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Abstract. Bayesian approach, a useful tool for quantifying uncertainties, has
been extensively employed to solve the inverse problems of partial differential

equations (PDEs). One of the main difficulties in employing the Bayesian

approach to such problems is how to extract information from the posterior
probability measure. Compared with conventional sampling-type methods,

variational Bayes’ method (VBM) has been intensively examined in the field

of machine learning attributed to its ability in extracting approximately the
posterior information with lower computational cost. In this paper, we gen-

eralize the conventional finite-dimensional VBM to the infinite-dimensional
space rigorously solve the inverse problems of PDEs. We further establish a

general infinite-dimensional mean-field approximate theory and apply it to the

linear inverse problems under the Gaussian and Laplace noise assumptions at
the abstract level. The results of some numerical experiments substantiate the

effectiveness of the proposed approach.

1. Introduction

Motivated by the significant applications in medical imaging, seismic explo-
rations and many other domains, the field of inverse problems has undergone an
enormous development over the past few decades. In handling an inverse prob-
lem, we usually meet ill-posed issue in the sense that the solution lacks stability
or even uniqueness [30, 48]. The regularization approach, including Tikhonov and
Total-Variation regularization, is one of the most popular approaches to alleviate
this ill-posed issue of inverse problems. Regularization method allows for statisti-
cal assumptions of data, however there are no statistical descriptions of the model
parameters. For a complete review, we refer to Sections 2 and 3 in [4].

The Bayesian inverse approach provides a flexible framework that solves inverse
problems by transforming them into statistical inference problems, thereby mak-
ing it feasible to analyze the uncertainty of the solutions to the inverse problems.
Inverse problems are usually accompanied by a forward operator originating from
some partial differential equations (PDEs), thereby introducing difficulties to the
direct use of the finite-dimensional Bayes’ formula. The following two strategies
can be employed to solve this problem:

(1) Discretize-then-Bayesianize: The PDEs are initially discretized to approxi-
mate the original problem in some finite-dimensional space, and the reduced
approximate problem is then solved by using the Bayes’ method.
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(2) Bayesianize-then-discretize: The Bayes’ formula and algorithms are initially
constructed on infinite-dimensional space, and after the infinite-dimensional
algorithm is built, some finite-dimensional approximation is carried out.

The first strategy makes available all the Bayesian inference methods developed
in the statistical literature [34]. However, given that the original problems are
defined on infinite-dimensional space, several problems, such as non-convergence
and dimensional dependence, tend to emerge when using this strategy [15, 35].
By employing the second strategy, the discretization-invariant property naturally
holds given that the Bayes’ formula and algorithms are properly defined on some
separable Banach space [18, 47]. In the following sections, we confine ourselves to
the second strategy, that is, postponing the discretization to the final step.

One of the essential issues for employing the Bayes’ inverse method is how to
extract information from the posterior probability measure. Previous studies have
adopted two major approaches to address such issue, namely, the point estimate
method and the sampling method. For the point estimate method, the maximum
a posteriori (MAP) estimate, which is intuitively equivalent to solving an opti-
mization problem, is often utilized. The intuitive equivalence relation has been
rigorously analyzed recently [2, 12, 17, 20, 26]. In some situations [31, 48], MAP
estimates are more desirable and computationally feasible than the entire posterior
distribution. However, point estimates cannot provide uncertainty quantification
and are usually recognized as incomplete Bayes’ method.

To extract all information encoded in the posterior distribution, sampling meth-
ods, such as the Markov chain Monte Carlo (MCMC), are often employed. In 2013,
Cotter et al. [15] proposed using the MCMC method for functions to ensure that
the convergence speed of the algorithm is robust under mesh refinement. Multiple
dimension-independent MCMC-type algorithms have also been proposed [16, 22].
Although MCMC is highly-efficient as a sampling method, its computational cost
is unacceptable for many applications, including the full waveform inversion [23].

In this paper, we aim to propose a variational method that can perform uncer-
tainty analysis at a computational cost which is comparable to that for computing
the MAP estimates. For finite-dimensional problems, such types of methods, named
as variational Bayes’ methods (VBM), have been broadly investigated in the field
of machine learning [8, 40, 51, 52]. In addressing the inverse problems, Jin et
al. [33, 32] employed VBM to investigate a hierarchical formulation of the finite-
dimensional inverse problems when the noise is distributed according to Gaussian
or centered-t distribution. Guhua et al. [25] generalized this method further to the
case when the noise is distributed according to skewed-t error distribution. Finite-
dimensional VBM has been recently applied to study the porous media flows in
heterogeneous stochastic media [50].

All the aforementioned investigations are conducted based on finite-dimensional
VBM. Therefore, only the first strategy as aforementioned can be employed to solve
the inverse problems. To the best of our knowledge, only two relevant works have
investigated VBM under the infinite-dimensional setting. Specifically, when the ap-
proximate probability measures are restricted to be Gaussian, Pinski et al. [43, 44]
employed a calculus-of-variations viewpoint to study the properties of Gaussian
approximate sequences with Kullback-Leibler (KL) divergence as the a fitness mea-
sure. Relying on the Robbins-Monro algorithm, they developed a novel algorithm
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for obtaining the approximate Gaussian measure. Until now, no study has been con-
ducted beyond such Gaussian approximate measure assumption. However, various
approximate probability measures have been frequently used for training deep neu-
ral networks and solving finite-dimensional inverse problems [33, 32]. In this case,
for applications in inverse problems concerned with PDEs, a VBM with approxi-
mate measures other than Gaussian should be necessarily constructed on infinite-
dimensional space.

In the following, we focus on the classical mean-field approximation that is widely
employed for the finite-dimensional case. This approximation originally stems from
the theory of statistical mechanics for treating many-body systems. Inspired by
finite-dimensional theory, we construct a general infinite-dimensional mean-field
approximate based VBM, which allows the use of general approximate probability
measures beyond Gaussian. Examples are also given to illustrate the flexibility
of our proposed approach. The contributions of our work can be summarized as
follows:

• By introducing a reference probability measure and using the calculus of
variations, we establish a general mean-field approximate based VBM on
Hilbert spaces that provides a flexible framework for introducing techniques
developed on finite-dimensional space to infinite-dimensional space.
• We apply the proposed theory to a general linear inverse problem (the for-

ward map is assumed to be a bounded linear operator) with Gaussian and
Laplace noise assumptions. Precise assumptions can be found in Subsec-
tion 3.1. Through detailed calculations, we construct iterative algorithms
for functions. To the best of our knowledge, VBM with Laplace noise as-
sumption has not been previously employed for solving inverse problems,
even those that are restricted to finite-dimensional space.
• We solve the inverse source problems of Helmholtz equations with multi-

frequency data by using the proposed VBM with Gaussian and Laplace
noise assumptions. The algorithms not only provide a point estimate but
also give the standard deviations of the numerical solutions.

The outline of this paper is as follows. In Section 2, we construct the general
infinite-dimensional VBM based on the mean-field approximate assumption. In
Section 3, under the hierarchical formulation, we apply the proposed theory to an
abstract linear inverse problem with Gaussian and Laplace noise assumptions. In
Section 4, we present concrete numerical examples to illustrate the effectiveness of
our proposed approach. In Section 5, we summarize our findings and propose some
directions for further research. Due to the limited space, we did not provide all
proofs in the main text. All of the proofs are given in the supplemental materials.

2. General theory on infinite-dimensional space

In Subsection 2.1, we provide the necessary background of our theory and prove
some basic results concerning with the existence of minimizers for finite product
probability measures. In Subsection 2.2, we present our infinite-dimensional varia-
tional Bayes’ approach.

2.1. Existence theory. In this subsection, we first recall some general facts about
the Kullback-Leibler (KL) approximation from the viewpoint of calculus of vari-
ations, and then provide some new theorems for product of probability measures
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that form the basis of our investigation. Let H be a Polish space endowed with its
Borel sigma algebra B(H), and let M(H) be the set of Borel probability measures
on H.

For inverse problems, we usually need to find a probability measure µ onH, which
is called the posterior probability measure, specified by its density with respect to
a prior probability measure µ0 [47]. Let the Bayesian formula on the Hilbert space
be defined by

dµ

dµ0
(x) =

1

Zµ
exp

(
− Φ(x)

)
,(2.1)

where Φ(x) : H → R is a continuous function, and exp
(
−Φ(x)

)
is integrable with

respect to µ0. The constant Zµ is chosen to ensure that µ is indeed a probability
measure.

Let A ⊂M(H) be a set of “simpler” measures that can be efficiently calculated.
Our aim is to find the closest element ν to µ with respect to the KL divergence
from subset A. For any ν ∈M(H) that is absolutely continuous with respect to µ,
the KL divergence is defined as

DKL(ν||µ) =

∫
H

log

(
dν

dµ
(x)

)
dν

dµ
(x)µ(dx) = Eµ

[
log

(
dν

dµ
(x)

)
dν

dµ
(x)

]
,(2.2)

where the convention 0 log 0 = 0 has been used. If ν is not absolutely continuous
with respect to µ, then the KL divergence is defined as +∞. With this definition,
this paper examines the following minimization problem:

argmin
ν∈A

DKL(ν||µ).(2.3)

There are some studies of the above general minimization problem (2.3) taken
from the perspective of the calculus of variations. We follow this line of investiga-
tions in this section, and for the convenience of the readers, we present the following
proposition, which has been proven in [44].

Proposition 2.1. Let A be closed with respect to weak convergence. Then, given
µ ∈ M(H), assume that there exists ν ∈ A such that DKL(ν||µ) < ∞. It follows
that there exists a minimizer ν ∈ A solving

argmin
ν∈A

DKL(ν||µ).

As stated in the Introduction, we aim to construct a mean-field approximation
that usually takes the following factorized form for the finite-dimensional case

q(x1, · · · , xM ) =

M∏
j=1

q(xj),(2.4)

where q(x1, · · · , xM ) is the full probability density function, q(xj) is the probability
density function for xj , and xj ∈ RNj (Nj ∈ N) for j = 1, 2, · · · ,M . That is, we as-
sume that x1, · · · , xM are independent random variables. By carefully choosing the
random variables {xj}Mj=1, this independence assumption will lead to computation-
ally efficient solutions when conjugate prior probabilities are employed. Additional
details can be found in Chapter 9 of [8] and in some recently published papers
[32, 51, 52].
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Inspired by formula (2.4), for a fixed positive constant M , we specify the Hilbert
space H and subset A as

H =

M∏
j=1

Hj , A =

M∏
j=1

Aj ,(2.5)

where Hj(j = 1, · · · ,M) are a series of separable Hilbert space and Aj ⊂M(Hj).
Let ν :=

∏M
i=1 ν

i be a probability measure such that ν(dx) =
∏M
i=1 ν

i(dx). With
these assumptions, the minimization problem in (2.3) can be rewritten as

argmin
νi∈Ai

DKL

( M∏
i=1

νi
∣∣∣∣µ)(2.6)

for suitable sets Ai with i = 1, 2, · · · ,M . The general result shown in Proposition
2.1 indicates that the closedness of the subset A under weak convergence is crucial
for the existence of the approximate measure ν. Therefore, we present the following
lemma that illustrates the closedness of A as defined in (2.5).

Lemma 2.2. For i = 1, 2, · · · ,M , let Ai ⊂M(Hi) be a series of sets closed under
weak convergence of probability measures. Define

C :=

{
ν :=

M∏
j=1

νj
∣∣∣∣ νj ∈ Aj for j = 1, 2, · · · ,M

}
.(2.7)

Then, the set C is closed under the weak convergence of probability measures.

From Lemma 2.2 and Proposition 2.1, we can prove the following existence result.

Theorem 2.3. For i = 1, 2, · · · ,M , let Ai be closed with respect to weak con-

vergence. Given µ ∈ M(
∏M
i=1Hi), we assume that there exists νi ∈ Ai for

i = 1, · · · ,M such that DKL(
∏M
i=1 ν

i||µ) < ∞. Then, there exists a minimizer∏M
i=1 ν

i that solves problem (2.6).

Remark 2.4. In Theorem 2.3, we only illustrate the existence of the approximate
measure ν without uniqueness. When the approximate measures are assumed to
be Gaussian, uniqueness has been obtained with the λ-convex requirement of the
potential Φ appearing in the Bayes’ formula (2.1) [44]. We cannot expect uniqueness
generally even for most of the practical problems defined on the finite-dimensional
space. Therefore, we will not pursue the uniqueness results here.

The result shown in Theorem 2.3 does not tell us much about the manner in
which minimizing sequences approach the limit. After further deductions, we can
precisely characterize the convergence.

Theorem 2.5. Let
{
νn =

∏M
j=1 ν

j
n

}∞
n=1

be a sequence in
∏M
j=1M(Hj), and let

ν∗ =
∏M
j=1 ν

j
∗ ∈

∏M
j=1M(Hj) and µ ∈ M(

∏M
j=1Hj) be probability measures such

that for any n ≥ 1, we have DKL(νn||µ) < ∞ and DKL(ν∗||µ) < ∞. Suppose that

νn converges weakly to ν∗ and νjn � νj∗ for j = 1, 2, · · · ,M and that

DKL(νn||µ)→ DKL(ν∗||µ).(2.8)

Then, νjn converges to νj∗ in the total variation norm for j = 1, 2, · · · ,M .

Combining Theorems 2.3 and 2.5, we immediately obtain the following result.
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Corollary 2.6. For j = 1, 2, · · · ,M , let Aj ⊂ M(Hj) be closed with respect to

weak convergence. Given µ ∈ M(
∏M
j=1Hj), there exists ν =

∏M
j=1 ν

j ∈
∏M
j=1Aj

with DKL(ν||µ) <∞. Let νn =
∏M
j=1 ν

j
n ∈

∏M
j=1Aj satisfy

DKL(νn||µ)→ inf
ν∈

∏M
j=1Aj

DKL(ν||µ).(2.9)

Then, after passing to a subsequence, we have

• νn converges weakly to ν∗ =
∏M
j=1 ν

j
∗ ∈

∏M
j=1M(Hj) that realizes the infi-

mum in (2.9);

• each νjn converges weakly to νj∗ for j = 1, 2, · · · ,M .

In addition, for j = 1, 2, · · · ,M , if νjn � νj∗ for all n, each νjn converges to νj∗ in
the total-variation norm.

2.2. Mean-field approximation for functions. For finite-dimensional cases, the
mean-field approximation has been widely employed in the field of machine learning.
On the basis of the results presented in Subsection 2.1, we construct a mean-
field approximation approach on infinite-dimensional space, which will be useful
for solving the inverse problems of PDEs.

In the previous work, e.g., Examples 3.8 and 3.9 in [44] and the general setting
described in [43], their idea is replacing the classical density functions by the density
functions with respect to the prior measure. In [43, 44], prior measures are taken
to be Gaussian measures, which plays the role of Lebesgue measure in the finite-
dimensional setting. Inspired by these studies, we may assume that the approximate
probability measure ν introduced in (2.3) is equivalent to µ0 defined by

dν

dµ0
(x) =

1

Zν
exp

(
− Φν(x)

)
.(2.10)

Compared with the finite-dimensional case, a natural way for introducing an in-
dependence assumption is to assume that the potential Φν(x) can be decomposed
as

exp (−Φν(x)) =

M∏
j=1

exp
(
−Φjν(xj)

)
,(2.11)

where x = (x1, · · · , xM ). However, this intuitive idea prevents us from incorporat-
ing those parameters contained in the prior probability measure into the hierarchical
Bayes’ model that is used in finite-dimensional cases [32, 52]. Given these consider-
ations, we propose the following assumption that introduces a reference probability
measure.

Assumptions 2.7. Let us introduce a reference probability measure

µr(dx) =

M∏
j=1

µjr(dxj),(2.12)

which is equivalent to the prior probability measure with the following relation being
true:

dµ0

dµr
(x) =

1

Z0
exp(−Φ0(x)).(2.13)
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For each j = 1, 2, · · · ,M , there is a predefined continuous function aj(ε, xj)
1

where ε is a positive number and xj ∈ Hj. Concerning these functions, we as-

sume that Eµjr [aj(ε, ·)] < ∞ where ε ∈ [0, εj0) with εj0 is a small positive number
(j = 1, · · · ,M). We also assume that the approximate probability measure ν is
equivalent to the reference measure µr and that the Radon-Nikodym derivative of ν
with respect to µr takes the following form

dν

dµr
(x) =

1

Zr
exp

(
−

M∑
j=1

Φrj(xj)

)
.(2.14)

Following Assumptions 2.7, we know that the approximate measure can be de-

composed as ν(dx) =
∏M
j=1 ν

j(dxj) with

dνj

dµjr
=

1

Zjr
exp

(
− Φrj(xj)

)
.(2.15)

Here, Zjr = Eµjr
(

exp
(
− Φrj(xj)

))
ensures that νj is indeed a probability measure.

Remark 2.8. The reference measure introduced above can be easily specified for
concrete examples. Fix a component j, if xj belongs to some finite-dimensional
Hilbert space, we assume that the prior measure of xj has a density function p(·).
Then we can choose the reference measure of xj just equal to the prior measure.
Formula (2.15) for this component reduces to the classical finite-dimensional case.
If xj belongs to some Hilbert space with the prior measure contains some hyper-
parameters, there may be no universal strategies for choosing the reference measure.
Here, we provide a simple example to give some intuitions. Assume xj ∼ N (0, Cτ )
with Cτ := (τ2I − ∆)−α (α is a fixed positive number) [19], we can choose the
reference measure to be a Gaussian measure N (0, C) with C := (I −∆)−α, which
is equivalent to N (0, Cτ ) under some appropriate conditions (rigorous results are
given in Theorem 1 in [19]).

For convenience, let us introduce some notations. For j = 1, 2, · · · ,M , let Zj
be defined as a Hilbert space that is embedded in Hj . Denote CN be a positive
constant related N . Then, for j = 1, 2, · · · ,M , we introduce

R1
j =

{
Φrj

∣∣∣ sup
1/N≤‖xj‖Zj≤N

Φrj(xj) ≤ CN <∞ for all N > 0

}
,

R2
j =

{
Φrj

∣∣∣ ∫
Hj

exp
(
−Φrj(xj)

)
max(1, aj(ε, xj))µ

j
r(dxj) ≤ C <∞, for ε ∈ [0, εj0)

}
,

where C is an arbitrary large positive constant, εj0 and aj(·, ·) are defined as in
Assumptions 2.7. With these preparations, we can define Aj (j = 1, 2, · · · ,M) as
follows:

Aj =

{
νj ∈M(Hj)

∣∣∣∣ νj is equivalent to µjr with (2.15) holds true,
and Φrj ∈ R1

j ∩ R2
j

}
.(2.16)

Before using Theorem 2.3, we need to illustrate the closedness ofAj (j = 1, 2, · · · ,M)
under the weak convergence topology. Actually, we can prove the desired results
shown blow.

1These functions naturally appear when considering concrete examples, which will be specified in
Remark 3.1. In the last part of the supplementary materials, we provide a detailed illustration of

the Gaussian noise example, which may provide more intuitions.
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Theorem 2.9. For j = 1, 2, · · · ,M , we denote T jN = {xj | 1/N ≤ ‖xj‖Zj ≤
N}, with N being an arbitrary positive constant. For each reference measure µjr,

we assume that supN µ
j
r(T

j
N ) = 1. Then, each Aj is closed with respect to weak

convergence and problem (2.6) possesses a solution
∏M
j=1 ν

j with νj ∈ Aj for j =
1, 2, · · · ,M .

In the following theorem, we provide a special form of solution that helps us
obtain the optimal approximate measure via simple iterative updates.

Theorem 2.10. Assume that the approximate probability measure in problem (2.6)
satisfies Assumptions 2.7 and the assumptions presented in Theorem 2.9. Using the
same notations as in Theorem 2.9, in addition, we assume

sup
xi∈T iN

sup
νj∈Aj
j 6=i

∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)
1A(x)

∏
j 6=i

νj(dxj) <∞,(2.17)

and

sup
νj∈Aj
j 6=i

∫
Hi

exp

(
−
∫
∏
j 6=iHj

(Φ0(x) + Φ(x))1Ac(x)
∏
j 6=i

νj(dxj)

)
Mi(x)µir(dxi) <∞,

(2.18)

where A := {x |Φ0(x) + Φ(x) ≥ 0}, and Mi(x) := max (1, ai(ε, xi)) with i, j =

1, 2, · · · ,M . Then, problem (2.6) possesses a solution ν =
∏M
j=1 ν

j ∈ M(H) with
the following form

dν

dµr
∝ exp

(
−

M∑
i=1

Φri (xi)

)
,(2.19)

where

Φri (xi) =

∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)∏
j 6=i

νj(dxj) + Const(2.20)

and

νi(dxi) ∝ exp
(
− Φri (xi)

)
µir(dxi).(2.21)

Remark 2.11. For i = 1, 2, · · · ,M , conditions (2.17) and (2.18) ensure that each
components of the approximate measure ν and the reference probability measure µr
are equivalent. These two conditions can be verified straightforwardly for specific
examples relying on the integrability and boundedness conditions of Φri contained
in the definition of Ai in (2.16) for i = 1, 2, · · · ,M .

Remark 2.12. Formula (2.20) means that the logarithm of the optimal solution
for factor νj can be obtained simply by considering the logarithm of the joint
distribution over all of the other variables and then taking the expectation with
respect to all of the other factors {νi} fixed for i 6= j. This result is in accordance
with the finite-dimensional case illustrated in Subsection 2.3 of [51].

Remark 2.13. Based on Theorem 2.10, we can therefore seek a solution by first
initializing all of the potentials Φrj appropriately and then cycling through the
potentials and replacing each in turn with a revised estimate given by the right-
hand side of (2.20) evaluated by using the current estimates for all of the other
potentials.
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3. Applications to some general inverse problems

In Subsection 3.1, we apply our general theory to an abstract linear inverse prob-
lem (ALIP). We assume that the prior and noise probability measures are all Gauss-
ian with some hyper-parameters, and then we formulate hierarchical models that
can be efficiently solved by using the variational Bayes’ approach. In Subsection
3.2, we assume that the noise is distributed according to the Laplace distribution.
Through this assumption, we can formulate algorithms that solve ALIP and are
robust to outliers.

3.1. Linear inverse problems with Gaussian noise. In this subsection, we
apply our general theory to an abstract linear inverse problem. A detailed investi-
gation of the corresponding finite-dimensional case can be found in [33].

Let Hu be some separable Hilbert space and Nd be a positive integer. We
describe the linear inverse problem as

d = Hu+ ε,(3.1)

where d ∈ RNd is the measurement data, u ∈ Hu is the sought-for solution, H is a
bounded linear operator from Hu to RNd , and ε is a Gaussian random vector with
zero mean and τ−1I variance. We will focus on the hyper-parameter treatment
within hierarchical models and the challenges in efficiently exploring the posterior
probability.

To formulate this problem under the Bayesian inverse framework, we introduce
a prior probability measure for the unknown function u. Let C0 be a symmetric,
positive definite and trace class operator defined onHu, and let (ek, αk) be an eigen-
system of the operator C0 such that C0ek = αkek. Without loss of generality, we
assume that the eigenvectors {ek}∞k=1 are orthonormal and the eigenvalues {αk}∞k=1

are in a descending order. In the following, for a function u ∈ Hu, we denote
uj := 〈u, ej〉 for j = 1, 2, · · · . According to Subsection 2.4 in [18], we have

C0 =

∞∑
j=1

αjej ⊗ ej ,(3.2)

where ⊗ denotes the tensor product on Hilbert space [36, 46]. As indicated in
[15, 16, 22], we assume that the data are only informative on a finite number of
directions in Hu. Under this assumption, we introduce a positive integer K, which
represents the number of dimensions that is informed by the data (i.e., the so-called
intrinsic dimensionality), which is different from the discretization dimensionality,
i.e., the number of mesh points used to represent the unknown variables. The value
of K can be specified with a heuristic approach [22]:

K = min

{
k ∈ N

∣∣∣∣ αkα1
< ε

}
,(3.3)

where ε is a prescribed threshold. Let λ be a positive real number, then, we define

CK0 (λ) :=

K∑
j=1

λ−1αjej ⊗ ej +

∞∑
j=K+1

αjej ⊗ ej ,(3.4)

which is obviously a symmetric, positive definite and trace-class operator. Numer-
ical results shown in [22] indicate that the above heuristic approach could provide
acceptable results when ε is small enough for a lot of practical inverse problems.
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However, if the data is particularly informative and far from the prior, this heuristic
approach may lead to a Bayesian inference model that has not enough ability to in-
corporate information encoded in data. Concerned with this problem, we intend to
give more detailed discussions in our future work. We refer to some recent studies
[1, 13] that may provide some useful ideas. Then, we assume

u ∼ µu,λ0 = N (u0, CK0 (λ)).(3.5)

Let Gamma(α, β) be the Gamma probability measure defined on R+ with the
probability density function pG expressed as

pG(x;α, β) =
βα

Γ(α)
xα−1e−βx,(3.6)

where Γ(·) is the usual Gamma function. Then, except for the function u, we
assume that the parameters λ and τ involved in the prior and noise probability
measures are all random variables satisfying λ ∼ µλ0 := Gamma(α0, β0) and τ ∼
µτ0 := Gamma(α1, β1). With these preparations, we define the prior probability
measure employed for this problem as follows:

µ0(du, dλ, dτ) = µu,λ0 (du)µλ0 (dλ)µτ0(dτ).(3.7)

Let µ be the posterior probability measure for random variables u, λ, and τ . Ac-
cording to Theorems 15 and 16 proved in [18], this probability measure can be
defined as

dµ

dµ0
(u, λ, τ) =

1

Zµ
τNd/2 exp

(
− τ

2
‖Hu− d‖2

)
,(3.8)

where

Zµ =

∫
Hu×R+×R+

τNd/2 exp

(
− τ

2
‖Hu− d‖2

)
µ0(du, dλ, dτ).(3.9)

To apply the general theory developed in Section 2, we specify the following
reference probability measure 2

µr(du, dλ, dτ) = µur (du)µλr (dλ)µτr (dτ),(3.10)

where µur = N (u0, C0) is a Gaussian probability measure, and µλr and µτr are chosen
to be µλ0 and µτ0 , respectively.

In Assumption 2.7, we assume that the approximate probability measure is sep-
arable with respect to the random variables u, λ, and τ with the form

ν(du, dλ, dτ) = νu(du)νλ(dλ)ντ (dτ).(3.11)

In addition, we assume that its Radon-Nikodym derivative with respect to µr can
be written as

dν

dµr
(u, λ, τ) =

1

Zr
exp

(
− Φru(u)− Φrλ(λ)− Φrτ (τ)

)
.(3.12)

2In practical machine learning applications, especially for large-scale scenarios, researchers often
assume the approximating measures are independent in each component (a fully diagonal approx-
imation to the posterior) that further reduce of computational burden. This, however, also tends

to decrease the computation accuracy due to the neglecting of existing correlations between dif-
ferent components of u. We thus consider to preserve such correlation in our method to alleviate
the possible negative influence of ignoring such beneficial knowledge.



VARIATIONAL INFERENCE FOR FUNCTIONS 11

For the Radon-Nikodym derivative of µ0 with respect to µr, we have

dµ0

dµr
(u, λ, τ) =

dµu,λ0

dµur
(u)

dµλ0
dµλr

(λ)
dµτ0
dµτr

(τ)

= λK/2 exp

(
− 1

2
‖(CK0 (λ))−1/2(u− u0)‖2 +

1

2
‖C−1/2

0 (u− u0)‖2
)

= λK/2 exp

(
− 1

2

K∑
j=1

(uj − u0j)
2(λ− 1)α−1

j

)
,

(3.13)

which implies that Φ0 introduced in Assumption 2.7 takes the following form:

Φ0(u, λ, τ) =
1

2

K∑
j=1

(uj − u0j)
2(λ− 1)α−1

j −
K

2
log λ.(3.14)

Remark 3.1. It should be noted that R+ is not a Hilbert space. However, the general
theory is constructed on some separable Hilbert spaces. This issue can be resolved
by considering λ′ := log λ and τ ′ := log τ instead of λ and τ . Through this simple
transformation, the space of hyper-parameters becomes R which is a Hilbert space.
The calculations presented here also hold true when considering λ′ and τ ′ as hyper-
parameters. Actually, we can derive that eλ

′
and eτ

′
are distributed according to the

same Gamma distributions as λ and τ . Choosing au(ε, u), aλ′(ε, λ
′), and aτ ′(ε, τ

′)
appropriately, we can verify the conditions proposed in Theorem 2.10 (critical steps
are provided in the supplementary materials). In the following, we still use λ and
τ as hyper-parameters. With this a little abusive use of the general theory (can be
rigorously verified through the above simple transformation), the reader may see
more clearly the connections between the finite- and infinite-dimensional theory.

We now calculate Φru(u), Φrλ(λ), and Φrτ (τ) according to the general results as
shown in Theorem 2.10.

Calculate Φru(u): A direct application of formula (2.20) yields

Φru(u) =

∫ ∞
0

∫ ∞
0

(
1

2

K∑
j=1

(uj − u0j)
2(λ− 1)α−1

j +
τ

2
‖Hu− d‖2

− K

2
log λ− Nd

2
log τ

)
ντ (dτ)νλ(dλ) + Const

=
1

2
τ∗‖Hu− d‖2 +

1

2
(λ∗ − 1)

K∑
j=1

α−1
j (uj − u0j)

2 + Const,

(3.15)

where

τ∗ = Eν
τ

[τ ] =

∫ ∞
0

τντ (dτ) and λ∗ = Eν
λ

[λ] =

∫ ∞
0

λνλ(dλ).(3.16)

On the basis of equality (3.15), we derive

dνu

dµur
(u) ∝ exp

(
− τ∗

2
‖Hu− d‖2 − λ∗ − 1

2

K∑
j=1

α−1
j (uj − u0j)

2

)
.(3.17)
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We define

C0(λ∗) =

K∑
j=1

(λ∗)−1αjej ⊗ ej +

∞∑
j=K+1

αjej ⊗ ej .(3.18)

Then, according to Example 6.23 in [47], we know that the probability measure νu

is a Gaussian measure N (u∗, C) with

C−1 = τ∗H∗H + C0(λ∗)−1 and u∗ = C
(
τ∗H∗d+ C0(λ∗)−1u0

)
.(3.19)

Calculate Φrλ(λ) and Φrτ (τ): According to formula (2.20), we have

Φrλ(λ) =

∫ ∞
0

∫
Hu

(
1

2

K∑
j=1

(uj − u0j)
2α−1

j λ− K

2
log λ

)
νu(du)ντ (dτ) + Const

=
1

2
Eν

u

( K∑
j=1

(uj − u0j)
2α−1

j

)
λ− K

2
log λ+ Const,

(3.20)

which implies that

dνλ

dµλr
(λ) ∝ λK/2 exp

(
− 1

2
Eν

u

( K∑
j=1

(uj − u0j)
2α−1

j

)
λ

)
.(3.21)

Given that λ is a scalar random variable, we can write the density function as
bellow:

ρG(λ; α̃0, β̃0) =
β̃α̃0

0

Γ(α̃0)
λα̃0−1 exp(−β̃0λ),(3.22)

where

α̃0 = α0 +
K

2
and β̃0 = β0 +

1

2
Eν

u

( K∑
j=1

(uj − u0j)
2α−1

j

)
.(3.23)

Similar to the above calculations of Φrλ(λ), we derive

Φrτ (τ) =

∫ ∞
0

∫
Hu

(
τ

2
‖Hu− d‖2 − Nd

2
log τ

)
νu(du)νλ(dλ) + Const

=
1

2
Eν

u

(‖Hu− d‖2)τ − Nd
2

log τ + Const,

(3.24)

which implies

dντ

dµτr
(τ) ∝ τ

Nd
2 exp

(
− 1

2
Eν

u

(‖Hu− d‖2)τ

)
.(3.25)

Therefore, ντ is a Gamma distribution Gamma(α̃1, β̃1) with

α̃1 = α1 +
Nd
2

and β̃1 = β1 +
1

2
Eν

u

(‖Hu− d‖2).(3.26)

According to the statements in Remark 2.13, we provide an iterative algorithm
based on formulas (3.19), (3.22), (3.23), and (3.26) in Algorithm 1. Before giving the
next example, we provide a brief discussion of the computational details and the cost
of Algorithm 1. For small- or medium-scale problems, we may construct the finite-
dimensional approximate operators H and H∗ explicitly [33]. However, for large-
scale problems, it is impossible to build finite-dimensional approximations explicitly.
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Algorithm 1 Variational approximation for the case of Gaussian noise

1: Give an initial guess µu,λ0 (u0 and λ), µλ0 (α0 and β0) and µτ0 (α1 and β1).
Specify the tolerance tol and set k = 1.

2: repeat
3: Set k = k + 1
3: Calculate λk = Eν

λ
k−1 [λ], τk = Eν

τ
k−1 [τ ]

4: Calculate νuk by

C−1
k = τkH

∗H + C0(λk)−1, uk = Ck
(
τkH

∗d+ C0(λk)−1u0

)
.

5: Calculate νλk and ντk by

νλk = Gamma(α̃0, β̃
k
0 ), ντk = Gamma(α̃1, β̃

k
1 ),

where

α̃0 = α0 +
K

2
, β̃k0 = β0 +

1

2
Eν

u
k

( K∑
j=1

(uj − u0j)
2α−1

j

)
,

α̃1 = α1 +
Nd
2
, β̃k1 = β1 +

1

2
Eν

u
k (‖Hu− d‖2).

6: until max
(
‖uk − uk−1‖/‖uk‖, ‖λk − λk−1‖/‖λk‖, ‖τk − τk−1‖/‖τk‖

)
≤ tol

7: Return νuk (du)νλk (dλ)ντk (dτ) as the solution.

Actually, for running the iterations, we only need to compute the mean estimates
uk and some quantities related to νuk such as Eνuk (‖Hu− d‖2). For obtaining mean
estimates, we can use a matrix-free conjugate gradient (CG) method [9, 24, 42] to
solve the following problem

(τkH
∗H + C0(λk)−1)uk = τkH

∗d+ C0(λk)−1u0,(3.27)

where no explicit forms of H∗H and H∗ need to be constructed. As demonstrated
in [9, 42], the CG iterations may be terminated when sufficient reduction is made in
the norm of the gradient and the prior operator may also be used to precondition the
CG iterations. For the term Eνuk (‖Hu − d‖2), by a straightforward generalization
of the finite dimensional case [33] (Proposition 1.18 in [45] and (c) of Theorem
VI.25 in [46] are used), we know that the core difficulty is to compute the following
quantity

Tr
(
(τkC0(λk)1/2H∗HC0(λk)1/2 + Id)−1C0(λk)1/2H∗HC0(λk)1/2

)
,(3.28)

where Tr(·) represents taking trace of the operator. For a lot of practical appli-
cations, the operator H∗H is a compact operator. Then the analysis provided in
Subsections 5.2 and 5.4 in [9] may applicable in the current setting, which implies
that only a small number of eignvalues (independent of the dimension of the dis-
cretized parameter field) is required to be evaluated. We intend to discuss in detail
on efficient implementations for large-scale problems in our future work.

3.2. Linear inverse problems with Laplace noise. As revealed by previous
studies on low-rank matrix factorization [52], the Gaussian noise tends to be sensi-
tive to outliers. Compared with the Gaussian distribution, the Laplace distribution
is a heavy-tailed distribution that can better fit heavy noises and outliers. In this
subsection, we develop VBM for the linear inverse problem (3.1) with the Laplace
noise assumption.
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For the noise vector ε = (ε1, ε2, · · · , εNd)T ∈ RNd , we assume that each compo-
nent εi follows the Laplace distribution with zero mean

εi ∼ Laplace

(
0,

√
τ

2

)
(3.29)

with τ ∈ R+. The probability density function of the above Laplace distribution is
denoted by pL(εi|0,

√
τ/2) that takes the following form:

pL(εi|0,
√
τ/2) =

√
2

τ
exp

(
− |εi|√

τ/2

)
.(3.30)

However, the Laplace distribution cannot be easily employed for posterior infer-
ence within the variational Bayes’ inference framework [52]. A commonly utilized
strategy will be employed to reformulate the Laplace distribution as a Gaussian
scale mixture with exponential distributed prior to the variance, as discussed in
[3, 52]. Let pE(z|τ) be the density function of an exponential distribution, that is,

pE(z|τ) =
1

τ
exp

(
− z

τ

)
.(3.31)

Then, we have

pL

(
x
∣∣0,√τ

2

)
=

1

2

√
2

τ
exp

(
−
√

2

τ
|x|
)

=

∫ ∞
0

1√
2πz

exp

(
− x2

2z

)
1

τ
exp

(
− z

τ

)
dz

=

∫ ∞
0

pN (x|0, z)pE(z|τ)dz.

(3.32)

By substituting (3.29) into the above equation, we obtain

pL(εi|0,
√
τ/2) =

∫ ∞
0

pN (εi|0, zi)pE(zi|τ)dzi,(3.33)

where pN (εi|0, zi) is the density function of a Gaussian measure on R with a zero
mean and zi variance. Thus, we can impose a two-level hierarchical prior instead
of a single-level Laplace prior on each εi as

εi ∼ N (0, zi), zi ∼ Exponential(τ).(3.34)

Let wi = z−1
i . Given that zi ∼ Exponential(τ), we know that wi ∼ µwi0 with µwi0

being a probability distribution with the following probability density function:

1

τ
exp

(
− 1

τwi

)
1

w2
i

.(3.35)

Let W be a diagonal matrix with diagonal w = {w1, w2, · · · , wNd}, and let

µw0 =

Nd∏
i=1

µwi0 .(3.36)

For the prior probability measure of u, similar to Subsection 3.1, we set this measure
as for the Gaussian noise case, that is,

u ∼ µu,λ0 = N (u0, CK0 (λ)), λ ∼ µλ0 = Gamma(α0, β0).(3.37)
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By combining (3.36) and (3.37), we obtain the full prior probability measure as

µ0(du, dλ, dw) = µu,λ0 (du)µλ0 (dλ)µw0 (dw).(3.38)

For the reference probability measure, we set µr(du, dλ, dw) = µur (du)µλr (dλ)µwr (dw),
where µur = N (u0, C0), µλr = µλ0 , and µwr = µw0 . By similar calculations as shown in
(3.13), we obtain

Φ0(u, λ, τ) =
1

2

K∑
j=1

(uj − u0j)
2(λ− 1)α−1

j −
K

2
log λ.(3.39)

For the posterior probability measure, by assumptions on the noises (3.34)-(3.36),
we have

dµ

dµ0
(u, λ,w) =

1

Zµ
|W |1/2 exp

(
− 1

2
‖W 1/2(Hu− d)‖2

)
,(3.40)

which implies Φ(u, λ,w) = 1
2‖W

1/2(Hu−d)‖2− 1
2 log |W |. Similar to the Gaussian

noise case, we specify the approximate probability measure as

dν

dµr
(u, λ,w) =

1

Zr
exp

(
− Φru(u)− Φrλ(λ)− Φrw(w)

)
.(3.41)

With these preparations, we are ready to calculate the three potentials in (3.41).
As discussed in Remark 3.1, we use λ > 0 as a hyper-parameter, which is not in ac-
cordance with our general theory. However, it can be made rigorous by considering
λ′ = lnλ as the hyper-parameter.

Calculate Φru: Following formula (2.20), we can derive

Φru(u) =

∫∫
1

2

K∑
j=1

(uj − u0j)
2(λ− 1)α−1

j +
1

2
‖W 1/2(Hu− d)‖2dνλdνw+Const

=
λ∗ − 1

2

K∑
j=1

α−1
j (uj − u0j)

2 +
1

2
‖W ∗(Hu− d)‖2 + Const,

(3.42)

where λ∗ = Eνλ [λ] and W ∗ = diag(Eνw [w1],Eνw [w2], · · · ,Eνw [wNd ]). From the
equality (3.42), we easily conclude that

dνu

dµur
(u) ∝ exp

(
− 1

2
‖(W ∗)1/2(Hu− d)‖2 − λ∗ − 1

2

K∑
j=1

α−1
j (uj − u0j)

2

)
,(3.43)

which implies that u is distributed according to a Gaussian measure with a co-
variance operator and a mean value specified as C−1 = H∗W ∗H + C0(λ∗)−1 and
u∗ = C

(
H∗W ∗d+ C0(λ∗)−1u0

)
.

Calculate Φrλ: Following formula (2.20), we can derive

Φrλ(λ) =

∫∫
1

2

K∑
j=1

(uj − u0j)
2α−1

j λ− K

2
log λdνudνw + Const

=
1

2
Eνu

( K∑
j=1

(uj − u0j)
2α−1

j

)
λ− K

2
log λ+ Const.

(3.44)
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Therefore, we have

dνλ

dµλr
(λ) ∝ λK/2 exp

(
− 1

2
Eν

u

( K∑
j=1

(uj − u0j)
2α−1

j

)
λ

)
,(3.45)

which implies that νλ is a Gamma distribution denoted by Gamma(α̃0, β̃0) with

α̃0 = α0 +K/2, β̃0 = β0 +
1

2
Eν

u

( K∑
j=1

(uj − u0j)
2α−1

j

)
.(3.46)

Calculate Φrw: Following formula (2.20), we derive

Φrw(w) =

∫∫
1

2
‖W 1/2(Hu− d)‖2 − 1

2
log |W |dνudνλ + Const

=
1

2

Nd∑
j=1

Eν
u[

(Hu− d)2
i

]
wi −

1

2

Nd∑
j=1

logwi + Const,

(3.47)

which implies

dνw

dµwr
(w) ∝

Nd∏
j=1

w
1/2
j exp

(
− 1

2
Eν

u[
(Hu− d)2

j

]
wj

)
.(3.48)

Because w is a finite dimensional random variable, we find

dνw ∝
Nd∏
j=1

w
1/2
j exp

(
− 1

2
Eν

u[
(Hu− d)2

j

]
wj

)
1

τ
exp

(
− 1

τwj

)
1

w2
j

dw

∝
Nd∏
j=1

1

τw
3/2
j

exp

(
− 1

2
Eν

u[
(Hu− d)2

j

]
wj −

1

τwj

)
dw.

(3.49)

In other words, νw is an inverse Gaussian distribution denoted by
∏Nd
j=1 IG(mwj , ζ)

with

mwj =

√
2

τEνu
[
(Hu− d)2

j

] , ζ =
2

τ
.(3.50)

Specify the parameter τ : From (3.34), we know the parameter τ is directly
related to noise variance parameter zi = w−1

i . Therefore, this parameter should
be adjusted carefully to obtain reasonable results. Empirical Bayes [8] provides an
off-the-shelf tool to be adaptively tuned based on the noise information extracted

from the data by updating it through τ = 1
Nd

∑Nd
j=1m

−1
wj +ζ−1. Using this elaborate

tool, τ can be properly adapted to real data variance.
Similar to the Gaussian noise case, an iterative algorithm, namely Algorithm 2,

is constructed based on the above calculations. For large-scale problems, similar
discussions of Algorithm 1 can be applied here. The only difference is on (3.28)
which is replaced by the following quantity

Tr
(
(τkC0(λk)1/2H∗WkHC0(λk)1/2 + Id)−1C0(λk)1/2H∗WkHC0(λk)1/2

)
.(3.51)

By our understanding, quantity (3.51) could be calculated in a similar way as (3.28).
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Algorithm 2 Variational approximation for the case of Laplace noise

1: Give an initial guess µu,λ0 (u0 and λ), µλ0 (α0 and β0), µw0 and τ .
Specify the tolerance tol and set k = 1.

2: repeat
3: Set k = k + 1
3: Calculate λk = Eν

λ
k−1 [λ], Wk = diag

(
Eνw [w1],Eνw [w2], · · · ,Eνw [wNd ]

)
and

τk = 1
Nd

∑Nd
j=1(mk−1

wj )−1 + (ζk−1)−1.
4: Calculate νuk by

C−1
k = H∗WkH + C0(λk)−1, uk = Ck

(
H∗Wkd+ C0(λk)−1u0

)
.

5: Calculate νλk and νwk by
νλk = Gamma(α̃0, β̃

k
0 ), νwk =

Nd∏
j=1

IG(mk
wj , ζk),

β̃k0 =β0 +
1

2
Eν

u
k

( K∑
j=1

(uj − u0j)
2α−1

j

)
, α̃0 = α0 +K/2,

mk
wj =

√
2

τkEν
u
k

[
(Hu− d)2

j

] , ζk =
2

τk
.

6: until max
(
‖uk − uk−1‖/‖uk‖, ‖λk − λk−1‖/‖λk‖, ‖τk − τk−1‖/‖τk‖

)
≤ tol

7: Return νuk (du)νλk (dλ)νwk (dw) as the solution.

4. Concrete numerical examples

4.1. Inverse source problem for Helmholtz equation. The inverse source
problem (ISP) studied in this section is borrowed from [6, 7, 14, 29], which deter-
mines the unknown current density function from measurements of the radiated
fields at multiple wavenumbers.

Consider the Helmholtz equation

∆v + κ2(1 + q(x))v = us in RNs ,(4.1)

where Ns = 1, 2 is the space dimension, κ is the wavenumber, v is the radiated scalar
field, and the source current density function us(x) is assumed to have a compact
support. For the one-dimensional case, let the radiated field v satisfy the absorbing
boundary condition: ∂rv = iκv. For the two-dimensional case, let the radiated field
v satisfy the Sommerfeld radiation condition: ∂rv−iκv = o(r−1/2) as r = |x| → ∞.
In addition, we employ an uniaxial perfect match layer (PML) technique to truncate
the whole plane into a bounded rectangular domain when Ns = 2. For details on
the uniaxial PML technique, see [5, 31] and references therein. Let D be the domain
with absorbing layers, and Ω be the physical domain without absorbing layers.

The ISP aims to determine the source function us from the boundary measure-
ments of the radiated field on the boundary ∂Ω for a series of wavenumbers. For
clarity, we summarize the problem as follows:

Available data: For 0 < κ1 < κ2 < · · · < κNf < ∞ (Nf ∈ N+), and

measurement points x1, x2, · · · , xNm ∈ ∂Ω, we denote

d† :=
{
v(xi, κj) | i = 1, 2, · · · , Nm, and j = 1, 2, · · · , Nf

}
.
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The available data set is d := d† + ε, where ε is the measurement error.
Unknown function: The source density function us needs to be determined.

Generally, we let Fκ be the forward operator that maps us to the solution v
when the wavenumber is κ , and let M be the measurement operator mapping v
to the available data. With these notations, the problem can be written abstractly
as

dκ = Hκ(us) + εκ,(4.2)

where Hκ :=M◦Fκ is the forward operator, and εκ is the random noise.
To avoid inverse crime, we use a fine mesh to generate data and a rough mesh

for the inversion. For the one-dimensional problem, meshes with mesh numbers of
1000 and 600 are used for the data generation and inversion, respectively. For the
two-dimensional problem, we will provide details in the sequel.

When the dimension of the parameters is relatively low, the proposed Algorithms
1 and 2 are similar to the one build for the finite-dimensional case. Detailed com-
parisons with the MCMC algorithm have been given in [32, 33], which reflect that
high accurate inferences can be generated. Hence we will not present a comparison
with the MCMC algorithm in the sequel for a relatively low dimensional case. For
the infinite-dimensional Bayesian method with hyper-parameters, the noncentered
algorithms are a more appropriate choice as illustrated in [1]. Using the proposed
general framework for the noncentered parameterize strategy and providing a com-
parison with the method proposed in [1] could be an interesting future research
problem.

It should be indicated that the finite element method is implemented by em-
ploying the open software FEniCS (Version 2018.1.0). For additional information
on FEniCS, see [38]. All programs were run on a personal computer with Intel(R)
Core(TM) i7-7700 at 3.60 GHz (CPU), 32 GB (memory), and Ubuntu 18.04.2 LTS
(OS).

4.2. One-dimensional ISP. For clarity, we list the specific choices for some pa-
rameters introduced in Section 3 as follows:

• The operator C0 is chosen to be (Id−∂xx)−1 and taken ε = 10−3. Here, the
Laplace operator is defined on Ω with the zero Dirichlet boundary condition.
• The wavenumber series are specified as κj = j with j = 1

2 , 1,
3
2 , 2, · · · , 50.

• Let domain Ω be an interval [0, 1], with ∂Ω = {0, 1}. And the available
data are assumed to be {v(xi, κj) | i = 1, 2, x1 = 0, x2 = 1, and j =
1, 2, · · · , 100}.
• The initial values required by Algorithm 1 are chosen as u0 = 0, α0 = α1 =

1, β0 = 10−1, β1 = 10−5. The initial values required by Algorithm 2 are
chosen as u0 = 0, α0 = 1, β0 = 10−1, τ = 10−7.

• The function q(x) in the Helmholtz equation is taken to be constant zero.
• The ground truth source function us is defined as

us(x) = 0.5 exp(−300(x− 0.4)2) + 0.5 exp(−300(x− 0.6)2).

According to the studies presented in [37], for this simple one-dimensional case,
we will not take a recursive strategy but combine instead all data together with
the forward operator denoted by H and defined by H = (Hκ1 , Hκ2 , · · · , Hκ100)T .
Based on these settings, we provide some basic theoretical properties of the prior
and posterior sampling functions as follows:
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• The prior probability measure for us is Gaussian with the covariance oper-
ator CK0 (λ) with λ ∈ R+. According to Theorem 12 illustrated in [18], we
know that if us is drawn from the prior measure, and then the following
holds

us ∈W t,2(Ω) for t <
1

2
, and us ∈ C0,t(Ω) for t <

1

2
,

where W t,2(Ω) is the usual Sobolev space with t times derivative belonging
to L2(Ω), and C0,t is the conventional Hölder space.
• For Algorithm 1, every posterior mean estimate uk has the following form:

uk = (τkH
∗H + C0(λk)−1)−1τkH

∗d.

Given that H maps a function in L2(Ω) to R200, we know that H∗d is at
least a function belonging to L2. Considering the specific choices of C0, we
have uk ∈W 2,2(Ω). For Algorithm 2, we can derive similar conclusions.

Remark 4.1. By employing the “Bayesianize-then-discretize” method, we can ana-
lyze the prior and posterior sampling functions rigorously. It is one of the advan-
tages of employing our proposed infinite-dimensional VBM.

Gaussian noise case: Let d† be the data without noise. Then, we construct
noisy data by setting d = d†+σξ with σ = 10−3 and ξ is a random variable sampled
from the standard normal distribution.
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Figure 1. The truth and estimated functions when the data are
polluted by Gaussian noise. (a): the estimated function obtained
by Algorithm 1 is denoted by the blue solid line, and the truth
is denoted by the red dashed line; (b): the estimated function
obtained by Algorithm 2 is denoted by the blue solid line, and
the truth is denoted by the red dashed line. In both plots the
shaded areas represent the pointwise mean plus and minus two
standard deviations from the mean (corresponding roughly to the
95% confidence region).

In Figure 1, we depict the truth and estimated sources obtained by Algorithms
1 and 2, respectively. Visually, both algorithms provide reasonable results. In ad-
dition, we demarcate the 95% confidence region by the shaded area to display the
uncertainties estimated by these two algorithms. The truth falls entirely into the
confidence region given by Algorithm 1, and the truth lies mostly within the confi-
dence region given by Algorithm 2. This may indicate that for the Gaussian noise
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Figure 2. Relative errors of the estimated means in the L∞-norm
of Algorithms 1 and 2.

case, Algorithm 1 can provide a more reliable estimation, which is in accordance
with our assumptions.

To give a more elaborate comparison, we present the relative errors of the esti-
mated means in the L∞-norm of the two algorithms in Figure 2. The relative error
of the conditional mean estimate used here is defined as follows

relative error = ‖u− us‖L∞/‖us‖L∞ ,

where u is the estimated function generated by our algorithm and us is the true
source function. The blue solid line and orange dashed line denote the relative errors
obtained by Algorithms 1 and 2, respectively. Obviously, these two algorithms can
provide comparable results after convergence. However, Algorithm 1 converges
much faster than Algorithm 2, which is reasonable because the weight parameters
used for detecting impulsive noises may reduce the convergence speed.

The parameter τ given by Algorithm 1 provides an estimate of the noise variance
through σ =

√
τ−1. The true value of σ is 0.001 in our numerical example. To

generate a repeatable results, we specify the random seeds in numpy to some certain
numbers by numpy.random.seed(i) with i specified as some designated integers. The
estimated σ is equal to 0.000953, 0.001101, 0.001022, 0.001003, and 0.001041 when
the random seeds are specified as 1, 2, 3, 4, and 5, respectively, thereby illustrating
the effectiveness of our proposed algorithm.

Laplace noise case: As for the Gaussian noise case, let d† be the noise-free
measurement. The noisy data are generated as follows:

di =

{
d†i , with probability 1− r,

d†i + εξ, with probability r,

where ξ follows the uniform distribution U [−1, 1], and (ε, r) controls the noise
pattern, r is the corruption percentage, and ε is the corruption magnitude. In the
following, we take r = 0.5 and ε = 0.1. We plot the clean and noisy data in Figure
3, which illustrates that the clean data are heavily polluted.

In Figure 4, we show the estimated functions obtained by Algorithms 1 and 2
in the left and right panels, respectively. Obviously, based on the Gaussian noise
assumption, Algorithm 1 cannot provide a reasonable estimate, and the estimated
confidence region may be unreliable. However, based on the Laplace noise assump-
tion, Algorithm 2 provides an accurate estimate. Given that Algorithm 1 fails to



VARIATIONAL INFERENCE FOR FUNCTIONS 21

0 25 50 75 100 125 150 175 200

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3
Noisy data

Clean data

M
ag

n
it

u
d
e

Measurement points

Clean data and data with implusive noise

Figure 3. Clean and noisy data. The orange solid line represents
the clean data, and the blue dashed line represents the data with
impulsive noise.

Estimation

Truth

Estimation

Truth

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Estimation obtained by Algorithm 1(a) Estimation obtained by Algorithm 2(b)

Figure 4. The truth and estimated functions when the data are
polluted by impulsive noise. (a): The estimated function obtained
by Algorithm 1 is denoted by the blue solid line, and the truth
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Figure 5. (a): Relative errors in the L∞-norm obtained by Al-
gorithm 2; (b): Weight, noisy, and clean data at the data points
with impulsive noise (only points with impulsive noise, not all
points).
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converge to a reasonable estimation, we only provide the relative errors in the L∞-
norm of Algorithm 2 on the left panel of Figure 5. From these relative errors, we
can find that Algorithm 2 rapidly converges even if the data are heavily polluted
by noise. The right panel of Figure 5 plots the noisy and clean data points at those
data points where noises are added. We plot the weight vector at the corresponding
data points. From this figure, we can clearly see that the elements of the weight
vector are all with small values, which is in accordance with our theory. The weight
vectors at the noisy data points are adjusted to small values during the iteration.
This reveals the outlier removal mechanism of Algorithm 2.

4.3. Two-dimensional ISP. In this subsection, we solve the two-dimensional ISP.
Directly computing the covariance operator for the two-dimensional problem is dif-
ficult due to the large memory requirements and computational inefficiency. Here,
we employ a simple method that employs a rough mesh approximation to compute
the covariance. The source function us can be expanded under basis functions as
follows:

us(x) =

∞∑
i=1

usiϕi(x).(4.3)

Given that these basis functions can be taken as the finite element basis, the source
function can be approximated as

us(x) ≈
Nt∑
i=1

usiϕi(x).(4.4)

The covariances involved in Algorithms 1 and 2 are all computed by taking a small
Nt in (4.4). For many applications such as medical imaging, we may compute the
operator H∗H (not depending on the source function) with a small Nt before the
inversion. To evaluate accurately as the wavenumber increases, we compute the
mean function by gradient descent with a fine mesh discrete PDE solver and then
project the source function to the rough mesh for computing variables relying on
the covariance operators.

Unlike the one-dimensional case, we employ the sequential method used in [6]
that provides a more stable recovery for multi-frequency inverse problems. Specif-
ically speaking, for 0 = κ0 < κ1 < · · · < κNf < ∞ and each problem dκi =

Hκi(us)+εκi(i = 1, · · · , Nf ), we assume the prior measure is µu,λ0i = N (ūi−1, CK0 (λ))
with ūi−1 denoting the conditional mean estimate when the wavenumber is κi−1 (ū0

is assumed to be some initial guess u0
s). We denote ‖·‖CK0 (λ) as the Cameron-Martin

norm corresponding to the Gaussian measure N (0, CK0 (λ)). For the Gaussian noise
case with i = 1, 2, · · · , Nf , we have the following Bayesian formula

dµi

dµ0i
(u, λ, τ) ∝ exp

(
− τ

2
‖Hκi(u)− dκi‖2

)
,(4.5)

where µ0i(du, dλ, dτ) = µu,λ0i (du)µλ0 (dλ)µτ0(dτ) with µλ0 , µ
τ
0 are defined as in Sub-

section 3.1 and µi is the posterior measure when wavenumber is equal to κi. The
posterior measure µκNf will be employed to quantify the uncertainties of the final
estimate. For a similar sequential formulation as above, we refer to Subsection 6.4.1
in [37]. It is not hard to formulate a sequential approach for the Laplace noise case.
The details are omitted for content conciseness. The iteration details are presented
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in Algorithm 3. In the following, when we say that Algorithm 1 is employed, we

Algorithm 3 VBM for two-dimensional ISP with multi-frequencies

1: Give an initial guess of the unknown source us, denoted by u0
s.

2: For i from 1 to Nf (iterate from low wavenumber to high wavenumber)

3: Specify the prior measure of us as µu,λ0i = N (ui−1
s , CK0 (λ)). Running itera-

tions of Algorithms 1 or 2 for k until some stopping criterion is satisfied.
For k = 1, rough approximate of H and source is employed; For k > 1,

the
gradient descent method is employed to solve

uks := argmin
us

τk
2
‖Hκi(us)− dκi‖2 + ‖us − ui−1

s ‖2CK0 (λk),

which generate a conditional mean estimate on a fine mesh. In all of the
iterations, rough approximate Hessian has been used to update distribu-

tions
of hyper-parameters λ, τ (Algorithm 1) or w (Algorithm 2).

5: End for
6: Return the approximate probability measure ν.

actually means that Algorithm 3 is employed in combination with Algorithm 1.
Similarly, when we say that Algorithm 2 is employed, we mean that Algorithm 3 is
employed in combination with Algorithm 2.

Remark 4.2. It should be pointed out that the simple “rough mesh approximation”
method employed in Algorithm 3 is only applicable to problems with a simple
form (e.g., a localized source) on simple geometry. And this method can be hardly
employed for dealing with more complex problems in three-dimension or even in
two-dimension where a large Nt is needed (e.g., high-resolution recovery with data
of high wavenumbers). Our aim is to give an illustration of the proposed method.
For more advanced techniques designed for large-scale problems, [9] can be referred
to, which provides a scalable discretize method for the infinite-dimensional Bayesian
approach with linear approximations. The fully nonlinear case has been investigated
by using a stochastic Newton MCMC method in [42]. Then, Metropolize-then-
discretize and discretize-then-Metropolize have been analyzed carefully for large-
scale problems [11]. In 2019, an approximate sampling method based on some
randomized MAP estimates has been investigated in detail [49]. All these studies
provide valuable ideas for designing algorithms of large-scale inverse problems. For
more studies in this direction, we refer to [10, 27, 39].

Remark 4.3. In Algorithm 3, we use approximations on a rough mesh for the first
iteration of every wavenumber, which may provide an initial inaccurate adjustment
for the parameters employed in Algorithms 1 and 2. In our numerical experiments,
we only take three iterations for the third step to obtain an estimation.

Remark 4.4. To employ sampling-type methods such as the MCMC algorithm, re-
searchers often parameterize the unknown source function carefully to reduce the
dimension, e.g., assume that the sources are point sources, then parameterize the
source function by numbers, locations, and amplitudes [21]. For employing MCMC
algorithm [15, 22] in our setting, the computational complexity is unacceptable for
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two reasons: Calculation with many wavenumbers are needed for multi-frequency
problems and a large number of samples need to be generated for each wavenum-
ber; For each problem (4.5), we did not assume any parametric form of the source
function which makes the parameters of source equal to the dimension of the dis-
cretization (much more parameters than the usually used parametric form). How-
ever, the proposed Algorithm 3 only takes several times of computational time
compared with the classical iterative algorithms [6, 7, 28] to provide estimations of
uncertainties.

Before going further, we list the specific choices for some parameters introduced
in Section 3 as follows:

• The operator C0 is chosen as (−∆ + Id)−2. Here, the Laplace operator is
defined on Ω with the zero Dirichlet boundary condition.
• Take the discrete truncate level Nt = 1681 and the number of measurement

points Nm = 200. The basis functions {ϕj}∞j=1 are specified as second-order
finite element basis functions.
• For Algorithm 3 combined with Algorithm 1, the wavenumber series are

specified as κj = j with j = 1, 3, 5, · · · , 35. For Algorithm 3 combined
with Algorithm 2, the wavenumber series are specified as κj = j with j =
1, 2, 3, · · · , 35.
• The scatterer function q(x) is defined as follows:

q(x1, x2) =0.3(4− 3x1)2e(−9(x1−1)2−9(x2−2/3)2)

−
(
0.6(x1 − 1)− 9(x1 − 1)3 − 35(x2 − 1)5

)
e(−9(x1−1)2−9(x2−1)2)

− 0.03e−9(x1−2/3)2−9(x2−1)2 ,

which is the function used in Subsection 2.6 in [6].
• The true source function us is defined as follows:

us(x) = 0.5e−100((x1−0.7)2+(x2−1)2) + 0.3e−100((x1−1.3)2+(x2−1)2).

• To avoid the inverse crime, a mesh with mesh number 125000 is employed
for generating the data. For the inversion, two types of meshes are em-
ployed: a mesh with mesh number 28800 is employed when the wavenum-
bers are below 20, and a mesh with mesh number 41472 is employed when
the wavenumbers are greater than 20.

The case of Gaussian noise: Let d† be the data without noise. The synthetic

noisy data d are generated by dj = d† + σξj , where σ = max1≤j≤Nm{|d
†
j |}Lnoise

with Lnoise denoting the relative noise level and ξj denoting the standard normal
random variables. In our experiments, we take Lnoise = 0.05, that is 5% of noises
are added.

In Figure 6, we show the inference results obtained by Algorithm 1. We show
the true source function on the top left and the posterior mean estimate on the top
right. Visually, the estimate is similar to the truth, and only some small fluctuations
in the background are observed. In the bottom left, we show the relative errors of
the estimated means obtained by Algorithm 1 as the wavenumber increases, which
is in accordance with the results obtained by classical iterative approaches. In the
bottom right, we show the estimated standard deviation obtained by Algorithm
1 that quantifies the uncertainties of the posterior mean estimation. We see that
the uncertainties are small on the boundary where data are collected. The areas
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Figure 6. (a): The true source function; (b): The posterior mean
estimate obtained by Algorithm 1; (c): Relative error of the esti-
mated means in L∞-norm obtained by Algorithm 1; (d): Estimated
standard deviation obtained by Algorithm 1.

with the largest uncertainties are in the middle, which is a reasonable result since
that area can be recovered only when data generated by high wavenumbers are
employed.

The case of Laplace noise: For the Laplace noise case, let d† be the noise-free
measurement. The noisy data are generated as

di =

{
d†i , with probability 1− r,

d†i + εξ, with probability r,

where ξ follows the uniform distribution U [−1, 1], (ε, r) controls the noise pat-
tern, r is the corruption percentage, and ε is the corruption magnitude defined by

ε = max1≤j≤Nm{|d
†
j |}Lnoise with Lnoise denoting the relative noise level. In our

experiments, we take Lnoise = 1 and r = 0.2 or 0.5.
The noisy and clean data when the wavenumber is 34 and r = 0.5 are shown in

Figure 7. Obviously, the data are heavily contaminated by noise. Figure 8 shows
the true source function and the posterior mean estimates generated by Algorithm
2 when r = 0.2 and r = 0.5 on the left, middle, and right panels, respectively. No
essential differences can be observed between the posterior mean estimates when
r = 0.2 and r = 0.5. However, the Bayes’ method not only provides point estimates
(e.g., posterior mean estimates) but also delivers the reliability of the obtained
estimations. Figure 9 shows the standard deviations provided by Algorithm 2
when r = 0.2 and r = 0.5 on the left and right panels, respectively. The standard
deviations are smaller when r = 0.2, which is reasonable given that 80% of the
data are clean and only 50% of the data are clean when r = 0.5. Figure 10 shows
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Figure 7. Clean and noisy data obtained when the wavenumber
is 34. The blue solid line represents the clean data, and the dashed
orange line represents the noisy data with r = 0.5.
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Figure 8. (a): The true source function; (b): The posterior mean
estimate provided by Algorithm 2 from noisy data with r = 0.2
(20% of data are polluted); (c): The posterior mean estimate pro-
vided by Algorithm 2 from noisy data with r = 0.5 (50% of data
are polluted).

(a) Standard deviation when r=0.2 (b)Standard deviation when r=0.5

Figure 9. Standard deviation of the numerical solution obtained
by Algorithm 3 combined with Algorithm 2. (a): Estimated stan-
dard deviation when r = 0.2 (20% of data are polluted); (b): Es-
timated standard deviation when r = 0.5 (50% of data are pol-
luted).

the relative errors in L∞-norm obtained by Algorithm 2 with r = 0.2, 0.5 on the
left and right panels, respectively. Under both settings, the relative errors of the
posterior mean estimates rapidly decrease.
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Figure 10. Relative errors of the estimated means in L∞-norm
of Algorithm 3 combined with Algorithm 2. (a): Relative errors
for r = 0.2; (b): Relative errors for r = 0.5.

Remark 4.5. The wavenumber series in the present paper are not chosen carefully
in an optimal way. There are some studies focused on the strategies for selecting
appropriate wavenumbers to give an accurate estimate under the framework of
regularization methods for geophysical inverse problems [41]. Here, we choose more
wavenumbers for the Laplace noise model based on a simple intuitive idea. More
data are required when more hyper-parameters need to be inferred (The Laplace
noise model has more parameters than the Gaussian noise model).

5. Conclusion

In this paper, we have generalized the finite-dimensional mean-field approxi-
mate based variational Bayes’ method (VBM) to infinite-dimensional space, which
provides a mathematical foundation for applying VBM to the inverse problems of
PDEs. A general theory for the existence of minimizers has been established, and
by introducing the concept of reference probability measure, the mean-field approx-
imate theory has been constructed for functions. The established general theory is
then applied to abstract linear inverse problems with Gaussian and Laplace noise
assumptions. Numerical examples for the inverse source problems of Helmholtz
equations are investigated in details to highlight the effectiveness of the proposed
theory and algorithms.

There are numerous interesting problems that are worthy of being further inves-
tigated. Introducing a more reasonable setting of the intrinsic dimension will be
meaningful. The recently published paper [13] may provide some promising ideas.
For the infinite-dimensional Bayesian method with hyper-parameters, noncentered
parameterization [1] could be a more appropriate choice. Using the proposed the-
ory under the noncentered parameterization is a problem worthy of being further
investigated.

6. Appendix

In this supplementary material, we provide all of the proof details for the lemmas
and theorems presented in the main text.
Proof of Lemma 2
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Proof. Let {νn}∞n=1 = {
∏M
i=1 ν

i
n}∞n=1 be a sequence of measures in C that converges

weakly to a probability measure ν∗. We want to show that ν∗ ∈ C. Define

νi∗ :=

∫
∏
j 6=iHj

dν∗, for i = 1, 2, · · · ,M.(6.1)

Obviously, each νi∗ is a probability measure. Let fi be some bounded continuous
function defined on Hi with i = 1, 2, · · · ,M . Based on the definition of weak
convergence, we obtain∫

∏M
j=1Hj

fidνn →
∫
Hi
fidν

i
∗, as n→∞.(6.2)

It should be noted that the left hand side of (6.2) is equal to∫
Hi
fidν

i
n,(6.3)

and we find that each νin converges weakly to νi∗. Therefore, we find that νi∗ belongs

to Ai. Let f be a bounded continuous function defined on
∏M
j=1Hj . Then, it is

a bounded continuous function for each variable. Based on the definition of weak
convergence, we find that∫

∏M
j=1Hj

fdνn →
∫
∏M
j=1Hj

fdν∗,(6.4)

and ∫
∏M
j=1Hj

fdνn =

∫
∏M
j=1Hj

fdν1
n · · · dνMn →

∫
∏M
j=1Hj

fdν1
∗ · · · dνM∗ ,(6.5)

when n → ∞. Relying on the arbitrariness of f , we conclude that ν∗ =
∏M
j=1 ν

j
∗,

which completes the proof. �

Proof of Theorem 5

Proof. From the proof of Lemma 2, we know that νjn converges weakly to νj∗ for

every j = 1, 2, · · · ,M . According to νjn � νj∗ for j = 1, 2, · · · ,M , we have

DKL(νn||ν∗) =

∫
dνn
dν∗

log

(
dνn
dν∗

)
dν∗ =

M∑
j=1

∫
log

(
dνjn

dνj∗

)
dνjn

=

M∑
j=1

DKL(νjn||νj∗).

(6.6)

Using Lemma 2.4 proved in [44] and Lemma 22 shown in [18], we find that νn
converges to ν∗ in the total-variation norm. Combined with the above equality
(6.6), the proof is completed. �

Proof of Theorem 9

Proof. For a fixed j, let B ∈ M(Hj), and νjn ∈ Aj be a sequence that converges

weakly to νj∗ and

dνjn

dµjr
=

1

Zjnr
exp(−Φnrj (xj)).(6.7)
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Assuming that µjr(B) = 0 and by assumption (16) in the main text, we have

νjn(B) =

∫
B

1

Zjnr
exp(−Φnrj (xj))µ

j
r(dxj) = 0.

Define

Bm = {x ∈ B |dist(x,Bc) ≥ 1/m},(6.8)

and let fm > 0 be a positive continuous function that satisfies

fm(x) =

{
1, x ∈ Bm,
0, x ∈ Bc.

Then, we have

νj∗(Bm) ≤
∫
Hj
fmdν

j
∗ = lim

n→∞

∫
Hj
fmdν

j
n ≤ lim

n→∞
νjn(B) = 0,(6.9)

and

νj∗(B) = sup
m
νj∗(Bm) = 0,(6.10)

based on the inner regular property of finite Borel measures. Therefore, there exists
a constant and a continuous function denoted by Zjr and Φrj(·) such that

dνj∗

dµjr
(xj) =

1

Zjr
exp

(
− Φrj(xj)

)
.(6.11)

To complete the proof, we should verify the almost surely positiveness of the right-
hand side of the above equality. Assume that 1

Zjr
exp

(
− Φrj(xj)

)
= 0 on a set

B ⊂ Hj with µjr(B) > 0. If B ⊂ Hj\ supN T
j
N , then it holds that µjr(B) = 0 by our

assumption. Therefore, B ∩ supN T
j
N is not empty, and there exists a constant Ñ

such that for all N ≥ Ñ , B ∩ T jN is not empty. Denote BN = B ∩ T jN , and then for
a sufficiently large N , we have µjr(BN ) ≥ 1

2µ
j
r(B). Let

BmN = {x ∈ BN |dist(x,BcN ) ≥ 1/m},
and define a function gm similar to fm with Bm replaced by BmN . Given that
µjr(BN ) = supm µ

j
r(B

m
N ), for a large enough m, we find that

µjr(B
m
N ) ≥ 1

2
µjr(BN ) ≥ 1

4
µjr(B) > 0.

By the definition of weak convergence, we have

lim
n→∞

∫
Hj
gm(x)

1

Zjnr
exp

(
− Φnrj (x)

)
dµjr =

∫
Hj
gm(x)

1

Zjr
exp

(
− Φrj(x)

)
dµjr.

(6.12)

The right hand side of the above equation is equal to 0, but for a large enough m,
the left hand side is positive and the lower bound is

1

4
exp(−CN )µjr(B).(6.13)

This is a contradiction, and thereby the closedness of Aj(j = 1, · · · ,M) have been
proved. Combining the obtained results with the statements in Theorem 3, we
obviously obtain the existence of a solution which completes the proof. �

Proof of Theorem 10
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Proof. Here, we focus on the deduction of formula (21) presented in the main text.
By inserting the prior probability measure into the Kullback-Leibler divergence
between ν and µ, for each i (i = 1, 2, · · · ,M) we find that

DKL(ν||µ) =

∫
H

log

(
dν

dµr

)
− log

(
dµ0

dµr

)
− log

(
dµ

dµ0

)
dν

=

∫
H

(
−

M∑
j=1

Φrj(xj) + Φ0(x) + Φ(x)

)
dν + Const

=

∫
Hi

[ ∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)∏
j 6=i

νj(dxj)

]
νi(dxi)

−
∫
Hi

Φri (xi)ν
i(dxi) + terms not related to Φi(xi).

For i = 1, 2, · · · ,M , let ν̃i be a probability measure defined as follows:

dν̃i

dµir
∝ exp

(
−
∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)∏
j 6=i

νj(dxj)

)
.(6.14)

By assumption (19) and (20) shown in the main text, we know that the right-hand
side of (6.14) is positive almost surely. Then, we easily know that the measures ν̃i

and µir are equivalent with each other. Therefore, we obtain

DKL(ν||µ) = −
∫
Hi

log

(
dν̃i

dµir

)
dνi +

∫
Hi

log

(
dνi

dµir

)
dνi + Const

= DKL(νi||ν̃i) + terms not related to νi.

(6.15)

Obviously, in order to attain the infimum of the Kullback-Leibler divergence, we
should take νi = ν̃i. Comparing formula (6.14) with definition (14) in the main
text, we notice that the condition νi = ν̃i implies the following equality:

Φri (xi) =

∫
∏
j 6=iHj

(
Φ0(x) + Φ(x)

)∏
j 6=i

νj(dxj) + Const,

which completes the proof. �

Verify conditions in Theorem 10 for the linear inverse problem intro-
duced in Subsection 3.1

At last, we provide a detailed verification of the conditions in Theorem 10 for
the example employed in Subsection 3.1. As stated in Remark 14, we consider
λ′ = log λ and τ ′ = log τ as hyper-parameters. For a sufficiently small ε > 0,
taking au(ε, u) := ‖u‖2Hu , aλ′(ε, λ

′) := max
{
− λ′, exp(ε exp(λ′))

}
and aτ ′(ε, τ

′) :=

max
{
− τ ′, exp(ε exp(τ ′))

}
, then we try to verify conditions (19) and (20). In the

following, the notation C is a constant that may be different from line to line. In
this example, we take x1 = u, x2 = λ′, and x3 = τ ′. As shown in the main text, we
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have

Φ0(u, λ′, τ ′) =
1

2

K∑
j=1

(uj − u0j)
2(eλ

′
− 1)α−1

j −
K

2
λ′,

Φ(u, λ′, τ ′) =
eτ
′

2
‖Hu− d‖2 − Nd

2
τ ′.

With these preparations, we firstly verify

T 1 := sup
u∈TuN

sup
νλ
′
∈Aλ′

ντ
′
∈Aτ′

∫
R

∫
R

(Φ0 + Φ)1A(u, λ′, τ ′)νλ
′
(dλ′)ντ

′
(dτ ′) <∞.(6.16)

Taking the specific expressions of Φ0 and Φ into (6.16), we have

T 1 ≤ C sup
u∈TuN

sup
νλ
′
∈Aλ′

ντ
′
∈Aτ′

(
T 11 + T 12 + T 13 + T 14

)
,

(6.17)

where

T 11 =

∫
R+

∫
R

1

2

K∑
j=1

(uj − u0j)
2(eλ

′
− 1)α−1

j e−Φr
τ′ (τ

′)e−Φr
λ′ (λ

′)µτ
′

r (dτ ′)µλ
′

r (dλ′),

T 12 =

∫
R−
−K

2
λ′e−Φr

λ′ (λ
′)µλ

′

r (dλ′),

T 13 =

∫
R

eτ
′

2
‖Hu− d‖2e−Φr

τ′ (τ
′)µτ

′

r (dτ ′),

T 14 =

∫
R−
−Nd

2
τ ′e−Φr

τ′ (τ
′)µτ

′

r (dτ ′).

Because the techniques used for estimating these terms are similar, we provide the
estimates of T 13 as an example and omit the details for other terms. Because H is
assumed to be a linear bounded operator, we have

T 13 ≤C
∫
R

(eεe
τ′

+ 1)e−Φr
τ′ (τ

′)µτ
′

r (dτ ′)

≤C
∫
R

max(1, aτ ′(ε, τ
′))e−Φr

τ′ (τ
′)µτ

′

r (dτ ′) <∞.
(6.18)

Next, we need to estimate

T 2 := sup
λ′∈Tλ′N

sup
νu∈Au
ντ
′
∈Aτ′

∫
Hu

∫
R

(Φ0 + Φ)1A(u, λ′, τ ′)ντ
′
(dτ ′)νu(du) <∞.(6.19)

Taking the specific expressions of Φ0 and Φ into (6.19), we have

T 2 ≤ C sup
λ′∈Tλ′N

sup
νu∈Au
ντ
′
∈Aτ′

(
T 21 + T 22 + T 23 + T 24

)
,(6.20)
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where

T 21 = eλ
′
∫
Hu

1

2

K∑
j=1

(uj − u0j)
2α−1

j e−Φru(u)µur (du),

T 22 =
K

2
|λ′|,

T 23 =

∫
Hu
‖Hu− d‖2e−Φru(u)µur (du)

∫
R

1

2
eτ
′
e−Φr

τ′ (τ
′)µτ

′

r (dτ ′),

T 24 =
Nd
2

∫
R

|τ ′|e−Φr
τ′ (τ

′)µτ
′

r (dτ ′).

Remembering that the operator H is bounded and the specific forms of aτ ′(ε, τ
′)

and au(ε, u), we can obtain that the above four terms are all bounded. The following
inequality

T 3 := sup
τ ′∈T τ′N

sup
νu∈Au
νλ
′
∈Aλ′

∫
Hu

∫
R
(Φ0 + Φ)1A(u, λ′, τ ′)νλ

′
(dλ′)νu(du) <∞(6.21)

can be proved similarly, we omit the details. With the above calculations, we
verified conditions (19) with i = 1, 2, 3. Now, we turn to verify conditions (20). For
conditions (20) with i = 2, 3, the inequalities could be verified similarly as for the
case of i = 1. Hence, we only provide details when i = 1 that is to prove

T 4 := sup
νλ
′
∈Aλ′

ντ
′
∈Aτ′

∫
Hu

exp

(
−
∫
R2

(Φ0 + Φ)1Acν
λ′(dλ′)ντ

′
(dτ ′)

)
max(1, ‖u‖2Hu)µ

u
r (du) <∞.

Through a direct calculation, we find that

−
∫
R2

(Φ0 + Φ)1Acν
λ′(dλ′)ντ

′
(dτ ′) ≤1

2

K∑
j=1

α−1
j (uj − u0j)

2

∫
R−

(1− eλ
′
)νλ

′
(dλ′)

+
K

2

∫
R
|λ′|e−Φr

λ′ (λ
′)µλ

′

r (dλ′)

+
Nd
2

∫
R
|τ ′|e−Φr

τ′ (τ
′)µτ

′

r (dτ ′).

Then we have

T 4 ≤ C
∫
Hu

exp

(
1

2

K∑
j=1

α−1
j (uj − u0j)

2

∫
R−

(1− eλ
′
)νλ

′
(dλ′)

)
max(1, ‖u‖2Hu)µur (du).

Considering
∫
R−(1 − eλ′)νλ′(dλ′) < 1 and the definition of µur , we know that the

right hand side of the above inequality is bounded which completes the proof.
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