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GLOBAL SMOOTH SOLUTIONS WITH LARGE DATA

FOR A SYSTEM MODELING

AURORA TYPE PHENOMENA IN THE 2-TORUS

HERMANO FRID, DANIEL R. MARROQUIN, AND JOÃO F.C. NARIYOSHI

Abstract. We prove existence and uniqueness of smooth solutions with large
initial data for a system of equations modeling the interaction of short waves,
governed by a nonlinear Schrödinger equation, and long waves, described by
the equations of magnetohydrodynamics. In the model, the short waves propa-
gate along the streamlines of the fluid flow. This is translated in the system by
setting up the nonlinear Schrödinger equation in the Lagrangian coordinates
of the fluid. Besides, the equations are coupled by nonlinear terms accounting
for the strong interaction of the dynamics. The system provides a simplified
mathematical model for studying aurora type phenomena. We focus on the
2-dimensional case with periodic boundary conditions. This is the first result
on existence of smooth solutions with large data for the multidimensional case
of the model under consideration.

1. Introduction

We consider the following system of equations modeling the interaction of short
waves, governed by a nonlinear Schrödinger equation (NLS), and long waves, de-
scribed by the equations of magnetohydrodynamics (MHD):

ρt + div(ρu) = 0, (1.1)

(ρu)t + div(ρu⊗ u) +∇P = H · ∇H− 1
2∇|H|2

+ α∇(g′(1/ρ)h(|ψ ◦Y|2)Jy/ρ) + divS, (1.2)

Ht + u · ∇H−H · ∇u+Hdivu = ν∆H, (1.3)

divH = 0, (1.4)

iψt +∆yψ = |ψ|2ψ + αg(v)h′(|ψ|2)ψ. (1.5)

Our main goal is to prove existence and uniqueness of solutions with prescribed
large initial data in the 2-dimensional torus.

Let us recall that the MHD equations model the dynamics of a conductive fluid in
the presence of a magnetic field. Accordingly, in the system above, ρ = ρ(x, t) ≥ 0
and u = u(x, t) ∈ R2 are the fluid’s density and velocity, respectively, and H =
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H(x, t) ∈ R2 is the magnetic field; P = P (ρ) denotes the pressure and S is the
viscous stress tensor given by

S = λ(divu)Id + µ(∇u+ (∇u)⊤), (1.6)

where λ and µ are the viscosity coefficients which are, in general, functions of the
density and must satisfy the relations µ > 0 and 3λ + 2µ ≥ 0; ν is the magnetic
diffusivity.

On the other hand, ψ = ψ(y, t) ∈ C is the wave function, α > 0 is the interaction
coefficient and g and h are smooth functions taking nonnegative values.

The MHD equations above are stated in the Eulerean coordinates (x, t), that
describe the dynamics from an outsider’s point of view, while the NLS is stated in
the Lagrangian coordinates (y, t) associated to the velocity field of the fluid, which
follow the particle paths.

The Lagrangian transformationY(x, t) = (y(x, t), t) can thus be defined through
the relation

y(Φ(x, t), t) = y0(x), (1.7)

where y0 is any diffeomorphism, which can be chosen conveniently, and Φ : Ω → Ω
is the flux associated to the fluid’s velocity field, given by

{

dΦ
dt (x, t) = u(Φ(x, t), t),

Φ(x, 0) = x.
(1.8)

Finally, Jy is the Jacobian determinant det(∂y∂x (x, t)) and v(y, t) is the specific
volume determined by the identity

v(y(x, t), t) =
1

ρ(x, t)
.

The interaction terms in equations (1.2) and (1.5) are an external force term
and a potential due to external forces, respectively, that account for the strong
interaction between the dynamics.

This kind of model of short wave-long wave interactions in compressible fluid dy-
namics was first introduced by Dias and Frid in [10], where, motivated by Benney’s
general theory on short wave-long wave interactions [3], they proposed a similar
coupling where the long waves were given by the Navier-Stokes equations for a
compressible isentropic fluid and proved existence and uniqueness of solutions in
the 1-dimensional setting. They also studied the vanishing viscosity problem. An
extension of Benney’s theory for systems of conservation laws was given in [9].

Later, Frid, Pan and Zhang [14] studied the full 3-dimensional equations proving
global existence and uniqueness of smooth solutions with small data. After this,
Frid, Jia and Pan, extended these results to the model involving the MHD equations,
proving existence, uniqueness and decay rates of solutions with small data, also in
the 3-dimensional case.

More recently, Frid, Marroquin and Pan [13] proposed an approximation scheme
consisting of a regularization of the system above, proving existence of weak so-
lutions and showing the convergence of the sequence to a solution of the limit
decoupled system as the regularizing parameters tend to zero together with the
interaction coefficient, all in a bounded domain of R2.

Finally, in [21] Marroquin extended the results in [10] to the case where the
long waves are given by a compressible, heat conductive magnetohydrodynamic
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fluid, also proving existence and uniqueness of solutions and studying the vanishing
viscosity problem, in the planar (1-dimensional) case.

The system above models an aurora type phenomenon where a small wave, obey-
ing a nonlinear Schrödinger equation, propagates along the streamlines of a magne-
tohydrodynamic fluid. To this end, the NLS equation is stated in the Lagrangian
coordinates of the fluid, which by definition, follow the trajectories of the particles.
However, this poses several limitations, as the Lagrangian transformation becomes
singular in the presence of vacuum. Indeed, it can be shown that the Jacobian
determinant of the change of variables Jy vanishes if and only if the density van-
ishes. As in the multidimensional setting solutions of the fluid equations may not
be regular enough and vacuum may appear in finite time, the study of the model
under consideration is challenging.

In this paper, building on the pioneering work by Văıgant and Kazhikhov [26]
and its posterior improvements, e.g., [24, 18, 16, 22, 23], as well as on the small gem
classical paper by Brezis and Gallouet [5], we prove the existence and uniqueness
of strong solutions to the full system (1.1)-(1.5) without restrictions on the size of
the initial data, in the 2-dimensional case with periodic conditions. Under certain
hypotheses on the viscosity coefficients, we prove, in particular, that there is no
vacuum, nor concentration, if this is the case initially.

The most important feature of this model is that it is endowed with an energy
identity, which can be stated in differential form as
{

(

ρ(
1

2
|u|2 + e) +

1

2
|H|2

)

t
+
(

µ|∇xu|2 + (λ(ρ) + µ)(divxu)
2 + ν|∇H|2

)

(1.9)

+ divx
(

u(ρ(
1

2
|u|2 + e) + p+ αg′(1/ρ)h(|ψ ◦Y|2)Jy

ρ

)

− divx
(

S · u+ (H⊗H) · u− u|H|2 + ν∇H ·H)
)

}

dx

= −
{

(1

2
|∇yψ(t,y)|2 +

1

4
|ψ(t,y)|4 + αg(v(t,y))h(|ψ(t,y)|2

)

t

− divy(ψt∇yψ + ψt∇yψ)
}

dy,

where, e = e(ρ) is the internal energy given by

e(ρ) :=

∫ ρ p(s)

s2
ds.

Indeed this identity is obtained by multiplying the momentum equation (1.2) by
u, the NLS (1.5) by ψt (the complex conjugate of ψt) taking real part and adding
the resulting equations. We omit the details as they follow the same lines as in any
of the references on the model cited above ([10, 14, 12, 13, 21]).

In order to state precisely our results, let us fix some notation. We consider our
spatial domain to be the unitary square in R

2 endowed with periodic boundary
conditions

Ω = {x = (x1, x2) ∈ R
2; 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1},

with opposite sides identified, each point with its antipode, so that one could un-
derstand Ω as being the two-dimensional torus Ω = T2.

Choosing y0(x) = x, x ∈ Ω, in the definition of the Lagrangian coordinate
(1.7), we see that y(·, t) is a change of variables from Ω to itself (provided that
ρ is strictly positive and finite). However, as we deal with Sobolev norms in the
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different coordinates, we have to distinguish between one from the other and thus
we denote the domain of the Lagrangian coordinate as Ωy.

As aforementioned, the viscosity coefficients are, in general, functions of the
density, and in this work we assume that

µ(ρ) = const. = µ > 0,

λ(ρ) = bρβ, where β > 4/3 and b > 0, (1.10)

Regarding the pressure, we assume the following constitutive relation

p(ρ) = aργ , (1.11)

where a > 0 and γ > 1.
These assumptions agree with those in [26] and in [24] on the 2-dimensional pe-

riodic Navier-Stokes equations; and also with those in [22, 23] on the 2-dimensional
periodic MHD equations.

From a mathematical standpoint, the condition on µ ensures that the associated
Lamé operator Lu = divS is uniformly parabolic, whereas the hypothesis on λ
hinders singularities in the density ρ. The latter consequence is crucial to our
model, as the non-degeneracy of the Lagrangian coordinates is intimately linked to
the regularity of the density.

At last, we assume that the interaction coefficient α is a positive constant and
that the coupling functions g and h are smooth and satisfy











g, h : [0,∞) → [0,∞), g(0) = h(0) = 0,

supp g′ compact in (0,∞),

supph′ compact in [0,∞)

(1.12)

Under these assumptions we consider the initial value problem for system (1.1)-
(1.5) on the square Ω with periodic boundary conditions, and subject to initial
data

(ρ,u,H)|t=0 = (ρ0,u0,H0)(x), ψ0|t=0 = ψ0(y). (1.13)

Our first main result reads as follows.

Theorem 1.1. Let m ≥ 3 be an integer and assume, in addition to (1.10), (1.11)
and (1.12), that the periodic data ρ0, u0, H0 and ψ0 on (1.13) satisfy



















ρ0 ∈ Hm(Ω),

u0 ∈ Hm(Ω),

H0 ∈ Hm(Ω),

ψ0 ∈ Hm(Ωy).

(1.14)

and the initial data has no vacuum: there exists constants 0 < m0 < M0 such that

m0 ≤ ρ0(x) ≤M0 (1.15)

for any x ∈ Ω.
Then there exists a unique strong solution to the system (1.1)-(1.5) (ρ,u,H, ψ)

lying on the space


















ρ ∈ C([0,∞);Hm(Ω)) ∩C1([0,∞);Hm−1(Ω)),

u ∈ L2
loc

(0,∞;Hm+1(Ω)) ∩H1
loc

(0,∞;Hm−1(Ω)),

H ∈ L2
loc

(0,∞;Hm+1(Ω)) ∩H1
loc

(0,∞;Hm−1(Ω)),

ψ ∈ C([0,∞);Hm(Ω)) ∩C1([0,∞);Hm−2(Ω)).

(1.16)



SMOOTH LARGE SOLUTIONS FOR AURORA TYPE PHENOMENA IN THE 2-TORUS 5

And, for any T > 0 we have the estimates

M−1 ≤ ρ(x, t) ≤M (1.17)

for all x ∈ Ω and 0 ≤ t ≤ T , and

‖ρ(t)‖Hm(Ω), ‖u(t)‖Hm(Ω), ‖H(t)‖Hm(Ω), ‖ψ(t)‖Hm(Ωy) ≤ C, (1.18)

for all 0 ≤ t ≤ T , where M is a positive constant depending only on T , ‖u0‖H1(Ω),
‖H0‖H1(Ω), ‖ψ0‖H2(Ωy), m0 and M0; and C is a positive constant depending on T ,
‖ρ0‖Hm(Ω), ‖u0‖Hm(Ω), ‖H‖Hm(Ω), ‖ψ‖Hm(Ωy), m0 and M0.

Furthermore, there is a constant N depending on T , ‖ρ0‖H2(Ω), ‖u0‖H2(Ω),
‖H0‖H2(Ω), ‖ψ0‖H2(Ωy), m0 and M0 such that

‖ρ(t)‖H2(Ω), ‖u(t)‖H2(Ω), ‖H(t)‖H2(Ω), ‖ψ(t)‖H2(Ωy) ≤ N. (1.19)

Observe that (1.16) implies that

u,H ∈ C([0,∞);Hm(Ω)) ∩ C1([0,∞);Hm−2(Ω)),

so that the well-posedness statement makes sense.
It may be noted that it implies by an interpolation argument (see Theorem 6.1),

that the solution map

(t, ρ0,u0,H0, ψ0) 7→ (ρ(t),u(t),H(t), ψ(t))

is continuous in the strong topology of [0,∞)×Hm(Ω)3 ×Hm(Ωy) into the strong
topolgy Hm−1(Ω)3 ×Hm−1(Ωy), for all integers m ≥ 3.

In particular, if one identifies C∞(Ω) with the Fréchet space ∩∞
m=0H

m(Ω), not
only the solution map of (1.1)–(1.5) is well-defined on [0,∞)×C∞(Ω)3 ×C∞(Ωy),
but also turns out to be continuous in its topology.

The proof of Theorem 1.1 consists of a local result and the extraction of a priori
estimates, which serve the purpose of extending the local solutions globally in time.

For the local result we adapt the framework by V. A. Solonnikov [25] on the
Navier-Stokes equations. More precisely, we obtain a local solution of the system
(1.1)–(1.5) as a fixed point of a transformation K defined as follows:

• Given a velocity field u, one solves the continuity equation (1.1) with initial
data ρ(x, 0) = ρ0(x) (observe that the continuity equation is a linear first
order partial differential equation, and thus can be solved explicitly by the
method of characteristics);

• Once that ρ is available, one can solve the equation for ψ (1.5) (with Y

being the Lagrangian transformation associated to the given velocity u) by
means of a variant of the method of H. Brézis–Th. Gallouet [5];

• One also solves the magnetic field equations (1.3), (1.4) in terms of u. Note
that the magnetic field equation (1.3) reduces to a linear parabolic equation
and can be solved by standard methods.

• Finally, one “returns” Ku = v as the solution of the linear parabolic
problem

{

ρvt + ρ(u · ∇)v +∇P0 = α∇(g′(1/ρ)h(|ψ ◦Y|2)Jy/ρ) + divS,

v(x, 0) = u0(x)
(1.20)

Clearly, a fixed point of such application will be a solution to the equation we
are investigating.
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Let us point out that, unlike the case addressed by Solonikov, here the viscosity
is not constant; in fact it depends on the densisty (recall (1.10)). This brings new
subtleties to the estimates. In addition to this, the presence of the magnetic field,
the wave function and the coordinate change between Eulerean and Lagrangian
coordinates bring extra difficulties.

In particular, the Hm regularity, with m ≥ 3, in Theorem 1.1 is necessary for
the fixed point argument in the proof of the existence and uniqueness of local
solutions, as, in order to ensure that the application K is a contraction, we require
the wave function and the specific volume to be Lipschitz continuous. This is due
to the coupling terms, where we have a composition of the wave function with the
Lagrangian transformation.

Concerning the extension of the local solution to a global one, as usual, it follows
from a priori estimates which allow reiteration of the construction made for the local
solution. The starting point in the deduction of the a priori estimates is the energy
identity (1.9). After this, we prove the crucial uniform estimates from above and
away from vacuum for the density. This was the decisive step first achieved in
the pioneering paper of Văıgant and Kazhikhov [26], where it was shown that the
prescription λ = ρβ, with β > 3, yielded such bounds; later on the restriction on
the power β was relaxed to β > 4/3 by Huang and Li in [16]. Here we build on the
estimates by Yu Mei [22, 23] for the 2-dimensional periodic MHD equations which,
in turn, are inspired by [26] and its improvements by Perepelitsa in [24], Jiu, Wang
and Xin [18] and [16] on the 2-dimensional periodic Navier-Stokes equations.

It is worth while to recall the ingenious way in which the bounds from above
and below for the density were obtained in [26]. In [15], Hoff introduced and
emphasized the striking regularity properties of the effective viscous flux F, which
for the isentropic Navier-Stokes is defined by F = (2µ + λ(ρ)) div u − P . In [26],
the transport equation

(θ(ρ))t + u · ∇θ(ρ) + P (ρ) + F = 0

is considered, where θ(ρ) =
∫ ρ

1
1
s (2µ+ λ(s)) ds = 2µ log ρ+ 1

β (ρ
β − 1), which easily

follows from the continuity equation. Therefore, the problem of obtaining the
referred bounds for the density is reduced, using the nonnegativity of the pressure,
to that of obtaining a bound for the integral in time of the L∞ norm of F. Indeed,
one gets first a bound from above for θ(ρ), which implies a bound from above for
the density, which in turn, together with the bound for F, can be used to give also
a bound from below for θ(ρ) and so for ρ. Obtaining the bound for F is not at all
an easy task, but was achieved in [26]. In passing, it also becomes transparent the
importance of the introduction of the dependence of λ on ρ in the form ρβ .

For the MHD equations, in [22, 23], the desired uniform bounds on the density
follow from key estimates on the commutators [ui, RiRj ](ρuj) and [Hi, RiRj ](Hj) of
Riesz transforms and the operators of multiplication by ui and Hi. Such estimates
ultimately depend on a careful analysis of the effective viscous flux F, which, in
turn, relies on some Lp bounds on the density. For the system (1.1)–(1.5) considered
here, the definition of effective viscous flux, whose treatment follows closely that of
the MHD case, takes the form (4.6) which, comparing with that for the isentropic
Navier-Stokes system, includes the term − 1

2 |H |2, as in the MHD case, and also the

term −αg′(1/ρ)h(|ψ ◦Y|2)Jy/ρ, due to the coupling with the NLS equation, whose
nature is also that of a pressure.
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We stress that the strong coupling between the MHD equations and the NLS
poses a delicate interplay between the mechanics. On top of the nonlinear coupling
terms from the momentum equation and the NLS, the equations are also coupled
through the coordinate change. At this point the regularity of the Lagrangian
transformation comes into play and is crucial in order to close the estimates.

Once we have estimates (1.17) and (1.19), we proceed to prove estimate (1.18)
by induction, thus obtaining the necessary estimates in order to extend the local
solutions to global ones. It should be pointed out, that the lifespan of the local
solutions depends only on the strict positiveness and finiteness of the initial density
as well as the size of initial data in the corresponding Sobolev norms. Thus estimates
(1.17) and (1.18) are sufficient to obtain the global solutions from the local ones.

In this connection, with the estimates (1.17) and (1.19) at hand, we can also
prove the existence of global solutions under weaker hypotheses on the initial data.

Theorem 1.2. Assume that (1.10), (1.11) and (1.12) hold and suppose that the
periodic initial data ρ0, u0, H0 and ψ0 on (1.13) satisfy



















ρ0 ∈ H2(Ω),

u0 ∈ H2(Ω),

H0 ∈ H2(Ω),

ψ0 ∈ H2(Ωy).

(1.21)

and that there are constants 0 < m0 < M0 such that

m0 ≤ ρ0(x) ≤M0 (1.22)

for any x ∈ Ω.
Then, there exists a solution (ρ,u,H, ψ) to system (1.1)-(1.5) satisfying (1.16),

(1.17) and (1.18) with m = 2.

The proof of Theorem 1.2 follows by a standard compactness argument based
on estimates (1.17) and (1.19). This is achieved by approximating the initial data
by smooth functions satisfying the hypotheses of Theorem 1.1. Then, from es-
timates (1.17) and (1.19) we may find a subsequence (ρn,un,Hn, ψn) of the so-
lutions corresponding to the regularized initial data that converges strongly to a
limit (ρ,u,H, ψ), which turns out to be the desired solution. In particular, by
the Sobolev embedding and Aubin–Lions lemma, ρn → ρ in C([0, T ];C(Ωy)) and
ψn → ψ in C([0, T ];C(Ω)). Also, as will become clear in Section 2, where we
prove several regularity estimates on the coordinate change, we also have that the
sequence of Lagrangian transformations associated to un converge strongly to the
Lagrangian transformation associated to the limit velocity field u. With this, the
coupling terms in the momentum equation and in the NLS converge in the sense of
distributions to the corresponding ones in the limit. In turn, all the other nonlin-
earities from system (1.1)-(1.5) are accounted for, due to the strong convergence of
the sequence; thus concluding that the limit (ρ,u,H, ψ) is indeed a solution.

The rest of the paper is organized as follows. In Section 2 we prove several
estimates on the linear and nonlinear problems associated to equations (1.1), (1.3)
and (1.5), where the velocity field u is given; and also the linearisation (1.20)
of (1.2). We also study the regularity of the Lagrangian coordinate associated
to a given velocity field u in order to deal with the Sobolev norms in different
coordinates. In Section 3 we prove the local existence of strong solutions. Section
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4 is devoted to the proof of the low order a priori estimates (1.17) and (1.19). In
Section 5 we complete the necessary a priori estimates that allow us to extend the
local solutions to global ones. At last, in Section 6 we state a weak stability result,
that follows as a byproduct of the proof of the contractivity of the solution operator
to the linearized system employed in the local result.

2. Linear problems

As explained above, we construct a local solution of system (1.1)-(1.5) as a fixed
point of the solution operator of the equation (1.20), where ρ, H and ψ are the
solutions of equations (1.1), (1.3) and (1.5) for a given velocity field u.

For this reason we dedicate this section to the investigation of the linear and
nonlinear problems, corresponding to equations (1.1), (1.3) and (1.5), where the
velocity field u is given; and also the linearization (1.20) of (1.2). We also study
the regularity of the Lagrangian coordinate associated to a given velocity field u in
order to deal with the Sobolev norms in different coordinates.

In the following, we denote by φ = φ(·, · · · , ·) a continuous and non-decreasing
real function of its arguments that may change from line to line.

2.1. The linearized parabolic problem. Let us consider the following initial
value problem

{

ρ(x, t)∂u∂t (x, t)− (Lρu)(x, t) = f(x, t) for 0 < t < T and x ∈ Ω

u(x, 0) = u0(x) for 0 = t and x ∈ Ω;
(2.1)

where Ω is the bidimensional torus, T is a positive number, the density ρ(x, t) is a
given function, Lρ is the associated Lamé operator given by

(Lu)(x) = (Lρu)(x) = −div (λ(ρ)(divu)Id + µ(∇u+ (∇u)⊤)), (2.2)

and u0(x) and f(x, t) lie on adequate Sobolev or Lebesgue spaces.
Note that this is a linear parabolic problem and can be solved by standard meth-

ods from the theory of linear parabolic equations, provided that the given density
ρ is strictly positive and sufficiently smooth. Moreover, we have the following a
priori estimates on the solutions.

Lemma 2.1. Let m ≥ 1 and assume that










ρ ∈ C([0, T ];Hm(Ω)) ∩ Fr,q,

f ∈ L2(0, T ;Hm−1(Ω;R2)), and

u0 ∈ Hm(Ω;R2).

(2.3)

for some r ≥ 2 and q > 2, where Fr,q := W 1,∞(0, T ;L2(Ω)) ∩ C([0, T ];W 1,q(Ω)).
Assume further that

0 < m(T ), M(T ) <∞
where, m(t) := min0≤t′≤t,x∈Ω ρ(x, t

′) and M(t) := max0≤t′≤t,x∈Ω ρ(x, t
′).

Then, (2.1) has a unique solution u ∈ H1(0, T ;Hm−1(Ω))∩L2(0, T ;Hm+1) and
we have the following estimate

∫ T

0

(‖ut(t
′)‖2Hm−1 + ‖u(t′)‖2Hm+1)dt′

≤ φ(T,m(t)−1, ‖ρ‖Fr,q∩C([0,T ];Hm))(‖f‖2L2(0,T ;Hm−1) + ‖u0‖2Hm). (2.4)
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Proof. We proceed by induction in m ≥ 1.
Multiplying equation (2.1) by u, integrating by parts and using Young’s inequal-

ity we get

1

2

d

dt

∫

Ω

ρ|u|2dx +

∫

Ω

(µ|∇u|2 + (λ(ρ) + µ)(divu)2)dx

≤ C

(

‖f(t)‖2L2(Ω) + (1 + ‖ρt‖2L∞(0,T ;Lr(Ω)))

∫

Ω

|u|2dx
)

+
µ

2

∫

Ω

|∇u|2dx,

where we have used Gagliardo-Nirenberg inequality in order to estimate

‖u‖2
L2r′(Ω)

≤ Cε‖u‖2L2(Ω) + ε‖∇u‖2L2(Ω),

with small enough ε > 0. Then, using the uniform bounds away from zero for the
density, Gronwall’s inequality yields
∫

Ω

|u(x, t)|2dx+

∫ t

0

∫

Ω

|∇u(x, t′)|2dxdt′

≤ φ(t,m(t)−1,M(t), ‖ρ‖Fr,q)
(

∫ t

0

∫

Ω

|f(x, t′)|2dxdt′ +
∫

Ω

|u0(x)|2dx
)

. (2.5)

Similarly, noting that
∫

Ω

Lρu · utdx

= −1

2

d

dt

∫

Ω

(µ|∇u|2 + (λ(ρ) + µ)(divu)2)dx+

∫

Ω

λ(ρ)t(divu)
2dx,

≤ −1

2

d

dt

∫

Ω

(µ|∇u|2 + (λ(ρ) + µ)(divu)2)dx

+ ‖λ(ρ)t‖L∞(0,T ;Lr(Ω))‖divu(t)‖2L2r′ (Ω)
,

multiplying (2.1) by ut and integrating by parts we have
∫

Ω

ρ|ut|2dx+
1

2

d

dt

∫

Ω

(µ|∇u|2 + (λ(ρ) + µ)(divu)2)dx

≤ ε‖u‖2H2(Ω) + φ(ε−1,M(t), ‖ρt‖r)‖∇u‖2L2(Ω),

where we used again Gagliardo-Nirenberg inequality to estimate ‖divu‖2
L2r′(Ω)

.

Since Lρ is uniformly elliptic, one can apply Gagliardo-Nirenberg inequality to
get1

‖u‖H2 ≤ φ(‖∇λ(ρ)‖Lq ) · (‖Lρu‖2 + ‖u‖2)
≤ φ(‖∇λ(ρ)‖Lq ) · (‖ρut‖2 + ‖f‖2 + ‖u‖2).

Thus, choosing ε > 0 small enough, Gronwall’s inequality implies (2.4) for m = 1
by virtue of the uniform bounds on the density.

1To see this, one may argue as follows. Let u ∈ H2(Ω) and f ∈ L2(Ω) be such that
Lρu + u = f . If one uses the classic argument of difference quotients due to Nirenberg, one
can show that µ‖∇2

u‖2
2
+ ‖∇u‖2

L2 ≤ ‖f‖L2‖∇2
u‖L2 + ‖∇2

u‖L2‖∇(λ(ρ))‖q‖divu‖
L2q/(q−2) .

Hence, Gagliardo–Nirenberg and Young inequalities, and an elementary H1−estimate assert that
‖u‖H2 ≤ φ(‖∇(λ(ρ))‖W1,q ) · (‖f‖L2 + ‖u‖L2 ), as desired.
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Now let m ≥ 2 and assume that (2.4) holds for 1, 2, ...,m− 1. Then, we apply
the operator ∇m−1 to equation (2.1) to obtain































ρ(∇m−1ut)− (Lρ∇m−1u) = ∇m−1f +∇m−2(div (∇λ(ρ)(divu)Id))
−∇m−2(∇ρ⊗ ut)

for 0 < t < T and x ∈ Ω,

(∇m−1u)(x, 0) = ∇m−1u0(x)

for 0 = t and x ∈ Ω.

From the case m = 1, we get that

∫ t

0

(‖∇m−1ut(t
′)‖2L2 + ‖∇m+1u(t′)‖2L2)dt′

≤ φ(t,m(t)−1,M(t), ‖ρ‖Fr,p)

(

∫ t

0

∫

Ω

|∇m−1f(x, t′)|2dxdt′ + ‖u0‖2Hm

+

∫ t

0

‖∇m−1((∇λ(ρ(t))(div u(t))‖22dt′

+

∫ t

0

‖∇m−2(∇ρ(t′)⊗ ut(t
′))‖22dt′

)

. (2.6)

To estimate the last two terms, let us divide into two cases cases.
i) If m = 2, then

‖∇m−1((∇λ(ρ(t))(div u(t))‖2
≤ ‖∇2λ(ρ(t))‖2‖divu(t)‖∞ + ‖∇λ(ρ(t))‖q‖∇2u(t)‖p, and

‖∇m−2(∇ρ(t′)⊗ ut(t
′))‖2 ≤ ‖∇λ(ρ(t′))‖p‖ut(t

′)‖q, (2.7)

where 1/p+ 1/q = 1/2. Nonetheless, Gagliardo–Nirenberg inequality implies

‖divu(t)‖∞ ≤ ε‖∇3u(t)‖2 + Cε‖∇u(t)‖2, (2.8)

‖∇2u(t)‖p ≤ ε‖∇3u(t)‖2 + Cε‖∇u(t)‖2, and
‖ut(t)‖q ≤ ε‖∇ut(t)‖2 + Cε‖ut(t)‖2;

thus, plugging (2.7) into (2.6), one can deduce the desired conclusion from the
induction hypothesis.

ii) Let us consider now the case m ≥ 3. Once that Hm−1 and Hm−2 ∩ L∞ are
algebras, we can show that

‖∇m−1((∇λ(ρ)(t)(div u(t))‖2 ≤ ‖(∇λ(ρ(t)))(divu(t))‖Hm−1

≤ Cm‖λ(ρ(t))‖Hm‖u(t)‖Hm , and

‖∇m−2(∇ρ(t′)⊗ ut(t
′))‖2 ≤ ‖∇ρ(t′)⊗ ut(t

′))‖Hm−2

≤ Cm(‖∇ρ(t′)‖∞‖ut(t
′)‖Hm−2

+ ‖ρ(t′)‖Hm−2‖ut(t
′)‖∞).

Thence, the result follows from the induction hypothesis and a Gagliardo–Nirenberg
inequality similar to (2.8). �
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2.2. The continuity equation in terms of u. We now consider the continuity
equation (1.1) in terms of a given velocity field u. Specifically we consider the
problem:

{

ρt + div (ρu) = 0 on Ω× (0, T ),

ρ(x, 0) = ρ0(x) on Ω× {t = 0},
(2.9)

where ρ0 is positive and belongs to W 1,q(Ω) for some q > 2.
It is well known (see, e.g., the article of V.A. Solonnikov [25] and the references

therein) that this problem has a unique solution given by the method of character-
istics. In fact we have that

ρ(t,Φ(t;x)) = ρ0(x) · exp
{

−
∫ t

0

(divu)
(

t′,Φ(t′;x)
)

dt′
}

, (2.10)

where Φ is the flow of u given by
{

dΦ
dt (t;x) = u(Φ(t;x), t),

Φ(0;x) = x.
(2.11)

Moreover, ρ is defined in the interval [0, T ] and satisfies

min
x∈Ω

ρ0(x) exp

{

−
∫ t

0

‖divu(t′)‖L∞(Ω)dt
′

}

≤ ρ(t,x) ≤ max
x∈Ω

ρ0(x) exp

{
∫ t

0

‖divu(t′)‖L∞(Ω)dt
′

}

,

(2.12)

for any (t,x) ∈ [0, T ]× Ω, provided that divu ∈ L1(0, T ;L∞(Ω)).
Regarding the regularity of ρ we have the following.

Lemma 2.2. Let m ≥ 1 and assume that
{

u ∈ L2(0, T ;Hm+1(Ω)), with ∇u ∈ L1(0, T ;L∞(Ω)),

ρ0 ∈ Hm(Ω), with 0 ≤ ρ0 < M,

for some positive constant M .
Then, regarding the solution of (2.9), we have the estimate

‖ρ(t)‖Hm(Ω) ≤ φ(t, ‖u‖L2(0,T ;Hm(Ω)), ‖∇u‖L1(0,T ;L∞(Ω)), ‖ρ0‖Hm(Ω),

‖u‖L2(0,T ;W 2,4(Ω)),M) · (1 + ‖u‖L2(0,T ;Hm+1)), (2.13)

for all 0 < t < T . Furthermore, when m = 1, the dependence of ‖u‖L2(0,T ;W 2,4(Ω))

above may be dropped.

Proof. Let m ≥ 1. Then, applying the operator ∇m to equation (2.9), multiplying
by ∇mρ and integrating by parts we have

1

2

d

dt

∫

Ω

|∇mρ|2dx

= −1

2

∫

Ω

|∇mρ|2divudx−
∫

Ω

∇m−1(∇u · ∇ρ+ ρ∇divu) · ∇mρdx

≤ C‖∇m−1(∇u · ∇ρ+ ρ∇divu)‖2L2(Ω)

+ C(1 + ‖∇u(t)‖L∞(Ω))

∫

Ω

|∇mρ|2dx. (2.14)
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With this observation at hand, we proceed with the proof by induction in m.
So, let m = 1. Then, we have that

‖∇u · ∇ρ+ ρ∇divu‖L2(Ω) ≤ ‖ρ‖L∞((0,T )×Ω)‖∇2u(t)‖L2(Ω)

+ ‖∇u(t)‖L∞(Ω)‖∇ρ(t)‖L2(Ω).

Hence, by virtue of (2.12) and (2.14), Gronwall’s inequality yields the result for
m = 1.

For m = 2, we have that

‖∇(∇u · ∇ρ+ ρ∇divu)‖L2(Ω)

≤ ‖∇u(t)‖L∞(Ω)‖∇2ρ‖L2(Ω) + ‖ρ(t)‖L∞(Ω)‖∇3u(t)‖L2(Ω)

+ ‖∇ρ(t)‖L4(Ω)‖∇2u(t)‖L4(Ω).

On the other hand, applying the operator ∇ to the continuity equation (1.1),
multiplying the resulting equation by p|∇ρ|2∇ρ and integrating we have

d

dt

∫

Ω

|∇ρ|4dx = −3

∫

Ω

|∇ρ|4divudx− 4

∫

Ω

|∇ρ|p−2∇ρ · ∇u · ∇ρdx

− p

∫

Ω

ρ|∇ρ|2∇ρ · ∇divudx,

so that
d

dt
‖∇ρ‖L4(Ω) ≤ C(‖∇u‖L∞(Ω)‖∇ρ‖L4(Ω) + ‖∇2u‖L4(Ω)); (2.15)

which implies the estimate

‖∇ρ(t)‖4 ≤ Cec
∫ t
0
‖∇u(s)‖∞ds

(

‖∇ρ0‖4 + ‖ρ0‖∞
∫ t

0

‖∇2u(s)‖4ds
)

, (2.16)

for universal constants C and c. Consequently, m = 2 follows from Gronwall’s
inequality and the case m = 1.

Finally, we recall that when m ≥ 3 the space Hm−1 is an algebra so that

‖∇m−1(∇u · ∇ρ+ ρ∇divu)‖L2(Ω)

≤ ‖u(t)‖Hm(Ω)‖ρ(t)‖Hm(Ω) + ‖ρ(t)‖Hm−1(Ω)‖u(t)‖Hm+1(Ω).

thus, once more, Gronwall’s inequality and the case m− 1 imply the result for any
m ≥ 2. �

2.3. The magnetic field in terms of u. We move on to considering the following
problem for the magnetic field in terms of a given velocity field u.











Ht + u · ∇H−H · ∇u+Hdivu = ν∆H, on Ω× (0, T ),

divH = 0, on Ω× (0, T ),

H(x, 0) = H0(x) on Ω× {t = 0},
(2.17)

with periodic boundary conditions (recall that Ω is the 2-dimensional torus). Note
that this is a linear parabolic equation and can be solved by the standard Faedo-
Galerkin method. Regarding the regularity of H we have the following.
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Lemma 2.3. Supose that H0 ∈ Hm(Ω) and u ∈ L2(0, T ;Hm+1(Ω)), for some m ≥
1. Then, (2.17) has a unique solution H ∈ L2(0, T ;Hm+1(Ω)) ∩ C([0, T ];Hm(Ω)).
Moreover, we have the following a piori estimate

‖H(t)‖2Hm(Ω) +

∫ t

0

‖H‖2Hm+1ds

≤ φ(T, ‖u‖L2(0,T ;Hm(Ω)), ‖H0‖2Hm)(1 + ‖u‖L2(0,T ;Hm+1(Ω))), (2.18)

for a.e. t ∈ [0, T ].

Proof. We omit the proofs of existence and uniqueness of solutions as they follow
from standard procedures from the theory of linear parabolic equations. On the
other hand estimate (2.18) follows inductively by taking the α derivative of equation
(2.17), for any multi-index α with |α| ≤ m, taking the inner product by ∂αH
and integrating by parts. After some standard manipulation, involving Young’s
inequality with ε, Gronwall’s inequality yields the result. �

2.4. The Lagrangian transformation. Before we go into the resolvability of the
NLS in terms of u, we have to establish some properties of the associated Lagrangian
transformation. Since we deal with Sobolev norms in different coordinates it is
very advantageous to have some information about the regularity of the change of
variables.

Let us recall that the Lagrangian transformation Y(t,x) = (t,y(t,x)) can be
formulated for any velocity field u through the identity

y(t,Φ(t;x)) = y0(x), x ∈ Ω (2.19)

where y0 is a given diffeomorphism and Φ = Φ(t;x) is the flux associated to the
velocity field of the fluid, satisfying the the ODE

{

dΦ
dt (t;x) = u(t,Φ(t;x)),

Φ(0;x) = x.
(2.20)

In this opportunity, regarding the SW-LW Interactions model, we choose

y0(x) = x,

Note that if we denote J̃y(t,x) := Jy(t,Φ(t,x))) = | det ∂y
∂z (t,Φ(t,x))| then using

(2.19) along with Liouville’s formula for the determinant applied to the gradient of
Φ we have that

d

dt
J̃y(t,x) = −divu(t,Φ(t,x))J̃y(t,x); (2.21)

and from the continuity equation (2.9), a straightforward calculation shows that

d

dt

[

J̃y(t)

ρ(t,Φ(t;x))

]

= 0. (2.22)

In other words, the function Jy/ρ is constant along particle paths.
Taking into account our particular choice for y0 we conclude that

(max
x∈Ω

ρ0(x))
−1 ≤ Jy(t,x)

ρ(t,x)
≤ (min

x∈Ω
ρ0(x))

−1, (2.23)

and this holds for all (x, t) ∈ Ω × [0,∞). In particular, we see that, y(t, ·) is a
diffeomorphism from Ω onto Ωy, for any t ≥ 0, as long as the density is positive
and finite. Let us recall that that, in fact, Ωy = Ω is the 2-dimensional torus and
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that y(t, ·) is a change of variables from Ω onto itself. However we distinguish the
domain of the Lagrangian coordinate with the sub-index y as we will deal with
Sobolev norms in the different coordinates.

Moreover, defining the deformation gradient E as E(x, t) := ∇xy(x, t), it can be
shown that its entries Eij satisfy the following
{

d
dtEij(t,x) +

∑n
k=1

∂Eij

∂xk
(t,x)uk(t,x) +

∑n
k=1 Eik(t,x)

∂uk

∂xj
(t,x) = 0

Ei,j(t, 0) = δij .
(2.24)

where u = (u1, ..., un).
Indeed, this follows by taking the gradient in (2.19) and differentiating the re-

sulting equation with respect to t.
Multiplying (2.24) by 2m|Eij |2m−2Eij , for any given integer m > 2, and inte-

grating by parts we get

d

dt

∫

Ω

|Eij |2mdx =

∫

Ω

|Eij |2mdivudx− 2m

∫

Ω

|Eij |2m−2Eij

n
∑

k=1

Eik
∂uk
∂xj

dx

≤ C||∇u(t)||L∞(Ω)

∫

Ω

|E|2mdx,

where C > 0 depends only on on m. Taking the sum over 1 ≤ i, j ≤ 2 we obtain

d

dt

∫

Ω

|E|2mdx ≤ C||∇u(t)||L∞(Ω)

∫

Ω

|E|2mdx. (2.25)

In fact, realizing that (2.24) is a transport equation we can obtain, through the
method of characteristics, the following L∞ estimate

‖E(t)‖L∞(Ω) ≤ exp

{
∫ t

0

‖∇u(s)‖L∞(Ω)ds

}

. (2.26)

Furthermore, through a similar reasoning to that of the proof of lemma 2.2
applied to equation (2.24), we can prove the following.

Lemma 2.4. Let m ≥ 1 and assume that u ∈ L2(0, T ;Hm+1(Ω)), with ∇u ∈
L1(0, T ;L∞(Ω)).

Then, E ∈ L∞(0, T ;Hm(Ω)) and we have the estimate

‖E(t)‖Hm(Ω) ≤ φ(T, ‖u‖L1(0,T ;Hm+1(Ω)), ‖∇u‖L1(0,T ;L∞(Ω))), (2.27)

for all 0 < t < T .

We omit the proof as it goes by the same lines as the proof of lemma 2.2, once
that we realize that the structure of the equations (2.9) and (2.24) is very similar.

To conclude this subsection, let us also analyse the inverse deformation gradient
B(t,y) := ∂x

∂y (t,y), where x(t,y) is the inverse of the Lagrangian coordinate.

From the relation x(t,y(t, z)) = z and using the definition of the Lagrangian
coordinate it can be shown that B satisfies the equation

{

d
dtB(t,y) = ∇xu(t,x(t,y))B(t,y), (t,y) ∈ .(0, T )× Ωy

B(0,y) = Id,
(2.28)

where Id is the 2 × 2 identity matrix. Indeed, it suffices to realize that relation
(2.19) implies that x(t,y) = Φ(t,y).
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Using this equation it can be easily shown that

‖B(t)‖L∞(Ωy) ≤ C exp

(
∫ t

0

‖∇xu(s)‖L∞(Ω)ds

)

, (2.29)

for all 0 ≤ t ≤ T , provided that ∇u ∈ L1(0, T ;L∞(Ω)). Moreover we have the
following result regarding the regularity of B.

Lemma 2.5. Let m ≥ 1 and assume that u ∈ L2(0, T ;Hm+1(Ω)), with ∇u ∈
L1(0, T ;L∞(Ω)).

Then, B ∈ L∞(0, T ;Hm(Ωy)) and we have the estimate

‖B(t)‖Hm(Ωy) ≤ φ(T, ‖u‖L2(0,T ;Hm+1(Ω)), ‖∇u‖L1(0,T ;L∞(Ω))), (2.30)

for all 0 < t < T .

In order to prove this result we need the following observation about Lq and
Sobolev norms in different coordinates.

Remark 2.1. (i) From equation (2.21) we have that

‖Jy(t)‖L∞(Ω) ≤ C exp

(
∫ t

0

‖divu(s)‖L∞ds

)

. (2.31)

Therefore, for any function f ∈ Lq(Ω) we have

‖f(x(t, ·))‖Lq(Ωy) = ‖|f(·)|qJy(t)‖1/qL1(Ω) ≤ φ(‖∇u‖L1(0,T ;L∞(Ω)))‖f‖Lq(Ω).

(ii) On the other hand, a straightforward combinatorial argument (which can be
made rigorous using induction) shows that there are universal polynomials Qk

m of
degree k, k = 1, ...,m, such that, for any smooth enough function f

|∇m
y f(x(t,y))| ≤

m
∑

k=1

|∇k
xf(x(t,y))|Qk

m

(

|B(t,y)|, |∇yB(t,y)|, ..., |∇m−kB(t,y)|
)

. (2.32)

In fact, Q1
m(z0, z1, ..., zm−1) = zm−1. In particular, if f ∈ Hm(Ω), Gagliardo-

Nirenberg inequality implies that,

‖∇m
y f(x(t, ·)‖L2(Ω)

≤ φ(‖∇u‖L1(0,T ;L∞(Ω)))
(

‖B‖mL∞(Ω)‖∇m
x f(t)‖L2(Ω)+

+ ‖∇f(t)‖L∞(Ω)‖∇m−1
y B‖L2(Ω) + ‖f(t)‖Hm(Ω)(1 + ‖B(t)‖mHm−1(Ωy)

)
)

,

where we have also used part (i) above.
(iii) When m = 2 we may refine this estimate as

‖∇2
yf(x(t, ·)‖L2(Ω)

≤ φ(‖∇u‖L1(0,T ;L∞(Ω)))
(

‖B‖mL∞(Ω)‖∇2
xf(t)‖L2(Ω) ++‖∇f(t)‖L4(Ω)‖∇yB‖L4(Ω)

)

,

Proof of lemma 2.5. Applying the operator ∇m
y to equation (2.28), multiplying by

∇mB, integrating over Ωy and using Young’s inequality we have

d

dt

∫

Ωy

|∇m
y B(t,y)|2dy ≤ ‖∇m

y [∇xu(t,x(t, ·)) ·B(t, ·)]‖2L2(Ωy)
+ ‖∇m

y B(t)‖2L2(Ωy)
.

(2.33)
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With this observation at hand, we proceed with the proof of (2.30) by induction
in m.

Note that, for m = 1,

‖∇y[∇xu(t,x(t, ·)) ·B(t, ·)]‖L2(Ωy)

≤ ‖B(t)‖2L∞(Ωy)
‖∇2

xu(t,x(t, ·))‖L2(Ωy) + ‖∇xu(t)‖L∞(Ω)‖∇yB(t)‖L2(Ωy),

so that, using remark 2.1 and inequality (2.33), Gronwall’s inequality yields the
result.

For m = 2 we see that

‖∇2
y[∇xu(t,x(t, ·))B(t, ·)‖L2(Ωy)

≤ ‖B(t)‖3L∞(Ωy)
‖∇3

xu(t,x(t, ·))‖L2(Ωy) + ‖∇xu(t,x(t, ·))‖L∞(Ωy)‖∇2
yB‖L2(Ωy)

+ 2‖∇2
xu(t,x(t, ·))‖L4(Ωy)‖B‖L∞(Ωy)‖∇yB(t)‖L4(Ωy)

≤ ‖B(t)‖3L∞(Ωy)
‖∇3

xu(t,x(t, ·))‖L2(Ωy) + ‖∇xu(t,x(t, ·))‖L∞(Ωy)‖∇2
yB‖L2(Ωy)

+ φ(‖∇u‖L1(0,T ;L∞(Ω)))‖u(t)‖H3(Ω)‖B‖L∞(Ωy)‖B(t)‖H2(Ωy).

Thus, plugging this inequality in (2.33) and using (2.29) together with the case
m = 1 and Gronwall’s inequality we conclude the result for m = 2.

When m ≥ 3 we use the fact that the space Hm is an algebra so that

‖∇m
y [∇xu(t,x(t, ·)) ·B(t, ·)]‖L2(Ωy) ≤ ‖∇xu(t,x(t, ·))‖Hm(Ωy)‖B(t)‖Hm(Ωy).

(2.34)
Since in this case ‖∇2

xu‖L∞(Ω) ≤ C‖u‖Hm+1(Ω), then using part (ii) of remark
2.1 we have that

‖∇xu(t,x(t, ·))‖Hm(Ωy)

≤ φ(‖∇u‖L1(0,T ;L∞(Ω)), ‖B‖L∞((0,T )×Ωy), ‖B‖L∞(0,T ;Hm−1(Ωy)))‖u(t)‖Hm+1(Ω).
(2.35)

Gathering (2.34) and (2.35) in (2.33), the result follows by Gronwall’s inequality
and the induction hypothesis. �

As a corollary of lemmas 2.4 and 2.5, we have the following equivalence between
Sobolev norms in Eulearean and Lagrangian coordinates.

Corollary 2.1. Let m ≥ 1 and assume that u ∈ L2(0, T ;Hm(Ω)), with ∇u ∈
L1(0, T ;L∞(Ω)). Then, there are positive constants C1 and C2 depending on T ,
‖u‖L2(0,T ;Hm(Ω)) and ‖∇u‖L1(0,T ;L∞(Ω)) such that

‖f(x(t, ·))‖Hm(Ωy) ≤ C1‖f‖Hm(Ω) ≤ C2‖f(x(t, ·))‖Hm(Ωy), (2.36)

for any f ∈ Hm(Ω).
When m = 2, the conclusion remains valid, if ∇2u ∈ L2(0, T ;L4(Ω)).

Proof. When m ≥ 3 we may use Remark 2.1 and the fact that ‖∇f‖L∞(Ω) ≤
C‖∇f‖Hm(Ω). For the case m = 2 we use part (iii) of Remark 2.1 instead. Here

we have to deal with the L4 norm of ∇B. However, applying the operator ∇y to
equation (2.28) multiplying by |∇yB|2∇yB and integrating, we see that

d

dt
‖∇B(t)‖4L4(Ωy)

≤ Cφ(‖∇xu‖L1(0,T ;L∞(Ω)))
(

‖B‖2L∞(Ωy))
‖∇2

xu‖L4(Ω)‖∇yB‖L4(Ωy)

+ ‖∇xu‖L∞(Ω)‖∇yB‖4L4(Ωy)

)

,
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thus, obtaining the following bound, through Gronwall’s inequality

‖∇yB(t)‖L4(Ωy) ≤ φ(‖∇xu‖L1(0,T ;L∞(Ω)), ‖∇u‖L2(0,T ;L4(Ω))).

This takes care of the first inequality in (2.36). The second inequality follows by
similar considerations involving the deformation gradient E instead of B. �

2.5. The NLS in terms of u. Finally, let us analyse the following NLS equation
in the Lagrangian coordinates (t,y) ∈ [0, T ]× Ωy associated to the given velocity
field u

{

iψt +∆yψ = |ψ|2ψ + g(v)h′(|ψ|2)ψ on (0, T )× Ωy;

ψ = ψ0 on {t = 0} × Ωy,
(2.37)

with periodic boundary conditions, where g and h are as in (1.12) and v is the
specific volume, which is related u through the the relation

v(y(x, t), t) =
1

ρ(x, t)
;

being ρ the solution of (2.9).

Lemma 2.6. Let m ≥ 2 and assume that
{

ρ0 ∈ Hm(Ω), with 0 < ρ0 <∞
u ∈ L2(0, T ;Hm+1(Ω)), with ∇u ∈ L1(0, T ;L∞(Ω))

so that, according to lemma 2.2, ρ ∈ L∞(0, T ;Hm(Ω)).
Then, there is a unique solution ψ ∈ C([0, T );Hm(Ωy))∩C1([0, T );Hm−2(Ωy))

of (2.37).
Moreover, we have the following a priori estimate

‖ψ(t)‖Hm(Ωy)

≤ φ
(

T, ‖ψ0‖Hm , ‖ρ0‖Hm , (min ρ0)
−1, ‖u‖L2(0,T ;Hm(Ω)), ‖∇u‖L1(0,T ;L∞(Ω))

)

· (1 + ‖u‖L2(0,T ;Hm+1(Ω))) (2.38)

for all 0 ≤ t ≤ T .

As it is well known, provided that ψ is sufficiently regular (for instance ψ ∈
C1([0, T ];L2(Ωy))∩C([0, T ];H2(Ωy))), (2.37) is equivalent to the integral equation
given by the Duhamel formula

ψ(t) = S(t)ψ0 +
1

i

∫ t

0

S(t− t′)
(

|ψ(t′)|2ψ(t′) + g(v(t′))h′(|ψ(t′)|2)ψ(t′)
)

dt′, (2.39)

where we have denoted by S(t) = exp
(

1
i∆yt

)

the group of isometries associated to

the linear Schrödinger equation. One can also introduce the momentary notation

F (t, ψ) =
1

i

(

|ψ|2ψ + g(v)h′(|ψ|2)ψ
)

, (2.40)

so to make (2.39) look more like an ordinary differential equation solution:

ψ(t) = S(t)ψ0 +

∫ t

0

S(t− t′)F
(

t′, ψ(t′)
)

dt′.

Lemma 2.6 will follow from the following classical result.
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Lemma 2.7. Let H be a complex Hilbert space and A : D(A) ⊂ H → H a nonneg-
ative self-adjoint operator. For some s ≥ 1 and T > 0, let also F : [0, T ]×D(As) →
D(As) be a continuous transformation (where D(A) is endowed with its graph
norm), which is bounded and Lipschitz continuous on its second variable on bounded
sets of [0, T ]×D(As).

Then, if S(t) = exp{−iAt} is the group of isometries associated to −iA and
ψ0 ∈ D(As), there exists a T ∗ > 0 and a unique and maximal solution ψ ∈
C([0, T ∗);D(As)) ∩ C1([0, T ∗);D(As−1)) of the integral equation

ψ(t) = S(t)ψ0 +

∫ t

0

S(t− t′)F
(

t′, ψ(t′)
)

dt′.

Moreover, one has the following alternative: either T ∗ = T and ψ may be extended
to t = T ; or ‖ψ(t)‖D(As) → ∞ as t→ T ∗.

Proof. We have to show that the successive approximation sequence

ψ(0)(t) = S(t)ψ0,

ψ(n)(t) = S(t)ψ0 +

∫ t

0

F
(

t′, ψ(n−1)(t′)
)

dt′

converges in C([0, T ′);D(As) for a sufficiently small T ′. This is elementary, as we
briefly sketch below.

Let X be the complete metric space of the ψ : [0, T ′] → D(As) whose range lie on
the “tube” K = {S(t)ψ0+y; 0 ≤ t ≤ T and ‖y‖D(As) ≤ δ}, where δ > 0 is arbitrary
and T ′ > 0 will be chosen later. If M > 0 is such that ‖F (t, ψ)‖D(As) ≤ M for
0 ≤ t ≤ T and ψ ∈ K, pick T ′ being the least between T and δ/M , so that the
sequence {ψ(n)} given above is entirely in X (here we used that I + As commutes
with S(t)).

Now the rest of the argument reminisces the proof of the Cauchy–Lipschitz–
Picard theorem. If

δ(0)(t) = ‖u(0)(t)‖D(As),

δ(n)(t) = ‖u(n)(t)− u(n−1)(t)‖D(As),

we can show by induction that

δ(0)(t) ≤Mt, and

δ(n)(t) ≤M
Lntn

n!
,

so that Supt
∑

δn(t) < ∞. By the Weierstrass M-test, ψ(n) converges uniformly
in C([0, T ′], D(As)) to a ψ, which is a fortiori solution of the integral equation.
Observe that a similar reasoning provides the uniqueness of solutions.

Regarding the blow up criteria we can argue as follows: if, by absurd, T ∗ < T
and ‖ψ(t)‖D(As) remained bounded, one could apply the same argument above at
initial time T ∗− ε, for a small ε > 0, to obtain a solution defined at [0, T ′+ ε]; this
is due to the fact that the lifespan of the local solution above depends only how
large is F on tubes like K. This contradiction settles the proof. �

Observe that, if H = L2(Ωy) and A : D(A) ⊂ H → H is given by Au = −∆u
with D(A) = H2(Ωy), then A is nonnegative and self-adjoint; and for any s ≥ 0,
D(As) = H2s(Ω) (with equivalent norms). In particular, if s = m/2, D(As) = Hm.
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Since m ≥ 2, Hm is an algebra and then the Sobolev inequalities and the equiv-
alence of the Sobolev norms in Eulerean and Lagrangian coordinates established
in the last subsection imply that F given by (2.40) is in accordance with the hy-
potheses of lemma 2.7. Thence, the preceding abstract proposition guarantees the
existence and uniqueness of local solutions. To conclude the proof of lemma 2.6, we
have to show that the a priori estimate (2.38) holds so that the blow up criterion
of lemma 2.7 is met and the local solutions are actually defined in the whole [0, T ].

To prove (2.38) we proceed by induction, wherein the case m = 2, contained in
the following lemma, is an adaptation of an estimate on the Nonlinear Schrödinger
equation due to Brezis and Gallouet [5].

Lemma 2.8. Let ψ be a solution of equation (2.37). Then
(i)

∫

Ωy

(

1

2
|∇yψ(t)|2 +

1

4
|ψ(t)|4 + αg(v)h(|ψ|2)

)

dy

≤ φ(T, ‖ψ0‖H1(Ωy), (min
x∈Ω

ρ0)
−1, ‖divu‖L2(0,T ;L2(Ω))). (2.41)

(ii)

∫

Ωy

(

|ψt|2 + |∆yψ|2
)

dy

≤ φ(T, ‖ψ0‖H2(Ωy), (min
x∈Ω

ρ0)
−1, ‖divu‖L2(0,T ;L2(Ω))). (2.42)

In particular, for a.e. t ∈ [0, T ]

max
y∈Ωy

|ψ(t)| ≤ φ(T, ‖ψ0‖H2(Ωy), (min
x∈Ω

ρ0)
−1, ‖divu‖L2(0,T ;L2(Ω))). (2.43)

Proof. Multiply (2.37) by ψt (the complex conjugate of ψt), take real part and
integrate integrate by parts to obtain

d

dt

∫

Ωy

{1

2
|∇yψ(y, t)|2 +

1

4
|ψ(y, t)|4

}

dy

= −
∫

Ωy

g(v(y, t))
∂

∂t
h(|ψ(y, t)|2)dy

= − d

dt

∫

Ωy

g(v(y, t))h(|ψ(y, t)|2)dy +

∫

Ωy

h(|ψ(y, t)|2)g(v(y, t))tdy. (2.44)

Note that from the definition of Y we have the conversion formula between
Eulerian and Lagrangian coordinates:

β(t,y)t = (β ◦Y(t,x))t + u · ∇x(β ◦Y(t,x)),

or synthetically,

β(t,y)t = βt(t,x) + u · ∇xβ(t,x).
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Then, recalling (1.12) and using the continuity equation (2.9) together with (2.23)
we have

∫ t

0

∫

Ωy

|g′(v)vt|2dyds =
∫ t

0

∫

Ω

∣

∣g′(1/ρ)
(

(1/ρ)t + u · ∇(1/ρ)
)∣

∣

2
Jydxds

=

∫ t

0

∫

Ω

∣

∣

∣

∣

g′(1/ρ)

ρ

(

(log ρ)t + u · ∇(log ρ)
)

∣

∣

∣

∣

2

Jydxds

=

∫ t

0

∫

Ω

g′(1/ρ)2

ρ
|divu|2Jy

ρ
dxds

≤ C(min
x∈Ω

ρ0)
−1

∫ t

0

∫

Ω

|divu|2dxds

Putting this inequality together with (2.44) we obtain (2.41) upon integrating
in t.

Let us now prove (2.42). First, in light of estimate (2.41) and using Sobolev’s
embedding for H1 functions we see from equation (2.37) that there is some C > 0
that depending on T , ‖ψ0‖H1(Ωy), (minx∈Ω ρ0)

−1 and ‖divu‖L2(0,T ;L2(Ω)) such that
∫

Ωy

|ψt|2dy − C ≤
∫

Ωy

|∆ψ|2dy ≤
∫

Ωy

|ψt|2dy + C. (2.45)

Now, we differentiate equation (1.5) with respect to t to obtain

iψtt +∆yψt = 2|ψ|2ψt + ψ2ψt + α
(

g′(v)h′(|ψ|2)vt

+ g(v)h′′(|ψ|2)(|ψ|2ψt + ψ2ψt) + g(v)h′(|ψ|2)ψt

)

,

where the over line stands for complex conjugation.
Multiplying this equation by ψt, taking imaginary part, integrating and using

Young’s inequality we obtain
∫

Ωy

|ψt|2dy −
∫

Ωy

|ψ0t|2dy

≤ C

∫ t

0

(

1 + ||ψ(t)||2L∞(Ωy)

)

∫

Ωy

|ψt|2dyds + C

∫ t

0

∫

Ωy

|g′(v)vt|2dyds. (2.46)

Let us recall Brezis and Gallouet’s inequality (see [5], cf. [4]) asserting that there
is a constant C > 0 depending only on Ω such that

||ω||L∞(Ω) ≤ C
(

1 +
√

log[1 + ||ω||H2(Ω)]
)

,

for every ω ∈ H2(Ω) with ||ω||H1(Ω) ≤ 1.
Combining this result with (2.41) and (2.45) we see that

||ψ(t)||L∞(Ωy) ≤ C
(

1 +
√

log[1 + ||ψt(t)||L2(Ωy)]
)

(2.47)

With this, the first term on the right hand side of (2.46) is bounded by

C

∫ t

0

(

1 + log[1 + ||ψt(s)||L2(Ωy)]
)

||ψt(s)||2L2(Ωy)
ds.

Coming back to (2.46) we have

||ψt(t)||2L2(Ωy)
≤ C + C

∫ t

0

(

1 + log[1 + ||ψt(s)||2L2(Ωy)
]
)

||ψt(s)||2L2(Ωy)
ds. (2.48)



SMOOTH LARGE SOLUTIONS FOR AURORA TYPE PHENOMENA IN THE 2-TORUS 21

Finally, defining

G(t) := 1 +

∫ t

0

(

1 + log[1 + ||ψt(s)||2L2(Ωy)
]
)

||ψt(s)||2L2(Ωy)
ds,

we see that

d

dt
G(t) =

(

1 + log[1 + ||ψt(t)||2L2(Ωy)
]
)

||ψt(t)||2L2(Ωy)
ds

≤ CG(t)(1 + log[1 +G(t)]).

Thus,
d

dt
log
[

1 + log[1 +G(t)]
]

≤ C,

which implies that
G(t) ≤ exp(α exp(βt)), (2.49)

for some α, β > 0 depending only on the initial data (note that they depend on the
H2 norm of ψ0).

In order to conclude we point out that this estimate and (2.45) imply (2.42),
while (2.43) follows from the Sobolev embeddings. �

Proof of lemma 2.6. Having proved the case m = 2 we proceed by induction in
m ≥ 3. So, let us assume that the result holds for m− 1, aiming to prove the case
m.

By (2.39) we have that

‖ψ(t)‖Hm(Ωy) ≤ C
(

‖ψ0‖Hm(Ωy) +

∫ t

0

(

‖ψ(t′)‖2L∞(Ωy)
‖ψ(t′)‖Hm(Ωy)

+ ‖g(v(t′))‖L∞(Ωy)‖h(|ψ(t′)|2)ψ(t′)‖Hm(Ωy)

+ ‖g(v(t′))‖Hm(Ωy)‖h′(|ψ(t′)|2)ψ(t′)‖L∞(Ωy)

)

dt′
)

(2.50)

On the one hand, the L∞-norms appearing in this inequality are easily estimated
using the hypotheses on the coupling functions as well as lemma 2.8. On the other
hand, by a similar reasoning to that of remark 2.1 we have that

‖h(|ψ(t)|2)ψ(t)‖Hm(Ωy) ≤ φ(T, h, ‖ψ‖L∞((0,T );Hm−1Ωy))(1+ ‖ψ(t)‖Hm(Ωy)), (2.51)

and also,

‖g(v(t))‖Hm(Ωy)

≤ φ(T, g, ‖∇u‖L1(0,T ;L∞(Ω)), ‖ρ‖L∞(0,T ;Hm−1(Ω)), ‖B‖L∞(0,T ;Hm−1))

· (1 + ‖ρ‖Hm(Ω)). (2.52)

Indeed, it suffices to realize that there are universal polynomials Qk
m of degree

k, k = 1, ...,m, such that for any two smooth enough functions f and ζ we have

|∇yf(ζ(y))| ≤
m
∑

k=1

|f (k)(ζ)|Qk
m(|∇yζ|, ..., |∇m−k+1

y ζ|),

where Q1
m(z1, ..., zm) = zm and Q2

m is of the form Q2
m(z1, ..., zm−1) = Cmz1zm−1 +

P 2
m(z1, ..., zm−2) for some constant Cm and another universal polynomial P 2

m of
degree 2. Then, if m ≥ 3, so that Hm →֒ W 1,∞, and all the derivatives of f are
bounded then, by the Gagliardo-Nirenberg inequality we have

‖∇m
y f(ζ)‖L2(Ωy) ≤ φ(f, ..., f (m), ‖ζ‖Hm−1)(1 + ‖ζ‖Hm(Ωy)).



22 H. FRID, D. MARROQUIN, AND J.F.C. NARIYOSHI

Putting (2.50), (2.51) and (2.52) together we obtain the result using the induction
hypothesis, lemma 2.2 and Gronwall’s inequality. �

3. Local solutions

Let us state the desired local existence result.

Proposition 3.1. Let m ≥ 3 be an integer and assume, in addition to (1.10),
(1.11) and (1.12), that ρ0, u0, H0 and ψ0 satisfy



















ρ0 ∈ Hm(Ω),

u0 ∈ Hm(Ω),

H0 ∈ Hm(Ω),

ψ0 ∈ Hm(Ωy).

Moreover, assume that there are constants 0 < m0 < M0 such that

m0 ≤ ρ0(x) ≤M0 (3.1)

for any x ∈ Ω.
Then there exists T ∗ = T ∗(m0, ‖ρ0‖Hm , ‖u0‖Hm , ‖H0‖Hm‖ψ0‖Hm

y
) > 0 and a

unique strong solution to the system (1.1)–(1.5) (ρ,u, ψ) such that


















ρ ∈ C([0, T ∗];Hm(Ω)) ∩ C1([0, T ∗];Hm−1(Ω)),

u ∈ L2(0, T ∗;Hm+1(Ω)) ∩H1(0, T ∗;Hm−1(Ω)),

H ∈ L2(0, T ∗;Hm+1(Ω)) ∩H1(0, T ∗;Hm−1(Ω)),

ψ ∈ C([0, T ∗];Hm(Ω)) ∩ C1([0, T ∗];Hm−2(Ω)).

We dedicate this section to the proof of this proposition. To this end, let us
introduce the space

ET = L2(0, T ;Hm+1(Ω;R2)) ∩H1(0, T ;Hm−1(Ω;R2)),

and let us define the operator

K : ET → ET

where v = Ku is the solution of the following linear parabolic problem on the
2-torus Ω











ρvt + (Lρv) + ρ(u · ∇)v = H · ∇H− 1
2∇|H|2 −∇p

+α∇(g′(1/ρ)h(|ψ ◦Y|2)Jy/ρ),

v(x, 0) = u0(x).

(3.2)

with ρ, H, Y and ψ being the corresponding density, magnetic field, Lagrangian
transformation and wave function associated to u, according to the considerations
from the previous section. Then we have the following.

Lemma 3.1. There exists a constant N depending on m0, ‖ρ0‖Hm(Ω), ‖u0‖Hm(Ω),
‖H0‖Hm(Ω) and ‖ψ0‖Hm(Ωy) with the following property: given r > N , there is a
positive T ∗ = T ∗(r,m0, ‖ρ0‖Hm , ‖u0‖Hm , ‖ψ0‖Hm

y
) for which

K : rBET∗
→ rBET∗

,

where rBET stands for the closed ball in ET with radius is r.
In other words, rBET∗

is invariant under K.
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Proof. Step #1.
Given u ∈ ET , lemma 2.1 asserts that

‖Ku‖2ET
≤ φ

(

T,
(

Min
x∈Ω,0≤t≤T

ρ(x, t)
)−1

, ‖ρ‖W 1,∞(0,T ;L2(Ω))∩C([0,T ];Hm)

)

·
(

‖ρ(u · ∇)Ku‖2L2(0,T ;Hm−1) + ‖∇H ·H‖L2(0,T ;Hm−1) + ‖∇p‖2L2(0,T ;Hm−1)

+
∥

∥α∇(g′(1/ρ)h(|ψ ◦Y|2)Jy/ρ)
∥

∥

2

L2(0,T ;Hm−1)
+ ‖u0‖2Hm

)

. (3.3)

Note that from (2.22) we have that

Jy

ρ
(t,x) = ρ0(y(t,x)), (3.4)

Then, using the fact that Hm−1(Ω) is an algebra, as well as the embedding ET →֒
C(0, T ;C1(Ω)), together with lemmas 2.2, 2.3, 2.6 and Corollary 2.1 we have

‖Ku‖2ET
≤ φ

(

T, (m0)
−1, ‖ρ0‖Hm , ‖u0‖Hm , ‖H0‖Hm , ‖ψ0‖Hm

y
, ‖u‖ET

)

·
(

1 + ‖Ku‖2L2(0,T ;Hm)

)

. (3.5)

Step #2.
Regarding the term ‖Ku‖L2(0,T ;Hm) appearing in the estimate above, we apply

the Gagliardo–Nirenberg inequality to obtain for every ε > 0

‖Ku‖2L2(0,T ;Hm) ≤ ε2‖Ku‖2L2(0,T ;Hm+1) + Cε‖Ku‖2L2(0,T ;L2)

≤ ε2‖Ku‖2ET
+ Cε‖Ku‖2L2(0,T ;L2). (3.6)

Choosing appropriately ε = ε(φ(T, . . .)), (3.5) is somewhat simplified to

‖Ku‖2ET
≤ φ

(

T, (m0)
−1, ‖ρ0‖Hm , ‖u0‖Hm , ‖H0‖Hm , ‖ψ0‖Hm

y
, ‖u‖ET

)

·
(

1 + ‖Ku‖2L2(0,T ;L2)

)

. (3.7)

To get rid of this final term in the right-side, multiply (3.2) by Ku to obtain

1

2

d

dt

∫

Ω

ρ(x, t)
∣

∣Ku(x, t)
∣

∣

2
dx+ µ ·

∫

Ω

∣

∣∇Ku(x, t)
∣

∣

2
dx

+

∫

Ω

(

µ+ λ
(

ρ(x, t)
)(

divKu(x, t)
)2
dx

=

∫

Ω

(H · ∇H− 1
2∇|H|2) ·Kudx+

∫

Ω

p(x, t) · divKu(x, t)dx

− α

∫

Ω

g′(1/ρ)h(|ψ ◦Y|2)Jy/ρ · divKu(x, t)dx; (3.8)

where we have used the continuity equation (2.9) in order to write

1

2

d

dt
(ρ|Ku|2) = ρ(Ku)t ·Ku+ ρ(u · ∇)Ku ·Ku− 1

2
div (ρu|Ku|2).

Thus by virtue of (2.23) and (1.12), using Young’s inequality we conclude that

1

2

d

dt

∫

Ω

ρ(x, t)
∣

∣Ku(x, t)
∣

∣

2
dx+ µ

∫

Ω

∣

∣∇Ku(x, t)
∣

∣dx

≤ Cµ(1 + ‖Ku(t)‖L2(Ω) + ‖p(ρ(t))‖L2(Ω) + ‖H‖2L4(Ω)‖∇H‖2L4(Ω)),
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and again, using the estimates from the previous section, Gronwall’s inequality
yields

Max
0≤t≤T

∫

Ω

∣

∣Ku(x, t)
∣

∣

2
dx+

∫ T

0

∣

∣∇u(x, t)
∣

∣

2
dxdt

≤ φ
(

T, (m0)
−1, ‖ρ0‖Hm , ‖u0‖Hm , ‖H0‖Hm , ‖ψ0‖Hm

y
, ‖u‖ET

)

.

Inserting this estimate in (3.7) we obtain,

‖Ku‖2ET
≤ φ

(

T, (m0)
−1, ‖ρ0‖Hm , ‖u0‖Hm , ‖H0‖Hm , ‖ψ0‖Hm

y
, ‖u‖ET

)

. (3.9)

Step #3. (Conclusion)
Let us recall that φ appearing on (3.9) is a continuous and non-decreasing func-

tion of its arguments. Moreover, we note that it can be most naturally chosen as
to satisfy

φ(T = 0, (m0)
−1, ‖ψ0‖Hm , ‖ρ0‖Hm , ‖u0‖Hm , η) ≤ constant independent of η,

= N

= N(‖ρ0‖Hm ,m0, ‖ψ0‖Hm).

In that way, for r > N , by continuity there exists a T ∗ > 0 such that

φ(T ∗, (m0)
−1, ‖ψ0‖Hm , ‖ρ0‖Hm , ‖u0‖Hm , r) < r2.

As a consequence, (3.9) says that K : rBET∗
→ rBET∗

.
�

Let us now introduce the space

FT = C([0, T ];L2(Ω;R2)) ∩ L2(0, T ; Ḣ1(Ω;R2)).

Then, we can prove that the constant T ∗ from lemma 3.1 above can be chosen so
that the application K, restricted to rBET∗

, is contractive in the norm of FT .

Lemma 3.2. Given any 0 < κ < 1, one can choose a r, T > 0, depending only on
r, ‖ρ0‖Hm ,m0, ‖ψ0‖Hm , for which, not only

K : rBET → rBET ,

but also for every u′ and u′′ in r · BET , one has that

∥

∥Ku′ −Ku′′
∥

∥

FT
≤ κ ·

∥

∥u′ − u′′
∥

∥

FT
. (3.10)

Proof. Step #1.
Let v′ = Ku′ and let us denote by ρ′, H′, ψ′ and Y′ = (t,y′(t, ·)) the density,

magnetic field, wave function and Lagrangian transformation associated to u′. Cor-
respondingly, we write v′′ = Ku′′ and denote by ρ′′, H′′, ψ′′ and Y′′ = (t,y′′(t, ·))
the density, magnetic field, wave function and Lagrangian transformation associ-
ated to u′′. Let us further denote ṽ = v′ − v′′, ρ̃ = ρ′ − ρ′′, H̃ = H′ − H′′,
ψ̃ = ψ′ − ψ′′, and Ỹ = Y′ −Y′′.
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Then, with some effort, we can show that ṽ satisfies the following equation

ρ′ṽt + ρ′(u′ · ∇)ṽ − Lρ′ ṽ =

− ρ̃v′′
t − (Lρ′ − Lρ′′)v′′ − ρ′(ṽ · ∇)v′′ − ρ̃(u′ · ∇)v′′

+ H̃ · ∇H′ +H′′ · ∇H̃−∇H′ · H̃−∇H̃ ·H′′

−∇(p(ρ′)− p(ρ′′)) +∇
((

g′(1/ρ′)− g′(1/ρ′′)
)

h(|ψ′ ◦Y′|2)Jy′/ρ′
)

+∇
(

g′(1/ρ′′)
(

h(|ψ′ ◦Y′|2)− h(|ψ′ ◦Y′′|2)
)

Jy′/ρ′
)

+∇
(

g′(1/ρ′′)
(

h(|ψ′ ◦Y′′|2)− h(|ψ′′ ◦Y′′|2)
)

Jy′/ρ′
)

+∇
(

g′(1/ρ′′)h(|ψ′′ ◦Y′′|2)
(

Jy′/ρ′ − Jy′′/ρ′′
)

.

(3.11)

Multiplying the equation above by ṽ and integrating by parts we arrive at

d

dt

{1

2

∫

Ω

ρ′|ṽ|2dx
}

+

∫

Ω

(µ|∇ṽ|2 + (λ(ρ′) + µ)(div ṽ)2)dx

=−
∫

Ω

ρ̃v′′
t · ṽdx−

∫

Ω

(λ(ρ′)− λ(ρ′′))divv′′div ṽdx

−
∫

Ω

ρ′[(ṽ · ∇)v′′] · ṽdx−
∫

Ω

ρ̃[(u′ · ∇)v′′] · ṽdx

+

∫

Ω

(H̃ · ∇H′ +H′′ · ∇H̃−∇H′ · H̃−∇H̃ ·H′′) · ṽdx

+

∫

Ω

(p(ρ′)− p(ρ′′))div ṽdx

−
∫

Ω

(

g′(1/ρ′)− g′(1/ρ′′)
)

h(|ψ′ ◦Y′|2)Jy′

ρ′
div ṽdx

−
∫

Ω

g′(1/ρ′′)
(

h(|ψ′ ◦Y′|2)− h(|ψ′ ◦Y′′|2)
)Jy′

ρ′
div ṽdx

−
∫

Ω

g′(1/ρ′′)
(

h(|ψ′ ◦Y′′|2)− h(|ψ′′ ◦Y′′|2)
)Jy′

ρ′
div ṽdx

−
∫

Ω

g′(1/ρ′′)h(|ψ′′ ◦Y′′|2)
(

Jy′

ρ′
− Jy′′

ρ′′

)

div ṽdx.

(3.12)

Note that, through some applications of Young’s inequality with ε and in light
of lemma 3.1, we can arrive at the desired conclusion, provided that we bound

appropriately ρ̃, H̃ , ψ̃, Ỹ and
J
y′

ρ′
− J

y′′

ρ′′
.

Step #2. (Analysis of ρ̃).
A straightforward calculation shows that ρ̃ satisfies the following equation







∂ρ̃

∂t
+ div (ρ̃u′ + ρ′′(u′ − u′′)) = 0

ρ̃(0,x) = 0.
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So, multiplying the equation by ρ̃ yields

1

2

d

dt

∫

Ω

ρ̃2dx

= −1

2

∫

Ω

(divu′)ρ̃2dx−
∫

Ω

ρ̃∇ρ′′ · (u′ − u′′)dx−
∫

Ω

ρ̃ρ′′div (u′ − u′′)dx

≤ 1

2
‖divu′(t)‖∞ · ‖ρ̃(t)‖22 + ‖∇ρ′′(t)‖∞ · ‖ρ̃(t)‖2 · ‖u′(t)− u′′(t)‖2
+ ‖ρ′′(t)‖∞ · ‖ρ̃(t)‖2 · ‖divu′(t)− divu′′(t)‖2;

hence, by Gronwall’s inequality and the fact that u ∈ C([0, T ∗];H3) and ρ′′ ∈
C([0, T ∗];H3),

∫

Ω

ρ̃2(x, t)dx ≤ C‖u′ − u′′‖2L2(0,T∗;H1(Ω)) (3.13)

for all 0 ≤ t ≤ T ∗ and some constant C depending on T ∗ and r.
Step #3. (Analysis of H̃).

Similarly, we see that H̃ is the solution of the following equation










H̃t − ν∆H̃ = −(u′ − u′′) · ∇H′′ − u′ · ∇H̃− H̃ · ∇u′ −H′′ · ∇(u′ − u′′)

+H̃divu′ +H′′div (u′ − u′′),

H̃(0,x) = 0.

Multiplying by H̃ and integrating, upon integrating by parts and using Young’s
inequality with ε we get

1

2

d

dt

∫

Ω

|H̃|2dx+ ν

∫

Ω

|∇H̃|2dx

≤ ε‖u′‖2∞
∫

Ω

|∇H̃|2dx+ Cε

(

‖∇H′′‖2∞‖u′ − u′′‖22 + ‖H′′‖2∞‖∇(u′ − u′′)‖22

(1 + ‖∇u′‖∞)‖H̃‖22
)

,

and choosing ε > 0 small enough, by Gronwall’s inequality and the fact that u ∈
C([0, T ∗];H3) and H′′ ∈ C([0, T ∗];H3),

∫

Ω

H̃2(x, t)dx +

∫ t

0

∫

Ω

|∇H̃|2dx ≤ C‖u′ − u′′‖2L2(0,T∗;H1(Ω)) (3.14)

for all 0 ≤ t ≤ T ∗ and some constant C depending on T ∗ and r.
Step #4. (Analysis of ỹ).
From the definition of the Lagrangian coordinate we see that y′ satisfies the

equation

y′
t(t,x) + u′(t,x) · ∇xy

′(t,x) = 0, y′(0,x) = x.

By symmetry, y′′ satisfies an analogous equation with u′′ in place of u′. Then, the
difference ỹ = y′ − y′′ satisfies

{

ỹt = −(u′ − u′′) · ∇xy
′ − u′′ · ∇ỹ,

ỹ(0,x) = 0.

Multiplying by ỹ and integrating by parts we obtain

d

dt

∫

Ω

|ỹ|2dx ≤ C(‖∇y′‖2∞‖u′ − u′′‖2 + ‖divu′′‖2∞‖ỹ‖22),
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and then, Gronwall’s inequality implies

∫

Ω

|ỹ|2dx ≤ C‖u′ − u′′‖2L2(0,T∗;H1(Ω)). (3.15)

In the interest of estimating the wave functions, we have to analyse also the
inverse Lagrangian transforms x′(t,y) and x′′(t,y) corresponding to the velocity
fields u′ and u′′, respectively. In that direction we have that the difference x̃ :=
x′ − x′′ solves the following equation

{

x̃t(t,y) = u′(t,x′(t,y)) − u′′(t,x′′(t,y)),

x̃(0,y) = 0.

Writing

u′(t,x′(t,y))− u′′(t,x′′(t,y)) = u′(t,x′(t,y)) − u′′(t,x′(t,y))

+ u′′(t,x′(t,y)) − u′′(t,x′′(t,y)),

and multiplying the equation above by x̃ we have

d

dt

∫

Ωy

|x̃|2dy

≤ C

(

∫

Ωy

|u′(t,x′(t,y)) − u′′(t,x′(t,y))|2dy + (1 + ‖∇xu
′‖∞)

∫

Ωy

|x̃|2dy
)

And, therefore, using Gronwall’s inequality together with Corollary 2.1 we obtain

∫

Ωy

|x̃|2dy ≤ C‖u′ − u′′‖2L2(0,T∗;H1(Ω)). (3.16)

Step #5. (Analysis of ψ̃).

Now, ψ̃(t,y) = ψ′(t,y)− ψ′′(t,y) solves the Schrödinger equation















iψ̃t +∆yψ̃ = |ψ′|2ψ′ − |ψ′′|2ψ′′ +
(

g(v′)− g(v′′)
)

h′(|ψ′|2)ψ′

+g(v′′)
(

h′(|ψ′|2)ψ′ − h′(|ψ′′|2)ψ′′
)

,

ψ̃(y, 0) = 0,

where, v′ and v′′ are given by

v′(t,y) =
1

ρ′(t,x′(t,y))
, v′′(t,y) =

1

ρ′′(t,x′′(t,y))
.

Thus, multiplying the equation by ψ̃ and taking imaginary parts, after some
manipulation we obtain

d

dt

∫

Ωy

|ψ̃|2dy ≤ C ·
(

∫

Ωy

|ψ̃|2dy +

∫

Ωy

|v′(t,y)− v′′(t,y)|2dy
)

, (3.17)
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Regarding the last term on the right hand side, using the uniform bounds avail-
able on the densities, we have that

∫

Ωy

|v′(t,y) − v′′(t,y)|2dy

≤ C

∫

Ωy

|ρ′(t,x′(t,y)) − ρ′′(t,x′′(t,y))|2dy

≤ C

(

∫

Ωy

|ρ′(t,x′(t,y)) − ρ′′(t,x′(t,y))|2dy

+ ‖∇ρ′′‖∞
∫

Ωy

|x′(t,y) − x′′(t,y)|2dy
)

≤ C‖u′ − u′′‖L2(0,T∗;H1(Ω)),

where we have used (3.16), (3.13) and Corollary 2.1.
Coming back to (3.17) and using Gronwall’s inequality we conclude

∫

Ωy

|ψ̃|2dy ≤ C‖u′ − u′′‖2L2(0,T∗;H1(Ω)), (3.18)

Step #6. (Analysis of
J
y′

ρ′
− J

y′′

ρ′′
and conclusion)

Finally, recalling (3.4) we note that
J
y′

ρ′
(t,y)−J

y′′

ρ′′
(t,y) = ρ0(x

′(t,y))−ρ0(x′′(t,y));

and reasoning similarly as before we have
∫

Ω

∣

∣

∣

∣

Jy′

ρ′
− Jy′′

ρ′′

∣

∣

∣

∣

2

(t,x)dx ≤ ‖u′ − u′′‖2L2(0,T∗;H1(Ω)). (3.19)

Analysing each one of the terms in (3.12) at the light of the estimates above, we
conclude that its right-hand side may be bounded by

ε ·
∫

Ω

(

|ṽ|2 + |∇ṽ|2
)

dx+ Cε · ‖u′ − u′′‖L2(0,T ;H1),

where Cε = C(ε, r, T ). Thus, integrating (3.12) from t′ = 0 to t′ = t < T and taking
a sufficiently small ε = ε(r, T ∗, µ) > 0,

∫

Ω

ρ′(x, t)|ṽ(x, t)|2dx+

∫ t

0

∫

Ω

|∇ṽ(x, t′)|2dx ≤ C · T · ‖u− u‖Ft .

At last, diminishing T ∗ = T ∗(r, ε) accordingly, the desired conclusion follows. �

Proof of proposition 3.1. For, say, κ = 1/2, let r and T ∗ be as in the previous
lemma. Then, for u(0) ≡ 0, define recursively

u(n) = Ku(n−1).

Since K preserves the ball of radius r in ET , u
(n) defines a bounded sequence in

ET . Moreover, from lemma 3.2 we know that

u(n) → u strongly in FT = C([0, T ];L2) ∩ L2(0, T ;H1),

where u is a fixed point of K.
By an elementary weak convergence argument,

u ∈ ET = L2(0, T ;Hm+1) ∩H1(0, T ;Hm−1),
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and, in fact,

u(n) ⇀ u weakly in ET .

In particular, by interpolation,

u(n) → u strongly in L2(0, T ;Hm).

Because of this convergence, it is not hard to see that the associated densities
ρ(n), magnetic fields H(n) and wave functions ψ(n) also converge















ρ(n) → ρ strongly in C([0, T ];Hm−1(Ω)),

H(n) → H strongly in C([0, T ];Hm−1(Ω)),

ψ(n) → ψ strongly in C([0, T ];Hm−1(Ωy))

for some ρ ∈ C([0, T ];Hm(Ω)) (which is positive), H ∈ L2(0, T ;Hm+1(Ω)) ∩
H1(0, T ;Hm−1(Ω)) and ψ ∈ C([0, T ];Hm(Ωy)); wherein the limit [ρ,u,H, ψ] is
a strong solution to the system (1.1)–(1.5) with the desired regularity.

This proves the existence part of the proposition. The uniqueness assertion
follows trivially from the lemma 3.2. �

4. Low order a priori estimates

In this section we deduce the first set of a priori estimates. These low order a
priori estimates are the starting point for the proof of the existence of global smooth
solutions. In particular, we prove that solutions are away from vacuum, so that the
Lagrangian transformation makes sense.

We point out that the Hm regularity, with m ≥ 3, from Theorem 1.1 was nec-
essary for the fixed point argument in the proof of the existence of local solutions.
Indeed, this is necessary in the calculations that ensure the application K to be a
contraction, where we required the wave function and the specific volume to be Lip-
schitz continuous. This is due to the coupling terms, where we have a composition
of the wave function with the Lagrangian transformation.

The a priori estimates from this section are based on the analogues by Yu Mei
in [22, 23] on the periodic solutions to the 2-dimensional MHD equations, which,
in turn, are inspired by the work of Văıgant and Kazhikhov [26], by the work of
Perepelitsa in [24] and by the work of Jiu, Wang and Xin [18] on the 2-dimensional
periodic Navier-Stokes equations.

The crucial a priori estimates are the uniform bounds from above and away
from vacuum for the density. As delineated in the introduction, these estimates
are achieved by analyzing a transport equation involving a function of the density,
namely, equation (4.11) below. The desired bounds will follow from the key esti-
mates on the commutators [ui, RiRj ](ρuj) and [Hi, RiRj ](Hj) of Riesz transforms
and the operators of multiplication by ui and Hi. Such estimates ultimately depend
on a careful analysis of the effective viscous flux F (given by (4.6)), which, in turn,
relies on some Lp bounds on the density.

Note that the coupling term from the momentum equation (1.2) behaves as a
pressure and, accordingly, we incorporate it in the definition of the effective viscous
flux. This is very advantageous for us as the elliptic estimates from lemmas 4.4 and
4.5 turn out to be identical to the analogues in [22]. However, this additional term
has to be accounted for in the subsequent estimates which poses a delicate interplay
between the estimates from the MHD equations and from the NLS equation. At
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this point, the regularity of the Lagrangian transformation comes into play and
is crucial in order to close the estimates. This is most evident in the proof of
Lemma 4.12 where we see explicitly how the regularity of the density depends on
the integrability of the deformation gradient.

In this section, we follow [22, 23], closely making emphasis on the modifications
that have to be made in order to include the short wave-long wave interactions.

4.1. Energy estimates and uniform bounds for the density. Let us begin
with the basic energy estimate, which follows directly from the energy identity (1.9).

Lemma 4.1. Let

E(t) :=

∫

Ω

(

ρ

(

1

2
|u|2 + e

)

+
1

2
|H|2

)

dx

+

∫

Ωy

(

1

2
|∇yψ|2 +

1

4
|ψ|4 + αg(v)h(|ψ|2)

)

dy.

Then,

E(t) +

∫ t

0

∫

Ω

(

µ|∇u|2 + (λ(ρ) + µ)(divu)2 + ν|∇H|2
)

dxds = E(0). (4.1)

In light of estimate (4.1), part (ii) of lemma 2.8 yields the following higher order
estimate on the wave function ψ.

Lemma 4.2.
∫

Ωy

(

|ψt|2 + |∆yψ|2
)

dy ≤ C. (4.2)

In particular, for a.e. t ∈ [0, T ]

max
y∈Ωy

|ψ(t)| ≤ C. (4.3)

Moving on, through some standard manipulation, multiplying equation (1.3) by
p|H|p−2H and integrating we deduce the following Lp estimate on the magnetic
field. We omit the details.

Lemma 4.3. For any p ≥ 2, there exists a positive constant C such that

sup
0≤t≤T

||H(t)||Lp(Ω) ≤ C. (4.4)

Note that the momentum equation (1.2) can be written as

(ρu)t + div (ρu⊗ u−H⊗H) = µ∇⊥ω +∇F, (4.5)

where, ∇⊥ is the operator ∇⊥ := (∂/∂x2,−∂/∂x1), ω := ∇⊥ · u is the vorticity
and F is the effective viscous flux given by

F := (2µ+ λ(ρ))divu− P (ρ)− 1

2
|H|2 + αg′(1/ρ)h(|ψ ◦Y|2)Jy

ρ
. (4.6)

Applying the divergence operator to equation (4.5) we see that

∆

(

ξt + η + F−
∫

Ω

F(x̃, t)dx̃

)

= 0, (4.7)

with
∫

Ω

(

ξt + η + F−
∫

Ω

F(x̃, t)dx̃

)

dx = 0,
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where, ξ and η are the solutions to the following elliptic problems

−∆ξ = div (ρu),

∫

Ω

ξ(x, t)dx = 0, (4.8)

−∆η = div
(

div (ρu⊗ u−H⊗H)
)

,

∫

Ω

η(x, t)dx = 0. (4.9)

From (4.7) we infer that

ξt + η + F−
∫

Ω

F(x̃, t)dx̃ = 0.

Thus, defining

Λ(ρ) :=

∫ ρ

1

2µ+ λ(s)

s
ds = 2µ log ρ+

1

β
(ρβ − 1), (4.10)

and using the continuity equation along with the definition of F we arrive at the
following transport equation

(Λ(ρ)− ξ)t + u · ∇(Λ(ρ)− ξ) + P +
|H|2
2

(4.11)

− αg′(1/ρ)h(|ψ ◦Y|2)Jy

ρ
− η + u · ∇ξ +

∫

Ω

F(x̃, t)dx̃ = 0.

Regarding the functions ξ and η, just as in [22, 26, 18], we have the following
elliptic estimates.

Lemma 4.4.

(1) ‖∇ξ‖2m ≤ Cm‖ρ‖ 2mk
k−1

‖u‖2mk, for any k > 1 and m ≥ 1;

(2) ‖∇ξ‖2−r ≤ C‖ρ‖1/22−r
r

, for any 0 < r < 1;

(3) ‖η‖2m ≤ Cm(‖ρ‖ 2mk
k−1

‖u‖24mk + ‖H‖24m), for any k > 1 and m ≥ 1,

where C is a positive constant independent of m, k and r.

Lemma 4.5.

(1) ‖ξ‖2m ≤ Cm1/2‖∇ξ‖ 2m
m+1

≤ Cm1/2‖ρ‖1/2m , for any m ≥ 2;

(2) ‖u‖2m ≤ C(m1/2‖∇u‖2 + 1), for any m ≥ 1;
(3) ‖∇ξ‖2m ≤ C(m3/2k1/2‖ρ‖ 2mk

k−1
φ(t)1/2+m‖ρ‖ 2mk

k−1
) for any m ≥ 1 and k > 1;

(4) ‖η‖2m ≤ C(m2k‖ρ‖ 2mk
k−1

+ m‖ρ‖ 2mk
k−1

+ m2φ(t) + m), for any m ≥ 1 and

k > 1,

where C is a positive constant independent of m and k, and

φ(t) :=

∫

Ω

(µω2 + (2µ+ λ(ρ))(divu)2 + ν|∇H|2)dx, t ∈ [0, T ].

Using the transport equation (4.11) and the elliptic estimates above, as well
as Lemma 4.3, we can derive the following Lp estimate for the density, which
corresponds to the analogue estimate in [22, lemma 3.5].

Lemma 4.6. Assume β > 1. Then, for any p ≥ 1,

sup
0≤t≤T

‖ρ(t)‖Lp(Ω) ≤ Cp
2

β−1 , (4.12)

where C is a positive constant independent of p.
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Proof. Fix some m ∈ N and multiply equation (4.11) by ρ[(Λ(ρ)− ξ)+]
2m−1, where

(·)+ denotes the positive part. Then, integrating the resulting equation over Ω we
have
1

2m

d

dt

∫

ρ[(Λ(ρ)− ξ)+]
2mdx (4.13)

+

∫

ρP [(Λ(ρ)− ξ)+]
2m−1dx +

1

2

∫

ρ|H|2[(Λ(ρ)− ξ)+]
2m−1dx

= α

∫

ρg′(1/ρ)h(|ψ ◦Y|2)Jy

ρ
[(Λ(ρ)− ξ)+]

2m−1dx

+

∫

ρη[(Λ(ρ)− ξ)+]
2m−1dx−

∫

ρu · ∇ξ[(Λ(ρ)− ξ)+]
2m−1dx

+

(
∫

F(x, t)dx

)(
∫

ρ[(Λ(ρ)− ξ)+]
2m−1dx

)

:=

3
∑

i=0

Ki.

Let us denote

f(t) :=

(
∫

ρ[(Λ(ρ)− ξ)+]
2mdx

)1/2m

,

so that

‖ρ(t)‖β2mβ+1 ≤ C

[

1 + f(t) +

(
∫

ρ|ξ|2mdx
)

β
2mβ+1

]

. (4.14)

Note that, since g′ and h are bounded functions, using (2.23) the term K0 can
be easily bounded as

|K0| ≤ C

∫

ρ1/2m[ρ(λ(ρ)− ξ)2m+ ]
2m−1
2m dx (4.15)

≤ C‖ρ‖1/2m1 ‖ρ(λ(ρ)− ξ)2m+ ‖
2m−1
2m

1

≤ Cf2m−1(t).

Next, just as in the proof of [22, lemma 3.5], using lemma 4.5, we have that

|K1| ≤ C‖ρ‖1+
1

2m

2mβ+1f
2m−1(t)[m2φ(t) +m], (4.16)

and

|K2| ≤ C‖ρ‖
1

2m

2mβ+1f
2m−1(t)[m2φ(t) +m]. (4.17)

Regarding K3 we note that, similarly to (4.15) we have that
∫

ρ[(Λ(ρ)− ξ)+]
2m−1dx ≤ Cf2m−1(t),

while
∫

|F|dx ≤
(
∫

(2µ+ λ(ρ))(divu)2dx

)1/2(∫

(2µ+ λ(ρ))dx

)1/2

+

∫

Pdx+
1

2

∫

|H|2dx+ α

∫
∣

∣

∣

∣

g′(1/ρ)h(|ψ ◦Y|2)Jy

ρ

∣

∣

∣

∣

dx

≤ C

[

φ1/2(t) + φ1/2(t)

(
∫

ρβdx

)1/2

+ 1

]

≤ C[φ1/2(t) + φ1/2(t)‖ρ‖
β
2

2mβ+1 + 1].
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Therefore,

|K3| ≤ Cf2m−1(t)[φ1/2(t) + φ1/2(t)‖ρ‖
β
2

2mβ+1 + 1]. (4.18)

Substituting (4.15)-(4.18) into (4.13) we have

d

dt
f(t) ≤ C[1 + φ1/2(t) + φ1/2(t)‖ρ‖

β
2

2mβ+1 + (m2φ(t) +m)‖ρ‖1+
1

2m

2mβ+1]. (4.19)

Once we have inequalities (4.14) and (4.19) the remaining of the proof follows
from lemma 4.5 and Gronwall’s inequality, wherein the details follow line by line
the proof of [22, lemma 3.5]. �

Lemma 4.7. For any ε > 0 there exists a positive constant C(ε) such that

sup
0≤t≤T

log(e + Z2(t)) +

∫ T

0

ϕ2(t)

e+ Z2(t)
dt ≤ CΦ1+βε

T , (4.20)

where Z2(t) :=
∫

(µω2 + F2

2µ+λ(ρ) + |∇H|2)dx, ϕ2(t) :=
∫

(ρ|u̇|2 + |∇2H|2)dx and

ΦT := ||ρ||∞ + 1.
In particular,

sup
0≤t≤T

log(e+ φ(t)) ≤ CΦ1+βε
T , (4.21)

where, φ is as defined in Lemma 4.5.
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Proof. The proof of this lemma consists of bounding appropriately all the terms in
the right hand side of the following identity

d

dt
Z2 + 2ϕ2 = −2

d

dt

∫

Ω

H⊗H : ∇udx − µ

∫

Ω

ω2divudx (4.22)

+ 4

∫

Ω

F∇u1 · ∇⊥u2dx+

∫

Ω

F2divu

[

ρ

(

1

2µ+ λ(ρ)

)′

− 1

2µ+ λ(ρ)

]

dx

+ 2

∫

Ω

Fdivu

[

ρ

(

P

2µ+ λ(ρ)

)′

− P

2µ+ λ(ρ)

]

dx

+

∫

Ω

F|H|2divu
[

ρ

(

1

2µ+ λ(ρ)

)′

− 1

2µ+ λ(ρ)

]

dx

− 2

∫

Ω

F

2µ+ λ(ρ)
(H · ∇u ·H+ νH ·∆H)dx

+ 2

∫

Ω

(ν∆H−Hdivu) · ∇u ·Hdx+ 2

∫

Ω

H · ∇u(ν∆H+H · ∇u)

+ 2

∫

Ω

(u · ∇H−H · ∇u+Hdivu) ·∆Hdx

− 2α

∫

Ω

Fg′(1/ρ)h(|ψ ◦Y|2)Jy

ρ
divu

[

ρ

(

1

2µ+ λ(ρ)

)′

− 1

2µ+ λ(ρ)

]

dx

+ 2α

∫

Ω

F

2µ+ λ(ρ)
divu

1

ρ
g′′(1ρ)h(|ψ ◦Y|2)Jy

ρ
dx

+ 2α

∫

Ω

F

2µ+ λ(ρ)
Dt(|ψ ◦Y|2)g′(1/ρ)h′(|ψ ◦Y|2)Jy

ρ

:= − d

dt
J0 +

12
∑

i=1

Ji.

Here Dt =
d
dt +u · ∇ stands for the material derivative and (·)′ stands for differen-

tiation with respect to ρ.
This identity follows after some lengthy and tedious manipulation by rewriting

the momentum equation as

ρu̇ = ∇F+ µ∇⊥ω +H · ∇H, (4.23)

where u̇ = Dtu, multiplying by u̇, integrating by parts and using the continuity
equation (1.1) in order to deal with the material derivative of some of the terms.
We write divu as

divu =
F+ P (ρ) + 1

2 |H|2 − αg′(1/ρ)h(|ψ ◦Y|2)Jy

ρ

2µ+ λ(ρ)
, (4.24)

in order to complete the term F2

2µ+λ(ρ) on the left hand side and then we use the

magnetic field equation (1.3) to transform some troublesome terms into ones that
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are easier to handle. In particular, we use the following key observation
∫

Ω

H · ∇H · u̇dx = − d

dt

∫

Ω

H⊗H : ∇udx+

∫

Ω

(ν∆H−Hdivu) · ∇u ·Hdx

+

∫

Ω

H · ∇u · (ν∇H+H · ∇u)dx.

Another important observation in the deduction of identity (4.22) is that by virtue

of (2.22) we have that Dt

(

Jy

ρ

)

= 0.

This identity has an analogue in [22] where the terms J0, ..., J9 are identical and,
once we have lemma 4.6, they may be estimated as

9
∑

i=1

|Ji| ≤ CΦ1+βε
T (1 + ‖∇u‖22 + ‖∇H‖22)(1 + Z2(t)),

for any ε > 0, where C = C(ε) is a positive constant.
Moreover, noting that ‖∇u(t)‖22 ≤ C(1 + Z2(t)) (see, for instance, [24, lemma

1]) and using Lemma 4.3 along with Young’s inequality with ε, we have

|J0| ≤ 2‖H‖24‖∇u‖2 ≤ C0 +
1

2
Z2 (4.25)

In our case, the terms J10, J11 and J12 appear due to the short wave-long wave
interactions. From the fact that g′ has compact support in (0,∞) and using (2.23)
as well as Lemma 4.2 we have

12
∑

i=10

|Ji| ≤ C

∥

∥

∥

∥

F

(2µ+ λ(ρ))1/2

∥

∥

∥

∥

2

[

‖∇u‖2 +
∫

Ω

|Dt(ψ ◦Y)|2Jydx

]

= C

∥

∥

∥

∥

F

(2µ+ λ(ρ))1/2

∥

∥

∥

∥

2

[

‖∇u‖2 +
∫

Ωy

|ψt|2dy
]

≤ CZ(t)[1 + ‖∇u‖2]
≤ C(1 + Z2(t))(1 + ‖∇u‖22).

Thus, we conclude that

d

dt
(1 + Z2(t)− J0) + ϕ2(t) ≤ CΦ1+βε

T (1 + ‖∇u‖22 + ‖∇H‖22)(1 + Z2(t)) (4.26)

and, by virtue of (4.25), Lemma 4.1 and Gronwall’s inequality yield the result. �

Before we prove the key uniform estimates for the density we need the following
lemma whose proof is identical to [23, lemma 0.1].

Lemma 4.8. For any p > 4, there exists a positive constant C(p) such that

‖ρu‖p ≤ C(p)Φ
1+ β

4

T (‖∇u‖2 + 1)1−
2
p .

We can now prove that neither vacuum, nor concentration develop in finite time,
which guarantees that the Lagrangian transformation is well defined at all times.

Lemma 4.9. Let β > 4
3 . Then, there exists a constant C > 0 such that

C−1 ≤ ρ(x, t) ≤ C, for all (x, t) ∈ Ω× [0, T ]. (4.27)
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In particular,

sup
0≤t≤T

∫

Ω

(|∇u|2 + |∇H|2)dx+

∫ T

0

ϕ2(t)dt ≤ C. (4.28)

Proof. As outlined in the beginning of this section, the proof consists in analysing
equation (4.11). First, similarly as in [24, 22] (cf. [15, 20]), from (4.8) and (4.9) we
note that we can write

u · ∇ξ − η = [ui, RiRj ](ρuj)− [Hi, RiRj ](Hj),

where Ri are the Riesz transform and [b, RiRj ](f) = bRiRj(f) − RiRj(bf) is the
Lie bracket.

Then, we can rewrite equation (4.11) in the Lagrangian coordinates as

(

Λ(ρ(y, τ)) − ξ(y, τ)
)

t
+ P (ρ(y, τ)) +

|H|2
2

(y, τ) − αg′(v)h(|ψ|2)vJy(y, τ)

+ [ui, RiRj ](ρuj(y, τ)) − [Hi, RiRj ](Hj)(y, τ) +

∫

Ω

F(x̃, τ)dx̃ = 0.

(4.29)
Thus, upon integrating over [0, t], we conclude that, for any (x, t) ∈ Ω × [0, T ] we
have

2µ log
ρ(x, t)

ρ0(x0)
+

1

β
(ρβ(x, t)− ρβ0 (x0))− ξ(x, t) + ξ0(x0)

≤ C +

∫ t

0

[ui, RiRj ](ρuj)(τ)dτ +

∫ t

0

[Hi, RiRj ](Hj)(τ)dτ −
∫ t

0

∫

Ω

F(x̃, τ)dx̃dτ,

(4.30)
where x0 = y(x, t). Note that we used (2.23) as well as the uniform bounds on g′

and h.
Let us recall the result by Coiffman et al. [6, 7, 8] stating that, for any b, f ∈

C∞(Ω), then for p ∈ (1,∞) there exists a constant C(p) > 0 such that

‖[b, RiRj ](f)‖p ≤ C‖b‖BMO‖f‖p. (4.31)

Moreover, if qk ∈ (1,∞), k = 1, 2, 3 satisfy 1
q1

= 1
q2

+ 1
q3
, then there is a constant

C depending on qk such that

‖∇[b, RiRj ](f)‖q1 ≤ ‖∇b‖q2‖f‖q2. (4.32)

With this result at hand, we can bound the first two integrals on the right hand
side of (4.30). Indeed, for p > 4, the following Gagliardo-Nirenberg type inequality
follows from a well known inequality (see, e.g., [1] theorem 5.9, p.140)

‖[ui, RiRj ](ρuj)‖∞ ≤ C‖[ui, RiRj ](ρuj)‖
1− 4

p
p ‖∇[ui, RiRj ](ρuj)‖

4
p
4p

p+4

(4.33)

and, using (4.31), (4.32), we have that the right hand-side can be estimated by

≤ C (‖u‖BMO‖ρu‖p)1−
4
p (‖∇u‖4‖ρu‖p)

4
p

≤ CΦ
1+ β

4

T (‖∇u‖2 + 1)
2− 6

p ‖∇u‖
4
p

4 , (4.34)

where the last inequality follows from lemma 4.8.
On the other hand, similarly as in [22], using the following elliptic estimate

‖∇u‖4 ≤ C(‖divu‖4 + ‖ω‖4), (4.35)
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and writing divu as in (4.24), after some manipulation, for any ε > 0 we have that

‖∇u‖4 ≤ CΦ
1+βε+2β

4

T (e+ ‖∇u‖2 + ‖∇H‖2)
(

ϕ2

e+ Z2

)
1
4

+ CΦ
2βε+5β

8

T (e+ ‖∇u‖2 + ‖∇H‖2)
5
4

(

ϕ2

e+ Z2

)

1
8

+ C,

(4.36)

where Z and ϕ are those defined in lemma 4.7. Here we have used the fact that

Z2 ≤ CΦβ
T

(

‖∇u‖22 + ‖∇H‖22
)

and that for any ε > 0

∥

∥

∥

∥

F

2µ+ λ(ρ)

∥

∥

∥

∥

2

4

≤ C

∥

∥

∥

∥

∥

F
√

2µ+ λ(ρ)

∥

∥

∥

∥

∥

1−ε

2

‖F‖1+ε
2(1+ε)

ε

≤ CZ1−ε‖F‖ε2‖∇F‖2

≤ CZΦ
βε
2

T

(

Φ
1
2

Tϕ+ ‖∇H‖2ϕ
1
2

)

,

where, the last inequality follows by a standard elliptic estimate on the identity
∆F = div (ρu̇−H · ∇H), which holds by virtue of (4.23).

Thus, putting (4.34) and (4.36) together and choosing p > 4 large enough we
have that

∫ T

0

‖[ui, RiRj ](ρuj)‖∞dt ≤ CΦ1+ β
4 +βε. (4.37)

Similarly, using Lemma 4.3, for p > 4, again using the analogue of (4.33) and
(4.31), (4.32), we have that

‖[Hi, RiRj ](Hj)‖∞ ≤ C (‖H‖BMO‖H‖p)1−
4
p (‖∇H‖4‖H‖p)

4
p

≤ C‖∇H‖1−
4
p

2 ‖∇H‖
4
p

4 ≤ C‖∇H‖1−
2
p

2 ‖∇2H‖
2
p

2

≤ CΦ
β
2

T (‖∇u‖2 + ‖∇H‖2)
(

ϕ2(t)

e+ Z2(t)

)

1
p

.

Thus, by virtue of Lemma 4.7 we obtain that
∫ T

0

‖[Hi, RiRj ](Hj)‖∞dt ≤ CΦ1+βε
T . (4.38)

Now, we note that from Lemmas 4.1 and 4.6 we have that
∫ T

0

F(x̃, t)dxdt ≤ C.

Moreover, for a suitably large but fixed m > 1, Lemma 4.4 implies that

‖ξ‖2m ≤ Cm1/2‖ρ‖1/2m ≤ C, ‖∇ξ‖2 ≤ ‖ρu‖2 ≤ CΦ
1
2

T .

Also, Lemma 4.5 implies that

‖∇ξ‖2m ≤ C(1 + φ(t)
1
2 ).

Now, we recall the inequality by Brézis and Wainger (see [4, 11]) stating that for
the 2-torus Ω (and also for R2), for any q > 2, there is a positive constant C such
that

‖w‖L∞(Ω) ≤ C‖∇w‖L2(Ω)

√

log(1 + ‖∇w‖Lq(Ω) + C‖w‖L2(Ω) + C,
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for any w ∈ W 1,q(Ω).
Hence, in light of Lemma 4.7, we have

‖ξ‖∞ ≤ C(‖ξ‖2m + ‖∇ξ‖2) log
1
2 (e+ ‖ξ‖W 1,2m) ≤ Φ

1
2

T log
1
2 (e + ‖ξ‖W 1,2m)

≤ CΦ
1
2

T log1/2(e+ φ(t)) ≤ CΦ
1+ βε

2

T .

Gathering all this information in (4.30) we obtain that,

Φβ
T ≤ CΦ

1+ β
4 +βε

T ,

so that, if β > 4
3 , we can choose ε > 0 small enough and conclude that

sup
(x,t)∈Ω×[0,T ]

ρ(x, t) ≤ C.

In particular, we can apply Gronwall’s inequality in (4.26) to conclude that

∫ T

0

ϕ2(t)dt ≤ C,

which, implies that
∫ T

0

‖H‖2∞dt ≤ C.

Taking this information back to (4.29) we can also derive a positive lower bound
for the density by a similar reasoning. That is,

inf
(x,t)∈Ω×[0,T ]

ρ(x, t) ≥ C−1. (4.39)

�

We can summarize the a priori estimates obtained so far in the following lemma.

Lemma 4.10. There is a constant C > 0 depending only on T , ‖u0‖H1(Ω), ‖H0‖H1(Ω),
‖ψ0‖H2(Ωy) and the uniform bounds from above and below on ρ0 such that

C−1 ≤ ρ(x, t) ≤ C, (x, t) ∈ Ω× [0, T ], (4.40)

sup
t∈[0,T ]

(‖u(t)‖H1(Ω)+‖H(t)‖H1(Ω))+

∫ T

0

(‖√ρu̇‖2L2(Ω)+‖∇2H‖2L2(Ω))ds ≤ C, (4.41)

sup
t∈[0,T ]

(‖ψt(t)‖L2(Ωy) + ‖ψ(t)‖H2(Ωy)) ≤ C. (4.42)

4.2. H2 estimates. Now, we turn our attention to the a priori estimates in H2 for
the density, velocity and magnetic field.

Lemma 4.11. There is a constant C > 0, depending on ‖u0‖H2(Ω), ‖H0‖H2(Ω),
‖ψ0‖H2(Ωy) and the uniform bounds from above and below on ρ0, such that

sup
0≤t≤T

(‖√ρu̇‖2L2(Ω) + ‖Ht‖2L2(Ω)) +

∫ T

0

(‖∇u̇‖2L2(Ω) + ‖∇Ht‖2L2(Ω)2dt) ≤ C. (4.43)
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Proof. Let us denote f = αg′(1/ρ)h(|ψ ◦ Y|2)Jy

ρ . Applying the operator u̇j [∂t +

div (u·)] to the jth component of the momentum equation equation (1.2), summing
with respect to j and integrating we obtain

1

2

d

dt

∫

Ω

ρ|u̇|2dx =

∫

Ω

u̇j [∂xjft + div (u∂xjf)]dx−
∫

Ω

u̇j [∂xjpt + div (u∂xjp)]dx

+ µ

∫

Ω

u̇j [∂t∆uj + div (u∆uj)]dx

+

∫

Ω

u̇j [∂xjt((µ+ λ)divu) + div (u∂xj ((µ+ λ)divu))]dx

+

∫

Ω

u̇j [∂t((H · ∇)Hj) + div (u(H · ∇)Hj)]dx

+
1

2

∫

Ω

u̇j [∂xjt(|H|2) + div (u∂xj (|H|2))]dx :=

5
∑

i=0

Ni. (4.44)

Again, there is analogue identity in [22], wherein the terms N1, · · · , N5 are iden-
tical and, through integration by parts and some manipulation using the continuity
equation, are estimated as

5
∑

i=1

Ni ≤ −µ
2
(‖∇u̇‖2L2(Ω) + ‖Dtdivu‖2L2(Ω)) + δ‖∇Ht‖2L2(Ω)

+ Cδ(1 + ‖Ht‖2L2(Ω) + ‖√ρu̇‖2L2(Ω) + ‖∇u‖4L4(Ω)),

for arbitrary δ > 0 (to be chosen) and some suitably large Cδ.
Regarding the term N0, due to the short wave-long wave interactions, integrating

by parts, we see that

N0 =

∫

Ω

div u̇(ft + div (fu))− 2

∫

Ω

f∂xju
k∂xk

u̇j .

Moreover, using the continuity equation, we have that

ft + div (fu) = Dtf + fdivu

= −αg
′′(1/ρ)

ρ
h(|ψ ◦Y|2)Jy

ρ
+ αg′(1/ρ)Dt[h(|ψ ◦Y|2)]Jy

ρ

+ fdivu,

and, noting that
∫

Ω |Dt(ψ ◦Y)|2Jydx =
∫

Ωy

|ψt|2dy ≤ C, using Young’s inequality,

we obtain that

N0 ≤ µ

8
‖∇u̇‖2L2(Ω) + C.
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On the other hand, applying the operator ∂t to the magnetic field equation (1.3),
multiplying the resulting equation by Ht and integrating we obtain

1

2

d

dt

∫

Ω

|Ht|2dx+ ν

∫

Ω

|∇Ht|2dx

= −
∫

Ω

ut · ∇H ·Htdx+

∫

Ω

Ht · ∇u ·Htdx+

∫

Ω

H · ∇ut ·Htdx

−
∫

Ω

|Ht|2divudx−
∫

Ω

H · divutHtdx

=

∫

Ω

(H · ∇u̇− u̇∇H−Hdiv u̇) ·Htdx+

∫

Ω

(Hi∂iH
j
t −Hi∂jH

i
t)(u · ∇uj)dx

+

∫

Ω

(

Ht · ∇u− 1

2
Htdivu− u · ∇Ht

)

Htdx

≤ δ‖∇u̇‖2L2(Ω) +
ν

2
‖∇Ht‖2L2(Ω)

+ Cδ(1 + ‖Ht‖2L2(Ω) + ‖√ρu̇‖2L2(Ω) + ‖∇u‖4L4(Ω)).

Gathering all this information and choosing δ > 0 small enough we arrive at

1

2

d

dt
(‖√ρu̇‖2L2(Ω) + ‖Ht‖2L2(Ω)) + ‖∇u̇‖2L2(Ω) + ‖∇Ht‖2L2(Ω)

≤ C(1 + ‖√ρu̇‖2L2(Ω) + ‖Ht‖2L2(Ω) + ‖∇u‖4L4(Ω)).

Finally, using (4.35) and standard elliptic estimates on the identities

∆F = div (ρu̇−H · ∇H), and µ∆ω = ∇⊥ · (ρu̇−H · ∇H), (4.45)

which hold by virtue of (4.23) we see that

‖∇u‖4L4(Ω) ≤ C(1 + ‖F‖4L4(Ω) + ‖ω‖4L4(Ω))

≤ C(1 + ‖F‖2L2(Ω)‖∇F‖2L2(Ω) + ‖ω‖2L2(Ω)‖∇ω‖2L2(Ω))

≤ C(1 + ‖√ρu̇‖2L2(Ω) + ‖∇2H‖2L2(Ω)).

Thus, using Gronwall’s inequality we obtain (4.43). �

Lemma 4.12. Let 2 ≤ p < ∞ and let E(t,x) = ∇xy(t,x) be the deformation
gradient. Then,

sup
0≤t≤T

(‖∇ρ‖Lp(Ω) + ‖E‖L2p(Ω)) +

∫ T

0

‖∇u‖2L∞dt ≤ C. (4.46)

Proof. First, we note that from the estimates from Lemmas 4.10 and 4.11 we have

‖ρu̇‖Lp(Ω) + ‖|H||∇H|‖Lp(Ω) ≤ C(1 + ‖∇u̇‖L2(Ω) + ‖∇2H‖L2(Ω)).

As a consequence, from the standard elliptic estimates on identities (4.45), we
have

‖divu‖L∞(Ω) + ‖ω‖L∞(Ω) ≤ C(‖F‖L∞(Ω) + ‖ω‖L∞(Ω) + ‖H‖2L∞(Ω) + 1)

≤ C(‖∇F‖
3
2

L4(Ω) + ‖∇ω‖
3
2

L4(Ω) + ‖∇H‖
3
2

L4(Ω) + 1)

≤ C(‖∇u̇‖
3
2

L2(Ω) + ‖∇2H‖
3
2

L2(Ω) + 1)
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Next, applying the operator ∇ to the continuity equation (1.1), multiplying the
resulting equation by p|∇ρ|p−2∇ρ and integrating we have

d

dt

∫

Ω

|∇ρ|pdx = −(p− 1)

∫

Ω

|∇ρ|pdivudx− p

∫

Ω

|∇ρ|p−2∇ρ · ∇u · ∇ρdx

− p

∫

Ω

ρ|∇ρ|p−2∇ρ · ∇divudx,

so that
d

dt
‖∇ρ‖Lp(Ω) ≤ C(‖∇u‖L∞(Ω)‖∇ρ‖Lp(Ω) + ‖∇2u‖Lp(Ω)). (4.47)

Denoting f = αg′(1/ρ)h(|ψ ◦Y|2)Jy

ρ as in the proof of Lemma 4.11 we have

‖∇2u‖Lp(Ω) ≤ C(‖divu‖Lp(Ω) + ‖∇ω‖Lp(Ω))

≤ C(‖∇F‖Lp(Ω) + ‖∇ω‖Lp(Ω) + ‖∇p‖Lp(Ω) + ‖|H||∇H|‖Lp(Ω)

+ ‖∇f‖Lp(Ω) + ‖divu‖L∞(Ω)‖∇ρ‖Lp(Ω)).

Now, on the one hand, we have that

‖∇F‖Lp(Ω) + ‖∇ω‖Lp(Ω) + ‖∇p‖Lp(Ω) + ‖|H||∇H|‖Lp(Ω)

+ ‖divu‖L∞(Ω)‖∇ρ‖Lp(Ω)

≤ C(‖∇u̇‖L2(Ω) + ‖∇2H‖L2(Ω) + 1)(1 + ‖∇ρ‖Lp(Ω)).

On the other hand, recalling identity (3.4), we have

‖∇f‖Lp(Ω) ≤ C(‖∇ρ‖Lp(Ω) + ‖E · ∇yψ(t,y(t,x))J
1
p
y ‖Lp(Ω)

+ ‖E · ∇yρ0(y(t,x)))J
1
p
y ‖Lp(Ω))

≤ C(‖∇ρ‖Lp(Ω) + ‖E‖L2p(Ω)(‖∇yψ‖L2p(Ωy) + ‖∇yρ0‖L2p(Ωy)))

≤ C(‖∇ρ‖Lp(Ω) + ‖E‖L2p(Ω)(‖ψ‖H2(Ωy) + ‖∇ρ0‖L2p(Ω)))

≤ C(‖∇ρ‖Lp(Ω) + ‖E‖L2p(Ω)). (4.48)

Therefore,

‖∇2u‖Lp(Ω) ≤ C(‖∇u̇‖L2(Ω)+‖∇2H‖L2(Ω)+1)(1+‖∇ρ‖Lp(Ω)+‖E‖L2p(Ω)). (4.49)

In order to estimate the term ‖∇u‖L∞(Ω), we recall the following inequality by
Beale, Kato and Majda (see [2, 17, 22], cf. [19]), asserting, in particular, for the
2-torus Ω, if w ∈ L2(Ω) with ∇w ∈W 1,q(Ω) for some q > 2, then

‖∇w‖L∞(Ω) ≤ C(‖divw‖L∞(Ω)+‖w‖L∞(Ω)) log(1+‖∇2w‖Lq(Ω))+C‖∇w‖L2(Ω)+C.

Using the previous estimates we then obtain

‖∇u‖L∞(Ω)

≤ C(‖divu‖L∞(Ω) + ‖ω‖L∞(Ω)) log(e + ‖∇2u‖Lp(Ω)) + C‖∇u‖L2(Ω) + C

≤ C(‖∇u̇‖L2(Ω) + ‖∇2H‖L2(Ω) + 1) log(e+ ‖∇ρ‖Lp(Ω) + ‖E‖L2p(Ω))

+ C(‖∇u̇‖L2(Ω) + ‖∇2H‖L2(Ω) + 1). (4.50)
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Coming back to (4.47) we get

d

dt
‖∇ρ‖Lp(Ω)

≤ C
(

(‖∇u̇‖L2(Ω) + ‖∇2H‖L2(Ω) + 1) log(e+ ‖∇ρ‖Lp(Ω) + ‖E‖L2p(Ω))

+ C(‖∇u̇‖L2(Ω) + ‖∇2H‖L2(Ω) + 1)
)

(1 + ‖∇ρ‖Lp(Ω) + ‖E‖L2p(Ω)).

At this point we recall inequality (2.25) satisfied by the deformation gradient, so
that defining

Z(t) := (1 + ‖∇ρ‖Lp(Ω) + ‖E‖L2p(Ω)),

we arrive at the inequality

d

dt
Z(t) ≤ C(‖∇u̇‖L2(Ω) + ‖∇2H‖L2(Ω) + 1)(1 + Z(t)) log(1 + Z(t)), (4.51)

which can be rewritten in terms of the function G = log(1 + log(1 + Z(t))) as

d

dt
G(t) ≤ C(‖∇u̇‖L2(Ω) + ‖∇2H‖L2(Ω) + 1). (4.52)

Therefore, upon integrating in t we arrive at

sup
0≤t≤T

(‖∇ρ‖Lp(Ω) + ‖E‖L2p(Ω)) ≤ C, (4.53)

and from (4.50) we obtain
∫ T

0

‖∇u(t)‖2L∞(Ω)dt ≤ C.

�

Lemma 4.13. There is a constant C > 0 depending on ‖ρ0‖H2(Ω), ‖u0‖H2(Ω),
‖H0‖H2(Ω), ‖ψ0‖H2(Ωy) and the uniform bounds form above and from below for the
initial density, such that

sup
0≤t≤T

[‖(ρ(t),u(t),H(t))‖H2(Ω) + ‖E(t)‖L∞(Ω)] ≤ C. (4.54)

Proof. At this point, we may apply estimate (2.26) in order to conclude that

‖E(t)‖L∞(Ω) ≤ C. (4.55)

Next, by standard L2 estimates on the elliptic equation (1.2), and using (4.48),
we have

‖u‖H2(Ω) ≤ C(‖u‖L2(Ω) + ‖ρu̇‖L2(Ω) + ‖∇p‖L2(Ω)

+ ‖|H||∇H|‖L2(Ω) + ‖∇f‖L2(Ω))

≤ C(1 + ‖∇H‖L4(Ω)) ≤
1

4
‖H‖H2(Ω) + C. (4.56)

Similarly, considering the magnetic field equation (1.3) as an elliptic equation
we have

‖H‖H2(Ω) ≤ C(‖H‖L2(Ω) + ‖Ht‖L2(Ω) + ‖|H||∇u|‖L2(Ω) + ‖|u||∇H|‖L2(Ω))

≤ 1

2
‖u‖H2(Ω) +

1

4
‖H‖H2(Ω) + C. (4.57)

Combining (4.56) and (4.57) we get

‖u‖H2(Ω) + ‖H‖H2(Ω) ≤ C. (4.58)
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Next, similar to the proof of the casem = 2 of Lemma 2.2, applying the operator
∇2 to the continuity equation (1.1), multiplying the resulting equation by ∇2ρ and
integrating we have

d

dt
‖∇2ρ‖2L2(Ω) ≤ C[(‖∇u‖L∞(Ω) + 1)‖∇2ρ‖2L2(Ω) + ‖∇3u‖2L2(Ω) + 1]. (4.59)

Now we see that

‖∇3u‖L2(Ω) ≤ ‖∇2divu‖L2(Ω) + ‖∇2ω‖L2(Ω))

≤ C(‖∇2F‖L2(Ω) + ‖∇2(|H|2)‖L2(Ω) + ‖∇2p‖L2(Ω) + ‖∇2f‖L2(Ω)

+ ‖∇ρ · ∇divu‖L2(Ω) + ‖divu∇2ρ‖L2(Ω) + ‖∇2ω‖L2(Ω)).

Here we note that

‖∇2F‖L2(Ω) + ‖∇2(|H|2)‖L2(Ω) + ‖∇2p‖L2(Ω)

+ ‖∇ρ · ∇divu‖L2(Ω) + ‖divu∇2ρ‖L2(Ω) + ‖∇2ω‖L2(Ω)

≤ C(‖∇(ρu̇)‖L2(Ω) + ‖∇ρ‖L4(Ω)‖∇2u‖
1
2

L2(Ω)‖∇3u‖
1
2

L2(Ω)

+ (‖divu‖L∞(Ω) + 1)‖∇2ρ‖L2(Ω) + 1)

≤ ε‖∇3u‖L2(Ω) + Cε(‖∇u‖L∞(Ω) + 1)‖∇2ρ‖L2(Ω) + ‖∇u̇‖L2(Ω) + 1),

for arbitrary ε > 0.
Also, since (4.49) implies that ∇2u ∈ L2(0, t;L4(Ω)), we may apply Corollary 2.1

with m = 2, in order to obtain

‖∇2f‖L2(Ω) ≤ C
(

‖ρ‖H2(Ω)‖ψ ◦Y‖H2(Ω)‖ρ0(y(t, ·)‖H2(Ω))

≤ C
(

‖∇2ρ‖L2(Ω)‖ψ‖H2(Ωy)‖ρ0‖H2(Ω)

)

≤ C(‖∇2ρ‖L2(Ω) + 1)

Putting this information into (4.59) we obtain

d

dt
‖∇2ρ‖2L2(Ω) ≤ C

(

(‖∇u‖L∞(Ω) + 1)(‖∇2ρ‖L2(Ω) + 1) + ‖∇u̇‖L2(Ω) + 1)
)

,

(4.60)

and Gronwall’s inequality yields

‖∇2ρ‖2L2(Ω) ≤ C. (4.61)

�

5. High order estimates, and conclusion

Moving on to the higher order estimates, we have the following.

Lemma 5.1. For m ≥ 3, there exists a positive constant C depending on T , m0,
‖ρ0‖Hm , ‖u0‖Hm , ‖H0‖Hm and ‖ψ0‖Hm

y
), such that

‖ρ‖L∞(0,T ;Hm), ‖(u,H)‖L2(0,T ;Hm+1)∩H1(0,T ;Hm−1), ‖ψ‖L∞(0,T ;Hm) ≤ C.

Proof. Let us argue by induction, observing that the case with m = 2 was already
proven in above. First, using the continuity equation we rewrite the momentum
equation (1.2) as

ρut + Lρu = H · ∇H− 1

2
∇|H|2 − ρ(u · ∇)u−∇p−∇(g′(1/ρ)h(|ψ ◦Y|2)).
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Applying the tensorial operator ∇m−1 on the equation above, one arrives at

ρ∇m−1ut + Lρ∇m−1u = ∇m−1

(

H · ∇H− 1

2
∇|H|2

)

−∇m−2(∇ρ⊗ ut)

+∇m−1
(

ρ(u · ∇)u
)

−∇mp+ α∇m(g′(1/ρ)h(|ψ ◦Y|2)).
Thus, defining

Z(t) :=

∫ t

0

‖u(s)‖2Hm+1(Ω) + ‖ut(s)‖2Hm−1(Ω)ds,

by Lemma 2.1 and the low order estimates proven up to this moment, for 0 < t < T ′,

Z(t) ≤ C
(

T,m0, ‖ρ0‖H2 , ‖ψ0‖H2 , ‖u0‖H2

)

(

1 + ‖u0‖2Hm + ‖|H|2‖L2(0,t;Hm) + ‖∇ρ⊗ ut‖2L2(0,t;Hm−2)

+ ‖ρ(u · ∇)u‖2L2(0,t;Hm−1) + ‖p‖2L2(0,t;Hm)

+ ‖αg′(1/ρ)h(|ψ ◦Y|2)‖2L2(0,t;Hm)

)

. (5.1)

At this point, in light of Lemmas 2.2, 2.3, 2.6, Corollary 2.1, and the classic
Leibniz rule for Sobolev functions, it is not difficult to estimate each term in the
right-hand side above. Let us just point out how to handle the most interesting –
and illustrating – ones.

First, let us consider the pressure term ‖p‖L2(0,t;Hm). Once p(ρ) = aργ , a chain
rule in the same spirit of (2.32) gives

‖p(t)‖Hm ≤ Cm

(

‖ρ(t)‖Hm−1∩L∞ ,Minx ρ(x, t)
)(

1 + ‖ρ(t)‖Hm).

Thus, by (2.13) of Lemma 2.2,

‖p(t)‖Hm(Ω) ≤ C(T, ‖u‖L2(0,T ;Hm(Ω)), ‖ρ0‖Hm(Ω),M0)

· (1 + ‖u‖L2(0,t;Hm+1))

≤ C(T, ‖u‖L2(0,T ;Hm(Ω)), ‖ρ0‖Hm(Ω),M0,m0) · (1 + Z(t)1/2).

Consequently,

‖p(t)‖2L2(0,t;Hm) ≤ C
(

1 +

∫ t

0

Z(s)ds
)

,

for some C = C(T, ‖u‖L2(0,T ;Hm(Ω)), ‖ρ0‖Hm(Ω),M0).

The other quantity that poses a curious difficulty is ‖∇ρ⊗ut‖2L2(0,t;Hm−2) when

m = 3. Observe that, by Gagliardo–Nirenberg inequality, and Lemma 2.2 – espe-
cially (2.16) –,

‖∇ρ(t)⊗ ut(t)‖H1 ≤ c‖∇ρ(t)‖L4‖ut(t)‖W 1,4 + c‖∇2ρ(t)‖L2‖ut(t)‖L∞

≤ ε‖ut(t)‖H2 + Cε(1 + ‖ut(t)‖L2),

with Cε = C(ε, T,m0, ‖u0‖H2 , ‖ρ0‖H2 , ‖H0‖H2 , ‖ψ‖H2). Thus, taking squares and
integrating yield

‖∇ρ⊗ ut‖2L2(0,t;Hm−2) ≤ Cε + εZ(t),

with the constant Cε depending on the very same parameters as the previous one.2

2All this inconvenience extraordinarily only happens with m = 3. Indeed, when m > 3,
one can make a much easier estimate ‖∇ρ(t) ⊗ ut(t)‖Hm−2 ≤ c‖∇ρ(t)‖L∞‖ut(t)‖Hm−2 +
c‖∇ρ(t)‖Hm−2‖ut‖L∞ ≤ c‖ρ(t)‖H3‖ut(t)‖Hm−2 + c‖ρ(t)‖Hm−1‖ut(t)‖H2 . In virtue of the in-

duction hypothesis, these terms bring no problem.
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In any case, the sum of all terms arising in (5.1) may be majorized in a similar
fashion as

1

2
Z(t) + C + C

∫ t

0

Z(s)ds,

for some constant C depending only on T , m0, ‖ρ0‖Hm , ‖u0‖Hm , ‖H0‖Hm and
‖ψ0‖Hm

y
). Thus, the conclusion follows from Gronwall’s inequality. �

With this lemma we have the necessary a priori estimates, which combined with
the local result from Proposition 3.1, complete the proof of Theorem 1.1. Note that
the local result holds with m ≥ 3 and the case m = 2 from Theorem 1.1 follows
from the a priori estimates with m = 2 by a standard compactness argument.

6. A continuous dependence inequality

As a corollary of Theorem 1.1, coming back to the proof of Lemma 3.2 yields
the following relative energy estimate.

Theorem 6.1. Let m ≥ 3 and let [ρ(j),u(j),H(j), ψ(j)] be solutions of (1.1)–(1.5)

with initial data [ρ
(j)
0 ,u

(j)
0 ,H

(j)
0 , ψ

(j)
0 ], j = 1, 2, lying in the appropriate Hm−space

and with the initial densities being positive. Then there exists a constant C such
that for any 0 ≤ t ≤ T
∫

Ω

|ρ(1) − ρ(2)|2dx+

∫

Ω

ρ(1)|u(1) − u(2)|2dx+

∫ t

0

∫

Ω

|∇(u(1) − u(2))|2dxds

+

∫

Ω

|H(1) −H(2)|2dx+

∫ t

0

∫

Ω

|∇(H(1) −H(2))|2dxdt′ +
∫

Ωy

|ψ(1) − ψ(2)|2dy

≤ C ·
(

∫

Ω

|ρ(1)0 − ρ
(2)
0 |2dx+

∫

Ω

ρ
(1)
0 |u(1)

0 − u
(2)
0 |2dx+

∫

Ω

|H(1)
0 −H

(2)
0 |2dx

+

∫

Ωy

|ψ(1)
0 − ψ

(2)
0 |2dy

)

where C depends only on T , the Hm–norm of initial data, min ρ
(1)
0 (x) and min ρ

(2)
0 (x).
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