
ar
X

iv
:2

00
2.

12
02

4v
1

 [
st

at
.C

O
]

 2
7

Fe
b

20
20

Computing Shapley Effects for Sensitivity Analysis∗

Elmar Plischke† , Giovanni Rabitti‡ , and Emanuele Borgonovo§

Abstract. Shapley effects are attracting increasing attention as sensitivity measures. When the value function
is the conditional variance, they account for the individual and higher order effects of a model input.
They are also well defined under model input dependence. However, one of the issues associated with
their use is computational cost. We present a new algorithm that offers major improvements for the
computation of Shapley effects, reducing computational burden by several orders of magnitude (from
k! · k to 2k, where k is the number of inputs) with respect to currently available implementations.
The algorithm works in the presence of input dependencies. The algorithm also makes it possible to
estimate all generalized (Shapley-Owen) effects for interactions.

Key words. Shapley effect, Möbius inverse, computer experiments, global sensitivity, pick and freeze sampling

1. Introduction. Computer experiments are widely adopted in modern scientific investi-
gations to simulate natural, social and physical phenomena. The increase in computing power
allows analysts to develop simulators of increasing complexity and analytical approaches fail in
delivering insights about the simulator behavior. Thus, the input-output relationship is often
considered as a black-box.
Sensitivity analysis allows us to shed light on the structure of a black-box model, providing
the modelers with insights useful in building and interpreting simulator results [34]. A major
concern of computer modelers is the quantification of the relative importance of the inputs of
the codes. When the model inputs are uncertain, this task is typically performed using global
sensitivity analysis methods. One can find alternative global sensitivity analysis approaches,
including variance-based [34], regression-based [37] and moment-independent sensitivity meth-
ods [3].
In the computer experiments literature, Shapley values are enjoying an increasing popularity
(see, e.g., [2, 14, 27, 29] for recent contributions to theory and applications). Shapley values
originate from game theory [35] and are based on the allocation of the total value of a game
to the contribution of each player. In the context of sensitivity analysis, Shapley values have
been proposed for the first time in [23] and called Shapley effects. The intuition is to regard
model inputs as players and the conditional variance they explain as the value function. One
main reason for the interest towards Shapley effects is that they remain interpretable also in
the presence of dependent inputs [36, 24, 14] or domain irregularities such as holes [24]. In
such cases, these importance indices never become negative [24].
However, the computation of Shapley effects can be very demanding. A seminal proposal
can be found in [36]. The work suggests a fourfold algorithm: Looping over all permuta-
tions (or a randomly selected subset [8]), looping over the path through a hypercube of index
subsets induced by that permutation, looping over an outer and inner loop for obtaining con-

∗Version of February 28, 2020.
†Clausthal University of Technology, Clausthal-Zellerfeld, Germany (elmar.plischke@tu-clausthal.de).
‡Bocconi University, Milan, Italy (giovanni.rabitti@unibocconi.it)
§Bocconi University, Milan, Italy (emanuele.borgonovo@unibocconi.it)

1

http://arxiv.org/abs/2002.12024v1
mailto:elmar.plischke@tu-clausthal.de
mailto:giovanni.rabitti@unibocconi.it
mailto:emanuele.borgonovo@unibocconi.it

2 PLISCHKE, RABITTI, BORGONOVO

ditional variances, switching inputs on and off along that path to compute the sum of marginal
contributions. In [7] the algorithm is improved by using pick’n’freeze sampling and ignoring
high-order terms in presence of block-independent group of variables. In [6] an algorithm based
on nearest neighbor estimators of the marginal contributions is proposed.
In this paper, we offer an alternative algorithm. We proceed in two steps. First, we examine a
series of refinements of the current implementation of [36] with the goal of achieving memory
and time savings. Then, we change the logic for computing Shapley effects by switching
from permutations of marginal effects to using Möbius inverses. This restructuring decreases
computational cost from k! ·k to 2k evaluations of a basic sample block, where k is the number
of model inputs.
We challenge the algorithm through several experiments, comparing its performance against
that of previously available algorithms. The experiments show that the proposed implementa-
tion leads to the following advantages. The algorithm reduces computational burden notably
(is memory and time-wise faster than the currently published predecessors), leads to unbiased
estimates, allows the possibility of computing both Shapley effects and Shapley-Owen interac-
tion effects. These latter indices are a generalization of Shapley effects introduced in [28] to
study the synergistic/antagonistic nature of interactions among inputs. We remark that the
algorithms of [36, 6] to compute Shapley effects don’t allow one to estimate the Shapley-Owen
interaction effects. In fact, these two algorithms are based on the permutation representation
of Shapley effects, which is not available at the moment for the Shapley-Owen effects.
This paper is structured as follows. Section 2 presents the concept of Shapley value from game
theory. Section 3 presents the Shapley effects for global sensitivity analysis. Section 4 presents
an improvement of the algorithm of [36]. The new Möbius inverse-based algorithm is presented
in Section 5. Section 6 contains the numerical experiments.

2. Shapley Value. The Shapley value [35] is a concept from cooperative game theory.
One considers a game with k players. The Shapley value is then the quantity that indicates
the worth of forming coalitions and the expected payoff for each player. Generally, one defines
the coalition worth function val : 2k → R≥0 with val(∅) = 0, attributing a sum of payoffs to a
group of players. Here 2k is the powerset (set of subsets) of k = {1, 2, . . . , k}.
Definition 1. Given a coalition worth function val, the marginal contribution of player i joining

coalition α is mar(α, i) = val(α ∪ {i}) − val(α).
The Shapley value is then defined by

Φi(val) =
∑

α:i 6∈α

|α|!(k − |α| − 1)!

k!
(val(α ∪ {i}) − val(α))

=
1

k

∑

α:i 6∈α

(

k − 1

|α|

)−1

mar(α, i).

(2.1)

Proposition 2. The Shapley value of player i is characterized by the following four axioms,

• Pareto-efficiency:
∑k

i=1
Φi(val) = val(k)

• Symmetry: If val(α ∪ {i}) = val(α ∪ {j}) for all subsets α containing neither i nor j then

Φi(val) = Φj(val)
• Linearity: Φi(val1 +val2) = Φi(val1) + Φi(val2)

COMPUTING SHAPLEY EFFECTS 3

• Null-player: If for all α, mar(α, i) = 0 holds then Φi(val) = 0.

One can interpret the Shapley value either as payoff from joining a coalition or from leav-
ing the anti-coalition. An alternative route to computation is offered by the formula of
[10, 23], for which one needs to calculate the Möbius inverses mob(α) of the value func-
tions val(α). These are defined implicitly by val(α) =

∑

β⊆α mob(β) and therefore mob(α) =
∑

β⊆α(−1)|α|+|β| val(β) [21, Chap. 8], [30]. Then

(2.2) Φi(val) =
∑

α:i∈α

mob(α)

|α| .

Hence each Möbius inverse is weighted by the number of members in the coalition: Player i
gets full credit for the games won by one-self, half credit for those were the player teamed up
in pairs, etc.

3. Shapley Effects for Sensitivity Analysis. In sensitivity analysis, one usually asks the
question of the extent with which an uncertain input influences the outcome of a complex
simulation code [4]. Hence, the role of the players is taken by the inputs and k is the input
dimension of the simulation model g : Rk → R.
For sensitivity analysis, the coalition-worth function is taken to be the variance of conditional
expectation of Y given Xi or the ratio between this quantity and the unconditional variance
of Y , val(α) = V[Y]−1V[E[Y |Xα]] [23, 24] which then accounts for a grand total of one.
For these choices of value functions, the term Shapley effects has been coined. The value
functions are then equal to the subset importance of [18]. Under input independence, the
Möbius inverses coincide with the variance-based first order and higher order Sobol’ effects,
e.g. mob({i, j}) = val({i, j})− (val({i})+ val({j})) is the contribution to the output variance
stemming from the pairwise interaction/second order effect of inputs i and j. Also under
input independence, as first order effects Si satisfy Si = val({i}) = mob({i}) and total effects
satisfy Ti =

∑

α:i∈α mob(α) we have Si ≤ Φi(val) ≤ Ti. So the need for computing Shapley
effects arises only if the gap between first order and total effects is large or dependences in the
input are present. As a consequence from (2.2) and Pareto-efficiency we observe the following
results.

Proposition 3. Under input independence, the Shapley effect is bounded by the mean of the main

effect and the total effect, Φi ≤ 1

2
(Si+Ti). If equality holds then there are no interaction terms

of order larger than two involving input i. If the sum of all main and total effects equals 2 then

only pairwise interactions may be present in the model.

We also observe that [36] show the following duality result: considering the value function
val′(α) = E[V[Y |X∼α]] instead of val(α) = V[E[Y |Xα]] leads to the same Shapley effects.
Both of these value functions can be estimated from a pick’n’freeze design.

3.1. Shapley Effects for Groups. Recently, [28] introduce a Shapley effect for groups,
building upon results by [25] and [11]. The following expression, termed Shapley-Owen effect
for the group α, parallels (2.2),

(3.1) Φα(val) =
∑

β:α⊆β

mob(β)

|β| − |α|+ 1
.

4 PLISCHKE, RABITTI, BORGONOVO

Hence, having available the Möbius inverses allows one to obtain these Shapley-Owen effects.
Note that they are governed by a slightly different set of axioms than in Prop. 2.
If all Möbius inverses are nonnegative, we can generalize the findings of Prop. 3, as

(3.2) Sα = mob(α) ≤ Φα(val) ≤
∑

β:α⊆β

mob(β) = Υα

where Υα is the superset importance measure of [18]. We can further sharpen the upper bound
in (3.2),

(3.3) Φα(val) ≤ mob(α) +
1

2

∑

β:α(β

mob(β) =
1

2



mob(α) +
∑

β:α⊆β

mob(β)



 .

We then formulate an interaction analogon of Proposition 3.

Proposition 4. Under input independence, the Shapley-Owen effect for input group α is bounded

by the mean of the Sobol’ index and the superset importance of α, that is Φα ≤ 1

2
(Sα +Υα). If

equality holds then there are no higher order interaction terms larger than |α|+1 involving α.

4. A Refinement. A first algorithm we study is based on the sample approach of [36],
with some marginal modifications aimed at improving estimation accuracy. We propose to:

• Use of a pick’n’freeze design [9, 7] instead of a brute-force double loop to compute
conditional variances

• Use of duality result: two estimators can be obtained for the same computational costs
• Estimation of conditional variances via Sobol’/Saltelli and Jansen formulas to take

advantage of the pick’n’freeze design and the duality result
• Use of quasi Monte-Carlo (QMC) design for improved convergence [16] compared to a

crude Monte-Carlo design
The convergence properties of pick’n’freeze designs are discussed in [9]. Combined with QMC
sampling, one profits of the accelerated convergence of the variance estimates for a large class of
functions (i. e. those bounded in the sense of Hardy–Krause). Moreover, the pick’n’freeze design
allows one to identify dummies exactly, as theoretically expected (null-player property of Prop.
2), eliminating numerical noise stemming from the variability of variance estimates of different
samples as in [36]. The Jansen estimator for superset importance and the Sobol’/Saltelli
estimator for subset importance offer two different ways of obtaining Shapley effects.
A version ready to test in MatLab or Octave is available in Algorithm 4.1. The calling
convention requires as parameters the dimension of the model k, the size of a basic sample
block n, the simulation model and the transformation from the unit hypercube into the de-
sired marginal distributions. Both the model function and the input space transformation are
assumed to be vectorized.
Further optimizations of Algorithm 4.1 are possible. Specifically, the ways in which indices of
model inputs are selected or deselected by traversing all different permutation paths include
the same marginal contribution multiple times. Filling a database of coalition worth value
functions as one traverses these paths and querying the database before a model evaluation
greatly enhances the applicability, especially in higher input dimensions: There are 2k − 1

COMPUTING SHAPLEY EFFECTS 5

value functions for a model with input dimension k, as opposed to k! ·k evaluations of marginal
functions when looping over all permutations (k! · k ≫ 2k). This requires a database query
before the model evaluation and an insertion after the computation of a value function.
Furthermore, the direct storage of all permutations might impair performance (MatLab 2018

warns that for 11 dimensions the permutation matrix will occupy more than 3 Gb). Hence,
Heap’s algorithm [12] may be used to generate the possible permutations iteratively instead
of filling a large matrix with all combinations.
When referring to Algorithm 4.1 in the reminder, we shall consider the optimized version which
implements these two improvements and which is available upon request.

Algorithm 4.1 A MatLab/Octave Implementation of Shapley Effects (simplified).

1 function [Shap,Shap2,evals]=shapley(k,n,model,trafo)

2 % SHAPLEY Shapley effects.

3 u=sobolpoints(n,2*k); % net(sobolset(2*k),n)

4 xa=trafo(u(:,1:k));xb=trafo(u(:,k+1:end));

5

6 ya=model(xa);yb=model(xb);evals=2*n;

7 Shap=zeros(1,k); Shap2=zeros(1,k);

8

9 for p=perms(1:k)' % for each column

10 val=0; % coalition worth of empty set

11 val2=0;

12 xi=xa;

13 for q=p'

14 xi(:,q)=xb(:,q); % winding stairs

15 yi=model(xi);evals=evals+n;

16 nval=mean((yi−ya).^2); % superset importance

17 Shap(q)=Shap(q)+nval−val; % marginal contribution

18 val=nval;

19

20 nval2=yb'*(yi−ya); % subset importance

21 Shap2(q)=Shap2(q)+nval2−val2;

22 val2=nval2;

23 end

24 end

25 Shap=Shap/2/var(yb)/prod(1:k)

26 Shap2=Shap2/n/var(yb)/prod(1:k)

Under input dependence, a Rosenblatt transformation [20] is needed in order to compute de-
pendent conditional input realizations of a input group given realizations of the complementary
index group. This can be effectively implemented in the Gaussian copula case (rank corre-
lation, normal-to-anything-transformation, Nataf transformation) using the upper-triangular
Cholesky roots of the reordered correlation matrix. One might argue that the quasi Monte-
Carlo structure is distorted by the Cholesky root and a symmetric matrix root may be more
suitable, however, then the triangular structure and hence the Rosenblatt transformation prop-
erty is lost.
In case of input dependence, the Jansen estimator of superset importance (as implemented

6 PLISCHKE, RABITTI, BORGONOVO

in Lines 16–18) becomes invalid because in this design the input blocks for yi and ya of the
complementary index set ∼ α are not independent. However, the code for the Sobol’/Saltelli
estimator (in Lines 20–22) stays valid as yb and ya are using independent inputs. Hence
in the dependent case, the duality between using val and val′ is lost, but only due to the
Jansen estimator breaking down. Alternative estimators (as discussed below) are still working.
In the next section, we discuss an alternative approach based on an intuition that notably
reduces computational burden. The improved algorithm introduced in this section will then
be compared against the new algorithm and the original implementation of [36] in a series of
experiments in Section 6.

5. Alternative Approach Using the Möbius Inverse. As the Möbius inverses used in (2.2)
are formally equivalent to the functional ANOVA decomposition terms, (2.2) offers a viable
alternative for computing the Shapley effects. Then the 2k − 1 value functions have to be
computed and a system of equations using a sparsely populated (2k − 1)× (2k − 1) matrix has
to be solved. We investigate if this scheme is more attractive than via the computation of all
marginals. Suppose that all 2k−1 non-vanishing subsets are indexed, αj , j = 1, . . . , 2k−1 and

Algorithm 5.1 A MatLab/Octave Implementation of Shapley Effects using Möbius Inverses.

1 function [Shap,V]=shapleymoebius(k,n,model,trafo)

2 % SHAPLEY Shapley effects using Möbius inverse.

3 u=sobolpoints(n+1,2*k);u(1,:)=[];

4 xa=trafo(u(:,1:k));xb=trafo(u(:,k+1:end));

5 ya=model(xa);yb=model(xb);

6

7 if(k≥log2(flintmax)), warning('Precision (and patience) may be lost.');end

8 l=2^k−1;H=zeros(2,l);sz=zeros(1,l); for i=1:l

9 % selection of input subset

10 g=bitand(i,2.^(0:k−1))6=0; % lsb codes first index

11 sz(i)=sum(g); % subset size

12 xi=xa; xi(:,g)=xb(:,g);

13 yi=model(xi);

14 H(:,i)=[mean((yi−ya).^2)/2;(yb'*(yi−ya))/n];

15 end

16 %% Shapley effects via Möbius Trafo:

17 % poset inclusion matrix is Pascal triangle mod 2

18 mob=zeros(2,l); sel=1; for i=1:l

19 ii=find(sel);

20 mob(:,i)=(H(:,ii)*(−1).^(sz(i)+sz(ii)'))/sz(i);

21 sel=xor([1,sel],[sel,0]);

22 end

23 %% Owen/Grabisch formula (weights are already included)

24 Shap=ones(2,k); for i=1:k

25 Shap(:,i)=sum(mob(:,logical(bitand(1:l,2^(i−1)))),2);

26 end

27 %% variance

28 V=H(:,end);

the value functions have been gathered in Hj = val(αj). Let the matrix Z code the partial

COMPUTING SHAPLEY EFFECTS 7

0 200 400 600 800 1000

nz = 58025

0

100

200

300

400

500

600

700

800

900

1000

Nonzero entries of the binary coded subset order, k=10

Figure 5.1. The subset order relation is the Sierpinski gasket, Pascal’s triangle modulo 2.

ordering,

Zjl =

{

1 if αj ⊆ αl

0, otherwise.

Via this coding, subset inclusion becomes a logical implication between the matrix columns:
αj is a subset of αl if for all m with Zmj = 1 it follows that Zml = 1. The Möbius inverses
are then obtained from M = HZ−1 and by (2.2) the Shapley effect for input i is given by

Φi =
∑

j:i∈αj

Mj

|αj |
. Experiments show that this matrix has a relative number of non-zero

elements
(

3

4

)k
compared to the total size of (2k − 1)2. For larger dimensions, despite being

sparsely populated, processing this matrix remains out of reach. If the set of all subsets is
obtained via binary coding (the least significant bit (20) codes the first index, etc.), then the
matrix Z coding the subset inclusion is Pascal’s triangle modulo 2 for which we can construct
the columns by an exclusive-or operation. The theoretical details for the binary representation
of this Sierpinski gasket are found in [26]. Figure 5.1 shows the subset order relation: A new
input i is considered at the subset indexed by 2i − 1 and stays active for 2i subsets. For
inversion we need to determine the signs (−1)|αi|+|αj | from the length of the subsets being
compared to one another. The |αi| lengths of the multi-indices are also needed for the weights
in (2.2). Hence we avoid forming and inverting the Z matrix altogether, see line 20 of Algorithm
5.1, which is a reference implementation. As in Algorithm 4.1, pick and freeze sampling of
quasi Monte-Carlo Sequences as well as both subset and superset importance are used for the
computation.

8 PLISCHKE, RABITTI, BORGONOVO

Again, under dependence the Jansen estimator the first component in line 14 of Algorithm 5.1 is
not an estimate of superset importance. Instead, yb’*(yb-yi)/n may be used which estimates
the superset importance of the complementary set. The index into the complementary set is
then obtained by 2k − 1− i for i 6= 2k − 1.
If all the Möbius inverses are available then further sensitivity metrics like effective dimen-
sionality may be computed [2]. Note that both presented algorithms do not take shortcuts by
assuming that higher order contributions vanish or by considering a randomized selection of
permutations. If the model evaluation takes virtually no time, models with input dimensions
up to k = 20 are computationally tractable with Algorithm 5.1.

6. Numerical Experiments. In this section, we test Algorithms 4.1 and 5.1 and compare
their performance with the algorithm of [36] on benchmark analytical models used in previous
works on the estimation of Shapley effects. As an application, we consider the fire-spread
model studied in [36]. For brevity, we shall use the following abbreviations in this section: EP
will refer to the algorithm of [36], based on exact permutations, OP refers to Algorithm 4.1
including database lookup and iterative generation of permutations, and MI is Algorithm 5.1
based on Möbius inverses.

6.1. Analytical Models. Let us consider the Ishigami function

Y = sin(X1)

(

1 +
1

10
X4

3

)

+ 7 sin(X2)
2, Xi ∼ U(−π, π), i = 1, . . . , 4.

The inputs are uniformly distributed on (−π, π). In the analysis we included a dummy input,
X4. The variance based sensitivity measures of all orders are known for this model [32]:
Because the inputs are independent, using [23, Theorem 1] we have the corresponding Shapley
effects: Φ1 = 0.4358, Φ2 = 0.4424, Φ3 = 0.1218. Regarding interactions, the only non-
vanishing Shapley-Owen effect is Φ13 = 0.2437.
To estimate the Shapley effects, in OP and MI we use a base sample from a scrambled Sobol’
quasi Monte-Carlo sequence of size 1024. The EP algorithm uses three runs computing con-
ditional variances in the inner MC loop and 64 for the outer loop to estimate the mean of
conditional variances, while the unconditional output variance is estimated from a sample of
size 1024.

MI OP EP

0.38

0.4

0.42

0.44

0.46

0.48

0.5

1

MI OP EP

0.38

0.4

0.42

0.44

0.46

0.48

0.5
2

MI OP EP

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

3

MI OP EP

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08
4

MI

0.23

0.235

0.24

0.245

0.25

1,3

Figure 6.1. Shapley effects for the Ishigami function. Comparison of MI, OP and EP algorithms. Rightmost
graph: Shapley-Owen effect for the pair (X1, X3).

The results are displayed in Figure 6.1, showing box-plots of 100 replicates. The analytical
values are marked by a dotted line. MI and OP show a comparable performance. The dummy

COMPUTING SHAPLEY EFFECTS 9

Table 6.1

Ishigami test function with dummy parameter. Details on the computation.

Möbius Inverse Optimized Permutations Exact Permutations

Computational time 5s 2s 2m05s

Model runs 15360 16536 14848
Quadratic Risk 9.84 · 10−5 9.05 · 10−5 0.0035

-1 -0.5 0 0.5 1

Rank Correlation
13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
ha

pl
ey

 V
al

ue
 (

N
or

m
al

iz
ed

)

Rank correlated Ishigami

x
1

x
2

x
3

x
4

-1 -0.5 0 0.5 1

Rank Correlation
13

0

1

2

3

4

5

6

7

S
ha

pl
ey

 V
al

ue
 (

V
ar

ia
nc

e)

Rank correlated Ishigami

x
1

x
2

x
3

x
4

Figure 6.2. Shapley Effects for the rank-correlated Ishigami function.

parameter is identified correctly by both algorithms. In Table 6.1 further details are reported.
The computational time includes all 100 replicates, while the evaluation count is for a single
run of the code. For MI and OP computations where performed in MatLab 2018a, while EP
is available from the R sensitivity package1. A desktop Windows 7 64 bit machine with i7
processor, 8 Gb RAM was used for the simulations. The number of model evaluations required
by the algorithms under comparison is of the same order. The OP algorithm has replaced 82
out to the 98 block model evaluations by a database lookup. As in [6], we also report the

quadratic estimation error given by
∑k

m=1
E

[

(

φ̂m − φm

)2
]

in Table 6.1.The quadratic risk

error term is lower for MI and OP, due to an exact zero for the dummy parameter and also due
to the use of a QMC design. The MI algorithm allows one to compute Shapley-Owen effects
for groups. We have done so for the only non-vanishing second-order Shapley-Owen effect,
which is reported in the rightmost plot of Figure 6.1.
For the dependent input case, we introduce a rank correlation between inputs 1 and 3 as in
[17]. The results for a basic sample block of 1024 are shown in Figure 6.2. The four lines in
Figure 6.2 represent the Shapley effect of each of the inputs as the correlation between X1

and X3 varies from −1 to 1. The left graph shows the Shapley effects when the value function
is the relative variance contribution, i.e. normalized to one, the right graph when the value
function is the absolute variance contribution. The dashed lines are the Shapley effect estimates
obtained with the Jansen estimators. As soon as ρ 6= 0, these estimates differ from the Sobol’-
Saltelli estimates. While the Sobol’-Saltelli estimates are in agreement with the output from

1A stripped down version of EP takes 6s under MatLab, while MI and OP take 50s and EP takes 250s
under Octave 4, computing 100 replicates.

10 PLISCHKE, RABITTI, BORGONOVO

the algorithm of [36], the Jansen’s estimates are not. This becomes clear observing that the
output from the sample block chosen conditional to the α subset being fixed at positions from
the B sample is not the same as the complementary subset ∼ α chosen conditionally from the
A sample block in the pick’n’freeze estimation scheme under dependence.
Note that one may infer the wrong conclusions when not keeping in mind that the grand total
of the output variance may vary: In absolute terms the share attributed to X2 does not change,
but in relative terms it becomes more important under co- or contramonotonic behaviour of
X1 and X3.
As a second model, we use Sobol g functions. These functions have provided useful test cases for
variance-based sensitivity measures [33, 31, 38, 15], but have not been used in the association
with Shapley effects yet. We test an 8 dimensional setting using the parameterization of [33],
writing:

Y =

8
∏

i=1

|4Xi − 2|+ ai
1 + ai

,

where Xi ∼ U[0, 1] and a1 = a2 = 0, a3 = 3, a4 = · · · = a8 = 9. For this model, one can obtain
the Shapley effects analytically under independence. The (unnormalized) value functions are
val (α) = V[E[Y |Xα]] =

∏

i∈α(1 + Vi)− 1 where Vi = V[E[Y |Xi]] =
1

3
(1 + ai)

−2 [31, Appendix
A]. By [23, Theorem 1], the analytical normalized Shapley effects are Φ1 = Φ2 = 0.469, Φ3 =
0.0341, Φ4,...,8 = 0.00551, the estimated values are Φ̂1 = Φ̂2 = 0.48, Φ̂3 = 0.03, Φ̂4,...,8 < 0.01.
For this estimation, we used MI and OP algorithms with a block sample size of n = 1024 using
QMC. Regarding computational time, OP takes under 10s, while MI takes 0.08s. In terms of
numerical results, the behavior is similar to the one registered for the Ishigami function: at
n = 1024, estimates display a negligible numerical error with respect to the analytical values.
It is well known that the number of terms involved in the calculation of Shapley effects increases
exponentially with the simulator size. We now consider the 15 dimensional test function
presented in [22],

Y = g(X) = 〈a1,X〉+ 〈a2, sin(X)〉+ 〈a3, cos(X)〉+ 〈X,MX〉,

where inner products are being formed with prescribed vectors a1, a2, a3 and matrix M .
The inputs X = (X1, . . . ,X15) are independently and standard normally distributed. Using a
QMC sample of size 2.048, the MI algorithm takes around 30s, on the same desktop machine
as reported before. However, the OP algorithm becomes now time-wise inefficient and does
not deliver results in a reasonable amount of time. (In the same time span which MI needed
to compute the results, the OP algorithm processed less than 1% of all marginals.)
The normalized Shapley effects obtained with the MI algorithm can be found in Table 6.2.
The Shapley effects are located between the first order and total effects. As the model only
has only up to second order interactions, theoretically the Shapley effects should be the mean
between first order and total effects (Proposition 3): this can be seen from the sum of both
the first order and the total effects being close to 2.

6.2. Fire-Spread Model. The fire-spread simulator used in [36] is one of the first realistic
applications on which algorithms for the estimation of Shapley effects were tested. Other
sensitivity analyses of the Rothermel fire-spread model are performed in [19], using a slightly

COMPUTING SHAPLEY EFFECTS 11

Table 6.2

Results for the Oakley/O’Hagan test function, basic sample block 2048 QMC. First and total effects are
extracted from the Möbius inverses.

Input x1 x2 x3 x4 x5 x6 x7 x8

First order effect 0.0033 -0.0042 0.0010 0.0033 -0.0020 0.0238 0.0287 0.0284
Shapley (subset) 0.0209 0.0327 0.0163 0.0307 0.0105 0.0359 0.0418 0.0560
Shapley (superset) 0.0214 0.0313 0.0202 0.0318 0.0146 0.0347 0.0395 0.0596
Total effect 0.0570 0.0626 0.0360 0.0603 0.0222 0.0394 0.0571 0.0866

Input x9 x10 x11 x12 x13 x14 x15 Sum

First order effect 0.0593 0.0090 0.1078 0.1178 0.1149 0.1030 0.1322 0.7262
Shapley (subset) 0.0837 0.0219 0.1239 0.1232 0.1353 0.1208 0.1464 1.0000
Shapley (superset) 0.0762 0.0239 0.1186 0.1420 0.1238 0.1210 0.1412 1.0000
Total effect 0.1031 0.0364 0.1517 0.1526 0.1444 0.1429 0.1583 1.3105

Table 6.3

Fire-spread example: Description of inputs and their marginal distributions. Note that SI units from column
3 are used for describing the probability distributions, while the formulas use imperial units from column 4. The
strong wind speed scenario input is already included in the distribution of U .

Variable Description Units (D) Units (E) Distribution Trunc.

δ Fuel depth cm ft logn(2.19,.517)
σ Fuel particle area to volume ratio cm-1 ft-1 logn(3.31,.294) > 3

0.6

h Fuel particle low heat content kcal/kg btu/lb logn(8.48,.063)
ρP Oven-dry particle density g/cm3 lb/ft3 logn(-.592,.219)
ml Moisture content of live fuel g/g norm(1.18,.377) > 0
md Moisture content of dead fuel g/g norm(.19,.047)
ST Fuel particle total mineral content g/g norm(.049,.011) > 0
U Wind speed at midflame height km/h ft/min logn(2.9534,.5569)
tanΦ Slope norm(.38,.186) > 0
P Dead fuel loading to total fuel loading logn(-2.19,.66) < 1

different set of equations than what is discussed here, and in [2]. A state-of-the-art report
for this fire-spread simulation model is available as [1]. Starting point of our analysis has
been the implementation of the firespread model which can be found at https://EunhyeSong.
info/, accessed by the authors on 2019/05/27. The simulator output is the rate of fire-spread
and is calculated from the series of equations detailed in Appendix A. As in [36], we consider
three distributional scenarios. In the first scenario, model inputs are considered independent
(no dependence case). In a second scenario an intermediate level of correlation is introduced
between md and U . The rationale is that the windier it is, the dryer the fuel gets. Following
the terminology in Song et al. (2016), one calls this the “weak dependence” scenario. In a
third scenario, stronger correlations are introduced among the inputs (as per Song et al. 2016,
“strong dependence” scenario). Numerically, the “weak dependence” scenario assumes a rank
correlation of −0.3, the “strong dependence” scenario a rank correlation of −0.8.
The inputs and their marginal distributions are listed in Table 6.3.
We propagate uncertainty in the simulator using a quasi Monte-Carlo generator and a sample
size of 214. Simulation time is 65.5s on the aforementioned machine. We note that the
fire-spread simulator features a mainly multiplicative input-output mapping. This, together
with the choice of logarithmic distributions make the simulator output span several orders of

https://EunhyeSong.info/
https://EunhyeSong.info/

12 PLISCHKE, RABITTI, BORGONOVO

Independence: First Order

h P ml md ST U tan P
0

0.2

0.4
Independence: Total

h P ml md ST U tan P
0

0.2

0.4
Independence: Shapley

h P ml md ST U tan P
0

0.2

0.4

Weak dependence: First Order

h P ml md ST U tan P
0

0.2

0.4
Weak dependence: Total

h P ml md ST U tan P
0

0.2

0.4
Weak dependence: Shapley

h P ml md ST U tan P
0

0.2

0.4

Strong dependence: First Order

h P ml md ST U tan P
0

0.2

0.4
Strong dependence: Total

h P ml md ST U tan P
0

0.2

0.4
Strong dependence: Shapley

h P ml md ST U tan P
0

0.2

0.4

Figure 6.3. Shapley values for the rank-correlated fire-spread model, basic sample size 214.

magnitude. In these situations, it has been underlined in previous literature [13, 5] that a slow
convergence in variance-based estimators can be expected. Indeed, Figure 6.3 shows that the
first order effects and the total effects differ depending upon using the Jansen or the Sobol’-
Saltelli estimators, even for the relative large basic sample size of 214. However, despite the
fluctuations in variance-based sensitivity measures, the Shapley effects estimates are relatively
robust. For the dependent input sample case which postulates two physical plausible scenarios,
linking the wind speed and the moisture content together, the duality of the estimators breaks
down and we are left with essentially one estimator (the one combining yi with yb).
Under strong dependence the total effect of md becomes lower than the corresponding first
order effect.
As mentioned, the algorithm enables the computation of Shapley-Owen interaction effects.
Figure 6.4 reports the pairwise Shapley-Owen effects for the three above mentioned samples,
with no dependence (+), weak dependence (�) and strong dependence (⊲). Figure 6.4 shows
that Shapley-Owen effects have absolute values varying from 0 to 0.2, with 30 out of 45 effects
null in all three cases of statistical dependence. In the reminder, we shall focus on interactions
for which the magnitude of Shapley-Owen effects is higher than 0.01, calling them significant.
Input δ is involved in significant interactions with ml, md and U . Input σ in turn, is involved
in significant interactions with md and U . We then register significant interactions between ml

and md, ml and U , and between md and U . Note that h, ρP and tanΦ show neither Shapley
nor Shapley-Owen effects.
As the input correlation increases, a first, overall impression would suggest that the presence
of dependence tends to increase the explanatory power of interaction effects. For instance,
note the increases in the magnitude of φσ,md

(from 0.03 to 0.21), of φσ,U (from 0.055 to
0.18). This means that the joint explanatory power of σ with md and with U increases as the

COMPUTING SHAPLEY EFFECTS 13

, , h ,
P

, m
l

, m
d

, S
T

, U , tan
, P , h ,

P

, m
l

, m
d

, S
T

, U , tan
, P

h,
P

h, m
l

h, m
d

h, S
T

h, U

h, tan
h, P P , m

l

P , m
d

P , S
T

P , U
P , tan
P , P

m
l , m

d

m
l , S

T

m
l , U

m
l , tan

m
l , P

m
d , S

T

m
d , U

m
d , tan

m
d , P

S
T , U

S
T , tan

S
T , P

U
, tan

U
, P

tan
, P

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Shapley-Owen for pairwise interaction

No Dependence
Weak Dependence
Strong Dependence

Figure 6.4. Pairwise Shapley-Owen effects for the rank-correlated fire-spread model.

correlation among the inputs increases. However, this effect is not systematic. The absolute
value of φδ,ml

decreases from about 0.04 in the “no dependence”scenario, to 0.02 in the “strong
dependence”scenario. The Shapley-Owen effect φmd,U deserves some attention. First, φmd,U

grows in magnitude from 0.03 to 0.21. However, φmd,U changes sign as we move from the
no dependence to the weak dependence and to the strong dependence cases. Thus, these two
inputs interact negatively (and strongly negatively) as their negative correlation increases,
meaning that they lose explanatory power when considered together. Let us consider the
variance-based indices of these two variables. In the no dependence case, their total variance-
based indices are greater than they first order indices. In the weak dependence case, the first-
order indices are still smaller than the corresponding total ones and the Shapley-Owen effect
φmd,U is now negative but with a small absolute value. In the third case, strong dependence
becomes strong, this Shapley-Owen interaction is highly negative and we can see that the total
effects for md and U are lower than their corresponding first-order indices. We also observe that
in the strong dependence case, for these two inputs, the bracketing property of [23] doesn’t hold
anymore. For instance, we observe the inversion Tmd

≤ Φmd
≤ Smd

. The works [36, 14, 28]
discuss other examples of inversion of the bracketing property when inputs become dependent.
In this respect, Shapley-Owen effects can offer new insights useful to understand the origin of
this inversion.

7. Conclusions. Algorithms for computing Shapley values are attracting increasing inter-
est. In this work, we have proposed an approach based on the Möbius inverse that reduces
computational burden notably. The approach enables the computation not only of Shapley
effects, but also of Shapley-Owen effects for groups. The algorithm is exact in the sense that all
possible input combinations are considered and is valid for all dependent input cases that can
to be addressed by Rosenblatt transformations. In terms of future research, we believe that

14 PLISCHKE, RABITTI, BORGONOVO

algorithms based on the Möbius-inverse representation of Shapley effects might be beneficial
also in the given-data context, for which currently only the permutation-based algorithm of
[6] is available. We are currently investigating this possibility.

Acknowledgments. Parts of this work were conducted while the first author was visiting
Bocconi University. The authors thank Eunhye Song for providing the code of the fire-spread
simulator.

Appendix A. Equations of the Fire-Spread Simulator Used in this Work. The simulator
output is given by

R = IR · ξ · 1 + ΨW +ΨS

ρb · ǫ ·Qig

rate of fire-spread [ft/min](A.1)

which is obtained from the following subequations

ω0 =
0.2048

1 + exp
(

15−30.48δ
2

) fuel loading [lb/ft2](A.2)

Γmax = σ1.5/(495 + .0594σ1.5) maximum reaction velocity [1/min](A.3)

βop = 3.348σ−0.8189 optimum packing ratio(A.4)

A = 133.0σ−0.7913 Albini 1976(A.5)

θ∗ =
301.4 − 305.87(ml −md) + 2260md

2260ml

(A.6)

θ = min(1,max(θ∗, 0))(A.7)

µM =exp(−7.3Pmd−(7.3θ+2.13)(1−P)ml) moisture damping coefficient(A.8)

µS = 0.174S−0.19
T mineral damping coefficient(A.9)

C = 7.47 exp(−0.133σ0.55)(A.10)

B = 0.02526σ0.54(A.11)

E = 0.715 exp(−3.59 · 10−4σ)(A.12)

ωn = ω0(1− ST) net fuel loading [lb/ft2](A.13)

ρb =
ω0

δ
ovendry bulk density [lb/ft3](A.14)

ǫ = exp(−138/σ) effective heating number(A.15)

Qig = 130.87 + 1054.43md heat of preignition [Btu/lb](A.16)

β =
ρb
ρP

packing ratio(A.17)

Γ = Γmax

(

β

βop

)A

exp

(

A

(

1− β

βop

))

optimum reaction velocity [1/min](A.18)

ξ =
exp ((0.792 + 0.681

√
σ)(β + 0.1))

192 + 0.2595σ
propagating flux ratio(A.19)

ΨW = CUB

(

β

βop

)−E

wind coefficient(A.20)

COMPUTING SHAPLEY EFFECTS 15

ΨS = 5.275β−0.3(tanΦ)2 slope factor(A.21)

IR = Γ · ωn · h · µM · µS reaction intensity [Btu/ft2min](A.22)

The corresponding Matlab implementation is available opon request.

REFERENCES

[1] P. L. Andrews, The Rothermel surface fire spread model and associated developments: A comprehensive
explanation, Gen. Tech. Rep. RMRS-GTR-371, U.S. Department of Agriculture, Forest Service, Rocky
Mountain Research Station, Fort Collins, CO, 2018.

[2] R. Ballester-Ripoll, E. G. Paredes, and R. Pajarola, Tensor algorithms for advanced sensitivity
metrics, SIAM/ASA Journal on Uncertainty Quantification, 6 (2018), pp. 1172–1197.

[3] E. Borgonovo, A new uncertainty importance measure, Reliability Engineering&System Safety, 92
(2007), pp. 771–784.

[4] E. Borgonovo and E. Plischke, Sensitivity analysis: A review of recent advances, European Journal
of Operational Research, 248 (2016), pp. 869–887.

[5] E. Borgonovo, S. Tarantola, E. Plischke, and M. D. Morris, Transformations and invariance
in the sensitivity analysis of computer experiments, Journal of the Royal Statistical Society, Series B,
76 (2014), pp. 925–947.

[6] B. Broto, F. Bachoc, and M. Depecker, Variance reduction for estimation of Shapley effects and
adaptation to unknown input distribution, tech. report, 2018. http://www.arxiv.org/abs/1812.09168.

[7] B. Broto, F. Bachoc, M. Depecker, and J.-M. Martinez, Sensitivity indices for independent
groups of variables, Mathematics and Computers in Simulation, 163 (2019), pp. 19–31.

[8] J. Castro, D. Gómez, and J. Tejadab, Polynomial calculation of the Shapley value based on sampling,
Computers&Operations Research, 36 (2009), pp. 1726–1730.

[9] F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur, Statistical inference for Sobol pick-
freeze Monte Carlo method, Statistics, 50 (2016), pp. 881–902.

[10] M. Grabisch, Capacities and games on lattices: A survey of results, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 14 (2006), pp. 371–392.

[11] M. Grabisch and M. Roubens, An axiomatic approach to the concept of interaction among players in
cooperative games, International Journal of Game Theory, 28 (1999), pp. 547–565.

[12] B. R. Heap, Permutations by interchanges, The Computer Journal, 6 (1963), pp. 293–298.
[13] R. L. Iman and S. C. Hora, A robust measure of uncertainty importance for use in fault tree system

analysis, Risk Analysis, 10 (1990), pp. 401–406.
[14] B. Iooss and C. Prieur, Shapley effects for sensitivity analysis with correlated inputs: comparisons

with Sobol’ indices, numerical estimation and applications, tech. report, Hyper articles en ligne, 2019.
hal-01556303.

[15] L. A. Jiménez Rugama and L. Gilquin, Reliable error estimation for Sobol’ indices, Statistics and
Computing, 28 (2018), pp. 725–738.

[16] S. Joe and F. Y. Kuo, Constructing Sobol’ sequences with better two-dimensional projections, SIAM J.
Sci. Comput., 30 (2008), pp. 2635–2654.

[17] S. Kucherenko, S. Tarantola, and P. Annoni, Estimation of global sensitivity indices for models
with dependent variables, Computer Physics Communications, 183 (2012), pp. 937–946.

[18] R. Liu and A. B. Owen, Estimating mean dimensionality of analysis of variance decompositions, Journal
of the American Statistical Association, 101 (2006), pp. 712–721.

[19] Y. Liu, E. Jimenez, M. Y. Hussaini, G. Ökten, and S. Goodrick, Parametric uncertainty quan-
tification in the Rothermel model with randomised quasi-Monte Carlo methods, International Journal
of Wildland Fire, 24 (2015), pp. 307–316.

[20] T. A. Mara and S. Tarantola, Variance-based sensitivity indices for models with dependent inputs,
Reliability Engineering&System Safety, 107 (2012), pp. 115–121.

[21] D. R. Mazur, Combinatorics: A Guided Tour, The Mathematical Association of America, Washington,
DC, 2010.

http://www.arxiv.org/abs/1812.09168
https://hal.inria.fr/hal-01556303v6

16 PLISCHKE, RABITTI, BORGONOVO

[22] J. E. Oakley and A. O’Hagan, Probabilistic sensitivity analysis of complex models: A Bayesian
approach, Journal of the Royal Statistical Society, Series B, 66 (2004), pp. 751–769.

[23] A. B. Owen, Sobol’ indices and Shapley values, SIAM/ASA Journal on Uncertainty Quantification, 2
(2014), pp. 245–251.

[24] A. B. Owen and C. Prieur, On Shapley value for measuring importance of dependent inputs,
SIAM/ASA Journal on Uncertainty Quantification, 5 (2017), pp. 986–1002.

[25] G. Owen, Multilinear extensions of games, Management Science, 18 (1972), pp. 64–79.
[26] H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals. New Frontiers of Science, Springer

Verlag, New York, NY, 2nd ed., 2004.
[27] J. Poore and T. Nemecek, Reducing food’s environmental impacts through producers and consumers,

Science, 360 (2018), pp. 987–992.
[28] G. Rabitti and E. Borgonovo, A Shapley-Owen index for interaction quantification, SIAM/ASA

Journal on Uncertainty Quantification, (2019). Accepted.
[29] M. I. Radaideh, S. Surani, D. O’Grady, and T. Kozlowski, Shapley effect application for variance-

based sensitivity analysis of the few-group cross-sections, Annals of Nuclear Energy, 129 (2019),
pp. 264–279.

[30] G.-C. Rota, On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrschein-
lichkeitstheorie, 2 (1964), pp. 340–368.

[31] A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto, and S. Tarantola, Variance based
sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer
Physics Communications, 181 (2010), pp. 259–270.

[32] A. Saltelli, K. Chan, and E. M. Scott, Sensitivity Analysis, John Wiley&Sons, Chichester, 2000.
[33] A. Saltelli and I. M. Sobol’, About the use of rank transformation in the sensitivity analysis of model

output, Reliability Engineering&System Safety, 50 (1995), pp. 225–239.
[34] A. Saltelli and S. Tarantola, On the relative importance of input factors in mathematical models:

Safety assessment for nuclear waste disposal, Journal of the American Statistical Association, 97
(2002), pp. 702–709.

[35] L. S. Shapley, A value for n-person games, in Contributions to the Theory of Games. Volume II, H. W.
Kuhn and A. W. Tucker, eds., vol. 28 of Annals of Mathematics Studies, Princeton University Press,
Princeton, NJ, 1953, pp. 307–317.

[36] E. Song, B. L. Nelson, and J. Staum, Shapley effects for global sensitivity analysis: Theory and
computation, SIAM/ASA Journal on Uncertainty Quantification, 4 (2016), pp. 1060–1083.

[37] C. B. Storlie, L. P. Swiler, J. C. Helton, and C. J. Sallaberry, Implementation and evaluation
of nonparametric regression procedures for sensitivity analysis of computationally demanding models,
Reliability Engineering&System Safety, 94 (2009), pp. 1735–1763.

[38] S. Touzani and D. Busby, Smoothing spline analysis of variance approach for global sensitivity analysis
of computer codes, Reliability Engineering&System Safety, 112 (2013), pp. 67–81.

	1 Introduction
	2 Shapley Value
	3 Shapley Effects for Sensitivity Analysis
	3.1 Shapley Effects for Groups

	4 A Refinement
	5 Alternative Approach Using the Möbius Inverse
	6 Numerical Experiments
	6.1 Analytical Models
	6.2 Fire-Spread Model

	7 Conclusions
	Appendix A. Equations of the Fire-Spread Simulator Used in this Work

