
Parallel and Communication Avoiding Least Angle Regression

Swapnil Das∗ James Demmel† Kimon Fountoulakis‡ Laura Grigori§

Michael. W. Mahoney¶ Shenghao Yang‖

September 15, 2020

Abstract

We are interested in parallelizing the Least Angle Regression (LARS) algorithm for fitting linear regression
models to high-dimensional data. We consider two parallel and communication avoiding versions of the
basic LARS algorithm. The two algorithms have different asymptotic costs and practical performance. One
offers more speedup and the other produces more accurate output. The first is bLARS, a block version of
LARS algorithm, where we update b columns at each iteration. Assuming that the data are row-partitioned,
bLARS reduces the number of arithmetic operations, latency, and bandwidth by a factor of b. The second
is Tournament-bLARS (T-bLARS), a tournament version of LARS where processors compete by running
several LARS computations in parallel to choose b new columns to be added in the solution. Assuming that
the data are column-partitioned, T-bLARS reduces latency by a factor of b. Similarly to LARS, our proposed
methods generate a sequence of linear models. We present extensive numerical experiments that illustrate
speedups up to 4x compared to LARS without any compromise in solution quality.

1 Motivation and outline

Recently there has been large growth in data for many applications in statistics, machine learning and signal
processing and this poses the need for powerful computer hardware as well as new algorithms that utilize the
new hardware efficiently. Commercial hardware companies started to construct multicore designs because the
performance of single central processing units (CPUs) is stagnating due to heat issues, i.e., “the Power Wall"
problem [31]. In terms of software and algorithm implementations for processing large-scale data, the increased
number of cores might require synchronization among them and this results in data transfer between levels
of a memory hierarchy or between CPUs over a network. For this reason the total running time of a parallel
algorithm depends on the number of arithmetic operations (computational costs) and the cost of data movement
(communication costs). The communication cost includes the “bandwidth cost", i.e. the number of bytes, or
more abstractly, number of words, sent among cores for synchronization purposes, and the “latency cost", i.e.
the number of messages sent. On modern computer architectures, communicating data often takes much longer
than performing a floating-point operation and this gap is continuing to increase [35]. Therefore, it is especially
important to design algorithms that minimize communication in order to attain high performance on modern
computer architectures.

In this paper we will propose two novel parallel and communication avoiding versions of the least angle
regression algorithm which is a very popular method for sparse linear regression [17]. A plethora of applications

∗S. Das is with the Computer Science Division and Department of Mathematics, University of California Berkeley, 389 Soda Hall,
Berkeley, CA 94720-1776, USA. e-mail: tracer@berkeley.edu.
†J. Demmel is with the Computer Science Division and Department of Mathematics, University of California Berkeley, 389 Soda

Hall, Berkeley, CA 94720-1776, USA. e-mail: demmel@berkeley.edu.
‡K. Fountoulakis is with the School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, ON

N2L3G1, Canada. e-mail: kfountou@uwaterloo.ca.
§L. Grigori is with the INRIA Paris, Alpines group, France, Paris. e-mail: laura.grigori@inria.fr.
¶M. Mahoney is with the International Computer Science Institute, Department of Statistics, University of California Berkeley, Evans

Hall, 2594 Hearst Ave., Berkeley, CA 94720, USA. e-mail: mmahoney@stat.berkeley.edu.
‖S. Yang is with the School of Computer Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1,

Canada. e-mail: shenghao.yang@uwaterloo.ca.

1

ar
X

iv
:1

90
5.

11
34

0v
3

 [
cs

.L
G

]
 1

2
Se

p
20

20

in statistics [17], machine learning [29] and signal processing/compressed sensing [4] utilize sparse linear models.
To the best of our knowledge there is no study on parallelizing LARS.

2 Introduction to the problem, existing models and LARS

Let A ∈ Rm×n be a data matrix with m samples and n features. We are concerned with the problem of finding
a vector y := Ax that approximates a given vector b ∈ Rm, where vector y is a linear combination of a few
columns/features of the given data matrix A. This means that we are looking for a coefficients vector x that is
sparse, i.e., it has few number of non-zeros.

Over the years, many algorithms/models to solve this problem have been proposed. In what follows, we
review the ones that to the best of our knowledge are the most important. There are two main categories of
algorithms/models to solve this problem. The first category consists of algorithms that progressively select
a subset of columns/features based on their absolute correlation with the residual vector y−b. In particular,
the classic Forward Selection algorithm in Section 8.5 in [40] selects the first column/feature with the largest
absolute correlation with the response b. Let us denote the index of the selected column with i, the corresponding
column with Ai and the corresponding coefficient with xi. The next step of the algorithm is to solve a simple
linear regression problem

min
1
2
‖Aixi−b‖2

2.

By solving this simple regression problem we obtain the value of the optimal coefficient xi. The residual
r := Aixi−b, which is orthogonal to Ai, is now considered the new response vector for the next iteration. Finally,
we project orthogonally the remaining columns in A to Ai. Then we have to repeat this process and find a
new column/feature. After k iterations we will have selected k columns, and we use the k columns to solve
smaller ordinary regression problem using the response vector b. According to [17], in practice the Forward
Selection algorithm might be aggressive in terms of selecting features since other columns might be correlated
with the selected column Ai that we ignored. Another algorithm in this category is the Forward Stagewise
algorithm [19, 20], which in comparison to Forward Selection is much more cautious since it requires much
more steps to converge to a k-sparse model, i.e., k selected columns. More precisely, at each iteration of the
Forward Stagewise we select the column that is most correlated with the current residual and we increment
the corresponding coefficient in the vector x by a small amount ±ε , where the sign is determined based on the
sign of the correlation. The small increment of elements in x at each iteration is what distinguishes Forward
Stagewise and Forward Selection.

The second category of models is optimization based, meaning that we solve a predefined optimization
problem to obtain a sparse linear model. There are two subclasses of optimization problems in this category, the
first is known as `1-regularized linear regression or least absolute shrinkage and selection operator (LASSO) [38],
the second is `0-regularized variants. Let us first define the `1 and `0 norms and then we will continue with
presenting the optimization problems. The `1 norm of a vector x is defined as ‖x‖1 := ∑

n
i=1 |xi|, while the `0 norm

is defined as ‖x‖0 := {number of non-zero elements in x}. Equipped with these definitions we define LASSO

minimize 1
2‖Ax−b‖2

2 (1)

subject to ‖x‖1 ≤ λ ,

where λ is a model parameter. LASSO is a convex optimization problem and can be solved in polynomial time,
we discuss several serial and parallel algorithms later in this paper. The LASSO optimization problem is likely
to have a set of sparse optimal solutions due to the sparsity inducing `1-ball constraint. For details we refer
the reader to [38]. A non-convex alternative of LASSO, but with a direct constraint on the sparsity of x is the
`0-regularized linear regression problem

minimize 1
2‖Ax−b‖2

2 (2)

subject to ‖x‖0 ≤ τ,

where τ is a model parameter that bounds the number of non-zeros in x. This is an NP-hard problem, however,
we can find local solutions by variants of gradient descent, which we discuss later in this paper.

2

An important difference between the two approaches, i.e., Forward Selection or Stagewise vs LASSO, is
that with the former one obtains a sequence of solutions xk with increasing number of non-zeros, while the latter
we obtain a solution path x(λ). There is a question regarding how those two solution paths defer in terms of
the selected features. The LARS algorithm is an algorithmic framework that unifies those two approaches. In
particular, the LARS algorithm has been motivated by the Forward Selection and Stagewise algorithms, therefore
in terms of steps it is similar to those as we will see later, but it is also proved in Theorem 1 in [17] that a certain
version of LARS produces a sequence of solutions xk that is equivalent to the solution path x(λ). Let us now
summarize the steps of the LARS algorithm. This algorithm is discussed in detail in Section 6. Similarly to
Forward algorithms, at the first iteration of LARS we initialize the algorithm by selecting the column with
the largest absolute correlation with vector b. The next step is to update vector y. Instead of solving a simple
regression problem like in Forward Selection (which is an aggressive strategy) or making ε updates to x (which
is too cautious), we define a vector u that is equiangular with all previous chosen columns and then we update
y := y+uγ . The step-size γ ∈ R is set such that the new column to be added in the next iteration has the same
correlation with the new residual vector as with all other selected columns so far. This process might sound
complicated at first but we will revisit the linear algebra behind these decisions in Section 6.

3 Our contributions

Although there are numerous parallel optimization algorithms for `0- and `1-regularized regression, we are
not aware of any parallel and communication avoiding versions for LARS. To the best of our knowledge the
proposed algorithms are the first parallel versions of LARS that are also communication avoiding. Let us briefly
describe the proposed algorithms and the most significant ideas that had to be developed to establish them.

The first method is a block version of LARS which is described in Section 7. Instead of adding one feature
at each iteration in the solution set we add b features at a time. By blocking operations and by partitioning
the data per row we are able to show that we decrease the arithmetic, latency and bandwidth costs by a factor
of b. Extensive numerical experiments in Section 10 illustrate significant speedups for block LARS without
compromising too much of the quality of the output compared to LARS. In the same section we study empirically
the trade-off between the size of b and the quality of the output compared to LARS.

Careful modification of the linear algebra had to be performed in order to successfully generalize LARS
to the block case and also guarantee that all steps of the algorithm are well-defined. More precisely, LARS
has two important properties that we had to relax. The first is that all chosen columns at each iteration have
the same absolute correlation with the residual and also they are maximally correlated. The second property
is that the direction u is equiangular and also has maximal correlation with the chosen columns. Block LARS
maintains the property that the chosen columns at each iteration are maximally correlated but they are not equal,
meaning that there is no column that has not been selected with larger absolute correlation with the residual than
the selected ones. Block LARS also relaxes the second property in the sense that u is not equiangular with all
chosen columns but it is maximally correlated, i.e., there is no column that has not been selected with larger
correlation than the selected ones. We show that block LARS at each iteration reduces the correlations for all
selected columns similarly to LARS. Finally, if we set b = 1 then block LARS reduces to LARS.

The second method is a tournament block LARS method. In this method the data are partitioned per column
and distributed to processors. Then each processor calls a modified version of the LARS algorithm on its local
data. Each processor can run the modified LARS algorithm for b iterations so that b columns are chosen at
termination of the local call to LARS. Using a generalized tree-reduction operation each processor/node sends
its chosen columns to the parent node (starting from the bottom of the tree). The parent node calls again the
modified LARS algorithm by utilizing only the columns that have been sent from the child nodes. This process
repeats until we reach the root node where the final output is used to update the current vector y and current set
of selected columns. By partitioning the data per column (as opposed to per row for block LARS) and using the
generalized tree-reduction we allow the nodes to work in parallel in local data and this way we reduce latency
by a factor of b. Many of the properties of the LARS algorithm are not satisfied at a global level but some of
them are maintained during the local calls to LARS. We discuss details in Section 8. In Section 10 we show that
tournament block LARS can be faster than the original LARS without compromising the quality of the output.
Similarly to block LARS we study the tradeoff between speed and quality of output as we vary parameter b and
the number of processors.

3

4 Literature review for parallel models and methods

The dependence of the running time of parallel methods on communication requirements gave a totally new
perspective on how to efficiently parallelize existing algorithms. Communication-avoiding algorithms became
a very popular subject of study and it has been demonstrated that such algorithms exhibit large speedups on
modern, distributed- and shared-memory parallel architectures through careful algorithmic modifications [3].
Many iterative methods for linear systems and matrix decomposition algorithms have been re-organized to
avoid communication and this has led to significant performance improvements over existing state-of-the-art
libraries [2, 3, 6, 21, 36, 41].

The origins of communication-avoiding algorithms lie in the s-step conjugate gradients method [39] by Van
Rosendale’s and in the work of Chronopoulos on parallel iterative methods for linear systems [8]. More precisely,
Chronopoulos and Gear developed s-step methods for symmetric linear systems [10, 11], Chronopoulos and
Swanson developed s-step methods for unsymmetric linear systems [9] and Kim and Chronopoulos developed
s-step non-symmetric Lanczos method [23]. Furthermore, Demmel, Hoemmen, Mohiyuddin, and others [15, 21,
24, 25] introduced the matrix powers kernel optimization which reduces the communication cost of the s Krylov
basis vector computations by a factor O(s) for well-partitioned matrices. Finally, Carson, Demmel, Hoemmen
developed communication-avoiding Krylov subspace methods [6, 15, 21] by combining the matrix powers kernel
and s-step methods.

The above results are mainly focused on iterative methods for least-squares and linear systems. Our focus on
this paper is sparse linear regression where we require the coefficients of the model to be sparse. As is mentioned
in Section 2 there are two categories of methods that can solve this problem efficiently. The first is LARS-type
algorithms. To the best of our knowledge there are no studies on parallelizing LARS. However, we will see
in Section 7 that the computational bottleneck for LARS is computing matrix-vector products. Therefore, a
straightforward approach for parallelizing LARS is to make use of parallel matrix-vector products. There are
numerous works on parallelizing matrix-vector product calculations [32]. In our experiments in Section 10 we
do compare the two proposed methods with a LARS implementation that uses parallel matrix-vector products.
Similarly, the proposed block LARS algorithm in Section 7 relies on matrix-matrix products which can also be
efficiently parallelized [32]. The proposed tournament block LARS algorithm divides the problem into smaller
problems that are solved in parallel and then we aggregate the results by allowing processors to compete. This
strategy is similar to [14] for parallel QR and LU algorithms, where pivoting is performed in parallel by using a
generalized tree reduction operation. Although we also use a generalized tree-reduction operation, at each leaf of
the tree we perform a LARS operation and not a pivoting operation. Additionally, we modify a crucial part of
the LARS algorithm, i.e., the calculation of the step-size, to guarantee that all steps are well-defined. Details are
discussed in Section 8.

Recently, there have been numerous works regarding parallel optimization algorithms. `1-regularization
problems often appear in statistics [17], machine learning [29] and signal processing/compressed sensing [4]
where there is a vast amount of data available, i.e., matrix A has millions if not billions of samples and features.
Large scale problems are the main reason for the resurgence in methods with computationally inexpensive
iterations. Many modern first-order methods meet the previous goal. For instance, for `1-regularized least-
squares problems coordinate descent methods can have up to n times less computational complexity per
iteration than methods which use full gradient steps while at the same time it achieves very fast progress to
optimality [28, 34, 42]. However, it is shown in [16] that the running time for such methods is often dominated
by communication cost which increases with the number of processors. In the same work [16] the authors
show how to avoid communication for an s-step accelerated proximal block coordinate descent and demonstrate
up to 5x speedup compared to parallelized alternatives. Moreover, there are parallel accelerated and proximal
coordinate descent methods [18] that do not use the s-step technique but allow coordinate updates to happen
without synchronization. For example, HOGWILD! [33] is a lock-free approach to stochastic gradient descent
(SGD) where each processor selects a data point, computes a gradient using its data point and updates the
solution without synchronization. Finally, there are some frameworks and algorithms that attempt to reduce
the communication bottleneck by reducing the number of iterations. For example, the CoCoA framework [22]
reduces communication by performing coordinate descent on locally stored data points on each processor and
intermittently communicating by summing or averaging the local solutions. Regarding `0-regularization there
are not many works in terms of parallel methods, a notable work is that of Needell and Woolf [27]. In this
paper the authors suggest an asynchronous parallel and stochastic greedy algorithms, where multiple processors

4

asynchronously update a vector in shared memory containing information on the estimated coefficients vector x.
Finally, one could also easily parallelize gradient-based methods for `1 and `0 regularization by parallelizing the
computation of the gradients which relies in matrix-vector products.

Note that parallel optimization based methods aim in solving a single instance of `1 or `0 regularized
least-squares, ie., they produce a single sparse linear model. In this paper we are interested in algorithms that
produce a sequence of sparse linear models.

5 Preliminaries and Assumptions

5.1 Preliminaries

Capital letters denote matrices, lower case bold letters denote vectors, lower case letters denote scalars and
hallow letters denote sets. We denote with 0n a vector of zeros of length n. Subscript k denotes the kth iteration
of the algorithm. The set of positive integers is denoted by Z+. We use [·]set , to denote a function with a vector as
an input that returns a subvector which corresponds to the indices in the subscript set. AT denotes the transpose
of a matrix. We denote with Aset the concatenation of columns of matrix A with indices in the subscript set.
We denote the complement of a set by using the superscript c. We use the function sign(·) to denote the sign
function which is applied component-wise if the input is a vector. We use the convention that sign(0) = 0. We
use ‖ · ‖∞ to denote the infinity norm, i.e., maximum absolute component of the input, and define ‖ · ‖∞,k to
be the sum of k largest absolute components of the input. We define abs(·) as the absolute function which is
often applied component-wise. We define the function maxb(·) and argmaxb(·) as the bth maximum of the input
vector and the indices of the b largest components of the input vector, respectively. If the input vector has less
than b components then the latter functions overwrite b to be the length of the input vector. We define minb(·)
and argminb(·) similarly. The function min+(·) returns the minimum positive value. The symbol /0 denotes the
empty set. We denote the simple multiplication of two scalars a and b by a ·b. By log we denote the logarithm
with base 2.

5.2 Assumptions

For simplicity, we assume that the columns of matrix A have unit `2 norm, and that matrix A is full-rank. For
bLARS, we also assume that every b columns are linearly independent. However, minor modifications to the
algorithms can be done to bypass these assumptions. We assume that the communication cost includes the
“bandwidth cost,” i.e., the number of words, sent among cores for synchronization purposes, and the “latency
cost,” i.e., the number of messages sent.

6 Least angle regression

In this section we review the LARS algorithm. LARS is shown in Algorithm 1. The termination criterion in Step
2 of Algorithm 1 is arbitrary, one can choose other criteria such as a lower bound on the maximum absolute
correlation ‖ck‖∞, see [17]. Let us explain the first iteration of the algorithm. Let us assume that at the 0th
iteration we have response y0, residual vector r0 = b−y0, correlation vector c0 := AT r0 and maximum absolute
correlation c0 := max |c0|. The algorithm starts by choosing all columns that have maximum absolute correlation

I0 := {i ∈ [n] | |[c0]i|= c0}. (3)

The next decision step is how to set I1 and y1 using I0 and y0. We will define the update as y1 := y0 +u0γ0.
This implies that we will have to define the vector u0 and the step-size γ0. Let us start with the definition of
u0. LARS defines u0 as a unit-length vector that is equiangular with signed columns in matrix A with index
in I0. It is easy to see that u0 := AI0(A

T
I0

AI0)
−1sign([c0]I0)c0h0, where h0 := ‖AI0(A

T
I0

AI0)
−1sign([c0]I0)c0‖−1

2 ,
satisfies the requirements. This means that AT

I0
u0 = sign([c0]I0)c0h0, which in turn implies that subject to sign

changes and because the columns of AI0 and u0 are unit-length then u0 is equiangular with all columns in
I0, with cosine ±c0h0. To define γ0 and to update I1 based on γ0 we will need first to understand how the
update rule y1 := y0 +u0γ0 affects the correlation vector c1 as a function of γ0. For this we will make use of the

5

auxiliary vector a0 := AT u0 and we will use a different step-size γ j for each element j. In particular, we have
that [c1] j(γ j) = AT

j (b−y0−u0γ j) = [c0] j− [a0] jγ j ∀ j ∈ Ic
0 and

[c1] j(γ j) = sign([c0] j)(1− γ jh0)c0 ∀ j ∈ I0. (4)

Equation (4) uses [a0]I0 = AT
I0

u0 = sign([c0]I0)c0h0 and that vector [c0]I0 has components of magnitude equal to
c0 since it satisfies the definition in (3). Notice that if γ j = 1/h0 then [c1] j(γ j) = 0 ∀ j ∈ I0, which means that the
least-squares problem is minimized with respect to the chosen columns in I0. Although tempting, this is not the
goal of LARS since this is an aggressive strategy similar to Forward Selection. As we increase γ j from 0 to 1/h0
the absolute correlations in I0 are decreased identically, see (4). This is because the absolute correlations for the
columns in I0 are equal. However, the absolute correlations in Ic

0 might increase or decrease. LARS’ goal is
to find a column in Ic

0 whose absolute correlation becomes equal to the maximum absolute correlation as we
increase γ0. To find such a column we need to find γ j for each j ∈ Ic

0 such that

c0(1− γ jh0) = |[c0] j− γ j[a0] j|. (5)

Such γ j will guarantee that column j ∈ Ic
0 has the same absolute correlation as the columns with index in I0. It

remains to check if (5) has a solution. It has two solutions, out of which we keep the minimum positive one

γ j := min+
(

c0− [c0] j

c0h0− [a0] j
,

c0 +[c0] j

c0h0 +[a0] j

)
.

Out of all γ j where j ∈ Ic
0 we choose the one with the minimum value γ0 := min j∈Ic

0
γ j. Note that the minimum

step-size γ0 corresponds to the column(s) in Ic
0 that will be the first to have the same maximal absolute correlation

as the columns in I0. Then LARS updates the set of selected columns as I1 := I0∪{argmin j∈Ic
0
γ j}. The chosen

column is the column with the least-angle which is where LARS gets its name from. Finally, having the step-size
γ0 we update the response y1 := y0 + γ0u0.

It is easy to show that our claims above hold for any iteration k. Therefore, it is easy to show that LARS
guarantees that Ak ⊂ Ak+1 and |Ak| = |Ak+1|+ 1 ∀k. Moreover, LARS decreases the maximum absolute
correlation ck until it finally is equal to zero for k = min(m,n). Furthermore, the columns in Ak have maximum
absolute correlations ∀k. Therefore using (4) we see that LARS decreases ‖ck‖∞ at each iteration. Furthermore,
note that LARS also decreases ‖ck‖∞,k := sum of k largest absolute components; as we will see later this is a
property that bLARS generalizes but for the k ·b largest components.

Algorithm 1 LARS

1: Initialize k := 0, yk := 0n, rk := b, ck := AT rk, i := argmax |ck|, ck := max |ck|, Ik := {i}, t ≤min(m,n)
2: while |Ik| ≤ t do
3: uk := AIk(A

T
Ik

AIk)
−1sign([ck]Ik)hkck, where hk := ‖AIk(A

T
Ik

AIk)
−1sign([ck]Ik)ck‖−1

2

4: γ j := min+
(

ck−[ck] j
ckhk−[ak] j

,
ck+[ck] j

ckhk+[ak] j

)
∀ j ∈ Ic

k, where ak := AT uk

5: γk := min j∈Ic
k
γ j, i := argmin j∈Ic

k
γ j, Ik+1 := Ik∪{i}

6: yk+1 := yk +ukγk
7: ck+1 := AT rk+1, where rk+1 := b−yk+1
8: ck := max |ck|
9: k := k+1

10: end while
11: Return Ik, yk

7 Parallel block Least Angle Regression

In this section, we describe one iteration of bLARS (without going into any details about parallelism), and then
we explain how we can parallelize bLARS.

Let us assume that at the 0th iteration of bLARS we have response y0, residual vector r0 = b−y0, correlation
vector c0 := AT r0 and the bth maximum correlation c0 := maxb |c0|. The algorithm chooses all columns that

6

have larger or equal absolute correlation than the maximum bth absolute correlation I0 = {i ∈ [n] | |[c0]i| ≥ c0}.
Similarly to LARS, we define the update as y1 := y0+u0γ0, but the decision rules for selecting u0, γ0 and updating
I0 and y0 are different. bLARS defines u0 as u0 := AI0(A

T
I0

AI0)
−1[c0]I0h0 and h0 := ‖AI0(A

T
I0

AI0)
−1[c0]I0‖−1

2 .
This means that u0 is a unit-length vector that satisfies AT

I0
u0 = [c0]I0h0, instead of AT

I0
u0 = sign([c0]I0)c0h0 for

LARS. Note that u0 is not guaranteed to be equiangular to the chosen columns in I0. This is because [c0]I0 is
not guaranteed to have components with equal value. On the contrary, LARS guarantees that all components of
[c0]I0 are equal to the maximum absolute correlation. However, bLARS still guarantees that there is no column
that has not been selected with absolute correlation larger than the bth maximum absolute correlation. Similarly
to LARS, we will make use of the auxiliary vector a0 := AT u0, but we will use different step-sizes γ j for each
element j. In particular, we have that [c1] j(γ j) = AT

j (b− y0−u0γ j) = [c0] j− [a0] jγ j ∀ j ∈ Ic
0, where Ic

0 is the
complement of I0, and

[c1] j(γ j) = [c0] j(1− γ jh0) ∀ j ∈ I0. (6)

The last equality uses [a0]I0 = AT
I0

u0 = [c0]I0h0. This is different from LARS which uses [a0]I0 = sign([c0]I0)c0h0.
This means that as we increase γ j LARS decreases the absolute correlations identically, but bLARS decreases the
absolute correlations with the same rate but not identically. However, bLARS still guarantees that if γ j = 1/h0
then [c1] j(γ j) = 0 ∀ j ∈ I0, which means that the least-squares problem is minimized with respect to the chosen
columns in I0. Furthermore, bLARS still guarantees that as we increase γ j from 0 to 1/h0 the absolute correlations
in I0 are decreased, see (6), but the absolute correlations in Ic

0 might increase or decrease. bLARS goal is to find
b columns in Ic

0 for which their absolute correlations become larger or equal to the minimum absolute correlation
of columns in I0 as we increase γ0. To find such a column we need to find γ j for each j ∈ Ic

0 such that

c0(1− γ jh0) = |[c0] j− γ j[a0] j|. (7)

Using the definition of c0, such γ j will guarantee that column j ∈ Ic
0 has the same absolute correlation as the

column with index i ∈ I0 that satisfies i = argmaxb |c0|. Equation (7) has two solutions, we keep the minimum
positive solution

γ j := min+
(

c0− [c0] j

c0h0− [a0] j
,

c0 +[c0] j

c0h0 +[a0] j

)
.

Out of all γ j where j ∈ Ic
0 we choose the one with the minimum bth value γ0 := minb

j∈Icγ j. Note that the
bth minimum step-size γ0 corresponds to the column(s) in Ic

0 that will be the bth to have the same absolute
correlation with the column in I0 with the minimum absolute correlation. Then bLARS updates I1 := I0 ∪
{b columns with γ j ≥ γ0}. Note that bLARS decreases ‖ck‖∞,k·b := sum of k ·b largest absolute components,
compared to LARS which decreases sum of k largest absolute components. It is easy to see that by setting b = 1
then bLARS is equivalent to LARS.

The parallel bLARS algorithm is shown in Algorithm 2. This algorithm is presented in great detail since this
demonstrates our implementation. We assume that the data matrix A and any vector/set of length/cardinality m are
partitioned across processors, i.e., each processor holds m/P components, where P is the number of processors
and we assume for simplicity that m/P is an integer. More complicated two dimensional partitions could be
used [5, 30] and may potentially improve communication cost, but we use row partition for simplicity and leave
more sophisticated partitioning methods for future work. The main computational kernels of the algorithm are
matrix-matrix and matrix-vector products, which we can parallelize efficiently using Message Passing Protocol
(MPI) collective routines for reduction [37]. We also make use of collective routines for broadcasting data [37].
In our numerical experiments in Section 10, we use parallel bLARS with b = 1 as parallel LARS.

7.1 Asymptotic costs for parallel bLARS and LARS

In what follows we examine the asymptotic costs of each step of parallel bLARS in Algorithm 2. The asymptotic
costs of parallel LARS are obtained by setting b = 1. We also comment when a step is executed only by the
master processor, by all processors independently or in parallel with synchronization. We model the running time
of an algorithm by considering both arithmetic and communication costs. In particular, we model the running
time of an algorithm as a sum of three terms as

γF +αL+βW,

7

Algorithm 2 Parallel bLARS for row-partitioned data

1: Initialize b ∈ Z+, t ≤min(m,n) ∈ Z+, k := 0, yk := 0n, rk := b in parallel without synchronization.
2: Compute ck := AT rk in parallel using reduction.
3: ck := maxb |ck|, Ik := {i ∈ [n] | |[ck]i| ≥ ck}.
4: Compute Gk := AT

Ik
AIk in parallel using a reduction.

5: Compute Lk, the Cholesky factor of Gk
6: while |Ik|< t do
7: sk := [ck]Ik , qk := (LkLT

k)
−1sk

8: hk := (sT
k qk)

−1/2, wk := qkhk
9: The master processor broadcasts wk.

10: Compute uk := AIk wk in parallel, no communication is required.
11: Compute ak := AT uk in parallel using a reduction.
12: γ j := min+

(
ck−[ck] j

ckhk−[ak] j
,

ck+[ck] j
ckhk+[ak] j

)
∀ j ∈ Ic

k

13: γk := minb
j∈Ic

k
γ j,

14: B := argminb
j∈Ic

k
γ j (note this returns b indices)

15: Ik+1 := Ik∪B
16: The master processor broadcasts γk to all processors.
17: Compute yk+1 := yk +ukγk in parallel, no communication is required.
18: [ck+1] j := [ck] j(1− γkhk) ∀ j ∈ Ik, and [ck+1] j = [ck] j− γk[ak] j ∀ j ∈ Ic

k
19: ck+1 := ck(1− γkhk)
20: Compute AT

Ik
AB and AT

BAB in parallel using a reduction.
21: Hk+1 := L−1

k AT
Ik

AB
22: Solve ΩT

k+1Ωk+1 = AT
BAB−HT

k+1Hk+1 subject to Ωk+1 being a lower triangular matrix.

23: Lk+1 :=
[

Lk 0k,b
Hk+1 Ωk+1

]
24: k := k+1
25: end while
26: Return Ik, yk

where γ , α and β are hardware parameters for time per arithmetic operation, time per message sent and time
per word moved, respectively. F , L and W are algorithm parameters for number of arithmetic operations to be
executed, number of messages to be sent and number of words to be moved, respectively. We choose the α-β
model to measure communication of algorithms for simplicity. More refined models exists like the LogP [12]
and LogGP [1] models.

We assume that matrix A is a dense matrix. Step 1 requires O(m/P) operations for initialization of y0 and r0
in parallel with no communication. Step 2 requires computing ck which is equal to AT rk. This operation can be
performed in parallel with synchronization in O(mn/P) operations, n logP words and logP messages, using a
binary tree reduction algorithm in [37]. The result of Step 2 is reduced to the master processor. Step 3 is performed
by the master processor and it costs O(n) operations using Introspective Selection [26]. Step 4 is performed in
parallel with synchronization and it requires O(b2m/P) operations, b2 logP words and logP messages using
binary tree reduction. Step 5 is executed by the master processor and it costs O(b3) operations. Step 7 is
executed by the master processor and it costs O(|Ik|) operations to compute sk := [ck]Ik . Since |Ik|= b(k+1),
this requires O(bk+b) operations. Moreover, Step 7 requires an additional O(b2(k+1)2) operations to compute
qk := (LkLT

k)
−1sk, which is also executed by the master processor. Steps 8 costs O(bk+ b) operations and it

is executed by the master processor. In Step 9, wk has to be broadcasted to each processor from the master
processor and this costs b(k+1) logP words and logP messages using a broadcast algorithm from [37]. Step 10
is computed in parallel without synchronization in O(b(k+1)m/P) operations, i.e., each processor multiplies
its own part of the vector AIk with wk. Step 11 is executed in parallel with synchronization and it requires
O(mn/P) operations, n logP words and logP messages using a reduction. The result of Step 11 is reduced to
the master processor. Step 12 is executed by the master processor and it requires O(|Ic

k|) operations, which is
upper bounded by O(n) operations in worst-case since |Ic

k| ≤ n. Steps 13 and 14 are executed by the master
processor and they require in worst-case O(n) operations using Introspective Selection. Step 15 is executed by

8

Step(s) Arithmetic operations (F) Words (W) Messages (L)

1 m
P - -

2 mn
P n logP logP

3 n - -
4 b2m

P b2 logP logP
5-8 t3

b + t2

b - -
9 - t2

b logP+ t logP t
b logP

10 t2m
bP + tm

P - -
11 tmn

bP
tn
b logP t

b logP
12-14 tn

b - -
15 t - -
16 - t

b logP t
b logP

17-19 tm
bP + tn

b - -

20 t2m
P + tbm

P t2 logP+ tb logP t
b logP

21-23 t3 + t2 + tb - -
Total (assuming t� b) tmn

bP + tn
b + t2m

P + t3 tn
b logP+ t2 logP t

b logP

Table 1: Running time costs for parallel bLARS in Big O notation. The running time costs of LARS can be
obtained by setting b = 1. The first column shows the number of step(s) of the algorithm. The second, third and
forth columns show the number of operations, the number of words and the number of messages, respectively,
that are required by bLARS to output a solution with t columns/features

the master processor and it costs O(b) operations. In Step 16 the step-size γ is broadcasted to all processors from
the master processor in logP words and logP messages. Step 17 is executed in parallel without synchronization
and it requires O(m/P) operations. Steps 18 and 19 are executed by the master processor and they require O(n)
operations. Step 20 is executed in parallel with synchronization and it requires O(b2km/P+b2m/P) operations,
O(b2k logP+ b2 logP) words and 2logP messages. The result of Step 20 is reduced to the master processor.
Step 21 is executed by the master processor and it requires O(b3k2) operations since Lk is a lower triangular
matrix. Step 22 is executed by the master processor and it requires O(b3k+b2) operations. Step 23 is executed
by the master processor and it requires O(b2k+b2) operations. Notice that if we want to obtain t columns using
LARS then we need to run the algorithm for t−1 iterations. Therefore, if we want to obtain t columns using
bLARS then we need to run the algorithm for (t−1)/b iterations. By using this and the above costs for each
step we summarize in Table 1 the asymptotic costs of bLARS and LARS for obtaining a solution with t columns.
Assuming that t� b, which means that we want to output many more columns than b, then we observe in Table
1 that by using bLARS we reduce by a factor of b all major computational and communication costs compared
to LARS.

8 Tournament block Least Angle Regression

In this section we will present tournament block LARS (Tournament-bLARS), a variation of LARS where b
columns are selected at each iteration using a generalized reduction on a binary tree. Like bLARS, Tournament-
bLARS requires a lot of non-trivial modifications in order to maintain some properties of the original algorithm
which we discuss in detail below. In comparison to parallel LARS and bLARS, for Tournament-bLARS we
assume that the data matrix A column-partitioned, i.e., each processor holds n/P columns, where P is the number
of processors and we assume that n/P is an integer. Furthermore, we assume that vectors of length m or n or sets
with cardinality at most m or n can be stored locally.

Let us now describe one iteration of T-bLARS. Let us assume that at the lth iteration we have response yl
and we have selected columns Il . Furthermore, let us assume that P = 2, i.e., 2 processors. Each processor gets
n/P columns, which we denote with index sets Iv1 and Iv2 . T-bLARS requires running a modified version of
LARS (mLARS), which we discuss later, as a reduction on a binary tree. For a visual explanation see Figure 1.
The algorithm starts at the bottom of the tree by calling mLARS for each node in parallel. Nodes v1 and v2 return

9

candidate columns with indices in the sets Bv1 and Bv2 , respectively. Columns Bv1 ∪Bv2 are sent to node v3,
which is the parent of v1 and v2. Finally, the node v3 calls mLARS using columns in Il ∪Bv1 ∪Bv2 which returns
the new response yl+1 and index set Il+1. Then this process is repeated. Details are provided in Algorithm 3.

Il+1,yl+1←mLARS(b,yl,Il ∪Bv1 ∪Bv2)

Bv2 ←mLARS(b,yl,Il ∪ Iv2)Bv1 ←mLARS(b,yl,Il ∪ Iv1)

Figure 1: Binary tree for one iteration of T-bLARS. The nodes at the bottom of the tree communicate columns in
Bv1 and Bv2 .

Modified LARS. We mentioned that each node calls a modified version of LARS Algorithm 4. Let us now
comment on this algorithm and why LARS needs to be modified in order for Tournament-bLARS to be a
well-defined algorithm. The problem is caused due to the fact that each processor on any level of the binary
tree runs mLARS independently of other processors and on data that might not overlap. This may result in
violation of a basic rule of LARS, which is that there is no column that has not been selected with larger absolute
correlation than the current known maximum absolute correlation ck.

Similarly to LARS, mLARS chooses one column at each iteration. Each call to mLARS operates on the
columns with indices in Iν ∪ Il , where ν is the index of the node in the binary tree and Il is the set of indices of
columns that have been selected at the lth iteration of Tournament-bLARS. If Il does not include any index with
maximum absolute correlation among the indices in Iν ∪ Il , then equation (5) might not have a non-negative
solution. This affects the step-size calculation, which for LARS is computed by solving equation (5) with the
constraint that γ ≥ 0. To guarantee that a meaningful step-size is calculated at each iteration of mLARS we
propose using stepLARS in Procedure 1. Briefly, stepLARS detects violations to the above basic rule of LARS.
If it detects a violation it checks if (5) still has a non-negative solution and sets γk appropriately. If it cannot
resolve it (equation 5 does not have a non-negative solution) then it sets γk = 0. By setting γk = 0 we guarantee
that the response yk is not updated in current iteration. Setting γk to a positive value would be a “mistake" since
as we show in Step 14 of stepLARS Procedure 1 this would result in decreasing the current known maximum
correlation ck of mLARS but at the same time it increases the absolute correlation of columns that violate the
LARS property. This makes violation of the LARS property even larger.

If γk = 0 then mLARS at Step 18 adds the column with the largest absolute correlation that also violates the
LARS property in the set of selected columns. This decision guarantees that a violation will not happen again
during the execution of mLARS. This is because similarly to LARS, mLARS guarantees that once ck is maximal
then it will remain like this for all iterations and this ensures that (5) always has at least one non-negative solution.
More details are described in mLARS Algorithm 4 and Procedure 1.

8.1 Asymptotic costs for parallel implementation of Tournament-bLARS

In this subsection we examine the asymptotic costs for Tournament-bLARS Algorithm 3. We start first by the
asymptotic costs of mLARS Algorithm 4, which is used by Tournament-bLARS at every iteration.

Before we compute the asymptotic costs for mLARS we have to bound the cardinality of some sets. The
cardinality Iv is bounded by |Iv| ≤ n/P. Let l be the lth iteration of Tournament-bLARS, and Il be the current
selected columns of Tournament-bLARS. Then |Il| ≤ lb. Assuming that we are on the kth iteration of mLARS
then |Ik| ≤ |Il|+ b ≤ lb+ b, and |Ik ∪ Ĩv| ≤ lb+ b+ n/P for all k if node v is at the bottom of the tree, i.e.,
Ĩv := Iv, otherwise |Ik ∪ Ĩv| ≤ lb+b+2b for all k because node v not at the bottom of the tree, i.e., Ĩv := Bv.
The cardinality of Ĩv\Ik is bounded by n/P if v is a leaf node because |Ĩv\Ik| ≤ |Ĩv|= |Iv| ≤ n/P, or otherwise
bounded by 2b because |Ĩv| = |Bv| ≤ 2b. Using these bounds we will compute the asymptotic costs of each
step of mLARS. Note that there is no parallelism for each individual run of mLARS. Therefore, we only report
results for arithmetic operations.

Step 3 costs O(m) operations. Step 4 costs O(mn/P+mlb+mb) at leaf node and O(mlb+3mb) otherwise.
Step 5 costs O(lb+b). Step 7 costs O(n/P+ lb+b+m) at leaf node and O(lb+3b+m) otherwise. Step 10

10

Algorithm 3 T-bLARS
1: Initialize l := 0, yl := 0n, t ∈ Z+, b ∈ Z+, Ll = 0, where Ll is the Cholesky factor.
2: Initialize Il = /0
3: while |Il|< t do
4: for all levels of the tree from bottom to the root do
5: if at the bottom of the tree then
6: Let Iv be the columns of node v in the tree. For all nodes v in the current level of the binary tree call

Bv←mLARS(b,yl,Il ∪ Iv,Ll).
7: else if not at root of the binary tree then
8: Let Bv be the columns selected by child nodes of v. For all nodes v in the current level of the binary

tree call B̃v←mLARS(b,yl,Il ∪Bv,Ll), where B̃v are the selected b columns out of Bv.
9: Send columns B̃v for each node v to the processor of the parent node of v.

10: else
11: yl+1,Il+1,Bl+1,Ll+1←mLARS(b,yl,Il ∪Bv,Ll)
12: Broadcast selected columns with index in Bl+1, yl+1, and Ll+1 to all processors. Note that we only

communicate the part of Ll+1 that gets updated by the root node.
13: end if
14: end for
15: l := l +1
16: end while
17: Return Il , yl

costs O(lb2 +b2). Step 11 costs O(b(lb+b)2). Step 12 to 13 cost O(lb2 +b2). Step 14 costs O(mlb2 +mb2).
Step 15 costs O(bmn/P+mlb2+mb2) at leaf node and O(mlb2+3mb2) otherwise. Steps 16 to 18 cost O(bn/P)
at leaf node and O(2b2) otherwise. Step 19 costs O(m). Steps 20 to 21 cost O(bn/P+ lb2 +b2) at leaf node and
O(lb2 +3b2) otherwise. Step 22 costs O(lb2 +b2). Step 23 costs O(mlb2 +mb2). Step 24 costs O(b(lb+b)2).
Steps 25 to 26 cost O(lb2 +b2). For t columns we need to run Tournament-bLARS for t/b iterations and each
iteration makes logP parallel calls to mLARS which results in

t/b · (arithmetic cost of mLARS at leaf node) + t/b · (arithmetic cost of mLARS at non-leaf node) · logP

total operations. Therefore, in Big O notation Tournament-bLARS requires

F = O
(tmn

P
+

tmn
bP

+
(
t2m+ t3) logP

)
operations. Communication occurs logP times because of the binary tree and another logP times to broadcast
data from the root node to the rest of the nodes. Therefore Tournament-bLARS requires

L = 2
t
b

logP

messages. Each node (except of the root) communicates bm words for columns in B. Therefore the execution of
the binary tree requires tm logP words. Broadcasting data from the root node to the rest of the nodes at Step 12
costs a total of

W = O
((

tm+
tm+ t2

b
+ tb

)
logP

)
words.

9 Comparison of asymptotic costs

In this section, we compare the asymptotic costs of parallel LARS, bLARS and T-bLARS. The results are
shown in Table 2. Note that parallel bLARS becomes faster than parallel LARS for b > 1. Parallel bLARS and
T-bLARS have similar latency costs. However, an important difference is that the number of words for parallel
bLARS depends on the number of columns n while the number of words for T-bLARS depend on the number of

11

Procedure 1 Step-size for modified LARS (stepLARS)

1: Input: ck, hk, ck, ak and an index j
2: if ck ≥ |[ck] j| then
3: if [ck] j and [ak] j have the same sign then
4: Equation ck(1−γhk) = |[ck] j−γ[ak] j| has at least one positive solution, we select the minimum positive

one γ := min+
(

ck−[ck] j
ckhk−[ak] j

,
ck+[ck] j

ckhk+[ak] j

)
.

5: else
6: Equation ck(1− γhk) = |[ck] j− γ[ak] j| has one positive solution that is γ := ck−|[ck] j|

ckhk+|[ak] j| .
7: end if
8:

9: if [ck] j and [ak] j have the same sign and [ck] jhk ≤ [ak] j then
10: Equation ck(1− γhk) = |[ck] j− γ[ak] j| has one positive solution that is γ := ck−|[ck] j|

ckhk−|[ak] j| .
11: else if [ck] j and [ak] j have the same sign and [ck] jhk > [ak] j then
12: Equation ck(1− γhk) = |[ck] j− γ[ak] j| does not have a positive solution. But as γ increases ck(1− γhk)

and |[ck] j− γ[ak] j| decrease, therefore, we set γ to its maximum value γ := 1/hk.
13: else
14: Equation ck(1− γhk) = |[ck] j− γ[ak] j| does not have a positive solution. In this case, as γ increases

|[ck] j− γ[ak] j| increases and ck(1− γhk) decreases. Therefore, we set γ := 0, which subject to γ ≥ 0
minimizes the error |[ck] j− γ[ak] j|− ck(1− γhk).

15: end if
16: end if
17: Return γ

Method Arithmetic operations Words communicated Messages

LARS tmn
P + t2m

P + tn+ t3 tn logP+ t2 logP t logP

bLARS tmn
bP + tn

b + t2m
P + t3 tn

b logP+ t2 logP t
b logP

T-bLARS tmn
P + tmn

bP +
(
t2m+ t3

)
logP

(
tm+ tm

b + tb
)

logP+ t2

b logP t
b logP

Table 2: Asymptotic costs for parallel LARS, bLARS, T-bLARS. Here, t is the required number of columns to
be outputted by all algorithms. We assume that t� b and that matrix A is dense.

rows m. T his is due to the fact that for parallel bLARS we partition the data per row, while for T-bLARS we
partition the data per column. Therefore, in the high-dimensional regression setting where n� m, T-bLARS
requires communicating much fewer words than bLARS. We compare the two methods empirically in Section
10.

We note that even though the results in Table 2 are obtained by assuming matrix A is dense, the complexity
bounds trivially extend to sparse matrices as long as we have balanced partitions, i.e., the local sparse matrices
stored at different processors should have similar number of nonzero entries. In the balanced sparse case, we
simply replace mn with the number of nonzeros nnz(A) and obtain the arithmetic complexity for all methods.
The communication costs stay the same. In Section 10 we use balanced partition to deal with sparse matrices.

10 Empirical performance

This section contains two parts. First, we evaluate and compare the solution quality of bLARS and T-bLARS for
a range of block sizes b and processors P. Second, we present a comprehensive list of plots that demonstrate
both overall speedups and more detailed running time breakdowns from increasing b and P. We carry out the
experiments on four regression datasets summarized in Table 3. The data matrices for sector and E2006 are

12

Algorithm 4 Modified Least Angle Regression (mLARS)

1: Input: number of columns b ∈ Z+, response ỹ, column index sets Ĩ0∪ Ĩv (third input) and Cholesky factor L̃
(forth input)

2: Initialize: k := 0, B := /0, Lk := L̃, Ik := Ĩ0
3: rk := b− ỹ
4: ck := AT

Ik∪Ĩv
rk

5: ck := max |[ck]Ik |. Note that we abuse notation here for [ck]Ik . Since ck ∈ R|Ik∪Ĩv| and by usual convention its
components are indexed from 1 to |Ik∪ Ĩv| which might not overlap with the indices in Ik. We assume that
the components of ck are indexed using the indices in Ik∪ Ĩv. We use this abuse of notation at other steps of
this algorithm because it simplifies notation.

6: if Ik = /0 then
7: ck := max |[ck]|, Ik := {argmax |ck|}, Lk = (AT

Ik
AIk)

1/2.
8: end if
9: while |Ik|< |Ĩ0|+b do

10: sk := [ck]Ik

11: qk := (LkLT
k)
−1sk

12: hk := (sT
k qk)

−1/2

13: wk := qkhk
14: uk := AIk wk
15: ak := AT

Ik∪Ĩv
uk

16: γ j← stepLARS(ck,hk,ck,ak, j) ∀ j ∈ Ĩv\Ik
17: If there are γ j that are equal to zero, set γk to zero. Otherwise, set γk to the minimum nonzero γ j.
18: If there are γ j that are equal to zero, set i to the jth column with the largest |[ck] j|. Otherwise, set i to the

jth column with the minimum nonzero γ j.
19: yk+1 := yk +ukγk
20: [ck+1] j := [ck] j(1− γhk) ∀ j ∈ Ik, and [ck+1] j = [ck] j− γ[ak] j ∀ j ∈ Ĩv\Ik
21: Ik+1 := Ik∪{i}, B := B∪{i}
22: ck+1 := max |[ck+1]Ik+1 |
23: Compute AT

Ik
Ai and AT

i Ai.
24: lk+1 := L−1

k AT
Ik

Ai

25: ωk+1 := (AT
i Ai− lTk+1lk+1)

1/2

26: Lk+1 :=
[

Lk 0k
lk+1 ωk+1

]
27: k := k+1
28: end while
29: Return yk, Ik, B,Lk

sparse and column-wise unbalanced, i.e., the distribution of nonzeros per column is skewed (Figure 2). In order
to balance the computation workload on all processors, for T-bLARS, we distribute the columns of these sparse
matrices so that the partitioned columns at each processor have roughly the same number of nonzeros. Other
column partitioning could also be used. We discuss the effect of column partition on solution quality of T-bLARS
in the next subsection. For comparison purposes we limit both algorithms to collect the first 75 columns. We
implemented the code in Python and used the optimized mpi4py library [13]. The code is run on a computer
cluster with distributed memory. Each node in the cluster comes with 2 x Intel E5-2683 v4, 128 GB of RAM.

10.1 Solution quality

We use two metrics to measure solution quality. One metric is, for a given parameter b, the value of the `2-norm
of the residual vector versus the number of columns added at each iteration (Figure 3). For the second metric,
since LARS is primarily used for column selection in regression, we treat the columns selected by LARS as the
ground truth, and we use precision in column selection to measure performance, i.e., we compare the percentage
of columns selected by bLARS and T-bLARS that overlap with the columns selected by LARS (Figure 4).

13

Dataset m n nnz(A)/mn
sector 6412 55197 0.003
YearPredictionMSD 463715 90 1.00
E2006_log1p 16087 4272227 0.001
E2006_tfidf 16087 150360 0.008

Table 3: Properties of the datasets that we consider. nnz(A) denotes the number of nonzeros in matrix A,
consequently, the fourth column gives the (relative) sparsity of A. The first four are synthetic data. The regression
datasets can be downloaded from [7] as part of the LIBSVM Data package. The E2006 and Year datasets are the
three largest regression datasets in LIBSVM.

(a) sector (b) E2006_tfidf (c) E2006_log1p

0 10K 20K 30K 40K 50K
Column index

103

104

105

Nu
m

be
r o

f n
on

ze
ro

s

(d) sector

0 50K 100K 150K
Column index

104

105

106

107

Nu
m

be
r o

f n
on

ze
ro

s

(e) E2006_tfidf

0 1M 2M 3M 4M
Column index

105

106

107

Nu
m

be
r o

f n
on

ze
ro

s

(f) E2006_log1p

Figure 2: Sparsity pattern and distribution of nonzeros for sparse datasets sector and E2006. The histograms
(d)-(f) are drawn on 128 equally spaced bins.

Observe that T-bLARS is overall more successful in terms of both data fitting and column selection. The
`2-norm of the residual produced by T-bLARS is nearly identical to that of LARS on all datasets and for all
choices of b and P. On the other hand, bLARS has higher residuals as b increases. For column selection, we see
a decrease in precision for both methods when b > 1, but in most settings T-bLARS recovers more columns than
bLARS. In particular, the precision of bLARS keeps dropping quickly as b increases, while on three out of four
datasets the precision of T-bLARS goes up again for larger b. This makes sense because for T-bLARS, the larger
the block size is, the more columns will be sent from leaf nodes to non-leaf nodes to choose from.

For bLARS, how rows are partitioned among processors does not affect the columns selected by the algorithm.
For T-bLARS, different column partitions can lead to different tournaments at non-leaf nodes and thus cause
T-bLARS to select different columns at the root node. Figure 5 shows a range of precision results for T-bLARS
over 10 random partitions of columns into P = 128 processors. We observe that T-bLARS still has a higher
precision than bLARS in most cases. Determining the best column partitions that would yield the highest
precision for T-bLARS in terms of column selection is interesting both in theory and in practice, but it is beyond
the scope of this work.

10.2 Speedup

We show the speedup trends in Figure 6. Note that for P = b = 1, the speedup factor for T-bLARS is not
identically 1.0 because T-bLARS performs more matrix-vector products than LARS in this parameter setting.
For example, T-bLARS re-computes ck repeatedly due to iterative call to mLARS (Step 4), while in LARS, the
vector ck is computed only once and updated iteratively. Overall, bLARS enjoys much higher speedups across
all datasets. When the data is not very high-dimensional, i.e., not in the regime n� m, the total running time of
bLARS scales with both P and b as predicted by the asymptotic costs analysis. The largest dataset E2006_log1p
has way more columns than rows, and bLARS slows down when we increase the number of processors beyond 4.

14

b =
 2

b =
 8

b =
 26

b =
 38 b =

 56

b =
 20

b =
 50

b =
 44

b =
 62

b =
 14

b =
 68

b =
 32

b =
 74

(a) sector

b =
 32

b =
 50

b =
 26

b =
 62

b =
 74

b =
 14

b =
 44 b =

 68

b =
 2

b =
 56

b =
 20b =

 8

b =
 38

(b) Year.

b =
 8 b =

 50

b =
 44

b =
 68

b =
 14

b =
 26b =

 20

b =
 2

b =
 74

b =
 56

b =
 38b =

 32

b =
 62

(c) E2006_tfidf

b =
 2

b =
 8

b =
 14

b =
 20

b =
 26

b =
 32

b =
 38

b =
 44

b =
 50

b =
 56 b =

 62 b =
 68

b =
 74

(d) E2006_log1p

Figure 3: `2-norm of residuals. For T-bLARS each line corresponds to a setting of P and b. We do not show all
legends for T-bLARS to ease readability, most settings give similar quality. For bLARS each line corresponds to
a different b. Note that P does not affect the quality of bLARS. 75 columns where chosen for all experiments.

On the other hand, apart from E2006_log1p, T-bLARS does not seem to have a good speedup on other datasets.
In order to understand what causes the speedups or the slow-downs, in Figure 7 (resp. Figure 8) we fix b (resp.
P) and vary P (resp. b) and show how the major components of the total running time scales. For arithmetic
operations, we plot the time spent on performing matrix-matrix and matrix-vector products and the time spent on
computing the step size γ separately, as both the cost analysis (cf. Table 1) and subsequent plots show that these
are the computation bottlenecks. There is only a very small fraction of the total time spent on other computations,
e.g., scalar multiplications, array initializations, and Cholesky factorization and inversion of small-size matrices,
so we do not plot all of them explicitly. Note that the binary tree reduction in T-bLARS has logP serial levels:
for a column to become a winner at the root, it has to go through logP number of competitions sequentially.
Therefore, once the candidate columns are selected at leaf nodes and competitions start at non-leaf nodes, there
will always be some nodes waiting for the root to broadcast the final winners before starting the next iteration.
For T-bLARS we include this wait time in the running time breakdown plots. We estimated the wait time using
the average computation time per competition at non-leaf nodes times the number of levels in the tree.

We make some comments about Figure 7 and Figure 8. First, both bLARS and T-bLARS reduce the time
spent on matrix-vector products as we increase either P or b. The speedup of bLARS mainly comes from the
speedup of matrix-vector products. Second, bLARS spent smaller fraction of total time on communication
when the data matrix is tall m� n, e.g., YearPredictionMSD; T-bLARS spent smaller fraction of total time on
communication when the data matrix in fat n�m. This is expected because the number of words communicated
for bLARS increases with n and is independent of m, while the number of words communicated for T-bLARS
increases with m and is independent of n. Third, we didn’t see a good speedup of T-bLARS for sector,
YearPredictionMSD and E2006_tfidf, because T-bLARS spent a large fraction of time on serial reduction in the

15

0 10 20 30 40 50 60 70
Block size

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

T-bLARS
bLARS

(a) sector

0 10 20 30 40 50 60 70
Block size

0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

Pr
ec

isi
on

T-bLARS
bLARS

(b) Year.

0 10 20 30 40 50 60 70
Block size

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

T-bLARS
bLARS

(c) E2006_tfidf

0 10 20 30 40 50 60 70
Block size

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

T-bLARS
bLARS

(d) E2006_log1p

Figure 4: Precision in column selection. For both bLARS and T-bLARS each line corresponds to a setting of
P. Note that different P’s give rise to different row partitions for bLARS and different column partitions for
T-bLARS. Row partitions do not affect the precision of bLARS.

binary tree, which overweighs the reduction in time for matrix-vector products. On the other hand, the wait time
for serial tournaments for E2006_log1p took relatively much less time, so T-bLARS obtains good speedups.
In general, one can expect T-bLARS to have a good speedup when the “wait time” is much less than parallel
computation times (e.g., matrix-vector products) at leaf nodes. Our implementation of T-bLARS uses sparse
data structures for computations at leaf nodes (to reduce memory requirement) and dense data structures for
computations at non-leaf nodes (to reduce overheads). This has put T-bLARS in a slight disadvantage when
dealing with sparse data as many arithmetic operations at non-leaf nodes will be unnecessary. We thus expect
T-bLARS to achieve better speedups (than the 6x on E2006_log1p) on dense and high-dimensional data where
n� m. Finally, Figure 8 shows that the communication cost of both bLARS and T-bLARS tends to decrease as
b increases, which is also expected according to Table 2.

Our experiments indicate that there is a tradeoff between bLARS and T-bLARS. On one side, bLARS is well
suited for row-partitioned data and can achieve speedups up to two orders of magnitude. However, the amazing
speedup of bLARS comes at the expense of solution quality. One the other side, while T-bLARS is generally
slower than bLARS, it has lower residual norms and on average selects columns more accurately than bLARS.
For example, for E2006_log1p, T-bLARS achieves 4x speedup (P = 64, b = 2) while correctly selecting 100%
columns, bLARS only obtains 2x speedup for b = 2 and has a precision below 80%. Even though bLARS has
up to 27x speedup (P = 4, b = 38) for E2006_log1p, in this setting bLARS only correctly recovers around 30%
columns that would have been selected by LARS.

11 Conclusions

The two parallel and communication-avoiding methods we have introduced, bLARS and T-bLARS, present
valuable methods of least-angle regression that provide higher performance of speed than LARS can normally
give. The choice between the two comes down what priorities and expectations the user has from the solutions
generated from these algorithms, e.g., be it higher speed or more resilient accuracy.

16

0 10 20 30 40 50 60 70
Block size

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

bLARS
T-bLARS

(a) sector

0 10 20 30 40 50 60 70
Block size

0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

Pr
ec

isi
on

bLARS
T-bLARS

(b) Year.

0 10 20 30 40 50 60 70
Block size

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

bLARS
T-bLARS

(c) E2006_tfidf

0 10 20 30 40 50 60 70
Block size

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

bLARS
T-bLARS

(d) E2006_log1p

Figure 5: Effects of column partitions on the precision of column selection for T-bLARS. We fix P = 128 and
run T-bLARS on 10 random column partitions. The bars for each b show the minimum and maximum precisions
over the 10 runs, and the line in the middle connects the mean.

(a) sector, bLARS (b) sector, T-bLARS

(c) Year., bLARS (d) Year., T-bLARS

(e) E2006_tfidf, bLARS (f) E2006_tfidf, T-bLARS

(g) E2006_log1p, bLARS (h) E2006_log1p, T-bLARS

Figure 6: Total speedup.

17

1 2 4 8 16 32 64 128
Number of MPI processes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Total

(a) sector, bLARS

1 2 4 8 16 32 64 128
Number of MPI processes

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Total

(b) Year., bLARS

1 2 4 8 16 32 64 128
Number of MPI processes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Total

(c) E2006_tfidf, bLARS

1 2 4 8 16 32 64 128
Number of MPI processes

0

10

20

30

40

50

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Total

(d) E2006_log1p, bLARS

1 2 4 8 16 32 64 128
Number of MPI processes

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Wait time
Total

(e) sector, T-bLARS

1 2 4 8 16 32 64 128
Number of MPI processes

0
50

100
150
200
250
300
350

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Wait time
Total

(f) Year., T-bLARS

1 2 4 8 16 32 64 128
Number of MPI processes

0

2

4

6

8

10

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Wait time
Total

(g) E2006_tfidf, T-bLARS

1 2 4 8 16 32 64 128
Number of MPI processes

0

10

20

30

40

50

60

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Wait time
Total

(h) E2006_log1p, T-bLARS

Figure 7: Running time breakdown. We fix b = 1 and vary P. The pattern is similar for other b.

0 10 20 30 40
Block size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Total

(a) sector, bLARS

0 10 20 30 40
Block size

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Total

(b) Year., bLARS

0 10 20 30 40
Block size

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Total

(c) E2006_tfidf, bLARS

0 10 20 30 40
Block size

0

10

20

30

40

50

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Total

(d) E2006_log1p, bLARS

0 10 20 30 40
Block size

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Wait time
Total

(e) sector, T-bLARS

0 10 20 30 40
Block size

0
50

100
150
200
250
300
350

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Wait time
Total

(f) Year., T-bLARS

0 10 20 30 40
Block size

0

2

4

6

8

10

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Wait time
Total

(g) E2006_tfidf, T-bLARS

0 10 20 30 40
Block size

0
2
4
6
8

10
12
14

Ti
m

e
(s

ec
)

Communication
Computing
Matrix/Vector products
Wait time
Total

(h) E2006_log1p, T-bLARS

Figure 8: Running time breakdown. We fix P = 128 and vary b. The pattern is similar for other P.

18

References

[1] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP: Incorporating long messages into
the logP model for parallel computation. Journal of parallel and distributed computing, 44(1):71–79, 1997.

[2] G. Ballard. Avoiding Communication in Dense Linear Algebra. PhD thesis, EECS Department, University
of California, Berkeley, Aug 2013.

[3] G. Ballard, E. Carson, J. Demmel, M Hoemmen, N. Knight, and O. Schwartz. Communication lower
bounds and optimal algorithms for numerical linear algebra. Acta Numerica, 23:1–155, 2014.

[4] E. J. Candés, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. Inf. Theory, 52(2):489–509, 2006.

[5] L. Cannon. A cellular computer to implement the Kalman filter algorithm. PhD thesis, Montana State
University, Bozeman, MN, 1969.

[6] E. Carson. Communication-Avoiding Krylov Subspace Methods in Theory and Practice. PhD thesis, EECS
Department, University of California, Berkeley, Aug 2015.

[7] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm.

[8] A. T. Chronopoulos. A class of parallel iterative methods implemented on multiprocessors. PhD thesis,
Department of Computer Science, University of Illinois, Urbana, Illinois, 1986.

[9] A. T. Chronopoulos and C. D. Swanson. Parallel iterative s-step methods for unsymmetric linear systems.
Parallel Computing, 22(5):623–641, 1996.

[10] A.T. Chronopoulos and C.W. Gear. On the efficient implementation of preconditioned s-step conjugate
gradient methods on multiprocessors with memory hierarchy. Parallel Computing, 11(1):37 – 53, 1989.

[11] A.T. Chronopoulos and C.W. Gear. s-step iterative methods for symmetric linear systems. Journal of
Computational and Applied Mathematics, 25(2):153 – 168, 1989.

[12] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, T. Subramonian, and R. von Eicken.
LogP: Towards a realistic model of parallel computation. Proceedings of the fourth ACM SIGPLAN
symposium on Principles and practice of parallel programming, 28(7):1–12, 1993.

[13] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo. Parallel distributed computing using python. Advances
in Water Resources, 34(9):1124 – 1139, 2011. New Computational Methods and Software Tools.

[14] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-optimal parallel and sequential QR
and LU factorizations. SIAM J. Sci. Comput., 34(1):A206–A239, 2012.

[15] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick. Avoiding communication in computing Krylov
subspaces. Technical Report UCB/EECS-2007-123, EECS Department, University of California, Berkeley,
Oct 2007.

[16] A. Devarakonda, K. Fountoulakis, J. Demmel, and M. Mahoney. Avoiding synchronization in first-order
methods for sparse convex optimization. Technical report, 2018. Accepted for publication to the 32nd
IEEE International Parallel and Distributed Processing Symposium.

[17] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of Statistics,
32(2):407–499, 2004.

[18] O. Fercoq and P. Richtárik. Accelerated, parallel, and proximal coordinate descent. SIAM J. Optim.,
25(4):1997–2023, 2015.

19

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[19] T. Hastie, J. Taylor, R. Tibshirani, and G. Walther. Forward stagewise regression and the monotone lasso.
Electron. J. Statist., 1:1–29, 2007.

[20] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning; Data mining, Inference
and Prediction. Springer Verlag, New York, 2001.

[21] M. Hoemmen. Communication-avoiding Krylov subspace methods. PhD thesis, University of California,
Berkeley, 2010.

[22] Martin Jaggi, Virginia Smith, Martin Takáč, Jonathan Terhorst, Sanjay Krishnan, Thomas Hofmann, and
Michael I. Jordan. Communication-efficient distributed dual coordinate ascent. In Proceedings of the
27th International Conference on Neural Information Processing Systems, NIPS’14, pages 3068–3076,
Cambridge, MA, USA, 2014. MIT Press.

[23] S.K. Kim and A.T. Chronopoulos. An efficient nonsymmetric Lanczos method on parallel vector computers.
Journal of Computational and Applied Mathematics, 42(3):357 – 374, 1992.

[24] M. Mohiyuddin. Tuning Hardware and Software for Multiprocessors. PhD thesis, EECS Department,
University of California, Berkeley, May 2012.

[25] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick. Minimizing communication in sparse matrix
solvers. In Proceedings of the Conference on High Performance Computing Networking, Storage and
Analysis, SC ’09, pages 36:1–36:12, New York, NY, USA, 2009. ACM.

[26] D. R. Musser. Introspective sorting and selection algorithms. Softw. Pract. Exper., 27(8):983–993, August
1997.

[27] D. Needell and T. Woolf. An asynchronous parallel approach to sparse recovery. Information Theory and
Applications Workshop (ITA), 2017.

[28] Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

[29] A. Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. pages 78–, 2004.

[30] N. Park, B. Hong, and V. K. Prasanna. Tiling, block data layout, and memory hierarchy performance. IEEE
Transactions on Parallel and Distributed Systems, 14(7):640–654, 2003.

[31] D. A. Patterson and J. L. Hennessy. Computer organization and design: the hardware/software interface.
Morgan Kaufman, 2013.

[32] M. J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New York, NY, 2004.

[33] B. Recht, C. Ré, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient
descent. In Advances in Neural Information Processing Systems, pages 693–701, 2011.

[34] P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

[35] J. Shalf, S. Dosanjh, and J. Morrison. Exascale computing technology challenges. International Conference
on High Performance Computing for Computational Science - VECPAR 2010, 6449:1–25, 2010.

[36] E. Solomonik. Provably efficient algorithms for numerical tensor algebra. PhD thesis, EECS Department,
University of California, Berkeley, Aug 2014.

[37] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective communication operations in
MPICH. The International Journal of High Performance Computing Applications, 19(1), 2005.

[38] R. Tibshirani. Regression shrinkage and selection via lasso. J. Roy. Statist. Soc. Ser. B, 58:267–288, 1996.

20

[39] J. Van Rosendale. Minimizing inner product data dependencies in conjugate gradient iteration. IEEE
Computer Society Press, Silver Spring, MD, Jan 1983.

[40] S. Weisberg. Applied linear regression. Wiley, New York, 1980.

[41] S. Williams, M. Lijewski, A. Almgren, B. Van Straalen, E. Carson, N. Knight, and J. Demmel. s-step
Krylov subspace methods as bottom solvers for geometric multigrid. In Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, pages 1149–1158. IEEE, 2014.

[42] S. J. Wright. Coordinate descent algorithms. Math. Program., 151(1):3–34, June 2015.

21

	1 Motivation and outline
	2 Introduction to the problem, existing models and LARS
	3 Our contributions
	4 Literature review for parallel models and methods
	5 Preliminaries and Assumptions
	5.1 Preliminaries
	5.2 Assumptions

	6 Least angle regression
	7 Parallel block Least Angle Regression
	7.1 Asymptotic costs for parallel bLARS and LARS

	8 Tournament block Least Angle Regression
	8.1 Asymptotic costs for parallel implementation of Tournament-bLARS

	9 Comparison of asymptotic costs
	10 Empirical performance
	10.1 Solution quality
	10.2 Speedup

	11 Conclusions

