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CONVERGENCE OF DZIUK'’S LINEARLY IMPLICIT PARAMETRIC
FINITE ELEMENT METHOD FOR CURVE SHORTENING FLOW*
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Abstract. Convergence of Dziuk’s fully discrete linearly implicit parametric finite element
method for curve shortening flow on the plane still remains open since it was proposed in 1991,
though the corresponding semidiscrete method with piecewise linear finite elements was proved to be
convergent in 1994, while the error analysis for the semidiscrete method cannot be directly extended
to higher-order finite elements or full discretization. In this paper, we present an error estimate of
Dziuk’s fully discrete linearly implicit parametric finite element method for curve shortening flow on
the plane for finite elements of polynomial degree » > 3. Numerical experiments are provided to
support and complement the theoretical convergence result.
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1. Introduction. Let I = R\Z be the periodic unit interval (i.e., the one-
dimensional torus) and consider the curve shortening flow on the plane, i.e., the
evolution of a curve

T(t) = {X(&t): €T}, telo,T),

described by a parametrization X(-,t) : I — R? satisfying the following geometric
evolution equation:

1 1
HX =Hn=——0 <8 X) for £ €T and t € (0,77,
(1.1) ' ESSRNEE O

X(£,0)=X°(¢) for £ €1,

where H and n are the curvature and normal vector of the curve, |0¢ X| denotes the
length of the vector 9¢ X, and X 0 is a given parametrization of the initial curve I'°.
Curve shortening flow is also known as mean curvature flow of curves.

Numerical approximation to the mean curvature flow by parametric finite element
methods (FEMs) was first considered in the pioneering work of Dziuk [8] in 1990. Since
then, many other techniques have also been developed for approximating the mean
curvature flow by using parametric FEMs, including the method of artificial tangential
velocity introduced by Deckelnick and Dziuk [6], the methods of Barrett, Garcke, and
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Niirnberg based on different variational formulations [3] or different test functions [4],
and DeTurck’s trick of reparametrization proposed by Elliott and Fritz [11]. These
methods allow the computed curves or surfaces to move tangentially in order to yield
better distribution of the nodes.

However, proving the convergence of parametric FEMs for mean curvature flow
of closed curves or closed surfaces is not an easy task. In particular, convergence
of all the methods mentioned above still remains open for mean curvature flow of
closed surfaces. Convergence of nonparametric FEMs for mean curvature flow of
graph surfaces was proved by Deckelnick and Dziuk [5, 7], but the analysis cannot be
extended to parametric FEMs for mean curvature flow of closed surfaces. The only
convergence result of parametric FEMs for the mean curvature flow of closed surfaces
was in [12] for an equivalent system of equations governing the evolution of normal
vector and mean curvature, instead of for the original equation of flow map studied
by Dziuk [8].

As for curve shortening flow, convergence of the above-mentioned methods has
been proved for semidiscrete parametric FEMs with piecewise linear finite elements
in [6, 9, 11] (we refer to [10, 14] for the anisotropic case). Convergence of a fully
implicit scheme was analyzed in [15] by essentially extending Dziuk’s proof to the
time-discrete case. Convergence of a linearly implicit fully discrete parametric FEM
was only proved for the method with DeTurck’s trick recently by Barrett, Deckelnick,
and Styles [2] (this includes the method in [6] as a special case). The analysis based on
DeTurck’s trick used in [1] for axisymmetric mean curvature flow can also be applied
to the curve shortening flow. As mentioned in [2], the convergence proof therein
benefits from a tangential velocity which improves the parabolicity of the equation,
while the main difficulty of numerical analysis for the original equation (1.1) is the
lack of full parabolicity; namely, there does not exist a positive constant A\ satisfying

1 1
(1.2) (Magx— Wagy) (X —Y) > Noe(X —Y)?

even if X and Y are sufficiently smooth and close to each other. Thus the convergence
proof in [2] cannot be extended to the original equation (1.1) without tangential
velocity.

As far as we know, convergence of Dziuk’s original linearly implicit parametric
FEM has not yet been proved in the literature. Even in the semidiscrete case, the
convergence proof in [9] is based on the finite difference structure of the piecewise
linear FEM, which allows people to write down and utilize the evolution equation of
the discrete length element. Thus the proof in [9] cannot be extended to higher-order
finite elements for which the evolution equation of the discrete length element can
hardly be written down. Nor can the proof of [9] be extended to full discretizations.
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In this paper, we present an error estimate for Dziuk’s original linearly implicit
parametric FEM. Find a solution X" € S}, x S}, satisfying the following weak form:

1
(1.3) /|85X}T71‘(57-X,T’ - Vp, d§+/W85X}T -851)}1 dé =0 Vv, € Sy xS,
I I CgAp

with initial value X,? = II;, X° (the Lagrange interpolation of X?), where Sj, x Sy, is
a standard vector-valued Lagrange finite element space consisting of piecewise poly-
nomials of degree r, and

XIT _ X;Zn_l

0 X" =
T h T
In the error equation of the semidiscrete FEM, i.e.,

90X 9X
/H\3§X| (X — Xp) - (X — Xp)d¢ + /11 (W&X| - 3£X|) - O (X — Xp)d¢

_ / (196 X| — 19 Xa]) 9 X - (X — X3 )de,

controlling the right-hand side by the left-hand side is a major difficulty, which Dziuk
overcame by working with the equations satisfied by the length elements. For higher-
order finite elements, the equations satisfied by these quantities are difficult to write
down. In this case, our idea is to use the following identity (to control the right-hand
side of the above error equation):

(1.4)
e X 8§Xh> /1/ 1 )
e 20X — X )dE = —————|ng - Oc(X — X},)|7d&dB,
[ (o o) o = xae= [ [ ming - ocx —xag

with Xp, 9 = (1 —60)X,, + 06X and ng denoting the parametrization and normal vector
of the intermediate curve I'y, g = {X},9(§) : € € I}. Equality (1.4) is a result of the
mean value theorem under the following conditions:

1

> — 1
Z o v e0,1],

(1.5) ||Xh70||W1,oc(I[)SC* and 1?611]11|8th79(§)|

where C, can be any constant independent of 6. We use (1.4) together with the
following estimate:

(1.6)

~ [(10eX] = 196X 21X - (X - X1)de
I
1 1 %
< OIX = X2 (/ /7\719 C0:(X — X)) dfd@) + higher-order errors,
0 J1 10 X0l

which will be proved in our error estimation in section 3.6. Then the first term on
the right-hand side of (1.6) can be bounded by (1.4) and using Gronwall’s inequality.
The idea of using stability estimates (1.4)—(1.6) is realized in the fully discrete case
for Dziuk’s linearly implicit scheme (1.3).
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In the next section, we present the main theorem of this paper. The proof of the
main theorem is presented in section 3. In section 4, we present numerical experiments
to support and complement the theoretical convergence result.

2. The numerical method and main result. Let 0 = & < & < -+ <
Emr = 1 be a quasi-uniform partition of the periodic interval I, and denote by S;, the
Lagrange finite element space of degree r, i.e.,

Sp={v e ) : v ¢,,] is a polynomial of degree r, j =1,...,m}.

EGi—1)rs

Let t,, = m7r, m = 0,1,..., N, be a partition of the time interval [0,7] with
uniform stepsize 7 = T/N. We approximate the curve I'(¢,) at time ¢t = ¢,, by a curve

h={XKE): e}

parametrized by a finite element function X;' € Sy x S, determined by Dziuk’s
linearly implicit parametric FEM (1.3). The main result of this paper is the following
theorem.

THEOREM 2.1 (convergence of Dziuk’s linearly implicit parametric FEM). As-
sume that the parametrization X : 1 x [0,T] — R? is sufficiently smooth and

2.1 min 0e X (&,1)| > Kk for some positive constant k.
(2.1) (U)E]IX[O’T]I X&) =k f p

Then forr > 3 there exists a positive constant hy such that for h < hy and T = 0(h2'5),
the discrete problem (1.3) has a unique solution X]" € Sp, XSy, which has the following
error bound:

2.2 XM -Xr < h").
(2.2) 1%?3%(1\;” nllzz@ < C(r+h")
Remark 2.1. The stepsize restriction 7 = o(h?®) is required to guarantee an

o(h) error bound in the W1* norm through using an inverse inequality in the error
estimate (2.2). This W >-error bound is used to control several nonlinear terms
appearing in the error estimation.

3. Proof of Theorem 2.1.

3.1. Consistency errors. Note that the exact parametrization also satisfies the
weak form

(3.1)
1

/|85Xm71|5TXm -vp d€ + /7_3ng . 8,51),1 dé = (dm,vh) Vop € Sp X Sp,

1 1|0 X™m1
where

(dm7vh) = /d7nvhd£a
I

with

A = |0 X" (0, X™ = 0, X™) + (10X = |0 X ™ )0 X ™

1 1 .
‘85K|agxm1| - |a§Xm|> 0 X }
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being the defect of time discretization, satisfying the following consistency estimate:

(3.2) HdeLz(H) <CrT.
Let
(3.3) e =X"-X3", ppt=X" -1, X™, and 7 =1,X" - X",

which satisfy

en = Ph + -
The function p}* is the interpolation error, which satisfies the following standard
estimate:

(34) ol + 1005 Loy + Plloi lwrce@y < CRFHIX ™ [yr1,00 (0,341,001 -

3.2. Mathematical induction. The convergence proof is by induction on the
integer k£, with 1 < k < N. We assume that X;", m = 0,...,k — 1, are given and
satisfy the following estimate:

(3.5) llen llwiee @ < h.

Since €)) = X — II, X, the inequality above holds for m = 0 when h is sufficiently
small. Under the induction assumption (3.5) for 0 < m < k — 1, we shall prove that
XF is uniquely defined and (3.5) also holds for m = k.

Let

(3.6) Xpty = (1—0)X]" +6X™,

which is the parametrization of the curve I'}’y = {X}L’f@(f) : & € I} intermediate
between the numerical solution and exact solution. We denote by

m—1 __ aﬁX;:e_l (g)

T — - m—1 __ mfl)L
MO 0eX T (©)]

and ny'g —(’Thﬂ

(3.7)

the unit tangent vector and unit normal vector on the intermediate curve I'}'y L

respectively, where (7, 1)+ denotes rotation of the vector Tho ! by an angle of 7/2.
The tangential and normal vectors on the exact curve I'™ are denoted by 7™ and n™,
respectively. For a function vy depending on a parameter 6 € [0, 1], we will use the

following notation:
1 , 3
||710HL3(0,1;L2(11)) = (/0 ||U¢9L2(11)d9> :

From (3.4)—(3.5) we derive that for sufficiently small h
(3.8) lnn [lwieeqy < 2k for 0 <m <k —1.

Then (3.5), (3.8), and (2.1) imply the following estimates (for sufficiently small h that
is independent of k):

(3.9) ler ™ Hiwroo @ + 107 Hiwreem < Cih for 1 <m <k,

(310) X5 wi) <G and min|de X5 (6)] > for 1 <m < k.

N =
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With the properties in (3.10), the tangential and normal vectors 7, ' and n)'y * are

well defined by (3.7) for 1 < m < k, and

In™ =035 @y < 0™ = 0™ ooy + 0™ =03 L
= [|n™ =™ gy + 77 = 7 Lo
< 0™ =™ Mgy + Csllep Mmoo
< Cy(t+h)

(3.11) < Csh for 1<m <k,

where the last inequality requires a stepsize restriction 7 = O(h). The constants C},
Jj=1,...,5 may depend on the norm ||.X||¢2([0,);53 (1)), but are independent of 7, h,
and k.

In the next several subsections, we estimate the error of the numerical solution
X" for 1 < m < k under the induction assumption (3.5) for 0 < m < k — 1. The
inequalities in (3.9)—(3.11) will be frequently used in the error estimation. To simplify
the notation, we denote by C a generic positive constant which may be different at
each occurrence but is independent of 7, h, and k (since we are using mathematical
induction on k).

3.3. The error equation. With property (3.10) we immediately see that the
linear equation (1.3) has a unique solution X }’j € Sp X Sp. By using the mean value
theorem, for a general function f(9¢X™ !, 9¢X™) we have

FOX™ 1 0eX™) — f(Oe X, 0e X1

1
(3.12) = /0 (ageygl. o, f(agx;;j;l,agxg'}@)Jragehm. azf(agx,j}el,agx,’;}@))de.

For the function

aX?’n
De XML X ™) = o
f( 3 » V¢ ) |a£Xm—1|’

we have

m—1 m—1 m m—1 m—1 8§X;T9
Oeey - NJ(OeXyly " 0 Xily) = —Ocey+ OeXiy oot
|06 X1 |
. - m Ocep’
Ogep’ - aZf(aéXh,e 1785Xh,9) = #
‘ EXh.0

Hence, (3.12) implies

1 1

m m

—— 0 X" - —0: X
|8€X7n—1| 3 ‘aEX;Ln—1| EAh

3.13 m— m

(3.13) ! 1 m 1 w0 Xy ! 0e X3

= m—1 ageh - m—1 856h ! m—1 m—1 de¢
0 \[0:X}" 10 X} 10X} 71/ [0 X7y
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Then, by subtracting (1.3) from (3.1) and using (3.13), we obtain the following equa-
tion for the error " = X™ — X"

1o ek e+ (0™ = 10678 X v dE = (Ao on)
I I
/( L gexm L axm) Devn dé
- - T v —11 T 18 vm—1, ° h
s \[Dexm=1] % ES Gt
[t 1 - 1 oy OeXTT\ G X
= */ / (Waseh - W<afeh . 3 X}:rle_l ) 3 er};,—gl )de} - Ogvp, A€
TLJ0 |§ h,0 ‘& h,0 |£ h,0 |5 h,0
e 1 1 m OeXTTN e X!
-/ / (e~ s (26 i) e )] -oeonas
I |£ h,0 ‘ﬁh,O |£ h,0 |£ h,0
o1 e Xpy 35(X}T9—X;7f51)d9 Bewn d
+ 19 vm—1| 5 h ' m—1 m—1 + OgUn 5
1 |55X 10 X} 10 X3,
DX\ e X
_/ / m—1 (35( 6;771)' : ?,;0,1) < pren d9:| Oevp d€
|85Xh9 ‘8§Xh,0 ‘85Xh0

[ [ on e (O ) ol D)

(3.14)
+ K1"(vn) — K3" (vn),

where we have used the following identity in deriving the last equality:
e Xy ) e Xy
06X 1/ 10Xy

= (n ZL91 afeh)”?91~

856’;7 — <85621 .

By using the decomposition e}* = pi* +n;"*, with p}* and 7;* defined in (3.3), equation
(3.14) can be rewritten as

/I&ng Yorm vhd£+/ /E)EX (nyry ' - Dempt) (i "+ Devn) A€
— [0 6
+ 06X = 0 b - un e

= [0~ o o, X un e
I

1
1 .
_/0 /11 |85Xm—1 h9 - Oy’ )(”h,el - Ogup) A€
h,0

+ K7"(vn) — K3"(vn) + (dim, vn)
(3.15) =: —J™(vp) + J3 (vn) — J3 (o) — I (vn) + K (vn) — K5 (v) + (dm, vp)-

In the end we will substitute v, = 7} into the error equation above. To this end,
we present the estimates for J™(n})") and K™ (n;") in the following three subsections.

3.4. Estimation for K*(n;*), J{(n*), J3*(ny*), and J*(n;*). From
(3.6) we obtain

XM= Xty = (1 =0)(X" = X}") = (1 - 0)ey’

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/03/23 to 158.132.161.185 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2322 BUYANG LI

By using this relation, for any v, € Sj, we decompose K{"(v,) into two parts, i.e.,

K{"(vn)
1 1 De XL N (X, — Xl
/{/ m—1 <a§62n_1' ‘ }:Le—l) 5( - m—1h70 )dO] '8£”hd§
1LJo |9:X3) 10 X" 10 X1
1 DXyt De(Xm — X1

1
= — 6£em71 . po ) peegn d9:| . (r“)g’l)h d¢
/ﬂ[/o |8£Xh,0 ' ( " |8§Xh,0 1| |8€Xh,0 '

1 m—1 m—1

1 (‘9X 8 m_a

1 g (e o ) 5 1 - oo - deonae
1LJo |9:X3 0 X}y 10 X"

=: K{nl(’l}h) + Klnﬁ(’l}h)

By using properties (3.9)—(3.10) of the induction assumption, it is easy to see that for
1 < m < k the following estimates hold:

K71 (vn)]

< Clloger ™ 2@ 10 (X™ = X™ Y[l oo (1106 vall 121y

< C7)0¢er 2 ll9evnll 2y

< Ch?||0ce) | L2l Ocvnl L2y (use the stepsize restriction 7 = O(h?))

< CH2(19ep 2y + 106 o) eunllzagy  (use e = o=t 4 )
< C" ™+ {In Hlrz@)llvallzay  (use (3.4) and inverse inequality),

| K15 (5]
< C0eei M e mllOelen — ep 2wl Oevnll L2

< Ch(10e(m =i Dz + 10e (o = o3~z 10¢vnllr2y  (use (3.9))
< C(h g =i Mlpz@y + B ||lvnll 2y (use (3.4) and inverse inequality).

Combining the two estimates above, we have
(3.16) (KT (vn)| < CO" + ™ ey + Bl =0~ Hlzz@) lonll 2.

As for KJ"(vp), defined in (3.14), we have the following rough estimate (which will be
refined in the next subsection):

|K3" (on)] < Cll0c(ert — el L2 l|Ogvnll L2
< ChH(||0e (mi? — 772%1)||L2(J1) + [|0¢ (ph' — P;Inil)HL%H))HUh”Lz(]I)
(3.17) < CRTY R = n e + Bl 2 -

By using the interpolation error estimate (3.4) and properties (3.9)—(3.10) of the
induction assumption, it is easy to see that for 1 < m < k the following estimates
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hold:
(3.18) |7 ()| < Cllé-pi | 2y lvallzay < CR™How |l L2y,
T3 (on)| < CllOepi 2 lini's - OevnllLz 0,122 ()
(3.19) < Chr””Zfe_l “Oevnll L2012y
195" (vn)| < CllOcer I 2 llvnll2 @)
< CU0emy 2y + 19¢oi M zay) lvall L2y
(3.20) < Ch MMz + ) lvall 2,

where we have used the decomposition e;l"_l = p’;f_l + r],T_l and inverse inequality
in deriving the estimate for |J§*(vy)|. As for |J3*(vp)|, by using (3.9) we have

(3.21) |J5"(vn)| < CllOeei e lo-ni Iz lvallzza < ChlSR | z2mllvnll L2 -

To obtain an estimate for ||6,7;" | 2y in the last inequality, we rewrite (3.15) as

A@mr%wﬁw@

1
1 m— m m—
= —J"(vp) — J5" (vp) — / / e (g L. ey ) (' L Oevp) A€
0 JI |85Xh,9

+ Kin(vh) - K;”(vh) + (dm,vh),

which does not contain J3*(vp) and JJ*(vs) now. By using the estimates of K" (vp,),
K5 (vp), J(vn), and J§*(vp) in (3.16)—(3.20), the equation above implies

J1eex o nag
I

1
m 1 m— m—
<\ <vh>|+|J?(uh)|+‘ / / s B (n - D) d
0 J1 [0¢ X}
+ |KT"(0n)] + |K3" ()] + [(dim, vn)|
< Ch™ Y opll g2y + O™z + 27 lonl 2

+ ||”Zl,(;1 : 35621HL3(0,1;L2(H))H”Zf;l *O¢vnllrz(0,1;221))
+ (CR ™+ Cln Mizeqy + CR™2 it = 0 Mz lonll L2y + CTllvnll 2 -

By using the inverse inequality |n}'," - Oevnllr201:02(m)) < Ch™on L2y, the in-
equality above is furthermore reduced to

J oo, e

I

< (Cr+Ch =+ Ch M M2y + Ch 72 {In — M2 ) lowll L2
(3.22) + Ch™Hnpy - 9een' [ 20,1522 ) 1onll L2y

where v, € S, can be arbitrary. If we denote by (-, ), and | - ||, the inner product
and norm on S}y, defined by

(G U)o = /H 10X g v de and (| énllm = v/ (Bns O )
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then the two norms || - ||, and || - [[z2(1) are equivalent because both |0: X771 and
|0¢ X;~ |~ are bounded, as shown in (3.10). By using this equivalence, (3.22) implies

(323) |(5T77hm7vh)m| < Uh”vh”m Yy € Sh,
with
Op = CT + Chril + Chil ||77;Ln—1 ||L2(]I) + Chiz‘l’/];]n — T];Ln_lnLQ(]I)
+ ORIyt - Beeq |l L2 0,502 1))

Substituting vy = -1} into (3.23), we obtain ||0;97*||m < Cop. Then, by using the
equivalence between the two norms || - ||, and || - || 2y, we obtain

10-n1" | L2y < Cop.
This, together with the definition of oy, implies

607 | 2@y < CT 4+ Ch™™ + Ch™Hn M ey + Ch2|mi — 0 e
(3.24) + Ch™ 1||” o Ocell 22 0,1:2(1)-

Then, substituting (3.24) into (3.21), we obtain

T3 (on)| < O(r + b7+ g = mi ™ ey + Iy~ ez o) lonll 2
(3.25) + Clingg - Oemi |l L3 0,122 @y llonll 22y
The estimates for K3*(ny*) and Ji*(n;") obtained in this subsection cannot be

used directly in our error estimation. Improved estimates for these two terms are
presented in the next two subsections.

3.5. Estimation for KJ*(nj*). We first present estimates for K3"(e}") and
K35 (py). Then the estimate of K3*(n)") follows from the decomposition K3*(n})") =

Ké"(ﬁ?) — K3 (p})-
We decompose K3*(e}’) into three parts, i.e.,

K2 eh

Lol ) (X aXp Y
9 XM 1 ’ B Xm—l ® p) Xm—l %3 f
|£h9 ‘fh,e |5h,9‘

Oe(e —ep ™) [ eXm—t g Xmt m
// |0 X—1] ’ |0 X 1] ® |9 X1 - Ogey,'dfd€

// Oelefy — ejl~ Y (&X?ﬁel X}y P xm! 8gxm1)

— ®
06Xy 0 X775 T 10Xy | 19X T |9 X
- Ocep dOdE
! 1 1 DeX™ b GeXxml
[ e~ e Y- (R i)
o \JGeXpig T [9exm—1] )T |G Xm—1] [0 X1
- Ocepdode

= K3i(ep') + Kaz(ep') + Kaz(en’)-
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By setting X! = X and using the inequality

1 1 1
(3.27) (a—0b)-a==(a®>=b*)+ =(a—b)? > =(a* - V?),
2 2 2
with
ang—l 85Xm_1
a=0ce —=——— and b=0l . 2 ——
PSS g xmT]
we obtain the following estimate for 1 < m < k:
K21 eh
8§Xm71 2 1 m—1 angil 2
: - S22 ] )ded
/ / (\agxm 1% exm1]| T B[ % gexnT] ¢
m 85X’"*1 2 1 m—1 ang72 2
== — : - L2 | )ded
] / (e e cscmmr| = oo ek ™" g | )00
1 ! 1 mo1 O XML PP 1 o1 OeX™2 |7
= R, — : - S22 1 )ded
2 L, G el | ~ om0k ™ ocimm| )04
1 ! 1 m OeX™ P 1 o1 OeX™T2 7
= PR — : - 22 )ded
>3 /) (o e fssemmr| = o ek g | )00
- CTI\ﬁgeZ”_ll\iz(n)
om 8§Xm71 2 1 m—1 (9ng72 2
: - S22 ] )ded
/ / (Wm 1% x| T x| gexn) ¢
(3.28)
= Cllni*~ ||L2(11) Ch¥*2,
where we have used the stepsize restriction 7 = O(h?) and inverse inequality in
deriving the last inequality. Since the term
1 Heem 1 anm—Q 2
e e
[0 X275 (9 X2

is artificially introduced in (3.28), in the case m = 1 we can simply set X ! = X0,
Furthermore, by using (3.9) we have

[ K35 (en)]

// Oclefy — ") (5§X2’?91 o Xl axmt agxm1>
0 X775 10Xt 10X T [0 X

- Deep dedg‘

< C|10e(ert = ey 2w lloeen e mllOcen | L2y
< CU10e(n = i~ zzm + 100 = o™ Dl 2@)Ch(llOeni | L2ty + 103 |22 ry)
< C Mgt = 2@ + BY)CR(W it 2y + h7)
(3.29)
<eh 2|l = e + Ce i 72 + Ce ™R,
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where € can be arbitrarily small. By the same estimation as (3.29), we have

| K33(eq’)

1 m—
// <|8§X |8£Xm1|)8€(e — € 1)

ang 1 aEXm—l m
. (|8 X7 ® 9e x| - Ogey'dfdg

< Clldeey ™l poe @19 (e — e~ Dllz2 @ 1 9eer | 2
(3.30) <eh 2| — i e + Ce M 72y + Ce™ R

Combining the estimates of K37(el"), K33(e'), and K3%(e) shown in (3.28)—(3.30),
we obtain

K3 (ef?)
8£Xm—1 1 . 85Xm_2 2
a m _ 8 m— OgA™ ™ ded
3, / (agxm | fpexm]| T gz K g | )0
(3.31)

—eh 2 = e w — Ce my e + I 1 Z2my) — Ce™ A

In the case m = 1 we have X! = X° in (3.31). From the expression of K¥*(v;) in
(3.14) we can see that

|K3" (Ph')]

< Cl(er’ = e Dz lloeph I 2y

< C19 (e = ep ™ llz@h” (use (3.9))

< (C||85(772” =y ez + Clloe(pi — pi~ Dllzza)h”  (use e = + pf')

< (CllOe(ni? = my L2 + Ch)RT (use (3.9) again)
(3.32)

< eh™?|nit =yt 1||L2(H)+CE th?r,

where we have used inverse inequality in the last inequality. By using the relation
= ep’ — pp and estimates (3.31)—(3.32), we obtain

K3*(ny'")
= K3"(ep") — K3"(py")

333// (I(%Xm g

—eh2 |l =y Eew — CeT My lea + lInillzz ) — Ce™ >
with X! = XY in the case m = 1.

3.6. Estimation for JI*(vp). We use (3.12) to estimate [0 X™ 1| — |9 X, |
with

angfl
|0 X1

angiz
oexm2]

2
)dedg

Ocep,' -

m—1
e X'y

F(OeX™ 1 0:X™) = [0¢X™ ! and Blf(anh ,0e Xp'p) = WT
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This yields
Loy

m—1 —1
|0 X7 — |0 X3 |=/ W

- Ogejr1do.
By using the definition of J§*(v;,) in (3.15), we have

J3" (vn) = /(Iangfl\ - |85X,7;“1|)57Xm -vp d§

8£X m—1 m
/ /(8 X Ocey )((LX - vp,) d€do
3
oxm N
IS o e

6£X aEmel
+/ /( >.aeT—1 5. X™ - vp) dEdo.
o JI |a§X}L9 |85Xm—1| ECH ( h)

Using integration by parts, the first term on the right-hand side above can be written

as
[ (22 ) o.xm wyacas
/ /<@£§: 1| GT_1>(5er~8§vh)dgd9
/ /(&f{z 1| )(355 X™ . vy)dedo

//( (éﬁﬁ: 1) )(5 X™ - vp,) dEdo.

Substituting this into the expression of Ji"(vy) above, we obtain

J3" (vn) = /|a X 1|(35Xm Lo (0, X - Dgun) A€
8 XM ! m— m
3£Xm 1 "
/@Q@Xml> TG ) dg

e X5 DeXm~1
+/ /( o >.a em (6, X™ - vy) dEdO
1 |85Xh79 1 |8£Xm—1| ECh ( )

(3.34) Jm(’l)h) + J?g’(vh) + Jgg(vh) + Jﬂ(vh).

Note that
;X" =0 X"+ (6 X" -0, X™)=H"n™ + E™,

where H™ and n'™ are the curvature and normal vector on the exact curve I'"*, and

E™ = §,X™ — 9, X™ is the truncation error of the backward Euler method. The
latter satisfies the following estimate:

|E™ | oo @y < OT.
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Substituting 6, X™ = H™n™ 4+ E™ into the expression of J37 (vp) in (3.34), we obtain

. B (9§Xm 1 Z@ 1 - 8§Xm_1 m—1
ng(’l)h) \/HWM(H n '85@}1) d£+AW(E ag'Uh) 5

Xm 1, m 1 »
/ / GexcmmayH i Oeon) dgdo

axm 1, m 1 . .
// |0 X 1| [H™ (0™ = nj'y ") - Ocvn] d€do

De Xt eyt
//fang (B - Ocvn) dedo

=: (’Uh) + J31 (Uh) + JSl(Uh)

where

51 ()] < Cllep ™ lzamling'y " - Oevnllz 0,122

1
751 (vn)]| S/O Cller ™ llz2lln™ = n3g 2 | Ocvn 2 A6

< Chllef N z2mllOevnll 2@ (estimate (3.11) is used)

< Clle rzmllvnll Lz (inverse inequality is used)

|53 (on)] < Clle ™ 2wyl Oevnll L2
< Chllef M L2l Ocvnl L2y (stepsize restriction 7 = O(h) is used)
< Cllep ez llvnll L2y

where we have used inverse inequality in the last inequality. Combining the above
three estimates, we obtain

(3.35)
| /31 (vn)]
< Cllepmllvall 2y + Cller M2 lInite - devnll L2 0,122y
< Ce e ey +elngst - 85Uh||2L§(O,1;L2(H)) + Cllonl 22y
< Ce W2 4 el Gy +ellniis - 3£Uh||2Lg(o,1;L2(11)) + C\|Uh||2L2(11)

where e can be arbitrarily small, and we have used the decomposition )™~ = 7"~ Ty
m—1

pp'~ " with estimate (3.9) in the last inequality.
Similarly, using the expression of Ji%(vy), J5%(vp), and Ji(vp) in (3.34), we have

m m aXm7 m—
5o+ 5o = | [ () 00, g

ang ' m—1 m
| foe{atm) et gmmag

< Clley Mz llvallzzam
< CUm Mz + llop ™ zza)lvnllz2
(3.36) < CR* 2 4+ Cllny~HlTeqy + CllonlZ2q
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and
1 9. xm-1 9. xm—1
m £ h.0 3 m—1 m
|J ('Uh)|_‘/ /( e — >.ae (6, X™ - vp,) dedo
34 o )i ‘athﬂl |8€Xm 1] $Ch
1
< [ Clloeer= = 10eei iz ollonl ot
< Ch|0¢ey M rewllvnllzem (here (3.9) is used)
< Ch(19¢py 2@y + 10eny ™ lz2m)llvall 2o
< +n Nz lvnll 2 (inverse inequality is used)
(3.37) < CR 2 4+ Ol T2y + Cllval 2y

Then, substituting the estimates of J37 (vp,), J55(vr), J5a(vp), and J§(vp) into (3.34),
we obtain

5" (vn)]| < Ce™ R 2 4 Ce™ M 2oy + CeHlvnllZagy
(3.38) +elnig " - Oevalliz o nir2ay

where € can be arbitrarily small.

3.7. Error estimation for 1 < m < k. Now we substitute v, = 7}’ into
the error equation (3.15), move K3*(n") to the left-hand side of (3.15) and use its
lower bound in (3.33), and use the upper bounds of |J{™"(ni*)|, |J5" ()], |J5 ()],
[T (n)], and [K7*(n)] in (3.18), (3.25), (3.38), (3.19), and (3.16), respectively.
Then we obtain

e X™ 15777 d§—|—/ / o - Oemy! 2d§d9
[J 3 | h 0 |9§Xm 19 yvm—1] | h@ &M ‘
m—1 65‘<m 22

1/ 1 Pexm=1 |2 / 1 5
2 Jy [0e X1 2 Ji[oe x2S o xm ]

—_— d
DX 1] .
< O 4 1)+ Ce (I By + I )

8§€hm .

+eh Pl =y e +ellngy ! '8€UIT||2L§(O,1;L2(]I))'

By choosing a sufficiently small €, the last term above can be absorbed by the left-hand
side, and we obtain

/H|85Xm_1|5777h nodé+ - / /|85Xm in h91 Oeny! | d¢do

l/# DXt P ,/# P
2 J |0 X1 |0 X1 2 Jr |0 X™m=2|
(3.39)

< Ce N+ h2) + O (| oy + I~ W Zewy) +eh ™2l = 1z -

ang72 2
| X2

m—1

65 621 . df

Similarly as (3.27), by using the formula

2 el U 1
Sopm .y — h T am _m
Mk 5 + ot =y
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we have

/H 0 X8, - e

m|2 m—12 m m—1|2

— ) Xm—l |77h| — |77h | d /8 Xm—l |nh — | d

Jioexc L ae a1 B ae

/|8€Xm||77h > - |3§Xm P /\3£Xm\ |0 X™™ 1|| m12 ge

2T
/|a xXm— 1‘|nh |2 df
ml|,,m|2 _ m—1{[,,;m—12
Z/|35X [lr | ;@X [l " d
T

(3.40)
m 1 m m—
— Clnit 72 + CT’H% =y, 1||2L2(]I)'

Substituting this result into (3.39) yields

|0 X ™ ||n [ = |9 X [my 1 /1/ 1 . )
de + = |t Qe 2 dEdd
/]1 2 /o |65Xh6 T 1Mhe £ |

2T
1/ 1 Gexm L /
2 I |8£Xm—1| ‘8 Xm— 1| |66Xm 2|

< Ce™ M+ b)) + O I 12y + Ik~ e )

1 - m m—
()i

(3.41)
<O +07) + Clnp 2 + Ini ™ I72m),

2 85Xm*2 2

[0 X ™2

m—l

afe;” .

where the last inequality holds if 7 = O(h?) and if we choose a sufficiently small .

By summing up the above inequality for m =1,...,¢ < k, we obtain

/ |85X‘3 |nh|2d£+ Z (s '%ﬂ?“%g(mhm(ﬂ))

142
T D
z . d
"2 / 9ex1]| % T, Xf—1| ¢
T 1 o O X0 5
— d h T
R R R R
¢
SCE+R)+Cm Y 720
m=1
Then, by applying Gronwall’s inequality, we obtain
k
G40 okl +7 3 s 0 ey < CO7 ),
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3.8. End of mathematical induction. By using inverse inequality, we have
[np lwoe ) < Ch_%H??]ﬁHLz(n) <Ch™3(r+ h").
This, together with the interpolation error estimate (3.4), yields
e lwioem < Ik lwroe + ok llwro@ < C(rh™2 + A"=3) + Ch".
If r > 3, then for sufficiently small h and 7 = o(h?®) there holds
ek llwree @ < h.

This completes the mathematical induction on (3.5). Therefore, the estimate (3.42)
holds for all 1 < k < N. The proof of Theorem 2.1 is now complete. 0

4. Numerical experiments. In this section, we illustrate the convergence of
Dziuk’s linearly implicit method (1.3) for the curve shortening flow with initial value

(4.1) X°(€) = (cos(§),sin(€)), € € [0,2x],

which is the unit circle on the plane. The radius of the circle evolving under the curve
shortening flow satisfies (cf. [13])

R(t)=v1-2t for t€0,3).

We approximate the curve shortening flow with initial value (4.1) by using method
(1.3) with a uniform mesh size h and time stepsize 7. Tables 4.1-4.3 contain the
errors and convergence rates of numerical solutions at time 7' = i computed by using
different degrees of finite elements. The spatial convergence rates are computed by
choosing stepsize 7, = h"t! and using the formula

log (13%?%% 157 = X2/ 1<mENy 2 X~ X%”LQ(H))

log(2)

convergence rate =

with N, = T/7y, based on the numerical results of the finest two meshes. The
numerical results in Tables 4.1-4.3 indicate that the numerical solutions using finite
elements of polynomial degree r have rth-order convergence in the L? norm when
r = 3, and (r+1)th-order convergence in the L? norm when r = 1,2. The convergence
rate when r = 3 is consistent with the result proved in this paper. In the case r = 1, 2,
some special properties of low-order finite elements may play a role for the method
to have optimal-order convergence. In the semidiscrete case, this was shown in [9]
for the case r = 1 by completely different error analysis. In the case r = 1,2, error
estimates of Dziuk’s linearly implicit schemes still remain open.

In Table 4.4, we present the errors and convergence rates of time discretization,
with a sufficiently small spatial mesh size h = % so that the errors from spatial
discretization are negligibly small. In particular, by choosing such a sufficiently small
spatial mesh size, the numerical results obtained by using finite elements of polyno-
mial degrees r = 1,2, 3 all agree. The numerical results in Table 4.4 indicate that
the stepsize restriction 7 = o(h?®) in our proof may not be necessary in practical
computation in observing the first-order convergence in time.
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TABLE 4.1
Error of numerical solutions up to T = % (with r = 1 and mesh sizes h = i—’;, T = %)

M 1<m Ny, IX™ = X2 1<mENy, X X
8 1.782E-1 5.603E-1
16 4.483E-2 2.831E-1
32 1.122E-2 1.419E-1
Convergence rate 2.00 1.00
TABLE 4.2

Error of numerical solutions up to T = i (with r = 2 and mesh sizes h = i—’;, T = %)

7 e X=X gy |, _max X = X
8 6.942E-3 5.711E-2
16 8.722E-4 1.437E-2
32 1.091E-4 3.599E-3
Convergence rate 3.00 2.00
TABLE 4.3
Error of numerical solutions up to T' = i (with r = 3 and mesh sizes h = QW“, T = M%)
M 1<m Ny, IX™ = X2 1<m Ny, X" X
8 8.937E-4 7.183E-3
16 1.104E-4 1.808E-3
32 1.376E-5 4.534E-4
Convergence rate 3.00 1.99
TABLE 4.4

Error of numerical solutions up to T = i (with mesh sizes h = 1(2)% and T = %)

N y2oax X = XM e
r=1 r=2 r=3
8 5.043E-2 | 5.044E-2 | 5.044E-2
16 2.684E-2 | 2.685E-2 | 2.685E-2
32 1.387E-2 | 1.389E-2 | 1.389E-2
64 7.057E-3 | 7.069E-3 | 7.069E-3
Convergence rate 0.97 0.97 0.97
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