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Abstract. This paper examines mean field linear-quadratic-Gaussian social optimum control
with volatility-uncertain common noise. The diffusion terms in the dynamics of agents contain an
unknown volatility process driven by a common noise. We apply a robust optimization approach
in which all agents view volatility uncertainty as an adversarial player. Based on the principle of
person-by-person optimality and a two-step duality technique for stochastic variational analysis, we
construct an auxiliary optimal control problem for a representative agent. Through solving this
problem combined with a consistent mean field approximation, we design a set of decentralized
strategies, which are further shown to be asymptotically social optimal by perturbation analysis.
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1. Introduction.

1.1. Large population system and mean field game. The large popula-
tion (LP) systems have found wide applications across a broad spectrum, including
economics, biology, engineering, and social science [9, 14, 20, 55]. The most salient
feature of the LP system is the interactive weakly coupling structure across a large
number of agents: each individual influence on the entire system is negligible, but their
overall population impact is substantial and cannot be ignored. Recently, dynamic
decisions of an LP system have become more important with the recent rapid growth
of practical decision systems exhibiting large-scaled interactions. Subsequently, the
mean field game (MFG) has drawn intensive research attention because it provides an
effective theoretical scheme to analyze asymptotic behavior of controlled LP systems
with competitive agents. In particular, it results in an MFG strategy which enables
us to take advantage of mean field interaction to transform the analysis of the (high-
dimensional) LP game to an optimization problem for one single representative agent
(low-dimensional) with response to aggregation effects of other individuals.

Let us recall that MFG theory was initiated by the parallel works of Lasry and
Lions [34] and Huang, Caines, and Malham\'e [28] with a general aim to analyze the
weakly coupled interactions of an LP system of rational agents with conflicting ob-
jectives. Specifically, [28] designed an \epsilon -Nash equilibrium for a decentralized strategy
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826 JIANHUI HUANG, BING-CHANG WANG, AND JIONGMIN YONG

with discount costs based on a Nash certainty equivalence (NCE) approach. NCE is
also called the consistency condition (CC). Independently, [34] introduced a model of
MFGs and studied the well-posedness of a limiting coupled partial differential equa-
tion systems, which was inspired by the McKean--Vlasov (MV) equation from physical
particle systems. To date, MFGs have been extensively discussed and a quite rich lit-
erature has been accumulated centering it. Thus, instead of a comprehensive review,
we are inclined to give a compact review of MFG works more relevant to the present
work, along with the following classifications toward a clear comparison.

1.2. A compact literature review of MFG. First, depending on the state
and cost setup, MFG studies can be classified into linear-quadratic-Gaussian (LQG)
or more general nonlinear MV types. The LQG type presents its weak coupling
through the so-called state average and is commonly adopted in MFG because of its
analytical tractability and good modeling approximation to various nonlinearity. In
this regard, the approximate Nash equilibrium of MFG can be represented, in its
closed-loop sense, through a Riccati equation with a forcing-term equation to identify
the limiting state average. Some relevant LQG MFG works include [28, 35, 6, 50,
10, 39] and references therein; our present work, to be specified soon, is also based
on such an LQG setup. On the other hand, a nonlinear MV type of MFG formalizes
weak coupling through so-called empirical distribution and is also of great importance
because of its modeling generality. In this regard, the approximate Nash equilibrium
can be resolved by coupling a (backward) Hamilton--Jacobi--Bellman equation with
a (forward) Kolmogorov equation intended to identify the marginal distributions of
optimal state. A large body of work is also devoted to this type; see [30, 16, 34, 33].

Second, depending on decision diversity and hierarchy, MFG can be classified as
a homogeneous, heterogeneous, or mixed game. In a homogeneous game, all agents
are symmetric (exchangeable) [33, 19] and minor peers. By symmetric, we mean all
agents are endowed with identical coefficients not depending upon agent index and
hence are statistically identical in decision behaviors; by minor peers, we mean a given
single agent has no global influence on the population. In a heterogeneous game, all
agents remain minor but may exhibit diversity in coefficient datum; thus, they are no
longer symmetric in decision, and as a consequence, the resulting equilibrium should
be parameterized by diversity cardinality (discrete or continuum). A mixed game is
more distinctive especially in its decision hierarchical structure, rather than merely
in system datum: it involves some major agents by imposing a dominant influence
upon all minor agents, thus having some global effects which do not diminish even
when the population size tends to infinity. This dominance may be modeled by the
appearance of major states in dynamics or costs of all agents, with order O(1) as
agent number N tends to infinity. A mixed game is a realistic setup for modeling
a monopoly in economic dynamics. Hence, it has attracted considerable attention.
For instance, [27, 11] investigated LQG mixed MFGs with a major agent and various
symmetric minor agents and provided \epsilon -Nash equilibrium strategies. Wang and Zhang
[51] studied a mixed game in a discrete-time case. Buckdahn, Li, and Peng [13]
discussed a nonlinear mixed game using the probabilistic approach.

Third, a related but distinct concept to the mixed game is the MFG with common
noise where common noise can be interpreted as some passive effect from an uncon-
trolled major player [26]. Such modeling can accommodate considerable situations by
noting that common noise might represent an external factor affecting simultaneously
all the agents participating in a game. This is well framed in reality, for instance, the
physical environment for all particles or a financial policy for all market participants.

D
ow

nl
oa

de
d 

07
/1

8/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MF SOCIAL CONTROL WITH VOLATILITY UNCERTAINTY 827

Consequently, mixed games with common noise are well motivated by a variety of
applications in finance and economics, especially by the study of system risk [17, 22].
As a trade-off, the introduction of common noise also affixes more technical difficulties
in its analysis. In particular, the limiting state average in the LQG type, or limiting
empirical measure in the nonlinear type, becomes a random process driven by the tail
filtration of all agents. Thus, the associated analysis ingredient becomes more com-
plicated. Some relevant works include [17, 1, 21], [42], and in principle, MFG with
common noise can be analyzed using the pure probabilistic approach with stochastic
maximum principle and dynamic programming.

Last, existing MFG studies are tremendously rich and the current review only
serves as a brief survey. For more comprehensive details, interested readers may
refer to [15] for a useful overview of MFG. For an introduction to both theory and
applications of MFG, see especially the Paris-Princeton Lectures [22] and the surveys
[20], [14]. We also draw attention to the recent monographs concerning MFG, such
as [9, 18].

1.3. Social optimum control by mean field analysis. Apart from nonco-
operative MFG, social optimum control by mean field analysis has also drawn in-
creasing attention recently. The social optimum problem refers to an LP system in
which all players cooperate to optimize some common social cost---the sum of indi-
vidual costs. Social optima are linked to a type of team decision [23] but with highly
complex interactions. All agents in a team decision access different information sets,
thus social optima are decentralized and differ from classical vector optimization with
a centralized designer. When player number N  - \rightarrow +\infty , some mean field team-
optimization problem is inspired to study the asymptotic behavior of an LP system
with two approaches along this line: the direct method [34, 31] and a fixed-point
method. We list a few relevant works for the second one. The work [29] considered
social optima in mean field LQG control and provided an asymptotic team-optimal
solution. Wang and Zhang [52] investigated a mean field social optimal problem in
which a Markov jump parameter appears as a common source of randomness for all
agents. The study of [32] designed socially optimal strategies by analyzing forward-
backward stochastic differential equations (FBSDEs). For further literature, see [2]
for team-optimal control with finite population and partial information, [44] for dy-
namic collective choice by finding a social optimum, [45, 46] for stochastic dynamic
teams and their mean field limit, [41] for social optima in economic models subject
to idiosyncratic shocks, and [47] for reinforcement learning algorithms for mean field
teams.

1.4. Volatility uncertainty with common noise. Motivated by the afore-
mentioned studies, the present study explores a class of robust cooperative mean field
social optimum problems. Specifically, we focus on team optimization in an LQG
setup with symmetric minor agents, driven by common noise but with uncertainty in
its volatility term. More details of the motivation behind our problem are presented
as follows.

In [25], the authors investigate mean field models with a global uncertainty term,
which means that all players share a common unknown deterministic disturbance.
They adopted the ``soft constraint"" approach [7] by removing the bound of disturbance
while the effort is simultaneously penalized in cost function. The studies [8, 39]
consider the case where each agent is paired with its local disturbance, and provide
an \epsilon -Nash equilibrium by tackling a Hamilton--Jacobi--Isaacs equation combined with
fixed-point analysis. Another study relevant to our work is in [53], [54], which present

D
ow

nl
oa

de
d 

07
/1

8/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

828 JIANHUI HUANG, BING-CHANG WANG, AND JIONGMIN YONG

robust analysis of mean-field social control with uncertain drift only. Because of the
absence of volatility uncertainty therein, a closed-loop strategy with a consistency
condition is still admissible in terms of a standard Riccati equation. In addition,
asymptotic social optimality could still be verified in [53] directly based on a stationary
condition of the strategy specified by Riccati equations obtained.

Unlike [53], [54], this paper is devoted to volatility uncertainty of social optimum
control in a mean field LQG setup with common noise. Notice that various studies of
mathematical finance (e.g., pricing and hedging [4, 40]) have remarkably focused on
markets with uncertain volatility. In [12], uncertain volatility models are introduced
to evaluate a scenario where the volatility coefficient of the pricing model cannot be
determined exactly. Therefore, a practical motivation here is that, in many decision
problems, a large number of coupled decision markers share a common noise but
with uncertain volatility on it. For instance, volatility of trading prices in a financial
market is often unknown and the implied volatility has thus been inspired and well
studied. Subsequently, when some cooperative investors concern their team optima,
it becomes necessary to study the social optimization with volatility uncertainty.
Another example is system risk minimization in an interbanking system: all branches
(of team formation) are subject to some uncertainty in common system noise, thus
robust volatility analysis arises when seeking optima in joint operations. So, it is
worthwhile to study the cooperative mean field model with volatility uncertainty
[12, 37]. Moreover, for linear dynamics (e.g., wealth process in the Merton model),
their volatilities are often inexact by allowing some modeling errors; thus, when some
quadratic hedging is considered, the LQG setup is suggested and we adopt it here.

1.5. The analysis outline and comparison. Now, we outline our analysis
components to be applied, along with the necessary literature comparison to other
works. Recently, there have arisen various works (see, e.g., [3, 45, 46]) for mean field
teams discussing the decentralized control and related asymptotic team optimality
in the context of LP exchangeable agents. No uncertainty is formulated in their
modelings and thus their analysis can be conducted in a positive definite setting. As
a comparison, our setting here is mainly indefinite because of the uncertainty and soft-
constraint introduced. Such indefiniteness brings difficulty when analyzing the related
convexity that is crucial for the solvability of our problem. The works [8, 39, 5] consider
some min-max problems in MFG or team settings to address the possible robustness.
In these works, each agent is paired with a local drift uncertainty, and the \epsilon -Nash/team
decisions can be designed by solving the saddle-point conditions in an auxiliary robust
control problem. In contrast, our present work differs essentially from them because
our mean field social optimization is imposed with global uncertain volatility through
the common noise. To handle the global influence of volatility uncertainty, we first
solve a high-dimensional indefinite state-weights optimal control problem with respect
to volatility uncertainty, and then construct an auxiliary control problem via a two-
step duality procedure. Notably, even when the control for uncertainty is centralized,
we can still reach a set of decentralized strategies for all agents. The consistency
system is obtained through embedding representation of a nonstandard mean field
type FBSDE. The above analysis techniques on volatility differ substantially from
those of [8, 39, 5], where uncertainty is only imposed on the drift term.

In addition, at first glance, this present work seems somewhat similar to our
previous works [53], [54], and [25]. However, various subtle and essential differences
exist between them, in both setup and analysis. We highlight some key differences
below for a more clear comparison.
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(i) Our present study examines the uncertainty of team optimization; thus, a
variational analysis should be conducted to test the response of related componentwise
Fr\'echet differentials for a given agent. Such an analysis is not required in [25] when
studying the uncertainty of MFGs when all agents are competitive.

(ii) In team optimization, a key step is to verify (uniform) convexity of the social
cost functional, which is high-dimensional. For team optimization (e.g., [29]) with
standard assumption (SA), such convexity follows directly because the SA weights
are all positive (nonnegative) definite. However, it becomes more challenging in the
present study because some weights are intrinsically indefinite due to the soft con-
straint and min-max setup here. Even though negative weight is also addressed in
[25], (uniform) convexity therein is more tractable: only low-dimensional optimization
needs to be treated in a competitive game context. More precisely, in [25], we need
only to consider perturbation for a given single agent to verify the approximate Nash
equilibrium by fixing other agents' strategies. However, the present study must con-
sider team perturbation for all agents instead of a single one only; thus, the convexity
involved is high-dimensional and indefinite, which becomes more technical to check.

(iii) Uncertainty (disturbance) in [25] is postulated to be deterministic on the
drift term only. Thus, the related CC system by the fixed-point argument reduces
to a forward-backward ordinary differential equation (FBODE), for which the well-
posdness is more tractable. For instance, the compatibility method in [38] still works
in [25] for such an FBODE but fails here to the more complicated FBSDE of the
consistency condition due to volatility uncertainty.

(iv) Unlike [53], [54] for team optimization with drift uncertainty only, volatility
uncertainty imposed here brings more technical difficulties. For example, more subtle
estimates for a fully coupled consistency FBSDE system, especially for its (backward)
adjoint solution in a common noise component, should be invoked. Instead of the
Riccati equation approach, we mainly adopt the FBSDE analysis for the solvability
of the related optimization problems. Moreover, for the auxiliary problem construc-
tion for social optimality, the related variational analysis becomes rather involved
(see section 5). Furthermore, it differs fairly from that of [53], [54] mainly because of
common noise and volatility uncertainty. More crucially, a two-step duality procedure
(see section 4.2) should be applied and a new type of auxiliary problem is construc-
ted, whereas in [53], [54], only single-step duality is required. In addition, different
from [53], [54], the consistency system here requires a new embedding representation
type. For the related asymptotic social optimality, the verification in [53], [54] can
still proceed via standard Riccati decoupling and relevant estimation. Nevertheless,
the verification of asymptotic team optimization in the current work becomes more
complicated. In particular, Riccati decoupling is not well workable here, thus we
adopt some Fr\'echet derivative and quadratic functional representation methods (see
section 7.1).

To conclude, the main contributions of this paper can be summarized as follows:
(1) The volatility uncertainty of team optimization on common noise is introduced

and formulated in a soft-constraint setting. Two sequential optimization problems are
also formulated.

(2) An auxiliary control problem is constructed via a two-step duality procedure,
and the consistency system is obtained through embedding representation of a non-
standard mean field type FBSDE. The related uniform convexity (concavity) is also
established in the high-dimensional case.

(3) We obtain global solvability of related FBSDEs in some nontrivial and non-
standard case.
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(4) The decentralized optimal team strategy is derived in an open-loop sense, and
its asymptotic social optimality is verified in a robust social sense.

The rest of this paper is organized as follows. Section 2 formulates the volatility
uncertainty with soft constraint; section 3 discusses the control problem with volatility
uncertainty; section 4 investigates team optimization in person-by-person optimality;
based on this, section 5 designs the decentralized strategies through a CC system;
section 6 analyzes the well-posedness of FBSDEs, which arises from the consistency
system; section 7 presents asymptotic robust social optimality of the decentralized
strategy; and section 8 concludes the paper.

2. Problem formulation. We denote by \BbbR k the k-dimensional Euclidean space,
\BbbR n\times k the set of all n \times k matrices, and \otimes the Kronecker product. We use | \cdot | to
denote the norm of a Euclidean space, or the Frobenius norm of matrices. For a
vector or matrix M , MT denotes its transpose; for two vectors x, y, \langle x, y\rangle = xT y.
For symmetric matrix Q and a vector z, | z| 2Q = zTQz, and Q > 0 (Q \geq 0) means
that Q is positive (nonnegative) definite. Consider a finite time horizon [0, T ] for
T > 0; for a given filtration \BbbG \triangleq \{ \scrG t\} 0\leq t\leq T , denote L

2
\BbbG (0, T ;\BbbR \ell ) (L2

\BbbG (\Omega ;C([0, T ];\BbbR \ell )))
the space of all \BbbR \ell -valued \scrG t-progressively measurable (continuous) processes s(\cdot )
satisfying \| s\| 2L2

:= \BbbE 
\int T

0
| s(t)| 2dt < \infty (\| s\| 2max := \BbbE sup0\leq t\leq T | s(t)| 2 < \infty ). For

convenience of presentation, we may use c (or c1, c2, . . .) to denote a generic constant
which does not depend on the population size N of the LP system and may vary from
place to place.

Let (\Omega ,\scrF ,\BbbF ,\BbbP ) be a complete filtered probability space on which a sequence of
independent one-dimensional Brownian motions \{ Wi(t), i = 0, 1, . . . , N\} are defined,
where \BbbF = \{ \scrF t\} 0\leq t\leq T is the natural filtration of \{ Wi(t), i = 0, 1, . . . , N\} augmented
by all the \BbbP -null sets in \scrF . Consider a linear stochastic LP system with N agents (or
particles), in which the ith agent \scrA i evolves by

dxi(t) = [Axi(t) +Bui(t) + f(t)]dt+ [Dui(t) + \sigma (t)]dWi(t)
+[C0xi(t) +D0ui(t) + \sigma 0(t)]dW0(t), xi(0) = x0, i = 1, . . . , N,(2.1)

where xi(\cdot ) and ui(\cdot ) are state and input of agent\scrA i, valued in \BbbR n and \BbbR r, respectively,
and x0 \in \BbbR n is a constant vector; coefficients A,B,D,C0, D0 are constant matrices
of suitable sizes; Wi(\cdot ) is a Brownian motion representing the idiosyncratic noise
for agent \scrA i; and W0(\cdot ) is a Brownian motion representing a common noise shared
by all agents (a similar setup can be found in [14, 26]). For i = 0, 1, . . . , N , let
\BbbF i = \{ \scrF i

t\} 0\leq t\leq T be the natural filtration of Wi(\cdot ) augmented by all the \BbbP -null sets.
Then, \BbbF = \{ \scrF t\} 0\leq t\leq T = \{ \sigma (

\bigcup N
i=0 \scrF i

t )\} 0\leq t\leq T is called the centralized information. \sigma 0

is unknown volatility but note that it might not be only \BbbF 0 = \{ \scrF 0
t \} 0\leq t\leq T -adapted

with \scrF 0 the information generated by common noise W0(\cdot ).
Remark 2.1. The individual diffusion part of (2.1) driven byWi does not include a

term like Cxi as in standard LQ control literature, mainly due to two concerns. First,
introduction of Cxi will bring considerable technical difference in relevant analysis
and we plan to address it in future work; second, the current setup is still rather
general, especially including risky investments as its special case (i.e., \sigma = 0). For
simplicity, we assume that all the agents have the same initial state. It is not hard
to extend our results to the case that initial states of agents are independent and
identically distributed random variables.

When D,D0 \not = 0, the control process enters diffusion terms (driven by Wi(\cdot ),
W0(\cdot )) of (2.1), and in this case (2.1) is said to be diffusion-controlled. The study of
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diffusion-controlled systems has attracted extensive attention, mainly because of their
modeling power and application potential in operational research and mathematical
finance, etc. The readers may refer to [58, 9, 48] for relevant studies of LQ diffusion-
controlled systems and related applications in mean-variance and portfolio selection
problems. By comparison, the drift-controlled (i.e., D = D0 = 0, B \not = 0) system is
more classical in the LQ literature and has been broadly adopted in most MFG or
team studies (e.g., [28, 29, 50]). Besides modeling, the diffusion-controlled system also
differs from the drift-controlled one in relevant analysis, for example, in the study of
related Riccati equations and Hamiltonian systems.

Given state dynamics (2.1), the cost functional of \scrA i is given by

Ji(u) =
1

2
\BbbE 
\int T

0

\Bigl\{ \bigm| \bigm| xi(t) - \Gamma x(N)(t) - \eta (t)
\bigm| \bigm| 2
Q
+ | ui(t)| 2R

\Bigr\} 
dt

+
1

2
\BbbE | xi(T ) - \Gamma 0x

(N)(T ) - \eta 0| 2G,(2.2)

where x(N) = 1
N

\sum N
j=1 xj is the weakly coupled state average, and u = \{ u1, . . . , uN\} \in 

\BbbR r\times N is the team strategy. The admissible strategy set of\scrA i is in the distributed sense:

\scrU r
i =

\Bigl\{ 
ui(\cdot ) \in L2

\BbbH i(0, T ;\BbbR r) :

\BbbH i = \{ \scrH i
t\} 0\leq t\leq T ,\scrH i

t \triangleq \sigma 
\bigl\{ 
\scrF 0

t \cup \scrF i
t \cup \sigma (xi(s), 0 \leq s \leq t)

\bigr\} \Bigr\} 
.

Here, \{ \scrH i
t\} denotes the decentralized (or distributed) information for the individual

agent\scrA i. Note that xi is not \{ \scrF i
t\} -adapted because of the state average coupling x(N);

thus, the inclusions of \sigma (xi(s)) and \scrF i
t are both necessary in the above formulation.

For comparison, the centralized strategy set is

\scrU r
c =

\Bigl\{ 
ui(\cdot ) \in L2

\BbbF (0, T ;\BbbR r)
\Bigr\} 
.

Denote the social cost under volatility with soft constraint by

J (N)
soc (u, \sigma 0) =

N\sum 
i=1

\Biggl( 
Ji(u) - 

1

2
\BbbE 
\int T

0

| \sigma 0(t)| 2R0
dt

\Biggr) 
with R0 being the attenuation parameter of soft constraint (see [7]). The main goal
of the current paper is to seek a set of distributed strategies to minimize the social
cost under soft constraint for system (2.1)--(2.2), i.e.,

(P) minimizeui\in \scrU r
i
Jwo
soc(u) with Jwo

soc(u)
\Delta 
= sup

\sigma 0\in \scrU n
c

J (N)
soc (u, \sigma 0)

over \{ u = (u1, . . . , ui, . . . , uN ), ui \in \scrU r
i , i = 1, . . . , N\} , where Jwo

soc(u) is the social cost
under the worst-case volatility.

To simplify the analysis, we introduce the following hypothesis.
(H1) The state and cost functional coefficients satisfy\Biggl\{ 

A,C0,\Gamma ,\Gamma 0 \in \BbbR n\times n, B,D,D0 \in \BbbR n\times r,

Q \geq 0, R > 0, R0 > 0, G \geq 0, f, \sigma , \sigma 0, \eta , \eta 0 \in L2
\BbbF (0, T,\BbbR n).

Under (H1), by [58], for any x0 and ui \in \scrU r
c , (2.1) admits a unique strong solution,

xT (\cdot ) = (xT
1 (\cdot ), . . . , xT

i (\cdot ), . . . , xT
N (\cdot )) \in L2

\BbbF (\Omega ;C([0, T ];\BbbR nN )),
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where the following estimates hold true: for some c1 independent of N ,

\BbbE sup
0\leq t\leq T

| x(t)| 2 \leq c1\BbbE 

\Biggl[ 
N | x0| 2 +N

\Biggl( \int T

0

| f(s)| ds

\Biggr) 2

+N

\int T

0

\bigl( 
| \sigma 0(s)| 2 + | \sigma (s)| 2

\bigr) 
ds+

N\sum 
i=1

\int T

0

| ui(s)| 2ds

\Biggr] 
.

3. The control problem with respect to volatility uncertainty. From now
on, the time variable tmight be suppressed when no confusion occurs. Let ui \in \scrU r

c , i =
1, . . . , N , be fixed. The optimal control problem with volatility uncertainty can be
formulated as

(P1) maximize\sigma 0\in \scrU n
c
J (N)
soc (u, \sigma 0)

which is equivalent to

(P1\prime ) Minimize \v J
(N)
soc over \sigma 0 \in \scrU n

c , where

\v J (N)
soc (\sigma 0) =

1

2

N\sum 
i=1

\BbbE 
\int T

0

\Bigl\{ 
 - 
\bigm| \bigm| xi  - \Gamma x(N)  - \eta 

\bigm| \bigm| 2
Q
+ | \sigma 0| 2R0

\Bigr\} 
dt

 - 1

2
\BbbE | xi(T ) - \Gamma 0x

(N)(T ) - \eta 0| 2G.

Hereafter, the following notation will be used to enable more compact representation.
Let u = (uT

1 , . . . , u
T
N )T , 1 = (1, . . . , 1)T , \sigma i = (0, . . . , 0, \sigma T , 0, . . . , 0)T , A =

Diag(A, . . . , A),B = Diag(B, . . . , B),Di = Diag(0, . . . , 0, D, 0, . . . , 0),C0 =
Diag(C0, . . . , C0), D0 = Diag(D0, . . . , D0), and x0 = (xT

0 , . . . , x
T
0 ).

Remark 3.1. Hereafter, whenever necessary, we may exchange the usage of no-
tation u = (u1,. . ., uN ) \in \BbbR r\times N and u = (uT

1 , . . . , u
T
N )T \in \BbbR rN by noting they both

represent the team decision profile among all agents but only differ in formations.

With the above notation, we can rewrite dynamics of all agents in a more compact
form:

dx(t) =Ax(t)dt+Bu(t)dt+ 1\otimes f(t)dt+

N\sum 
i=1

[Diu(t) + \sigma i(t)]dWi(t)

+ [C0x(t) +D0u(t) + 1\otimes \sigma 0(t)]dW0(t), x(0) = x0.

Recall \otimes denotes the Kronecker product. Also, we introduce the following notations:

(3.1)

\Biggl\{ 
\Xi 1 := \Gamma TQ+Q\Gamma  - \Gamma TQ\Gamma , \Xi 2 := Q\eta  - \Gamma TQ\eta ,

\Xi G
1 := \Gamma T

0 G+G\Gamma 0  - \Gamma T
0 G\Gamma 0, \Xi G

2 := G\eta 0  - \Gamma T
0 G\eta 0.

By rearranging the integrand of \v J
(N)
soc , we have

\v J (N)
soc =

1

2
\BbbE 
\int T

0

\Bigl( 
 - | x| 2\^Q + 2\^\eta Tx+N | \sigma 0| 2R0

\Bigr) 
dt - 1

2
\BbbE 
\bigl( 
| x(T )| 2\^G  - 2\^\eta T0 x(T )

\bigr) 
,(3.2)

where \^\eta = 1\otimes \Xi 2, \^\eta 0 = 1\otimes \Xi G
2 , and

\^Q = ( \^Qij), \^G = ( \^Gij) are given respectively by

\^Qii = Q - \Xi 1/N, \^Qij =  - \Xi 1/N, \^Gii = G - \Xi G
1 /N, \^Gij =  - \Xi G

1 /N, 1 \leq i \not = j \leq N.

(3.3)D
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Denote

\Gamma i =

\Biggl[ 
 - \Gamma 

N
, . . . , - \Gamma 

N
, I  - \Gamma 

N
, - \Gamma 

N
, . . . , - \Gamma 

N

\Biggr] 
,

where I  - \Gamma 
N is the ith element. Note \^Q =

\sum N
i=1 \Gamma 

T
i Q\Gamma i. Then

\lambda min(Q)

N\sum 
i=1

\Gamma T
i \Gamma i \leq \^Q \leq \lambda max(Q)

N\sum 
i=1

\Gamma T
i \Gamma i.

For further analysis, we assume

(H2) \v J
(N)
soc (\sigma 0) of (P1

\prime ) is convex in \sigma 0;

(H2\prime ) \v J
(N)
soc (\sigma 0) of (P1

\prime ) is uniformly convex in \sigma 0.
We have the following equivalent conditions that ensure (H2).

Proposition 3.2. The following statements are equivalent:

(i) \v J
(N)
soc (\sigma 0) is convex in \sigma 0.

(ii) For any \sigma 0 \in \scrU n
c ,

\BbbE 
\int T

0

\Bigl( 
 - zT \^Qz+N\sigma T

0 R0\sigma 0

\Bigr) 
dt - \BbbE | z(T )| 2\^G \geq 0,

where z \in \BbbR nN satisfies\Biggl\{ 
dz =Azdt+ (C0z+ 1\otimes \sigma 0)dW0,

z(0) = 0.

(iii) \=J \prime 
i(\sigma 0) is convex in \sigma 0, where

\=J \prime 
i(\sigma 0)

\Delta 
=\BbbE 

\int T

0

\Bigl\{ 
 - 
\bigm| \bigm| (I  - \Gamma )zi

\bigm| \bigm| 2
Q
+ | \sigma 0| 2R0

\Bigr\} 
dt - \BbbE | (I  - \Gamma 0)zi(T )| 2G

subject to

(3.4) dzi(t) = Azi(t)dt+ [C0zi(t) + \sigma 0(t)]dW0(t), zi(0) = 0.

Proof. (i) \leftrightarrow (ii) is given in [25]. From (3.4), we have z1 = z2 = \cdot \cdot \cdot = zN = z(N).
Thus,

\BbbE 
\int T

0

\Bigl( 
 - | z| 2\^Q +N | \sigma 0| 2R0

\Bigr) 
dt - \BbbE | z(T )| 2\^G

=

N\sum 
i=1

\BbbE 
\int T

0

\Bigl( 
 - 
\bigm| \bigm| zi  - \Gamma zi

\bigm| \bigm| 2
Q
+ | \sigma 0| 2R0

\Bigr) 
dt - 

N\sum 
i=1

\BbbE | (I  - \Gamma 0)zi(T )| 2G

= N
\Bigl[ 
\BbbE 
\int T

0

\Bigl( 
 - 
\bigm| \bigm| (I  - \Gamma )zi

\bigm| \bigm| 2
Q
+ | \sigma 0| 2R0

\Bigr) 
dt - \BbbE | (I  - \Gamma 0)zi(T )| 2G

\Bigr] 
,(3.5)

which implies that (ii) is equivalent to (iii).

Denote \^1 = 1\otimes I. By [49], if the Riccati equation

\.P+ATP+PA+CT
0 PC0  - \^Q - 

\bigl( 
\^1
T
PC0

\bigr) T \bigl[ 
NR0 + \^1

T
P\^1
\bigr]  - 1\^1

T
PC0 = 0,

P(T ) =  - \^G,
(3.6)
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admits a solution such that NR0 + \^1
T
P\^1 > 0, then \v J

(N)
soc (\sigma 0) is uniformly convex,

which further gives that (H2\prime ) holds. The above condition (3.6) is of high-dimension
nN\times nN which is not feasible to verify. Alternatively, we give the following necessary
and sufficient condition with low-dimensionality.

Proposition 3.3. The following statements are equivalent:

(i) \v J
(N)
soc (\sigma 0) is uniformly convex in \sigma 0.

(ii) \=J \prime 
i(\sigma 0) is uniformly convex in \sigma 0.

(iii) The equation

(3.7) \.K+KA+ATK+CT
0 KC0 - CT

0 K(K+R0)
 - 1KC0+\Xi 1 - Q = 0, K = \Xi G

1  - G

admits a solution such that K +R0 > 0.

Proof. (i) By (3.5) and [36], we have (i)\leftrightarrow (ii). (ii)\leftrightarrow (iii) is implied from [49].

By examining the variation of \v J
(N)
soc , we obtain the following result.

Theorem 3.4. Suppose that R0 > 0; then for any fixed admissible strategy set
u = (u1, . . . , uN ) \in 

\prod N
i=1 \scrU r

i , problem (P1\prime ) has a minimizer \sigma \ast 
0(u) if and only if

(H2) holds and the following forward-backward equation system admits a solution
(xi, pi, \{ \beta j

i \} Nj=0):

(3.8)

\left\{                   

dxi =(Axi+Bui+f)dt+(Dui+\sigma )dWi+

\Biggl( 
C0xi+D0ui - 

R - 1
0

N

N\sum 
j=1

\beta 0
j

\Biggr) 
dW0,

dpi = - [AT pi + CT
0 \beta 

0
i  - Qxi + \Xi 1x

(N) + \Xi 2]dt+ \beta 0
i dW0 +

N\sum 
j=1

\beta j
i dWj ,

xi(0) = x0, pi(T ) = ( - G)xi(T ) + \Xi G
1 x

(N)(T ) + \Xi G
2 , i = 1, . . . , N.

In this case, the minimizer \sigma \ast 
0(u) =  - 

R - 1
0

N

\sum N
j=1 \beta 

0
j .

Proof. The ``if"" part follows directly by the standard completion of square tech-
nique for (P1\prime ) and stationary condition reasoning for quadratic functional.

For the ``only if"" part, suppose \sigma \ast 
0 is a minimizer to problem (P1\prime ). x\ast 

i is the op-

timal state of agent i under the volatility \sigma \ast 
0 . x

(N)
\ast = 1

N

\sum N
j=1 x

\ast 
j . For i = 1, 2, . . . , N,

denote \delta xi = xi - x\ast 
i the increment of xi along with the variation \delta \sigma 0 = \sigma 0 - \sigma \ast 

0 . Sim-

ilarly, \delta x(N) = 1
N

\sum N
j=1 \delta xj and \delta \v J

(N)
soc (\sigma \ast 

0 , \delta \sigma 0) = \v J
(N)
soc (\sigma 0) - \v J

(N)
soc (\sigma \ast 

0) + o(| | \delta \sigma 0| | L2),

the Fr\'echet differential of \v J
(N)
soc on \sigma \ast 

0 along with direction \delta \sigma 0. By (2.1),

(3.9) d(\delta xi) = A(\delta xi)dt+ [C0(\delta xi) + \delta \sigma 0]dW0, \delta xi(0) = 0, i = 1, 2, . . . , N.

By the standard variational principle, we have the following stationary condition on
the Fr\'echet differential:

(3.10)

0 = \delta \v J (N)
soc (\sigma \ast 

0 , \delta \sigma 0)

=

N\sum 
i=1

\BbbE 
\int T

0

\Bigl\{ 
\langle  - Q

\bigl[ 
x\ast 
i  - (\Gamma x

(N)
\ast + \eta )

\bigr] 
, \delta xi  - \Gamma \delta x(N)\rangle + \langle R0\sigma 

\ast 
0 , \delta \sigma 0\rangle 

\Bigr\} 
dt

+

N\sum 
i=1

\BbbE 
\bigl\{ 
\langle  - G

\bigl[ 
x\ast 
i (T ) - (\Gamma 0x

(N)
\ast (T ) + \eta 0)

\bigr] 
, \delta xi(T ) - \Gamma \delta x(N)(T )\rangle 

\bigr\} 
.
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Introduce the adjoint equation

dpi = - 
\bigl[ 
AT pi + CT

0 \beta 
0
i + \Gamma TQ

\bigl[ 
(I  - \Gamma )x

(N)
\ast  - \eta 

\bigr] 
 - Q

\bigl[ 
x\ast 
i  - (\Gamma x

(N)
\ast + \eta )

\bigr] 
dt

+ \beta 0
i dW0 + \beta i

idWi +
\sum 
j \not =i

\beta j
i dWj , pi(T ) = ( - G)x\ast 

i (T ) + \Xi G
1 x

(N)
\ast (T ) + \Xi G

2 .

(3.11)

Then by It\^o's formula,

\BbbE [\langle ( - G)xi(T ) + \Xi G
1 x

(N)(T ) + \Xi G
2 , xi(T )\rangle ]

= \BbbE 
\int T

0

\bigl[ 
\langle  - 
\bigl[ 
AT pi + CT

0 \beta 
0
i + \Gamma TQ

\bigl[ 
(I  - \Gamma )x

(N)
\ast  - \eta 

\bigr] 
 - Q

\bigl[ 
x\ast 
i  - (\Gamma x

(N)
\ast + \eta )

\bigr] 
, \delta xi\rangle + \langle pi, A\delta xi\rangle + \langle \beta 0

i , C0\delta xi + \delta \sigma 0\rangle 
\bigr] 
dt.(3.12)

Note that

N\sum 
i=1

\BbbE 
\int T

0

\bigl\langle 
 - Q

\bigl( 
x\ast 
i  - (\Gamma x

(N)
\ast + \eta )

\bigr) 
,\Gamma \delta x(N)

\bigr\rangle 
dt

=

N\sum 
j=1

\BbbE 
\int T

0

\bigl\langle 
 - \Gamma TQ

\bigl[ 
(I  - \Gamma )x

(N)
\ast  - \eta 

\bigr] 
, \delta xj

\bigr\rangle 
dt.

It follows by (3.10)--(3.12) that

0 =\BbbE 
N\sum 
i=1

\int T

0

\Bigl[ \bigl\langle 
 - Q

\bigl( 
x\ast 
i  - (\Gamma x

(N)
\ast + \eta )

\bigr) 
, \delta xi  - \Gamma \delta x(N)

\bigr\rangle 
+ \langle R0\sigma 

\ast 
0 , \delta \sigma 0\rangle 

\Bigr] 
dt

+

N\sum 
i=1

\BbbE 
\int T

0

\bigl[ 
\langle  - 
\bigl[ 
AT pi + CT

0 \beta 
0
i + \Gamma TQ

\bigl[ 
(I  - \Gamma )x

(N)
\ast  - \eta 

\bigr] 
 - Q

\bigl[ 
x\ast 
i  - (\Gamma x

(N)
\ast + \eta )

\bigr] 
, \delta xi\rangle + \langle pi, A\delta xi\rangle + \langle \beta 0

i , C0\delta xi + \delta \sigma 0\rangle 
\bigr] 
dt

=\BbbE 
\int T

0

\Bigl\langle 
NR0\sigma 

\ast 
0 +

N\sum 
i=1

\beta 0
i , \delta \sigma 0

\Bigr\rangle 
dt,

which leads to

\sigma \ast 
0 =  - R - 1

0

N

N\sum 
i=1

\beta 0
i .

Thus, the Hamiltonian system (3.8) admits a solution (x\ast 
i , pi, \{ \beta 

j
i \} Nj=0).

Let p(N) = 1
N

\sum N
i=1 pi and \beta 

(N)
0 = 1

N

\sum N
i=1 \beta 

0
i . It follows from (3.8) that\left\{                           

dx(N) =(Ax(N) +Bu(N) + f)dt+
1

N

N\sum 
i=1

(Dui + \sigma )dWi

+ (C0x
(N) +D0u

(N)  - R - 1
0 \beta 

(N)
0 )dW0, x(N)(0) = x,

dp(N) = - 
\Bigl[ 
AT p(N) + CT

0 \beta 
(N)
0  - (Q - \Xi 1)x

(N) + \Xi 2

\Bigr] 
dt+ \beta 

(N)
0 dW0

+
1

N

N\sum 
i=1

N\sum 
j=1

\beta j
i dWj , p(N)(T ) = (\Xi G

1  - G)x(N)(T ) + \Xi G
2 .
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Letting N \rightarrow \infty , we obtain an approximation as follows:

(3.13)

\left\{       
d\^x =(A\^x+B\^u+ f)dt+ (C0\^x+D0\^u - R - 1

0
\^\beta 0)dW0,

d\^p = - 
\bigl[ 
AT \^p+ CT

0
\^\beta 0  - (Q - \Xi 1)\^x+ \Xi 2

\bigr] 
dt+ \^\beta 0dW0,

\^x(0) = x0, \^p(T ) = (\Xi G
1  - G)\^x(T ) + \Xi G

2 .

4. The control problem of agent \bfiti : Person-by-person optimality.

4.1. Some variational analysis. When the volatility \sigma \ast 
0 =  - R - 1

0

N

\sum N
j=1 \beta 

0
j is

applied, we turn to study the outer minimization problem for team agents.
(P2): Minimize Jwo

soc(u) over \{ u = (u1, . . . , uN )| ui \in \scrU r
c \} , where

Jwo
soc(u) \triangleq J (N)

soc (u, \sigma \ast 
0(u))

=
1

2

N\sum 
i=1

\BbbE 
\int T

0

\Bigl\{ \bigm| \bigm| xi  - \Gamma x(N)  - \eta 
\bigm| \bigm| 2
Q
+ | ui| 2R  - | \sigma \ast 

0(u)| 2R0

\Bigr\} 
dt

+
1

2
\BbbE | xi(T ) - \Gamma 0x

(N)(T ) - \eta 0| 2G(4.1)

subject to

(4.2)

\left\{                   

dxi=(Axi+Bui+f)dt+(Dui+\sigma )dWi+

\Biggl( 
C0xi+D0ui - 

R - 1
0

N

N\sum 
k=1

\beta 0
k

\Biggr) 
dW0,

dpi= - (AT pi + CT
0 \beta 

0
i  - Qxi + \Xi 1x

(N) + \Xi 2)dt+ \beta 0
i dW0 +

N\sum 
k=1

\beta k
i dWk,

xi(0) = x0, pi(T ) = ( - G)xi(T ) + \Xi G
1 x

(N)(T ) + \Xi G
2 .

For further analysis, we introduce the following assumption.
(H3) Jwo

soc(u) of (P2) is convex in u.
Suppose \=u = (\=u1, . . . , \=ui, . . . , \=uN ) and \=x = (\=x1, . . . , \=xi, . . . , \=xN ) are respectively

the centralized optimal control and states of (P2) and we make the following person-
by-person optimality variation around its optimal point. We now perturb the control
of \scrA i to be ui and keep (\=u1, . . . , \=ui - 1, \=ui+1, . . . , \=uN ), the strategies of all other agents
fixed. Let \delta ui = ui  - \=ui and \delta ui \in \scrU r

c . Denote \delta xj = xj  - \=xj , \delta pj = pj  - \=pj , and
\delta \beta k

j = \beta k
j  - \=\beta k

j , j, k = 1, . . . , N , the corresponding (forward, adjoint) state variation.
By (3.8) and (4.2), we have

(4.3)

\left\{                     

d(\delta xi) = (A\delta xi+B\delta ui)dt+(D\delta ui)dWi

+

\Biggl( 
C0\delta xi+D0\delta ui - 

R - 1
0

N

N\sum 
k=1

\delta \beta 0
k

\Biggr) 
dW0, \delta xi(0) = 0,

d(\delta pi) = - 
\bigl( 
AT \delta pi + CT

0 \delta \beta 
0
i  - Q\delta xi + \Xi 1\delta x

(N)
\bigr) 
dt+ \delta \beta 0

i dW0

+ \delta \beta i
idWi +

\sum 
k \not =i

\delta \beta k
i dWk, \delta pi(T ) = ( - G)\delta xi(T ) + \Xi G

1 \delta x
(N)(T ),
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and for j \not = i,

(4.4)

\left\{                 

d(\delta xj) =A\delta xjdt+

\Biggl( 
C0\delta xj  - 

R - 1
0

N

N\sum 
l=1

\delta \beta 0
l

\Biggr) 
dW0, \delta xj(0) = 0,

d(\delta pj) = - 
\bigl( 
AT \delta pj + CT

0 \delta \beta 
0
j  - Q\delta xj + \Xi 1\delta x

(N)
\bigr) 
dt+ \delta \beta 0

j dW0 + \delta \beta j
jdWj

+
\sum 
l \not =j

\delta \beta l
jdWl, \delta pj(T ) = ( - G)\delta xj(T ) + \Xi G

1 \delta x
(N)(T ).

This implies that for any j, j\prime \not = i, \delta xj = \delta xj\prime , which further gives

(4.5) \delta pj = \delta pj\prime , \delta \beta 0
j = \delta \beta 0

j\prime , for j, j\prime \not = i.

Let \BbbE \scrF 0 [\cdot ] \Delta 
= \BbbE [\cdot | \scrF 0

t ] (suppressing t). Note that Wj is independent of W0. It follows
from (4.3) that

(4.6)

\left\{                       

d(\BbbE \scrF 0 [\delta xi]) =
\bigl( 
A\BbbE \scrF 0 [\delta xi] +B\BbbE \scrF 0 [\delta ui]

\bigr) 
dt

+

\Biggl( 
C0\BbbE \scrF 0 [\delta xi] +D0\BbbE \scrF 0 [\delta ui] - 

R - 1
0

N

N\sum 
k=1

\BbbE \scrF 0 [\delta \beta 0
k]

\Biggr) 
dW0,

d(\BbbE \scrF 0 [\delta pi]) = - 
\bigl( 
AT\BbbE \scrF 0 [\delta pi]+CT

0 \BbbE \scrF 0 [\delta \beta 0
i ] - Q\BbbE \scrF 0 [\delta xi]+\Xi 1\BbbE \scrF 0 [\delta x(N)]

\bigr) 
dt

+ \BbbE \scrF 0 [\delta \beta 0
i ]dW0,

\BbbE \scrF 0
0
[\delta xi(0)] = 0, \BbbE \scrF 0

T
[\delta pi(T )] = ( - G)\BbbE \scrF 0

T
(\delta xi(T )) + \Xi G

1 \BbbE \scrF 0
T
(\delta x(N)(T )).

It follows from (4.4) that for j \not = i

(4.7)

\left\{                   

d(\BbbE \scrF 0 [\delta xj ]) =A\BbbE \scrF 0 [\delta xj ]dt+

\Biggl( 
C0\BbbE \scrF 0 [\delta xj ] - 

R - 1
0

N

N\sum 
k=1

\BbbE \scrF 0 [\delta \beta 0
k]

\Biggr) 
dW0,

d(\BbbE \scrF 0 [\delta pj ]) = - 
\bigl( 
AT\BbbE \scrF 0 [\delta pj ] + CT

0 \BbbE \scrF 0 [\delta \beta 0
j ] - Q\BbbE \scrF 0 [\delta xj ]

+ \Xi 1\BbbE \scrF 0 [\delta x(N)]
\bigr) 
dt+ \BbbE \scrF 0 [\delta \beta 0

j ]dW0,

\BbbE \scrF 0
0
[\delta xj(0)] = 0,\BbbE \scrF 0

T
[\delta pj(T )] = ( - G)\BbbE \scrF 0

T
(\delta xj(T )) + \Xi G

1 \BbbE \scrF 0
T
(\delta x(N)(T )).

Denote \delta Jwo
soc(\=u, \delta ui) the Fr\'echet differential of Jwo

soc at \=u along with direction \delta ui:

(4.8) Jwo
soc(\=u+\delta ui) - Jwo

soc(\=u)=\delta Jwo
soc(\=u, \delta ui)+o(\| \delta ui\| L2)=\langle \scrD ui

Jwo
soc(\=u), \delta ui\rangle +o(\| \delta ui\| L2),

where \scrD ui
Jwo
soc(\=u) is the Fr\'echet derivative of Jwo

soc at \=u with componentwise variation
(0, . . . , \delta uT

i , . . . , 0). Then, from (4.5), we can obtain that for j \not = i,

\delta Jwo
soc(\=u, \delta ui)

= \BbbE 
\int T

0

\Biggl[ \bigl\langle 
Q(\=xi - \Gamma \=x(N) - \eta ), \delta xi

\bigr\rangle 
 - 
\bigl\langle 
\Gamma TQ(\=xi  - \Gamma \=x(N)  - \eta ), \delta x(N)

\bigr\rangle 
+

\Biggl\langle 
Q

\Biggl( \Biggl( 
I - N  - 1

N
\Gamma 

\Biggr) 
\=x(N) - \=xi

N
 - N  - 1

N
\eta 

\Biggr) 
, N\delta xj

\Biggr\rangle D
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 - 

\Biggl\langle 
1

N

\sum 
j \not =i

\Gamma TQ(\=xj - \Gamma \=x(N) - \eta ), \delta xi

\Biggr\rangle 
 - 
\bigl\langle 
R - 1

0
\=\beta 
(N)
0 , \delta \beta 0

i

\bigr\rangle 
 - 
\bigl\langle 
R - 1

0
\=\beta 
(N)
0 , (N  - 1)\delta \beta 0

j

\bigr\rangle 
 - 

\Biggl\langle 
\Gamma TQ

\Biggl( 
\=x(N)  - \=xi

N
 - N  - 1

N
\Gamma \=x(N)  - N  - 1

N
\eta 

\Biggr) 
, (N  - 1)\delta xj

\Biggr\rangle 
+
\bigl\langle 
R\=ui, \delta ui

\bigr\rangle \Biggr] 
dt

+ \BbbE 
\bigl[ \bigl\langle 
G(\=xi(T ) - \Gamma 0\=x

(N)(T ) - \eta 0), \delta xi(T )
\bigr\rangle 
 - 
\bigl\langle 
\Gamma T
0 G(\=xi(T ) - \Gamma 0\=x

(N)(T ) - \eta 0),

\delta x(N)(T )
\bigr\rangle 
+
\sum 
j \not =i

\bigl\langle 
G(\=xj(T ) - \Gamma 0\=x

(N)(T ) - \eta 0), \delta xj(T )
\bigr\rangle 

 - 
\sum 
j \not =i

\bigl\langle 
\Gamma T
0 G(\=xj(T ) - \Gamma 0\=x

(N)(T ) - \eta 0), \delta x
(N)(T )

\bigr\rangle \bigr] 
.

When N \rightarrow +\infty , from (3.13), we further have

(4.9)

lim
N\rightarrow +\infty 

\delta Jwo
soc(\=u, \delta ui) := \delta \^Ji(\=u, \delta ui) = \langle \scrD ui

\^Ji(\=u), \delta ui\rangle 

= \BbbE 
\int T

0

\Bigl[ \bigl\langle 
Q\=xi, \delta xi

\bigr\rangle 
 - 
\bigl\langle 
Q(\Gamma \^x+ \eta ) + \Gamma TQ((I  - \Gamma )\^x - \eta ), \delta xi

\bigr\rangle 
+
\bigl\langle 
R\=ui, \delta ui

\bigr\rangle 
 - 
\bigl\langle 
R - 1

0
\^\beta 0, \delta \beta 

0
i

\bigr\rangle 
 - 
\bigl\langle 
R - 1

0
\^\beta 0, \delta \beta 

\ast \bigr\rangle 
+
\bigl\langle 
Q((I  - \Gamma )\^x - \eta ) - \Gamma TQ((I  - \Gamma )\^x - \eta ), \delta x\ast \bigr\rangle \Bigr] dt

+ \BbbE 
\bigl[ \bigl\langle 
G\=xi(T ), \delta xi(T )

\bigr\rangle 
 - 
\bigl\langle 
G(\Gamma 0\^x(T ) + \eta 0), \delta xi(T )

\bigr\rangle 
+
\bigl\langle 
G((I  - \Gamma 0)\^x(T ) - \eta 0), \delta x

\ast (T )
\bigr\rangle 
 - 
\bigl\langle 
\Gamma T
0 G((I - \Gamma 0)\^x(T ) - \eta 0), \delta xi(T )

\bigr\rangle 
 - 
\bigl\langle 
\Gamma T
0 G((I - \Gamma 0)\^x(T ) - \eta 0), \delta x\ast (T )

\bigr\rangle \bigr] 
,

where \delta \^Ji(\=u, \delta ui) is the Fr\'echet differential of some auxiliary cost functional \^Ji, to be
constructed later (see (P3) in section 5), \scrD ui

\^Ji(\=u) is the related Fr\'echet derivative,

and state average limits (\^x, \^\beta 0) are to be determined by the CC system in section 5;
moreover, by (4.7), the quantities
(4.10)

\delta x\ast := N\BbbE \scrF 0 [\delta xj ], \delta p\ast := N\BbbE \scrF 0 [\delta pj ], \delta \beta \ast := N\BbbE \scrF 0 [\delta \beta 0
j ], for j \not = i,

do not depend on N and satisfy the following equations:

(4.11)

\left\{     
d(\delta x\ast ) =A(\delta x\ast )dt+ [C0(\delta x

\ast ) - R - 1
0 (\delta \beta \ast + \BbbE \scrF 0 [\delta \beta 0

i ])]dW0, \delta x\ast (0) = 0,

d(\delta p\ast ) = - 
\bigl[ 
AT (\delta p\ast )+CT

0 (\delta \beta 
\ast ) - Q(\delta x\ast )+\Xi 1(\BbbE \scrF 0 [\delta xi]+\delta x\ast )

\bigr] 
dt

+(\delta \beta \ast )dW0, \delta p\ast (T ) = \Xi G
1 \BbbE \scrF 0

T
(\delta xi(T )) - (G - \Xi G

1 )\delta x
\ast (T ).

Remark 4.1. When studying the asymptotic behavior of (4.9) with N  - \rightarrow +\infty ,
the following remainder term needs to be considered:

\epsilon 
(N)
1 :=\BbbE 

\int T

0

\Bigl[ 
 - \langle \Xi 1(\=x

(N)  - \^x), \delta xi\rangle  - \langle R - 1
0 ( \=\beta 

(N)
0  - \^\beta 0), \delta \beta 

0
i + (N  - 1)\delta \beta 0

j \rangle 

+ \langle (Q - \Xi 1)(\=x
(N)  - \^x), N\delta xj\rangle 

\Bigr] 
dt - \BbbE [\langle \Xi G

1 (\=x
(N)(T ) - \^x(T )), \delta xi(T )\rangle ]

+ \BbbE [\langle (G - \Xi G
1 )(\=x

(N)(T ) - \^x(T )), N\delta xj(T )\rangle ].

Because \| \delta ui\| L2 <\infty , \epsilon 
(N)
1 should be an infinitesimal term with same order to \| \=x(N) - 

\^x\| max + \| \=\beta (N)
0  - \^\beta 0\| L2 (N \rightarrow \infty ). Actually, from (3.8) and (3.13) we may obtain
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\| \=x(N)  - \^x\| 2max + \| \=\beta (N)
0  - \^\beta 0\| 2L2

= O( 1
N ) (the rigorous proof will be given in section

7). Thus, \epsilon 
(N)
1 = O( 1\surd 

N
)\| \delta ui\| L2\| \=u\| L2 .

4.2. Duality derivation. A key point in analyzing the social optimization
problem is to formulate some auxiliary control problem for a given agent, based on
\delta \^Ji = limN\rightarrow +\infty \delta Jwo

soc of (4.9); thus the decentralized strategy can be derived via
some MFG procedure. Such an auxiliary problem can be derived via some variational
analysis (see [53] for related variational analysis but with only the drift-controlled
term). Due to volatility uncertainty, all states of agents are coupled via some high-
dimensional FBSDE system. Therefore, related variational analysis becomes fairly
different from that of [53] and depends on a two-step duality procedure, as discussed
below.

Step 1 (duality independent of (\delta x\ast , \delta p\ast )). The first step removes the dependence
of \delta \^Ji(\=u, \delta ui) on (\delta x\ast , \delta p\ast ), the variational process common to all agents. To this end,
introduce the adjunct FBSDE:

(4.12)

\Biggl\{ 
dy = f0dt+ zdW0(t), y(T ) =

\bigl( 
G - \Xi G

1

\bigr) 
\^x(T ) - \Xi G

2 ,

dh = f1dt+ f2dW0(t), h(0) = 0,

where the drivers (f0; f1, f2) are to be determined. Note h(0) = 0, and

\delta p\ast (T ) - \Xi G
1 \BbbE \scrF 0

T
(\delta xi)(T ) - (G - \Xi G

1 )\delta x
\ast (T ) = 0.

By It\^o's formula,

(4.13)

0 =\BbbE 
\int T

0

\Bigl\{ \bigl\langle 
h, - 

\bigl( 
AT \delta p\ast + CT

0 (\delta \beta 
\ast ) + \Xi 1\BbbE \scrF 0(\delta xi) - (Q - \Xi 1)(\delta x

\ast )
\bigr) 

 - \Xi G
1

\bigl( 
A\BbbE \scrF 0(\delta xi) +B\BbbE \scrF 0(\delta ui) - (G - \Xi G

1 )A(\delta x\ast )
\bigr) \bigr\rangle 

+
\bigl\langle 
\delta p\ast  - \Xi G

1 \BbbE \scrF 0(\delta xi) - (G - \Xi G
1 )\delta x

\ast (t), f1
\bigr\rangle 

+
\bigl\langle 
f2, \delta \beta 

\ast  - \Xi G
1 (C0\BbbE \scrF 0(\delta xi) +D0\BbbE \scrF 0(\delta ui))

 - (G - \Xi G
1 )
\bigl[ 
C0(\delta x

\ast ) - R - 1
0

\bigl( 
\delta \beta \ast + \BbbE \scrF 0(\delta \beta 0

i )
\bigr) \bigr] \bigr\rangle \Bigr\} 

dt.

Using It\^o formula to \langle \delta x\ast , y\rangle , we have

\BbbE 
\bigl\langle 
(G - \Xi G

1 )\^x(T ) - \Xi G
2 , \delta x

\ast (T )
\bigr\rangle 

= \BbbE 

\Biggl[ \int T

0

\langle \delta x\ast , f0\rangle + \langle AT y, \delta x\ast \rangle + \langle z, C0\delta x
\ast  - R - 1

0 (\delta \beta \ast + \BbbE \scrF 0(\delta \beta 0
i ))\rangle 

\Biggr] 
dt.

It follows from (4.12) and (4.13) that
(4.14)

\BbbE 
\bigl\langle 
(G - \Xi G

1 )\^x(T ) - \Xi G
2 , \delta x

\ast (T )
\bigr\rangle 

= \BbbE 
\int T

0

\Bigl[ \bigl\langle 
\delta x\ast , f0 +AT y + CT

0 z + (Q - \Xi 1)
Th - AT (G - \Xi G

1 )
Th

 - (G - \Xi G
1 )

T f1  - CT
0 (G - \Xi G

1 )f2
\bigr\rangle 
+ \langle \delta p\ast , - Ah+ f1\rangle 

+ \langle \delta \beta \ast , - R - 1
0 z  - C0h+ f2 +R - 1

0 (G - \Xi G
1 )f2\rangle 

+ \langle \BbbE \scrF 0(\delta ui), - BT\Xi G
1 h - DT

0 \Xi 
G
1 f2\rangle +\langle \BbbE \scrF 0(\delta \beta 0

i ), - R - 1
0 z+R - 1

0 (G - \Xi G
1 )f2\rangle 

+ \langle \BbbE \scrF 0(\delta xi), - \Xi T
1 h - AT (\Xi G

1 )
Th - (\Xi G

1 )
T f1  - CT

0 \Xi 
G
1 f2\rangle 

\Bigr] 
dt.
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Set

(4.15) \BbbI G :=
\bigl[ 
I +R - 1

0 (G - \Xi G
1 )
\bigr]  - 1

(note that \BbbI G = I if G = 0). Comparing the coefficients, we obtain

(4.16)

\left\{     
f1 =Ah, f2 = \BbbI G(R - 1

0 z + C0h+R - 1
0

\^\beta 0)

f0 = - (AT y + CT
0 z + (Q - \Xi 1)h - AT (G - \Xi G

1 )h - (G - \Xi G
1 )f1

 - CT
0 (G - \Xi G

1 )f2 + (Q - \Xi 1)\^x - \Xi 2).

Then, we have
(4.17)\left\{               

dy = - 
\Bigl[ 
AT y + CT

0 z + (Q - \Xi 1)h - AT (G - \Xi G
1 )h - (G - \Xi G

1 )Ah

 - CT
0 (G - \Xi G

1 )\BbbI G(R
 - 1
0 z+C0h+R - 1

0
\^\beta 0)+(Q - \Xi 1)\^x - \Xi 2

\Bigr] 
dt+zdW0(t),

dh =Ahdt+ \BbbI G(R - 1
0 z + C0h+R - 1

0
\^\beta 0)dW0(t),

y(T ) = (G - \Xi G
1 )\^x(T ) - \Xi G

2 , h(0) = 0.

Let \xi 1 = (Q - \Xi 1)\^x - \Xi 2 and \xi 2 =  - R - 1
0

\^\beta 0. From (4.14), we obtain

\BbbE 
\bigl\langle 
(G - \Xi G

1 )\^x(T ) - \Xi G
2 , \delta x

\ast (T )
\bigr\rangle 
+ \BbbE 

\int T

0

[\langle \delta x\ast , \xi 1\rangle + \langle \delta \beta \ast , \xi 2\rangle ]dt

= \BbbE 
\int T

0

\Bigl[ \bigl\langle 
\BbbE \scrF 0(\delta \beta 0

i ), - R - 1
0 z +R - 1

0 (G - \Xi G
1 )f2

\bigr\rangle 
+
\bigl\langle 
\BbbE \scrF 0(\delta ui), - BT\Xi G

1 h - DT
0 \Xi 

G
1 f2

\bigr\rangle 
+
\bigl\langle 
\BbbE \scrF 0(\delta xi), - \Xi 1h - AT\Xi G

1 h - \Xi 1f1  - CT
0 \Xi 

G
1 f2

\bigr\rangle \Bigr] 
dt.

Then a direct computation from (4.9) shows that
(4.18)

\delta \^Ji(\=u, \delta ui)) = lim
N\rightarrow +\infty 

\delta Jwo
soc(\=u, \delta ui)

= \BbbE 
\int T

0

\bigl[ 
\langle Q\=xi, \delta xi\rangle +\langle R \=ui, \delta ui\rangle  - \langle \Xi 1\^x+\Xi 2, \delta xi\rangle  - \langle R - 1

0
\^\beta 0, \delta \beta 

0
i \rangle 
\bigr] 
dt

+ \BbbE [\langle G\^xi(T ), \delta xi(T )\rangle  - \langle \Xi G
1 \^x(T ) + \Xi G

2 , \delta xi(T )\rangle ]

+ \BbbE 
\int T

0

\Bigl[ 
\langle  - R - 1

0 z +R - 1
0 (G - \Xi G

1 )\BbbI G(R
 - 1
0 z + C0h+R - 1

0
\^\beta 0), \delta \beta 

0
i \rangle 

+ \langle \delta xi, - \Xi 1h - AT\Xi G
1 h - \Xi G

1 Ah - CT
0 \Xi 

G
1 f2\rangle  - \langle \delta ui, B

T\Xi G
1 h+DT

0 \Xi 
G
1 f2\rangle 

\Bigr] 
dt.

Let \xi 3 =  - R - 1
0 (z + \^\beta 0) + R - 1

0 (G - \Xi G
1 )f2. Then we will consider the following term

in Step 2:

\BbbE 
\int T

0

\bigl[ 
 - \langle R - 1

0
\^\beta 0, \delta \beta 

0
i \rangle + \langle  - R - 1

0 z +R - 1
0 (G - \Xi G

1 )f2, \delta \beta 
0
i \rangle 
\bigr] 
dt = \BbbE 

\int T

0

\langle \xi 3, \delta \beta 0
i \rangle dt.
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Step 2 (duality independent of (\delta \beta 0
i )). The second step removes the dependence of

\delta \^Ji(\=u, \delta ui) on backward variational process \delta \beta 0
i . Thus, the derived auxiliary problem

will end up with a forward LQ control on (\delta ui, \delta xi) only. To this end, first introduce
the adjoint process

d\Phi = g1dt+ g2dW0(t), \Phi (0) = 0,

with g1, g2 to be determined. Note\left\{       
d\delta pi =  - 

\Bigl( 
AT \delta pi + CT

0 \delta \beta 
0
i  - Q\delta xi + \Xi 1\delta x

(N)
\Bigr) 
dt+ \delta \beta 0

i dW0 +

N\sum 
k=1

\delta \beta k
i dWk(t),

\delta pi(T ) = ( - G)\delta xi(T ) + \Xi G
1 \delta x

(N)(T ).

Then, by It\^o's formula, we obtain
(4.19)

0 = \BbbE 
\int T

0

\bigl[ 
\langle \delta pi, - A\Phi + g1\rangle + \langle \delta \beta 0

i , - C0\Phi + g2\rangle 

+ \langle \delta xi, Q
T\Phi +ATG\Phi +Gg1+CT

0 Gg2\rangle  - \langle \delta ui, B
TG\Phi +DT

0 Gg2\rangle 
\bigr] 
dt,

which implies g1 = A\Phi , and g2 = C0\Phi  - \xi 3 = C0\Phi +R - 1
0 (z + \^\beta 0) - R - 1

0 (G - \Xi G
1 )f2.

Then we have

(4.20) d\Phi = A\Phi dt+
\bigl[ 
C0\Phi +R - 1

0 (z + \^\beta 0) - R - 1
0 (G - \Xi G

1 )f2
\bigr] 
dW0(t),\Phi (0) = 0,

which with (4.16) gives \Phi = h. From (4.19),

\BbbE 
\int T

0

\langle \delta \beta 0
i , \xi 3\rangle dt=\BbbE 

\int T

0

\bigl[ 
\langle \delta xi, Q

T\Phi +ATG\Phi +Gg1+CT
0 Gg2\rangle +\langle \delta ui, B

TG\Phi +DT
0 Gg2\rangle 

\bigr] 
dt.

From this with (4.18), the variational functional becomes

\delta \^Ji(\=u, \delta ui) =\BbbE 
\int T

0

\Bigl[ 
\langle Q\=xi, \delta xi\rangle +\langle R\=ui, \delta ui\rangle 

 - \langle \Xi 1\^x+\Xi 2, \delta xi\rangle +
\bigl\langle 
QTh+ATGh+GAh+CT

0 Gg2, \delta xi

\bigr\rangle 
 - \langle \Xi 1h+AT\Xi G

1 h+\Xi G
1 Ah+ CT

0 \Xi 
G
1 f2, \delta xi\rangle 

+ \langle BTGh+DT
0 Gf2, \delta ui\rangle  - \langle BT\Xi G

1 h+DT
0 \Xi 

G
1 f2, \delta ui\rangle 

\Bigr] 
dt

+ \BbbE [\langle G\=xi(T ), \delta xi(T )\rangle  - \langle \Xi G
1 \^x(T ) + \Xi G

2 , \delta xi(T )\rangle ],

(4.21)

where g2 = f2 = \BbbI G(R - 1
0 (z + \^\beta 0) + C0h).

Remark 4.2. Relation \Phi = h is not a coincidence; instead it is implied by some
structural similarity. In fact, the dynamics coefficients (AT , CT

0 , Q,\Xi 1, \cdot \cdot \cdot ) in (4.3)
and (4.11) are exactly matching via the following correspondences: \delta pi \leftarrow \rightarrow \delta p\ast ,
\delta \beta 0

i \leftarrow \rightarrow \delta \beta \ast , \delta xi \leftarrow \rightarrow \delta x\ast , and \delta x(N) \leftarrow \rightarrow \BbbE \scrF 0 [\delta xi] + \delta x\ast . Meanwhile, their terminal
conditions also follow similar matching. Also, even with h = \Phi , two-step duality is
still needed because Steps 1 and 2 deal with different variations and thus cannot be
covered by each other.
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5. Decentralized robust team strategy design. By (3.13) and limiting social
variational functional (4.21), we construct the following auxiliary control problem, for
a representative agent, still indexed by \scrA i.

(P3): Minimize \^Ji(ui) over ui \in \scrU i, with state dynamics and cost functional:

(5.1)

dxi =(Axi+Bui+f)dt+(Dui+\sigma )dWi+(C0xi+D0ui - R - 1
0

\^\beta 0)dW0, xi(0) = x0,

\^Ji(ui) =
1

2
\BbbE 

\Biggl\{ \int T

0

| xi| 2Q + | ui| 2R  - 2\langle \Xi 1\^x+ \Xi 2, xi\rangle + 2\langle (Q - \Xi 1)h, xi\rangle 

+ 2\langle ATGh+GAh+ CT
0 Gg2  - AT\Xi G

1 h - \Xi G
1 Ah - CT

0 \Xi 
G
1 g2, xi\rangle 

+ 2\langle BT (G - \Xi G
1 )h+DT

0 (G - \Xi G
1 g2), ui\rangle dt

+ \langle Gxi(T ), xi(T )\rangle  - 2\langle \Xi G
1 \^x(T ) + \Xi G

2 , xi(T )\rangle 

\Biggr\} 
.

Here the triple (\^x, \^\beta 0, h) satisfies the following limiting (off-line) system parameterized
by undetermined process \^u:

(5.2)

\left\{                               

d\^x =(A\^x+B\^u+ f)dt+ (C0\^x+D0\^u - R - 1
0

\^\beta 0)dW0,

d\^p = - 
\Bigl( 
AT \^p+ CT

0
\^\beta 0  - Q\^x+ \Xi 1\^x+ \Xi 2

\Bigr) 
dt+ \^\beta 0dW0,

dy = - 
\bigl( 
AT y+CT

0 z+(Q - \Xi 1)h+(Q - \Xi 1)\^x - \Xi 2

\bigr) 
dt+(AT (G - \Xi G

1 )h

+(G - \Xi G
1 )Ah+ CT

0 (G - \Xi G
1 )f2

\bigr) 
dt+ zdW0,

dh =Ahdt+
\bigl( 
I +R - 1

0 (G - \Xi G
1 )
\bigr)  - 1

\Bigl( 
C0h+R - 1

0 (z + \^\beta 0)
\Bigr) 
dW0,

\^x(0) =x0, \^p(T )=
\bigl( 
\Xi G
1  - G

\bigr) 
\^x(T )+\Xi G

2 , y(T )=(G - \Xi G
1 )\^x(T ) - \Xi G

2 , h(0)=0.

Remark 5.1. FBSDE (5.2) can be decomposed into subsystems (\^x, \^p, \^\beta 0) and
(h, y, z), which are decoupled for each other. Thus, solvability of (5.2) reduces to

that of (h, y, z) and (\^x, \^p, \^\beta 0) separately. Section 6 will discuss the global solvability

of subsystem (h, y, z), and a similar analysis can be applied to (\^x, \^p, \^\beta 0) considering
these two subsystems have similar coupling structures. Moreover, parameter process
\^u will be further determined by some CC system through the MFG argument.

Let \^u(t) \in \scrF 0
t be fixed. We study the decentralized open-loop strategy and related

CC system. We have the following result by the maximum principle.

Theorem 5.2. Suppose that Q \geq 0, G \geq 0 and R > 0. Then the following
backward stochastic differential equation (BSDE) admits a (unique) solution:

dki= - 
\bigl[ 
AT ki+CT

0 \zeta 0+Qxi - \Xi 1\^x+(Q - \Xi 1)h - \Xi 2+\scrK (G, g2) - \scrK (\Xi G
1 , g2)

\bigr] 
dt(5.3)

+ \zeta 0dW0 + \zeta idWi, ki(T ) = Gxi(T ) - \Xi G
1 \^x(T ) - \Xi G

2 ,
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where \scrK (G, g2) = ATGh + GAh + CT
0 Gg2, \scrK (\Xi G

1 , g2) = AT\Xi G
1 h + \Xi G

1 Ah + CT
0 \Xi 

G
1 g2

and

(5.4) \v ui= - R - 1(BT ki+DT
0 \zeta 0+DT \zeta i+BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2), i=1, . . . , N.

Proof. Since Q \geq 0, G \geq 0, and R > 0, (P3) is uniformly convex, which implies
the unique solvability of (P3). Assume that \v ui is the unique optimal control of problem
(P3) and \v xi is the state equation under \v ui. Then

(5.5)

0 = \delta \^Ji(\v ui, \delta ui)

=\BbbE 
\int T

0

\bigl[ \bigl\langle 
Q\v xi, \delta xi

\bigr\rangle 
+
\bigl\langle 
R\v ui, \delta ui

\bigr\rangle 
 - 
\bigl\langle 
\Xi 1\^x+ \Xi 2, \delta xi

\bigr\rangle 
+
\bigl\langle 
(Q - \Xi 1)h, \delta xi

\bigr\rangle \bigr] 
+
\bigl\langle 
\scrK (G, g2) - \scrK (\Xi G

1 , g2), \delta xi

\bigr\rangle 
+
\bigl\langle 
BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2, \delta ui

\bigr\rangle 
dt

+
\bigl\langle 
G\v xi(T ), \delta xi(T )

\bigr\rangle 
 - 
\bigl\langle 
\Xi G
1 \^x(T ) + \Xi G

2 , \delta xi(T )
\bigr\rangle 
.

Given \^x and h, (5.3) is a standard linear BSDE and thus has a unique solution
(ki, \zeta 0, \zeta i). Then

(5.6)

\langle G\v xi(T ) - \Xi G
1 \^x(T ) - \Xi G

2 , \delta xi(T )\rangle 

= \BbbE 
\int T

0

\Bigl\{ 
\langle  - (Qxi  - \Xi 1\^x - (Q - \Xi 1)h - \Xi 2  - \scrK (G, g2) +\scrK (\Xi G

1 , g2)), \delta xi\rangle 

+ \langle ki, B\delta ui\rangle + \langle \zeta 0, D0\delta ui\rangle + \langle \zeta i, D\delta ui\rangle 
\Bigr\} 
dt.

From this and (5.5), we have

(5.7) 0 = \BbbE 
\int T

0

\langle R\v ui+BT (G - \Xi G
1 )h+DT

0 (G - \Xi G
1 )g2+BT ki+DT

0 \zeta 0+DT \zeta i, \delta ui\rangle dt,

which implies the open-loop optimal strategy:

\v ui = - R - 1
\bigl( 
BT ki +DT

0 \zeta 0 +DT \zeta i +BT (G - \Xi G
1 )h+DT

0 (G - \Xi G
1 )g2

\bigr) 
= - R - 1(vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2).

Note that here,

(5.8) vi := BT ki +DT \zeta i +D0\zeta 0.

After the strategy (5.4) is applied, we obtain the following state equation:

dxi =
\bigl[ 
Axi  - BR - 1

\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
+ f

\bigr] 
dt

+
\bigl[ 
 - DR - 1

\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
+ \sigma 

\bigr] 
dWi

+
\Bigl[ 
C0xi  - DR - 1

\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
 - R - 1

0
\^\beta 0

\Bigr] 
dW0.
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Consequently, the consistency argument implies the following CC system to (\^x, \^\beta 0, h):
(5.9)\left\{                                                     

dxi=
\bigl[ 
Axi  - BR - 1(vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2) + f
\bigr] 
dt

+
\Bigl[ 
C0xi  - D0R

 - 1(vi +BT (G - \Xi G
1 )h+DT

0 (G - \Xi G
1 )g2) - R - 1

0
\^\beta 0

\Bigr] 
dW0

 - 
\bigl[ 
DR - 1(vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2) - \sigma 
\bigr] 
dWi,

dki= - 
\bigl[ 
AT ki+CT

0 \zeta 0+Qxi - \Xi 1\BbbE \scrF 0 [xi] - \Xi 2+(Q - \Xi 1)h

+\scrK (G, g2) - \scrK (\Xi G
1 , g2)

\bigr] 
dt+\zeta 0dW0 + \zeta idWi,

d\^p= - 
\bigl[ 
AT \^p+ CT

0
\^\beta 0  - (Q - \Xi 1)\BbbE \scrF 0 [xi] + \Xi 2

\bigr] 
dt+ \^\beta 0dW0,

dy= - 
\bigl[ 
AT y + CT

0 z + (Q - \Xi 1)h+ (Q - \Xi 1)\BbbE \scrF 0
T
[xi] - \Xi 2

\bigr] 
dt

+ [AT (G - \Xi G
1 )h+(G - \Xi G

1 )Ah+ CT
0 (G - \Xi G

1 )g2]dt+ zdW0,

dh=Ahdt+ [I +R - 1
0 (G - \Xi G

1 )]
 - 1[C0h+R - 1

0 (z + \^\beta 0)]dW0,

xi(0)=x0, ki(T )=Gxi(T ) - \Xi G
1 \BbbE \scrF 0

T
[xi(T )] - \Xi G

2 , \^p(T )=(\Xi G
1  - G)\BbbE \scrF 0

T
[xi(T )]+\Xi G

2 ,

y(T ) = (G - \Xi G
1 )\BbbE \scrF 0

T
[xi(T )] - \Xi G

2 , h(0) = 0.

Remark 5.3. CC system (5.9) differs from those in the classical MFG literature
(e.g., [28, 35, 50, 39]) by noting the evolution dynamics of \^x is not explicitly specified
here. Instead, it is characterized by some implicit representation \^x = \BbbE \scrF 0 [xi] which is
embedded into an augmented mean field type FBSDE system of (xi, ki, \^p, y, h) driven
by a generic Brownian motion Wi independent of common noise W0. CC system (5.9)
is symmetric for all agents and thus such representation is uniquely defined.

Such a difference in CC representation is mainly caused by the presence of adjoint
process term DT \zeta i in the decentralized strategy design (refer to (5.8)). Thus, an
explicit representation of \^x becomes unavailable, and a similar CC representation was
derived in [24].

6. Well-posedness of relevant FBSDEs. Our study in previous sections, es-
pecially the one related to decentralized strategy design and CC systems, involves
various (fully coupled) FBSDEs or Riccati equations. Keeping this in mind, this sec-
tion aims to discuss the existence and uniqueness of their (global) solvability. Note
that because of the introduction of soft constraints, these equations are intrinsically
nonstandard (i.e., control/state weights are indefinite), thus their global solvability
becomes more technical. Moreover, due to the uncertainty on volatility, it is necessary
to treat the adjoint states of FBSDE which closely connect to volatility, the diffusion
term in BSDE formulation. As a result, the relevant analysis becomes more complex
considering the adjoint states are of less regularity property.

We consider the solvability of FBSDE (5.2) from section 5. A similar analysis
can be applied to CC system (5.9) for which the arguments become more lengthy.
By partial coupling of Remark 5.1, it suffices to consider the following subsystem
constructed by (h, y, z):

(6.1)

\left\{             
dh =Ahdt+ \BbbI G

\Bigl( 
C0h+R - 1

0 (z + \^\beta 0)
\Bigr) 
dW0(t),

dy = - 
\bigl( 
AT y + CT

0 z + (Q - \Xi 1)h+ (Q - \Xi 1)\^x - \Xi 2

\bigr) 
dt

+
\bigl( 
AT (G - \Xi G

1 )h+ (G - \Xi G
1 )Ah+ CT

0 (G - \Xi G
1 )f2

\bigr) 
dt+ zdW0(t),

h(0) = 0, y(T ) = (G - \Xi G
1 )\^x(T ) - \Xi G

2 .
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Equation (6.1) is a fully coupled FBSDE involving forward state h, backward state y,
and adjoint state z. Moreover, it is nonstandard or indefinite because of the volatility
uncertainty (thus, unlike definite case, some weights are singular or negative due to
its minmax feature). It is known that (global) solvability of such an indefinite FBSDE
is by no means unconditional: to ensure its well-posedness, it is always necessary to
impose some additional compatibility conditions. Also, direction computation indi-
cates the monotonicity method, which is well applied to nonstandard FBSDE, fails to
work here.

Reduction decoupling method. Our method is the reduction decoupling
method proposed in [56], which leads to the global solvability by imposing condi-
tions on orthogonality of C0. Let \Psi 1(\cdot , s) be the solution of the following ODE:\left\{     

d

dt
\Psi 1(t, s) =

\biggl( 
A 0\widehat A  - AT

\biggr) 
\Psi 1(t, s), t \in [s, T ],

\Psi 1(s, s) = I,

where \widehat A \Delta 
= (\Xi 1  - Q) +AT (G - \Xi G

1 ) + (G - \Xi G
1 )A+ CT

0 (G - \Xi G
1 )\BbbI GC0.

Denote \Psi 1(t) = \Psi 1(t, 0). Then we have

\Psi 1(t) = exp

\biggl( 
At 0\widehat At  - AT t

\biggr) 
=

\biggl( 
exp(At) 0\sum \infty 
n=0

\Lambda nt
n

n! exp( - AT t)

\biggr) 
,

where

\Lambda n
\Delta 
= \widehat AAn - 1  - AT \widehat AAn - 2 + \cdot \cdot \cdot + ( - AT )k - 1 \widehat AAn - k + \cdot \cdot \cdot + ( - AT )n - 1 \widehat A.

If A = AT and A \widehat A = \widehat AA, then

\Lambda n =

\biggl\{ \widehat AAn - 1, n = 2k  - 1,
0, n = 2k,

and
\infty \sum 

n=1

\Lambda nt
n

n!
= \widehat A \infty \sum 

k=1

A2k - 2t2k - 1

(2k  - 1)!
.

Further, if A is invertible, then

\infty \sum 
n=1

\Lambda nt
n

n!
= \widehat AA - 1 e

At  - e - At

2
.

We have

(0, I)

\biggl( 
exp(AT ) 0\sum \infty 
n=1

\Lambda nT
n

n! exp( - ATT )

\biggr) \biggl( 
\BbbI GC0 0
0 0

\biggr) 
=
\bigl( \sum \infty 

n=1
\Lambda nT

n

n! exp( - ATT )
\bigr) \biggl( \BbbI GC0 0

0 0

\biggr) 
=
\bigl( \sum \infty 

n=1
\Lambda nT

n

n! \BbbI GC0 0
\bigr) 
.

Thus, if and only if
\sum \infty 

n=1
\Lambda nT

n

n! \BbbI GC0 = 0, then

(0, I)\Psi 1(T )

\biggl( 
\BbbI GC0 0
0 0

\biggr) 
= 0.(6.2)
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Note

(0, I)\Psi 1(T )

\biggl( 
0

 - CT
0 + CT

0 (G - \Xi G
1 )\BbbI GR

 - 1
0

\biggr) 
= exp( - AT )( - CT

0 + CT
0 (G - \Xi G

1 )\BbbI GR
 - 1
0 ) = 0

implies that CT
0 [I  - (G  - \Xi G

1 )\BbbI GR
 - 1
0 ] = 0, i.e., CT

0 \BbbI G = 0. Since C0 \not = 0 and \BbbI G is
invertible, we have

(0, I)\Psi 1(T )

\biggl( 
0

 - CT
0 + CT

0 (G - \Xi G
1 )\BbbI GR

 - 1
0

\biggr) 
\not = 0.

Note that

(0, I)\Psi 1(T )

\biggl( 
0
I

\biggr) 
= (0, I)

\left(   exp(AT ) 0
\infty \sum 

n=1

\Lambda nT
n

n!
exp( - ATT )

\right)   \biggl( 0
I

\biggr) 

=

\Biggl( \infty \sum 
n=1

\Lambda nT
n

n!
exp( - ATT )

\Biggr) \biggl( 
0
I

\biggr) 
= exp( - ATT ).

We have (0, I)\Psi 1(T )(
0
I
) is invertible, and

(0, I)\Psi 1(T, t)(R
 - 1
0 \BbbI G, I)T = (0, I)

\left(    
exp[A(T  - t)] 0

\infty \sum 
n=1

\Lambda n(T  - t)n

n!
exp[ - AT (T  - t)]

\right)    \biggl( \BbbI GR - 1
0

I

\biggr) 

=

\Biggl( \infty \sum 
n=1

\Lambda n(T  - t)n

n!
, exp( - AT (T  - t)

\Biggr) \biggl( 
\BbbI GR - 1

0

I

\biggr) 

=

\infty \sum 
n=1

\Lambda n(T  - t)n

n!
\BbbI GR - 1

0 + exp[ - AT (T  - t)].(6.3)

From the above analysis and Theorem 3.2 in [56], we have the following sufficient
condition for solvability of FBSDE (6.1).

Proposition 6.1. Let (H1) hold. Then (6.1) is solvable if
\sum \infty 

n=1
\Lambda nT

n

n! \BbbI GC0=0

and (0, I)\Psi 1 (T, \cdot )(R - 1
0 \BbbI G, I)T is full-rank.

Example 6.2. Consider the system (2.1)--(2.2) with parameters

A=

\biggl( 
2 0
0 0

\biggr) 
, C0=

\biggl( 
3 1
0 2

\biggr) 
, Q =

\biggl( 
1 0
0 0.4

\biggr) 
, R0 =

\biggl( 
0.1 0
0 2

\biggr) 
,

\Gamma =

\biggl( 
1 0
0 0.5

\biggr) 
, G = 0.

We have \widehat A = (0 0
0  - 0.1

) and \Lambda n = 0, n = 1, 2, . . .. From (6.3), we have

(0, I)\Psi 1(T, \cdot )(R - 1
0 \BbbI G, I)T = exp[ - AT (T  - t)]

is of row full-rank. By Proposition 6.1, FBSDE (6.1) is solvable.
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7. Asymptotic optimality. Based on results of section 6, we may assume
the off-line system (5.2) and consistency system (5.9) are well-posed (we do not
specify which concrete conditions lead to it because our analysis below only re-
quires the well-posedness of these FBSDE systems); thus the decentralized control
set \v u = (\v u1, . . . , \v uN ) is well-defined through (5.4). The main theorem of this section
states the asymptotic robust social optimality of decentralized decision \v u.

Definition 7.1. A set of control laws \v u = (\v u1, . . . , \v uN ) has asymptotic robust
social optimality if

(7.1)

\bigm| \bigm| \bigm| \bigm| 1N Jwo
soc(\v u) - 

1

N
inf

ui\in \scrU c

Jwo
soc(u)

\bigm| \bigm| \bigm| \bigm| = o(1).

Theorem 7.2. Assume that (H1), (H2\prime ), and (H3) hold, and (5.2) and (5.9)
admit a unique solution, respectively. Then the set of control laws (5.4) has asymptotic
robust social optimality with\bigm| \bigm| \bigm| \bigm| 1N Jwo

soc(\v u) - 
1

N
inf

ui\in \scrU c

Jwo
soc(u)

\bigm| \bigm| \bigm| \bigm| = O

\biggl( 
1\surd 
N

\biggr) 
.

7.1. A quadratic functional representation. To verify asymptotic social op-
timality (7.1), it is helpful to construct some quadratic representation of worse-case
functional Jwo

soc(u) for u = (u1, . . . , uN ) \in \BbbR r\times N . First, recall the compact notation
introduced in section 3, and denote R = Diag(R, . . . , R), \=\beta i = [(\beta i

1)
T , . . . , (\beta i

N )T ]T ,
i = 0, 1, . . . , N . Then we can rewrite state (4.2) and cost functional (4.1) as follows:

(7.2)

\left\{                           

dx =(Ax+Bu+ 1\otimes f)dt+

N\sum 
i=1

(Diu+ \sigma i)dWi

+ (C0x+D0u - 
1

N
(11T \otimes R - 1

0 ) \=\beta 0dW0,

dp= - (ATp - \^Qx+\^\eta +CT
0
\=\beta 0)dt+

N\sum 
i=1

\=\beta idWi+ \=\beta 0dW0,

x(0) =x0, p(T )= - \^Gx(T )+\^\eta 0,

and

Jwo
soc(u) =

1

2
\BbbE 
\int T

0

\Biggl( 
| x| 2\^Q  - 2\^\eta Tx+ | u| 2R  - 

1

N
| \=\beta 0| 2

11T\otimes R - 1
0

\Biggr) 
dt(7.3)

+
1

2
\BbbE 
\bigl( 
| x(T )| 2\^G  - 2\^\eta T0 x(T )

\bigr) 
,

where \^\eta = 1\otimes \Xi 2, \^\eta 0 = 1\otimes \Xi G
2 , and

\^Q = ( \^Qij), \^G = ( \^Gij) are given by (3.3). Recall
by Remark 3.1 we may exchange the usage u = (uT

1 , . . . , u
T
N )T with u = (u1, . . . , uN ).

Moreover, by the superposition property of linear system (7.2), a straightforward
calculation implies that for any (u1,u2;x1

0,x
2
0; \^\eta 

1
0 , \^\eta 

2
0),

Jwo
soc(u

1 + u2;x1
0 + x2

0; \^\eta 
1
0 + \^\eta 20) + Jwo

soc(u
1  - u2;x1

0  - x2
0; \^\eta 

1
0  - \^\eta 20)

= 2
\bigl( 
Jwo
soc(u

1;x1
0; \^\eta 

1
0) + Jwo

soc(u
2;x2

0; \^\eta 
2
0)
\bigr) 
.

Thus, Jwo
soc satisfies the parallelogram law and it is a quadratic functional with re-

spect to control process u(\cdot ) and initial-terminal condition pair (x0, \^\eta 0). Then, by
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848 JIANHUI HUANG, BING-CHANG WANG, AND JIONGMIN YONG

the symmetric property of Jwo
soc(u) to inputs (u(\cdot );x0; \^\eta 0), the following quadratic

representation holds true:

(7.4)
Jwo
soc(u(\cdot );x0; \^\eta 0) = \langle M1(u),u\rangle + 2\langle M12(x0, \^\eta 0),u\rangle + \langle M2(x0, \^\eta 0), (x0, \^\eta 0)\rangle 

+ 2\langle M13,u\rangle + 2\langle M23, (x0, \^\eta 0)\rangle +M3

for linear bounded self-adoint operators M1 : \scrU \otimes N
c \rightarrow \scrU \otimes N

c , M2 : \BbbS nN\times nN , M3 \in \BbbR ,
and linear bounded operators M12 : \BbbR nN \times \BbbR nN \rightarrow \scrU \otimes N

c , M13 \in \scrU \otimes N [0, T ], M23 \in 
\BbbR nN , where \scrU \otimes N

c =\scrU c\times \cdot \cdot \cdot \times \scrU c\underbrace{}  \underbrace{}  
N - fold

, where \langle \cdot \rangle denotes the inner product in the sense of dt\otimes d\BbbP .

More precisely, we have the following representations. For operator M1,\left\{             
M1(u) = Ru+BTm1 +

N\sum 
i=1

DT
i n

i
1 +DT

0 n
0
1;

\langle M1(u),u\rangle = \BbbE 
\int T

0

\langle Ru+BTm1 +

N\sum 
i=1

DT
i n

i
1 +DT

0 n
0
1,u\rangle ds,

with

(7.5)

\left\{           
dm1 =  - (ATm1 +CT

0 n
0
1 +

\^Qx1 + \^Qy1)dt+

N\sum 
i=1

ni
1dWi + n0

1dW0,

dy1 = Ay1dt+ (C0y1 +NR\otimes q0
1 +R\otimes n0

1)dW0,

y1(0) = 0, m1(T ) = \^G(y1(T ) + x1(T )),

(7.6)

\left\{                   

dx1 = (Ax1+Bu)dt+

N\sum 
i=1

DiudWi+(C0x1+D0u - 
1

N
(11T \otimes R - 1

0 )q0
1dW0,

dp1 =  - (ATp1  - \^Qx1 +CT
0 q

0
1)dt+

N\sum 
i=1

qi
1dWi + q0

1dW0,

x1(0) = 0, p1(T ) =  - \^Gx1(T ).

For operator M12, we have\left\{             
M12(x, \^\eta 0) = BTm2 +DT

0 n
0
2 +

N\sum 
i=1

DT
i n

i
2;

\langle M12(x, \^\eta 0),u\rangle = \BbbE 
\int T

0

\langle BTm2 +DT
0 n

0
2 +

N\sum 
i=1

DT
i n

i
2,u\rangle dt,

with \left\{           
dm2 =  - (ATm2 +CT

0 n
0
2 +

\^Qx2 + \^Qy2)dt+ n0
2dW0 +

N\sum 
i=1

ni
2dWi,

dy2 = Ay2dt+ (C0y2 +NR\otimes q0
2 +R\otimes n0

2)dW0,

m2(T ) = \^G(y2(T ) + x2(T )), y2(0) = 0,
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and \left\{           
dx2 = Ax2dt+ (C0x2  - R\otimes q0

2)dW0,

dp2 =  - (ATp2  - \^Qx2 +CT
0 q

0
2)dt+

N\sum 
i=1

qi
2dWi + q0

2dW0,

x2(0) = x0, p2(T ) =  - \^Gx2(T ) + \^\eta 0.

For operator M13, we have\left\{             
M13 = BTm13 +DT

0 n
0
13 +

N\sum 
i=1

DT
i n

i
13,

\langle M13,u\rangle = \BbbE 
\int T

0

\langle BTm13 +DT
0 n

0
13 +

N\sum 
i=1

DT
i n

i
13,u\rangle dt,

where\left\{           
dm13 =  - (ATm13 +CT

0 n
0
13 +

\^Qx3 +Qy13  - 2\^\eta s)ds+ n0
13dW0 +

N\sum 
i=1

ni
13dWi,

dy13 = Ay13dt+ (C0y13 +NR\otimes q0
13 +R\otimes n0

13)dW0,

y13(0) = 0, m13(T ) = \^G(y13(T ) + x3(T )) - \^\eta 0,

and \left\{                   

dx3 = (Ax3 + 1\otimes f)dt+

N\sum 
i=1

\sigma idWi + (C0x3  - R\otimes q0
3)dW0,

dp3 =  - (ATp3  - \^Qx3 + \^\eta +CT
0 q

0
3)dt+

N\sum 
i=1

qi
3dWi + q0

3dW0,

x3(0) = x0, p3(T ) =  - \^Gx3(T ).

M2,M23, and M3 can be defined similarly. With the above presentations, the Fr\'echet
differential of Jwo

soc along the variation \delta u can be represented as

\delta Jwo
soc(u, \delta u) = 2\langle M1u+M12(x, \^\eta 0) +M13, \delta u\rangle .

7.2. Asymptotic optimality: Four-step procedure. Given the quadratic

representation of Jwo
soc(u) := J

(N)
soc (u, \sigma \ast 

0(u)) by (7.4), we can verify the asymptotic
robust optimality stated in Theorem 7.2 through the following steps.

Step 1. We first analyze the asymptotic convergence of the realized state system.
When each agent \scrA i applies the open-loop decentralized strategy \v ui as

\v ui =  - R - 1
\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
,
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850 JIANHUI HUANG, BING-CHANG WANG, AND JIONGMIN YONG

then the corresponding realized state \v xi is given by the following fully coupled FBSDE
subsystem together with backward and adjoint states (\v pi, \v \beta 

0
i , \{ \v \beta k

i \} Nk=1):

(7.7)

\left\{                       

d\v xi =
\bigl[ 
A\v xi  - BR - 1

\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
+ f

\bigr] 
dt

+
\bigl[ 
 - DR - 1

\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
+ \sigma 

\bigr] 
dWi

+
\bigl[ 
C0\v xi - DR - 1

\bigl( 
vi+BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
 - \sigma \ast 

0(\v u)
\bigr] 
dW0,

d\v pi = - (AT \v pi + CT
0
\v \beta 0
i  - Q\v xi + \Xi 1\v x

(N) + \Xi 2)dt+ \v \beta 0
i dW0 +

N\sum 
k=1

\v \beta k
i dWk,

\v xi(0) = x, \v pi(T ) = ( - G)\v xi(T ) + \Xi G
1 \v x(N)(T ) + \Xi G

2 ,

where \v x(N) = 1
N

\sum N
i=1 \v xi, \sigma 

\ast 
0(\v u) =

R - 1
0

N

\sum N
k=1

\v \beta 0
k. Moreover, vi = BT ki+DT

0 \zeta 0+DT \zeta i
is defined through the following CC system for a representative agent \scrA i:

(7.8)

\left\{                                         

dxi =
\bigl[ 
Axi  - BR - 1(vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2) + f
\bigr] 
dt

+
\Bigl[ 
C0xi - D0R

 - 1(vi+BT (G - \Xi G
1 )h+DT

0 (G - \Xi G
1 )g2) - R - 1

0
\^\beta 0

\Bigr] 
dW0

 - 
\bigl[ 
DR - 1(vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2) - \sigma 
\bigr] 
dWi,

dki = - 
\bigl[ 
AT ki + CT

0 \zeta 0 +Qxi  - \Xi 1\BbbE \scrF 0 [xi] - \Xi 2 + (Q - \Xi 1)h

+\scrK (G, g2) - \scrK (\Xi G
1 , g2)

\bigr] 
dt+ \zeta 0dW0 + \zeta idWi,

d\^p = - 
\bigl[ 
AT \^p+ CT

0
\^\beta 0  - (Q - \Xi 1)\BbbE \scrF 0 [xi] + \Xi 2

\bigr] 
dt+ \^\beta 0dW0,

dy = - 
\bigl[ 
AT y + CT

0 z + (Q - \Xi 1)h+ (Q - \Xi 1)\BbbE \scrF 0 [xi] - \Xi 2

\bigr] 
dt

+ [AT (G - \Xi G
1 )h+ (G - \Xi G

1 )Ah+ CT
0 (G - \Xi G

1 )g2]dt+ zdW0,

dh = Ahdt+ [I +R - 1
0 (G - \Xi G

1 )]
 - 1[C0h+R - 1

0 (z + \^\beta 0)]dW0

with the initial-terminal condition
(7.9)\Biggl\{ 

xi(0) = x, ki(T ) = Gxi(T ) - \Xi G
1 \BbbE \scrF 0

T
[xi(T )] - \Xi G

2 ,

\^p(T )=(\Xi G
1  - G)\BbbE \scrF 0

T
[xi(T )]+\Xi G

2 , y(T )=(G - \Xi G
1 )\BbbE \scrF 0

T
[xi(T )] - \Xi G

2 , h(0) = 0.

Note that all such N -subsystems
\bigl( 
\v pj , \v \beta 

0
j , \{ \v \beta k

j \} Nk=1

\bigr) N
j=1

of (7.7) are further coupled

via the worst-volatility \sigma \ast 
0 =

\sum N
k=1

\v \beta 0
k and they thus frame a fully coupled and highly

dimensional FBSDE system inL2
\scrF (\Omega ;C([0,T ];\BbbR nN))\times L2

\scrF (0,T ;\BbbR nN))\times L2
\scrF (0, T ;\BbbR nN2

).
Regarding system (7.7)--(7.8), we have the following prior estimate.

Proposition 7.3. Let (H1), (H2\prime ) hold. Assume (5.2) and (5.9) admit a unique
solution, respectively. Then
(7.10)

\BbbE sup
0\leq t\leq T

\Bigl( 
| \v x(N)  - \BbbE \scrF 0 [xi]| 2 + | \v p(N)  - \^p| 2

\Bigr) 
+ \BbbE 

\int T

0

| R0\sigma 
\ast 
0(\v u) - \^\beta 0| 2dt \leq c0

\biggl( 
1

N

\biggr) 

for some constant c0 > 0 independent of N and i. Here, \v p(N) = 1
N

\sum 
\v pi.

D
ow

nl
oa

de
d 

07
/1

8/
22

 to
 1

58
.1

32
.1

61
.1

81
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MF SOCIAL CONTROL WITH VOLATILITY UNCERTAINTY 851

Proof. Making the state aggregation of (7.7), we have
(7.11)\left\{                                 

d\v x(N) =
\Bigl[ 
A\v x(N)  - BR - 1

\Bigl( 
v(N) +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2

\Bigr) 
+ f

\Bigr] 
dt

+
1

N

N\sum 
i=1

\bigl[ 
 - DR - 1

\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
+ \sigma 

\bigr] 
dWi

+
\Bigl[ 
C0\v x

(N) - DR - 1
\Bigl( 
v(N)+BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2

\Bigr) 
 - \sigma \ast 

0(\v u)
\Bigr] 
dW0,

d\v p(N)= - 
\bigl[ 
AT \v p(N)+CT

0
\v \beta 
(N)
0 +(\Xi 1  - Q)\v x(N)+\Xi 2

\bigr] 
dt+ \v \beta 

(N)
0 dW0+

1

N

N\sum 
i=1

N\sum 
k=1

\v \beta k
i dWk,

\v x(N)(0) = x0, \v p(N)(T ) = (\Xi G
1  - G)\v x(N)(T ) + \Xi G

2 ,

where v(N) = 1
N

\sum N
i=1 vi. By (7.8), \BbbE \scrF 0 [xi] satisfies

(7.12)

d\BbbE \scrF 0 [xi] =
\bigl[ 
A\BbbE \scrF 0 [xi] - BR - 1(\^v +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2) + f
\bigr] 
dt

+
\bigl[ 
C0\BbbE \scrF 0 [xi] - D0R

 - 1(\^v +BT (G - \Xi G
1 )h+DT

0 (G - \Xi G
1 )g2) - R - 1

0
\^\beta 0

\bigr] 
dW0,

\BbbE \scrF 0 [xi](0) = x0,

where \^v = \BbbE \scrF 0 [BT ki + DT
0 \zeta 0 + DT \zeta i]. Assume (5.9) admits a unique solution and

thus its state component (ki, \zeta 0, \zeta i, h) should have an upper bound in their L2-norms.
Thus, sup0\leq t\leq T \BbbE I2N (t) = O( 1

N ) with

IN :=
1

N

N\sum 
i=1

\int T

0

\bigl[ 
 - DR - 1

\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
+ \sigma 

\bigr] 
dWi.

Moreover, well-posedness of (5.9) implies some compatibility condition holds true and
the iterative scheme of coupled FBSDE works. Then, we can apply the standard
continuity-dependence estimate between system (7.7) and system (7.8) to get the
estimate (7.10).

Step 2. Given Step 1, we have the estimate to the realized social cost Jwo
soc(\v u).

Proposition 7.4. There exists a constant c1 independent of N such that

Jwo
soc(\v u) \leq Nc1.

Proof. Consider the following intermediate state:

dxi =
\bigl[ 
Axi  - BR - 1

\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
+ f

\bigr] 
dt

+
\bigl[ 
 - DR - 1

\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
+ \sigma 

\bigr] 
dWi

+
\bigl[ 
C0xi  - DR - 1

\bigl( 
vi +BT (G - \Xi G

1 )h+DT
0 (G - \Xi G

1 )g2
\bigr) 
 - R - 1

0
\^\beta 0

\bigr] 
dW0.

By Proposition 7.3 and the standard FBSDE estimate, the following estimate holds:

\BbbE sup
0\leq t\leq T

| \v xi(t) - xi(t)| 2 \leq 
c1
N

.
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Then,

Jwo
soc(\v u) =

1

2

N\sum 
i=1

\BbbE 
\int T

0

\Bigl\{ \bigm| \bigm| (xi  - \Gamma \^x - \eta ) + (\v xi  - xi) + \Gamma (\^x - \Gamma \v x(N))
\bigm| \bigm| 2
Q

+ | \v ui| 2R  - | (\sigma \ast 
0(\v u) - \^\beta 0) + \^\beta 0| 2R0

\Bigr\} 
dt

+
1

2
\BbbE | (xi(T ) - \Gamma 0\^x(T ) - \eta 0) + (\v xi(T ) - xi(T )) + \Gamma 0(\v x

(N)(T ) - (\v xi(T ))| 2G

\leq Nc2

\biggl( 
\| f\| L2 + \| \sigma \| L2 + \| \Xi 2\| L2 + \| \Xi G

2 \| L2 +O

\biggl( 
1

N

\biggr) \biggr) 
\leq Nc.

Step 3. This step aims to address the convexity of Jwo
soc(u) of (P2). By its quadratic

representation (7.4), it is equivalent to \langle M1(u),u\rangle \geq 0. Here,

M1(u) = Ru+BTm1 +

N\sum 
i=1

DT
i n

i
1 +DT

0 n
0
1

with (m1,n
i
1,n

0
1) given by (7.5). By examining its coupling structure of (7.5)--(7.6),

it can be further reformulated via the following problem:

J0
soc(u) =

1

2

N\sum 
i=1

\BbbE 
\int T

0

\Bigl\{ \bigm| \bigm| \`xi  - \Gamma \`x(N)
\bigm| \bigm| 2
Q
+ | ui| 2R  - | \`\beta 

(N)
0 | 2

R - 1
0

\Bigr\} 
dt,

where \`\beta 
(N)
0 = 1

N

\sum N
i=1

\`\beta 0
i , and for i = 1, . . . , N,\left\{                   

d\`xi =(A\`xi +Bui)dt+DuidWi +

\Biggl( 
C0\`xi +D0ui  - 

R - 1
0

N

N\sum 
k=1

\`\beta 0
k

\Biggr) 
dW0,

d\`pi = - (AT \`pi + CT
0
\`\beta 0
i  - Q\`xi + \Xi 1\`x

(N))dt+ \`\beta 0
i dW0 +

N\sum 
k=1

\`\beta k
i dWk,

\`xi(0) = 0, \`pi(T ) = ( - G)\`xi(T ) + \Xi G
1 \`x(N)(T ).

Then Jwo
soc(u) of (P2) is convex if and only if J0

soc(u) \geq 0. Noticing the upper bound
of realized cost functional Jwo

soc(\v u) by Proposition 7.4, it suffices to consider the per-
turbation control \~u satisfying Jwo

soc(\~u) \leq Jwo
soc(\v u) \leq Nc1. This further implies that

(7.13) \| \~u\| 2L2 :=

N\sum 
i=1

\BbbE 
\int T

0

| \~ui(t)| 2dt \leq Nc

by noting (P2) is convex. Also, it implies \| \delta \~u\| 2L2 :=
\sum N

i=1 \BbbE 
\int T

0
| \delta \~ui(t)| 2dt \leq Nc1

with \delta ui = \v ui  - \~ui.
Step 4. This step discusses the Fr\'echet differential of Jwo

soc(u). Recalling the qua-
dratic functional (7.4) and notation exchange between u and u, we have

Jwo
soc(u) = \langle M1(u),u\rangle + 2\langle M12(x0, \^\eta 0),u\rangle + \langle M2(x0, \^\eta 0), (x0, \^\eta 0)\rangle 

+ 2\langle M13,u\rangle + 2\langle M23, (x0, \^\eta 0)\rangle +M3
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= \langle M1(\v u), \v u\rangle + 2\langle M12(x0, \^\eta 0), \v u\rangle + \langle M2(x0, \^\eta 0), (x0, \^\eta 0)\rangle 
+ 2\langle M13, \v u\rangle + 2\langle M23, (x0, \^\eta 0)\rangle +M3 (= Jwo

soc(\v u))

+ \langle M1(u - \v u),u - \v u\rangle + 2\langle M13,u - \v u\rangle (= J0
soc(u - \v u))

+ 2\langle M1(u) +M12(x, \^\eta 0) +M13,u - \v u\rangle (= \langle \scrD uJ
wo
soc(\v u),u - \v u\rangle )

=Jwo
soc(\v u) + J0

soc(u - \v u) +

N\sum 
i=1

\langle \scrD ui
Jwo
soc(\v u), ui  - \v ui\rangle ,

where \scrD ui
Jwo
soc(\v u) given by (4.8) is the componentwise Fr\'echet derivative of Jwo

soc at
\v u on the ith-component coordinate. Moreover, for u, by examining the person-by-
person optimality procedures in section 4.1, and duality expression (4.21) for auxiliary
cost \^Ji, we have

\| \scrD ui
Jwo
soc(\v u) - \scrD ui

\^Ji(\v u)\| L2 \leq c\surd 
N
\| \v u\| L2

for some constant c independent of N and \v u.

Proof of Theorem 7.2. Notice that\bigm| \bigm| \bigm| \bigm| 1N Jwo
soc(\v u) - 

1

N
inf

ui\in \scrU c

Jwo
soc(u)

\bigm| \bigm| \bigm| \bigm| = O

\biggl( 
1\surd 
N

\biggr) 
is equivalent to

inf
ui\in \scrU c

Jwo
soc(u) \leq Jwo

soc(\v u) \leq inf
ui\in \scrU c

Jwo
soc(u) +O(

\surd 
N).

The first inequality is trivial. For the second inequality, we need only consider the
perturbed control u satisfying Jwo

soc(u) \leq Jwo
soc(\v u) which is bounded in its L2-norm by

Step 2, namely | | u| | 2L2 \leq cN with c independent of N. Now, by Steps 3 and 4, for all
such perturbed u,

(7.14)

Jwo
soc(u) - Jwo

soc(\v u) =J0
soc(u - \v u) +

N\sum 
i=1

\langle \scrD ui
Jwo
soc(\v u), ui  - \v ui\rangle 

\geq \gamma | | \delta u| | 2L2 +

N\sum 
i=1

\langle \scrD ui
Jwo
soc(\v u), \delta ui\rangle .

Moreover, by the Cauchy--Schwarz inequality,

(7.15)

N\sum 
i=1

\langle \scrD ui
Jwo
soc(\v u), \delta ui\rangle \leq 

\sqrt{}    N\sum 
i=1

\| \scrD ui
Jwo
soc(\v u)\| 2L2

N\sum 
i=1

\| \delta ui\| 2L2

\leq c

\sqrt{}    N\sum 
i=1

O

\biggl( 
1

N

\biggr) 
\| \v u\| 2L2

N\sum 
i=1

\| \delta ui\| 2L2
= O(

\surd 
N),

where the last inequality is due to (5.5) and Proposition 7.3 of Step 1. Also, note that
\scrD ui

\^Ji(\v u) = 0 for i = 1, . . . , N due to the person-by-person optimality and Theorem
5.2. Thus, the asymptotic optimality (7.1) follows directly by (7.14) and (7.15).
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8. Concluding remarks. This paper investigated mean field LQG social con-
trol with volatility uncertain common noise. Based on a two-step duality, we construct
an auxiliary optimal control problem. By solving this problem combined with consis-
tent mean field approximations, we design a set of decentralized strategies and verify
their asymptotically social optimality. An interesting work for further study is to
consider the closed-loop team strategy, or the case when the state variable enters the
term driven by Wi.
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