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Abstract

In this paper, we investigate discrete logarithmic energy problems in
the unit circle. We study the equilibrium configuration of n electrons and
n − 1 pairs of external protons of charge +1/2. It is shown that all the
critical points of the discrete logarithmic energy are global minima, and
they are the solutions of certain equations involving Blaschke products.
As a nontrivial application, we refine a recent result of Simanek, namely,
we prove that any configuration of n electrons in the unit circle is in
stable equilibrium (that is, they are not just critical points but are of
minimal energy) with respect to an external field generated by n−1 pairs
of protons.
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1 Introduction and preliminaries

The motivation of this work comes from certain equilibrium questions which, in
turn, have roots in rational orthogonal systems. Exploring the connection be-
tween critical points of orthogonal polynomials and equilibrium points goes back
to Stieltjes. For more on this connection, see, e.g., [9], [10] and the references
therein.

Rational orthogonal systems are widely used on the area of signal processing,
and also on the field of system and control theory. These systems consist of
rational functions with poles located outside the closed unit disk. A wide class
of rational orthogonal systems is the so-called Malmquist-Takenaka system from
which one can recover the usual trigonometric system, the Laguerre system
and the Kautz system as well. In earlier works, in analogy with the discrete
Fourier transform, a discretized version of the Malmquist-Takenaka system was
introduced.

In signal processing and system identification (e.g. mechanical systems re-
lated to control theory) the rational orthogonal bases and Malmquist–Takenaka
systems (e.g. discrete Laguerre and Kautz systems) are more efficient than the
trigonometric system in the determination of the transfer functions. There are
lots of results in this field, see e.g. [3] and the references therein, or [13] and [7].
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In connection with potential theory, it was studied (e.g. in [14]) whether the
discretization nodes satisfy certain equilibrium conditions, namely, whether they
arise from critical points of a logarithmic potential energy. Such discretizations
appear naturally, see e.g. [1] by Bultheel et al or [5] by Golinskii. The question
whether the critical points are minima was proposed by Pap and Schipp [14,
15]. In this paper, we follow this line of research. After this introduction and
statements of results, we study on the unit circle a quite general logarithmic
energy which is determined by a signed measure, and prove that after inverse
Cayley transform the transformed energy on the real line differs only in an
additive constant. Next using a recent result of Semmler and Wegert [16] we
give an affirmative answer to the question posed by Pap and Schipp concerning
the critical points. Finally, as an application, we present a refinement of a result
of Simanek [18].

First let us start with some notation and essential background material. We
use the standard notations D := {z ∈ C : |z| < 1}, ∂D := {z ∈ C : |z| = 1},
D∗ := {z ∈ C : |z| > 1}, T := R/2πZ and ζ∗ := 1/ζ (ζ 6= 0). We also use
Blaschke products, defined for a1, . . . , an ∈ D and χ, |χ| = 1 as

B(z) := χ

n∏
k=1

z − ak
1− akz

. (1)

In particular, when the leading coefficient χ = 1, B(z) is called monic Blaschke
product.

We assume B′(0) 6= 0. In this case the well-known Walsh’ Blaschke theorem
(see for instance [17], p. 377) says that B′(z) = 0 has 2n − 2 (not necessarily
different) solutions, where n− 1 of them (counted with multiplicites) are in the
unit disk, and if ζ ∈ D \ {0} satisfies B′(ζ) = 0, then ζ∗ := 1/ζ is also a critical
point, B′(ζ∗) = 0, with the same multiplicity as ζ. It also follows that then
B′|∂D 6= 0.

Next, we investigate the structure of solutions of the equation

B(eit) = eiδ, (2)

where B(.) is a Blaschke product. It is standard to see that = logB(eit) can be
defined continuously and it is strictly increasing on [0, 2π] from

α := = logB(1) = argB(1), α ∈ [−π, π)

to α + 2nπ, see, e.g. [17], pp. 373-374. Therefore (2) has n different solutions
in t ∈ [0, 2π) for any δ ∈ R. Hence it is logical to consider n-tuples of different
solutions as solution vectors for (2).

Now, we are to reduce different types of symmetries among the solution
vectors step-by-step. For given δ ∈ R, consider{

(τ1, . . . , τn) ∈ Rn : B
(
eiτj
)

= eiδ, j = 1, . . . , n
}
. (3)

We can restrict our attention to the reduced set τ1 ≤ τ2 ≤ . . . ≤ τn ≤ τ1 + 2π
without loss of generality, for picking any τ1 we can normalize mod 2π and then
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order the remaining τj . Actually, since the τj are different, all such solutions of
(2) belong to the open set

A :=
{

(τ1, τ2, . . . , τn) ∈ Rn : τ1 < τ2 < . . . < τn < τ1 + 2π
}
. (4)

It is a standard step (see [17] loc. cit.) that one can define the functions
δ 7→ τj(δ) such that they are continuously differentiable, strictly increasing, and
τ1(δ) < . . . < τn(δ) < τ1(δ) + 2π for all δ ∈ R, while B(exp(iτj(δ))) = exp(iδ)
j = 1, . . . , n. As B(ei0) = eiα, we have 0 ∈ {τ1(α), τ2(α), . . . , τn(α)}. By
relabelling again, if necessary, we may assume that

τ1(α) = 0. (5)

Hence T (δ) :=
(
τ1(δ), . . . , τn(δ)

)
can be viewed as a smooth arc lying in A ⊂ Rn.

Moreover, the graph SR := {T (δ) : δ ∈ R} contains all the solutions of (2) from
A, that is, if t := (t1, . . . , tn) ∈ A and λ ∈ R are such that B(exp(itj)) =
exp(iλ), j = 1, . . . , n hold, then there exists δ ∈ R such that t = T (δ). Further-
more, exp

(
iτj(δ+ 2nπ)

)
= exp

(
iτj(δ)

)
for j = 1, 2, . . . , n, δ ∈ R. We introduce

the set
S0 := SR ∩ [0, 2π)n = {T (δ) : δ ∈ [α, α+ 2π)} (6)

where we used (5). We call the set

S := {T (δ) : δ ∈ [α, α+ 2nπ)} (7)

the solution curve. Note that

S = SR ∩Q, where

Q := [0, 2π)× [τ2(α), τ2(α) + 2π)× . . .× [τn(α), τn(α) + 2π)

where we also used (5), so [τ1(α), τ1(α) + 2π) = [0, 2π). Geometrically, S can
be obtained from S0 with reflections and translations, while SR can be obtained
from S with translations only. Another useful property of S is that for each
β ∈ [0, 2π) there is exactly one δ ∈ [α, α+ 2nπ) such that τ1(δ) = β.

These are depicted on the left half of Figure 1 where S0 is the thick arc and
it is continued above with another arc. These two arcs together form S and
describe the motions of τ1, τ2 together as exp(iδ) goes around the unit circle
twice (δ grows from α to α+ 4π). Extending these two arcs with the very thin
arcs, we obtain SR, the full solution curve.

Now we recall the question raised by Pap and Schipp in [15]. Consider the
pairs of protons, each of charge +1/2, at ζ1, ζ

∗
1 , . . . , ζn−1, ζ

∗
n−1 as the critical

points of a (monic) Blaschke product of degree n, and the (doubled) discrete
energy of electrons restricted to the unit circle

W (w1, . . . , wn) :=

n−1∑
k=1

n∑
j=1

log |(wj − ζk)(wj − ζ∗k)|−2
∑

1≤j<k≤n

log |wj −wk| (8)
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Figure 1: Left: solution curve S of the monic Blaschke product with zeros at
1/2 and (1 + i)/2, 0 ≤ τ1 < τ2 < 2π, B(eiτ1) = B(eiτ2) = eiδ, α ≤ δ ≤ α + 2π,
where α = −π/2 now. Right: argument of the same monic Blaschke product,
δ = argB(eit).

where |w1| = 1, . . ., |wn| = 1. The set SR connected to the same monic Blaschke
product yields critical configurations of electrons for each fixed δ (which corre-
sponds to fixing one of the electrons), according to e.g. [15]. In other words,
for a1, . . . , an ∈ D, using the monic Blaschke product with zeros at a1, . . . , an
one can construct pairs of protons as solutions of B′(z) = 0, and, for any
given δ ∈ [0, 2π), the corresponding configuration of electrons as all solutions
of B(z) = eiδ. Then according to the result of Pap and Schipp, Theorem 4
from [15], these configurations of electrons are critical points of W . The ques-
tion posed on p. 476 of [15] is then: Are these critical points (local) minima

of the restricted energy function W̃ where W̃ (τ1, . . . , τn) := W
(
eiτ1 , . . . , eiτn

)
,

τ1 . . . , τn ∈ R?
We give a positive answer to this question in general. Note that two special

cases were solved in [15] with different methods. Our answer is the following.
There are no other critical points on the unit circle (where the tangential gradi-
ent vanishes). Moreover, all the points on the set SR are global minimum points

of the restricted energy function W̃ .

Theorem 1. Let a1, . . . , an ∈ D and B(z) be the monic Blaschke product (1)
with zeros at a1, . . . , an. Assuming B′(0) 6= 0, list up the critical points of B as
ζ1, . . . , ζn−1 ∈ D \ {0} and ζ∗1 , . . . , ζ

∗
n−1 ∈ D∗.

Then the tangential gradient of W vanishes on the points corresponding to
the set A ∩Q defined in (4) exactly on the set S.
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More precisely, on A ∩ Q, it holds that ∇ W̃ (τ1, . . . , τn) = 0 if and only if
(τ1, . . . , τn) = T (δ) for some δ ∈ [α, α+ 2nπ).

Furthermore, all points of SR are global minimum points of W̃ .

Let us recall here a recent result of Simanek [18, Theorem 2.1]. Briefly, he
established that for any configuration of electrons on the unit circle, there is an
external field (collection of protons) such that the electrons are in electrostatic
equilibrium (that is, the gradient of the energy is zero). We are going to refine
this result by determining the number of pairs of protons and their locations
using the solution curve defined in (7).

For the following we need some more results on Blaschke products. Namely
for given z1, z2, . . . , zn ∈ C, |zj | = 1, zj 6= zk (j 6= k), we need to find a Blaschke
product B(.) of degree m, such that

B(zj) = χ

m∏
k=1

zj − ak
1− akzj

= 1, j = 1, 2, . . . , n. (9)

The first result of this kind was established by Cantor and Phelps in [2] (for
some m) and the stronger form with degree m ≤ n − 1 was given by Jones
and Ruscheweyh in [11], see also a paper by Hjelle [8]. By using the results of
Jones and Ruscheweyh, Hjelle showed that there is a Blaschke product B(z) of
degree m = n such that (9) holds, see [8], p. 44. We will use one such particu-
lar Blaschke product B(z) = B(z1, z2, . . . , zn; z) corresponding to z1, z2, . . . , zn.
Note that Hjelle’s Blaschke product is not unique, since there is an extra iterpo-
lation condition. Observe that the extra interpolation condition can be chosen
so that B′(0) 6= 0 is satisfied.

Theorem 2. For distinct z1, . . . , zn ∈ ∂D consider the Blaschke product B(z)
introduced above. Assume that B′(0) 6= 0.

Then there exist ζ1, ζ2, . . . , ζn−1 ∈ D \ {0} such that the (doubled) energy
function W , defined in (8) has critical point at (w1, . . . , wn) = (z1, . . . , zn) (even
regarded as a point of Cn). Moreover, on (∂D)n, W |(∂D)n has global minimum
at (z1, . . . , zn).

2 Some basic propositions

Recall that it was given in (8) the discrete energy of an electron configuration
w1, . . . , wn ∈ C (with charges −1) in presence of an external field generated
by pairs of fixed protons ζ1, ζ

∗
1 , ζ2, ζ

∗
2 , . . . , ζn−1, ζ

∗
n−1 (with charges +1/2 each),

where ζ1, . . . , ζn−1 ∈ D. Note that actually W is the double of the physical
energy of the system (see also [12], p. 22 where they use this form of discrete
energy). We will see later on why it is more convenient to use this ”doubled
energy”.
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Sometimes the following exceptional set will be excluded:

E :=
{

(w1, . . . , wn, ζ1, . . . , ζn−1) ∈ Cn × Dn−1 :

ζj = 0 for some j or wj = wk for some j 6= k,

or ζj = wk or ζ∗j = wk for some j, k
}
. (10)

This is a closed set with empty interior. Geometrically, this set covers the cases
when some of the protons are at the origin, some of the electrons are at the
same position or a proton and an electron are at the same position. Let us
remark also that W = W (w1, . . . , wn) is locally the real part of a holomorphic
function when ζ1, . . . , ζn−1 are fixed and W is considered on (w1, . . . , wn) ∈ Cn
such that (w1, . . . , wn, ζ1, . . . , ζn−1) 6∈ E.

This energy can be generalized substantially. Let µ be a signed measure on
C. We define the (doubled) energy in this case as

Wµ,1 := 2

n∑
k=1

∫
C

log |wk − ζ|dµ(ζ), Wµ,2 :=
∑
l 6=k

1≤l,k≤n

log |wl − wk|, and

Wµ(w1, . . . , wn) := Wµ,1 −Wµ,2. (11)

Note that in (8) we sum over all l < k pairs and there is an extra factor 2. In
(11), the sum is over all l 6= k pairs. Later this second, symmetric expression
will be more convenient.

Here, it may happen that Wµ,1 or Wµ,2 becomes infinity, so we again intro-
duce the exceptional set as follows:

Eµ := {(w1, . . . , wn) ∈ Cn : wj = wk for some j 6= k

or

∫
C
|log |wj − ζ|| d|µ|(ζ) = +∞ for some j}. (12)

Note that finiteness of this latter integral is equivalent to the finiteness of the
potentials of µ+ and µ− at wj where µ+, µ− are the positive and negative parts
of µ respectively. Observe that if (w1, . . . , wn) 6∈ Eµ, then Wµ,1 and Wµ,2 are
finite, and so is Wµ.

An important tool in our investigations is the Cayley transform and its
inverse. Basically, it is just a transformation between a half-plane and the unit
disk, though there is no widely accepted, standard form of it. We use the
following form, which we call inverse Cayley transform

C(z) = Cθ(z) := i
1 + ze−iθ

1− ze−iθ

where θ ∈ R will be specified later. It is standard to verify that C(z) maps the
unit disk onto the upper half-plane, Cθ(e

iθ) =∞, and C(.) maps bijectively the
unit circle (excluding eiθ) to the real axis. Furthermore, Cθ(e

it) is continuous
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and strictly increasing from t = θ to t = θ + 2π, Cθ(e
it) → −∞ as t → θ + 0,

Cθ(e
it) → +∞ as t → θ + 2π − 0. It is easy to see that C(z∗) = C(z) and

C ′(z) 6= 0 (if z 6= eiθ). Later we will use the Cayley transform too:

C−1
θ (u) = eiθ

u− i
u+ i

.

Mapping the electrons and protons by Cθ, we define tj with tj = Cθ(wj).
We also write ξj := Cθ(ζj) and accordingly, ξj = Cθ(ζ

∗
j ) and investigate the

following new discrete energy:

V (t1, . . . , tn) :=

n−1∑
k=1

n∑
j=1

log |(tj − ξk)(tj − ξk)| − 2
∑

1≤j<k≤n

log |tj − tk|. (13)

We also define the (doubled) discrete energy on the real line when the ex-
ternal field is determined by a signed measure ν:

Vν,1 := 2

n∑
k=1

∫
C

log |tk − ξ|dν(ξ), Vν,2 :=
∑
l 6=k

1≤l,k≤n

log |tl − tk| and

Vν(t1, . . . , tn) := Vν,1 − Vν,2. (14)

We introduce again the exceptional set corresponding to ν as follows:

Eν := {(t1, . . . , tn) ∈ Cn : tj = tk for some j 6= k

or

∫
C
|log |tj − ξ|| d|ν|(ξ) = +∞ for some j}.

The next result gives a somewhat surprising connection how the inverse
Cayley transform carries over energy. Actually, there is a cancellation in the
background which makes it work.

Proposition 3. Fix θ ∈ R and let µ be a signed measure on C with compact
support such that µ({0}) = 0, µ(C) = n − 1. Write ν := µ ◦ C−1

θ , that is,
ν(B) = µ(C−1

θ (B)) for every Borel set B.
Assume that w1, . . . , wn ∈ C and (w1, . . . , wn) 6∈ Eµ and∫

C
log |ζ − eiθ|dµ(ζ) is finite. (15)

Then with t1, . . . , tn ∈ C where tj = Cθ(wj), we know that (t1, . . . , tn) 6∈ Eν ,
Wµ(w1, . . . , wn) and Vν(t1, . . . , tn) are finite and we can write

Wµ (w1, . . . , wn) = Vν (t1, . . . , tn) + c (16)

where c is a finite constant, namely

c = n(n− 1) log(2)− 2n

∫
C

log |ξ + i|dν(ξ). (17)
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Proof. It is straightforward to verify that (t1, t2, . . . , tn) 6∈ Eν . Furthermore,∫
C

log |ξ+i|dν(ξ) =

∫
C

log |Cθ(ζ)+i|dµ(ζ) =

∫
C

log

∣∣∣∣i(1 +
1 + ζe−iθ

1− ζeiθ

)∣∣∣∣ dµ(ζ)

=

∫
C

log(2)− log |ζ − eiθ|dµ(ζ),

so (15) is equivalent to ∫
C

log |ξ + i|dν(ξ) is finite. (18)

Note that this entails the finiteness of c defined in (17).
With the notation of the Proposition,

Wµ (w1, . . . , wn)− Vν (t1, . . . , tn) = 2

n∑
k=1

∫
C

log |wk − ζ|dµ(ζ)

−
∑
j 6=k

1≤j,k≤n

log |wj − wk| − 2

n∑
k=1

∫
C

log |tk − ξ|dν(ξ) +
∑
j 6=k

1≤j,k≤n

log |tj − tk| (19)

where we investigate the difference of the integrals and difference of the sums
separately. So we write∫

C
log |wk − ζ|dµ(ζ)−

∫
C

log |tk − ξ|dν(ξ)

=

∫
C

log |C−1
θ (tk)− C−1

θ (ξ)|dν(ξ)−
∫
C

log |tk − ξ|dν(ξ)

=

∫
C

log

∣∣∣∣eiθ ( tk − itk + i
− ξ − i
ξ + i

)∣∣∣∣− log |tk − ξ| dν(ξ)

=

∫
C

log(2) + log

∣∣∣∣ 1

(tk + i)(ξ + i)

∣∣∣∣ dν(ξ)

=

∫
C
− log |ξ + i|dν(ξ) + (log(2)− log |tk + i|) ν(C),

where this last integral exists, by assumption (18). Similarly,

log |tj − tk| − log |wj − wk| = log |tj − tk| − log |C−1
θ (tj)− C−1

θ (tk)|

= log |tj − tk| − log

∣∣∣∣eiθ ( tj − itj + i

)
− eiθ

(
tk − i
tk + i

)∣∣∣∣
= − log(2) + log |tj + i|+ log |tk + i|.
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Substituting into (19), we get

Wµ (w1, . . . , wn)− Vν (t1, . . . , tn)

= 2

n∑
k=1

(∫
C
− log |ξ + i|dν(ξ) + (log(2)− log |tk + i|) ν(C)

)
+

∑
j 6=k

1≤j,k≤n

(− log(2) + log |tj + i|+ log |tk + i|)

= −2ν(C)

n∑
k=1

log |tk + i|+ 2nν(C) log(2)− 2n

∫
C

log |ξ + i|dν(ξ)

− n(n− 1) log(2) + 2(n− 1)

n∑
k=1

log |tk + i|

= n(n− 1) log(2)− 2n

∫
C

log |ξ + i|dν(ξ),

where we used that ν(C) = n− 1.

Remark 4. Since µ has compact support, supp ν is disjoint from −i, more-
over, their distance is positive. Hence the logarithm in the integral in (17) is
bounded from below. It is not necessarily bounded from above, but we assume
(18) directly. Instead of supposing (18), we may suppose that µ and θ (from
Cayley transform) are such that suppµ and eiθ are of positive distances from
each other. This would ensure that supp ν remains bounded entailing that the
logarithm in the integral in (18) is bounded from above. In other words, if suppµ
is compact and eiθ 6∈ suppµ, then (18) holds.

We note that this Proposition 3 extends the result of Theorem 6 in Pap,
Schipp [15] that we allow arbitrary signed external fields in place of discrete
protons located symmetrically with respect to the unit circle.

Proposition 5. We maintain the assumptions and notations of Proposition 3.
Let ` ∈ {1, . . . , n} and let wj, j 6= ` be fixed.

Assume that
eiθ 6∈ suppµ (20)

and assume further that replacing w` by eiθ, we have

(w1, . . . , e
iθ, . . . , wn) 6∈ Eµ. (21)

If w` → eiθ, then |t`| = |Cθ(w`)| → ∞ and we get that

Wµ(w1, . . . , w`−1, e
iθ, w`+1, . . . , wn) = Vν(t1, . . . , t`−1,∞, t`+1, . . . , tn) + c (22)
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where c is the constant defined in (17) and

Vν(t1, . . . , t`−1,∞, t`+1, . . . , tn) := Vν(t1, . . . , t`−1, t`+1, . . . , tn)

= 2

n∑
j=1
j 6=`

∫
C

log |tj − ξ|dν(ξ)−
∑

1≤j,k≤n
j 6=`,k 6=`,j 6=k

log |tj − tk|. (23)

Proof. First, we discuss why the integrals appearing here are finite. By slightly
abusing the notation, Wµ(w`) := Wµ(w1, . . . , w`, . . . , wn) is finite at w` = eiθ,
because of (21). Assumption (20) implies that there is a neighborhood U of eiθ

such that its closure U− is disjoint from suppµ, U− ∩ suppµ = ∅. Therefore
Wµ(w) is also finite when w ∈ U , moreover Wµ(.) is continuous there. Similarly,
we use Vν(t) := Vν(t1, . . . , t`−1, t, t`+1, . . . , tn) (abusing the notation again).
Obviously, Cθ(U) is an unbounded open set on the extended complex plane
C∞ and is a neighborhood of infinity. By Proposition 3, Vν(t) is defined on
Cθ(U) \ {∞}, has finite value and is continuous there. Moreover, Vν(t) has
finite limit as t → ∞. By (21) and (20), (w1, . . . , w`−1, w, w`+1, . . . , wn) 6∈ Eµ
for w ∈ U . Hence (t1, . . . , t`−1, t, t`+1, . . . , tn) 6∈ Eν for t ∈ Cθ(U) \ {∞}. This
also implies that

∫
C log |tj − ξ|dν(ξ) is finite, j = 1, . . . , n, j 6= `, which are the

integrals appearing on the right of (23).
Regarding Vν , we write

lim
t`→∞

Vν(t`) = lim
t`→∞

2

n∑
j=1

∫
C

log |tj − ξ|dν(ξ)−
∑

1≤j,k≤n
j 6=k

log |tj − tk|


= 2

n∑
j=1
j 6=`

∫
C

log |tj − ξ|dν(ξ)−
∑

1≤j,k≤n
j 6=`,k 6=`

log |tj − tk|

+ lim
t`→∞

2

∫
C

log |t` − ξ|dν(ξ)−
∑

1≤j,k≤n
k 6=j,k=` or j=`

log |tj − tk|


= V (t1, . . . , t`−1, t`+1, . . . , tn),

where in the last step we used the following calculation.

lim
t`→∞

2

∫
C

log |t` − ξ|dν(ξ)−
∑

1≤j,k≤n
k 6=j,k=` or j=`

log |tj − tk|


= lim
t`→∞

2

∫
C

log |t`|+ log

∣∣∣∣1− ξ

t`

∣∣∣∣ dν(ξ)− 2
∑

1≤j≤n
j 6=`

(
log |t`|+ log

∣∣∣∣1− tj
t`

∣∣∣∣)

10



where
∫
C log |t`|dν(ξ) = (n−1) log |t`| so the first term in the integral and in the

sum cancel each other, by ν(C) = n−1. Regarding the second term in the sum,
it tends to zero. The second term in the integral also tends to zero, because the
support of ν is compact, hence log |1 + ξ/t`| tends to 0 uniformly.

Using this calculation, (16) from Proposition 3 and the properties of Wµ and
Cθ we get that

Wµ(eiθ) = lim
w`→eiθ

Wµ(w`)

= lim
t`→∞

(Vν(t`) + c) = Vν(t1, . . . , t`−1, t`+1, . . . , tn) + c.

Based on the above proposition, it is justified to extend the definition of Vν
by continuity as Vν(t1, . . . , t`−1,∞, t`+1, . . . , tn) := Vν(t1, . . . , t`−1, t`+1, . . . , tn)
in case t` becomes ±∞.

Now we are going to relate the critical points of Wµ and Vν when the con-
figurations of the electrons are restricted to the unit circle (or to the real line).

When the electrons are restricted to the unit circle, that is,

|wj | = 1, j = 1, . . . , n (24)

we are going to introduce the tangential gradient as follows. In this case, in
addition to supposing that µ has compact support, we assume that suppµ is
disjoint from the unit circle.

We write

wj = eiτj , j = 1, . . . , n, W̃µ(τ1, . . . , τn) := Wµ

(
eiτ1 , . . . , eiτn

)
. (25)

We call∇W̃µ the tangential gradient of Wµ. ∇W̃µ of W̃µ has special meaning
with respect to the complex derivative of Wµ: it is the tangential component
of ∇Wµ with respect to the unit circle. Similar distinction also appears in [18],
see the definitions of Γ-normal electrostatic equilibrium and total electrostatic
equilibrium on p. 2255. This total electrostatic equilibrium appears in Theorem
2, [14] which will be used later.

Proposition 6. Let ν be a signed measure on C with compact support. Assume
that supp ν is disjoint from the real line and ν is symmetric with respect to the
real line: ν(H) = ν(H) where H ⊂ {=(u) > 0} is a Borel set and H = {u : u ∈
H} denotes the complex conjugate.

Then for u1, . . . , un ∈ R we have for the j-th imaginary directional derivative
(with direction iej := i(0, . . . , 0, 1, 0, . . . , 0)) that

∂iejVν(u1, . . . , un)

:= lim
vj→0

Vν(u1, . . . , uj + ivj , . . . , un)− Vν(u1, . . . , un)

vj
= 0. (26)

11



Roughly speaking, if the external field is symmetric, then the forces moving
the electrons will keep the electrons on the real line (all coordinates of gradient
are parallel with the real line).

Proposition 7. Let µ be a signed measure on C with compact support. Assume
that suppµ is disjoint from the unit circle and µ is symmetric with respect
to the unit circle: µ(H) = µ(H∗) where H ⊂ {|w| < 1} is a Borel set and
H∗ = {1/w : w ∈ H} denotes the inversion of H.

Then for |w1| = . . . = |wn| = 1, we have for the j-th normal derivative (with
direction wjej) that

∂wjejWµ(w1, . . . , wn)

:= lim
ε→0

Wµ(w1, . . . , wj + εwj , . . . , wn)−Wµ(w1, . . . , wn)

ε
= 0. (27)

Note that because µ has compact support and is symmetric with respect to
the unit circle, we necessarily have that 0 is not in suppµ.

Roughly speaking, Proposition 7 states that if the measure µ is symmetric
with respect to the unit circle, then the gradient and the tangential gradient
of Wµ are the same. In other words, n electrons on the unit circle, allowed to
move freely on the plane in the external field generated by µ will stay on the
unit circle.

Proofs of Propositions 6 and 7. To see Proposition 6, we fix u1, . . . , uj−1, uj ,
uj+1, . . . , un ∈ R, and use here J(.) for the conjugation: J(u) = u. Writing
V (u) := Vν(u1, . . . , uj−1, u, uj+1, . . . , un) for general complex u = uj + ivj , and
using that ν is symmetric to the real line, in other words, ν(H) = ν(J(H)) for
Borel sets H, we find

V (u1, . . . , uj−1, u, uj+1, . . . , un) = V (u1, . . . , uj−1, J(u), uj+1, . . . , un).

Therefore,

∂iejV (u1, . . . , uj−1, uj , uj+1, . . . , un)

=
∂V (u1, . . . , uj−1, uj + ivj , uj+1, . . . , un)

∂vj
|(u1,...,uj−1,uj ,uj+1,...,un)

=
∂V (u1, . . . , uj−1, uj − ivj , uj+1, . . . , un)

∂vj
|(u1,...,uj−1,uj ,uj+1,...,un)

=
∂V (u1, . . . , uj−1, uj + ivj , uj+1, . . . , un)

∂(−vj)
|(u1,...,uj−1,uj ,uj+1,...,un)

= −∂iejV (u1, . . . , uj−1, uj , uj+1, . . . , un)

showing that Proposition 6 holds.
To see Proposition 7, we use that the inverse Cayley transform is a conformal

mapping, hence it is locally orthogonal.
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3 The case of finitely many pairs of protons

In this section, we specialize the propositions of the previous section. Most of
the results here simply follow from those statements.

We consider the case when suppµ is a finite set with 2n− 2 elements, which
are symmetric with respect to the unit circle and the support is disjoint from
the unit circle and the origin:

suppµ = {ζ1, ζ2, . . . , ζn−1, ζ
∗
1 , ζ
∗
2 , . . . , ζ

∗
n−1},

0 < |ζj | < 1, µ({ζj}) = µ({ζ∗j }) = 1/2, j = 1, 2, . . . , n− 1,

ζj 6= ζk, j, k = 1, 2, . . . , n− 1, j 6= k.

Recall that ζ∗ = 1/ζ.
The restriction ζj 6= 0 is essential for the following reasons. Although 0∗ =∞

may be introduced, definition of discrete energy W cannot be meaningfully
defined. Note that the usefulness of symmetrization of external fields lies in
that the normal component of the field generated by the symmetrized proton
configuration identically vanishes on the unit circle. However, when there is a
proton at the origin, there is no complementing system of protons ω1, . . . , ωm
(for no m) such that the total system {ζ1, . . . , ζn, ω1, . . . , ωm} would generate a
field with identically vanishing normal component on the unit circle.

Furthermore, the protons at the origin contribute to the electrostatic field
of all protons only with identically zero tangential component all over the unit
circle. Therefore, studying equilibrium and energy minima on the circle, protons
at the origin have no contribution, hence can be dropped from the configuration.
However, then the total charge of the system will drop below −1. There are
results in this essentially different case, too, see e.g. [6] or [4], Theorem 4.1 but
those necessarily involve assumptions on locations of electrons.

The below Proposition 8 follows directly from the more general Proposition
3. Roughly speaking, it expresses how the energy functions are mapped to one
another via the inverse Cayley transform in this special case. We use here the
exceptional set E introduced in (10).

Proposition 8. Fix θ ∈ R and let ζj ∈ D, j = 1, . . . , n − 1. Consider the
parameters ζj , ζ

∗
j as well as the parameters ξj = Cθ(ζj), ξj = Cθ(ζ

∗
j ).

Assume that w1, . . . , wn ∈ C are such that (w1, . . . , wn, ζ1, . . . , ζn−1) 6∈ E,
and wj 6= eiθ (j = 1, . . . , n).

With t1, . . . , tn ∈ C where tj = Cθ(wj), we can write

W (w1, . . . , wn) = V (t1, . . . , tn) + c (28)

where c is a constant,

c = n(n− 1) log(2)− n
n−1∑
k=1

log |(ξk + i)(ξk + i)|. (29)

If (w1, . . . , wn, ζ1, . . . , ζn−1) ∈ E, then W , V or c is infinite.
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Next we formulate the following special case of Proposition 5.

Proposition 9. Let ` ∈ {1, . . . , n} and let wj, j 6= ` be fixed such that wj 6= eiθ

for all j 6= `. If w` = eiθ, then t` = Cθ(w`) =∞ and we get that

W (w1, . . . , w`−1, e
iθ, w`+1, . . . , wn) = V (t1, . . . , t`−1,∞, t`+1, . . . , tn) + c (30)

where c is defined in (29) and similarly to (23)

V (t1, . . . , t`−1,∞, t`+1, . . . , tn) := V (t1, . . . , t`−1, t`+1, . . . , tn)

=

n−1∑
k=1

n∑
j=1
j 6=`

log |(tj − ξk)(tj − ξk)| − 2
∑

1≤j<k≤n
j 6=`,k 6=`

log |tj − tk|. (31)

In Figure 2, particular sets of electrons and protons are shown along with
the transformed configuration on the real axis. Namely, the zeros of the monic
Blaschke product B(.) are 1/2, (1 + i)/2, 2/3i, −3/4i and −7/10 + 6/10i. The
protons are at the critical points of this monic Blaschke product B′(.) = 0 :
0.38−2.21i, 1.69+1.13i, 0.68+1.86i, −0.99+0.94i, −0.53+0.51i , 0.17+0.47i,
0.41 + 0.27i, 0.08− 0.44i (here and in the remaining part of this paragraph the
numbers are rounded to two decimal digits). The electrons are at the solutions
of B(.) = 1, and their arguments are: −2.87, −1.19, 0.41, 1.28, 2.33. For the
inverse Cayley transform, θ = −2.87, that is, the first electron is mapped to
infinity.

-1.0 -0.5 0.5 1.0 1.5
Re

-2

-1

1

2

Im

-1.0 -0.5 0.5 1.0 1.5
Re

-1.0

-0.5

0.5

1.0

Im

Figure 2: Equilibrium configurations of five electrons on the unit circle and the
transformed configuration, with one electron transferred to ∞.

In the next proposition we point out, how the critical points of the original
and the transformed energy function correspond to each other.

Proposition 10. Let ζj ∈ D, j = 1, . . . , n − 1 and wj ∈ C, j = 1, . . . , n.
Assume that wj’s are restricted to the unit circle, i.e. (24) and (25) hold. We
also assume that (w1, . . . , wn, ζ1, . . . , ζn−1) 6∈ E.
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Fix w1 and τ1 ∈ R and assume that (τ1, τ2, . . . , τn) ∈ A. Consider the
inverse Cayley mapping Cτ1(.) and also the points ξj := Cτ1(ζj), ξj = Cτ1(ζ∗j )

and tj = Cτ1(eiτj ).
Then τ2 < . . . < τn from the interval (τ1, τ1 + 2π) is a (real) critical point of

W̃ if and only if t2 < . . . < tn is a (real) critical point of V = V (t2, . . . , tn).

Proof. Basically, we use the chain rule to show that the critical points cor-
respond to each other under the diffeomorphism given by the inverse Cayley
transform.

Let ψ(τ) := eiτ . It is standard to see

Cθ(ψ(τ)) = i
1 + ei(τ−θ)

1− ei(τ−θ)
= − cot

τ − θ
2

,
d

dτ
Cθ(ψ(τ)) =

1

sin2 τ−θ
2

where we used real differentiation with respect to τ . We write Ψ(τ2, . . . , τn) :=

(ψ(τ2), . . . , ψ(τn)) andK(z2, . . . , zn) := (Cθ(z2), . . . , Cθ(zn))
T

, where ·T denotes

transpose. Hence K◦Ψ maps from Rn−1 to Rn−1 and W̃ = W ◦Ψ = V ◦K◦Ψ+c,
by Proposition 5. The derivative of K ◦ Ψ as a real mapping is the diagonal
matrix D := diag

(
sin−2

(
τ2−θ

2

)
, . . . , sin−2

(
τn−θ

2

))
. This is an invertible matrix,

because θ = τ1 < τ2 < . . . < τn < τ1 + 2π. Because of chain rule,

∇τ2,...,τnW̃ = ∇t2,...,tnV |K◦Ψ ·D,

or by coordinates

∂W̃ (τ2, . . . , τn)

∂τj
=
∂V (t2, . . . , tn)

∂tj

∣∣∣∣∣
K◦Ψ

· 1

sin2
(
τj−θ

2

) , j = 2, . . . , n,

which immediately implies the assertion.

4 Proofs of the two main theorems

Proof of Theorem 1. We have that τj ’s are different, and a1, . . . , an ∈ D is a se-
quence with ζj 6= 0. These imply that (exp(iτ1(δ)), . . . , exp(iτn(δ)), ζ1, . . . , ζn−1)
is not in E (see (10)). We also use the parametrization of the solution curve S de-
fined in (7), and the strict monotonicity and continuity of δ 7→ τ1(δ). Hence for
any w1, w1 = eiβ where β ∈ [0, 2π), the respective points on the solution curve S
are uniquely determined: wj = wj(w1), more precisely, wj = exp(iτj(τ

−1
1 (β))),

j = 2, . . . , n.
Fix w1, or, equivalently, β ∈ [0, 2π). Now we want to show that

(τ2, τ3, . . . , τn) 7→ W̃ (β, τ2, τ3, . . . , τn)

(assuming β < τ2 < . . . < τn < β + 2π) has only one critical point, namely the
point with τj = τj(τ

−1
1 (β)) for j = 2, 3, . . . , n, which happens to be the unique

minimum point in (τ2, τ3, . . . , τn).
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To this end, we are going to transform the question to the upper half-plane,
as we want to use Lemma 6 from [16]. We apply first the inverse Cayley trans-
form C(.) = Cβ(.) which maps w1 to ∞. Hence we have n − 1 pairs of fixed
protons, ξj = C(ζj), ξj = C(ζ∗j ), j = 1, . . . , n−1 and n−1 free electrons on the

real axis, tj = C(eiτj ), j = 2, . . . , n. We know that β < τ2 < . . . < τn < β + 2π,
and t2 < t3 < . . . < tn are equivalent. (If any two of the τ ’s were equal, then the

corresponding t’s would be equal too and W̃ (τ2, . . . , τn) = V (t2, . . . , tn) = +∞,
but we assumed that (w1, . . . , wn, ζ1, . . . , ζn−1) 6∈ E so that all wj ’s have to be
different.) Again, since we are outside E, we know that ξj 6= −i and ξj 6= −i,
which, in turn, implies that c is finite in (29). Thus, we can apply Proposition

9 (for ` = 1) to relate the energy W̃ on the unit circle and the energy V on the
real axis:

W̃ (β, τ2, . . . , τn) = W (eiβ , eiτ2 , . . . , eiτn) = V (t2, . . . , tn) + c.

Introducing U := {(t2, . . . , tn) ∈ Rn−1 : t2 < t3 < . . . < tn}, Lemma 6
from [16] gives that there is exactly one critical point (t̃2, . . . , t̃n) of V in U
(gradient of V vanishes), which is the global minimum point in U . In view
of Proposition 10, the corresponding (τ̃2, . . . , τ̃n) with β < τ̃2 < . . . < τ̃n <
β + 2π and exp(iτ̃2) = C−1

β (t̃2), . . . , exp(iτ̃n) = C−1
β (t̃n), is the only critical

point of W̃ = W̃ (β, τ2, . . . , τn), restricted to the simplex ∆β of points of the
form (β, τ2, . . . , τn) under the condition β < τ2 < τ3 < . . . < τn < β + 2π. Note
that ∆β = Zβ ∩A with Zβ denoting the hyperplane {β} ×Rn−1. Furthermore,
applying Proposition 9, we get that this is the unique global minimum point of
W̃ on ∆β .

Let us define ϕ : [0, 2π)→ Rn by putting ϕ(β) := (β, τ̃2, τ̃3, . . . , τ̃n).
As S is a continuous curve lying in A, there exists a point t of S∩Zβ , which

necessarily belongs to S ∩Zβ ∩A = S ∩∆β , too. However – as it was shown in

Theorem 4 in [15] – ∇W̃ ≡ 0 on S, therefore t is also a critical point of W̃ |∆β
.

Whence t = ϕ(β), the unique critical point of W̃ |∆β
, which is, as said above,

the global minimum point of W̃ |∆β
, too.

It is easy to see that Φ := W ◦ϕ is continuous on [0, 2π) and with Φ(2π) :=
W (ϕ(0)) is continuously extensible onto [0, 2π]. Thus Φ = W ◦ ϕ has a global
minimum on [0, 2π), let it be β∗. Obviously, ϕ(β∗) is also on the solution curve

S, and W̃ (τ1, . . . , τn) has a global minimum in ϕ(β∗). Since S is a smooth arc,

and ∇W̃ ≡ 0 on S, we get that W̃
∣∣∣
S
≡ const. That is, we find W̃

∣∣∣
S
≡ ϕ(β∗),

the global minimum of the discrete energy function W̃ = W̃ (τ1, . . . , τn).

Finally, we show that all points of SR are global minimum points of W̃ (.).

Using that W̃ (.) is (2π, . . . , 2π)-periodic, that is W̃ (τ1, τ2, . . . , τn) = W̃ (τ1 +
2π, τ2 +2π, . . . , τn+2π) and that for each j, τj(δ+2nπ) = τj(δ)+2π, we obtain

that W̃ (τ1(δ), . . . , τn(δ)) is actually 2nπ periodic in δ. This, expressed with S

and SR, implies that all points of SR are global minimum points of W̃ (.).

Note that the above provides a positive answer to the question raised in [15],
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p. 476: the discrete energy function W̃ = W̃ (τ1, . . . , τn) attains global minimum
at every point of the full solution curve SR. Moreover, these are the only critical
points of W̃ .

We collect the following set of ”bad” configurations:

X := {(z1, z2, . . . , zn) ∈ (∂D)n : zj = zk for some j 6= k, or B′(0) = 0}. (32)

Proof of Theorem 2. Let (z1, . . . , zn) ∈ (∂D)n \X be given. Denote their argu-
ments by tj := = log(zj), j = 1, 2, . . . , n. Without loss of generality, we may
assume that t1, t2, . . . , tn ∈ [0, 2π) and t1 < t2 < . . . < tn.

We use the above cited result of Hjelle providing a Blaschke product B(z) =
B(z1, . . . , zn; z) with degree n, satisfying (9). Denote the leading coefficient of
B(.) by χ where χ = eiδ0 ; note that δ0 is determined only mod 2π by this
choice. Let us define B1(z) := χ−1B(z) which is the monic Blaschke product
with the same zeros. We use α, T , S0, S and SR defined for B1(.). Now we fix
the value of δ0 so that −δ0 ∈ [α, α+ 2π); observe that this does not change the
value of χ and does not cause circular dependence. Note that the sets SR defined
for B and B1 are the same, because multiplying the Blaschke product with a
constant is just a translation of variable. More precisely τj(B; δ) = τj(B1; δ−δ0)
for all j = 1, 2, . . . , n, δ ∈ R.

Hjelle’s result means that τj(B; 0) = tj , hence τj(B1;−δ0) = tj . By the
choice of δ0, we immediately see that (t1, t2, . . . , tn) = T (−δ0), that is, (t1, t2, . . . , tn)
is on S0 defined in (6) for the monic Blaschke product B1(.).

We use the description from Theorem 1. This way we obtain that W̃ (.) has
global minimum at the points T (δ), δ ∈ [α, α+ 2π) (defined by B1(.)). Observe
that when the parameter δ changes continuously further on in [α, α+ 2nπ), the
curve T (δ) recovers ( mod 2π) the same set of arguments (t1, . . . , tn) n times, in
each cyclic permutations of them, while the corresponding z1, . . . , zn is repeated
n times (in each cyclic order of the values) always determining the same Blaschke
product.

We remark, that according to Proposition 7, the energy function W (.) has
critical point in (z1, z2, . . . , zn) not just with restriction to the unit circle, but
also in the total electrostatic equilibrium sense. This was also observed in [14],
see Theorem 2.

Roughly speaking, the union of solution curves for different a1, a2, . . . , an
covers the whole A ∩ Q, and considering as electrons on the unit circle, the
whole space (z1, z2, . . . , zn) ∈ (∂D)n \X.

This last result, when compared with Theorem 1, shows a direct relation
between the location of electrons, z1, z2, . . . , zn and the location of pairs of
protons, ζ1, ζ

∗
1 , ζ2, ζ

∗
2 , . . . , ζn−1, ζ

∗
n−1.

Corollary 11. If (z1, . . . , zn) ∈ (∂D)n\X is given, then the points ζ1, . . . , ζn−1 ∈
D \ {0} in Theorem 2 are the critical points of the Blaschke product satisfying
(9).
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