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Abstract

We study the surface regularity of compact sets G ⊂ Rn which is equal to the
supremum of numbers s ≥ 0 such that the measure of the set Gε \ G does not ex-
ceed C ε s , ε > 0, where Gε denotes the ε-neighbourhood of G. The surface dimension
is by definition the difference between n and the surface regularity. Those values pro-
vide a natural characterisation of regularity for sets of positive measure. We show that
for self-affine attractors and tiles those characteristics are explicitly computable and
find them for some popular tiles. This, in particular, gives a refined regularity scale for
the multivariate Haar wavelets. The classification of attractors of the highest possi-
ble regularity is addressed. The relation between the surface regularity and the Hölder
regularity of multivariate refinable functions and wavelets is found. Finally, the surface
regularity is applied to the theory of synchronising automata, where it corresponds to
the concept of parameter of synchronisation.
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AMS 2010 subject classification: 28A75, 39A99, 11K55, 68Q45

1. Introduction

The well-known Minkowski -– Steiner formula defines the area, i.e., the (n−1)-dimensional

volume, of the surface of a compact set G ⊂ Rn as the lower limit for the ratio |Gε|−|G|
ε

as
ε → +0, where Gε is the ε-neighbourhood of G and |X| denotes the Lebesgue measure of
the set X (see, for instance, [14]). For sets with sufficiently regular surfaces, this limit is
finite. This is the case, for example, if G is convex. If this limit is infinite, then a natural
characterisation of regularity of the surface is the supremum of s ≥ 0 such that |Gε|−|G|
does not exceed C ε s for all ε > 0. This is, in a sense, analogous to the Hölder exponent of
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a function while the surface area plays the role of Lipschitz constant. In this paper we show
that for self-affine tiles and attractors, this characteristic is computable and gives a natural
scale of regularity for those sets. It is related to the Hölder regularity of Haar wavelets in Rn.
Moreover, this characteristic can be applied in the study of synchronising automata, where
it corresponds to their “rate of synchronisation”.

We use the following notation: B(x, r) is the Euclidean ball of radius r > 0 centered at
a point x ∈ Rn; A + B = {a + b | a ∈ A, b ∈ B} is the Minkowski sum of sets A and B;
G ε = G + B(0, ε) is the ε-neighbourhood of a set G.

Definition 1 The surface regularity of a compact set G ⊂ Rn is

s(G) = sup {s ≥ 0 | |Gε| − |G| ≤ C ε s ∀ε > 0}.

The surface dimension of G is d = n − s(G).

The surface dimension d of compact sets in Rn can take all values from 0 to n. The case
of integer d corresponds to the upper Minkowski content, see [2, 3, 23, 34]. However, for
the sets G of positive measure, we always have s(G) ≤ 1 (Corollary 1 in the next section),
and therefore, d(G) ∈ [n − 1, n]. The case s = 1 (i.e., d = n − 1) characterises sets with
“regular” surfaces. For example, if G is a union of finitely many convex sets or sets with
piecewise-smooth boundary, then s = 1. One can say that s(G) measures the regularity of
the boundary of G. On the other hand, it has no relation to the dimension of the topological
boundary. This can be shown by simple examples. Consider the following “quasi-Cantor”
set G ⊂ R: take a unit segment, remove the open interval of length 2−21 from the middle; in
each of the two remaining segments remove the interval of length 2−22 from the middle, etc.
In kth iteration we have 2k equal segments and from each of them we remove an interval of
length 2−2k from the middle. The limit compact set G has a positive measure. It is easily
shown that s = 1 and hence d = 0. On the other hand, the boundary of G coincides with G
and hence the Hausdorff dimension of its boundary is one and so it is not equal to d.

An advantage of the surface regilarity and of the surface dimension is that they are both
metric invariants of compact sets, i.e., these charactersistics are invariant with respect to
bi-Lipschitz maps (Lipschitz maps with Lipschitz inverse). Hence, they provide characteris-
tics of compact sets invariant under C1-diffeomorphisms. In contrast to the topological or
Hausdorff dimension it can distinct sets of positive measure, whose dimension is the same
as the dimension of the entire space. That is why our main interest is in the sets of positive
Lebesgue measure. In what follows we assume that |G|> 0.

For sets of positive measure, a characteristic similar to the surface regularity is pro-
vided by the L1-Hölder regularity of the indicator function. However, this charactersistic,
in contrast to the surface regularity, is not bi-Lipschitz invariant. We show that the surface
regularity does not exceed the Hölder regularity and can be strictly smaller even for tiles
(Theorem 1). Then in Theorem 2 we establish a condition for a compact set that ensures that
its surface and Hölder regularities coincide. In Section 3 we apply that result to self-affine
attractors and tiles, which play an important role in construction of Haar and other wavelet
systems in Rn. In Section 5 we obtain formulas for the Lp-Hölder regularity of attractors
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and tiles. This, in particular, makes it possible to compute the Lp-exponents of multivariate
Haar wavelets and to range them by their regularity. In case of isotropic dilation matrix,
those formulas can compute the surface regularities and surface dimensions. The compu-
tation of all those characteristics are reduced to finding the Perron eigenvalue of a special
matrix. In Section 6 we compute surface dimensions of some popular self-affine tiles. Then
we address the problem of characterising the self-affine attractors and tiles with the highest
surface regularity. We make a conjecture that the only self-affine attractor with the surface
regularity s = 1 is a parallelepiped. So, the parallelepiped is the only regular attractor.
In Section 7 this conjecture is proved for dimension n = 1. Finally, we apply the surface
regularity in the study of finite deterministic automata and establish a relation between the
surface regularity and the rate of synchronisation (Section 8).

The following notation will be used: |X| is the Lebesgue measure of a set X or the
cardinality of a finite set X, depending on the context; Lp is the standard functional space

with the norm ‖f‖p = (
∫
|f |pdt)1/p. We use the standard notation A∗ = ĀT for the adjoint

matrix to a matrix A; the spectral radius of A, i.e., the biggest modulus of eigenvalues, is
denoted my ρ(A).

2. The surface dimension and the Hölder regularity

The definition of the surface regularity is similar to the Hölder regularity of the charac-
teristic function χG(x) in the space L1(Rn). As usual, χG(x) = 1 if x ∈ G and χG(x) = 0
otherwise. The Lp Hölder regularity of a function f ∈ Lp(Rn) is defined as

αp(f) = sup {α ≥ 0 | ‖f(·+ h)− f(·)‖p≤ C ‖h‖α ∀h ∈ Rn }

For a characteristic function of a compact set G, we denote shortly αp(χG) = αp(G) and
call this value the Hölder Lp-regularity of G. The measure of the difference Gε \ G is the
L1-norm of the function χGε\G. Hence it is quite expected that s(G) can be related to α1(G).
In what follows we omit the index 1 meaning that always p = 1 if the the converse is not
stated. Moreover, often we omit the set G from the notation. Thus α1(G) = α.

The following proposition shows that for every compact set, the Hölder regularity majo-
rates the surface regularity.

Proposition 1 For every compact set in Rn of positive measure, we have s ≤ α.

Proof. Let h ∈ Rn be an arbitrary vector of length ‖h‖< ε. Since G + h ⊂ G + B(0, ε),
we see that the measure of the set (G + h) \ G does not exceed the measure of Gε \ G.
Similarly, the measure of (G−h)\G does not exceed the same measure of Gε \G. Therefore,
‖χG(·+ h)−χG‖1 ≤ 2 |Gε \G|. Computing logarithms of both parts and dividing by log 1

ε
,

we conclude the proof.
2

Since the Hölder exponent never exceeds one, we obtain
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Corollary 1 For a compact set of positive measure, s ≤ 1 and respectively n− 1 ≤ d ≤ n.

In the sequel we always consider sets of positive measure, i.e., assume that |G|> 0. There are
examples when s 6= α. Moreover, even for tiles on R, it can happen that s < α. A compact
set in R is called a tile if its integer shifts cover R with intersections of zero measure.

Theorem 1 There is a tile in R for which α = 1 and s = 1
3
.

Proof. First we construct a compact set G ⊂ R with this property and then make a tile
from it. Consider a sequence x1, x2, . . ., where xk =

∑k
m=1

1
m2 . Define the set G as a union

of segments [xk , xk + 2−k−2] , k ∈ N, plus the limit point x∞ =
∑∞

m=1
1
m2 = π2

6
.

Let us first compute s(G). Take arbitrary small ε > 0 and denote by N the minimal
natural number such that for all k ≥ N the distance between points xk and xk+1 is less than
2ε. Thus, N is the smallest natural solution of inequality 1

k2
− 1

(k+1)2
+ 2−k−2 < 2ε. It is

shown easily that N ∼ ε−1/3 as ε → 0. The enlarged set Gε = G + [−ε, ε] contains N − 1
segments: [

xk − ε , xk + 2−k−2 + ε
]
, k = 1, . . . , N − 1 ;

and one big segment [xN − ε, x∞ + ε] formed by all other segments for k ≥ N . The total
length of those N segments is 2ε +

∑∞
k=N

1
k2

(the big segment) plus
∑N−1

k=1 (2−k−2 + 2ε) (the
remaining N − 1 segments). Thus,

|Gε| = 2ε +
∞∑
k=N

1

k2
+

N−1∑
k=1

(2−k−2 + 2ε) = 2N ε +
1

4
− 2−N−2 +

∞∑
k=N

1

k2
.

On the other hand, |G|= 1
4
. Hence

|Gε| − |G| = 2N ε − 2−N−2 +
∞∑
k=N

1

k2
.

Since N � ε−1/3 and
∑∞

k=N
1
k2
� 1

N
, we see that the value |Gε|−|G| is asymptotically

equivalent to 2 ε 2/3 + C ε1/3, where C is a constant. We see that |Gε|−|G| � C ε1/3 as
ε→ 0, and therefore, s = 1

3
.

Now let us show that α(G) = 1. If k ≤ log2
1
ε
, i.e., 2−k > ε, then the kth segment

[xk, xk+2−k] intersects its copy shifted by ε. Therefore, the length of the symmetric difference
of this segment with its copy is equal to 2ε. The number of those segments does not exceed
log2

1
ε
. Hence, the total length of those symmetric differences is at most 2ε log2

1
ε
.

The total length of the remaining segments of the set G is
∑

k>log2
1
ε

2−k, which is less

then 21−log2
1
ε = 2ε. Therefore, the symmetric difference of this set with its shift to ε has the

length less that 4ε.
Summing over these two sets we have ‖χG(·)− χG(·+ ε)‖1< 2ε (2 + log2

1
ε
). Therefore,

α ≥ 1. Since α cannot be bigger than one, we conclude that α = 1.
Thus, a compact set G with α = 1 and s = 1

3
is constructed. But this is not a tile. To

make a tile form G we take the unit segment [0, 1], unify it with the set G and subtract the
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set G− 1 from it. Since G ⊂ [0, 2), we see that the obtained set [0, 1] ∪G \ (G− 1) is a tile
with the same parameters s and α.

2

Remark 1 The fact that s ≤ α means that the characteristic s(G) provides a more refined
analysis of a set G than α(G) and can distinct sets with the identical exponent α. For
example, the set G constructed in the proof of Theorem 1 has the maximal Hölder regular-
ity α = 1 as the segment [0, 1], while its surface regularity is lower: s = 1

3
for G instead

of s = 1 for the segment [0, 1]. So, the Hölder regularity cannot distinct the set G from a
segment, but the surface regularity can.

A question arises what conditions of the set G would guarantee that s(G) = α(G)?
Theorem 2 below establishes sufficient conditions. To formulate them we need one more
notation. Let a compact set G ⊂ Rn be fixed. For a point x ∈ Rn and a number r > 0, we
denote

ν (x, r) =
|B(x, r) ∩ G|
|B(x, r)|

.

Thus, the number ν (x, r) shows which part of the volume of the ball B(x, r) is covered by G.

Theorem 2 If there are constants c1, c2 > 0 such that for every sufficiently small ε > 0, the
total measure of points x of the set Gε \ G for which ν (x, 2ε) ≥ c1 is at least c2 |Gε \ G|,
then s = α.

If x ∈ Gε, then the intersection of the ball B(x, 2ε) with the set G is at least nonempty. The
assumption of Theorem 2 require that this intersection has not very small volume. If this
condition is fulfilled for some significant part of points x of the set Gε, then s(G) = α(G).

In the proof we use the following technical

Lemma 1 For an arbitrary compact set G ⊂ Rn and for every r > 0, we have

|G 2r| − |G| ≤ 2n
(
|Gr| − |G|

)
.

Proof. Assume without loss of generality that |G|= 1. Since Gr is a Minkowski sum of G
and of a ball of radius r, we can apply the Brunn-Minkowski inequality and conclude that the
function f(r) = n

√
|Gr| is concave. Hence f(r) ≥ 1

2
(f(0) + f(2r) ). Let f(2r) = 1+a. Since

f(0) = 1, we see that f(r) ≥ 1 + a
2
. Therefore 2n (|Gr| − |G|) ≥ 2n ( (a

2
+1)n− 1) = (a+2)n

− 2n. Since |G 2r|= (a+ 1)n − 1, it remains to establish the inequality

(a+ 2)n − 2n ≥ (a+ 1)n − 1 .

Opening the brackets we have
∑n

k=1

(
n
k

)
2n−kak ≥

∑n
k=1

(
n
k

)
ak , which is obvious.

2

Proof of Theorem 2. Denote χ(x) = χG(x) and, for arbitrary ε > 0, consider the following
integral:

Iε =

∫
(x,y)∈Rn×Rn
‖x−y‖≤ 2 ε

|χ(x)− χ(y)| dx dy
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This integral is computed over all pairs of points (x, y) of the space Rn such that ‖x−y‖≤ 2ε.
The function under the integral takes only two values: zero and one. It is equal to zero if
both x and y belong to G or both do not. Otherwise it is equal to one. In particular, this
function is zero, whenever both x, y are far from G. Therefore, it has a compact support,
and hence it is integrable over Rn × Rn.

We are going to prove that s ≥ α by computing the integral Iε in two ways. The first
way is to integrate over the variable x:

Iε =

∫
h∈B 2ε

∫
x∈Rn

|χ(x)− χ(x+ h)| dx dh =

∫
h∈B 2ε

‖χ(·)− χ(·+ h)‖1 dh ≤

|B 2ε| max
h∈B 2ε

‖χ(·)− χ(·+ h)‖1

Thus,
max
‖h‖≤ 2ε

‖χ(·)− χ(·+ h)‖1 ≥ |B 2ε|−1 Iε . (1)

Now we compute the integral Iε differently. Note that χ(x) − χ(x + h) 6= 0 if and only if
precisely one of the points x and x+h is out of G. On the other hand, ‖h‖≤ 2 ε, hence that
point belongs to G 2ε \G. Because of the symmetry we can always assume that x ∈ G 2ε \G.
Thus,

Iε =

∫
G 2ε\G

(∫
B 2ε

|χ(x)− χ(x+ h)| dh
)
dx =

∫
G 2ε\G

|B 2ε| ν(x, 2ε) dx ≥

|B 2ε|
∫
Gε\G

ν(x, 2ε) dx ≥ |B 2ε| · c1 ·
∣∣∣{x ∈ Gε \G

∣∣∣ ν(x, 2ε) ≥ c1

} ∣∣∣ ≥ c1·|B 2ε|·c2·|Gε\G | .

Now invoking Lemma 1 we get |Gε \G | ≥ 2−n |G 2ε \G |, consequently

Iε ≥ c1 c2 2−n |B 2ε| · |G 2ε \G | .

Combining this with (1) we obtain

max
‖h‖≤2ε

‖χ(·)− χ(·+ h)‖1 ≥ c1 c2 2−n |G 2ε \G |

for every sufficiently small ε > 0. Taking now logarithm of both parts and a limit as ε→ 0
we complete the proof.

2

Equality s(G) = α(G) enables us to compute the surface dimension at least for some
special classes of sets, because α(G) can be expressed by the Hölder L2-regularity as well as
by the Sobolev regularity of the characteristic function. One of such classes of sets is the class
of self-affine attractors. It plays an important role in many practical areas such as subdivision
algorithms and wavelets. Moreover, for those sets the exponent of regularity α(G) can be
efficiently computed. This is done in Section 5. Then in Section 8 we find a relation of this
value to synchronising automata theory.
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3. The surface dimension of self-affine attractors

Self-affine attractors are compact sets in Rn defined by an integer matrix and by a system
of digits (integer points) associated to that matrix.

Let us have an integer n × n matrix M which is supposed to be expanding, i.e., all its
eigenvalues are strictly bigger than one by modulus. This matrix splits the integer lattice
Zn into m = |detM | quotient classes defined by the equivalence x ∼ y ⇔ y − x ∈ M Zn.
Choosing one representative di ∈ Zn from each equivalence class, we obtain a set of digits D =
{di : i = 0, . . . ,m− 1}. We always assume that 0 ∈ D and naturally denote d0 = 0.
For every integer point d ∈ Zn, we denote by Md, the affine operator Md x = Mx−d, x ∈ Rn.

We use the notation 0.a1a2 . . . =
∞∑
i=1

M−iai, ai ∈ D.

Definition 2 A self-affine attractor generated by an expanding matrix M and by a digit
set D is the set

G = G(M,D) =

{
0.a1a2 . . . =

∞∑
k=1

M−kak : ak ∈ D

}
. (2)

For any integer expanding matrix M and for any digit set D, the self-affine attractor is a
compact set with a nonempty interior [15, 16]. Moreover, its Lebesgue measure is always
a positive integer. It is seen easily that G =

⋃
d∈D

M −1
d G. Moreover, each set M −1

d G

has measure m−1 |G|, hence the sum of measures of the sets M −1
d G , d ∈ D, is exactly

mm−1 |G|= |G|. Consequently, all those sets have intersections of zero measure. Thus G
is a disjunct (up to nill sets) sum of equal sets that are affinely similar to G. This justifies
the terminology “self-affine”. In what follows we say shortly attractor and always mean
self-affine attractors from Definition 2.

Thus, an attractor is the set of points form Rn with zero integer part in their M -adic
expansion. In this sense attractors play role of the unit segment in R, but for the space Rn

equipped with the M -adic system with digits from the set D.
The affine similarity implies that the characteristic function ϕ = χG(x) of an attractor

satisfies the following functional equation with a contraction of the argument:

ϕ(x) =
∑
d∈D

ϕ(Mx− d) a.e. x ∈ Rn (3)

This is a special case of a refinement equation (see Section 4). Therefore, the theory of
refinement equations, which is well developed in the literature, can be applied in the study
of attractors. Integer shifts of an attractor cover the space Rn with an integer number of
layers (namely, with |G| layers). This means that

∑
k∈Zn ϕ(x + k) ≡ |G| a.e. If |G|= 1,

then G called a self-affine tile.

Definition 3 A self-affine tile is an attractor of measure one.

7



Every integer expanding matrix and every set of digits generate an attractor, but this at-
tractor is not always a tile. There is a criterion to determine whether the attractor generated
by a matrix M and by a digit set D is a tile. It gives an answer in terms of eigenvalues of a
certain integer matrix.

In case n = 1, for M = 2, there are only two digit sets D = {0, 1} and D = {0,−1} for
which the generated attractor is a tile. Already for M = 3, the situation is more interesting:
both digit sets D = {0, 1, 2} and D = {0, 1, 5} generate tiles and the second tile is not a
segment. For n = 2, 3, every expanding matrix M has at least one digit set D generating
a tile. However, for n = 4, there are examples of matrices for which this is not true.
Nevertheless, such a system of digits exists under quite general assumptions. For example,
it exists whenever |dimM |> n [26]. This condition is indeed general taking into account
that the matrix M is expanding.

Definition 4 A tiling G generated by an integer expanding matrix M and by a set of digits
D is a collection of sets G = {k +G}k∈Zs such that

a) the union of the sets in G covers Rs and |(`+G) ∩ (k +G)| = 0, ` 6= k;
b) G = ∪d∈DM −1

d G.

See [1, 5, 26] for the general discussion and more references. The characteristic function
of a tile possesses orthonormal integer shifts. This property makes tiles very useful in the
construction of the Multiresilutional analysis and wavelets systems on Rn. In particular,
multivariate Haar systems are obtained directly from tiles [5, 16, 25].

A matrix is called isotropic if it has equal by modulus eigenvalues and no nontrivial Jordan
blocks. An isotropic matrix is similar to a multiple of an orthogonal matrix. Attractors and
tiles generated by isotropic dilation matrices M are very popular in applications and well
studied in the literature, see [6, 17, 39] and references therein. The following theorem shows
that at least for isotropic dilation matrices, the surface regularity of attractors is equal to
the Hölder regularity.

Theorem 3 For every attractor with an isotropic dilation matrix, we have s = α.

Proof. We need to show that an attractor generated by an isotropic dilation matrix satisfies
assumptions of Theorem 2. Take a small ε and a point x ∈ Gε \G. By definition, there is a
point y ∈ G such that ‖x − y‖≤ ε. Denote r = ρ(M). Let k be the smallest number such
that the diameter of the set M−kG is less that ε. Since M is isotropic, we have k ≤ log ε

log r
+C0,

where C0 does not depend on ε. The kth iteration of the partition G = ∩m−1
i=0 M

−1(G + di)
covers the set G with mk parts equal to M−kG each. Denote by Gk a part that contains the
point y. Since the diameter of Gk is less than ε and ‖x− y‖≤ ε, we see that Gk ⊂ B(x, 2ε).
On the other hand, Gk ⊂ G. Hence, Gk is contained in the intersection of the ball B(x, 2ε)
with G. Since M is isotropic, we see that

|Gk| = m−k|G| = r−nk|G| ≥ εnr−nC0|G|

(we used the inequality k ≤ log r
log ε

+ C0). Thus, the intersection of the ball B(x, 2ε) with the

set G has the measure at least Cεd, where C is a constant not depending on ε. On the other
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hand, |B(x, 2ε)|= εn|B|. Hence, the ratio of measures of the intersection to the measure of
the ball is at least C

|B| . This is true for all points x ∈ (Gε \ G). Therefore, the assumptions

of Theorem 2 are satisfied with the constants c1 = C
|B| , c2 = 1.

2

We believe that the assumption of isotropic dilation matrix M can be omitted in Theo-
rem 3 and that actually s = α for an arbitrary attractor.

Conjecture 1 Theorem 3 holds for arbitrary dilation matrix.

In the next section we show that the Hölder regularity of attractors can be efficiently
computed. It can be expressed with the Perron eigenvalue of a special matrix. In case of an
isotropic matrix M this will give the values of the surface regularity and surface dimension
of the attractors.

4. The Lp-regularity of multivariate refinable functions

In this section we consider the Lp-regularity of solutions of general refinement equations.
We provide a method that allows, at least theoretically, to find the Lp-Hölder exponent
of wavelets and of the limit functions of subdivision schemes on Rn, see [9, 25]. Then, in
Section 5, we apply the obtained results to the special refinement equations (3) for char-
acteristic functions of attractors. As we will see, in that case the Hölder regularity in L1

can be found within polynomial time. This, in particular, gives formulas the for Lp-Hölder
regularity of Haar functions. This also makes it possible to compute the surface dimension
of tiles provided M is isotropic.

4.1 Refinement equation

Refinement equation is a functional equation of the type

ϕ(x) =
∑
k∈Zn

ck ϕ (Mx − k), x ∈ Rn, (4)

with a compactly supported set of coefficients ck ∈ C (i.e., ck = 0 for all but finitely many k)
and with a general integer expanding dilation matrix M . The set of coefficients c = {ck, k ∈
Zn} is called a mask of the equation. The theory of refinement equations is well developed in
the literature due to their crucial role in the construction of wavelets [5, 12, 39], in the study
of subdivision schemes for approximating functions and for curves and surfaces design [6,
10, 18], in some problems of combinatorics, number theory, and probability (see [6, 31] and
references therein). The characteristic function of an attractor ϕ = χG is a solution of
refinement equation with ck = 1 whenever k ∈ D and ck = 0 otherwise (3).

A compactly supported function ϕ ∈ L1(Rn) satisfying equation (4) is called a refinable
function. It is well known that if such a solution exists, then it is unique up to normalization.
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Moreover, if
∫
Rn ϕ(x) dx 6= 0, then

∑
k∈Zn

ck = m. We will focus on this case as in the most of

literature. Under this assumption, the refinement equation always possesses a unique up to
multiplication by a constant solution ϕ in the space of tempered distributions. This solution
is compactly supported [29]. For the special case (3) we have cj = 1 if j ∈ D, otherwise cj =
0, and the (unique!) solution ϕ is a characteristic function of the attractor G = G(M,D).
Furthermore, as in the most of literature we assume that the refinement equations satisfy
the sum rules: ∑

k∈Zn

cMk−d = 1 , d ∈ D . (5)

The equation for attractors (3) always satisfies it because the set of coefficient {cMk−d, , k ∈
Z} consists of zeros except for one coefficient being equal to one.

4.2 The basic tile

There are several methods to analyse regularity of solutions of refinement equations.
Some of them such as the matrix method can find the precise values of the Hölder exponent.
The main idea is to pass from the refinement equation on Rn to an equation on a vector
function defined on some basic tile. So, the matrix method requires an auxiliary tile Q =
Q(M,∆) generated by the same matrix M and by some set of digits ∆ = {δ0, . . . , δm−1}.
An arbitrary tile generated by the matrix M can play the role of a basic tile.

4.3 Invariant subsets of Zn

The first step to realize the matrix method is to choose a special finite subset of Zn.
Let us have a refinement equation (4) with a mask c = {ck , k ∈ Zn}. Consider a map
η : 2Zn → 2Zn

that to every set of integers X ⊂ Zn associates the set M−1(X+ supp c − ∆)
∩ Zn. Let us recall that supp c = {k ∈ Zn , ck 6= 0}. Since c is compactly supported,
|supp c|< ∞.

Definition 5 Let a digit set ∆ and a compactly supported mask c = {ck}k∈Z be given. A
finite set S ⊂ Zn is called invariant if η S ⊂ S.

Example 1 Consider the real line with the dilation M = 2 and digits ∆ = {0, 1}. Then
for supp c = {0, N}, the set S = {0, . . . , N − 1} is invariant. Indeed, S + supp c =
{0, . . . , 2N − 1}, hence S + supp c − ∆ = {−1, 0, . . . , 2N − 1}. All integers in the set
1
2
{−1, 0, . . . , 2N − 1} are {0, . . . , N − 1}, hence ηS = S. Every segment of integers that

contains S is also an invariant set. The same holds for every mask with support that contains
numbers 0, N and some integers (may be all) between them.

For the support supp c = {0, 7} and ∆ = {0, 1}, but with the dilation M = −2, the set
S = {0, . . . , N − 1} is nor longer invariant, but the set S = {−4,−2,−1, 0, 1} is.

For the real line with the dilation M = 3, digits ∆ = {0, 1, 2} and supp c = {0, 1, 5},
the set S = {0, 1, 2} is invariant.

10



For a given mask c, we consider the following set:

Γ = Γ(M, supp c) = { x ∈ Rn | x =
∞∑
j=1

M−jγj, γj ∈ supp c }, (6)

If supp c is a digit set for M , then Γ is an attractor. The set Γ will be referred to as support
set of the refinement equation. In general, this set may not coincide with suppϕ. However,
we always have suppϕ ⊂ Γ. [5, Proposition 2.2]. Among all invariant integer sets S we spot
two ones:

Proposition 2 For every tile Q and a mask c, each of the following sets is invariant:
a) S0 = {a ∈ Zn | | (a+Q) ∩ Γ | > 0};
b) S0 = {a ∈ Zn | (a+Q) ∩ Γ 6= ∅}.

Proof. We establish a), the proof of b) is the same, replacing positivity of the measure by
the nonemptiness.

Take arbitrary s ∈ S0 and show that if there exist δ ∈ ∆ and γ ∈ supp c such that the
point x = M−1(s + γ − δ) is integer, then x ∈ S0. This will imply that S0 is invariant. We
have Mx − s + δ = γ. Since the sets s + Q and Γ possess an intersection of a positive
measure, so do the shifted sets s + Q + (Mx − s + δ) and γ + Γ because they are shifted
by the same vector. Thus, the sets Q + δ + Mx and γ + Γ have an intersection of positive
measure. Hence, so do M−1(δ + Q) + x and M−1(γ + Γ). However, M−1(δ + Q) ⊂ G and
M−1(γ + Γ) ⊂ Γ. Hence, the bigger sets x + Q and Γ also have an intersection of positive
measure, therefore, x ∈ S0.

2

For a given finite set K ⊂ Zn we denote by SK the smallest invariant set of integers
containing K. This set is merely an intersection of all invariant sets containing K.

Proposition 3 For the set K = {0}, we have SK = S0, where the set S0 is defined in
Proposition 2.

Proof. By Proposition 2, S0 is an invariant set. Clearly, both Q and Γ contain a neighbour-
hood of zero since 0 ∈ D and 0 ∈ supp c. Therefore, S0 contains zero and hence contains
the minimal invariant set SK . Thus, SK ⊂ S0. If this inclusion is strict, then the set
Γ′ = Q + SK does not cover Γ. On the other hand, M−1(γ + Γ′) ⊂ Γ′ for all γ ∈ supp c.
Indeed, for each q ∈ SK , the set M−1(q + γ + Q) is a parallel shift of some M−1(δ + Q)
to an integer vector x. Hence q + γ = δ + Mx and x ∈ η SK . Consequently, x ∈ SK and
M−1(q + γ +Q) = x + M−1(d+Q) ⊂ x+ Γ ⊂ Γ′. Thus, M−1(γ + Γ′) ⊂ Γ′. Therefore,
the fractal corresponding to the family of contractions M−1(γ + · ), γ ∈ supp c is contained
in Γ′. On the other hand, this fractal is Γ, and so Γ ⊂ Γ′, which is a contradiction.

2

Proposition 3 makes it possible to obtain the set S0 algorithmically within finite time,
without computing the sets Q and Γ. This was done in [10], we just slightly modify that
construction.
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An algorithm to compute SK for a given set K.
Initialisation. We have a finite set K ∈ Zn. Denote K0 = K and S0 = K. The set of
digits ∆ and a mask c are given.

Main loop. After the (j − 1)st iteration we have a finite set of integers Sj−1 and its subset
Kj−1. Set Sj = Sj−1, Kj = ∅. For each points k ∈ Kj−1, c ∈ supp c and δ ∈ ∆, we check
whether or not the point x = M−1(k + c − δ) is integer and does not belong to Sj−1. If so,
we set Kj = Kj ∪ {x}, otherwise we set Kj = Kj. After all triples (k, c, δ) are exhausted,
we set Sj = Sj−1 ∪ Kj. If Kj = ∅, then STOP, the algorithm terminates and SK = Sj.
Otherwise go to the next iteration.

Proposition 4 For every finite set K ⊂ Zn, the algorithm terminates within finite time
and the final set Sj is equal to SK.

Proof. By the construction, Sj = ∪js=0η
sK. Consider the operator ξ that associates

to each finite set K ⊂ Zn the set ξ K = M−1(K + supp c − ∆). Clearly, ηK ⊂ ξK.
Therefore, Sj is contained in the set ∪∞s=0ξ

sK, whose closure is a fractal set of the finitely
many contractions K 7→ M−1(K + c − δ), where c ∈ supp c, δ ∈ ∆. Since this fractal set
is compact, it contains only a finite number of integers. All the sets Sj produced by the
algorithm are contained in this finite set. Hence, for some j we necessarily have Sj = Sj−1.
Since Sj = ∪js=0η

sK = ∪∞s=0η
sK, we see that η Sj ⊂ Sj, so Sj is invariant. On the other

hand, each invariant set that contains K must also contain ηsK for all s, hence it contains
Sj. Thus Sj = SK .

2

4.4 Spectral factorisation of the dilation matrix

Now we need to use spectral properties of the dilation matrix M . All eigenvalues of M
are bigger than one by modulus. Let r1 < · · · < rq be all possible absolute values of
eigenvalues of M and let exactly ni of them (counting multiplicities) be equal by modulus
to ri, i = 1, . . . , q(M). Let Ji ⊂ Rn be the linear span of root subspaces of M corresponding
to all eigenvalues of modulus ri. Thus, dim(Ji) = ni and the operator M |Ji has all its
eigenvalues equal to ri in the absolute value. The space Rn is a direct sum of J1, . . . , Jq:

Rn =

q⊕
i=1

Ji .

There exists an invertible transformation B : Rn → Rn such that M has the following block
diagonal structure

B−1MB =


M |J1 0 · · · 0

0 M |J2
...

...
. . . 0

0 · · · 0 M |Jq

 . (7)
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The subspaces Jk will be referred to as spectral subspaces and (7) is a spectral factorisation.
In particular, if the matrix M is isotropic, then q(M) = 1, in which case J1 coincides with Rn.
The converse is not true: if all eigenvalues of M have equal moduli and the M has nontrivial
Jordan blocks, then it is not isotropic, although q = 1.

4.5 Wide simplex and admissible sets

The invariant set S0 defined in Proposition 2 possesses the following key property: shifts
of the tile Q over vectors from S0 cover the set Γ. The set S0 has more: shifts of Q over
vectors from S0 cover a neighbourhood of Γ. We need to define a property which is between
those two. First we introduce two more notation.

A wide simplex is a simplex in Rn with one of vertices at the origin such that its interior
intersects all spectral subspaces Jk, k = 1, . . . , q, of the matrix M .

The existence of wide simplices is easily shown (see also [9]). Moreover, a homothety
about the origin respects wide simplices. Hence, every ball centered at the origin contains a
wide simplex. Actually, even every half-ball contains a wide simplex.

Definition 6 Let Γ be a support set of refinement equation defined by (6) and let Q =
Q(M,∆) be a tile. A finite subset S ⊂ Zn is called admissible if the set S + Q contains the
sum of Γ with some wide simplex.

Since every ball centered at the origin contains a wide simplex, we see that S is admissible
whenever S+Q contains a neighbourhood of Γ. In particular, the set S0 from Proposition 2
is always admissible. The set S0 may be not, however, in most cases it is admissible as well.
Actually we can always use the set S = S0. However, in some cases it is too large and can be
replaced by a smaller admissible set. This is very important from the computational point
of view, see Remark 3. This is the only reason for introducing the notions of wide simplices
and of admissible sets.

4.6 The vector-function v(x) and the transition matrices Tδ, δ ∈ ∆

Now we are realising the main idea of the matrix approach to multivariate refinement
equations. For an arbitrary refinement equation (4), we first choose a tile Q = Q(M,∆)
(basic tile) and then we pass from the function ϕ : Rn → R to the vector-valued function v :
Q → RN . To define this function, we take an arbitrary admissible invariant set S ⊂ Zn
(Definition 6) and denote |S|= N . Then v(x) is defined as follows:

v : Q→ RN , v(x) = vϕ(x) =
(
ϕ(x+ k)

)
k∈S

, x ∈ Q . (8)

For convenience, we enumerate the components of the vector v by elements of the set S.
Consider the m following N ×N transition matrices Tδ, δ ∈ ∆, defined by the equality

(Tδ)ab = cMa−b+δ , a, b ∈ S , δ ∈ ∆. (9)
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Rows and columns of the transition matrices are enumerated by elements of the set S. We
denote T = {Tδ : d ∈ ∆}. The refinement equation on the function ϕ(x) is equivalent to
the following equation on the vector-valued function v(x):

v(x) = Tδ v(Mx− δ) , x ∈M−1(Q+ δ) , δ ∈ ∆ . (10)

Functional equations of this type are often called equation of self-similarity [33].

Remark 2 If in the definition of v(x) we used an arbitrary invariant set S, then (rather
surprisingly!) the Lp-regularity of v might not be equal to the Lp-regularity of ϕ. The reason
is that the function v is defined on Q, while ϕ is defined on the entire Rn. That is why we
had to use an admissible invariant set S. This guarantees that the union of translations⋃
k∈S(k + Q) contains not only the support of ϕ but a bigger set: the sum of this support

with a wide simplex. Let us note that for measuring the Hölder regularity in C(Rn), this
enlargement is not needed and any invariant set S suffices [9]. The reason is that a continuous
refinable function vanishes on the boundary of its support, which may not be true for an Lp
refinable function.

4.7 Special subspaces of RN

In the regularity analysis of refinable functions we deal with several linear affine subspaces
in RN . First we define

V =
{
w = (w1, . . . , wN) ∈ RN :

N∑
j=1

wj = 1
}
.

It is well known that every compactly supported refinable function such that
∫
Rn ϕ(x) ds = 1

possesses the partition of unity property:∑
k∈Zn

ϕ(x+ k) ≡ 1

Hence, after a multiplication of ϕ by a constant it may be assumed that v(x) ∈ V for almost
all x ∈ G. We denote the linear part of the affine subspace V by

W =
{
w = (w1, . . . , wN) ∈ RN :

N∑
j=1

wj = 0 } .

Finally, define the space of differences of the vector-function v = vϕ:

U = span
{
v(y) − v(x) : y, x ∈ Q

}
. (11)
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Since v(x) ∈ V for almost all x ∈ Q, we have U ⊂ W . The sum rules (5) imply that the
column sums of each matrix Tδ are equal to one. Therefore, TδV ⊂ V and TδW ⊂ W for
all δ ∈ ∆. Thus, V is a common affine invariant subspace of the family T and W is its
common linear invariant subspace.

For i = 1, . . . , q, define the subspaces U1, . . . Uq of the space RN as follows:

Ui = span
{
v(y) − v(x) : x, y ∈ Q, y − x ∈ Ji

}
, i = 1, . . . , q(M). (12)

Note that Ui are nonempty, due to the interior of Q being nonempty. It is seen easily that
the spaces {Ui}qi=1 span the whole space U , but their sum may not be direct. The subspaces
{Ui}qi=1, unlike the subspaces {Ji}qi=1, may have nontrivial intersections. For example, they
can all coincide with U . It turns out that all Ui are common invariant subspaces for the
matrices Tδ.

Lemma 2 If J is an invariant subspace for the matrix M , then L = span {v(y) − v(x) :
y − x ∈ J} is a common invariant subspace for all Tδ, δ ∈ ∆.

Proof. If u ∈ L, then u is a linear combination of several vectors of the form v(y) − v(x)
with y − x ∈ J . For every δ ∈ ∆ we define x′ = M−1(x+ δ), y′ = M−1(y + δ) and have

v(y′)− v(x′) = Tδ (v(My′ − δ) − v(Mx′ − δ)) = Tδ (v(y) − v(x)) .

Hence, Tδ(v(y)− v(x)) ∈ L for each pair (x, y), and, therefore, Tδu ∈ L for all u ∈ L.
2

4.8 The formula of regularity for refinable functions in Lp

This formula expresses the Hölder exponent of the refinable function with the Lp-spectral
radius of matrices Tδ restricted to the subspaces Ui. For a given set of linear operators
A = {A0, . . . , Am−1} acting in Rd and for given p ∈ [1,+∞), the Lp-spectral radius (p-
radius) is defined by the formula:

ρp = ρp(A) = lim
k→∞

(
m−k

∑
A`i
∈A, i=1,...,k

‖A`1 · · ·A`k‖p
) 1/pk

.

The limit always exists and does not depend on the operator norm (see [30]. for more on
properties of the p-radius). Clearly, for one operator, the value ρp becomes the usual spectral
radius, i.e., the largest by modulus eigenvalue. Already for two operators, the computation
of the p-radius is a hard problem. For example, it is still not clear if the 1-radius can be
efficiently computed. On the other hand, for even integer p, the p-radius can be expressed
by means of a usual spectral radius of some large matrix. For example, the 2-radius is equal
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to the square root of the spectral radius of the following operator A acting on the spaceMd

of symmetric d× d-matrices:

A(X) =
1

m

m−1∑
i=0

A∗iXAi , X ∈Md . (13)

This operator acts on the d(d+1)
2

-dimensional space Md and obeys an invariant cone of
positive semidefinite matrices. Hence, by the Krein-Rutman theorem [24], its largest by
modulus eigenvalue λmax (which can also be called Perron eigenvalue) is positive. The fact
is ρ2(A0, . . . , Am−1) =

√
λmax [28, 30].

The formula for Lp-regularity of univariate refinable functions was well-known [26, 30].
However, it offered a surprising resistance in extending to multivariate functions. For general
dilation matrices M , this extension was done only in 2019 [9]. The main idea is to find the
Hölder exponent separately on the spectral subspaces Ji. The Hölder exponent of ϕ along a
subspace J ⊂ Rn is defined by

αp,J(ϕ) = sup
{
α ≥ 0 : ‖ϕ(·+ h) − ϕ(·)‖p ≤ C ‖h‖α , h ∈ J

}
.

The following theorem was proved in [9]. Let us remember that T = {Tδ , d ∈ ∆}.

Theorem 4 Let 1 ≤ p <∞. For a refinable function ϕ ∈ Lp(Rn), we have

αp,Ji(ϕ) = log 1/ri
ρp(T |Ui

) , i = 1, . . . , q (14)

and, consequently,
αp(ϕ) = min

i=1,...,q
log 1/ri

ρp(T |Ui
) (15)

For isotropic matrices, when all ri are equal to r = ρ(M), formula (15) looks as simple as
for the univariate refinable functions: αp(ϕ) = log 1/r ρp(T |U).

Remark 3 Theorem 4 expresses the Lp-Hölder regularity of a refinable function to p-radii
of the transition matrices Tδ restricted to special common invariant subspaces. As we have
mentioned, for even integer p, the p-radius can be computed as a Perron eigenvalue of some
high-dimensional matrix, for other p only approximate computational methods are known.
At any rate, the complexity of computation depends significantly of the size of matrices Tδ,
which is N = |S|. That is why it is important to reduce the cardinality of the admissible
set S. The set S = S0 is sometimes too large and it is possible to find a smaller admissible
set using the notion of wide simplices.
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5. Computing the surface regularity
and surface dimension of attractors and tiles

The characteristic function of an attractor satisfies functional equation (3), which is the
refinement equation with the coefficients ck = 1 if k ∈ D and ck = 0 otherwise. Therefore,
Theorem 14 can be applied directly for computing the Hölder regularity and (if the dilation
matrix M is isotropic) the surface regularity and the surface dimension of attractors. The
specific mask containing only zeros and ones makes the computation easier. Moreover,
it will allow us to come up with simpler formulas of regularity that do not involve the
subspaces Ui, which are a priori, unknown (Theorem 6). This means that the same formulas
can be applied to find the Hölder exponents and the surface regularity of multivariate Haar
wavelets generated by arbitrary dilation matrices.

First of all, we observe that the refinement equation for attractors (3) admits the tran-
sition matrices Tδ, which will be simple in the following sense:

Definition 7 A matrix is called simple if each its column contains precisely one entry equal
to one and all others are zeros.

Proposition 5 Suppose G(M,D) ⊂ Rn is an attractor; then for every basic tile Q(M,∆)
and for every admissible invariant set S, the matrices Tδ, δ ∈ ∆, are all simple.

Proof. We have ck = 1 if and only if k ∈ D, otherwise ck = 0. Therefore (formula (9)),
(Tδ)ab = cMa−b+δ = 1 if and only if Ma− b+ δ ∈ D. If b is fixed, then the set b − δ + D
has precisely one common point with the lattice M Zn, since D is a digit set. Therefore, one
component of the bth column of Tδ is one and the others are zeros.

2

All simple matrices form a miltiplicative matrix semigroup. Let us remember that V is
an affine hyperspace of RN that consists of points with the sum of components being one and
W is its linear part. A simple matrix is column-stochastic, hence it respects both V and W .
As usual, Ak denotes the set of all products of matrices from A of length k ≥ N (repetitions
permitted). Clearly, |Ak|= mk. We write Ak0 for the set of matrices from Ak that have at
most one positive row. If all matrices from A are simple, then so are all matrices from Ak
and each matrix from Ak0 has one row of ones and all other elements are zeros.

Proposition 6 Let A = {A0, . . . , Am−1} be a set of simple matrices. Then for every com-

mon invariant subspace U ⊂ W of the matrices from A, we have ρp (A|U) = [ρ1 (A|U)]1/p.
In case U = W , the following formula holds:

ρ1 (A|U) = lim
k→∞

[
1 − |A

k
0|

|Ak|

] 1/k

(16)

Proof. We begin with the case U = W . The norm of every simple matrix restricted to W is
either zero (if this matrix has precisely one non-zero row) or between 1 and

√
n
2

otherwise.

17



Replacing the norms of all matrix products in the definition of L1-spectral radius by those
numbers we see that the quantity (16) is equal to ρ1(A|W ). Now consider the case of general
U ⊂ W . Denote by H the set of all simple N×N matrices. This set is finite and for every k,
all product from Ak belong to this set. Hence, the number ‖Π|U‖ for arbitrary Π ∈ Ak
and k ∈ N, can take a finite number of values. Consequently, ‖Π|U‖p� ‖Π|U‖ and this
equivalence is defined by two absolute constants. Therefore, the values m−k

∑
Π∈Ak‖Π|U‖p

and m−k
∑

Π∈Ak‖Π|U‖p are equivalent by the same two constants. Hence, ρp (A|U) =

[ρ1 (A|U)]1/p, which concludes the proof.
2

Applying Theorem 4 and Proposition 6 we obtain

Theorem 5 For every attractor G, we have

α = 2 min
1,...,q

log 1
ri

ρ2 (T |Ui
) .

If the matrix M is isotropic, then

s = α = 2 log 1
r
ρ2 (T |U) .

This theorem allows us to find the Hölder regularity of any attractor as the largest eigenvalue
of the operator A defined by (16) for m operators Aδ = Tδ|U , δ ∈ ∆. If in addition the
dilation matrix is isotropic, then the surface regularity is equal to the same value. In case
G is a tile, everything can be rewritten in a simpler terms. Moreover, in this case we can
use the fact that all matrices Tδ are simple and the L1-spectral radius ρ1 (T |W ) obtains a
combinatorial form (16).

Theorem 6 For every time G generated by an isotropic matrix M , we have

s = α = 2 log 1
r
ρ2 (T |W ) .

This value is equal to the right hand side of equality (16).

The main advantage of this theorem is that the expression for the Hölder exponent and for
the surface regularity of a tile does not depend on the subspace U (which may be different
for different tiles) and can be expressed by the 1-radius of the matrices Tδ restricted to the
standard subspace W = {w ∈ RN |

∑
iwi = 0}. The proof requires one auxiliary result. As

usual we denote by T k the set of all products of length k of matrices from T .

Lemma 3 Let G(M,D) be an attractor and S ⊂ Zd be an admissible set for G; then there
is p ∈ N such that for every i ∈ S \ S0, all matrices from T p have zero ith row.

Proof. Consider the transition operator

T f(x) =
∑
k∈D

f(Mx− k) .
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Clearly, for the function ϕ = χG, we have Tϕ = ϕ. If f is the indicator function of some
compact set K ⊂ Rn, then the Hausdorff distance between the support of the function T pf
and G tends to zero as p → ∞. Indeed, since M−1 has spectral radius smaller than one,
there exists a norm in Rn such that in the corresponding operator norm q = ‖M−1‖< 1. In
this norm, the distance between the support of T pf and G is at most qj times the distance
between the support of f and G. Since i /∈ S0, it follows that i + Q does not intersect G.
Therefore, for all sufficiently large p, the support of T pf does not intersect the set i+Q. Let
now K = j+Q for some j ∈ S and f = χK . Then for every sequence `1, . . . , `k, the element
in the ith row and jth column of the matrix Π = T`1 · · ·T`p is equal to T pf(i + 0.`1 . . . `k).
However, i + 0.d1 . . . dk ∈ i + Q, hence T pf(i + 0.`1 . . . `k) and so Πij = 0. Thus, for all
sufficiently large i, the ith row of every product Π ∈ T p is zero.

2

Proof of Theorem 6. Since G is a tile, for almost all x, the vector v(x) has only one
non-zero component, which is equal to 1. Namely, vk = 1 if x ∈ k + G. Denote I ∈ S ∩ S0

and L = span {ei − ej | i, j ∈ I}. Then U = L. Furthermore, by Lemma 3, there
is p such that for all i /∈ I, the ith row of every matrix from T p is zero. Therefore,
ρ1(T |W ) = ρ

1/p
1 (T p|W ) = ρ

1/p
1 (T p|L) = ρ1(T |L) and hence ρ1(T |U) = ρ1(T |W ). On the

other hand, since M is isotropic, then all ri are equal to r, therefore formula (15) reads
α = log 1

r
ρ1 (T |U). This completes the proof.

2
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Figure 1: The one-dimensional tile with M = 3, D = {0, 1, 5}: s = 0.1977.. and d = 0.8022..

6. Examples

Example 2 The univariate tile G(M,D) with M = 3 and D = {0, 1, 5}. Its characteristic
function ϕ = χG satisfies the refinement equation

ϕ(x) = ϕ(3x) + ϕ(3x− 1) + ϕ(3x− 5), x ∈ R,

Since every point ofG has the form x =
∑∞

k=1 `k3
−k with `k ∈ D, we have x ≤ 5

∑∞
k=1 3−k ≤ 5

2
.

Therefore G ⊂ [0, 2.5]. This tile is shown in fig. 1.

Taking the basic tile Q = [0, 1] generated by the digit set ∆ = {0, 1, 2}, we have ∪k=0,1,2(k+
Q) = [0, 3]. Therefore, S = {0, 1, 2} is an admissible invariant set. Hence, N = 3 and there
are three transition matrices:

T0 =

 1 0 0
0 0 1
0 1 0

 , T1 =

 1 1 0
0 0 0
0 0 1

 and T2 =

 0 1 1
1 0 0
0 0 0

 .

The subspace W is two-dimensional. Choosing the basis e1 = (1,−1, 0)T , e2 = (0, 1,−1)T of
W , we obtain the matrices Aδ = Tδ|W , δ = 0, 1, 2:

A0 =

(
1 0
1 −1

)
, A1 =

(
0 1
0 1

)
and A2 =

(
−1 0

0 0

)
To compute ρ(T |W ) = ρ2(A0, A1, A2) we build the matrix of the operator A defined by (13).
The space of symmetric 2× 2 matrices has dimension 3, and

A =
1

3

 2 1 2
1 2 2
0 −1 −1

 .

For this matrix, λmax = 1+
√

2
3

, and therefore ρ2(T |W ) =
√

1+
√

2
3

. Now by Theorem 6,

we have s(G) = α(G) = − log3
1+
√

2
3

= 0.1977.... Hence, the surface dimension of G is
d = 1− s = 0.8022....
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Figure 2: The Square: s = 1 and d = 1

Figure 3: The Dragon: s = 0.4763.. and d = 1.5236..

Example 3 Two-digit tiles on the plane. There are only three attractors in R2 up to affine
similarity which are generated by two digits, i.e., when m = 2, see [40]. In all the three cases
the digit set can be D = {(0, 0) ; (1, 0)}. In this case all those three attractors are tiles.

The first one is a unit square (fig. 2), it is generated by the matrix M =
(

0−2
1 0

)
. Of

course, for this tile s = 1 and d = 1.

The second type is more interesting. This is the Dragon (fig. 3) generated by the matrix

M =

(
1 1
−1 1

)
(rotation on 45o with the expanding by

√
2). Denote this tile by G.

To compute s we choose the set S0 (Proposition 2), in which case the basis tile Q coincides
with G. We have S0 = (0, 0), (±1, 0) , (0,±1) , (±1,±1) (seven points), therefore N = 7
and the matrices T0 and T1 are 7×7. Computing ρ2(T |W ) we obtain α = 0.4763... Therefore
s = 0.4763.. and d = 1.5236...
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Figure 4: The Bear: s = 0.7892.. and d = 1.2107..

The third two-digit tile is generated by the matrix

M =

(
1 −2
1 0

)

As it is seen in fig. 4, if is natural to call it Bear. It has the same set S0 and hence
its transition matrices T0, T1 are again 7 × 7. Computing ρ2(T |W ) we obtain α = 0.7892...
Therefore s = 0.7892.. and d = 1.2107... Thus, the Bear has a bigger surface regularity than
the Dragon.

Example 4 Plane tiles with M = 2I. In this case m = |detM |= 4, hence there will be
four digits. Different choices of these digits define different attractors. For example, for
D = {(0, 0) ; (1, 0) ; (1, 0) ; (1, 1)}, we obtain a unit square. In this case, of course, α = 1
and d = 1. Changing one digit: (1, 1) to (−1,−1), we obtain the tile depicted in fig. 5

For this tile s = 0.4150... and respectively d = 1.5849.... So, its regularity is close to
the Dragon. It looks similar to the Sierpinski carpet ans can be called quasi Sierpinski tile.
In contrast to the Sierpinski carpet, which has measure zero, it has measure 1 as a tile. This
tile was considered in [39].

7. Attractors of the highest regularity

The highest possible surface regularity of any set is one. It is attained, for example,
for sets bounded by surfaces of finite area: for convex sets, for sets with piecewise smooth
boundaries, or for finite unions of such sets. We conjecture that for self-affine attractors,
this situation is impossible apart from the case of parallelepipeds.

Conjecture 2 If an attractor satisfies s = 1, then it is a parallelepiped.
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Figure 5: The quasi-Sierpinski tile. s = 0.4150..., d = 1.5849...

For two-digit attractors on the plane this is true, since there are only three types of such
attractors [40]. In Example 3 we analysed all of them: for the square we have s = 1, for
Dragon and for Bear, s < 1. In every dimension n, for each m ≥ 2, there are finitely many,
up to an affine similarity, pairs (M,D), |detM |= |D|= m, for which the corresponding
attractors are a parallelepipeds. Such pairs are all classified in [41]. For them, of course,
s = 1. Conjecture 2 claims that for all other attractors s < 1. This means, in particular, that
an attractor which is not a parallelepiped cannot be presented as a finite union of regular
sets (either convex or with a piecewise-smooth boundary).

We can prove only the univariate version of Conjecture 2:

Theorem 7 If an attractor G ⊂ R is such that s = 1, then G is a segment.

We prove more: if α(G) = 1, then G is a segment. The proof uses some facts from the theory
of univariate refinement equations, from approximation theory, and from combinatorics.
Since M is a number, we assume in the proof that M > 0, the case of negative M is
considered in the same way. Thus, M = m. We begin with proving several auxiliary results.

Lemma 4 Let a set P ⊂ R consist of finitely many disjoint segments with integer ends.
Suppose several translates of P form a disjoint (up to sets of measure zero) partition of
some segment. Then all the segments of the set P have the same length and all distances
between them are multiples of that length.

In the proof it will be convenient to use words “left” and “right” for the standard orientation
on the real line.

Proof. Without loss of generality it can be assumed that translates of P to positive
numbers cover a segment without overlaps. Denote the most left segment of P by α and the
next segment by β. The distance between α and β must be filled with several translates of
α, hence this distance is a multiple of |α|. The first translate of P maps the segment β to the
segment β + |α|. The gap between those two segments is of length |α|−|β|, it must be filled
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with several translates of the segment α. Therefore, |α|−|β|= k|α| for some non-negative
integer k. Hence k = 0 and |β|= |α|. Then by the same argument we show that the next
segment of P has length |α| and that the distance from β to that segment is a multiple of |α|,
etc.

2

A compactly-supported function f : R → R is said to satisfy the Strang-Fix condition
of order ` ∈ Z ∪ {0} if linear combinations of its integer translates generate all algebraic
polynomials of order ≤ `. This condition is important in approximation theory, see [35].

Lemma 5 A characteristic function of a compact set cannot satisfy the Strang-Fix condition
of order bigger than zero.

Proof. We need to show that integer translates of f cannot generate a linear function.
Assume the contrary:

∑
k∈Z akf(x − k) ≡ x for some coefficients {ak}k∈Z. Let supp f ⊂

[−N,N ]. Then for every x ∈ [0, 1] we have:
∑N

k=−N akf(x− k) = x. On the other hand, f

takes only the values 0 and 1, hence the function
∑N

k=−N akf(x − k) takes finitely many
values. This is a contradiction since the function x takes infinitely many values on [0, 1].

2

The following result is crucial in the proof of Theorem 7.

Proposition 7 If α(G) = 1, then G is a union of segments with integer ends.

Proof. By [29, Theorem 7.1.1], if a refinable function ϕ is such that α1(ϕ) = 1 and it does
not satisfy the Strang-Fix condition of order 1, then it is L1-Lipschitz, i.e there is a constant
C > 0 for which

‖ϕ(x+ h) − ϕ(h)‖1 ≤ C h , h ≥ 0. (17)

By Lemma 5, this is true for the function ϕ = χG. We take the system of digits ∆ =
{0, . . . ,M − 1} with the corresponding tile Q = [0, 1]. Then, up to an integer translate,
it can be assumed that all digits from D are nonnegative and as always d0 = 0. Let
N be the number bigger by one than the largest digit form D. Since, D ⊂ [0, N − 1],
we have G = suppϕ ⊂ [0, N − 1]. Since ∪k=0,...,N−1(Q + k) = [0, N ], we see that the
set S = {0, . . . , N − 1} is admissible. We consider the corresponding vector-function v(x) =
(ϕ(x), . . . , ϕ(x + N − 1))T ∈ RN , and the transition N ×N matrices T0, . . . , TM−1 defined
in formula (9) for the sequence ck = 1 of k ∈ D and ck = 0 otherwise. For every h ∈ (0, 1),
denote ϕh(x) = ϕ(x+ h) − ϕ(x) and vh(x) = (ϕh(x), . . . , ϕh(x+N − 1))T . Applying the
self-similarity equation (10) we obtain

vM−1h(x) = Tδvh(Mx− δ) , δ ∈ ∆ . (18)

Denote by Rk the set of all M -adic rational numbers of order k on the interval [0, 1), thus
Rk = {0.δ1 . . . δk | δi ∈ ∆, i = 1, . . . , k}. For every q = 0.δ1 . . . δk ∈ Rk, let Πq =
Tδ1 · · ·Tδk . Iterating k times equation (18) we obtain

vM−kh(x) = Πq vh(M
k(x− q)) , x ∈ [q, q +Mk) , q ∈ Rk . (19)
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Denote Aδ = Tδ|U . It was proved in [29, Theorem 5.2.2] that a refinable function ϕ is L1-
Lipschitz if and only if for every k, we have

∑
q∈Rk
‖Πq|U‖≤ C0, where C0 is some constant.

On the other hand, all the products Πq, q ∈ Rk, are simple matrices. Denote by C1 the
smallest positive norm of all simple matrices restricted to U . Thus, for every q ∈ Rk, either
Πq|U= 0 or ‖Πq|U‖≥ C1. Hence, for every k ∈ N, the set {Πq|U | q ∈ Rk} contains at
most r = [C0

C1
] nonzero operators. Apply this fact to equation (19) taking into account that

the vector vh(M
k(x− q)) belongs to U . We see that on all but r intervals [q, q +M−k), the

function vM−kh(x) is an identical zero. This holds for every h ∈ (0, 1) and the set of segments
on which this function is zero is the same for all h. Therefore on all but r those segments, the
function v(x) is an identical constant. This is true for all k ∈ N. Hence, the function v(x)
is piecewise-constant with at most r points of discontinuity. Consequently, the function ϕ
is piecewise-constant with at most r + N + 1 points of discontinuity (in the N + 1 integer
points of the segment [0, N ] the function ϕ may also be discontinuous). By [27, Theorem 1]
for every piecewise-constant refinable function with finitely many points of discontinuity, all
those points are integer. Hence, G is a union of segments with integer ends.

2

Proof of Theorem 7. By Proposition 7, the set G consists of several segments with
integer ends. Without loss of generality it can be assumed that the number M is positive and
exceeds the diameter of the set G. Otherwise we iterate the refinement equation for ϕ = χG
several times, say k times, and obtain a refinement equation with the factor Mk, then we just
replace M by Mk. Denote by α the most left segment of G. We have G = ∪d∈DM−1(G+d),
hence MG = ∪d∈D(G + d). The most left segment of G is Mα, its length M |α| exceeds
the diameter of G (since M > diam (G)). Moreover, the distances from this segment to
other segments of MG being multiples of the number M also exceed the diameter of G.
Therefore, Mα = ∪d∈D′(G + d), where D′ is some subset of D. Thus, several translates
of the set G form the segment Mα. Applying now Lemma 4 to the set P = G, we obtain
that all segments of the set G have the same length |α| and all distances between them are
multiples of this number. Therefore, all distances between the segments of the set MG are
multiples of M |α|. Hence, each segment of the set MG is Mα + kM |α| with some k ∈ N.
Consequently, for that segment we have Mα + kM |α|= ∪d∈D′+kM |α|(G + d). Therefore,
D′ + kM |α| ⊂ D. However, the sets D′ and D′ + kM |α| are equal modulo M . This is
impossible, since all elements of the digit set D are different modulo M .

2

8. Application to synchronising automata

The theory of synchronising automata originated in 1960s has found numerous applica-
tions in engineering and computer science. It is actively developing in the modern literature,
see [11, 22, 37, 38] and references therein.

Suppose some system can be at N different states. There are m actions that change the
states of the system. The kth action changes the states according to a prescribed mapping fk
defined on the set of states. If we enumerate the states by numbers from 1 to N , then the
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kth action changes the jth state to the state fk(j), j = 1, . . . , N . The set of states and
of actions is called deterministic finite automaton. It can be defined by the directed graph
G(V,E) with coloured edges. The vertices correspond to the states and edges of each color
are associated to actions. There is an edge of kth colour from the vertex j to the vertex i
if fk(j) = i. Thus, G has N vertices and m outgoing edges from every vertex – one edge
of each colour. The edges of the kth colour generate an adjacency matrix Bk. We have
(Bk)ij = 1 if fk(j) = i and (Bk)ij = 0 if fk(j) 6= i. Thus, the matrix Bk is simple in the
sense of Definition 7: every column possesses exactly one element equal to one and all others
being zeros. We see that a deterministic finite automaton is completely defined by the family
of simple N × N matrices B = {B0, . . . , Bm−1}. Conversely, every family of simple N × N
matrices defines an automaton. Here it will be more convenient to enumarate the actions
(colours) not from 1 to m as in the most of literature on automata but from 0 to m− 1.

A finite sequence of actions (colours) is called a synchronising sequence or reset word if
application of this sequence of actions sends the system to one and the same state, indepen-
dently of the initial state. In terms of the matrices {Bk}m−1

k=0 a reset word is a sequence of
numbers k1, . . . , ks from {0, . . . ,m−1} such that the corresponding product Π = Bks · · ·Bk1

has a row of ones. Since Π is a simple matrix it follows that all other entries of Π are zeros.
In practice a reset word allows the user to make a reset the system i.e., sending it to

the initial state even if its current state is unknown. There are lots of applications of this
notion in computer science, electronics, robotics, etc. There are efficient polynomial time
algorithms to decide the existence of a reset word and to find it [38]. On the other hand,
finding the shortest possible reset word is an NP-complete problem [13, 38]. There is a
famous Černý conjecture (1964) claiming that if a reset word exists then the shortest reset
word has length at most (N − 1)2. This lower bound is sharp [7]. The conjecture is still
open and the best known upper bounds is cubic in N [36].

Now come back for a moment to the self affine attractors. Let G be an attractor. The
transition matrices Tδ , δ ∈ ∆, are all simple. Therefore the family T of these matrices
generates a deterministic finite automaton. What is the sense of the the surface regular-
ity s(G) is terms of the automaton of the family T ? Can it be of interest to the automata
theory? To answer this question we introduce a concept of parameter of synchronisation. In
the following theorem we use the same subspace W = {x ∈ RN |

∑N
i=1 xi = 0} and denote

Ak = Bk|W , where Bk is an adjacency matrix of an automaton.

Theorem 8 Let a deterministic finite automaton be given. For a natural k, let Pk be the
probability that a random word of length k of the alphabet {0, . . . ,m−1} is not a reset word.
Then there exists a limit p = limk→∞[Pk]

1/k. This limit is equal to the spectral radius ρ(A)
of the operator

A(X) =
1

m

m−1∑
i=0

A∗iXAi , X ∈MN−1 . (20)

acting on the N(N − 1)/2-dimensional space MN−1 of symmetric matrices of size N .
The automaton has a reset word if and only if ρ(A) < 1.

Proof. Denote by C1 and C2 respectively the smallest and the largest strictly positive norms
of all simple matrices restricted to the subspace W . Since there are finitely many simple
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matrices, it follows that C > 0. If a word `1 . . . `k is reset, then the product Π = B`1 · · ·B`k

has a row of ones and therefore Π|W= A`1 · · ·A`k = 0. Otherwise, C1 ≤ ‖A`1 · · ·A`k‖≤ C2.
For every k, the number of nonzero products among all products Ab1 · · ·Abk is equal to mkPk.
Therefore, the value

Sk = m−k
∑
b1,...,bk

‖Ab1 · · ·Abk‖2

is between C2
1Pk and C2

2Pk. The power 1/k of this value tends to ρ2
2, where ρ2 is the L2-

spectral radius of the family A0, . . . , Am−1. Hence the limit limk→∞[Pk]
1/k exists and is equal

to ρ2
2, which is in turn equal to the spectral radius of the operator (20).
Since all norms ‖Ab1 · · ·Abk‖ are bounded above by C2, it follows that ρ2 ≤ 1, and hence

p = ρ2
2 ≤ 1. It is well-known that for every family of operators {A0, . . . , Am−1}, there exists

a constant C > 0 such that Sk ≥ C ρ2k
2 for every k ∈ N. Hence if p = 1, then Sk ≥ C for

all k. However, if there exists at least one zero product of those operators, then Sk → 0 as
k → ∞. Therefore, if p = 1, then there is no zero product, which means that there is no
product of operators B0, . . . , Bm−1 with a row of ones, i.e., there is no reset word.

2

We call the number p the parameter of synchronisation of the automaton. It has the fol-
lowing meaning. Assume we do not know a reset word and instead take a random sequence of
actions of length k; then we obtain a reset word apart from the probability approximately pk.
Thus, the parameter p shows the degree of random synchronisation of an automaton. As
we see from Theorem 8, this parameter can be effectively computed merely by finding the
largest eigenvalue of operator (20). The following theorem reveals a curious relation between
the parameter of synchronisation and the surface regularity of a self-affine tile.

Theorem 9 Let a tile G(M,D) be given and its dilation matrix M be isotropic; then for the
automaton defined by the transition matrices Tδ, δ ∈ ∆, the parameter of synchronisation p
is equal to r−s, where r = ρ(M) and s is the surface regularity of G.

Proof. Applying Theorem 6 we obtain s = 2 log1/r ρ2 and hence ρ2
2 = r−s. By Theorem 8,

p = ρ2
2, which completes the proof.

2
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