUATION 15

using the fact that s 7→ s
N−1

2 f(s) is nonincreasing by assumption. To conclude, an argu-
ment which goes back to Sturm [22] (see also [17,18]) shows that

(5.6)

∫ j(2m−1)

j(2m−2)

t
1
2

∣∣JN−2
2

(t)
∣∣dt >

∫ j(2m)

j(2m−1)

t
1
2

∣∣JN−2
2

(t)
∣∣dt, for all m ∈ N,

provided N > 3, and this gives the desired result. For the reader’s convenience, we now
give the proof of (5.6).

Consider for ν > 1
2 the function z(t) := t

1
2Jν(t). It satisfies z(j(ℓ)) = 0 and

(−1)ℓz′(j(ℓ)) > 0 for all ℓ ∈ N0. Moreover, it solves the differential equation

(5.7) z′′(t) +
(
1−

ν2 − 1
4

t2

)
z(t) = 0 for all t > 0.

For m ∈ N and t in the interval I :=
(
j(2m−1),min{j(2m), 2j(2m−1) − j(2m−2)}

)
, consider

the functions y1(t) = −z(t) and y2(t) = z(2j(2m−1) − t). According to the above remark,

we have y1, y2 > 0 in I and y1(j
(2m−1)) = y2(j

(2m−1)) = 0. Moreover, y′1(j
(2m−1)) =

y′2(j
(2m−1)) ∈ (0,∞). Using the differential equation (5.7), we find that

d

dt

(
y′1(t)y2(t)− y1(t)y

′
2(t)
)
= y′′1 (t)y2(t)− y1(t)y

′′
2 (t)

= (ν2 −
1

4
)

(
1

t2
−

1

(2j(2m−1) − t)2

)
y1(t)y2(t)

< 0 for all t ∈ I.

Hence,

(5.8) y′1(t)y2(t)− y1(t)y
′
2(t) < 0 for all j(2m−1) < t 6 min{j(2m), 2j(2m−1) − j(2m−2)},

and since y2(2j
(2m−1) − j(2m−2)) = 0 and y′2(2j

(2m−1) − j(2m−2)) = −z′(j(2m−2)) < 0, the

positivity of y1 in I implies that j(2m) < 2j(2m−1) − j(2m−2), i.e. I =
(
j(2m−1), j(2m)

)
.

Moreover, from (5.8), we infer that the quotient y1
y2

is a decreasing function in I which

vanishes at the right boundary of this interval. Consequently, y1(t) < y2(t) in I, i.e.,

|z(t)| < |z(2j(2m−1) − t)| for all t ∈ (j(2m−1), j(2m)) and we conclude that
∫ j(2m−1)

j(2m−2)

|z(t)| dt >

∫ j(2m)

j(2m−1)

|z(t)| dt.

In the case ν = 1
2 , we have z(t) =

√
2
π
sin t and j(ℓ) = ℓπ, ℓ ∈ N0. Thus,

∫ j(ℓ)

j(ℓ−1)

|z(t)| dt =

√
2

π

∫ π

0
sin t dt = 2

√
2

π
for all ℓ ∈ N,

and this concludes the proof of (5.6). �

In our proof of the a priori bound given in Proposition 5.2, we only need the following
corollary of Lemma 5.3.

Corollary 5.4. Let N > 3, k > 0 and choose δ > 0 such that kδ 6 z(N), where z(N)
denotes the first positive zero of the Bessel function YN−2

2
. Then,

∫

RN

f(x)[(1Bδ
Ψk) ∗ f ](x) dx > 0 for all f ∈ Lp′(RN ,R), 2 6 p 6 2∗,
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where Ψk denotes the real part of the fundamental solution Φk defined in (1.6).

Proof. Since 1Bδ
Ψk ∈ L1(RN )∩L

N
N−2
w (RN ), by the weak Young inequality there is for each

2 6 p 6 2∗ a constant Cp > 0 such that
∣∣∣∣
∫

RN

f(x)[(1Bδ
Ψk) ∗ f ](x) dx

∣∣∣∣ 6 Cp‖f‖
2
p′ for all f ∈ Lp′(RN ,R).

Hence, it suffices to prove the conclusion for f ∈ S(RN ,R). For such functions, Parseval’s
identity gives

(5.9)

∫

RN

f(x)[(1Bδ
Ψk) ∗ f ](x) dx = (2π)

N
2

∫

RN

|f̂(ξ)|2F
(
1Bδ

Ψk

)
(ξ) dξ.

It thus remains to show that

(5.10) F
(
1Bδ

Ψk

)
≥ 0 on R

N .

In the radial variable, the radial function 1Bδ
Ψk is given, up to a positive constant factor,

by t 7→ −t
2−N

2 1[0,δ](t)YN−2
2

(kt). Moreover, for N > 3 the function t 7→ t
1
2YN−2

2
(kt) is

negative and increasing on (0, δ). Hence Lemma 5.3 implies (5.10), and the proof is
finished. �

We can now prove Proposition 5.2.

Proof of Proposition 5.2. We write u := v+ϕ and u = u1+ iu2 with real-valued functions
u1, u2 ∈ L

p
loc(R

N ). Multiplying the equation (5.4) by Q|u|p−2u and integrating over R
N ,

we find∫

RN

Q|u|p dx−

∫

RN

Q|u|p−2ϕu dx

=

∫

RN

Q|u|p−2(u1 − iu2)[Φk ∗
(
Q|u|p−2(u1 + iu2)

)
] dx

=

∫

RN

Q|u|p−2u1[Φk ∗
(
Q|u|p−2u1

)
] dx+

∫

RN

Q|u|p−2u2[Φk ∗
(
Q|u|p−2u2

)
] dx

+ i

∫

RN

Q|u|p−2u1[Φk ∗
(
Q|u|p−2u2

)
] dx− i

∫

RN

Q|u|p−2u2[Φk ∗
(
Q|u|p−2u1

)
] dx

=

∫

RN

Q|u|p−2u1[Φk ∗
(
Q|u|p−2u1

)
] dx+

∫

RN

Q|u|p−2u2[Φk ∗
(
Q|u|p−2u2

)
] dx,

where the symmetry of the convolution has been used in the last step. Taking real parts
on both sides of the equality, we obtain

(5.11)

∫

RN

Q|u|p dx−

∫

RN

Q|u|p−2Re (ϕu) dx =

∫

RN

Q|u|p−2u1[Ψk ∗
(
Q|u|p−2u1

)
] dx

+

∫

RN

Q|u|p−2u2[Ψk ∗
(
Q|u|p−2u2

)
] dx.

where again Ψk denotes the real part of Φk. Notice in addition that setting δ =

diam(supp Q), the assumption (Q2) implies δ ≤ z(N)
k

and hence, for all f ∈ L
p′

loc(R
N ),

∫

RN

Qf [Ψk ∗ (Qf)] dx =

∫

RN

Qf [(1Bδ
Ψk) ∗ (Qf)] dx > 0,
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by Corollary 5.4. Thus, as a consequence of (5.11), we find
∫

RN

Q|u|p dx >

∫

RN

Q|u|p−2Re (uϕ) dx,

and, since Q 6 0 on R
N , by (Q1), it follows that

(5.12)

∫

RN

|Q| |u|p dx 6 ‖ϕ‖∞

∫

RN

|Q| |u|p−1 dx.

Using Hölder’s inequality we then obtain the estimate

∫

RN

|Q| |u|p−1 dx 6

(∫

RN

|Q| dx

) 1
p
(∫

RN

|Q| |u|p dx

) 1
p′

6

(∫

RN

|Q| dx

) 1
p
(
‖ϕ‖∞

∫

RN

|Q| |u|p−1 dx

) 1
p′

,

and therefore ∫

RN

|Q| |u|p−1 dx 6 ‖ϕ‖p−1
∞

∫

RN

|Q| dx 6 |Ω| ‖Q‖∞ ‖ϕ‖p−1
∞ ,

where Ω = {x ∈ R
N : Q(x) 6= 0}. Using again (5.12), we deduce that

‖ |Q|
1
p′ |u|p−1‖p

′

p′ =

∫

RN

|Q| |u|p dx 6 |Ω| ‖Q‖∞ ‖ϕ‖p∞.

Since the support Q is compact and since p < 2∗, Hölders inequality yields the estimates

‖Q|u|p−1‖(2∗)′ 6 |Ω|
1

(2∗)′
− 1

p′ ‖Q|u|p−1‖p′ 6 |Ω|
1

(2∗)′
− 1

p′ ‖Q‖
1
p
∞‖ |Q|

1
p

′

|u|p−1‖p′

6 |Ω|
1

(2∗)′ ‖Q‖∞‖ϕ‖p
′−1

∞ =: D.(5.13)

Lemma A.1 with a = Q and the estimate (5.13) imply the existence of constants C =
C(N, k, p, ‖Q‖∞, |Ω|) > 0 and m = m(N, p) ∈ N such that

‖v‖∞ 6 C
(
D +D(p−1)m + ‖ϕ‖p−1

∞ + ‖ϕ‖(p−1)m

∞

)
.

Making C > 0 larger if necessary, we thus obtain (5.5), as claimed. �

6. Proofs of the main results

In this section, we complete the proofs of the main results in the introduction.

Proof of Theorem 1.2. Let ϕ ∈ X := L∞(RN ). We write (1.9) as a fixed point equation

u = A(u) in X

with the nonlinear operator

(6.1) A : X → X, A[w] = Rk(Nf (w)) + ϕ.

Since α > N+1
2 , we may fix α′ ∈ (N+1

2 , α). By Lemma 3.1, the nonlinear operator

Nf : X → L∞
α′ (RN ) is well-defined and continuous. Moreover, Rk : L∞

α′ (RN ) → X is
compact by Proposition 1.1. Consequently, A is a compact and continuous operator.
Moreover, the set

F := {u ∈ X : u = µA[u] for some µ ∈ [0, 1]}
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is bounded by Proposition 5.1. Hence Schaefer’s fixed point theorem (see e.g. [5, Chapter
9.2.2.]) implies that A has a fixed point. �

We continue with the proof of Theorem 1.5. For this we recall the following variant
of Rabinowitz’ global continuation theorem (see [21, Theorem 3.2]; see also [25, Theorem
14.D]).

Theorem 6.1. Let (X, ‖ · ‖) be a real Banach space, and consider a continuous and
compact mapping G: R×X → X satisfying G(0, 0) = 0.

Assume that

(a) G(0, u) = u ⇔ u = 0, and
(b) there exists r > 0 such that deg(id−G(0, ·), Br(0), 0) 6= 0, where deg denotes the

Leray-Schauder degree.

Moreover, denote by S the set of solutions (λ, u) ∈ R×X of the equation

u = G(λ, u).

Then the connected components C+ and C− of S in [0,∞) ×X and (−∞, 0] ×X which
contain (0, 0) are both unbounded.

Proof of Theorem 1.5 (completed). Let 2 < p < 2∗, Q ∈ L∞
α (RN ,R)\{0} for some α >

N+1
2 , ϕ ∈ X := L∞(RN ) and consider G: R×X → X given by

(6.2) G(λ,w) = Rk

(
Q|w|p−2w

)
+ λϕ,

Using Proposition 1.1 and Lemma 3.1, we obtain that the map G is continuous and
compact.

Moreover, if w ∈ X satisfies w = G(λ,w), then w is a solution of (1.16).

Furthermore, if w ∈ X satisfies w = G(0, w) = Rk

(
Q|w|p−2w

)
, then w = 0 by Proposi-

tion 4.2.

To compute the Leray-Schauder degree, we remark that G(0, 0) = 0 and ∂wG(0, 0) = 0
by Lemma 3.2. Hence, we can find some radius r > 0 such that ‖G(0, w)‖L∞ 6 1

2‖w‖L∞

for all w ∈ X such that ‖w‖L∞ 6 r. Therefore, the compact homotopy H(t, w) = tG(0, w)
is admissible in the ball Br(0) ⊂ X and we find that

deg(id−G(0, ·), Br(0), 0) = deg(id −H(1, ·), Br(0), 0) = deg(id−H(0, ·), Br(0), 0)

= deg(id,Br(0), 0) = 1.

Theorem 6.1 therefore applies and we obtain the existence of an unbounded branch Cϕ ⊆{
(λ,w) ∈ R×X : w = G(λ,w) and λ > 0

}
which contains (0, 0). Moreover, Cϕ \ {(0, 0)}

is a subset of (0,∞) ×X since w = G(0, w) implies w = 0 by Proposition 4.2, as noted
above. �

Remark 6.2. The application of Theorem 6.1 to the function G defined in (6.2) also yields
a connected component

C−
ϕ ⊂

{
(λ,w) ∈ R×X : w = G(λ,w) and λ ≤ 0

}

which contains (0, 0). However, this component is also obtained by passing from ϕ to −ϕ
in the statement of Theorem 1.5, since by definition we have C−

ϕ = C−ϕ.

We may now also prove Theorem 1.6.
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Proof of Theorem 1.6. Since, by assumption, Q 6 0 in R
N and diam(supp Q) ≤ z(N)

k
, the

a priori bounds in Proposition 5.2 imply that the unbounded branch Cϕ contains, for each
λ ≥ 0, at least one pair (λ,w), as claimed. �

Next, we complete Theorem 1.4.

Proof of Theorem 1.4. Let again X := L∞(RN ), and consider the nonlinear operator B :
X → X, B(u) := u − RkNf (u). Then B(0) = 0, since Nf (0) = 0 by assumption. Since
Nf : X → L∞

α′ is differentiable by Lemma 3.2, B is differentiable as well. Moreover

B′(0) = id−RkN
′
f (0) = id ∈ LR(X,X),

since N ′
f (0) = Nf ′(0) = 0 ∈ LR(X,L

∞
α′ ) by assumption and Lemma 3.2. Consequently, B

is a diffeomorphism between open neighborhoods U, V ⊂ X of zero, and this shows the
claim. �

Finally, we state and prove the unique existence of solutions in the case where f
satisfies a suitable Lipschitz condition.

Theorem 6.3. Let, for some α > N+1
2 , the nonlinearity f : RN ×C → C be a continuous

function satisfying (1.12) and the Lipschitz condition

(6.3) ℓα := sup
{
〈x〉α

∣∣∣f(x, u)− f(x, v)

u− v

∣∣∣ : u, v ∈ R, x ∈ R
N
}
<

1

κα
,

where κα is defined in Proposition 1.1.

Then, for any given solution ϕ ∈ L∞(RN ) of the homogeneous Helmholtz equation ∆ϕ+
kϕ = 0, the equation (1.9) admits precisely one solution u ∈ L∞(RN ).

Proof. Let ϕ ∈ X := L∞(RN ). As in the proof of Theorem 1.2 given above, we write (1.9)
as a fixed point equation u = A(u) in X with the nonlinear operator A defined in (6.1).
Assumption (6.3) implies that

‖A(u)−A(v)‖X =
∥∥Rk

(
Nf (u)−Nf (v)

)∥∥ ≤ κα‖Nf (u)−Nf (v)‖L∞
α

≤ καℓα‖u− v‖X

with καℓα < 1. Hence A is a contraction, and thus it has a unique fixed point in X. �

Appendix A. Uniform regularity estimates

In this section, we wish to prove uniform regularity estimates for solutions of (1.9) in the
case where the nonlinearity f is of the form given in (1.15). These estimates, which we
used in the proof of the a priori bound given in Proposition 5.2, allow to pass from uniform
bounds in L(2∗)′(RN ) to uniform bounds in L∞(RN ). The proof of the following lemma is
similar to a regularity estimate for real-valued solutions given in [8, Proposition 3.1], but
the differences justify to include a complete proof in this paper.

In the following, for q ∈ [1,∞], we let Lq
c(RN ) denote the space of functions in Lq(RN )

with compact support in R
N .

Lemma A.1. Let N > 3, 2 < p < 2∗ and consider a function a ∈ L∞
c (RN ).

For k > 0 and ϕ ∈ L∞
loc
(RN ), every solution v ∈ Lp

loc
(RN ) of

v = Φk ∗
(
a|v|p−2v

)
+ ϕ
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satisfies v ∈ W 2,t(RN ) for all 2∗ 6 t < ∞. In particular, u ∈ L∞(RN ) and there exist
constants

C = C
(
N, k, p, ‖a‖∞

)
> 0 and m = m(N, p) ∈ N

independent of v and ϕ such that

(A.1) ‖v‖∞ 6 C
(
‖a|ϕ|p−1‖(2∗)′ + ‖a|v|p−1‖

(p−1)m

(2∗)′ + ‖ϕ‖p−1
∞ + ‖ϕ‖(p−1)m

∞

)
.

Proof. Since, by assumption, v ∈ L
p
loc(R

N ), and since a ∈ L∞
c (RN ), it follows that

(A.2) f := a|v|p−2v ∈ Lq
c(R

N ), for all 1 6 q 6 p′.

Furthermore, since v = Φk ∗ f + ϕ, we deduce that

(A.3) |f | 6 2p−2|a|
(
|Φk ∗ f |

p−1 + |ϕ|p−1
)

a.e. in R
N .

We start by proving that v ∈ L∞(RN ). For this, we first remark that f ∈ L
(2∗)′
c (RN ),

since p < 2∗. Consequently, the mapping properties of Φk given in [7, Proposition A.1]

yield Φk ∗f ∈ L2∗(RN )∩W
2,(2∗)′

loc (RN ) and, for every 0 < R < 2, the existence of constants

C̃0 = C̃0(N, k,R) > 0 and D = D(N, k) > 0 such that

‖Φk ∗ f‖W 2,(2∗)′ (BR(x0))
6 C̃0

(
‖Φk ∗ f‖L(2∗)′ (B2(x0))

+ ‖f‖L(2∗)′(B2(x0))

)

6 C̃0(D + 1)‖f‖(2∗)′ for all x0 ∈ R
N .

Setting C0 := C̃0(D + 1), we consider a strictly decreasing sequence 2 > R1 > R2 >

. . . > Rj > Rj+1 > . . . > 1. From Sobolev’s embedding theorem, there is for each

1 6 t 6 2∗, a constant κ
(0)
t = κ

(0)
t (N, t) > 0 such that

‖Φk ∗ f‖Lt(BR1
(x0)) 6 κ

(0)
t C0‖f‖(2∗)′ ,

where C0 is given as above, with R = R1. Choosing t1 := 2∗

p−1 , we obtain from (A.3),

there is some constant D2 = D2(N, p) > 0 such that

‖f‖Lt1 (BR1
(x0)) 6 D2‖a‖∞

(
‖Φk ∗ f‖

p−1

L2∗(BR1
(x0))

+ ‖ϕ‖p−1

L2∗ (BR1
(x0))

)

6 D2‖a‖∞

(
(κ

(0)
2∗ C0)

p−1‖f‖p−1
(2∗)′ + |BR1 |

1
t1 ‖ϕ‖p−1

∞

)
.

It then follows as in [7, Proof of Proposition A.1(i)] from elliptic regularity theory

that Φ ∗ f ∈W 2,t1
loc (RN ) and for some constant C̃1 = C̃1(N, k, p) > 0,

‖Φk ∗ f‖W 2,t1(BR2
(x0)) 6 C̃1

(
‖Φk ∗ f‖Lt1(BR1

(x0)) + ‖f‖Lt1(BR1
(x0))

)

6 C̃1

[
κ
(0)
t1
C0‖f‖(2∗)′ +D2‖a‖∞

(
(κ

(0)
2∗ C0)

p−1‖f‖p−1
(2∗)′ + |BR1 |

1
t1 ‖ϕ‖p−1

∞

)]

6 C1

(
‖f‖(2∗)′ + ‖f‖p−1

(2∗)′ + ‖ϕ‖p−1
∞

)
for all x0 ∈ R

N ,

where C1 = C1

(
N, k, p, ‖a‖∞

)
. If t1 > N

2 , Sobolev’s embedding theorem gives for each

1 6 t <∞ the existence of a constant κ
(1)
t = κ

(1)
t (N, q, t) > 0 such that

‖Φk ∗ f‖Lt(BR2
(x0)) 6 κ

(1)
t C1

(
‖f‖(2∗)′ + ‖f‖p−1

(2∗)′ + ‖ϕ‖p−1
∞

)
.
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As a consequence, we obtain

‖f‖Lt(BR2
(x0)) 6 D2‖a‖∞

(
3p−2(κ

(1)
t(p−1)

C1)
p−1

(
‖f‖p−1

(2∗)′
+ ‖f‖

(p−1)2

(2∗)′
+ ‖ϕ‖(p−1)2

∞

)

+ |BR2 |
p−1
t ‖ϕ‖p−1

∞

)
,

for all 1 6 t < ∞. As in [7, Proof of Proposition A.1(i)], it then follows from elliptic

regularity theory that Φ ∗ f ∈ W
2,N
loc (RN ), and since R2 > 1, there exists some constant

C̃2 = C̃2(N, k) > 0 such that

‖Φk ∗ f‖W 2,N (B1(x0)) 6 C̃2

(
‖Φk ∗ f‖LN (BR2

(x0)) + ‖f‖LN (BR2
(x0))

)

6 C̃2

{
κ
(1)
N C1

(
‖f‖(2∗)′ + ‖f‖p−1

(2∗)′ + ‖ϕ‖p−1
∞

)

+D2‖a‖∞

(
3p−2(κ

(1)
N(p−1)C1)

p−1
(
‖f‖p−1

(2∗)′ + ‖f‖
(p−1)2

(2∗)′ + ‖ϕ‖(p−1)2

∞

)

+ |BR2 |
p−1
N ‖ϕ‖p−1

∞

)}

6 C2

(
‖f‖(2∗)′ + ‖f‖

(p−1)2

(2∗)′ + ‖ϕ‖p−1
∞ + ‖ϕ‖(p−1)2

∞

)

for all x0 ∈ R
N , where C2 = C2

(
N, k, p, ‖a‖∞

)
. By Sobolev’s embedding theorem, there

is a constant κ∞ = κ∞(N) > 0 such that

‖Φk ∗ f‖L∞(B1(x0)) 6 κ∞C2

(
‖f‖(2∗)′ + ‖f‖

(p−1)2

(2∗)′ + ‖ϕ‖(p−1)2

∞ + ‖ϕ‖p−1
∞

)

for all x0 ∈ R
N . Therefore, Φ ∗ f ∈ L∞(RN ) and since v = Φ ∗ f , the estimate (A.1) holds

with C = 2κ∞C2 and m = 2.

If t1 <
N
2 , we infer from Sobolev’s embedding theorem that

‖Φk ∗ f‖Lt(BR2
(x0)) 6 κ

(1)
t C1

(
‖f‖(2∗)′ + ‖f‖p−1

(2∗)′ + ‖ϕ‖p−1
∞

)

for each 1 6 t 6 Nt1
N−2t1

, where κ
(1)
t = κ

(1)
t (N, p, t). Therefore, setting t2 := Nt1

(N−2t1)(p−1) ,

we obtain from (A.3),

‖f‖Lt2 (BR2
(x0))

6 D2‖a‖∞

(
3p−2(κ

(1)
t2(p−1)

C1)
p−1

(
‖f‖p−1

(2∗)′
+ ‖f‖

(p−1)2

(2∗)′
+ ‖ϕ‖(p−1)2

∞

)
+ |BR2 |

p−1
t2 ‖ϕ‖p−1

∞

)
.

Using again elliptic regularity theory as before, we find that Φk ∗ f ∈ W
2,t2
loc (RN ) and for

some constant C̃2 = C̃2(N, k, p) > 0,

‖Φk ∗ f‖W 2,t2(BR3
(x0)) 6 C̃2

(
‖Φk ∗ f‖Lt2(BR2

(x0)) + ‖f‖Lt2(BR2
(x0))

)

6 C̃2

{
κ
(1)
t2
C1

(
‖f‖(2∗)′ + ‖f‖p−1

(2∗)′ + ‖ϕ‖p−1
∞

)

+D2‖a‖∞

(
3q−2(κ

(1)
t2(p−1)C1)

p−1
(
‖f‖p−1

(2∗)′ + ‖f‖
(p−1)2

(2∗)′ + ‖ϕ‖(p−1)2

∞

)

+ |BR2 |
p−1
t2 ‖ϕ‖p−1

∞

)}

6 C2

(
‖f‖(2∗)′ + ‖f‖

(p−1)2

(2∗)′ + ‖ϕ‖p−1
∞ + ‖ϕ‖(p−1)2

∞

)
,

for all x0 ∈ R
N , where C2 = C2

(
N, k, p, ‖a‖∞

)
.
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Remarking that t2 > t1, since p < 2∗, we may iterate the procedure. At each step we
find some constant Cj = Cj

(
N, k, p, ‖a‖∞

)
such that the estimate

‖Φk ∗ f‖W 2,tj (BRj+1
(x0))

6 Cj

(
‖f‖(2∗)′ + ‖f‖

(p−1)j

(2∗)′ + ‖ϕ‖p−1
∞ + ‖ϕ‖(p−1)j

∞

)

holds and where tj is defined recursively via t0 = (2∗)′ and tj+1 =
Ntj

(N−2tj)(p−1) , as long as

tj <
N
2 . Since tj+1 > t1

p′
tj and since t1 > p′, we reach after finitely many steps tℓ >

N
2 ,

where ℓ only depends on N and p. Since Rj > 1 for all j, using the regularity properties

of Φ and arguing as above, we obtain Φ ∗ f ∈W 2,N
loc (RN ) as well as the estimate

‖Φk ∗ f‖W 2,N (B1(x0)) 6 Cℓ+1

(
‖f‖(2∗)′ + ‖f‖

(p−1)ℓ+1

(2∗)′ + ‖ϕ‖p−1
∞ + ‖ϕ‖(p−1)ℓ+1

∞

)
,

where x0 is any point of RN and Cℓ+1 = Cℓ+1

(
N, k, p, ‖a‖∞

)
is independent of x0. Then,

Sobolev’s embedding theorem gives a constant κ∞ = κ∞(N) for which

‖Φk ∗ f‖L∞(B1(x0)) 6 κ∞Cℓ+1

(
‖f‖(2∗)′ + ‖f‖

(q−1)ℓ+1

(2∗)′ + ‖ϕ‖p−1
∞ + ‖ϕ‖(p−1)ℓ+1

∞

)

holds for all x0 ∈ R
N . Hence, Φ ∗ f ∈ L∞(RN ) and choosing C = κ∞Cℓ+1 and m = ℓ+ 1

concludes the proof of (A.1). We complete the proof. �
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22. Ch. Sturm, Sur les équations différentielles linéaires de deuxième ordre, J. Math. Pures Appl. 1, 106–
186 (1836).

23. E. O. Tuck, On positivity of Fourier transforms, Bull. Austral. Math. Soc. 74(1), 133–138 (2006).
24. H. J. Wu and J. Zou, Finite element method and its analysis for a nonlinear Helmholtz equation with

high wave numbers, SIAM J. Numer. Anal. 56(3), 1338–1359 (2018).
25. E. Zeidler, Nonlinear functional analysis and its applications. I Fixed-point theorems, Springer-Verlag,

New York, 1986.

Department of Mathematics, Jiangxi Normal University, Nanchang,, Jiangxi 330022, PR

China

Email address: chenhuyuan@yeah.net

School of Engineering, University of Applied Sciences of Western Switzerland, Route du

Rawil 47,, 1950 Sion, Switzerland

Email address: gilles.evequoz@hevs.ch

Goethe-Universität Frankfurt, Institut für Mathematik, Robert-Mayer-Str. 10, D-60629

Frankfurt, Germany

Email address: weth@math.uni-frankurt.de


	1. Introduction
	2. Estimates for the Helmholtz resolvent operator
	3. Estimates for the substitution operator
	4. Nonexistence of outgoing waves for the nonlinear Helmholtz equation
	5. A priori bounds for solutions
	5.1. A priori bounds for the case of linearly bounded nonlinearities
	5.2. A priori bounds in the superlinear and defocusing case

	6. Proofs of the main results
	Appendix A. Uniform regularity estimates
	References

