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Abstract

We present a continuation method that entails generating a sequence of transition probability
density functions from the prior to the posterior in the context of Bayesian inference for parameter
estimation problems. The characterization of transition distributions, by tempering the likelihood
function, results in a homogeneous nonlinear partial integro-differential equation whose existence
and uniqueness of solutions are addressed. The posterior probability distribution comes as the
interpretation of the final state of the path of transition distributions. A computationally stable
scaling domain for the likelihood is explored for the approximation of the expected deviance, where
we manage to hold back all the evaluations of the forward predictive model at the prior stage. It
follows the computational tractability of the posterior distribution and opens access to the pos-
terior distribution for direct samplings. To get a solution formulation of the expected deviance,
we derive a partial differential equation governing the moments generating function of the log-
likelihood. We show also that a spectral formulation of the expected deviance can be obtained for
low-dimensional problems under certain conditions. The computational efficiency of the proposed
method is demonstrated through three differents numerical examples that focus on analyzing the
computational bias generated by the method, assessing the continuation method in the Bayesian
inference with non-Gaussian noise, and evaluating its ability to invert a multimodal parameter of
interest.

Keywords: Bayes’ theorem, Posterior distribution, Barbashin equation, Banach space, Moments
generating function, Differential equations.
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1 Introduction

There is a broad consensus that in statistical problems for parameter estimation under uncertainty,
the Bayesian approach provides the method of choice since it measures the uncertainty in the knowl-
edge of the parameter of interest with the interpretation of the probability density function (PDF).
The Bayesian approach to inverse problems leads to the theory of updating a prior PDF with the
information carried by the data, see [7, 34], through the Bayes’ rule, with the aim of computing the
expected value of a quantity of interest from the posterior PDF. One important challenge encountered,
when deploying the Bayes’ theorem, is the non-accessibility of the posterior PDF, which stems from
the fact that the normalizing factor, also known as the Bayes factor, is unknown. While significant
strides have been made in designing sampling approaches that have access to the posterior PDF, the
overwhelming majority of pertinent methods are either computationally demanding in terms of the
number of evaluations of the forward predictive model or intractable. The computational tractability
refers here to the ability of counting, a priori, the number of evaluations of the forward predictive
model when approximating the posterior distribution.
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The most common way of approximating the Bayes factor is to refer to it as the marginal distribu-
tion of the likelihood function. That approach is computationally expensive when it comes to estimate
statistics under the posterior PDF. That intensive computational cost is somehow due to the large
standard deviation of the prior PDF, rises the curse of dimensionality for deterministic integration
methods, and likely suffers from numerical underflow for a vague prior knowledge. To overcome this
issue, the importance sampling has been utilized in sophisticated settings: with Laplace approximation
for estimating the expected information gain [5, 6], based on a multilayered construction to quantify
the nuisance effect of some components of the parameter of interest on the expected information gain
[10], and in an iterative form suitable to being employed in parallel computer architectures [24].

Alternatively, advance classes of Markov chain Monte Carlo (MCMC) have been constructed to
address the computation of statistics under the posterior PDF, with the basic idea of overpassing
the normalizing constant approximation. Therein, the intensive computational load remains a major
issue. Moreover, the acceptance criterion in MCMC methods deters the ability to count the number
of evaluations of the forward model and therefore produces the intractability of the posterior PDF. A
careful and comprehensive analysis based on the non-Markovian aspect of the counting index process
is presented in [36]. A methodological approach of inspecting the transition probabilities between
the prior and the posterior distributions, commonly referred to as continuation methods, has been
addressed to promote MCMC methods [16, 19].

We present a continuation method to address two challenging issues in Bayesian inverse problems,
that of overcoming the computational intractability of the posterior distribution, and scanning the
transition distributions between the prior and the posterior. We consider the continuous update of the
distribution alongside to the optimal transport approach addressed in a series of papers [23, 25, 29].
The continuation method introduced in [29], and used in [16], formulates the inversion as optimal
control of information transport from the prior to posterior where the PDF is interpreted by the
solution of a Liouville type equation with the assumption of available partial observations.

Our approach is also an alternative that bypasses the normalizing factor estimation via marginal
likelihood, and allows direct sampling from the posterior distribution in particular, and from any
transition distribution between the prior and the posterior stages in general. As in [16], we characterize
the transition PDF when connecting the prior to the posterior by tempering the likelihood so that
a continuous analysis of the transition PDF can be performed to assess the information carried by
the data. Thereupon, we address also the computational tractability aspect with a continuous and
differentiable path sampling to model the update of the prior distribution up to the posterior stage
with the only assumption of continuity of the forward model with respect to the parameter of interest.

The starting point consists of composing the likelihood function with a normalized power function,
and then we derive the associated transition distribution, named power posterior distribution, using
the associated Bayes’ theorem. The characterization of the power posterior distribution results in a
partial integro-differential equation (PIDE) whose solution at the final state is the posterior PDF.
The existence and uniqueness of the solution of the characteristic equation follow from the analysis of
boundary value problems of PIDE of Barbashin type presented in [1, 2, 3, 4, 18].

The computational tractability of the posterior PDF is reduced to the computational tractability
of the expected deviance which, in turn, is obtained in two different ways. The first one assumes a
null skewness condition and is derived from the spectral expansion of the kernel associated with the
log-likelihood. The second formulation is built through the solution of a partial differential equation
governing the moments generating function of the log-likelihood function.

We assess the effectiveness of our method with three numerical examples. The first example is
a one-dimensional algebraic forward model with additive Gaussian noise, where analytical computa-
tions facilitate an error analysis. The second example is a source inversion problem, where the forward
model is the solution of the one-dimensional wave equation. In that problem, we test our method to
a complicated setting of the measurement errors formed by the combination of speckle noise and uni-
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form noise. The Wasserstein distance is used to incorporate the noise in the likelihood definition.
The objective is to infer the source location and the constant amplitude of waves propagating in a
one-dimensional direction. The third example is a multimodal inversion that constitutes a challenging
benchmark test for sampling methods.

Our contributions are presented as follows. The power posterior notion and its characterization
are presented in Section 2. In Section 3, we detail the mathematical analysis to address the existence
and the uniqueness of the characteristic PIDE equation. Explicit solution formulations for tractable
transition distributions are established in Section 4. Section 5 is dedicated to numerical experiments
performed to evaluate our continuation method.

2 Power-posterior formulation

In this section, we start by stating the Bayesian inversion problem and introduce the continuation
method by tempering the likelihood. The characterization of the transition distribution is also pre-
sented.

2.1 Bayesian inversion

Let d be a non-negative integer, θt ∈ Rd be the true vector value of an unknown parameter that
operates as an input in a forward predictive model denoted by g. We address the inference of the model
parameter θt, given the forward model g and noisy dataset Y ∈ Rq formed of q observed quantities
of the forward model output g(θt) polluted with measurement noise. We consider computationally
intensive Bayesian inverse problems, where almost the entire computational load is associated with
the evaluation of g.

From now, the parameter of interest is assumed to be a random variable vector, denoted by θ in
lieu of θt, and is characterized by a prior PDF π(θ) with θ = (θ1(ω1), · · · , θd(ωd))T , ωi ∈ Ω, where
Ω is the set of all random events. The density π(θ) is a prior PDF on θt that is available to us, and
the inference consists in updating that knowlegde on the parameter to the posterior density π(θ|Y )
through the data Y with distribution p(Y ). For that, we consider the Bayes’ theorem given by

π(θ|Y ) =
p(Y |θ)π(θ)

p(Y )
, (1)

where p(Y |θ) is the likelihood, i.e. the function that measures how the dataset Y is distributed for each
possible value θ of the parameter. The selection of the likelihood is crucial in the Bayesian approach,
is associated with the type of the measurement errors, and leads to the model specification. Efficient
Bayesian inference, in terms of assessing the measurement errors and covering as well the model
misspecification, appeals to designing the likelihood function through an optimal mapping problem
for the transport of the information [14, 37]. In this work, we focus on a general exponential-type
likelihood function covering complicated noise structures, and given by

p(Y |θ) = C exp (−sdis(Y , g(θ))) . (2)

Here s is a parameter that quantifies the dispersion of the measurement error on the data, C is a
constant depending on d and s, i.e C ≡ C(d, s), and dis denotes a given quadratic distance between
the data sample and the forward model output sample. Possible choices for the distance dis are the
Wasserstein distance, the Hellinger distance, the total variation distance, the Mahalanobis distance.
Weighted versions of the mentioned distances by the distribution of the data noise are also admissible.
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2.2 Power Bayes’ rule: a continuation method

We aim to derive a continuation method that consists of producing a sequence of transition distri-
butions, named power posterior distributions, between the prior and the posterior stages, and that is
computationally tractable. The concept of power posterior, used throughout this paper, is derived
from the power Bayes’ rule, and based on the thermodynamic integration that is a widely used for
computing the Bayes factor in physical applications, see [12, 13, 20]. It is a kind of a geometric
path sampling known as parallel tempering method see [15, 8] or replica-exchange method in molecular
dynamics see [35, 22], which are devised to advance MCMC methods.

The power Bayes’ rule is a readjusted Bayes’ rule in the framework of the continuation of distri-
bution from the prior to the posterior. For a given real α ∈ [0, 1], the power posterior distribution is
given by

π(θ|Y ;α) =
p(Y |θ)απ(θ)

z(Y |α)
, (3)

where z(Y |α) is the normalizing constant and can be expressed as the marginal power likelihood. The
variable α is the inverse tempering temperature, which is named here tempering parameter for easy
convenience. For the tempering parameter α varying from 0 to 1, the power posterior PDF encodes
the knowledge about the parameter of interest from the prior π(θ) = π(θ|Y ;α)|α=0 to the posterior
π(θ|Y ) = π(θ|Y ;α)|α=1, and the normalizing factor z(Y |α) carries the data information of the ”full
evidence” 1 = z(Y |α)|α=0 to the sample evidence p(Y ) = z(Y |α)|α=1.

The notation E stands for the expectation operator (with respect to the prior PDF), a subscript
will be used to specify the associated random variable whenever there is a need for extra clarity. The
Leibniz integral rule and the property of interchanging the integral over Θ, the space of the parameter
of interest, and the derivation with respect to the tempering parameter α are widely used throughout
the manuscript. We will comment on it whenever the utilization seems not obvious.

Next, we characterize the power posterior PDF π(θ|Y ;α) with a dynamical equation of which the
solution at the final state α = 1 stands for the posterior PDF.

2.3 Characterization of the power posterior PDF

We present the derivation of the equation governing the power posterior PDF π(θ|Y ;α). Before all,
it is worth mentioning that the power posterior PDF concentrates when the tempering parameter
α grows. That observation depicts the knowledge updating from the prior to the posterior. To
characterize the power posterior, we differentiate the rule (3) with respect to the tempering variable
α, and we get

∂π(θ|Y ;α)

∂α
=

∂

∂α

(
pα(Y |θ)

z(Y |α)

)
π(θ)

=

(
log p(Y |θ)pα(Y |θ)

z(Y |α)
− pα(Y |θ)

z2(Y |α)

∫
Θ

log p(Y |θ)pα(Y |θ)π(θ)dθ

)
π(θ)

= log p(Y |θ)
pα(Y |θ)π(θ)

z(Y |α)
− pα(Y |θ)π(θ)

z(Y |α)
Eθ|Y ;α [log p(Y |θ)]

=
(

log p(Y |θ)− Eθ|Y ;α [log p(Y |θ)]
)
π(θ|Y ;α).

The expectation of the log-likelihood with respect to the power posterior PDF, Eθ|Y ;α [log p(Y |θ)], is
known as the expected deviance. It is used in Bayesian model selection to assess the fitting goodness
as it generalizes the Akaike information criterion (AIC), see [11]. We are now in the position to state
the characterization result.
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Proposition 1. The power posterior distribution solves the partial integro-differential equation

∂π(θ|Y ;α)

∂α
=
(

log p(Y |θ)− Eθ|Y ;α [log p(Y |θ)]
)
π(θ|Y ;α), for 0 < α ≤ 1, (4)

with initial condition

π(θ|Y ;α = 0) = π(θ).

Similar characterization of transition distributions with a general tempering function is presented
in [16], where the expected deviance is seen as a reference value that controls the evolution of π(θ|Y ;α)
with respect to the tempering parameter α. Our interests in the PIDE (4) is two-fold.

• The first issue is subsequent to its derivation and is the solvability. By this we mean the existence
and the uniqueness of a solution. Note that the characteristic equation has a type of logistic
dynamics with intrinsic decay rate of

r =
log p(Y |θ)− Eθ|Y ;α [log p(Y |θ)]

s
= Eθ|Y ;α [dis(Y , g(θ))]︸ ︷︷ ︸

(∗)

−dis(Y , g(θ))︸ ︷︷ ︸
(∗∗)

of which the sign is not known in advance; each θ defines a direction to follow. Therefore reso-
lution approaches for dynamical systems can be applied to (4) with the constraints of sampling
θ in (∗) from the power posterior π(θ|Y ;α) while θ in (∗∗) is drawn from the prior distribution
π(θ). We adopt a different approach for the solvability in Section 3, where (4) is recast in a form
that is suitable to address its solvability.

• Second, we aim to devise computationally tractable solutions of (4) in Section 4. We address
the tractability of the expected deviance that subsequently implies the tractability of the power
posterior distributions. A spectral approach for low dimensional problems with null skewness
condition gives an unbiased formulation of the power posterior.

3 Solvability of the characteristic equation

This section addresses the existence and the uniqueness of the solution of the transition probability.
We start by extending the characteristic equation (4) from the diagonal subspace to the entire space
Θ×Θ. The transition probability distribution is then recast as co-factors product for sake of clarity.

3.1 Reformulation of the characteristic equation

For sake of conciseness and as there is no confusion, the representation of the data Y (it is not a
variable in (4)) is omitted until Section 4. Hence we introduce

π̃(α,θ)
def
= π(θ|Y ;α),

C0
def
= dis(Y , g(θ)) with θ drawn from π̃(α = 0,θ) = π(θ),

K(α,η,η)
def
= dis(Y , g(η)) with η drawn from π̃(α,θ).

The prior π(θ) is the initial condition for the dynamics of the power posterior PDF with the tempering
variable α, therefore the functional C0 reads only the initial state, and does not depend on the power
posterior PDF π̃(α,θ) for 0 < α ≤ 1. By definition, K is a symmetric kernel, and the expected
deviance is recast as

Eθ|Y ;α [log p(Y |θ)] = log(C)− s
∫

Θ
K(α,θ,θ)π̃(α,θ)dθ, (5)
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therefore the PIDE (4), governing the power posterior distribution π̃(α,θ), becomes
∂π̃(α,θ)

∂α
= −sC0π̃(α,θ) + sπ̃(α,θ)

∫
Θ
K(α,η,η)π̃(α,η)dη,

π̃(0,θ) = π(θ).

(6)

The above equation is a nonlinear PIDE with nonlinear kernel, and addressing its solvability requires
efforts on tackling an extra challenge due to the fact that K(α, ·, ·) maps from only the diagonal
sub-space of the space Θ×Θ.

We address the solvability by extrapolating equation (6) over the whole space Θ × Θ. Typically,
in lieu of (6), we consider the following equation

∂π̃(α,θ)

∂α
= −sC0π̃(α,θ) + sπ̃(α,θ)

∫
Θ
K(α,θ,η)π̃(α,η)dη,

π̃(0,θ) = π(θ).

(7)

To give sense to the kernel K(α,θ,η) over the space Θ × Θ, we assume that the data space, that is
a subspace of Rq, is a pseudo-euclidean space, i.e. the projection over each single component of a
dataset forms an euclidean line. That leads to the interpretation of

K(α,θ,η) = 〈Y − g(θ),Y − g(η)〉,

where the inner product 〈·, ·〉 is associated to the quadratic distance dis.
System (6) is a special case of (7) over the diagonal subspace of Θ×Θ, then the solvability of (7)

implies the solvability of (6). Indeed, equation (6) is in the form ∂π̃
∂α(α,θ) = rπ̃(α,θ) while (7) has the

form ∂π̃
∂α(α,θ) = r(θ)π̃(α,θ), where θ is sampled from π̃(α,θ) for α > 0. Looking at the functional

π̃(α,θ) in the form

π̃(α,θ) = u(α,θ) exp(v(α,θ)),

where for (α,θ) ∈]0, 1]×Θ, it follows that u and v solve

(a)


∂u(α,θ)

∂α
= −C0u(α,θ),

u(0,θ) = π(θ),

(b)


∂v(α,θ)

∂α
=

∫
Θ
H(α,θ,η, v(α,η))dη,

v(0,θ) = 0,

(8)

respectively, with
H(α,θ,η, v(α,η)) = u(α,θ)K(α,θ,η) exp(v(α,η)).

We have reduced the solvability of (7) to the solvability of (8b) because (8a) admits a solution of form
u(α,θ) = π(θ) exp(−αsC0). Equation (8b) is a particular case of PIDE of Barbashin type [4], and is
a continuous analogue to countable systems of ordinary differential equations of the form

dṽi(α)

dα
=

∞∑
j=1

hjj(α)ṽj(α)ṽi(α) i = 1, 2, · · · ,

where d
dα is in the Fréchet sense. An useful observation from the above equation is that one can

deal with the solvability of (8b) by referring to it as a class of abstract differential equations in the
appropriate Banach space. To do so, we next delineate the framework by setting some basic notions.
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3.2 Basic statements

To define the space of probability density functions, we assume that Θ is a product space of d bounded
intervals Θ =

∏d
i=1[ai, bi], where ai, bi ∈ R. Extension of the marginal support [ai, bi] to R (e.g. for

Gaussian density function) is straightforward provided that the density function vanishes at the limits.
The space of probability density functions is given by

S =

{
µ ∈ C

(
Θ,R+

)
:

∫
Θ
µ(θ)dθ = 1

}
,

where C (Θ,R+) denotes the set of all real positive continuous functions in Θ, and the condition∫
Θ µ(θ)dθ = 1 implies that µ is bounded.

Definition 2 (Composition laws). For r ∈ R+ and µ1, µ2 ∈ S, the inner operator ⊕ : S ×S → S and
the external operator � : R+ × S → S given by

µ1 ⊕ µ2 =
µ1(θ)µ2(θ)∫

Θ µ1(θ)µ2(θ)dθ
, and r � µ1 =

µr1(θ)∫
Θ µ

r
1(θ)dθ

define respectively algebraic composition laws for the perturbation and power transformations in S.

Proposition 3. The space S with the perturbation law ⊕, the power law �, and the norm ‖·‖ induced
by the distance dis is a Banach space of real functions in Θ.

Proof. Extending the one-dimensional analysis developed in [9] to our problem at hand (setup and d-
dimensional space) shows that (S,⊕,�) is a vector space. It is well known that every finite-dimensional
normed vector space is a complete, S equipped with the norm induced by the distance dis is then a
Banach space.

As corollary from Proposition 3, the sub-space Sl of S given by

Sl = {µ ∈ S : | logµ| <∞}

is a Banach space, where the completness follows from the concavity of the logarithmic function.

3.3 Solvability of the Barbashin equation

It is shown in [1, 3, 4, 18] that the solvability of Barbashin equation is given by the strong continuity
of the associated abstract integral operator. We now state the solvability result.

Theorem 4. Suppose that the forward operator g is continuous with respect to the parameter of
interest θ, then the partial integro-differential equation of Barbashin type (8b) has a unique solution v
that is bounded in the Banach space Sl.

The basis of the proof, presented in appendix A, is to write out the associated Cauchy operator
and to show its strong continuity. For any α, we have shown the existence and the uniqueness of the
power posterior distribution π̃(α,θ) . In the next section, we address the solution formulation.

4 Solution formulations

In this section, we re-highlight the dependence on the data Y , and refer back to the notation π(θ|Y ;α)
for the power posterior distribution. The PIDE (4) has the solution of form

π(θ|Y ;α) = π(θ)pα(Y |θ) exp

(
−
∫ α

0
Eθ|Y ;τ [log p(Y |θ)] dτ

)
for α ∈ [0, 1]. (9)
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The power posterior PDF π(θ|Y ;α) given at (9) is computationally intractable as the evaluation
of the expected deviance Eθ|Y ;α [log p(Y |θ)] requires the use of the distribution π(θ|Y ;α). Another
observation from (9) is that the normalizing Bayes factor z(Y |α), depends fully on the sum of the
expected deviance from the prior stage up to the stage α. Our goal in this section is to come up with a
setting of Eθ|Y ;α [log p(Y |θ)] that systematically holds back those dependencies to the prior stage. We
will do so by devising sampling process, without performing MCMC or using importance sampling,
from the prior only to evaluate Eθ|Y ;α [log p(Y |θ)]. To tract efficiently the transition distributions
along the tempering parameter α, we address the computational tractability of the expected deviance.
We propose two approaches, one using the spectral expansion of the kernel K, and another based on
the moments generating function of the log-likelihood function.

4.1 Spectral formulation for low dimensional problems

In low-dimensional problems, many numerical approximation approaches, among those the spectral
methods, work efficiently and even outperform the Monte Carlo method in some scenarios. In this
first formulation, we consider a continuous learning, from the prior stage to any transition stage α,
0 < α ≤ 1, of low-dimensional parameter of interest θ, and use the symmetric structure of the log-
likelihood function (null skewness condition), to approximate the expected deviance as the sum of the
eigenvalues of the kernel K. The functional K is a positive symmetric kernel, thanks to the Mercer
theorem [32], K can be written as

K(α,θ,η) =

∞∑
n=1

λn(α)kαn(θ)kαn(η), (10)

where the eigenvalues λn are positive, and the eigenfunctions {kαn}n>0 form an orthonormal basis with
respect to the power posterior π(θ|Y ;α),

〈kαn , kαm〉α
def
=

∫
Θ
kαn(θ)kαm(θ)π(θ|Y ;α)dθ =


1 if n = m,

0 otherwise.
(11)

Therefore, the expected deviance is seen as the trace of the kernel denoted by L1(α), and given by

L1(α)
def
=

∫
Θ
K(α,η,η)π(θ|Y ;α)dη =

∞∑
n=1

∫
Θ
λn(α)kαn(η)kαn(η)π(θ|Y ;α)dη

=

∞∑
n=1

λn(α)

∫
Θ
kαn(η)kαn(η)π(θ|Y ;α)dη

=
∞∑
n=1

λn(α).

The eigenpair (λn, k
α
n) solves the following eigenvalue problem∫
Θ
K(α,θ,η)kαn(η)π(η|Y ;α)dη = λn(α)kαn(θ) for n ≥ 1. (12)

Likewise, the trace L2 of the symmetric positive kernel K2, the Hadamard product of K by itself, is
given by L2(α) =

∑∞
n=1 λ

2
n(α). The traces L1 and L2 are solutions of

∂L1(α)

∂α
= 2s

(
L2

1(α)− L2(α)
)
, and

∂L2(α)

∂α
= 2sL1(α)

(
L2

1(α)− L2(α)
)
, (13)
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with initial conditions L1(0) =
∑∞

n=1 λn(0) and L2(0) =
∑∞

n=1 λ
2
n(0), respectively. The derivation of

the kernel trace equations (13) is presented in appendix B and is based on the null skewness condition
for the log-likelihood function

Eθ|Y ;α

[(
log p(Y |θ)− Eθ|Y ;α [log p(Y |θ)]

)3
]

= 0. (14)

The condition (14) results from the exponential structure of the likelihood function with quadratic
distance combined with the norm equivalence in finite dimensional space. It is obvious to see when
the forward model g is linear in the parameter θ or the quadratic distance dis is associated to a L2

type norm.
From (13), it comes that L2(α) = 1

2L1(α) + constant. Consequently the power posterior distribu-
tion has the form

π(θ|Y ;α) = π(θ)pα(Y |θ) exp

(
−α log(C) +

∫ α

0
tan(C1τ + C2)dτ

)
, (15)

where C1 and C2 are constants, depending on the data dispersion factor s, to be estimated at the
prior stage. Evaluations of the forward model are needed only at the initial (prior) state to compute
the eigenvalues λn(0) for the approximation of L1(0), L2(0), C1 and C2.

4.2 Solution formulation via moments generating function (MGF)

The MGF is an useful computational tool when it comes to estimating the moments of a random
variable with given distribution. Although the distribution of log p(Y |θ(ω)) is not available to us, we
address the direct approximation of the expected deviance Eθ|Y ,α [log p(Y |θ)] using MGF. Let Φn be

the nth moment of the log-likelihood with respect to the power posterior distribution,

Φn(α) = Eθ|Y ;α [logn p(Y |θ)] . (16)

By definition of the likelihood function (2), Φn exists and has C∞ regularity as the property, of
interchanging the order of the differentiation, with respect to α, with the integration with respect to
θ, holds, see Lemma 3.1 [16]. Differentiating Φn(α) with respect to α, it follows that

∂Φn(α)

∂α
= Φn+1(α)− Φ1(α)Φn(α), (17)

with a given initial state Φn(0) = E [logn p(Y |θ)]. The expected deviance Eθ|Y ;α [log p(Y |θ)] cor-

responds to Φ1, solution of a system of nested differential equations, where the (n + 1)th moment
operates as an input in the governing equation of the nth moment. For the spectral setting at Section
4.1, the nested system is closed at rank n = 3 with the null skewness condition (14), and the resulting
curve of the expected deviance maps the prior and the posterior stages. Here, we count for all the
moments, and provide a stepwise presentation for sake of clarity.

4.2.1 Governing equation of the MGF

In this first step, we look at the log-likelihood as a random variable with randomness inherited from
θ only (as we assume that Y is given), then the nth order of its expected value satisfies

∂Φn(α)

∂α
= Φn+1(α)− Φ1(α)Φn(α), (18)

for n ≥ 0, and α ∈]0, 1], with Φ0(α) = 1. For a positive real Tβ large enough (Tβ ≈ 1), we have

βn

n!

∂Φn(α)

∂α
=
βn

n!
Φn+1(α)− Φ1(α)

βn

n!
Φn(α) ∀n ≥ 0 and β ∈ [0, Tβ].
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We sum over n up to infinity to obtain

∞∑
n=0

βn

n!

∂Φn(α)

∂α
=
∞∑
n=0

βn

n!
Φn+1(α)− Φ1(α)

∞∑
n=0

βn

n!
Φn(α).

Let m be the MGF of the log-likelihood, it is given by

m(α, β) =
∞∑
n=0

βn

n!
Φn(α),

from which it follows that

∂m(α, β)

∂α
=

∂

∂β

( ∞∑
n=0

βn+1

(n+ 1)!
Φn+1(α)

)
− Φ1(α)m(α, β)

=
∂

∂β

( ∞∑
n=0

βn

n!
Φn(α)− β0

0!
Φ0(α)

)
− Φ1(α)m(α, β)

=
∂

∂β

( ∞∑
n=0

βn

n!
Φn(α)

)
− Φ1(α)m(α, β).

The governing equation of the MGF is the following first order partial differential equation (PDE)

∂m(α, β)

∂α
=
∂m(α, β)

∂β
− Φ1(α)m(α, β), for (α, β) ∈]0, 1]×]0, Tβ]. (19)

Equation (19) is a nonlinear advection-reaction equation that has to be equipped with a suitable
boundary condition either at α = 0, α = 1, or β = 0 to form a wellposed initial-value problem (IVP).
Subsequently, applying the method of characteristics suffices to come up with the unique solution m.

4.2.2 Admissible initial conditions

In this step, we enumerate all the initial conditions that can be assigned to (19) and aligned with our
objective of not-sampling from any transition distribution, even less from the posterior one. Typically,
we interpret the properties of MGF to arrive at the following conditions:

• Initial value of MGF at β = 0:

m(α, 0) = Φ0(α) = 1.

• Initial value of MGF at the prior stage:

m(0, β) =
∞∑
n=0

βn

n!
Φn(0) =

∞∑
n=0

βn

n!
Eθ|Y ;α=0 [logn p(Y |θ)] =

∞∑
n=0

βn

n!
E [logn p(Y |θ)]

=

∞∑
n=0

E
[
βn

n!
logn p(Y |θ)

]
=

∞∑
n=0

E
[

(β log p(Y |θ))n

n!

]
.

Let Xn(ω) = (β log p(Y |θ(ω)))n

n! with ω ∈ Ω, as we consider a single observation setting for the

likelihood, the inequality |Xn| ≤ βn

n! holds almost everywhere, for all n. It is obvious that the

series of general terms βn

n! is a Taylor series, and obviously convergent. Consequently, we can
interchange the integration E and the summation over non-negative integer n of the mesurable
function Xn, that is

m(0, β) = E

[ ∞∑
n=0

(β log p(Y |θ))n

n!

]
= E [exp (β log p(Y |θ))] = E

[
pβ(Y |θ)

]
.
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Looking for the initial condition at α = 1 results in m(1, β) = Eθ|Y ;α=1

[
pβ(Y |θ)

]
and requires

sampling from the posterior PDF, which we aim to avoid in this work. Roughly speaking, we shall
deal with two candidates m(α, 0) = 1 and m(0, β) = E

[
pβ(Y |θ)

]
as initial condition to complete the

MGF equation.

4.2.3 Solving the MGF equation

We now investigate the analytical resolution of the MGF equation (19) in the domain ]0, 1]×]0,+∞[
with initial condition m(α, 0) = 1 or m(0, β) = E

[
pβ(Y |θ)

]
. We consider the function F , for the

change of variable, given by

F (α, β) = m(α, β) exp

(∫ α

0
Φ1(τ)dτ

)
.

Differentiating with respect to α and to β (by applying the Leibniz integral rule) gives respectively

∂F

∂α
=

∂m

∂α
exp

(∫ α

0
Φ1(τ)dτ

)
+

(
∂

∂α

∫ α

0
Φ1(τ)dτ

)
m(α, β) exp

(∫ α

0
Φ1(τ)dτ

)
=

∂m

∂α
exp

(∫ α

0
Φ1(τ)dτ

)
+ Φ1(α)m(t, α) exp

(∫ α

0
Φ1(τ)dτ

)
=

(
∂m

∂α
+ Φ1(α)m(α, β)

)
exp

(∫ α

0
Φ1(τ)dτ

)
,

and

∂F

∂β
=
∂m

∂β
exp

(∫ α

0
Φ1(τ)dτ

)
.

Plugging the MGF equation (19), it is seen that F statifies the simpler equation

∂F

∂α
− ∂F

∂β
= 0, (20)

that has to be equipped with initial condition associated with one of the admissible initial conditions
of (19) discussed in 4.2.2.

We examine the initial condition to mark out a well-posed IVP governing F . The differential
equation (20) with initial condition F0(α), given by

F0(α) = F (0, α)

= m(α, 0) exp

(∫ α

0
Φ1(τ)dτ

)
= exp

(∫ α

0
Φ1(τ)dτ

)
,

gives an ill-posed IVP in the Hadamard sense as it admits an infinity of solutions. However, the
differential equation (20) with initial condition F 0(β), given by

F 0(β) = m(0, β)

has an unique solution of the form F (α, β) = m(0, β+α). From now on, we drop the initial condition
m(α, 0) = 1 and the MGF equation refers to (19) and the initial condition m(0, β) = E

[
pβ(Y |θ)

]
,

which together have a unique solution given by

m(α, β) = E
[
pα+β(Y |θ)

]
exp

(
−
∫ α

0
Φ1(τ)dτ

)
. (21)
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4.2.4 Tractable formulation of the expected deviance

By definition of the MGF m, the expected deviance Φ1 is the derivative of m with respect to β
evaluated at β = 0,

Φ1(α) =
∂m(α, β)

∂β

∣∣∣
β=0

=
∂E
[
pα+β(Y |θ)

]
∂β

∣∣∣
β=0

exp

(
−
∫ α

0
Φ1(τ)dτ

)
= E

[
log p(Y |θ) pα+β(Y |θ)

] ∣∣∣
β=0

exp

(
−
∫ α

0
Φ1(τ)dτ

)
= E [log p(Y |θ) pα(Y |θ)] exp

(
−
∫ α

0
Φ1(τ)dτ

)
.

We let h denote the tractile function depending on the tempering variable

h(α) = E [log p(Y |θ) pα(Y |θ)] ,

the expected deviance Φ1 is therefore solution of the nonlinear integral equation

Φ1(α) = h(α) exp

(
−
∫ α

0
Φ1(τ)dτ

)
. (22)

At this stage, numerical methods for solving integral equations can be applied to (22) to compute
efficiently the expected deviance in a tempering grid, 0 = α0 ≤ α1 ≤ · · · ≤ αNα = 1, of Nα + 1 points.
Nevertheless, we push forward towards a closed form of Φ1 by differentiating (22) with respect to the
tempering variable, by writing

∂Φ1

∂α
(α) =

∂h(α)

∂α
exp

(
−
∫ α

0
Φ1(τ)dτ

)
− h(α)Φ1(α) exp

(
−
∫ α

0
Φ1(τ)dτ

)
=

∂h(α)

∂α

1

h(α)

(
h(α) exp

(
−
∫ α

0
Φ1(τ)dτ

))
− Φ1(α)

(
h(α) exp

(
−
∫ α

0
Φ1(τ)dτ

))
=

∂h(α)

∂α

1

h(α)
Φ1(α)− Φ1(α)Φ1(α)

=
∂h(α)

∂α

1

h(α)
Φ1(α)− Φ2

1(α).

We find that the expected deviance is governed by a differential Bernouilli equation of second-type
given by 

Φ′1(α) = h′(α)
h(α) Φ1(α)− Φ2

1(α) for 0 < α ≤ 1,

Φ1(0) = E [log p(Y |θ)] ,

(23)

with solution in the form

Φ1(α) =
h(α)

1 +

∫ α

0
h(τ)dτ

.

To gain clarity, we summarize the analysis presented in Section 4.2 in the following theorem.

12



Theorem 5. The power-posterior distribution π(θ|Y ;α) exists and is given by

π(θ|Y ;α) = π(θ)pα(Y |θ) exp

(
−
∫ α

0
Eθ|Y ;τ [log p(Y |θ)] dτ

)
for α ∈ [0, 1], (24)

where the expected deviance is

Eθ|Y ;α [log p(Y |θ)] =
h(α)

1 +

∫ α

0
h(τ)dτ

. (25)

Computing the power posterior distribution demands forward evaluations only for approximating
Φ1(0). The tractability, through (25), provides the expected deviance Eθ|Y ;α [log p(Y |θ)] = Φ1(α) at
any stage without any extra evaluations of the forward model g. In the next section, we justify the
setting of (25) in term of computational stability and perform numerical experiments.

5 Numerical results

We conduct numerical results to assess the applicability and the practical aspect of our approach
of computing the transition distributions while holding back evaluations of the forward model at
the prior stage. Notations U , N and Γ refer to the uniform, normal and Gamma distributions,
respectively. We present three numerical examples, the first is a one-dimensional linear model with
Gaussian measurement errors where an explicit form of the expected deviance and of the tractile
function h allow to perform a detailed error analysis. The second example deals with a source inversion
problem where the measurement errors are in a more realistic setting and are incorporated in the
likelihood function using the Wasserstein distance. The third example is a challenging problem of
multimodal inversion of a two-dimensional parameter.

5.1 Scaling domain and implementation

In the case of no interest in the transition distributions, the integral at (9) sums from 0 to 1 and
can be casted as the expectation, with respect to the joint distribution π(θ, α) of (θ, α), of the ratio

of the log-likelihood over the distribution of the tempering parameter Eθ,α|Y
[

log p(Y |θ)
p(α)

]
. The total

computational bias of that formulation copies only the model bias, generated for evaluating the forward
model g, but requires the distribution p(α) as given. The design of such unbiased estimators with
MCMC methods, to compute the normalizing constant, has been addressed in [17, 30].

In the second instance, one would look at the expected deviance as the ratio of the expected values
with respect to the prior PDF; Φ1(α) = E[pα(Y |θ) log p(Y |θ)]

E[p(Y |θ)] . As the numerator and the denominator
have different scales of the likelihood, that formulation is likely unstable numerically because its ratio
scale promotes numerical underflow even for small likelihood function (p(Y |θ) ≤ 1).
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Figure 1: scaling domain

A crucial asset of the thermodynamic identity is that the expected deviance is on the logarithmic
scale of the likelihood, which provides an unconditional numerical stability. That feature has been
explored to advance MCMC methods in many ways in devising paths to access the posterior PDF
(or in other terms in approximating the Bayes factor), see for instance [15, 27]. We believe that the
logarithmic scale remains the best in terms of numerical stability despite the intractability issue and
the intensive computational cost when it comes to profile transition distributions. One main purpose of
this work is to avoid evaluations of the forward model g at transition stages, that subsequently induces
the computational tractability. We also seek to preserve the numerical stability in the computation
of the expected deviance. Rather than adopting a fixed scale of the likelihood function, our approach
sweeps a scaling zone when computing the expected deviance. The scale changes from the log scale of
the likelihood to the linear-log scale of the likelihood when α varies from 0 to 1. Although we fabricate
our approach wih the assymption of p(Y |θ) ≤ 1 at a number of steps in the theoretical derivation,
it is worth to mention that when α approaches 1 with large likelihood function (p(Y |θ) � 1), the
ratio scale of the expected deviance reduces drastically the risk of numerical instability due to the fact
that the numerator and the denominator have the same scale in the likelihood function. In Figure
1, we schematize the scaling zone sweeping by the computation of the expected deviance Φ1(α) for
α ∈ [0, 1], the likely unstable zone, and the log scale.

Algorithm 1: Computation of Φ1

Input:
Data Y

forward model g

tempering gridpoints {α0, α1, · · · , αNα }
Output: Φ1(αk) for k = 0, · · · , Nα

1 Generate θ1, · · · ,θN from π(θ)
2 Evaluate g(θ1), · · · , g(θN )
3 Evaluate log p(Y |θn) for n = 1, · · · , N
4 Approximate h(α0) := E [log p(Y |θ)], set ~(α0) := 0
5 for k in {1, · · · , Nα} do
6 Evaluate pαk (Y |θn) for n = 1, · · · , N
7 Approximate h(αk) := E [pαk (Y |θ) log p(Y |θ)]

8 Approximate ~(αk) := ~(αk−1) +

∫ αk

αk−1

h(τ)dτ

9 Evaluate Φ1(αk) :=
h(αk)

1 + ~(αk)

The Algorithm 1 summarizes the numerical approximation of the expected deviance for a given grid
(αk)0≤k≤Nα . Only N evaluations of g at the prior stage suffice to compute the expected deviance Φ1
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at any stage αk, including the posterior one (k = Nα). That induces the tractability of the power
posterior PDFs. In this work, the expected values at steps 4 and 7 in algorithm 1 are approximated
using the Monte Carlo sampling, while the Simpson quadrature is employed for the local integration,
from αk−1 to αk, of the tractile function h at step 8. Next, we present numerical experiments that
cover only the method bias (bias generated by the tempering quadrature at step 8 in algorithm 1) since
the evaluation of the forward model g, in each of the three examples, does not require a numerical
discretization.

5.2 Example 1: A linear algebraic model

We consider an algebraic one-dimensional linear model, where the expected deviance Φ1 and the
tractile function h can be computed analytically, given by

y = Aθ + ε. (26)

Here our prior belief in the parameter of interest is characterized by a normal PDF, θ ∼ N
(
1, σ2

p

)
and we consider that the observational noise for the data is Gaussian as well, i.e. ε ∼ N

(
0, σ2

ε

)
, which

leads to a likelihood function of the form p(y|θ) = (2πσ2
ε )
−1/2 exp

(
−1

2
(y−Aθ)2

σ2
ε

)
. Let σ2

α = A2σ2
pα+σ2

ε ,

we find that the expected deviance and the tractile function are, respectively, given by

Eθ|y;α [log p(y|θ)] = −1

2

(
log
(
2πσ2

ε

)
+
A2σ2

p

σ2
α

+
(y −A)2 σ2

ε

σ4
α

)
,

h(α) = −1

2

(
2πσ2

ε

)−α/2(
log
(
2πσ2

ε

)
+
A2σ2

p

σ2
α

+
(y −A)2 σ2

ε

σ4
α

)
exp

(
−α

2

(y −A)2

σ2
α

)
.

The synthetic data sample is acquired from the ”true” value θt = 1.1 with measurement errors diffusion
coefficient of σ2

ε = 4.0.
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Figure 2: (Example 1) Distribution of the expected deviance and its expectation with respect to the
evidence for the data model (26) with A = 101 and σ2

ε = 4.0, σ2
p = 10−2.
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In Figure 2, we represent the expected deviance in term of the tempering parameter, and its
expectation with respect to a data sample of size 103, where the tractile function h is approximated
by Monte Carlo sampling with 103 samples. We also plot the distribution of the expected deviance at
ten tempering points. The main observation here is the important variance reduction from the prior
(α = 0) to the posterior (α = 1). As statement of this significant outcome, we observe that it is now
possible to accurately estimate statistics with very few data, under the posterior distribution, with
evaluations of g performed at the prior stage.

Figure 3: (Example 1) Error analysis

Figure 3 depicts the variations of the computational bias with respect to the tempering parameter
and the statistical error for differents N , number of random variables generated from the prior, in
the Monte Carlo sampling to estimate h(α). The computational bias is approximated as the mean
value over a dataset of size 103 of the absolute value of the exact Eθ|y;α [log p(y|θ)] minus the expected
deviance at (25) evaluated with the exact tractile function h(α). Here, the bias is purely associated
to the tempering quadrature error, and is improving by order 10−3 from the prior to the posterior.
We let the statistical error be the L2 norm of the difference between the exact deviance and the
expected deviance (25) evaluated with hN (α), where hN (α) is the Monte Carlo approximation of the
tractile function with N samples. The statistical error plot (right-plot, Figure 3) allows to quantify
the variance reduction observed in Figure 2. From each of the three cases, N = 103, 104, 105, one can
see a significant variance reduction of the expected deviance from 103 at the prior stage to 1 at the
posterior one.

5.3 Example 2: Source inversion with Wasserstein metric-based likelihood

We now consider the example of source inversion problem, treated in [26], where an initial wave pulse
propagates with a constant speed. The mathematical governing equation is the one-dimensional wave
equation 

utt(t, x)− uxx(t, x) = 0 in ]0, T ]× R,
u(0, x) = u0(x,θ) in R,
ut(0, x) = 0 in R.

(27)
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We aim to assess how our continuation inversion approach performs for complicated structure of the
measurement errors composed with a multiplicative and additive noises. We consider an initial pulse
of the form

u0(x,θ) = a exp
(
−100(x− x0 − 0.5)2

)
+ a exp

(
−100(x− x0)2

)
+ a exp

(
−100(x− x0 + 0.5)2

)
from an unknown location x0 with an unknown amplitude a that we aim to learn continuously from
the prior stage to the posterior one. Therefore the parameter of interest is θ = (x0, a). The forward
model g is the solution of (27) that is in the form

g(t, x,θ)
def
= u(t, x) =

1

2
u0(x− t,θ) +

1

2
u0(x+ t,θ). (28)

Seven receivers, Nr = 7, are placed at locations x1 = −3, x2 = −2, x3 = −1, x4 = 0, x5 = 1, x6 = 2
and x7 = 3 to record polluted discrete-time signal yr over the time interval [0, T ] at NT time-steps
tk = k−1

N
T
−1T , k = 1, · · · , NT . The data Y is represented as Y = {y1, · · · ,yNr}, where the rth receiver

is counting the responses y(tk, xr) at all the NT time-steps, yr = (y(tk, xr))1≤k≤N
T

where

y(tk, xr) = ε
(1)
kr g(tk, xr,θt) + ε

(2)
kr , (29)

with ε
(1)
kr ∼ Γ(60, 1/60) and ε

(2)
kr ∼ U(−0.25, 0.25). In the numerical experiment, we consider T = 5.
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Figure 4: (Example 2) Recorded signal Y at the seven receivers with NT = 1001.

To compute the power posterior distributions of θ, we consider the likelihood function as follows

p(Y |θ) = sNT exp

(
−s

Nr∑
r=1

disW (yr, gr(θ))

)
, (30)

where gr(θ) gathers the NT outputs of the forward model, gr(θ) = (g(tk, xr,θ))1≤k≤N
T

evaluated

with the random parameter θ, and disW stands for the quadratic Wasserstein distance. The errors
dispersion parameter s is also not available to us and is assumed random, s ∼ Γ(1, 0.1).
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Figure 5: (Example 2) Marginal transition distributions of the origin x0 (left-plot) and the amplitude
a (right-plot) conditioned with a recorded signal of length NT = 101 at the seven receivers.

Figure 5 presents the marginal power posterior distributions of the location x0 (left plot) and of
the amplitude a (right plot) at different tempering points. The simulation is performed with a single
synthetic data generated with the ”true” location and ”true”pulse amplitude θt = (0.0, 0.5), with
signal length of NT = 101. The tractile function h is approximated with the Monte Carlo sampling
with 102 samples. Our continuation method handles perfectly that complex noise structure as the
marginal power posteriors concentrate around the true values when the tempering parameter goes to
1.

5.4 Example 3: Bivariate multimodal inversion

In this example we confront our approach, in terms of capturing the evolution of the distribution from
the prior to the posterior, to a mixture of M two-dimensional Gaussians. Let us consider the data
representation

Y = θ + ε, (31)

where the measurement errors is Gaussian, ε ∼ N
(
0, σ2I2

)
, I2 is the 2 × 2 unit matrix, and θ

is drawn form the bivariate uniform prior, θ ∼ U ([0, 10]) × U ([0, 10]). We consider a synthetic
data, of size N

data
, collected from the categorical distribution of M modes, Y ∼ N

(
θt, σ

2I2

)
with

θt = µ1 ∨ µ2 ∨ · · · ∨ µM , where ∨ stands for the logical connective operator ”or inclusive”. This
example is built on the multimodal simulation case treated for assessing advance classes of MCMC
methods [21, 33]. The likelihood function has the form

p(Y |θ) =
M∏
m=1

p[w(ym)=wm](ym|θ) (32)

for a data Y = (y1, · · · ,yM ) sampled from Y ∼ N
(
θt, σ

2I2

)
, where [· = ·] represents the Iverson

bracket, w(ym) is the weight of ym, and wm is the assigned weight to the mode µm, m = 1, · · · ,M .
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Figure 6: (Example 3) Expected deviance with respect to joint distribution of the parameter of interest
and the data.

To demonstrate further the effectiveness of our proposed method, we investigate the ability of
computing the expected deviance with respect to the joint distribution of the parameter of interest
and the data. For N

data
= 103, N = 102, we show in Figure 6 the evolution of the expected deviance

in terms of the tempering parameter. The categorical distribution has M = 3 modes in this numerical
experiment with µ1 = (2.18, 5.76), µ2 = (8.41, 1.68) and µ3 = (5.54, 6.86).
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Figure 7: (Example 3) Moments generating function surface in the unit square [0, 1]× [0, 1].

Using the same configuration: categorical distribution with three modes, N
data

= 103, N = 102,
we display the MGF for (α, β) ∈ [0, 1]× [0, 1] to stay consistent with the fact the MGF only exists for
β ∈ [0, 1] and as our interest to the MGF is for small β.

In multimodal inversion, one important observation when using the Bayesian approach is that
all the modes might not be captured for small size datasets. We investigate this phenomena using
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our continuation approach by setting two different configurations. The first is a weighted categorical
distribution with M = 3 modes, where w1 = 0.3, w2 = 0.5 and w3 = 0.2 (Figure 8). The second
configuration deals with a categorical distribution with M = 20, where wm = 1/20, for m = 1, · · · , 20
and the modes locations are collected from [21], where they are uniformly sampled from the prior π(θ)
and given by

µ1 = (2.18, 5.76), µ6 = (3.25, 3.47), µ11 = (5.41, 2.65), µ16 = (4.93, 1.50),

µ2 = (8.67, 9.59), µ7 = (1.70, 0.50), µ12 = (2.70, 7.88), µ17 = (1.83, 0.09),

µ3 = (4.24, 8.48), µ8 = (4.59, 5.60), µ13 = (4.98, 3.70), µ18 = (2.26, 0.31),

µ4 = (8.41, 1.68), µ9 = (6.91, 5.81), µ14 = (1.14, 2.39), µ19 = (5.54, 6.86),

µ5 = (3.93, 8.82), µ10 = (6.87, 5.40), µ15 = (8.33, 9.50), µ20 = (1.69, 8.11).

Figures 8 and 9 are obtained with a Monte Carlo approximation of N = 102 samples of the tractile
function h, and Simpson quadrature with 11 gridpoints is used for the tempering quadrature between
αk and αk+1.
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Figure 8: (Example 3) Power posteriors distributions with three modes
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Figure 9: (Example 3) Power posteriors distributions with 20 modes

In Figures 8 and 9, we visualize the update of the distribution of the parameter of interest. For
the first case, M = 3, the power posterior distribution shows all the three modes at the earlier stage
even for the small size dataset, and the distribution concentrates around the modes as the tempering
parameter goes to 1. In Figure 9, our continuation approach exhibits, at the earlier stage, the effect of
non-capturing all the modes for small size datasets. However, the number of captured modes increased
with the dataset for the largest size.

6 Conclusions

We presented a continuation method for interpreting the posterior probability density function, as
the terminal stage of a path of transition distribution functions between the prior and the posterior,
for Bayesian inverse problems with exponential likelihood function. A mathematical analysis for
the existence and the uniqueness of the transition distributions has been presented to support the
consistency of our results. We managed to hold back all the evaluations of the forward model at
the prior stage in the approximation of the transition distribution. That achieves the computational
tractability of the posterior distribution in opposite to classical MCMC methods where the acceptance
condition complicates the counting, a priori, of the number the forward model evaluations. The
computational tractability was addressed through the tractability of the expected deviance using the
moments generating function of the log-likelihood function. Our research has stressed the important
potential of continuation methods for two of the three classes of uncertainty quantification tasks
enumerated in [31].

The presented numerical results dealt with evaluations of simple forward models while for real-
world applications the output of the forward model is typically obtained through numerical approxi-
mations of PDEs that require physical discretization, and therefore incorporates the model bias. One
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window scoping the improvement of this approach that we aim to investigate is the combination of
the multilevel Monte Carlo method, for the approximation of the tractile function, with high precision
quadrature schemes for the tempering quadrature.

One intriguing question coming up when observing the transition distributions is: Are the data
goodness criteria, for parameter estimation problems, following the same updating rate when the
tempering parameter varies from 0 to 1? Depending on the answer, one would either reduce the
method bias in the computation of the data goodness criteria by considering an earlier tempering
point as the final stage. Or one can design a hierarchical clustering algorithm on a dataset for the
inferential strength in parameter estimation problems. Future work will also explore this aspect for
the Kullback-Leibler divergence in the framework of Bayesian experimental design.
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A Proof of Theorem 4

The goal is to prove the existence and the uniqueness of solution for the Barbashin equation (8b). We
introduce the abstract function v̂ defined as

v̂ : [0, 1] −→ Sl
α 7−→ v̂(α)

def
= v(α, ·).

(33)

Therefore, we can rewrite (8b) as an abstract Cauchy problem

dv̂

dα
= A(α)v̂(θ), (34)

where v̂(θ) = v̂(α)(θ), the derivative dv̂
dα

is in the Fréchet sense, and the Cauchy operator A is the
integral operator given by

A(α)v̂(θ) =

∫
Θ
H(α,θ,η, v̂(η))dη. (35)

The classical solvability of (34) follows from the strong continuity of the integral operator

A : [0, 1] −→ L(S)

α 7−→ A(α),

(36)

where L(Sl) is the space of all bounded linear operators in the Banach space Sl. Therefore we get the
solvability since A is strongly continuous in L(Sl) by construction. Indeed, let (αn)n>0 be a sequence
of real valued numbers in [0, 1] that converges to α ∈ [0, 1], and ‖ · ‖L be an appropriate norm defined
in L(Sl), we have

‖A(αn)−A(α)‖L = |
∫

Θ
H(αn,θ,η, v̂(η))−H(α,θ,η, v̂(η))dη|

= |
∫

Θ
H(αn,θ,η, v̂(αn)(η))−H(α,θ,η, v̂(α)(η))dη|

≤
∫

Θ
|H(αn,θ,η, v̂(αn)(η))−H(α,θ,η, v̂(α)(η))|dη

≤
∫

Θ
|H(αn,θ,η, v̂(αn)(η))−H(α,θ,η, v̂(αn)(η))|dη

+

∫
Θ
|H(α,θ,η, v̂(αn)(η))−H(α,θ,η, v̂(α)(η))|dη

The functional v̂ is continuous, and as g is assumed continuous with respect to θ, the kernel H is
continuous. Therefore A is strongly continuous. This completes the proof.

B Derivation of the kernel trace equations

We use the orthogonality condition (11) and the eigenvalue problem setting (12) to characterize the
dynamics of the eigenvalue λn.

λn(α) = λn(α) 〈kαn(θ), kαn(θ)〉α
= λn(α)

∫
Θ
kαn(θ)kαn(θ)π(θ|Y ;α)dθ

=

∫
Θ
kαn(θ)λn(α)kαn(θ)π(θ|Y ;α)dθ

=

∫
Θ
kαn(θ)

∫
Θ
K(α,θ,η)kαn(η)π(η|Y ;α)dη π(θ|Y ;α)dθ.
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Differentiation with respect to the parameter α gives

∂λn(α)

∂α
=

∫
Θ
kαn(θ)

∫
Θ
K(α,θ,η)kαn(η)

∂

∂α
π(η|Y ;α)dη π(θ|Y ;α)dθ

+

∫
Θ
kαn(θ)

∫
Θ
K(α,θ,η)kαn(η)π(η|Y ;α)dη

∂

∂α
π(θ|Y ;α)dθ,

yet from (4), we obtain∫
Θ
K(α,θ,η)kαn(η)

∂

∂α
π(η|Y ;α)dη =

∫
Θ

log p(Y |η)K(α,θ,η)kαn(η)π(η|Y ;α)dη

−Eη|Y ;α [log p(Y |η)]

∫
Θ
K(α,θ,η)kαn(η)π(η|Y ;α)dη.

It follows that

I1
def
=

∫
Θ
kαn(θ)

∫
Θ
K(α,θ,η)kαn(η)

∂

∂α
π(η|Y ;α)dη π(θ|Y ;α)dθ

=

∫
Θ
kαn(θ)

∫
Θ

log p(Y |η)K(α,θ,η)kαn(η)π(η|Y ;α)dη π(θ|Y ;α)dθ

−Eη|Y ;α [log p(Y |η)]

∫
Θ
kαn(θ)

∫
Θ
K(α,θ,η)kαn(η)π(η|Y ;α)dη π(θ|Y ;α)dθ.

=

∫
Θ
kαn(θ)

∫
Θ

log p(Y |η)

∞∑
l=1

λl(α)kαl (θ)lαk (η)kαn(η)π(η|Y ;α)dη π(θ|Y ;α)dθ

−Eη|Y ;α [log p(Y |η)]

∫
Θ
kαn(θ)λn(α)kαn(θ) π(θ|Y ;α)dθ

=

∞∑
l=1

∫
Θ
kαn(θ)kαl (θ) π(θ|Y ;α)dθ

∫
Θ

log p(Y |η)λl(α)kαl (η)kαn(η)π(η|Y ;α)dη

−λn(α)Eη|Y ;α [log p(Y |η)]

= λn(α)

∫
Θ

log p(Y |η)kαn(η)kαn(η)π(η|Y ;α)dη − λn(α)Eη|Y ;α [log p(Y |η)] .

Similarly

I2
def
=

∫
Θ
kαn(θ)

∫
Θ
K(α,θ,η)kαn(η)π(η|Y ;α)dη

∂

∂α
π(θ|Y ;α)dθ

= λn(α)

∫
Θ

log p(Y |η)kαn(η)kαn(η)π(η|Y ;α)dη − λn(α)Eη|Y ;α [log p(Y |η)] .

Therefore, the dynamics of an eigenvalue is

∂λn(α)

∂α
= 2λn(α)

∫
Θ

log p(Y |η)kαn(η)kαn(η)π(η|Y ;α)dη − 2λn(α)Eη|Y ;α [log p(Y |η)] . (37)

Using

log p(Y |η) = log(C)− sK(α,η,η) and Eη|Y ;α [log p(Y |η)] = log(C)− s
∫

Θ
K(α,η,η)π(θ|Y ;α)dη

= log(C)− s
∞∑
n=1

λn(α)

= log(C)− sL1(α),
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we rewrite (37) as

∂λn(α)

∂α
= 2sλn(α)L1(α)− 2sλn(α)

∫
Θ
K(α,η,η)kαn(η)kαn(η)π(η|Y ;α)dη

= 2sλn(α)L1(α)− 2s

∫
Θ
K(α,η,η)λn(α)kαn(η)kαn(η)π(η|Y ;α)dη,

and summing over n, we obtain

∂L1(α)

∂α
= 2sL2

1(α)− 2s

∫
Θ
K(α,η,η)

∞∑
n=1

λn(α)kαn(η)kαn(η)π(η|Y ;α)dη as L1(α) =
∞∑
n=1

λn(α)

= 2sL2
1(α)− 2s

∫
Θ
K2(α,η,η)π(η|Y ;α)dη

Thanks to the Schur product theorem, the Hadamard product K2 = K◦K of a positive definite kernel
K is a symmetric positive definite kernel, and the eigenstructure expansion of K2, see [28], is

K2(α,η,η) =
∞∑
n=1

λ2
n(α)kαn(η)kαn(η), (38)

where (λn, k
α
n) are the eigenpair of the kernel K. Therefore, we have∫

Θ
K2(α,η,η)π(η|Y ;α)dη =

∞∑
n=1

λ2
n(α)

∫
Θ
kαn(η)kαn(η)π(η|Y ;α)dη

=
∞∑
n=1

λ2
n(α)

= L2(α),

which implies that

∂L1(α)

∂α
= 2s

(
L2

1(α)− L2(α)
)
. (39)

Similar analysis, starting on differentiating the eigenvalue λ2
n(α) of K2, results in the dynamics of L2

as

∂L2(α)

∂α
= 2s

(
L1(α)L2(α)− L3(α)

)
. (40)

The skewness condition (14) in terms of Li, i = 1, 2, 3 is

−L3(α) = −3L2(α)L1(α) + 2L3
1(α). (41)

We gather together the equations (39), (40) and (41) to state the computational tractability of the
expected deviance as 

∂L1(α)

∂α
= 2s

(
L2

1(α)− L2(α)
)
,

∂L2(α)

∂α
= 2sL1(α)

(
L2

1(α)− L2(α)
)
.

This completes the derivation.
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