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Abstract

There are numerous examples of the so-called “square root phenomenon” in the field of parameterized
algorithms: many of the most fundamental graph problems, parameterized by some natural parameter k,
become significantly simpler when restricted to planar graphs and in particular the best possible running
time is exponential in O(

√
k) instead of O(k) (modulo standard complexity assumptions). We consider a

classic optimization problem Subset Traveling Salesman, where we are asked to visit all the terminals
T by a minimum-weight closed walk. We investigate the parameterized complexity of this problem in
planar graphs, where the number k = |T | of terminals is regarded as the parameter. We show that

Subset TSP can be solved in time 2O(
√
k log k) ·nO(1) even on edge-weighted directed planar graphs. This

improves upon the algorithm of Klein and Marx [SODA 2014] with the same running time that worked
only on undirected planar graphs with polynomially large integer weights.

1 Introduction

It has been observed in the context of different algorithmic paradigms that planar graphs enjoy important
structural properties that allow more efficient solutions to many of the classic hard algorithmic problems. The
literature on approximation algorithms contains many examples of optimization problems that are APX-hard
on general graphs, but admit polynomial-time approximation schemes (PTASes) when restricted to planar
graphs (see, e.g., [2–4,6,7,13,14,17,19,22]). When looking for exact solutions, even though the planar versions
of most NP-hard problems remain NP-hard, a more fine-grained look reveals that significantly better running
times are possible for planar graphs. As a typical example, consider the 3-Coloring problem: it can be
solved in time 2O(n) in general graphs and, assuming the Exponential-Time Hypothesis (ETH), this is best
possible as there is no 2o(n)-time algorithm. However, when restricted to planar graphs, 3-Coloring can be
solved in time 2O(

√
n), which is again best possible assuming ETH: the existence of a 2o(

√
n)-time algorithm

would contradict ETH. (A detailed discussion on these and similar results can be found in Section 14.2 of [9].)
There are many other problems that behave in a similar way and this can be attributed to the combination
of two important facts: (1) every planar graph on n vertices has treewidth O(

√
n) and (2) given an n-vertex

graph of treewidth t, most of the natural combinatorial problems can be solved in time 2O(t) · nO(1) (or
perhaps 2O(t·polylog t) · nO(1)). On the lower bound side, to rule out 2o(

√
n)-time algorithms, it is sufficient to

observe that most planar NP-hardness proofs increase the size of the instance at most quadratically (because
of the introduction of crossing gadgets). For example, there is a reduction that given an instance of 3SAT
with n variables and m clauses produce an instance of 3-Coloring that is a planar graph with O((n+m)2)
vertices. Together with ETH, such a reduction rules out 2o(

√
n)-time algorithms for planar 3-Coloring.

Thus the existence of this “square root phenomenon” giving 2O(
√
n) time complexity is well-understood both

from the algorithmic and complexity viewpoints.
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Our understanding of this phenomenon is much less complete for parameterized problems. A large
fraction of natural fixed-parameter tractable graph problems can be solved in time 2O(k) · nO(1) (with notable
exceptions [10, 23]) and a large fraction of W[1]-hard problems can be solved in time nO(k). There are
tight or almost-tight lower bounds showing the optimality of these running times. By now, there is a

growing list of problems where the running time improves to 2O(
√
k·polylog k) · nO(1) or to nO(

√
k·polylog k)

when restricted to planar graphs. For a handful of problems (e.g., Independent Set, Dominating Set,
Feedback Vertex Set, k-Path) this improvement can be explained in a compact way by the elegant
theory of bidimensionality [11]. However, there is no generic argument (similar to the simple argument
described above for the existence of 2O(

√
n) algorithms) why such an improvement should be possible for

most parameterized problems. The fact that every n-vertex planar graph has treewidth O(
√
n) does not

seem to help in improving the 2O(k) factor to 2O(
√
k) in the running time. The algorithmic results of this

form are thus very problem-specific, exploiting nontrivial observations on the structure of the solution
or invoking other tools tailored to the problem’s nature. Recent results include algorithms for Subset
TSP [21], Multiway Cut [20, 25], unweighted Steiner Tree parameterized by the number of edges of the
solution [29,30], Strongly Connected Steiner Subgraph [8], Subgraph Isomorphism [15], facility
location problems [27], Odd Cycle Transversal [24], and 3-Coloring parameterized by the number of
vertices with degree > 4 [1].

It is plausible to expect that other natural problems also have significantly faster parameterized algorithms
on planar graphs. The reason for this optimism is twofold. First, even though the techniques used to obtain
the results listed above are highly problem-specific, they suggest that planar graphs have rich structural
properties, connected to the existence of sublinear separators, that can be exploited in various ways and in
multiple settings. Second, lower bounds ruling out subexponential algorithms for planar problems intuitively
require large expressive power of the combinatorics of the problem at hand, which is lacking in the case most
natural problems. More precisely, to prove that a parameterized algorithm with running time 2o(k) · nO(1)

violates ETH, one needs to give a reduction from 3SAT with m clauses to a planar instance with parameter
k = O(m). However, in a typical reduction for a typical problem, the output planar graph has Ω(m2)
“crossing gadgets”, each increasing the parameter, which ultimately yields k = Ω(m2).

The intuition presented in the paragraph above is, however, not quite right. In a very recent result,
we have found a novel type of reduction that gets around the discussed limitations and, assuming ETH,
rules out the existence of 2o(k) · nO(1)-time algorithms for Steiner Tree parameterized by the number of
terminals [26]. A result of similar flavor has been reported by Bodlaender et al. [5], who, under the same
assumption, ruled out the existence of a 2o(k/ log k) · nO(1)-time algorithm for Subgraph Isomorphism (and
a few related problems) in planar graphs, parameterized by the size of the pattern graph. These results put
the search for subexponential parameterized algorithms in planar graphs in a new perspective, as they show
that the boundary between subexponential tractability and intractability is much more wild — and therefore
interesting — than previously expected.

Our contribution. In this paper we address a classic problem on planar graphs for which the existence of
subexponential parameterized algorithm was open. Given a graph G with a subset T of vertices distinguished
as terminals, the Subset TSP problem asks for a shortest closed walk visiting the terminals in any order.
Parameterized by the number k = |T | of terminals, the problem is fixed-parameter tractable in arbitrary
graphs: it can be solved in time 2k ·nO(1) by first computing the distance between every pair of terminals, and
then solving the resulting k-terminal instance using the standard Bellman-Held-Karp dynamic programming
algorithm. Klein and Marx [21] showed that if G is an undirected planar graph with polynomially bounded

edge weights, then the problem can be solved significantly faster, in time 2O(
√
k log k) · nO(1). The limitations

of polynomial weights and undirected graphs are inherent to this algorithm: it starts with computing a
locally 4-step optimal solution (which requires polynomial weights to terminate in polynomial time) and
relies on an elaborate subtour-replacement argument (which breaks down if the tour has an orientation). The
main argument is the unexpected claim that the union of an optimal and a locally 4-step optimal tour has
treewidth O(

√
k).

Our result is a more robust and perhaps less surprising algorithm that achieves the same running time,
but does not suffer from these limitations.
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Theorem 1.1. Given an edge-weighted directed planar graph G with terminals T , Subset TSP parameterized

by k = |T | can be solved in time 2O(
√
k log k)nO(1).

The similarity of Subset TSP and Steiner Tree, for which a lower bound ruling out 2o(k)nO(1)

time algorithms in planar graphs has been recently shown [26], suggests a very intricate boundary between
parameterized problems that admit and do not admit subexponential parameterized algorithms in planar
graphs.

The proof of Theorem 1.1 has the same high-level idea as the algorithm of Klein and Marx [21]: a family

of 2O(
√
k log k) subsets of terminals is computed, followed by applying a variant of the Bellman-Held-Karp

dynamic programming algorithm that considers only subsets of terminals that appear in this family. However,
the way we compute such a family is very different: the construction of Klein and Marx [21] crucially relies on
how the optimal solution interacts with the locally 4-step optimal solution (e.g., they cross each other O(k)
times), while our argument here does not use any such assumption. For directed graphs, we can extract much
fewer properties of the structure of the solution or how it interacts with some other object. For example, we
cannot require that the optimum solution is non-self-crossing and the number of self-crossings cannot be even
bounded by a function of k. Thus in order to find an algorithm working on directed graphs, we need to use
more robust algorithmic ideas that better explain why it is possible to have subexponential parameterized
algorithms for this problem.

In Section 2, we highlight these new ideas in an overview of the algorithm of Theorem 1.1. After brief
preliminaries in Section 3 and an auxiliary result on noose enumeration in Section 4, we prove Theorem 1.1
in Section 5.

2 An overview of the algorithm

In this section we give an overview of the approach leading to the subexponential parameterized algorithm
for Directed Subset TSP, that is, the proof of Theorem 1.1. We first describe the high-level strategy
of restricting the standard dynamic programming algorithm to a smaller family of candidate states. Then
we explain the main idea of how such a family of candidate states can be obtained; however, we introduce
multiple simplifying assumptions and hide most of the technical problems. Finally, we briefly review the
issues encountered when making the approach work in full generality, and explain how we cope with them.
We strongly encourage the reader to read this section before proceeding to the formal description, as in the
formal layer many of the key ideas become somehow obfuscated by the technical details surrounding them.

2.1 Restricted dynamic programming

Restricting dynamic programming to a small family of candidates states is by now a commonly used technique
in parameterized complexity. The idea is as follows. Suppose that we search for a minimum-cost solution to
a combinatorial problem, and this search can be expressed as solving a number of subproblems in a dynamic
programming fashion, where each subproblem corresponds to a state from a finite state space S. Usually,
subproblems correspond to partial solutions, and transitions between states correspond to extending one
partial solution to a larger partial solution at some cost, or combining two or more partial solutions to a larger
one. For simplicity, assume for now that we only extend single partial solutions to larger ones, rather than
combine multiple partial solutions. Then the process of assembling the final solution from partial solutions
may be described as a nondeterministic algorithm that guesses consecutive extensions, leading from a solution
to the most basic subproblem to the final solution for the whole instance. The sequence of these extensions is
a path (called also a computation path) in a directed graph on S where the transitions between the states are
the arcs. Then the goal is to find a minimum-weight path from the initial state to any final state, which can
be done in time linear in the size of this state graph, provided it is acyclic.

In order to improve the running time of such an algorithm one may try the following strategy. Compute a
subset of states S ′ ⊆ S with the following guarantee: there is a computation path leading to the discovery of
a minimum-weight solution that uses only states from S ′. Then we may restrict the search only to states
from S ′. So the goal is to find a subset of states S ′ that is rich enough to “capture” some optimum solution,
while at the same time being as small as possible so that the algorithm is efficent.
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Let us apply this principle to Directed Subset TSP. Consider first the most standard dynamic
programming algorithm for this problem, working on general graphs in time 2k · nO(1), where we denote
k = |T | by convention. Each subproblem is described by a subset of terminals S ⊆ T and two terminals
s1, s2 ∈ S. The goal in the subproblem is to find the shortest tour that starts in s1, ends in s2, and visits all
terminals of S along the way. The transitions are modelled by a possibility of extending a solution for the
state (S, s1, s2) to a solution for the state (S ∪ {s′}, s1, s

′) for any s′ /∈ S at the cost of adding the shortest
path from s2 to s′. The minimum-weight tour can be obtained by taking the best among solutions obtained
as follows: for any s1, s2 ∈ T , take the solution for the subproblem (T, s1, s2) and augment it by adding the
shortest path from s2 to s1. Observe that the above algorithm is essentially the standard Bellman-Held-Karp
dynamic programming algorithm for TSP, applied to the shortest path metric on T .

This is not the dynamic programming algorithm we will be improving upon. The reason is that restricting
ourselves to constructing one interval on the tour at a time makes it difficult to enumerate a small subfamily
of states capturing an optimum solution. Also, the above dynamic programming algorithm computes an
optimum partial solution to every subproblem. In our dynamic programming algorithm we will be only able
to ensure optimality for states appearing on the chosen computation path for some chosen optimal solution.

Instead, we consider a more involved variant of the above dynamic programming routine, which intuitively
keeps track of O(

√
k) intervals on the tour at a time. More precisely, each subproblem is described by a state

defined as a pair (S,M), where S ⊆ T is a subset of terminals to be visited, and M (also called connectivity
pattern) is a set of pairwise disjoint pairs of terminals from S, where |M| 6 C

√
k for some universal constant

C. The goal in the subproblem is to compute a family of paths P(S,M) of minimum possible weight having
the following properties: for each (s1, s2) ∈M there is a path in P(S,M) that leads from s1 to s2, and each
terminal from S lies on some path in P(S,M). Note, however, that we do not specify, for each terminal from
S, on which of the paths it has to lie.

Solutions to such subproblems may be extended by single terminals as in the standard dynamic program-
ming, but they can be also combined in pairs. More precisely, consider two solutions P1 and P2 respectively for
(S1,M1) and (S2,M2) where S1∩S2 = ∅. For i = 1, 2, let Xi and Yi be the starting and the ending terminals
of the matching of Mi. Let X ⊆ X1 ∪X2 and Y ⊆ Y1 ∪ Y2 be two equal-sized sets, let X ′ = (X1 ∪X2) \X
and Y ′ = (Y1 ∪ Y2) \ Y ; note that |X| = |Y | implies |X ′| = |Y ′|. Let M′ be a matching between Y ′ and X ′

and let P ′ be the family of shortest paths between the pairs in M′. Then P := P1 ∪ P ′ ∪ P2 is a family of
walks starting in X and ending in Y plus possibly some closed walks. If P contains no closed walks andM is
a matching between X and Y matching starting and ending terminals of P, then P is a candidate solution
to (S1 ∪ S2,M). The dynamic programming algorithm is able to choose the minimum-weight solution to
(S1 ∪ S2,M) obtained for different choices of (S1,M1), (S2,M2), and M′ (which induces the choice of X ′,
Y ′, X, and Y ).

Since we assume that |M1|, |M2|, |M| 6 C
√
k, there are only kO(

√
k) ways to perform a merge as in

the previous paragraph. While this dynamic programming formally does not conform to the “linear view”
described in the paragraphs above, as it may merge partial solutions for two simpler states into a larger
partial solution, it is straightforward to translate the concept of restricting the state space to preserve the
existence of a computation path (here, rather a computation tree) leading to a minimum-cost solution.

Observe that since in a state (S,M) we stipulate the size of M to be O(
√
k), the total number of states

with a fixed subset S ⊆ T is kO(
√
k). Thus, from the discussion above we may infer the following lemma,

stated here informally.

Lemma 2.1 (Lemma 5.23, informal statement). Let (G,T ) be an instance of Directed Subset TSP.
Suppose we are also given a family B of subsets of T with the following guarantee: there is a computation path
of the above dynamic programming leading to an optimum solution that uses only states of the form (S,M)

where S ∈ B. Then we can find an optimum solution for the instance (G,T ) in time kO(
√
k) · (|B| · |G|)O(1).

Concluding, we are left with constructing a family B of subsets of T that satisfies the prerequisites of

Lemma 2.1 and has size kO(
√
k), provided the underlying graph G is planar. For this, we will crucially use

topological properties of G given by its planar embedding.

4



2.2 Enumerating candidate states

Suppose (G,T ) is the input instance of Directed Subset TSP where G is planar. Without loss of generality
we may assume that G is strongly connected. Fix some optimum solution W , which is a closed walk in the
input graph G that visits every terminal.

Simplifying assumptions. We now introduce a number of simplifying assumptions. These assumptions
are made with loss of generality, and we introduce them in order to present our main ideas in a setting that
is less obfuscated by technical details.

(A1) Walk W is in fact a simple directed cycle, without any self-intersections. In particular, the embedding
of W in the plane is a closed curve without self-intersections; denote this curve by δ.

(A2) The walk W visits every terminal exactly once, so that we may speak about the (cyclic) order of visiting
terminals on W .

Note that Assumption A2 follows from A1, but we prefer to state them separately as later we first obtain
Assumption A2 and then discuss Assumption A1.

We will also assume that shortest paths are unique in G, but this can be easily achieved by perturbing
the weights of edges of G slightly.

Suppose now that we have another closed curve γ in the plane, without self-intersections, that crosses δ
in p = O(

√
k) points, none of which is a terminal. Curve γ divides the plane into two open regions (maximal

connected parts of the plane after removal of γ)—say R1, R2—and thus δ is divided into p intervals which
are alternately contained in R1 and R2. Let S be the set of terminals visited on the intervals contained in
R1. Then it is easy to see that S is a good candidate for a subset of terminals that we are looking: S forms
at most O(

√
k) contiguous intervals in the order of visiting terminals by W , and hence for the connectivity

pattern M consisting of the first and last terminals on these intervals, the state (S,M) would describe a
subproblem useful for discovering W as the part of W inside γ is a solution to this state.

However, we are not really interested in capturing one potentially useful state, but in enumerating a
family of candidate states that contains a complete computation path leading to the discovery of an optimum
solution. Hence, we rather need to capture a hierarchical decomposition of T using curves γ as above, so
that terminal subsets S induce the sought computation path. For this, we will use the notion of sphere-cut
decompositions of planar graphs, and the well-known fact that every k-vertex planar graph admits a sphere-cut
decomposition of width O(

√
k).

Sphere-cut decompositions. A branch decomposition of a graph G is a ternary tree T (i.e. one with
every internal node of degree 3), together with a bijection ζ between the leaves of T and the edges of G. For
every edge e of T , the removal of e from T splits T into two subtrees, say T 1 and T 2. The cut (or middle set)
of e, denoted mid(e), is the set of those vertices of G that are incident to both an edge corresponding (via
ζ) to a leaf contained in T1, and to an edge corresponding to a leaf contained in T2. The width of a branch
decomposition (T , ζ) is the maximum size of a cut in it. The branchwidth of a graph G is the minimum
possible width of a branch decomposition of G. It is well-known that a planar graph on k vertices has
branchwidth O(

√
k) (see e.g. [16]).

After rooting a branch decomposition (T , ζ) in any node, it can be viewed as a hierarchical decomposition
of the edge set of G using vertex cuts of size bounded by the width of the decomposition. Seymour and
Thomas [31] proved that in plane graphs we can always find an optimum-width branch decomposition that
somehow respects the topology of the plane embedding of a graph. Precisely, having fixed a plane embedding
of a connected graph G, call a closed curve γ in the plane a noose if γ has no self-intersections and it crosses
the embedding of G only at vertices1; in particular it does not intersect any edge of G. Such a curve γ
divides the plane into two regions, which naturally induces a partition of the edge set of G into edges that
are embedded in the first, respectively the second region. A sphere-cut decomposition of G is a branch
decomposition (T , ζ) where in addition every edge e of T is assigned its noose γ(e) such that γ(e) traverses
the vertices of mid(e) and the partition of the edge set induced by γ(e) corresponds (via ζ) to the partition of

1In standard literature, e.g. [31], a noose is moreover required to visit every face of G at most once; in this paper we do not
impose this restriction.
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the leaf set of T induced by removing e from T . Then the result of Seymour and Thomas [31] may be stated
as follows: every connected planar graph has a sphere-cut decomposition of width equal to its branchwidth2.
Together with the square-root behavior of the branchwidth of a planar graph, this implies the following.

Theorem 2.2 (see e.g. [16]). Every connected plane graph that has at most k vertices of degree at least 3 has
a sphere-cut decomposition of width at most α

√
k, for some constant α.

Turning back to our Directed Subset TSP instance (G,T ) and its optimum solution W , our goal is to
enumerate a possibly small family of subsets of T that contains some complete computation path leading to
the discovery of W . The remainder of the construction is depicted in Figure 2 (on page 10) and we encourage
the reader to analyze it while reading the description. The description is divided into “concepts”, which are
not steps of the algorithm, but of the analysis leading to its formulation.

Concept 1: adding a tree. Take any (inclusionwise) minimal tree H0 in the underlying undirected graph
of G spanning all terminals of T . We may assume that H0 contains at most k leaves that are all terminals, at
most k − 2 vertices of degree at least 3, and otherwise it consists of at most 2k − 3 simple paths connecting
these leaves and vertices of degree at least 3 (further called special vertices of H0). To avoid technical issues
and simplify the picture, we introduce another assumption.

(A3) Walk W and tree H0 do not share any edges.

Let H be the graph formed by the union of W and H0. Even though both W and H0 consist of at most
2k simple paths in G, the graph H may have many vertices of degree more than 3. One of the possible
scenarios for that is when a subpath Q between two consecutive terminals on W and a path P in H0 that
connects two special vertices of H0 cross many times. The intuition is, however, that the planar structure of
H roughly resembles a structure of a planar graph on O(k) vertices, and a sphere-cut decomposition of this
planar graph of width O(

√
k) should give rise to the sought hierarchical partition of terminals leading to the

discovery of W by the dynamic programming algorithm.
Another way of looking at the tree H0 is that we can control the homotopy types of closed curves in the

plane punctured at the terminals, by examining how they cross with H0.
Let us remark that, of course, the definition of the graph H relies on the (unknown to the algorithm)

solution W , though the tree H0 can be fixed and used by the algorithm. At the end we will argue that having

fixed H0, we may enumerate a family of kO(
√
k) candidates for nooses in a sphere-cut decomposition of H.

Roughly, for each such noose γ we consider the bi-partition of terminals according to the regions of the plane
minus γ in which they lie, and we put all terminal subsets constructed in this manner into a family B, which

is of size kO(
√
k). Then restricting the dynamic programming algorithm to B as in Lemma 2.1 gives us the

required time complexity.

Concept 2: Contracting subpaths of W . Hence, the goal is to simplify the structure of H so that it
admits a sphere-cut decomposition of width O(

√
k). Consider any pair of terminals t1, t2 visited consecutively

on W , and let P be the subpath of W from t1 to t2. Consider contracting all internal vertices on P into a
single vertex, thus turning P into a path P ′ on 2 edges and 3 vertices. Let H ′ be the graph obtained from H
by contracting each path between two consecutive terminals on W in the manner described above. Observe
that thus, H ′ has less than 3k vertices of degree at least 3: there are at most 2k vertices on the contracted
W in total, and there can be at most k− 2 vertices of degree at least 3 on H0 that do not lie on W . Then H ′

has a sphere-cut decomposition of width 6 α
√

3k, say (T , η, γ(·)).
Consider the family D of subsets of terminals constructed as follows. For each noose γ(e) for e ∈ T , that

is, appearing in the sphere-cut decomposition (T , η, γ(·)), and each partition (X,Y ) of terminals traversed by

γ(e) (there are at most α
√

3k such terminals, so 2O(
√
k) such partitions), add to D the following two terminal

subsets: the set of terminals enclosed by γ(e) plus X, and the set of terminals excluded by γ(e) plus Y . It
can be now easily seen that D contains a complete computation path that we are looking for, as each terminal
subset included in D forms at most O(

√
k) contiguous intervals in the cyclic order of terminals on W , and

the decomposition tree T shows how our dynamic programming should assemble subsets appearing in D in

2In [31] it is also assumed that the graph is bridgeless, which corresponds to the requirement that every face is visited by a
noose at most once. It is easy to see that in the absence of this requirement it suffices to assume the connectivity of the graph.
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pairs up to the whole terminal set. In other words, if we manage to construct a family B of size kO(
√
k) with

a guarantee that it contains the whole D, then we will be done by Lemma 2.1.

Concept 3: Enumeration by partial guessing. Obviously, the graph H ′ is not known to the algorithm,
as its definition depends on the fixed optimum solution W . Nevertheless, we may enumerate a reasonably
small family of candidates for nooses used in its sphere-cut decomposition (T , η, γ(·)). The main idea is that

even though the full structure of H ′ cannot be guessed at one shot within kO(
√
k) possibilities, each noose we

are interested in traverses only at most α
√

3k vertices of H ′, and hence it is sufficient to guess only this small
portion of H ′.

More precisely, let Q be the subset of those vertices of H ′ that are obtained from contracting the subpaths
of W between consecutive terminals. Fix a noose γ appearing in the sphere-cut decomposition of H ′, that
is, γ = γ(e) for some e ∈ T . Then γ traverses at most α

√
3k vertices of Q; say that R ⊆ Q is the set of

these vertices. We can now enumerate a set of kO(
√
k) candidates for γ by performing the following steps (by

guessing we mean iterating through all options):

(1) Guess a set R of at most α
√

3k pairs of distinct terminals.

(2) For each (s, t) ∈ R, take the shortest path P(s,t) from s to t and consider contracting it to a single
vertex p(s,t).

(3) Take the fixed tree H0 that spans terminals in G, apply the above contractions in G, and let HR be
the graph to which H0 is transformed under these contractions.

(4) Enumerate all nooses γ that meet HR only at terminals and vertices of degree at least 3, and traverse
at most α

√
3k such vertices.

In Step 1 we have at most kO(
√
k) options for such a set R, and the contractions in Steps 2 and 3 turn H0

into a planar graph HR with O(k) vertices. It is not hard to convince oneself that in such a graph, there are

only kO(
√
k) nooses satisfying the property expressed in the Step 4, so all in all we enumerate at most kO(

√
k)

curves in the plane, each traversing at most α
√

3k terminals. Now, for each enumerated curve γ, we include
into B two terminal subsets: the set of terminals enclosed by γ and the set of terminals excluded by γ. Thus

|B| = kO(
√
k).

It remains to argue that B contains the whole family D that was given by the sphere-cut decomposition
(T , η, γ(·)) of H ′, so that Lemma 2.1 may be applied. It should be quite clear that it is sufficient to show that
every noose γ appearing in (T , η, γ(·)) is enumerated in Step 4 of the procedure from the previous paragraph.
However, nooses with respect to HR are formally not necessarily nooses with respect to H ′, as we wanted.
Nevertheless, if a noose γ appears in the sphere-cut decomposition (T , η, γ(·)) of H ′, and we take R to be the
set of pairs of consecutive terminals on W such that γ passes through the contracted vertices p(s,t) exactly
for (s, t) ∈ R, then after dropping parts of H ′ not appearing in HR, γ becomes a noose enumerated for HR.
Therefore, the terminal partitions raised by γ are still included in B as we wanted, and we are done.

2.3 Traps, issues, and caveats

The plan sketched in the previous section essentially leads to an algorithm with the promised time complexity,
modulo Assumptions A1, A2, A3, and a number of technical details of minor relevance. Assumptions A2 and
A3 are actually quite simple to achieve without loss of generality. It is Assumption A1 that was a major
conceptual obstacle.

For Assumption A2, we may at the very beginning perform the following reduction. For every original
terminal t, introduce a new terminal t′ and edges (t, t′) and (t′, t) of weight 0 to the graph; t′ and these edges
are embedded in any face incident to t. The new terminal set consists of terminals t′ for all original terminals
t. In this way, any closed walk visiting any new terminal t′ has to make a detour of weight 0 using arcs (t, t′)
and (t′, t), and we may assume that an optimal solution makes only one such detour for each new terminal t′.
In this way we can achieve Assumption A2; the actual proof makes a slightly more complicated construction
to add a few extra properties.

For Assumption A3, observe that in the reasoning we relied only on the fact that H0 is a tree spanning
all terminals that has at most k leaves and at most k − 2 vertices of degree at least 3. In particular, we did
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s t

Figure 1: A planar Directed Subset TSP instance with two terminals. The only solution consists of the
union of the red path from s to t and the blue path from t to s. These two paths cross each other many
times, which gives many self-intersections of the solution.

not use any metric properties of H0. In fact, the reader may think of H0 as a combinatorial object used to
control the homotopy group of the plane with terminals pierced out: for any non-self-intersecting curve γ on
the plane, we may infer how terminals are partitioned into those enclosed by γ, excluded by γ, and lying on
γ just by examining the consecutive intersections of γ with H0. Therefore, instead of choosing H0 arbitrarily,
we may add it to the graph artificially at the very beginning, say using edges of weight +∞. In this way we
make sure that the optimum solution W does not use any edge of H0.

Finally, let us examine Assumption A1: the optimum solution W is a simple directed cycle without
self-intersections. Unfortunately, this assumption may not hold in general. Consider the example depicted in
Figure 1, where we have a directed planar graph with two terminals s, t, and the only closed walk visiting
both s and t consists of two paths, one from s to t and the second from t to s, that intersect each other an
unbounded number of times. Therefore, in general the optimum solution W may have an unbounded number
of self-intersections. Nevertheless, we may still develop some kind of a combinatorial understanding of the
topology of W .

It will be convenient to assume that no edge of the graph is traversed by W more than once; this can be
easily achieved by copying each edge |T | times, and using a different copy for each traversal. Consider two
visits of the same vertex u by W ; let e1, e2 be the edges incident to u used by W just before and just after
the first visit, and define f1, f2 in the same way for the second visit. Examine how e1, e2, f1, f2 are arranged
in the cyclic order of edges around vertex u. If they appear in the interlacing order, i.e., (e1, f1, e2, f2) or
(e1, f2, e2, f1), then we say that these two visits form a self-crossing of W . Intuitively, if the order is not
interlacing, then we may slightly pull the two parts of the embedding of W near u corresponding to the visits
so that they do not intersect. So topologically we do not consider such a self-intersection as a self-crossing.
For two walks W1,W2 in G that do not share any common edges we define their crossing in a similar manner,
as a common visit of a vertex u such that the cyclic order of edges used by W1 and W2 immediately before
and immediately after these visits is interlacing.

We will use the following structural statement about self-crossings of W : We may always choose an
optimal solution W so that the following holds.

Consider any self-crossing of W at some vertex u (recall it consists of two visits of u) and say it
divides W into two closed subwalks W1 and W2: W1 is from the first visit of u to the second, and
W2 is from the second visit of u to the first. Then the subwalks W1 and W2 do not cross at all.

This statement can be proved by iteratively “uncrossing” an optimum solution W as long as the structure of
its self-crossings is too complicated. However, one needs to be careful in order not to split W into two closed
curves when uncrossing.

It is not hard to observe that the statement given in the previous paragraph actually shows that the
topology of W roughly resembles a cactus where each 2-connected component is a cycle (here, we assume
that self-intersections that are not self-crossings are pulled slightly apart so that W does not touch itself
there). See the left panel of Figure 8 in Section 5.2 for reference. Then we show (see Lemma 5.8) that W can
be decomposed into O(k) subpaths P = {B1, . . . , B`} such that:

• each path Bi has no terminal as an internal vertex and is the shortest path between its endpoints; and

• each path Bi may cross with at most one other path Bj .
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To see this, note that the cactus structure of W may be described as a tree T with at most k leaves and at
most k − 2 vertices of degree at least 3. We have a pair of possibly crossing subpaths in the decomposition P
per each maximal path with internal vertices of degree 2 in T .

The idea now is as follows. In the previous section we essentially worked with the partition of W into
subpaths between consecutive terminals, as Assumption A1 allowed us to do so. In the absence of this
assumption, we work with the finer partition P as above. The fact that the paths of P interact with each
other only in pairs, and in a controlled manner, makes the whole reasoning go through with the conceptual
content essentially unchanged, but with a lot more technical details.

In the previous description, by Assumption A1, the paths between consecutive terminals do not intersect,
and hence they do not interfere with each other while contracting them to three-vertex-paths. While now the
paths Bis may cross, they cross in a very limited setting as described above, causing little turbulence to the
argument.

Another nontrivial difference is that in the previous section we were contracting shortest paths between
pairs of consecutive terminals, so we had a small set of candidates for the endpoints of these paths: the
terminals themselves. In the general setting, the decomposition statement above a priori does not give us any
small set of candidates for endpoints of paths Bi. If we chose those endpoints as arbitrary vertices of the

graph, we would end up with time complexity nO(
√
k) instead of promised kO(

√
k) · poly(n). Fortunately, the

way we define the decomposition P = {B1, . . . , B`} allows us to construct alongside also a set of at most
k4 important vertices such that each path Bi is the shortest path from one important vertex to another
important vertex.

Finally, there are more technical problems regarding handling possible self-inter-sections of W that are
not self-crossings. Recall that in our topological view of W , we would like not to regard such self-intersections
as places where W touches itself. In particular, when examining a sphere-cut decomposition of the union
of W and H0 after appropriate contractions, the nooses in this sphere-cut decomposition should not see
such self-intersections as vertices through which they may or should travel. A resolution to this problem is
to consider a “blow-up” of the original graph where each vertex is replaced by a large grid and each edge
is replaced by a large matching of parallel edges leading from one grid to another. Walks in the original
graph naturally map to walks in the blow-up. Every original self-crossing maps to a self-crossing, and every
original self-intersection that is not a self-crossing actually is “pulled apart”: there is no self-intersection at
this place anymore. This blow-up has to be performed quite early in the proof. Unfortunately, while this step
is intuitively easy, it does not work very well together with the other simplification steps described above.
In particular, it ruins the property of unique shortest paths. Luckily, we are able to extract the essential
properties of the blow-up under an abstract definition of a canonical instance and work mostly only with this
abstraction. We will first present a delicate (but self-contained) way of reducing the instances to this form
and then we need to solve the problem in simpler, cleaner form.

3 Preliminaries

Throughout the paper we denote [n] = {1, 2, . . . , n} for any positive integer n,
We will consider directed or undirected planar graphs G with a terminal set T ⊆ V (G) (|T | > 2) and

weight function ωG : E(G) → Z>0; we omit the subscript if it is clear from the context. Furthermore, we
assume that G does not contain loops, but may contain multiple edges or arcs with the same endpoints.

For a directed path P in a directed graph G and two vertices u, v ∈ V (P ) such that u appears on P not
later than v, by P [u, v] we denote the subpath of P from u to v. A `× ` acyclic grid consists of vertices vi,j
for 1 6 i, j 6 `, arcs (vi,j , vi+1,j) for every 1 6 i < `, 1 6 j 6 `, and arcs (vi,j , vi,j+1) for every 1 6 i 6 `,
1 6 j < `.

A walk in a directed graph G is a sequence (e1, . . . , ep) of edges of G such that the head of ei is the tail of
ei+1, for all i = 1, . . . , p − 1. A walk is closed if additionally the head of ep is equal to the tail of e1. The
weight of a walk is the sum of the weights of its edges.

Nooses and branch decompositions. Given a plane graph G, a noose is a closed curve without self-
intersections that meets the drawing of G only in vertices. Contrary to some other sources in the literature,
we explicitly allow a noose to visit one face multiple times, however each vertex is visited at most once.
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(a) Graph H.
(b) Graph H ′.

(c) Graph H ′ with noose γ. (d) Graph HR and γ as a noose in it.

Figure 2: Construction of Section 2.2. In panel 2a, we see graph H consisting of the union of solution W (in
blue) and tree H0 (in red). Terminals are depicted as yellow squares. In panel 2b, we see graph H ′, obtained
from H by contracting the interior of every subpath of W between two consecutive terminals to one vertex
(in violet). Also, paths of vertices of degree 2 in H0 are replaced by single edges, though this is not visible.
Panel 2c depcicts noose γ in the graph H ′. Then γ partitions the plane into two regions: R1 (grayed) and
R2 (non-grayed), which induces a partition of the terminals into those contained in R1, those contained in
R2, and those traversed by γ. Note that γ traverses two terminals, five vertices obtained from contracting
subpaths of W to single vertices, and two vertices of H0 of degree 3. Finally, in panel 2d we see the graph HR
used to enumerate γ. Here, R consists of those pairs of terminals that are consecutive on W and moreover γ
traverses the vertex of H ′ obtained from contracting the shortest path between them (which is a subpath of
W ). These constracted shortest paths are not a part of HR, so they are depicted with reduced opacity.
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We now briefly recall the formal layer of branch and sphere-cut decompositions for convenience. A branch
decomposition of a graph G is a pair (T , ζ) where T is an unrooted ternary tree and ζ is a bijection between
the leaves of T and the edges of G. For every edge e ∈ E(T ), we define the cut (or middle set) mid(e) ⊆ V (G)
as follows: if T1 and T2 are the two components of T − e, then v ∈ mid(e) if v is incident both to an edge
corresponding to a leaf in T1 and to an edge corresponding to a leaf in T2. The width of a decomposition is the
maximum size of a cut in it, and the branchwidth of a graph is a minimum width of a branch decomposition
of a graph. It is well known that planar graphs have sublinear branchwidth.

Theorem 3.1 (see e.g. [16]). Every planar graph with n > 2 vertices of degree at least 3 has branchwidth
bounded by

√
4.5n.

In planar graphs, one can compute good branch decompositions, where the cuts mid(e) correspond to
nooses. More formally, a triple (T , ζ, γ) is an sc-branch decomposition (for sphere-cut branch decomposition)
if (T , ζ) is a branch decomposition and for every e ∈ E(T ), γ(e) is a noose that traverses the vertices of
mid(e) and separates the edges corresponding to the leaves of the two components of T − e from each other.

We need the following result of Seymour and Thomas [31], with the algorithmic part following from [12,18].
We remark that the O(|V (G)|3) factor coming from this theorem is a part of a the polynomial factor in the
running time bound of our algorithm (that we do nnot analyse in detail).

Theorem 3.2 ( [12, 18, 31]). Given a connected plane graph G, one can in time O(|V (G)|3) compute an
sc-branch decomposition of G of width equal to the branchwidth of G.

We remark that in [12,18,31] one considers nooses that can visit every face at most once, which makes
it necessary to assume also that the graph is bridgeless; see e.g. [28]. It is easy to see that without this
assumption on nooses, one can extend the theorem also to connected graphs with bridges. One way to obtain
it is to first decompose into bridgeless components, and then decompose each such component separately.
Alternatively, one can add a number of dummy edges without violating the plane embedding but ensuring
2-edge-connectivity.

4 Nooses

In this section, we prove a combinatorial result showing that if we consider nooses that go through only a
limited number of vertices of a connected graph with some vertices being terminals, then there is only a
bounded number of potential partitions of terminals such nooses can realize. A slight technical complication
is deciding how to handle terminals that are on the noose itself; to avoid this complication, we consider the
terminals to be edges instead.

Let G be a connected plane (directed or undirected) graph with a set F ⊆ E(G) of terminal edges and let
γ be a noose in G that visits at most ` vertices. In this section we show that if `� |F |, then there are much
less than 2Θ(|F |) ways of how the noose can partition the set of terminal edges.

More formally, we think of the planar embedding of G as a spherical one (i.e., without distinguished outer
face) and with a noose γ we associate a partition {F1, F2} of F , where and F1 and F2 are the sets of terminal
edges that lie in the two components of the sphere minus γ. Since we consider spherical embeddings and the
two sides of γ are symmetric, the pair {F1, F2} is an unordered pair.

Our main claim in this section is that there are only |F |O(`) “reasonable” partitions for nooses visiting at
most ` vertices.

Lemma 4.1. Assume we are given a plane connected graph G with a set F ⊆ E(G) of terminal edges and an
integer `. Then one can in time |F |O(`)nO(1) compute a family A of |F |O(`) of partitions of F such that, for
every noose of G that visits at most ` vertices, its corresponding partition of the terminal edges belongs to A.

Proof. The crucial observation is that deleting an edge or a (nonterminal) vertex from G only increases the
family of curves in the plane that are nooses with respect to G. Consequently, if one replaces G with any of
its connected subgraphs that contains all the terminal edges and enumerate a family of partitions satisfying
the statement of the lemma for this subgraph, then the same family will be also a valid output for the original
graph G. Thus, by restricting attention to an inclusion-wise minimal connected subgraph containing all
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terminal edges, without loss of generality we may assume that every edge of G that is not a terminal edge is
a bridge connecting two parts of G that both contain a terminal edge.

Without loss of generality, assume ` < |F |, as otherwise we just enumerate all partitions of F .
Let S be the set of special vertices in G: endpoints of terminal edges and vertices of degree at least 3.

Note that every vertex of S \ V (F ) is a vertex incident with at least three nonterminal edges; each such
edge is a bridge connecting two components containing a terminal edge. Hence, |S \ V (F )| < |F | and thus
|S| < 3|F |. Furthermore, it follows that G decomposes into F and r < 2|F | paths Q1, Q2, . . . , Qr such that
each path Qi consists of nonterminal edges only, has both endpoints in S but no internal vertices in S. That
is, every path Qi is disjoint from F , has degree-2 vertices as internal vertices, and either endpoints of terminal
edges or vertices of degree at least 3 as endpoints.

Construct now a graph G′ from G by replacing every path Qi with a path Q′i with the same drawing in
the plane, but with exactly ` internal vertices. We have

|V (G′)| 6 |S|+ ` · r < |F |(2`+ 3),

|E(G′)| 6 |F |+ (`+ 1) · r < |F |(2`+ 3).

Furthermore, for every noose γ in G that visits at most ` vertices of G, construct its shift γ′, being a noose
with respect to G′, as follows: for every path Qi, move all intersections of γ with the internal vertices of Qi
to distinct internal vertices of Q′i, keeping the relative order of the intersections along the paths Qi and Q′i
the same. Since Q′i has ` internal vertices, this is always possible. Furthermore, we can obtain γ′ from γ by
local modifications within close neighborhoods of the paths Qi, but not near its endpoints. Consequently, the
partitions of the terminal edges induced by γ and γ′ are the same.

Observe now that γ′ is a noose with respect to a connected graph with O(|F |`) vertices and edges. With
every intersection of γ′ with G′, say at a vertex v, we associate three pieces of information: the vertex v
itself, between which pair of edges incident with v the noose γ′ entered v, and between which pair of edges it
left v. Since there are only O(|F |`) = O(|F |2) choices for every piece of information, there are only |F |O(`)

possible combinatorial representations of γ′, defined as a sequence of the aforementioned triples of pieces of
information at every vertex traversed γ′, in the order of a walk along γ′. Finally, as the connectedness of G′

implies that every face of G′ is isomorphic to a disc, we can see that knowing the combinatorial representation
of γ′ is sufficient to deduce the partition of the terminal edges induced by γ′. This finishes the proof.

5 The algorithm

In this section we provide a full proof of Theorem 1.1. We assume that we are given an instance (G,T ) of
Directed Subset TSP. We start by fixing a plane embedding of G and introducing a few useful definitions.

Let W be a walk that visits every terminal exactly once. A permutation π = (t1, t2, . . . , t|T |) of T is a
witnessing permutation of W if it is exactly the (cyclic) order of the terminals visited by W . A closed walk W
is a locally short walk if it visits every terminal exactly once and the subwalks of W between the consecutive
terminals are actually shortest paths between their endpoints.

For two edge-disjoint paths P1, P2 and a nonterminal vertex v ∈ V (P1) ∩ V (P2) we say that v is a
transversal intersection of P1 and P2 if v is not an endpoint of neither P1 nor P2 and if e1

i , e
2
i are the two

edges of Pi incident with v for i = 1, 2, then they are in the order e1
1, e

1
2, e

2
1, e

2
2 clockwise or counter-clockwise

around v.
We proceed in a number of steps. The crucial definition that allows us to control self-crossings of the

solution via a “cactus-like” structure is the following.

Definition 5.1. Suppose W is a closed walk in G that visits every terminal at most once. Then W is called
cactuslike if every terminal is visited by W exactly once, every vertex of G is visited by W at most twice, and,
moreover, the following condition holds. Whenever a vertex x is visited twice by W , then the two proper
subwalks of W obtained by following W from one visit of x to the other have no intersection other than x.

An example cactuslike walk is depicted in Figure 3. As the reader may see, the walk has a shape roughly
resembling a cactus, or more formally a tree consisting of pairs of interlacing directed paths.

In Section 5.1 we study the notion of a canonical instance (G�, T,P) of Directed Subset TSP. The
main of this notion is to exclude some degenerate scenarios, such as the solution visiting a vertex more than
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Figure 3: An example cactuslike walk (in blue). There are two vertices at which the walk self-crosses and two
vertices that are visited twice without self-crossing.

twice, using the same edge twice, or intersecting itself without a good reason. However, to exclude the above
degenerate scenarios, we cannot at the same time ensure the shortest path property of the instance; instead,
we offer a family of canonical paths between terminals that need to be used by the solution.

Definition 5.2. A triple (G�, T,P) is a canonical instance of Directed Subset TSP if (G�, T ) is a
Directed Subset TSP instance and P is a family of |T |(|T | − 1)| paths P�G (s, t) for every terminal pair
(s, t), s 6= t (called the canonical s− t path) with the following properties:

(A) the path P�G (s, t) does not visit any other terminals and is a shortest path from s to t;

(B) the paths P�G (s, t) are pairwise edge-disjoint and every nonterminal vertex of G� lies on at most two
paths P�G (s, t);

(C) if two paths P�G (s1, t1) and P�G (s2, t2) intersect at a nonterminal vertex x, then s1 6= t1, s2 6= t2, and
the intersection at x is transversal;

(D) there exists a minimum-weight solution W� to Directed Subset TSP on (G�, T ) that is a concate-
nation of |T | canonical paths (and thus is locally short) and that is cactuslike.

A solution to Directed Subset TSP on (G�, T,P) is canonical if it is a concatenation of |T | canonical
paths. Note that a canonical solution visits every terminal exactly once and every nonterminal vertex at
most twice (in particular, it is locally short).

In Section 5.1, we describe how to turn the input instance (G,T ) into a canonical instance (G�, T,P) with
the existence of the canonical cactuslike solution W proven in Section 5.2. That is, we prove the following
statement.

Lemma 5.3. Given a Directed Subset TSP instance (G,T ), one can in polynomial time compute a
canonical instance (G�, T,P) with |E(G�)|+ |V (G�)| 6 (|E(G)|+ |V (G)|)|T |O(1), with the same terminal
set T and with the following properties:

• given a solution W� that is a solution to Directed Subset TSP in (G�, T, P) of minimum possible
weight, one can in polynomial time find a solution W to Directed Subset TSP in (G,T ) that is of
minimum possible weight;

• given a solution W to Directed Subset TSP in (G,T ) that is of minimum possible weight one can
in polynomial time find a solution W� to Directed Subset TSP in (G�, T,P) that is of minimum
possible weight.

Note that Lemma 5.3 reduces the Directed Subset TSP problem on (G,T ) to Directed Subset
TSP on a canonical instance (G�, T,P). Thus it is sufficient to solve the canonical version of problem.

In Section 5.3 we formalize the intuition that the notion of a cactuslike walk gives a cactus-like structure
on the walk. Sections 5.4 and 5.5 give an algorithm for Directed Subset TSP on canonical instances.
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Figure 4: Initial preprocessing for Directed Subset TSP. The new edges, marked as thinner lines, are of
weight 1, much smaller than the original (thicker) arcs.

Lemma 5.4. Given a canonical instance (G�, T,P), one can in time

|T |O(
√
|T |)|G�|O(1)

find a minimum weight solution W� to Directed Subset TSP on (G�, T,P).

In Section 5.4 we show how to enumerate a small family of states for a dynamic programming algorithm
and then in Section 5.5 we present the dynamic programming routine itself. By pipelining Lemmas 5.3
and 5.4 one derives Theorem 1.1.

5.1 Constructing a canonical instance

Initial preprocessing We start with the following preprocessing steps on G.
First, we ensure that shortest paths in the input instance G are unique and that the edge weights are strictly

positive. Since we do not analyze the polynomial factor in the running time bound of our algorithms, this can
be ensured in a standard manner by replacing a weight ω(e) of the i-th arc with M · (ω(e) · n|E(G)|+1 + ni)
for M = 2|T |(|E(G)|+ 1) + 1 (the factor M is used to later add some weight-1 edges without changing the
structure of the minimum-weight solution). Let PG(u, v) be the unique shortest path from u to v in G.

Second, we ensure that every terminal t ∈ T has only one neighbor wt, with two arcs (wt, t) and (t, wt)
of weight 1. To obtain such a property, for every terminal t0 ∈ T we can make its copy t, connect t and t0
with arcs in both direction of weight 1, and rename wt = t0. The new terminal set is the set of the copies
of the old terminals. Note that this property implies that we can consider only solutions to the Directed
Subset TSP problem that visit every terminal exactly once. Note also that this operation does not spoil the
property that G has unique shortest paths.

Third, we ensure that every nonterminal vertex v has in-degree 1 and out-degree 2 or in-degree 2 and
out-degree 1. To this end, we first iteratively remove all nonterminal vertices of in- or out-degree 0; they
surely are not used in any solution. Then, for every remaining nonterminal vertex v with d edges, we replace
v with a directed cycle of length d and each arc of weight 1, attaching every arc incident with v to a different
vertex on the cycle. We perform this operation so that the graph remains planar: for the fixed embedding of
G we attach arcs incident with v in the cyclic order in this embedding.

Observe that for a terminal t with a sole neighbor wt, after this operation the terminal t is still incident
with two arcs, (w1, t) and (t, w2) where w1 and w2 are two consecutive vertices on the cycle corresponding to
the vertex wt. Furthermore, w1 has out-degree 2 and in-degree 1 while w2 has in-degree 2 and out-degree
1. Again, we also observe that this operation does not spoil the property that G has unique shortest paths.
Here, the crucial fact is that we put weight 1 (as opposed to 0) on the arcs incident through a terminal, so a
detour from w1 to w2 via t is more expensive than following the (weight-1) arc (w1, w2) directly. See Figure 4
for an illustration.

Finally, note that after this operation the length of any terminal-to-terminal path in G increased its
weight by at most 2|E(G)|+ 2 and hence the length of any solution to Directed Subset TSP increased its
weight by at most 2|T |(|E(G)|+ 1) = M − 1. Thus, a minimum-weight solution in the modified graph will
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project back to a minimum-weight solution in the original graph and vice versa. By somehow abusing the
notation, we keep (G,T ) as the name for the instance after the above initial preprocessing.

To sum up, by the above operations we ensure that in the input graph G is embedded on a plane and:

1. the shortest paths in G are unique and the edge weights in G are positive integers;

2. every terminal t is of in-degree 1 and out-degree 1 with incident edges (w1, t) and (t, w2) such that
(w1, w2) is an arc of weight 1 and the three arcs (w1, t), (t, w2), (w1, w2) bound a face;

3. for every two vertices v, w ∈ V (G), the unique shortest path between its endpoints does not visit any
terminal as an internal vertex;

4. every nonterminal vertex v is of in-degree 2 and out-degree 1 or out-degree 2 and in-degree 1; we
henceforth call the vertices of the first type the in-2 out-1 vertices while of the second type the in-1
out-2 vertices.

Construction of the canonical instance We now move to the construction of the canonical instance
(G�, T,P).

Recall that PG(u, v) denotes the (unique) shortest path from u to v in G. Let T = {(s, t) ∈ T ×T | s 6= t}
and P = {PG(s, t) | (s, t) ∈ T }. For every edge e ∈ E(G), let T (e) = {(s, t) ∈ T | e ∈ E(PG(s, t))} and
P(e) = {P ∈ P | e ∈ E(P )} = {PG(s, t) | (s, t) ∈ T (e)}. Similarly define T (v) and P(v) for a nonterminal
vertex v.

Let e = (u, v) ∈ E(G). Let T→e ⊆ T be the family of terminals t ∈ T for which there exists some
(s1, t1) ∈ T (e) with t1 = t. Similarly, let T←e ⊆ T be the family of terminals s ∈ T for which there exists
some (s1, t1) ∈ T (e) with s1 = s. Consider the union H→e of all shortest paths PG(v, t) for all t ∈ T→e . It is
clear that H→e is an outbranching rooted at v. Subdivide for a moment the edge e with a new vertex xe,
add the arc (xe, v) to H→e and consider H→e as an outbranching rooted at xe. Since no shortest path in G
contains a terminal as an internal vertex, while if v ∈ T then T→e = {v}, all terminals are leaves of H→e .
Consequently, H→e imposes an order �→e on T : starting from the root, we traverse the unique face of H→e in
counter-clockwise direction and order T in the order of this traversal. The order �→e is the destination order
for the edge e.

Similarly we define the order �←e by taking H←e to be an inbranching rooted at xe consisting of the edge
(u, xe) and all shortest paths PG(t, u) for t ∈ T←e and traversing the unique face of H←e in the clockwise
direction (note that if u ∈ T , then T←e = {u}). The order �←e is the source order for the edge e. Finally, we
define �e as an order on T (e) where we order all pairs (s, t) ∈ T (e) lexicographically first by the destination
order �→e for e of t and then by the source order �←e for e of s. That is, (s1, t1) �e (s2, t2) if and only if
t1 ≺→e t2 or t1 = t2 and s1 �←e s2.

We define the graph GΘ as G with every arc e = (u, v) replaced with |T (e)| parallel copies (of the same
weight, drawn next to each other in the plane). Furthermore, we label the copies of e with distinct elements
of T (e): we go around u in the counter-clockwise order and label the copies according to the order �e. (Note
that we will obtain the same labelling if we go around v in the clockwise order.) The set of all copies of e in
GΘ is called the bunch of e. Finally, for every path PG(s, t) for (s, t) ∈ T , we define the canonical path in
GΘ, denoted PΘ

G (s, t), as the path that for every e ∈ E(PG(s, t)) traverses the copy of e assigned label (s, t).
Note that V (G) = V (GΘ).

Finally, we define the graph G� as follows. Start with GΘ and for every nonterminal vertex v proceed as
follows. Assume first that v is in G an in-2 out-1 vertex with incident edges e1 = (u1, v), e2 = (u2, v) and
e = (v, w) lying around v in this counter-clockwise order. Replace v with a |T (v)| × |T (v)| acyclic grid Γ(v)
with all arcs of weight 0. Assume that Γ(v) is drawn such that all edges go rightwards and upwards. In G�,
we attach the edges of GΘ incident with v as follows. Attach all |T (v)| = |T (e)| copies of e to the right side
of Γ(v), one edge per vertex of the grid, in the same order as the cyclic order around v in GΘ (that is, in the
order �e from bottom to top). The label of a row of Γ(v) is the label of the edge outgoing from the right
endpoint of the row. Attach all |T (e1)| copies of e1 to the left side of Γ(v) so that a copy with label (s, t) is
attached to the vertex in the row with the same label. Attach all |T (e2)| copies of e2 to the bottom side of
the grid, at most one copy per vertex of Γ(v), in the same order as the cyclic order around v in GΘ (that is,
in the order �e1 from right to left). Again, for each column where a copy of e2 is attached to the bottom
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vertex of the column, the label of the column is the label of the attached copy of e2. The label of an edge of
Γ(v) is the label of its row and column; note that some vertical edges do not receive any label if no edge is
attached to the bottom endpoint of the column.

The construction for in-1 out-2 vertex v is symmetric with all directions of arcs reversed (see Figure 5).
This finishes the description of the graph G�; note that we do not modify the terminals. Again, as in GΘ,
the set of all copies of an edge e ∈ E(G) in G� is called the bunch of e.

For every path PG(s, t) for (s, t) ∈ T , we define the canonical path in G�, denoted P�G (s, t), as follows.
For every e ∈ E(PG(s, t)), we traverse the copy of e labeled (s, t). For every nonterminal vertex v on PG(s, t)
with preceding edge e = (u, v) and succeeding edge e′ = (v, w) on PG(s, t), we connect the head of the copy
of e labeled (s, t) with the tail of e′ labeled (s, t) as follows. If these copies are attached to opposite sides
of Γ(v), we connect via the corresponding row of Γ(v) that has label (s, t). Otherwise, if these copies are
attached to perpendicular sides, we connect with an L-shape via the row and column labeled (s, t), taking
only one turn at the intersection of the row and column labeled (s, t). See Figure 5 for an illustration.

Basic properties It is straightforward to observe that in this manner every arc e of G� is used in at most
one canonical path P�G (s, t) and, if this is the case, then e is assigned label (s, t). From the fact that no
shortest path of G contains a terminal as an internal vertex we infer that canonical paths in neither GΘ nor
G� contain a terminal as an internal vertex. Since all nonterminal vertices of G� have in- and out-degree
bounded by 2, and, for vertices with both in- and out-degree equal 2, the labels of the incident arcs alternate,
we infer that at every nonterminal vertex of G� at most two canonical paths can intersect and, if they
intersect, they intersect transversally. This proves properties (B), (C), and the first part of property (A) of
Definition 5.2.

Note that in GΘ and G� we no longer have unique shortest paths, but we do not need them in these
graphs; in what follows we will rely on the notion of canonical paths instead.

Observe that every walk in GΘ or G� has its natural projection in G of the same weight. This proves the
second part of property (A) of Definition 5.2. Furthermore, it is easy to observe that if a projection of a walk
in GΘ or in G� is a simple path in G, then the preimage walk needs to be a simple path as well.

Consider a locally short walk W in G and let (t1, t2, . . . , t|T |) be the witnessing permutation. That is, W is
the concatenation of paths PG(ti, ti+1) for i = 1, 2, . . . , |T | (where t1 = t|T |+1). The notion of canonical paths

allows us to lift W to WΘ in GΘ and W� in G�: WΘ is a concatenation of paths PΘ
G (ti, ti+1) while W�

is a concatenation of paths P�G (ti, ti+1). Note that both WΘ and W� use every edge of the corresponding
graph at most once and that the weights of W , WΘ, and W� are equal.

In the other direction, if we have a solution W� to Directed Subset TSP in (G�, T,P), then there is
a natural way to project W� back to a solution W to (G,T ): whenever W� traverses a terminal t or a grid
Γ(v), go through t or v in G, respectively. Note that the weight of W is not larger than the weight of W�.
This shows the first part of property (D) of Definition 5.2 (i.e., except for the “cactuslike” claim).

Thus, to prove Lemma 5.3, it remains to show the existence of a canonical cactuslike solution of minimum
weight to Directed Subset TSP on (G�, T,P); all other required properties of the canonical instance and
properties promised by Lemma 5.3 have been discussed above or are straightforward.

To this end, we observe that two paths P�G (s1, t1) and P�G (s2, t2) intersect only in a very specific situation.
Intuitively, two paths PG(s1, t1) and PG(s2, t2) can intersect and share edges multiple times; for each such
common subpath of PG(s1, t1) and PG(s2, t2), the paths P�G (s1, t1) and P�G (s2, t2) follow the same grids Γ(·)
and bunches in parallel, crossing only at the first grid and only if the corresponding intersection of PG(s1, t1)
and PG(s2, t2) is transversal after contracting the edges of the common subpath.

Lemma 5.5. Let (s1, t1) and (s2, t2) be two distinct elements of T and let v be a nonterminal vertex of G.
Then P�G (s1, t1) and P�G (s2, t2) intersect at at most one vertex of Γ(v). Furthermore, such an intersection
exists if and only if all the following conditions are satisfied:

1. v is an in-2 out-1 vertex of G that lies on both PG(s1, t1) and PG(s2, t2);

2. if e1 = (u1, v), e2 = (u2, v) and e = (v, w) are the three edges of G incident with v in this counter-
clockwise order, then either

• e1 ∈ E(PG(s1, t1)), e2 ∈ E(PG(s2, t2)), and (s1, t1) ≺e (s2, t2); or
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Figure 5: The construction of GΘ and G�. Top left: a subgraph of the graph G with four shortest terminal
to terminal paths and every nonterminal vertex being either an in-2 out-1 vertex or an in-1 out-2 vertex.
Top right: the corresponding subgraph of GΘ with the lifts of the four paths. (The formal definition of a lift
appears later in text.) Bottom: the corresponding subgraph of the graph G� with the lifts of the four paths.

• e2 ∈ E(PG(s1, t1)), e1 ∈ E(PG(s2, t2)), and (s2, t2) ≺e (s1, t1).

In particular, no two paths P�G (s1, t1) and P�G (s2, t2) intersect in a vertex of Γ(v) for an in-1 out-2 vertex
v ∈ V (G).

Proof. First, consider an in-1 out-2 vertex v ∈ V (G). Then the fact that �e orders pairs of P(e) first
according to the destination order and then according to the source order implies that the cyclic order of the
labels of the incoming edges of v in GΘ is the reversed cyclic order of the labels of the outgoing edges of v in
GΘ. These orders stay the same around Γ(v) in G�. Consequently, no two paths P�G (s, t) intersect at Γ(v).

Consider now an in-2 out-1 vertex v ∈ V (G) and two paths PG(s1, t1) and PG(s2, t2) passing through v.
Let e1 = (u1, v), e2 = (u2, v), and e = (v, w) be the three edges incident with v in the counter-clockwise order.
Observe that in GΘ the counter-clockwise around v order of the labels in the bunch of e1 is the restriction of
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the reversed order of the counter-clockwise around v order of the labels in the bunch of e. Consequently, if
PG(s1, t1) and PG(s2, t2) share the same edge incoming to v, then P�G (s1, t1) and P�G (s2, t2) do not intersect in
Γ(v). Otherwise, by symmetry assume that e1 ∈ E(PG(s1, t1)) and e2 ∈ E(PG(s2, t2)). Then (s1, t1) 6= (s2, t2)
and we have that P�G (s1, t1) and P�G (s2, t2) intersect in Γ(v) if and only if (s1, t1) ≺e (s2, t2). This finishes
the proof of the lemma.

5.2 Canonical solution in a canonical instance

Consider two paths P�G (s1, t1) and P�G (s2, t2) that intersect at a vertex x ∈ Γ(v). To prove that there exists
a solution with a nice cactus-like structure, we would like to use the operation of uncrossing at x: replace in
the solution the two paths P�G (s1, t1) and P�G (s2, t2) with P�G (s1, t2) and P�G (s2, t1), hoping to reduce the
number of crossings by at least 1 — the one corresponding to x. While such uncrossing is simple to analyze
in G or GΘ, the definition of G� causes some trouble due to the fact that say P�G (s1, t2) is not exactly a
concatenation of P�G (s1, t1)[s1, x] and P�G (s2, t2)[x, t2], but a “parallel shift” of this concatenation. Luckily, it
turns out that nothing bad happens with this “parallel shift”, but this is not immediate and requires some
argumentation.

The main observation is embedded in the following lemma. Intuitively, it means that our canonical paths
intersect as little as possible.

Lemma 5.6. Let (s1, t1) and (s2, t2) be two distinct elements of T . For i = 1, 2, let Pi be a path from si to
ti in G� whose projection onto G equals PG(si, ti) (i.e., the projections of Pi and P�G (si, ti) are the same, Pi
traverses exactly the same grids and bunches in the same order as P�G (si, ti)). Furthermore, assume that P1

and P2 do not share any edge. Then the number of intersections of P�G (s1, t1) and P�G (s2, t2) at nonterminal
vertices (i.e., |V (P�G (s1, t1)) ∩ V (P�G (s2, t2)) \ T |) is not larger than the number of transversal intersections
of P1 and P2.

Proof. For ease of notation, let Qi = P�G (si, ti) for i = 1, 2. We show how to charge every vertex x ∈
V (Q1) ∩ V (Q2) \ T to a distinct transversal intersection f(x) of P1 and P2.

Fix x ∈ V (Q1) ∩ V (Q2) \ T and assume x ∈ Γ(v). By Lemma 5.5, v is an in-2 out-1 vertex with incident
edges e1, e2, and e in this counter-clockwise order with e being the unique edge with its tail in v. By
symmetry, assume that ei ∈ PG(si, ti) for i = 1, 2 and that (s1, t1) ≺e (s2, t2). However, as ei ∈ PG(si, ti),
we have s1 �←e s2, in particular s1 6= s2. Hence, (s1, t1) ≺e (s2, t2) implies t1 ≺→e t2, in particular t1 6= t2.

Let R be the maximal subpath of the intersection of PG(s1, t1) and PG(s2, t2) that contains v; R starts
at v and ends at a vertex w 6= v (R is of length at least one as the first edge of R is e). Note that w is a
nonterminal vertex as t1 6= t2. By the definition of R, w is an in-1 out-2 vertex; let e′, e′1, and e′2 be the three
edges of G incident with w in this counter-clockwise order with e′ being the unique edge with its head in w.
Since t1 ≺→e t2, it follows that t1 ≺→e′ t2 and thus e′i ∈ E(PG(si, ti)) for i = 1, 2. See Figure 6.

Since for i = 1, 2 the paths Pi and Qi share the same projection PG(si, ti) in G, Pi traverses an edge of
the bunch of ei and an edge of the bunch of e′i. Therefore, by the assumed counter-clockwise order of the
edges around v and w, there exists a transversal intersection of P1 and P2 in Γ(u) for some u ∈ V (R). We
denote this intersection by f(x) and we charge x to it.

Lemma 5.5 asserts that x is the only intersection of V (Q1) and V (Q2) in all grids Γ(u) for u ∈ V (R).
Therefore our charging scheme is injective and the lemma is proven.

Corollary 5.7. Let W�A be a solution to Directed Subset TSP on (G�, T,P) of minimum possible weight
that visits every edge at most once and visits every nonterminal vertex at most twice. Then there exists a
solution W�B to Directed Subset TSP on (G�, T,P) also of minimum possible weight, is canonical, and
the number of nonterminal vertices visited more than once on W�B is not larger than the number of transversal
self-intersections of W�A .

Proof. Let WA be the projection of W�A onto G. Since W�A is a solution to (G�, T,P) of minimum possible
weight, WA is a solution to (G,T ) of minimum possible weight. In particular, since every edge of G is of
positive weight, WA is locally short.

Let W�B be a canonical lift of WA to G�; that is, if (t1, t2, . . . , t|T |) is the witnessing permutation of WA

then W�B is the concatenation of P�G (ti, ti+1) for 1 6 i 6 |T |. Clearly, W�B is of the same weight as WA and
W�A , so it is also a minimum weight solution to Directed Subset TSP on (G�, T,P).
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Figure 6: The situation in the proof of Lemma 5.6. The graph G with paths PG(si, ti) for i = 1, 2 is at the
top and the graph G� with paths P�G (si, ti) for i = 1, 2 is at the bottom.

For 1 6 i 6 |T |, let Pi be the subwalk from ti to ti+1 on W�A and let Qi = P�G (ti, ti+1). Note that since
the projection of Pi onto G is PG(ti, ti+1), Pi is a simple path in G�. From Lemma 5.6 we infer that for
every 1 6 i < j 6 |T | the size of V (Qi)∩ V (Qj) \ T is not larger than the number of transversal intersections
of Pi and Pj . The statement follows.

As already discussed, there exists a canonical walk W� in G� that is a minimum weight solution to
Directed Subset TSP on (G�, T,P). Let W� be such a canonical walk that minimizes the number of
self-intersections, that is, the number of nonterminal vertices that appear on W� more than once (recall W�

is locally short since it is canonical). To finish that (G�, T,P) is a canonical instance and finish the proof of
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W� W�A WA W�B
uncross at x and x′ project onto G lift canonically

all self-intersections stay,
x stops to be transversal Lemma 5.6, encapsulated in Corollary 5.7: the

number of new self-intersections is at most the
number of old transversal self-intersections

Figure 7: Thought process in Section 5.2.

Lemma 5.3 it suffices to show that such a minimal W� is cactuslike.
Assume the contrary; Figure 7 presents the thought process here. Let x ∈ Γ(v) be a nonterminal vertex

visited more than once by W�. Note that x is visited by W� exactly twice. Let W1 and W2 be the result
of splitting W� at x. Assume that W1 and W2 intersect at another vertex x′. Note that x′ needs to be a
nonterminal vertex.

Let W�A be a closed walk in G� that is created from W1 and W2 by splitting them at x′. That is, we
break W1 and W2 at x′ and concatenate them to obtain a single closed walk W�A . Note that W�A is visits
every terminal once and its edge multiset is exactly the same as the one of W�. In particular, it visits every
edge of G� at most once and is also a minimum-weight solution to Directed Subset TSP on (G�, T,P).

Let W�B be a canonical solution to Directed Subset TSP on (G�, T,P) obtained from Corollary 5.7
applied to W�A . Corollary 5.7 asserts that the number of self-intersections of W�B is not larger than the
number of transversal self-intersections of W�A . Observe that a nonterminal vertex is visited more than once
by W�A if and only if it is a self-intersection of W� and, furthermore, x is a self-intersection of W� that is
not a transversal intersection of W�A . Consequently, the number of self-intersections of W� is strictly larger
than the number of self-intersections of W�B , contradicting the choice of W�. This proves Property ((D)) of
Definition 5.2 and thus finishes the proof of Lemma 5.3.

5.3 Properties of a cactuslike walk

By Lemma 5.3, we can concentrate on canonical instances and assume that there is a solution satisfying the
properties in Definition 5.2. Our goal now is to show that every cactuslike walk can be decomposed into a
small number of paths that interact with each other only in a limited way. Moreover, for future use in the
algorithm we will require that in a canonical instance the paths in the decomposition belong to some small
family of candidates.

To formalise the limited interaction between the paths, we need the following definition. A pair of paths
P and Q are twisted if the starting vertex u of P is the ending vertex of Q, the ending vertex v of P is the
starting vertex of Q, and if u = w1, w2, . . . , wρ = v are the vertices of V (P ) ∩ V (Q) in the order of their
appearance on P , then they appear on Q in the reversed order v = wρ, wρ−1, . . . , w1 = u.

We can now state the decomposition lemma. We remark that the lemma below would be trivial if we
could assume that the walk W does not admit any self-intersections: then breaking W into the subpaths
between the terminals would clearly satisfy the conditions.

Lemma 5.8. Given a canonical instance (G�, T,P) one can in polynomial time compute a family B of
O(|T |12) subpaths of canonical paths such that the following holds. Every canonical cactuslike walk W in
(G�, T,P) can be decomposed into ` < 27|T | subpaths B1, . . . , B` such that the following conditions are
satisfied:

(a) every path Bi belongs to B;

(b) for every path Bi, either no other path Bj visits an internal vertex of Bi, or there exists a unique other
path Bj such that Bi and Bj are twisted;

(c) there are fewer than 27|T | self-intersections of W that are not internal vertices of paths Bi.
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Proof. We initiate B = P, which is of size O(|T |2). The lemma follows trivially if W does not contain any
self-intersections, so assume otherwise.

Let W = (e1, . . . , ep). As W is canonical, it is locally short; let (t1, . . . , t|T |) be the witnessing permutation

of the terminals, that is, W is the concatenation of the simple paths P1, . . . , P|T | such that Pi = P�G (ti, ti+1)
for every i. For each j ∈ {1, . . . , |T |} we choose index λj ∈ {1, . . . , p} such that Pj is equal to the subwalk
(eλj+1, . . . , eλj+1

) of W . We say that (i, j) is a self-crossing of W if i 6= j but the head of ei equals the

head of ej . Note that since (G�, T,P) is a canonical instance, W visits every vertex at most twice, every
self-crossing happens at a nonterminal vertex that is visited twice by W and corresponds to a transversal
intersection of two paths Pi.

Create an auxiliary graph H on vertex set x1, . . . , xp, where xi can be thought of as a copy of the head of
the edge ei (we also say that xi corresponds to the head of ei). In H, we put an edge between xi and xi+1

for each i = 1, 2, . . . , p (where xp+1 = x1), and moreover, for each self-crossing (i, j) of W , we put an edge
between xi and xj . The latter edges, corresponding to self-crossings, are called internal. Note that since
each terminal is visited exactly once on W , vertices xλ1

, . . . , xλ|T | are the only vertices out of x1, . . . , xp that
correspond to terminals.

Claim 5.9. The graph H is outerplanar and has an outerplanar embedding where the cycle (x1, . . . , xp) is
the boundary of the outer face. Moreover, each vertex xλj

, for j ∈ [|T |], has degree 2 in H.

Proof. To see that H is a cycle with non-crossing chords, it suffices to show that there are no indices
i < i′ < j < j′ such that both (i, j) and (i′, j′) are self-crossings of W . However, if this was the case, then
the self-crossing (i′, j′) would yield a crossing of the closed walks W1 and W2 obtained by splitting W at the
self-crossing (i, j). Since W is cactuslike, this cannot happen.

To see that the vertex xλj
, corresponding to the terminal tj , has degree 2 in H, observe that otherwise

xλj
would be incident to some internal edge of H. This means that W would have a self-crossing at tj , but

W visits each terminal at most once; a contradiction. y

Fix an outerplanar embedding of H as in Claim 5.9. Let S be a graph with vertex set consisting of the
inner faces of H, where two faces are considered adjacent if and only if they share an edge in H. Since H is
outerplanar and connected, it follows that S is a tree.

Consider now any leaf f of S. Then the boundary of f consists of one edge of H corresponding to some
self-crossing (i, j) of W , say at vertex v of G, and a subpath Qf of the cycle (x1, . . . , xp) in H. For leaves f
of S, the subpaths Qf are pairwise edge disjoint.

Claim 5.10. For each leaf f of S, the subpath Qf contains at least one vertex xλj
, for some j ∈ [|T |], as an

internal vertex. Consequently, the tree S has at most |T | leaves.

Proof. For the first claim, observe that Qf corresponds to a closed subwalk Wf of W obtained by splitting
W at a self-crossing. Observe that Wf cannot be entirely contained in any of the paths Pj , since Wf visits v
twice whereas a simple path cannot visit any vertex more than once. Hence, Qf contains some vertex xλj

as
an internal vertex. The second claim follows by noting that paths Qf are pairwise edge disjoint for different
leaves f of S, and there are |T | vertices xλj

. y

Observe that in the duality of the outerplanar graph H and the tree S, the edges of S are the dual edges
of the internal edges of H. By somehow abusing the notation, we identify each internal edge of H with its
dual edge in S.

We now define the set of special edges of the tree S as follows. First, for each vertex f of S of degree at
least 3 in S, we mark all edges incident to f special. Second, for each vertex xλj

, for j ∈ [|T |], we find the
unique index hj ∈ [p] such that none of vertices xλj , . . . , xhj−1 is incident to any internal edges of H, but xhj

is incident to such an edge (it exists as we assumed that W has at least one self-intersection). Then there is a
unique special edge of H that is incident both to xhj

and the internal face of H on which xλj
lies (this face is

unique since xλj
has degree 2 in H). We mark this internal edge special as well.

Claim 5.11. There are less than 4|T | special edges in S.
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Figure 8: The original closed walk W (left panel) and the outerplanar graph H constructed based on W
(right panel); terminals and vertices visited by W more than once have been named. Terminals are depicted
by yellow squares, the tree S is depicted in blue, the cycle (x1, . . . , xp) is depicted using solid gray edges,
while dashed gray edges are the internal edges of H. Note that the counterclockwise order of vertices on the
outer face of H corresponds to the order of visiting corresponding vertices by W ; for instance, vertices q, p, o
appear in this order in H, because they are visited in this order by W . Special edges are colored orange,
while red lines depict places where we put dividing points for defining blocks. They correspond to vertices
depicted by red circles in the left panel, which are in the set J .

Proof. It is well known that in every tree with at most k leaves, the total number of edges incident to vertices
of degree at least 3 is at most 3k − 6. Hence, since S has at most |T | leaves by Claim 5.10, less than 3|T |
edges of S were marked as special in the first step of marking. In the second step of marking we mark one
edge per each terminal, so the total upper bound of less than 4|T | follows. y

We divide the walk W = (e1, . . . , ep) into blocks as follows. For any i ∈ [p], declare xi a dividing point if
either xi corresponds to a terminal (i.e. i = λj for some j ∈ [|T |]), or xi is an endpoint of a special edge.
Then blocks are maximal subwalks of W that do not contain any dividing points as internal vertices. More
precisely, the sequence (ei+1, ei, . . . , ei′) is a block if both xi and xi′ are dividing points, but none of vertices
xi+1, . . . , xi′−1 is a dividing point. It is clear that blocks form a partition of W into less than 9|T | subwalks,
as there are less than 9|T | dividing points by Claim 5.11. Let A1, . . . , Ar be the obtained blocks; we have
r < 9|T |. We now establish a number of properties of the obtained blocks.

Claim 5.12. For every block Ai, the internal vertices of Ai are not endpoints of any other path Aj and can
be internal vertices of at most one other path Aj.

Proof. Let Di be the subpath of the cycle (x1, . . . , xp) in H that corresponds to the block Ai, for i = 1, . . . , `.
Note that every intersection of paths Ai and Aj at an internal vertex of Ai, for i 6= j, is also a self-crossing of
W that corresponds to an internal edges of H that connects an internal vertex of Di with a vertex of Dj .
Fix now some block Ai; we will argue that there is at most one other block Aj such that Ai and Aj intersect
at an internal vertex of Ai and every such intersection happens at an internal vertex of Aj . This would prove
the claim.
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Figure 9: Situation in the case when e was marked due to being incident to an internal face of H of degree at
least 3 in S.

Let us consider the forest obtained by removing every special edges from the tree S. Observe that every
connected component of this forest either

• consists of one vertex being a leaf of S, or

• consists of one vertex of degree at least 3 in S, or

• is a path (possibly of length 0) consisting only of vertices of degree 2 in S.

This is because any edge incident to a leaf of S is always marked as special by Claim 5.10. By the construction
of blocks, the set of internal faces of H incident to the edges Di can be spanned by a subtree of S that does
not contain any special edge. Consequently, either all the edges of Ai are incident to the same internal face of
H (and hence they form an interval on its boundary), or there is a path R in S, consisting only of vertices of
degree 2 connected by non-special edges, such that all the edges of Di are incident to the faces on this path.
In the former case, Ai does not intersect any other block Aj at an internal vertex of Ai, as all internal vertices
of Di have degree 2 in H. In the latter case, it is easy to see that all the edges of the cycle (x1, . . . , xp) that
are incident to some non-endpoint face of R but do not lie on Di, are in fact in the same subpath Dj for
some j 6= i. Then all internal edges of H incident to the internal vertices of Di have the second endpoint
on Dj , so Aj is the only block that may intersect Ai at an internal vertex of Ai. Furthermore, note that
since the endpoints of R are of degree 2 in S and every vertex of H is incident with at most one internal
edge (since every vertex of G� is visited at most twice by W ), all internal edges of H incident to the internal
vertices of Di have the second endpoint in an internal vertex of Dj . y

Claim 5.13. There are fewer than 9|T | self-intersections of W that are not internal vertices of paths Ai.

Proof. Observe first that since every nonterminal vertex of G� lies on at most two canonical paths, every xi
is incident with at most one internal edge. Furthermore, self-crossings of W that are not crossings of two
distinct blocks are exactly those self-crossings (i, i′) for which either xi or xi′ is a dividing point. Since there
are less than 9|T | dividing points, the claim follows. y

Define a set J ⊆ V (G�) as follows. Start from J = T . Next, consider every quadruple of terminals
s1, t1, s2, t2, where s1 6= t1, s2 6= t2, s1 6= s2, and t1 6= t2 and insert into J the first intersection on P�G (s1, t1)
of P�G (s1, t1) and P�G (s2, t2) (if it exists). Clearly, |J | 6 |T |4.

Claim 5.14. Suppose we have indices 1 6 j, j′ 6 |T |, j 6= j′. Suppose further on the subpath of
(xλj , xλj+1, . . . , xλj+1), vertex xk is the first one that is adjacent in H to any of the vertices xλj′ , xλj′+1, . . . , xλj′+1

via an internal edge of H. Then xk corresponds to an element of J .

Proof. It can be easily seen that if xk corresponds to a vertex v, then v is included in the set J when
considering the quadruple of terminals (tj , tj+1, tj′ , tj′+1). y
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Claim 5.15. Every path Ai has both endpoints in J .

Proof. We proceed with verification that all the dividing points used in the definition of blocks correspond to
vertices of J . This is done explicitly for terminals, so we are left with verifying this for endpoints of special
edges. Suppose that an internal edge e = (xi, xi′) of H is special. Then xi and xi′ correspond to the same
vertex v of G such that (i, i′) is a self-crossing of W at v. We have two cases, depending on why e was marked
as special.

Suppose first that e was marked as special due to being incident to some internal face f of H of degree at
least 3 in S; see Figure 9. This means that in S, f has at least two other incident edges, and suppose e1

and e2 are the edge incident to f that are directly preceding and succeeding e in the counter-clockwise order
of edges of S incident to f ; here, we assume that the cycle (x1, . . . , xp) is oriented counter-clockwise in the
plane. Further, suppose without loss of generality that e1, xi, e, xi′ , e

2 are in this counter-clockwise order on
the boundary of face f . Now, let j1 ∈ [|T |] be such that on the subpath (xλj1

, xλj1+1, . . . , xi) no internal

vertex corresponds to a terminal, and similarly let j2 ∈ [|T |] be such that on the subpath (xi′ , xi′+1, . . . , xλj2
)

no internal vertex corresponds to a terminal. Observe that since each leaf f ′ of S has a vertex corresponding
to a terminal among internal vertices of Qf (Claim 5.10), vertices xλj1

, xλj2−1
, and xλj2

lie on the following

parts of the cycle (x1, . . . , xp):

• denoting e1 = xr11xr12 , where xr11 xr12 , and xi lie in this order on (x1, . . . , xp), we have that xλj1
is an

internal vertex of (xr11 , . . . , xi);

• xλj2−1
is an internal vertex of (xi, . . . , xi′); and

• denoting e2 = xr21xr22 , where xi′ , xr21 , and xr22 lie in this order on (x1, . . . , xp), we have that xλj2
is an

internal vertex of (xi′ , . . . , xr22 );

In particular, all the vertices xλj1
, xλj2−1

, and xλj2
are pairwise different, and moreover e is the internal edge

of H connecting (xλj1
, xλj1+1, . . . , xλj1+1

) with (xλj2−1
, xλj2−1+1, . . . , xλj2

) that has the earliest possible

endpoint on the former path. The fact that v ∈ J follows from applying Claim 5.14 to j = j1 and j′ = j2 − 1.
Suppose now, without loss of generality, that e was marked special due to the following situation: i = hj

for some terminal tj , and e is the unique edge incident to xi that is also incident to the internal face f of H
on whose boundary lies xλj

. Then on the subpath (xλj
, xλj+1, . . . , xi), all vertices have degree 2 in H, apart

from xi itself, so in particular they are not incident to any internal edge of H. Suppose now that j′ ∈ [|T |] is
such that on the subpath (xλj′ , xλj′+1, . . . , xi′) no internal vertex corresponds to a terminal. By Claim 5.10
it is easy to see that j 6= j′. Moreover, from the previous observation it follows that xi is the earliest vertex
on (xλj , xλj+1, . . . , xλj+1) that is adjacent to any vertex of (xλj′ , xλj′+1, . . . , xλj′+1

) via an internal edge of
H, because the earlier vertices were not incident to any internal edges at all. The fact that v ∈ J follows
from applying Claim 5.14 to j and j′. y

Claim 5.16. One can compute a family A of O(|T |6) subpaths of paths in P that contains all blocks Ai.

Proof. Recall that each path Ai is a subpath of a path P�G (s, t) with endpoints in J . Since every nonterminal
vertex in G� participates in at most two canonical paths, an element of J on P�G (s, t) is either an endpoint or
an intersection with some other canonical path P�G (s′, t′) that is either first on P�G (s, t) or first on P�G (s′, t′).
There are at most |T |2 choices for (s, t) and, given (s, t), O(|T |2) choices for each of the endpoints of a path
Ai. The claim follows. y

Having established the properties of the block Ai, we now show how to partition them into the desired
paths Bi. If a block Ai does not intersect any other block Aj at an internal vertex, we leave Ai untouched.

Consider a pair of blocks Ai and Aj that intersect at a vertex that is internal to both Ai and Aj (cf.
Claim 5.12). Let Ai be a subpath of P�G (s1, t1) and let Aj be a subpath of P�G (s2, t2).

Let x and y be two intersections of Ai and Aj such that y is later on Ai than x. By Lemma 5.5, x ∈ Γ(v)
and y ∈ Γ(u) for two distinct vertices v and u of G. If y is also later on Aj than x, then the uniqueness of
shortest paths in G implies that the intersection of PG(s1, t1) and PG(s2, t2) contains PG(v, u). This is a
contradiction with Lemma 5.5 and the fact that Ai and Aj intersect in y ∈ Γ(u).
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v1

v2

Aj

Ai

Figure 10: Construction of paths Bi at the end of the proof of Lemma 5.8. For every two blocks Ai and Aj
that intersect (red and blue paths in the figure), we split each of them into at most three subpaths at the
first and last intersection.

Hence, if x1, x2, . . . , xρ are the intersections of Ai and Aj in the order of their appearance on Ai, then
they appear in Aj in the reversed order xρ, xρ−1, . . . , x1. We split Ai and Aj into three paths each (two if
ρ = 1) at x1 and xρ. Observe that if ρ > 1, then the middle parts of Ai and Aj are twisted. See Figure 10.

Let B1, B2, . . . , B` be the obtained paths (i.e., all blocks Ai that do not intersect any other block at an
internal vertex and the at most three subpaths of a block Ai obtained as above otherwise). Since every block
Ai is split into at most three paths Bi and there are less than 9|T | block, we have ` < 27|T |. Also, Claim 5.13
immediately implies Point (c) while Claim 5.12 with the construction above implies Point (b).

Finally, to compute the set B that contains all paths Bi, proceed as follows. Compute the family A from
Claim 5.16 and initiate B = A. Then, for every pair A ∈ A and every A′ ∈ A that intersects A at an internal
vertex, split A into at most three parts at the first and last intersection with A′ (first and last refer to the
order on A) and insert the parts into B. Clearly, |B| = O(|T |12) and B contains all paths Bi.

5.4 Enumerating subsets of a walk

Let (G�, T,P) be a canonical instance. Our main technical result, proved in this section, is that any canonical

cactuslike walk can be hierarchically decomposed using closed curves of “complexity” |T |O(
√
|T |). We first

formalize what we mean by a decomposition.

Definition 5.17. Let α > 0 be a fixed constant. Let (G,T ) be a Directed Subset TSP instance. Let W
be a walk that visits every terminal exactly once and let πW = (t1, t2, . . . , t|T |) be a witnessing permutation.

A set A ⊆ T is an α-good section of (W,πW ) if A can be partitioned into at most α
√
|T | subsets that form

contiguous subsequences of πW .
An α-good decomposition of W and πW is a pair (T , β) where T is a rooted binary tree and β : V (T )→ 2T

is a function with the following properties:

(1) β(v) is an α-good section of (W,πW ) for every v ∈ V (T );

(2) β(r) = T for the root r of T ;

(3) every non-leaf node v of T has two children v1, v2 with β(v1) ∩ β(v2) = ∅, β(v) = β(v1) ∪ β(v2);

(4) every leaf node v of T satisfies |β(v)| 6 α
√
|T |.

Note that both T and every set A ⊆ T of size at most α
√
|T | is always a good section, regardless of the

choice of W and πW .
The following section shows that if an optimum solution admits a good decomposition where every set

β(s) belongs to a known family F , then an optimum solution can be computed efficiently using a dynamic
programming algorithm. The main result of this section shows that existence of such a good decomposition
and family F :
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Lemma 5.18. There exists a universal constant C > 0 such that the following holds. Given a canonical

instance (G�, T,P), one can in time |T |O(
√
|T |)nO(1) compute a family F ⊆ 2T of size |T |O(

√
|T |) such that

for every canonical cactuslike walk W and its witnessing permutation πW , there exists a C-good decomposition
(T , β) of (W,πW ) such that every set β(s) for s ∈ V (T ) belongs to F .

The rest of this section is devoted to the proof of Lemma 5.18. Fix the walk W as in the statement.
For every terminal t fix a face ft incident with t. Let D0 be a minimal tree in the dual of G� that spans

all faces ft. We augment the graph G� by adding D0 to it as follows. First, we add V (D0) to G�. For every
edge f1f2 ∈ E(D0) that crosses an edge e of G�, we subdivide e with a vertex ze (distributing the weight
of e among two parts arbitrarily) and add arcs (f1, ze) and (f2, ze) of weight +∞ each. Finally, for every
t ∈ T , we add an arc (ft, t) of weight +∞ and proclaim F = {(ft, t) | t ∈ T} the set of terminal edges. By
sligtly abusing the notation, we keep the name G� for the modified graph. Let D be the subgraph of G�

consisting of all edges of weight +∞; note that D (without directions of arcs, which are in fact irrelevant) is
a tree spanning all terminals and every terminal is a leaf of D. Finally, by interpreting the canonical paths to
the modified G� in the natural way, we have that (G�, T,P) is still a canonical instance; here the essential
observation is that the new edges of weight +∞ do not change the structure of the shortest paths in G�.
Intuitively, the purpose of D is to control the homotopy types of closed curves in the plane punctured at the
terminals, by examining how they cross with D.

We apply Lemma 5.8, obtaining a family B of O(|T |12) subpaths of the paths in P such that the walk W
can be decomposed into ` = O(|T |) paths B1, B2, . . . , B`, all belonging to B. Let Q = {B1, B2, . . . , B`}.

Graphs H, H×, and an sc-branch decomposition. We define a subgraph H of G� as the union of D
and all paths from Q.

Although H is a plane graph, it can have an unbounded number of vertices and potentially large
branchwidth. Let H× be the graph obtained from H by contracting, for every Q ∈ Q, all internal vertices of
Q into one vertex uQ. Thus, Q gets contracted into a path Q× consisting of two edges and three vertices:
the former endpoints and uQ. Recall that since the paths of Q are vertex-disjoint except for possibly having
common endpoints and pairs of twisted paths, the contractions on different paths Q ∈ Q do not interfere
with each other, except for the pair of twisted paths. However, if Q1 and Q2 are twisted, then uQ1 = uQ2

and Q×1 and Q×2 are two paths on the same three vertices.
Furthermore, since we contract only edges of paths of Q ⊆ B, we do not contract any edge of D. The

edges of D are still present in H×, but D may no longer be a tree.
We have the following bound.

Claim 5.19. The graph H× admits an sc-branch decomposition (T , ζ, γ) of width O(
√
|T |).

Proof. First, note that H× is connected. By Theorems 3.1 and 3.2, it suffices to show only that H× has
O(|T |) vertices of degree at least 3. To this end, note that every vertex of H× of degree at least 3 is either a
vertex of D of degree at least 3 or one of the three vertices of the contracted path Q× for some Q ∈ Q (note
that every terminal falls into the latter case). The claim follows from the fact that |Q| = O(|T |) and that D
has less than |T | vertices of degree at least 3. y

Let (T , ζ, γ) be the sc-branch decomposition of H× given by Claim 5.19. Our goal is to show that this
sc-branch decomposition can be turned into an appropriate good decomposition of the solution W . For this
purpose, for every noose γ appearing in the sc-branch decomposition, we have to show two main properties:

(1) The terminals inside γ appear on O(
√
|T |) contigious subseqences of the solution W (see Claims 5.20

and 5.21).

(2) We can compute a set F such that the set of terminals inside γ appears in F (see Claim 5.22).

After establishing these two properties, Lemma 5.18 follows in a straightforward way.
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Branch decomposition gives good decomposition. We now show that a good decomposition of W can
be inferred from the sc-branch decomposition (T , ζ, γ). Root the tree T at an arbitrary leaf r such that ζ(r) is
not of the form (ft, t) for a terminal t and define β(r) = T . For every node s ∈ V (T ) \ {r} with a parent edge
f , we define β(s) as follows. Let {F1, F2} be the partition of the terminal edges induced by γ(f) and assume
that the side of γ(f) that contains ζ(r) corresponds to the set F2. Then, we put β(s) = {t ∈ T | (ft, t) ∈ F1}.

We now verify that (T , β) is a good decomposition of W (formally, after removing the root in order to
have a binary tree).

Let γ be a noose with respect to H×. A path Q ∈ Q is touched by γ if γ visits uQ or one of the endpoints
of Q. We denote the set of paths touched by γ by Qγ ⊆ Q and observe the following.

Claim 5.20. If a noose γ with respect to H× visits at most r vertices of H×, then there are at most 4r paths
touched by γ.

Proof. Recall that every vertex of G� lies on at most two canonical paths, and hence W visits every vertex of
G� at most twice. Consequently, every vertex v of H× that is not of the form uQ0

for some Q0 ∈ Q lies on
at most four paths of Q: for every of the at most two visits of W in v, v is either an internal vertex of some
path in Q or an ending vertex of one path in Q and a starting vertex of another path in Q. Furthermore, a
vertex uQ0 for some Q0 ∈ Q lies on exactly two paths Q× if Q0 is twisted with another path, and on only
one path Q×0 otherwise. We infer that |Qγ | 6 4r, as desired. y

With Claim 5.20 at hand, we can now verify the properties of a good decomposition.

Claim 5.21. (T − r, β) is a C-good decomposition of W and πW for sufficiently large universal constant C.

Proof. We start with Property (1). Consider a noose γ := γ(f) for some edge f of T . Let {F1, F2} be the
partition of F induced by γ and Ti = {t ∈ T | (ft, t) ∈ Fi} for i = 1, 2.

By the properties of the sc-branch decomposition (T , ζ, γ), γ visits at most α
√
|T | vertices of H× for

some universal constant α. Recall that the walk W is partitioned into paths B1, B2, . . . , B`. Claim 5.20
asserts that at most 4α

√
|T | paths Bi are touched by γ.

The removal of the paths of Qγ from the walk W splits W into at most 4α
√
|T | subwalks. By the

definition of Qγ , the set of terminals visited by each such subwalk either lies on one side of γ or is a single
terminal lying on γ. Consequently, the set of terminals visited by each such subwalk is either fully contained
in T1 or fully contained in T2. Property (1) follows from the definition of β.

Let us now verify the remaining properties of a good decomposition one-by-one. We have β(r) = T by
definition, and note that by the choice of ζ(r) we have β(r′) = T for the unique child r′ of r in T . This
ensures property (2). For property (3), pick a non-leaf non-root node s of T , and observe that it has always
exactly two children, say s1 and s2. Let f be the edge of T connecting s with its parent, and let f1, f2 be
edges connecting s with s1, s2, respectively. By the properties of a branch decomposition, the set of edges on
the side of γ(f) that does not contain ζ(r) is partitioned into sets defined in the same manner for γ(f1) and
γ(f2). As β(s), β(s1), β(s2) are defined by including every terminal t depending on whether the edges (ft, t)
is included in the sets above, property (3) follows. Finally, for property (4), note that for a leaf s with parent
edge f , the noose γ(f) encloses a single edge, and thus |β(s)| 6 1. y

Thus, our goal now is to construct a small family of subsets of T that contains all sets β(s) for nonroot
nodes s of T .

Enumeration algorithm. Intuitively, the partition of the terminal edges induced by a noose γ = γ(f)
for some f ∈ E(T ) may be guessed as follows. By Claim 5.20, we have |Qγ | = O(

√
|T |). Furthermore,

Qγ ⊆ Q ⊆ B while the set B is known to the algorithm and of size O(|T |12). Consequently, we can guess the
set Qγ and reconstruct the parts of H× visited by γ. This will be sufficient to invoke Lemma 4.1.

Claim 5.22. In time |T |O(
√
|T |)nO(1) one can enumerate a family A of |T |O(

√
|T |) subsets of T such that

for every nonroot vertex s ∈ V (T ) we have β(s) ∈ A.

Proof. Consider a nonroot vertex s ∈ V (T ) with parent edge f and noose γ := γ(f). Claim 5.20 ensures

that |Qγ | = O(
√
|T |) while Qγ ⊆ Q ⊆ B and |B| = O(|T |12). We branch into |T |O(

√
|T |) subcases, guessing

(considering all possible options) for the set Qγ .
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Given Qγ , construct the graph Hγ as the union of D and all paths from Qγ . Note that Hγ is a subgraph
of H that contains all terminal edges. Construct H×γ from Hγ in the same way we constructed H× from H:
for every Q ∈ Qγ , contract Q into a three-vertex path Q× consisting of the endpoints of Q and an internal
vertex uQ.

The graph H×γ is not necessarily a subgraph of H×, but it contains all terminal edges and, since we added
all paths touched by γ to Hγ and contracted them while constructing H×γ , the curve γ (after some possible
shifts within the faces of H×γ to accommodate differences in planar drawings of H×γ and H×) is a noose with

respect to H×γ that visits O(
√
|T |) vertices of H×γ and partitions F in the same way as in H×.

However, the graph H×γ may not be connected, so we cannot use Lemma 4.1 directly. Instead, we crucially
use now the fact that Hγ contains the tree D that is connected and contains all terminal edges. We have
that Hγ contains a connected component Cγ that contains D and, consequently, H×γ contains a connected
component C×γ that contains the image of Cγ . In particular, C×γ contains all terminal edges. Hence, to
understand how γ partitions terminal edges, it suffices to apply Lemma 4.1 to C×γ , instead of the entire graph
H×γ .

More precisely, by applying Lemma 4.1 to C×γ , F , and ` = O(
√
|T |), we obtain a family A(Qγ) of

|T |O(
√
|T |) partitions of F that contains the one induced by γ.

Consequently, for every of the TO(
√
|T |) guesses of Qγ , for every partition {F1, F2} ∈ A(Qγ) and every

i = 1, 2, we may output {t ∈ T | (ft, t) ∈ Fi} as an element of A and conclude. y

Claims 5.21 and 5.22 conclude the proof of Lemma 5.18.

5.5 Dynamic programming algorithm

In this section we show that, given the family F obtained using Lemma 5.18, one can find a shortest walk

visiting all terminals in time |F|O(1) · |T |O(
√
|T |) · nO(1) by a standard dynamic programming approach. More

formally, we show the following lemma.

Lemma 5.23. Given a canonical instance (G�, T,P) and a family F of subsets of T , one can in time

|F|O(1) · |T |O(
√
|T |) · nO(1) compute a canonical walk W0 of total length not greater than the minimum length

of a canonical walk W for which there exists a good decomposition (T , β) satisfying {β(s) : s ∈ V (T )} ⊆ F .

Proof. Without loss of generality we assume that F contains all subsets A ⊆ T with |A| 6 C
√
|T |, where the

constant C comes from Lemma 5.18; this is because the number of such subsets is |T |O(
√
|T |), so we may just

add them to F .
A state consists of a set A ∈ F and a family M of O(

√
|T |) ordered pairs of (not necessarily different)

terminals from A. Note that there are |F| · |T |O(
√
|T |) states.

A realization of a state (A,M) is a mapping P that assigns to every pair (t, t′) ∈M a walk P (t, t′) from
t to t′ in G� in such a manner that the walks {P (t, t′) : (t, t′) ∈ M} together visit all terminals of A. The
weight of a realization is the sum of the weights of all walks in it. In our dynamic programming algorithm we
shall compute a realization P(A,M) for every state (A,M), in the order of increasing size of A.

Given two walks Q1 and Q2 with endpoints in T , a concatenation of Q1 and Q2 is a walk consisting of
the walk Q1, then the canonical path from the ending point of Q1 to the starting vertex of Q2, and then the
walk Q2. This definition naturally generalizes to concatenations of longer sequences of walks.

For states with |A| 6 C
√
|T |, we compute a minimum weight realization by brute force, as there are

|T |O(
√
|T |) ways to arrange A into a set of sequences corresponding to the terminals visited by different paths

of the realization of minimum weight.
For states (A,M) with larger sets A, we iterate over all partitions of the form A = A1 ] A2 with

A1, A2 ∈ F and |A1|, |A2| < |A|, and all states (A1,M1) and (A2,M2) with precomputed realizations P1

and P2, respectively. We iterate over all possibilities of concatenating paths from the images of P1 and P2

by brute force. More formally, we iterate over all possible families Z of sequences of elements of M1 and

M2 that uses every pair from M1 and M2 exactly once. Since |M1|, |M2| = O(
√
|T |), there are |T |O(

√
|T |)

choices for the family Z. For every such family Z, we construct a mapping P as follows: for every sequence
((s1, t1), (s2, t2), . . . , (sr, tr)) ∈ Z we make the concatenation of the walks (P1 ∪ P2)(si, ti) for 1 6 i 6 r and
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let P map (s1, tr) to this concatenation. If in the end P has M as a domain, we consider P as a candidate
realization of (A,M) and finally choose a realization of minimum weight among all choices of (A1,M1),
(A2,M2), and Z.

Finally, we iterate over all states (T, {(t, t′)}) for terminals t, t′ ∈ T and set πt,t′ to be the order in which
P(T,{(t,t′)})(t, t

′) traverses the terminals. For each such choice, compute a canonical walk Wt,t′ with the
witnessing permutation πt,t′ , and return the minimum-weight walk found.

Clearly, the algorithm returns a canonical walk. Consider a canonical walk W for which there exists a
witnessing permutation πW and a good decomposition (T , β) such that {β(v) : v ∈ V (T )} ⊆ F . From the
definition of a good decomposition, for every node s ∈ V (T ) there exists a collection Ps of at most C

√
|T |

subwalks of W that visit exactly the terminals of β(s). Furthermore, we can choose these collections in such a
manner that every subwalk starts and ends at a terminal, for the root r the collection Pr consists of a single
subwalk of W from the first to the last terminal of πW , and for every node s with children s1 and s2, the
walks of Ps are concatenations of some walks of Ps1 and Ps2 , where every walk in Ps1 and Ps2 is used exactly
once. Let Ms be the family of pairs of endpoints of Ps. Then a standard inductive argument shows that the
realization for (β(s),Ms) is of weight at most the total weight of the walks in Ps; to ensure the correctness
of computation for states with |A| 6 C

√
|T | we use the assumption that F contains all subsets A satisfying

this condition. Consequently, if t, t′ are the first and the last terminal on πW , then the computed realization
of (T, {(t, t′)}) is of weight at most the weight of the subwalk of W from t to t′. Hence the canonical walk
computed for πt,t′ is of weight not larger than the weight of W , which concludes the proof.

By pipelining Lemma 5.18 with Lemma 5.23 we obtain Lemma 5.4.

5.6 Wrap up

We conclude the proof of Theorem 1.1. Let (G,T ) be an input instance. By Lemma 5.3 we obtain an equivalent
canonical instance (G�, T,P). Then Lemma 5.4 allows us to find a minimum-weight solution to Directed

Subset TSP in (G�, T,P) in time |T |O(
√
|T |)nO(1) which can be projected back to a minimum-weight

solution to Directed Subset TSP in (G,T ). This concludes the proof of Theorem 1.1.
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