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Abstract. The goal of this paper is to describe the oscillatory microstructure that can emerge
from minimizing sequences for nonconvex energies. We consider integral functionals that are defined
on real valued (scalar) functions u(x) which are nonconvex in the gradient ∇u and possibly also in u.
To characterize the microstructures for these nonconvex energies, we minimize the associated relaxed
energy using two novel approaches: i) a semi-analytical method based on control systems theory, ii)
and a numerical scheme that combines convex splitting together with a modified version of the split
Bregman algorithm. These solutions are then used to gain information about minimizing sequences
of the original problem and the spatial distribution of microstructure.
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1. Introduction. Macroscopic physical systems consist of large numbers of in-
teracting (microscopic) parts, and are thus described by statistical mechanics [17]. A
central tenet of statistical mechanics is that the equilibrium state, and the relaxation
to equilibrium, are described by an appropriate free energy [17]. Oftentimes the mi-
croscopic degrees of freedom “self-organize” to spontaneously generate patterns and
structures on mesoscopic scales [13, 9]. While the details differ, the free energies de-
scribing such spontaneous self-organization, a phenomenon also called energy driven
pattern formation [21], have certain universal features independent of the underlying
physical system. These include (1) nonconvexity of the free energy and the existence
of multiple (usually symmetry related) ground states for the system, and (2) regular-
ization by a singular perturbation (“ultraviolet cutoff”) to preclude the formation of
structures on arbitrarily fine scales. These features are present in free energies that
describe many systems including liquid crystals [45], micro-magnetic devices [10],
non-Euclidean elasticity [11] and solid-solid phase transitions [22].

It is of great interest to develop methods that will lead to an understanding of
microstructure in a variety of energy-driven systems. As an initial step towards this
goal, in this paper, we consider an abstract and much simplified formulation given by
the variational problem

(1.1) min
A
I[u] = min

A

∫
Ω

W (∇u) + V (x, u) dx u ∈ A,

where W (ξ) is a nonconvex potential, V (x, u) is continuous in its arguments, and u(x)
is a real valued function in an admissible set, which we denote here by A. This energy
is non-convex and thus has property (1) from above, but it is not regularized, so it
does not have property (2). The functional is not, in general, lower semicontinuous,
resulting in a lack of classical solutions as possible minimizers. Nonetheless, minimiz-
ing sequences for these problems encode useful information [30]. These minimizing
sequences can exhibit finite-amplitude fine-scale oscillations, which in applications
correspond to the emergence of microstructures. Indeed, our goal is to characterize
spatially heterogeneous microstructures in the context of problems of the form (1.1).
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One possible approach to analyze these problems is to consider their regularization
via Young measures [49]. This means that we weaken the formulation through a
generalized functional Ĩ that depends on parametrized probability measures {νx}x∈Ω

rather than on functions u : Ω → R. The advantage now is that the Young measure
minimizer νx of Ĩ captures the oscillations present in minimizing sequences of the
nonconvex functional I near a location x. In addition, the generalized functional
Ĩ is also related to the relaxation of the problem (1.1), which is in turn given by
the quasiconvex envelope I of the original energy. The connection between the three
problems, the original nonconvex energy, the generalized functional, and the relaxation
is given by a theorem by Pedregal [35] which states that the minimum of all these
energies is the same, and provides a relation between the minimizing Young measure
and the solution to the relaxed (quasiconvex) problem.

The above discussion suggests a possible path for numerically computing mi-
crostructures: Find solutions to the relaxed problem first, and then use Pedregal’s
theorem to infer the corresponding optimal Young measure. In the one dimensional
case this process is straightforward since the quasiconvex envelope of the energy den-
sity coincides with its convex envelope. However, although this 1-d problem is easy to
set up, the resulting energy density is often nonsmooth and this lack of smoothness
is an impediment to computing minimizers. In this work we present two methods for
overcoming this difficulty and thus for finding optimal Young measures for regularized,
1-d, non-convex problems and indicate extensions to multi-dimensional problems.

The first method we present uses a generalized control Hamiltonian together with
the Pontryagin Maximum Principle [24] to find semi-analytic solutions. In addition,
the control Hamiltonian also provides us with a means to check that solutions, found
perhaps using a different approach, are indeed minimizers to the relaxed problem.

Our second approach takes advantage of known algorithms in compressed sensing,
where the energies are regularized by adding the (nonsmooth) L1 norm. In particular,
we use the split Bregman algorithm [33, 16] which is easy to code and provides fast
convergence (see [3] for the initial formulation of the Bregman method to determine
the joint feasibility of a collection of convex constraints, and [46, 15, 42, 44] for other
applications of the split Bregman method). As in the original algorithm, our modified
scheme also decouples the variable u and its gradient ux via a constraint, allowing us to
carry out the minimization in two steps. In the first step we use Gauss-Seidel to solve
for the minimizers of the smooth component of our functional, while in the second
step we use a proximal operator [6, 34] to minimize the non smooth component. In
addition our scheme sets up the minimization problem through the associated gradient
flow. This improves the stability properties of the variational equation associated with
the smooth component of the energy functional, and also allows us to use convexity
splitting in the case of problems with a nonconvex potential V (x, u).

We note that while our numerical approach is novel, the idea of numerically
minimizing the relaxed energy to find the optimal Young measure (and thus allowing
us to understand microstructures) is not new. For energies defined over scalar valued
functions, this concept was already exploited in the work of Nicolaides and Walkington
[31], and expanded by Pedregal [35]. In particular, Pedregal proved a relaxation
theorem for the corresponding discretized problem, thus establishing a connection
between the numerical solution of the relaxation and the optimal discretized measure.
Moreover, he showed that for one dimensional problems with nonconvex potentials of
the form used here, i.e. W (ξ) = (ξ2−1)2, the sequence of discretized Young measures
converges to the true optimal measure if and only if the corresponding sequence of
minimizer of the discretized relaxation converge strongly to the true solution [35].
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The above results were later generalized to the case of vector valued functions by
Roub́ıček, see for example [39]. In this paper the author uses the concept of Gen-
eralized Young measures (which is a larger class of measures that includes classical
Young measures) to develop a theory for non-quasiconvex problems. These results
focus on integrands whose quasiconvexification is equivalent to their polyconvex enve-
lope. This enables one to set up a relaxation of the problem, RP, and a corresponding
discretization, RPd, via Finite Elements. The theory is also able to show existence of
solutions to the discretized problem, (ud, ηd), with ud the minimizer of the relaxation
and ηd the corresponding generalized measure. Moreover, the author shows that the
corresponding sequence of solutions converges to the solution of the relaxed problem,
(u, η) as the size of the mesh, d, goes to zero. Results that continue to build in this
direction are in [2, 4, 5, 23, 41, 40].

More generally, in higher dimensions the relaxation involves the quasiconvex en-
velope of the integrand, which is not always easy to find. For this type of problems
it is possible to use instead a lower approximation to this object like the polyconvex
envelope, or an upper approximation like the rank-one convex envelope [30]. These
notions are intimately related to the generalized functional and Young measures. For
example, in terms of computational approaches, one can minimize the generalized
functionals with additional constraints on the measure. Depending on these con-
straints one either finds minimizers of an approximate rank-one convexification, see
[31], or as above, minimizers of the polyconvex envelope.

Alternatives to the Finite Element formulation used in the works cited above
have also been developed to treat the more manageable case of energies defined over
real valued functions, i.e. u : Ω ⊂ Rn → R. Since in this case the measures are
supported on a discrete set of points, they can be described as a convex combination
of Dirac deltas, see [29, 35] and others. This is connected to the fact that for real
valued functions the different generalizations of convexity, i.e. rank-one convexity,
polyconvexity, and quasiconvexity all coincide. In [29, 28] these ideas, together with
the method of moments [7], are used to derive an alternative approach for finding
the optimal measure. The key point from these papers is that the relaxation can be
written in terms of the moments of the measure and the minimization can be recast
as a semidefinite programing problem.

We also note that the more direct approach of computing minimizing sequences
by directly optimizing the nonconvex energy, has a well developed theory, see [26]
for a review. Of course, with these methods it is not possible to obtain pointwise
convergence of minimizers as the mesh is refined. Nonetheless, the results summarized
in [26, 27], and reference therein, guarantee that nonlinear functionals evaluated at
these minimizers converge to the expected values of the probability measures that
capture the asymptotic behavior of these solutions. In other words, as the mesh size
goes to zero macroscopic quantities evaluated as limits along minimizing sequences.
This allows one to compute the microstructure on a larger length scale than the
physical length scale. Among the difficulties of this approach is that the mesh’s
orientation affects the size of the resulting microstructure.

With the exception of the method of moments, most of the algorithms mentioned
in the previous paragraphs treat nonconvex problems using Finite Elements. In con-
trast, our discretization of the relaxed problem is base on finite differences and a
shrink-type operator to solve our minimization. This makes our algorithm very effi-
cient and easy to implement. On the other hand, the disadvantage of our approach
is that it does not carry over to energies defined over multivalued functions.

Outline: In the rest of this introduction we go over our notation and the assump-
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tions we make. In subsection 1.1 we recall key results that show that the relaxation
of the functional I[u] through Young measures is indeed given by I. In section 2 we
construct semi-analytic solutions to the relaxed functional using what is known as
the control Hamiltonian. Finally in section 3 we describe our modified split Bregman
algorithm. We defer the proofs of convergence of our algorithm to Appendix A.

Notation: Ω ⊆ Rm is a m-dimensional domain. We set Ω = [a, b] except for our
final example where Ω = [0, 1]2. We take u0 to be any function in W 1,p(Ω) (resp.
BV (Ω) ) that satisfies the desired boundary conditions. In addition, we will denote:

• The original problem as

(1.2) min
A
I[u] = min

A

∫
Ω

W (∇u) + V (x, u) dx,

where A = {u ∈W 1,p(Ω) : u− u0 ∈W 1,p
0 (Ω)}.

• The generalized problem as

(1.3) min
A

Ĩ[ν, u] = min
A

∫
Ω

∫
Rm

W (ξ) dνx(ξ) + V (x, u) dx,

subject to the constraint ∇u =
∫
ξdνx(ξ) and A = set of all admissible

parametrized measures ν = {νx}, see subsection 1.1.
• The relaxed problem as

(1.4) min
A
I[u] = min

A

∫
Ω

W (∇u) + V (u) dx,

where again A = {u ∈ W 1,p(Ω) : u − u0 ∈ W 1,p
0 (Ω)} and W is the convex

envelope of W .
Assumptions: We also make the following assumptions.

Hypothesis 1.1. Let p ≥ 2 and let f(x, s, ξ) denote the integrand

f(x, s, ξ) = W (ξ) + V (x, s).

Then:
1. The function f(x, s, ξ) is a Carathéodory function. That is, f is measurable

in the variable x and continuous on (s, ξ).
2. Coercivity condition: There are constants M,K ≥ 0 and α > 1 such that

f(x, s, ξ) ≥M |ξ|α −K.

3. Positivity and growth condition: There exists constants α1 ∈ R, and α2, α3 ≥
0, such that

0 ≤ f(x, s, ξ) ≤ α1 + α2|s|p + α3|ξ|p.

1.1. Young Measures. As we discuss above, our functional I[u] is non-convex
and the variational problem (1.1) may not have solutions in the classical sense, that
is solutions that belong to a Sobolev space. However, by enlarging the set of admis-
sible functions to include solutions described by Young measures we are able to find
minimizers for the generalized functional,

Ĩ[ν] =

∫
Ω

∫
Rm

f(x, u, ξ) dνx(ξ) dx, Ω ⊂ Rm,
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where the minimization is now over a set of admissible parametrized measures (defined
on sets in Rm), ν = {νx}x∈Ω. The optimal measure that minimizes the regularized
problem is then related to minimizers of the relaxation, I[u]. In this section we
recall the definition of the relaxation, what it means to be an admissible parametrized
measure, and state the relaxation Theorem from Kinderlehrer and Pedregal [20] which
gives an explicit formula relating minimizers of both, the generalized and the relaxed
problem. We then use this information to characterize optimal measures in the one
dimensional case and give examples to consolidate all these ideas.

We start by describing the relaxation of a nonconvex functional. For a general
minimization problem

min
A
I[u] = min

A

∫
Ω

f(x, u,∇u) dx, Ω ⊂ Rm,

with integrand f : Ω× Rn × Rn×m → R, its relaxation is given by

min
A
I[u] = min

A

∫
Ω

Qf(x, u,∇u) dx,

where Qf represents the quasiconvexification of f . That is, for a.e. x ∈ Ω and for
every (u, ξ) ∈ Rn × Rn×m,

Qf(x, u, ξ) = inf

{
1

|D|

∫
D

f(x, u, ξ +∇φ(y)) dy : φ ∈W 1,p
0 (D;R)

}
,

with D ⊂ R any bounded open set.

Remark 1.2. Since we are working with functionals of real valued functions the
quasiconvexification of f(x, u, ξ) is the same as the convex envelope of f(x, u, ξ) in
the ξ variable, [8, Theorem 1.7 p. 10]

To characterize the set of admissible parametrized measures we first consider the
following definition describing a class of parametrized measures.

Definition 1.3. A parametrized measure ν = {νx} is a W 1,p-parametrized mea-
sure if there is a sequence of gradients {∇uj} such that:

• |∇uj |p converges weakly in L1 and
• for all f ∈ Xp = {f ∈ C(Ω) : |f(ξ)| ≤ C(1 + |ξ|p} we have f(∇uj) ⇀ f̄ in
L1(Ω) where

f̄(x) =

∫
Rn×m

f(ξ) dνx(ξ).

With this definition we can now describe the set of admissible measures A , as
the set of W 1,p-parametrized measures, ν, generated by a sequence of gradients in
W 1,p(Ω) subject to

∇u(x) =

∫
ξ dνx(ξ), u− u0 ∈W 1,p

0 (Ω),

where u0 ∈W 1,p(Ω) satisfies the required boundary conditions.
Having defined the set A , the characterization of the generalized problem is now

complete. In addition, it is well known that if the integrand f(u, ξ) satisfies the
following growth conditions

c(|ξ|p − 1) ≤ f(u, ξ) ≤ C(1 + |u|p + |ξ|p),
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then the original problem, its generalization, and its relaxation, all have the same
infimum:

inf
A
I[u] = inf

A
Ĩ[ν] = inf

A
I[u].

Moreover, the following Theorem from Pedregal, see [37], allows us to relate minimiz-
ers of I[u] to those measures in A that minimize Ĩ.

Theorem 1.4. [37, Corollary 4.6] Let ν be a minimizer of Ĩ. If

(*) ∇u(x) =

∫
Rn×m

ξ dνx(ξ), a.e. x ∈ Ω,

for u ∈W 1,p(Ω), then u is a minimizer of I and

(**) Qf(x, u,∇u) =

∫
Rn×m

f(x, u, ξ) dνx(ξ), a.e. x ∈ Ω.

Conversely, if u is minimizer of I and ν is a W 1,p-parametrized measure such that
(*) and (**) hold, then ν is a minimizer of Ĩ.

For the scalar case n = 1, the Theorem gives us a method for determining the
optimal measure ν from the minimizer u, through the expression

(1.5) W (∇u(x)) =

∫
Rm

W (ξ) dνx(ξ), a.e. x ∈ Ω.

Where we used Remark 1.2 to relate QW to W , the convex envelope of W . Notice as
well that we made no assumptions on the function V (x, u), so that these results are
equally valid for functionals with potentials which are nonconvex in the variable u.

Our task for the rest of this section is to characterize more precisely those mea-
sures, ν, that satisfy relation (1.5). As shown in [29], for m = n = 1, i.e scalar
functions of one variable, it is enough to consider parametrized measures that can
be described as the sum of at most two Dirac measures. This follows from the fact
that the convex envelope of a function f : R → R is given by the function fe whose
epigraph is the convex hull of the epigraph of f . Then by Carathéodory’s theorem,
any point on the graph of the convex envelope, (s, fe(s)), can be written as a convex
combination of at most two points in the graph of f . In other words, one can find
two numbers p1, p2, with p1 + p2 = 1, and two points s1, s2 such that

(s, fe(s)) = p1(s1, f(s1)) + p2(s2, f(s2)).

This is equivalent to requiring that the convex envelope fe satisfies

fe(s) =

∫
R
f(ξ) dµ(ξ),

where µ is the probability measure with mean s and described by µ = p1δs1 + p2δs2 .
This idea can also be extended to parametrized measures µ = {µx}, so that for each
x we require

fe(s(x)) =

∫
R
f(ξ) dµx(ξ).

Consequently, the family of parametrized measures that satisfy the relation (1.5) can
described at each x as the sum of at most two Dirac measures. Form this result
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we can also infer regions of oscillatory behavior. For example, if for each x, the
optimal measure is described by just one Dirac measure, i.e. µx = δux(x), then the

two problems, Ĩ and I, are equivalent and the generalized solution is therefore just
the function ū, which minimizes I. On the other hand, if we find that for a particular
interval the optimal measure is of the form µ = p1δux,1

+ p2δux,2
, then minimizing

sequence exhibit oscillatory behavior. Moreover, the probabilities p1, and p2 represent
the fraction of this interval where gradient, ux, is given by ux,1 and ux,2, respectively.

We end this section with an example that illustrates the ideas from above. Con-
sider the well known Bolza problem

I[u] =

∫ 1

−1

(u2
x − 1)2 + u2 dx, u(−1) = u(1) = 0.

It is easy to see that infu I[u] = 0 and saw-tooth functions with a vanishing amplitude
and slopes alternating between +1 and −1 constitute a minimizing sequence. This
sequence generates a Young measure µx = 1

2δ1 + 1
2δ−1. The relaxed functional is

I[u] =

∫
max(u2

x − 1, 0)2 + u2 dx,

whose unique W 1,4 minimizer is u = ux = 0. This allows us to conclude

(1.6) 0 = max(u2
x − 1, 0)2 =

∫
R
W (ξ) dµx(ξ), 0 = ux(x) =

∫
R
ξ dµx(ξ),

which immediately yields µx = 1
2δ1 + 1

2δ−1, in agreement with the result from the
minimizing sequence. Since µx is independent of x, the optimal Young measure is
spatially homogeneous in this example. In this work, we develop methods that allow
us to consider cases where the optimal Young measure µx does depend on x.

2. Semi-analytic solution to the relaxation via the control Hamiltonian.
In this section we describe a semi-analytical approach for finding minimizers of convex
functionals of the form

I[u] =

∫
Ω

[
W (ux) + V (u)

]
dx, u− u0 ∈W 1,p

0 (Ω), Ω ⊂ R.

The approach comes from optimal control theory and the use of a Control Hamil-
tonian [24]. In this section we will motivate the use of this method, which allows us
to consider functionals or Lagrangians that are not smooth in the gradient ux. This
is not a new difficulty. Indeed, this is a feature of optimal control problems where
one looks to maximize a revenue function, and where the set of admissible functions
must also solve a dynamical system that depends on a time dependent control pa-
rameter. The goal is to not only find optimal trajectories, but to also find an optimal
control parameter. In general these optimal solutions are not C1, and this in turn
implies that the revenue function, which depends on both the trajectory and the con-
trol, is also not a smooth function of these variables. As a result one cannot derive
Euler-Lagrange equations or rewrite the system in Hamiltonian form. Thus, to derive
necessary conditions for the existence of optimal solutions one needs a more general
theory that allows for non-smooth functionals. This is accomplished by the Pontrya-
gin Maximum Principle [38], which provides necessary conditions for the existence of
optimal trajectories and controls in terms of a generalized Hamiltonian [24, 43]. Here
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the term generalized refers to the fact that this new Hamiltonian depends not only
on the state variables and the control, but also on an additional variable called the
costate [24] that plays the role of a Lagrange multiplier. Moreover, with this method
one makes no apriori assumptions on the interdependence of these variables.

To make this idea more concrete consider our problem (in Lagrangian form) (1.1)
with V (x, u) = V (u), and assume for the moment that the Lagrangian is smooth,

(2.1) I[u] =

∫ b

a

L(u, ux) dx.

From the classical theory, the two necessary conditions for a minimizer, u : [a, b]→
R, of this functional to exist are that the first variation of this functional is equal to

zero, i.e.
δI

δu
= 0, and that its second variation is positive, i.e.

δ2I

δu2
≥ 0. The first

condition leads to the Euler-Lagrange equations

d

dx

(
∂L

∂v

)
=
dL

du
,

while the second condition can be expressed in terms of the Hessian of L,
d2L

dv2
≥ 0.

We also have an alternative formulation for the first condition via the Hamilton-

ian. Using the generalized momentum p =
∂L

∂v
, which is well defined since we are

assuming for now that L is smooth in v, one can write

H(u, p) = p · v(u, p)− L(u, v(u, p)).

In this formulation the variable v is defined implicitly through the equation for the
generalized momentum and is viewed as a function of u, and p, i.e v = v(u, p). The
Euler Lagrange equations can then be expressed as a first order system

u′ =
∂H
∂p

; p′ = −∂H
∂u

.

The key insight from control theory is that we do not have to make the assumption
that v can be expressed as a function of u and p. Rather, it is more natural to consider
the Hamiltonian H(u, v, p) as a function of these three independent variables and
derive the generalize momentum equation as a necessary condition for the existence
of minimizers. Indeed, this is precisely the content of the Pontryagin Maximum
Principle, which we paraphrase in this next theorem (see also [24, 43]) –

Theorem 2.1. Given the minimization problem (2.1), define the associated con-
trol Hamiltonian as

H(u, v, p) = p · v − L(u, v).

If a curve x 7→ u(x) is a solution to (2.1), then there exists a function x 7→ p(x) such
that the following conditions hold for all x ∈ [a, b]

i) u′(x) =
∂H

∂p
(u, u′, p)

ii) p′(x) = −∂H
∂u

(u, u′, p)

iii) H(u, u′, p) = maxvH(u, v, p)
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Notice that the first two conditions are just a reformulation of the Euler Lagrange
equations, and that the last condition can also be expressed as

∂H

∂v
= 0;

∂2H

∂v2
≥ 0.

Moreover, in the case of smooth L this last equation is equivalent to p =
∂L

∂v
, while

the last inequality is the statement
∂2L

∂v2
≤ 0. In other words, we recover the two

necessary conditions for the existence of a minimization based on the first and second
variations of I[u]. Finally, note that, for a Lagrangian L(u, u′), the Hamiltonian is a

conserved quantity, i.e
d

dx
H(u(x), u′(x), p(x)) = 0 along solutions.

For us, the principal advantage of using the Pontryagin Maximum Principle is that
it allows us to relax the assumption on the smoothness of the Lagrangian L(u, v), by
dropping the requirement that L is a smooth function of v, while still providing us
with a set of conditions for solving the original minimization problem (2.1).

2.1. Examples. In the rest of this section we illustrate the Pontryagin Maxi-
mum Principle with two examples. We refer to the solutions obtained through this
method as semi-analytic solutions, since in order to arrive at a complete description of
minimizers of the relaxed problem I[u] we must numerically solve a system of ODEs.
To tie these results to our previous discussion, we use these solutions to infer the
optimal parametrized measure for the corresponding generalized problem Ĩ[ν].

Example 1: Consider the following Bolza problem

I[u] =

∫ 1

0

(u2
x − 1)2

∗ + u2 dx u(0) = 0, u(1) = 1/2,

where the potential (v2 − 1)2
∗ and its convex envelope (v2 − 1)2

+ are given by

(v2 − 1)2
∗ =

{ ∞ for v < 0,

(v2 − 1)2 for v ≥ 0,

(v2 − 1)2
+ =



∞ for v < 0,

1− 4
3

√
2
3v for 0 ≤ v <

√
2
3 ,

(v2 − 1)2 for v ≥
√

2
3 .

Semi-analytic solution: The control Hamiltonian can be written as

H(u, v, p) = pv − (v2 − 1)2
+ − u2,

and the three conditions in Theorem 2.1 take the form of

(2.2) u′ = v, p′ = 2u,

(2.3)
∂H

∂v
= p− ∂

∂v
(v2 − 1)2

+ = 0,
∂2H

∂v2
= − ∂2

∂v2
(v2 − 1)2

+ ≤ 0.
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The Hamiltonian, H, is not C2 in v, but nonetheless ∂2H
∂v2 ≤ 0 in the sense of

distributions. The requirement ∂H
∂v = 0 provides us already with a formula for the

costate function, p, in terms of v, which we can then use to write the Hamiltonian in
a more useful form:

p(v) =


∞ for v < 0,

− 4
3

√
2
3 for 0 ≤ v <

√
2/3,

4v(v2 − 1) for v ≥
√

2/3,

H(u, v, p(v)) =


∞ for v < 0,

−(1 + u2) for 0 ≤ v <
√

2/3,

3v4 − 2v2 − 1− u2 for v ≥
√

2/3.

To find the minimizer u : [0, 1]→ R, one can work out that the solution (u, v, p)
to (2.2) and (2.3) that satisfies the boundary conditions, u(0) = 0 and u(1) = 1/2,
must have v(0) = 0. If this were not the case then p′ 6= 0, which from the expression
for p(v) implies that v ≥

√
2/3 > 0.5 forcing u(1) > 1/2.

Since trajectories travel along level sets of H then

H(u(x), v(x), p(v(x))) = H(0, 0, p(0)) = −(1 + u(0)2) = −1.

Using (2.2) and the definition for H we infer that u(x) = v(x) = 0. However, this
solution does not satisfy the second boundary condition u(1) = 1/2, so at some point
x = x∗ the value of v must jump to v(x∗) ≥

√
2/3. One can again use the fact that

the Hamiltonian is a conserved quantity to find that v(x∗) =
√

2/3. Notice that for

v ≥
√

2/3 the costate p satisfies p′ = (12v2− 4)v′ = 2u, so that we can use the values

u(x∗) = 0, v(x∗) =
√

2/3 as initial conditions of the dynamical system

u′ = v, v′ =
u

6v2 − 2
.

Finally, to find x∗ we integrate this system and require that u(1) = 1/2. This can be
done numerically giving x∗ = 0.4039.

If we denote the solution to the dynamical system by u∗, we see that the solution,
ū, to the relaxed functional is given by,

ū =

{
0 for 0 < x < 0.4039,

u∗(x) for 0.4039 ≤ x ≤ 1.

A plot of the solution is given in Figure 1. A direct computation of the energy of ū
shows that infu∈A I[u] = I[ū] ≈ 0.505445.

Remark 2.2. This example was also presented in [29], where the authors use a
different method for finding minimizers of the relaxation. Starting from the general-
ized functional in terms of Young measures, they obtain its relaxation by rewriting
this integral in terms of the moments of the measure. This leads to an optimization
problem that seeks to minimize the relaxed functional over all possible vectors repre-
senting the moments of the measure, subject to a matrix inequality that guarantees
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Fig. 1: Minimizer found using the control Hamiltonian for the relaxed problem in
Example 1.

that the moments come from a non-negative probability measure. Their method leads
to the following solution

u(x) =

{
0 for 0 ≤ x ≤ 2/5,

5
6x−

1
3 for 0 < x ≤ 1,

which is not as precise as our result. Indeed, from the Pontryagin Maximum Principle
we know that the Hamiltonian is a conserved quantity. Based on the initial conditions
u(0) = v(0) = 0, we know that the solution must be in the level set H = 1. A short
calculation shows that the solution obtained in [29] does not stay on this level set.

Young measure result: We now relate the semi-analytic results to the optimal
parametrized measure of the generalized problem,

Ĩ[µ] =

∫ 1

0

∫
R

(ξ2 − 1)2
∗ dµx(ξ) + u2 dx, u(0) = 0 u(1) = 1/2.

From Theorem 1.4, we know that given a solution, ū, to the relaxed problem,
ūx ≥ 0 and the optimal parametrized measure, µ, satisfies W (ux) =

∫
W (ξ) dµ(ξ).

Therefore, for this example the optimal measure is given by

µx =

{
λ(x)δ0 + (1− λ(x))δa for 0 ≤ ux(x) < a,

δux(x) for a ≤ ux(x),

where a =
√

2/3 and λ(x) =
a− ux(x)

a
.

In addition, the optimal parametrized measure satisfies ūx =
∫
ξ dµ(ξ). Since

the derivative of u(x) is zero on the interval x ∈ [0, 0.4039), for these values of x the
measure µx = δ0. On the other hand, on the interval x ∈ [0.4039, 1] the derivative
satisfies ux(x) >

√
2/3 so that for these values of x the measure µx = δūx . Since the

optimal parametrized measured, µx, are Dirac measures at each x, the solution to
the relaxed problem, u, is also a classical solution to the original problem I[u]. For
this functional, we can conclude that minimizing sequences do not develop fine-scale
oscillations with a nonvanishing amplitude.

Example 2: Consider the fully nonconvex Bolza problem,

I[u] =

∫ 1

−1

(u2
x − 1)2 + (u2 − 1)2 dx, u(−1) = 0, u(1) = 0.
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Some natural test functions to consider are u0(x) = 0 and u±(x) = ±(1− |x|) which
satisfy |u′±|2 = 1 a.e. A direct computation shows that I[u0] = 4, I[u±] = 16

15 .

As before, we want to define a relaxation I such that minu I[u] = infu I[u] and
the minimizer of I encodes information about the optimal Young measure. Define
G[u] as the largest convex functional ≤ I, it follows that –

1. G is coercive, since I[u] ≥ 1
2

∫ 1

−1
(u4
x + u4) dx − 6, is a bound from below by

a convex, coercive function.
2. I[u] = I[−u] and the maximum of two convex functions is convex, so G[u] ≥

max(G[u], G[−u]) and G[−u] ≥ max(G[u], G[−u]) implying G[u] = G[−u].
3. u0(x) = 0 is a global minimum. Indeed, if un is a minimizing sequence, so

is −un and by convexity G[u0] ≤ lim infn
1
2 (G[un] +G[−un]). In particular,

u0 = 1
2u+ + 1

2u− implies that G[u0] ≤ 1
2 (I[u+] + I[u−]) = 16

15 .
4. If un is any sequence (possibly with oscillatory microstructure) with uniformly

bounded energy I[un] ≤ C, that converges weakly to u0, it follows from the
compactness of the Sobolev embedding W 1,4([−1, 1]) → L4([−1, 1]) that we
can extract a subsequence (not relabelled) un → u0 in L4 implying that
lim infn I[un] ≥

∫
(u2

0 − 1)2 dx = 2 > 16
15 ≥ G[u0].

This argument shows that, the convex envelope of I is not the right object to
capture the limiting energy for weakly convergent sequences. There is a gap between
lim infn I[un] and G(u0) for sequences un ⇀ u0. This argument also suggests that we
should compute the lower semi-continuous envelope with respect to weak convergence
in W 1,4, and this functional is given by the partial convexification [8, Theorem 1.7]

I[u] =

∫ 1

−1

(u2
x − 1)2

+ + (u2 − 1)2 dx, u(−1) = 0, u(1) = 0,

where we now define

(v2 − 1)2
+ =

{
0 for |v| < 1,

(v2 − 1)2 for |v| ≥ 1.

Semi-analytic solution: The relaxed functional is not convex in u and we do not expect
to find unique minimizers. Nonetheless, we can write down the control Hamiltonian

H(u, v, p) = pv − (v2 − 1)2
+ − (u2 − 1)2,

and use Theorem 2.1 to find the necessary conditions that lead to solutions:

u′ = v, p′ = 4u(u2 − 1),

∂H

∂v
= p− ∂

∂v
(v2 − 1)2

+ = 0,
∂2H

∂v2
= − ∂2

∂v2
(v2 − 1)2

+ ≤ 0.

As in the previous example the last condition is always satisfied (distributionally),
while the requirement ∂H

∂v = 0 gives a formula for the costate function, p, in terms of
v. This allows us to write the Hamiltonian in terms of u and v,

H(u, v, p(v)) =

{
−(u2 − 1)2 for |v| < 1,

(v2 − 1)(3v2 + 1)− (u2 − 1)2 for |v| ≥ 1.

There are two cases depending on the value of v at the point x = −1. If initially
we assume that |v(−1)| < 1, then the Hamiltonian

H(u(−1), v(−1), p(v(−1))) = −(u(−1)2 − 1)2 = −1.
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Because the Hamiltonian is a conserved quantity, to stay on the level set H = −1
we need v ≡ 0. This corresponds to the trivial solution u0 = 0 which has energy
I[u0] = 2.

If on the other hand |v(−1)| ≥ 1 then p′ = (12v2 − 4)v′ = 4u(u2 − 1), leading to
the following dynamical system,

u′ = v, v′ =
u(u2 − 1)

3v2 − 1
.

Notice that this is a reversible system, so that if (u(x), v(x)) is a solution, then so is
(u(−x),−v(−x)).

Here again we have two options, v < −1 or 1 < v. In the case when u′ = v(−1) > 1
the function u(x) must be initially increasing. So, there is a point x∗ where u(x∗) = 1
and therefore v′(x∗) = 0.

To find the location of x∗ we notice that because the value |v| ≥ 1, the derivative
u′ ≥ 1. Integrating u′ from x = −1 to x = x∗ shows that x∗ is less than zero. Since
the dynamical system is reversible, the solution is even with respect to the x−axis.
This implies that the solution must satisfy u = 1 and v = 0 on the interval (x∗, 0]
and that for values of x ∈ (0, 1] the solution must mirror what happens in the interval
[−1, 0), allowing u to satisfy the boundary condition at x = 1. In addition, since
u = 1 and v = 0 on (x∗,−x∗) the solution must lie on the level set H = 0 and because
we jump to values of |v| ≥ 1, at x = x∗ we must have that v(x∗) = 1 and u(x∗) = 1.

To find the value of x∗ < 0 and the solution on the interval [−x∗, 1] we can
integrate the above equations using the change of coordinates y = x − x∗ together
with the initial conditions u(y = 0) = 1 and v(y = 0) = 1 and stopping as soon as
u(y∗) = 0. With this process we find numerically that x∗ = −0.0529.

If we denote the solution to the dynamical system by u∗, we can say that the
solution, ū, to the relaxed functional is given by,

(2.4) u(x) =

 u∗(−x) for −1 ≤ x ≤ x∗,
1 for x∗ < x < −x∗,

u∗(x) for −x∗ ≤ x ≤ 1,

where x∗ ≈ −0.0529 and u∗ satisfies |u∗x| ≥ 1. A plot of ū(x) is shown in Figure 2.
Computing the energies of ū, u± and u0 yields

inf
u∈A

I[u] = I[ū] ≈ 1.0241 < I[u±] = I[u±] =
16

15
< I[u0] = 2.

For the second case when v < −1, the argument is very similar as the one pre-
sented above. The solution in this case is just −u∗(x).

Young measure: We now continue by relating the semi-analytic result given by
(2.4) to the generalized functional,

Ĩ[µ] =

∫ 1

−1

∫
R

(ξ − 1)2 dµx(ξ) + (u2 − 1)2 dx u(−1) = 0, u(1) = 0.

We know that the optimal parametrized measure must satisfy

W (ux) =

∫
W (ξ) dµx(ξ),

leading to

µx =

{
λ(x)δ1 + (1− λ(x))δ−1 if |ux| < 1,

δux
if |ux| ≥ 1,
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Fig. 2: Minimizer for the relaxed problem in Example 2 from the control Hamiltonian

where λ(x) =
1 + ux

2
. Since the optimal measure must also satisfy ūx =

∫
ξ dµ(ξ),

we look at the solution to the relaxed problem we found above.
First notice that for all x ∈ [−1, x∗]∪ [−x∗, 1] the derivative |ū′(x)| > 1, implying

that µx = δū′(x) on these intervals. On the other hand, for x ∈ (x∗,−x∗) we have

that ū′(x) = 0 and as a result µx = 1
2δ−1 + 1

2δ1 and we may conclude that minimizing
sequences exhibit oscillations on this interval.

3. Computing the relaxation numerically. While the semi-analytic method
from the previous section is fast and very accurate, it is not robust and only applies
to problems with special structure. In this section, we propose a robust, problem-
independent, numerical scheme for finding minimizers of a (potentially) non-smooth
relaxed energy. For notational convenience we reformulate the relaxed variational
problem in a more compact form,

(3.1) minimize I[u] :=W[ux] + V[u], subject to u− u0 ∈W 1,p
0 (Ω),

where W[d] =
∫

Ω
W (d)dx, and V is defined analogously.

We pose the minimization of this functional as a gradient flow problem and look

for steady solutions of ut = − δI
δu

. This will speed up the convergence of our algorithm,

and more importantly it will allow us to incorporate a convex splitting scheme in order
to treat the case when the potential V [x, u] is nonconvex. In this latter case, we have
to keep in mind that we will be finding local minimizers of I.

To solve the gradient flow problem we use a modified version of the split Bregman
algorithm. Using known properties of this scheme [16, 33], we show in Appendix A
that our algorithm convergences to a minimizer of the discretized relaxed problem.
Then, a similar perturbation argument as in [36] shows that as the size of the mesh,
h, goes to zero, the sequence of approximations uh converges strongly to a minimizer
of the relaxed problem. In particular, this means that the solution to the relaxed
problem and therefore its associated Young measure is a good approximation of the
true optimal measure of the generalized problem, giving a good approximation for the
location of microstructures.

We emphasize again that our goal is to use the solutions of the relaxed problem to
infer the corresponding Young measure and consequently the location of microstruc-
tures. In subsection 3.1 we first review the examples from section 2 and find excel-
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lent agreement between the semi-analytic results and the numerical approximations
computed using our algorithm. We also find numerical minimizers for two example
problems, examples 4 and 5 below, that do not have an easily computed semi-analytic
solution, demonstrating the scope of our algorithm.

3.1. A modified split Bregman algorithm. We first review the split Breg-
man algorithm [16], which we use here to find minimizers of (3.1), where both W[d]
and V[u] are convex energy densities. An equivalent formulation of (3.1) is the con-
strained variational problem

(3.2) min
u,d
W[d] + V[u] subject to ux = d.

We can impose the constraint (approximately) by recasting as an unconstrained prob-
lem with a “large” penalty parameter γ.

(3.3) min
u,d
W(d) + V[u] +

γ

2
‖d− ux‖2.

The advantage, of course, is that u and d are now decoupled, but the drawback is that
the resulting variational equations are stiff if γ is large and the convergence can be
very slow [16]. Interestingly, the minimizers of (3.2) can also be obtained by iterating
the following split Bregman scheme [16] (see also appendix A),

(uk+1, dk+1) = argminu,dW[d] + V[u] +
γ

2
‖d− ux − bk‖2,

bk+1 = bk + (uk+1
x − dk+1).(3.4)

The functionals W and V are decoupled and we can carry out the minimization in
two steps,

uk+1 = argminu,dV[u] +
γ

2
‖dk − ux − bk‖2,

dk+1 = argminu,dW[d] +
γ

2
‖d− uk+1

x − bk‖2.

The first subproblem can be solved using for example a conjugate gradient method or
Gauss-Seidel, while the second nonsmooth subproblem can be solved by a piecewise
shrink operator which we define in (3.6).

We remark on a few key features of the split Bregman algorithm (3.4)
1. The update for bk is not from minimizing the augmented functional Ek =
W(d) + V(u) + γ

2 ‖d− ux − b
k‖2 that is defined in (3.4).

2. (uk+1, dk+1) are the minimizers of an augmented functional Ek. However, the
variational equations for Ek are not the same as those of the objective (3.2),
or the version with the soft constraint (3.3). In particular, the functionals
Ek depend on bk which varies from one step to the next. Consequently, the
energies I[uk] need not, and in general do not, decrease monotonically when
evaluated on the sequence uk (See Fig. 10).

3. The split Bregman iteration has an error forgetting property [47]. Since the
functional Ek changes by an amount that depends on the change in bk, any
“errors” ‖ũk+1 − uk+1‖ and ‖d̃k+1 − dk+1‖ between approximate minimiz-
ers ũ, d̃ and the true minimizers of Ek are “forgotten”, once bk is updated,
provided they are smaller than ‖bk+1 − bk‖.
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4. Under certain “reasonable” hypotheses onW and V (see discussion in appen-
dix A) we can show that ‖ukx− dk‖ → 0 (Prop. A.7). Prop. A.12 implies that
bk → b∗, uk → u∗, dk → d∗ = u∗x, a fixed point for the Bregman iteration,
which is necessarily a minimizer for the constrained variational problem (3.2).

5. In contrast to constrained optimization methods, the split Bregman iteration
converges to the minimizer of (3.2) for any choice γ > 0. γ, therefore, need
not be “large” and can be chosen to optimize the rate of convergence [16].

Note that we cannot use the algorithm as formulated above to find minimizers
of functionals with V [x, u] nonconvex. As we discuss in the introduction, this can be
remedied by recasting the problem as a gradient flow, using a convex splitting scheme,
and then adapting the split Bregman algorithm to solve the resulting convex problem.

In what follows, we will consider evolution in ‘time’ for a gradient flow, as well
as split Bregman iterations for minimizing a ‘time-independent’ functional. To keep
this distinction clear, we will use a superscript index uk for the Bregman iterations,
and a subscript index un ≡ Un for time evolution.

To describe our method we first review the main ideas behind convex splitting
schemes. As the name suggest, these numerical algorithms consist in splitting a
nonconvex functional, I, into a convex part, I+, and a concave part, I−. The weak
formulation of the gradient flow is

〈∂tu,w〉 = −
(
δI+

δu
[u], w

)
−
(
δI−
δu

[u], w

)
,

where u ∈ u0 + H1
0 (Ω) and 〈·, ·〉 is the inner product in H1

0 (Ω). The contribution of
the nonconvex part I− is treated explicitly in the time stepping, i.e. it is evaluated at
a previous time step and treated as a forcing term. For a time step of h, the algorithm
then consists in solving,〈

un+1 − un
h

,w

〉
= −

(
δI+

δu
[un+1], w

)
−
(
δI−
δu

[un], w

)
.

This equation is formally the Euler-Lagrange equation for the Rayleigh functional

R[v;un] =
1

2h
〈v − un, v − un〉+ I+[v] +

(
δI−
δu

[un], v − un
)

+ I−[un],(3.5)

where the last two terms are the linearization of I− at un. Our numerical scheme
finds approximate minimizers of the Rayleigh functional v 7→ R[v;un] using the split
Bregman algorithm described above. Since R is strictly convex in its first argument,
minimizers exist and are unique. The update rule for the gradient flow is therefore
un+1 = arg minv R[v;un]. As shown in [14], the sequence {un}, of minimizers of
R[· ;un−1], converges to a local minimum of I to within an error of O(h).

Since local minimizers for the (potentially) non-convex function I can be charac-
terized as fixed points for the mapping u 7→ arg minv R[v;u], it suffices to compute
approximate minimizers ũn+1 ≈ arg minR[v; ũn] provided that the sequence ũn con-
verges, ũn → u∗, in a sufficiently strong sense that we can pass to the limit in R to
get u∗ = arg minv R[v, u∗].

The objective functional R[· ;un] changes with n. This fits naturally within a
split Bregman iteration framework, since the augmented objective function (3.3) also
changes with b. Consequently, all we require is that |R[v; ∂xũn+1]−R[v; ∂xũn]| should
be comparable to ‖bn+1 − bn‖ for all the ‘candidate minimizers’ v at step n. This,
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along with the error forgetting property of the split Bregman iteration will ensure
convergence to a fixed point even with the approximate inputs ũn.

Our algorithm for finding the local minima of I, using the modified split Bregman
algorithm with convexity splitting, as motivated by the preceding discussion, is given
in Algorithm 3.1. A Matlab implementation of this algorithm is available at https:
//github.com/gabyjaramillo/Bolza-SplitBregman [18].

Algorithm 3.1 Split Bregman with convexity splitting

1: Preliminary: Nonconvex potential W [d], interval d ∈ [a, b],
2: W[d]← Beneath and Beyond (W (d), [a, b], N)
3: Inputs: Tolerance tol1, step-size h, parameter γ > 0, and SB iterations K.
4: Initialize: n← 0, U0 = u0 ← 0, d0 ← 0, b0 ← 0
5: repeat
6: for k = 0 to K − 1 do

7: uk+1 ← argminu

[γ
2
‖dk − ux − bk‖22 + 1

2h‖u− Un‖
2
2 + V+[u] + (δV−[Un], u)

]
8: dk+1 ← argmind W[d] +

γ

2
‖d− uk+1

x − bk‖22 implemented using (3.6)

9: bk+1 ← bk + (uk+1
x − dk+1)

10: end for
11: n← n+ 1, Un = u0 ← uK , Dn = d0 ← dK , Bn = b0 ← bK

12: until ‖Dn − ∂xUn‖22 ≤ tol1
13: return Un

In our first step we approximate the convex envelope of W [d] following the im-
plementation of the the Beneath and Beyond algorithm in [25].

This is followed by a gradient flow loop which minimizes the Rayleigh functional,
R[v;un], at each step using the split Bregman algorithm. In the examples shown
in the next section we use five iterations of this scheme, i.e. we set K = 5 in our
algorithm.

Although the proof for the convergence of the algorithm relies on the fact that
the sequence of Bregman iterates converge to the minimizer of R[v;Un] as K →
∞, the numerical algorithm does not need to run the split Bregman scheme to full
convergence. It is enough to complete just a few split-Bregman iterations in order to
guarantee that the sequence ‖Dn − ∂xUn‖2 decreases. Conversely, in iterating until
an error ‖uK − ū‖2 < ‖bK − b0‖2 is obtained, the extra level of accuracy is wasted at
the next time step of the gradient flow when the values of Bn, Un, Dn are updated.
We terminate algorithm 3.1 when the error in the constraint falls bellow a chosen
tolerance, i.e. ‖Dn − ∂xUn‖22 < tol, which is the signature for convergence to a fixed
point (see Prop. A.12 in the appendix).

As with the original split Bregman algorithm, the minimization of the Rayleigh
functional can be carried out as two step process.

uk+1 = argminu
1

2h
‖u− uk‖22 + V+[u] + (δV−[uk], u− uk) + V−[uk]

+
γ

2
‖dk − ux − bk‖22,

dk+1 = argmindW[d] +
γ

2
‖d− uk+1

x − bk‖22.

https://github.com/gabyjaramillo/Bolza-SplitBregman
https://github.com/gabyjaramillo/Bolza-SplitBregman
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To tackle the first subproblem we use Gauss-Seidel iterations to approximate the so-
lution to the corresponding Euler-Lagrange equations. Thanks to the error forgetting
property of the split Bregman scheme we don’t have to compute this solution to full
accuracy, with ten iterations being sufficient.

To solve the second subproblem, we view the gradient of W as piecewise constant
function,

∂W (d) =

 s− for d < d0

si for di−1 ≤ d < di,
s+ for dN < d

where di are points where ∂W is discontinuous, with s− < si < si+1 < s+, 0 ≤ i < N .
The minimization is given by the piecewise shrink operator Sp, defined as follows

(3.6) Sp(i, z, γ) =


z − si

γ for z < di + si
γ ,

z − si+1

γ for z > di + si+1

γ ,

di for di + si
γ ≤ z ≤ di + si+1

γ ,

with z = uk+1
x + bk. We can allow s± = ±∞ in which case Sp(i, z, γ) equals d0 for

z < d0 and dN for z > dN .
Numerical experiments looking at the rates of convergence of algorithm 3.1 for

various example functionals and various choices of γ, h and ∆x suggest the heuristic
γ ∼ h ∼ ∆x to obtain the fastest convergence. We henceforth adopt this heuristic in
this work. This heuristic can be justified, in part, by the following argument. The
Euler-Lagrange equations for the first subproblem can be written abstractly as

Lu = γuxx −
(

1

h
+ c(x)

)
u = f,

where the coefficient c(x) depends on our choice of potential V (x, u). For all exam-
ples considered here c(x) is always a positive function. Using a centered difference
approximation we find that the discretized operator has signature

Ldui =
γ

∆x2
(ui−1 − 2ui + ui+1)− (1/h+ c)ui.

By Gershgorin’s Circle Theorem we know that all eigenvalues of the operator must
lie in circles centered at Ci = −(2γ/(∆x)2 + 1/h + c(xi)) and of radius Ri = 2 γ

∆x2 .
This allows one to approximate the condition number of L as

K(L) =
4γ/(∆x)2 + 1/h+ c(x)

1/h+ c(x)
∼ 4γh

(∆x)2(1 + c(x)h)
,

which suggests that in order to reduce the condition number of the matrix Ld, we
must pick γ and h so that γh ∼ (∆x)2, consistent with our heuristic γ ∼ h ∼ ∆x.

3.2. Examples. We conclude this section with some numerical examples. Unless
indicated otherwise tol1 = 1e−12, γ = 0.01, h = 0.01,∆x = 2−7 ∼ 0.0078, with K = 5
and 10 iterations of Gauss-Seidel for each iteration of gradient flow.
Examples 1: We again consider the functional

I[u] =

∫ 1

−1

(u2
x − 1)2

+ + u2 dx, u(0) = 0, u(1) = 1/2,
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Fig. 3: Numerical results for local minimizers of Example 1 using modified split
Bregman together with gradient flow, but no convex splitting. The approximate
energy of the solution is I[ū] = I[ū] ≈ 0.5013.

where (d2 − 1)2
+ represents the convex envelope of the piecewise function (d2 − 1)2

∗,
described in section 2. In Figure 3 the numerical results using the modified split Breg-
man algorithm are plotted against the analytic solutions found in section 2 showing
that they are in excellent agreement. We also confirm that the energy corresponding
to the minimizer obtained using our numerical scheme, I = 0.5013, is in good agree-
ment with the results found using the control Hamiltonian, I = 0.505445. Towards
the end of this section, we show in Table 2 the energy, I, corresponding to various
minimizers found using different values of ∆x.
Example 2: Next we consider a functional which is nonconvex in the variable u.

I[u] =

∫ 1

−1

(u2
x − 1)2

+ + (u2 − 1)2 dx u(−1) = 0, u(1) = 0.

In this example the function (d2 − 1)2
+ now represents the convex envelope of the

polynomial (d2−1)2. In Figure 4, we plot the two global minimizers against their semi-
analytic counterpart found in section 2. Again we find that the energy I corresponding
to these minimizers is in good agreement with the results from section 2. To see how
the energy converges as ∆x goes to zero, see Table 2 at the end of this section.
Example 3 : We look at a variation of Example 2 with a triple well potential,

I[u] =

∫ 1

−1

[(u2
x − 1)2((ux − 2)2 − 1)2]∗∗ + (u2 − 1)2 dx, u(−1) = 0, u(1) = 0,

where [(u2
x − 1)2((ux − 2)2 − 1)2]∗∗ represents the convex envelope of (u2

x − 1)2((ux −
2)2 − 1)2. A plot of this potential is given in Figure 5 together with the numerical
approximation for two minimizers of this functional. It is clear from Figure 5 that
there are at least two minimizers for this problem with energy I[u] = 0.7216. If we
now consider their gradients, which are depicted in Figure 6 one is able to calculate
the optimal measure for the generalized problem Ĩ[ν]. Labeling the two minimizers
of the relaxation as u+ and u− for the positive and negative solutions, respectively,
then their associated Young measures, µ+, µ− are

µ+ =


δ3 for −1 ≤ x ≤ −0.66,

3
4
δ−1 +

1
4
δ3 for −0.66 < x < 0,

δ−1 for 0 ≤ x ≤ 1,
µ− =


δ−1 for −1 ≤ x ≤ 0,

3
4
δ−1 +

1
4
δ3 for 0 < x < 0.66,

δ3 for 0.66 ≤ x ≤ 1.
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(a) (b)

Fig. 4: Numerical results for local minimizers of Example 2 using the convex splitting:
(u2 − 1)2 = 2au2 + (u4 − 2(1 + a)u2 + 1), a = 4. Figure a) corresponds to an initial
guess of u = 1 and figure b) corresponds to an initial guess of u = −1. Both solutions
have an approximate energy I[u] = 1.0234. Parameters: ∆x = 2−7, h = γ = 0.01

(a) (b)

Fig. 5: a) Convex envelope for W (d) = (d2 − 1)2((d − 2)2 − 1)2. b) Two minimizers
for the relaxed energy I[u] in Example 3. Both solutions have the same energy. Same
convex splitting for V[u] as in Example 2 with a = 4.

Example 4 : We consider the energy I[u] =
∫ 1

−1
(u2
x − 1)2 + (u− g(x))2 dx for which

(3.7) I[u] =

∫ 1

−1

(u2
x − 1)2

+ + (u− g(x))2 dx,

with natural boundary conditions. We consider the case when g(x) = 1
6 sin(2πx)+ 1

2ex

and the function (d2− 1)2
+ represents the convexification of the double well potential.

In Figure 7, we show the minimizer u(x) together with the function g(x) and in
another plot we show both u and its derivative ux. We see that u(x) tracks g(x) over
part of the interval, and ux = 1 in the complement. We can now infer the Young
measure associated with this solution and deduce that minimizing sequences for the
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(a) (b)

Fig. 6: Numerical results for Example 3. By plotting the minimizer, u, and its
derivative, ux, we are able to visualize the associated measures. Plot a) corresponds
to an initial guess u > 0, and plot b) corresponds to an initial guess of u < 0.

nonconvex problem whose relaxation is (3.7) should develop oscillatory microstructure
on the intervals (−0.87,−0.3) and (0.3, 0.6). This feature is not easily predicted before
actually solving the relaxed problem.

(a) (b)

Fig. 7: Example 4: a) Plot of minimizer u and the function g(x) = 1
6 sin(2πx) + 1

2ex.
b) Plot of local minimizer u and its derivative ux. Parameters γ = h = 0.01 and
∆x = 2−8. For this example we use K = 5 and 20 iterations of Gauss-Seidel per each
iteration of gradient flow.

Example 5: We now consider a “fully numerical” example

I[u] =

∫ 1

−1

W [ux] + (u2 − g(x))2 dx,

with natural boundary conditions, g(x) = 1
4 sin(2πx) + 1

2 , and W [d] the convex enve-
lope of a ‘random’ function. Here the values of W (xi) at given points xi are random
samples from a uniform distribution (see Figure 8). In Figure 9, we see that the
solution u tries to stay close (in absolute value) to the function

√
g(x), while at the
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Fig. 8: Example 5: Random potential W [d] and corresponding convex envelope, W [d].

same trying to maintain a slope close to 0.4. From this minimizer we can infer the
associated Young measure and deduce that oscillations will be present in the intervals
(−0.66,−0.37), (0.33, 0.62).

(a) (b)

Fig. 9: Example 5: Parameter values used are: ∆x = 2−8, h = 0.01, γ = 0.01. Convex
splitting: (u2 − g)2 = 2au2 + (u4 − 2(g + a)u2 + g2), a = 4.1 We also use K = 10 and
20 iterations of Gauss-Seidel per each iteration of gradient flow.

In Table 1 we record running times for the modified split Bregman algorithm for
the different examples presented in this section, and for different values of the grid
spacing. Here we set h = max(∆x, 0.01) and γ = h. In Table 2, we also record
the energy vs. ∆x corresponding to minimizers found using our algorithm for the
functionals given in Examples 1 and 2. Lastly, in Figure 10 we plot the energy I[Un]
and the constraint error ‖Dn−∂xUn‖22 vs. n, the number of iterations of the gradient
flow, illustrating the fast convergence of the algorithm. We note that the energy and
error decay, but not monotonically. The inset shows that the non-monotonicity of
the energy persists, albeit on a much smaller scale, even as t gets large. Within each
gradient flow step (the outer loop in Algorithm 3.1) we don’t need to iterate the
split-Bregman steps (inner loop) until uk converges to the minimizer of the Rayleigh
functional R[· ;Un−1]. Precision in Un beyond the size of ‖b0 − bK‖ is “wasted” [16].
In our numerical implementation, we find it sufficient to limit to K = 5 split Bregman
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iterations per gradient flow step.

∆x Example 1 Example 2 Example 3 Example 4 Example 5

2−5 0.2414 0.5878 0.6938 0.1439 0.2369

2−6 0.6421 1.1019 1.2484 0.2782 0.4538

2−7 1.3452 2.8495 3.5546 0.6241 0.9542

2−8 1.7376 3.4116 4.5111 0.8229 1.1639

2−9 3.2981 3.9084 6.3592 1.2217 1.9043

2−10 7.3790 10.1703 16.2610 2.4840 3.2975

Table 1: Running times in seconds for our implementation the modified split Bregman
algorithm [18] on a Macbook Pro laptop as measured using Matlab’s tic-toc function.
Parameters tol = 10−12, h = γ = max(∆x, 0.01), K = 5 (except for example 6 where
K = 10), and 10 iterations of Gauss-Seidel.

(a) (b)

Fig. 10: Example 1. Plot of a) the energy I[Un] and b) the log10 of the error ‖Dn −
∂xUn‖22 as a function of n, the number of gradient flow iterations. The highlighted
point in figure a) represents Umin where the minimum energy achieved, and the dashed
line represents I[Ulast], the energy at the termination of the algorithm. Parameters
used in the computations are: ∆x = 2−8, h = γ = 0.01, and tol = 1e−12, K = 5, and
10 iterations of Gauss-Seidel.

4. Conclusion. In this paper we develop two methods for finding minimizers of
the relaxation of a non-convex energy. We focused on the case of functionals that are
defined over scalar valued functions, since for these energies the relaxation involves
only the convexification of the energy density with respect to the gradient variable.
The issues that we need to resolve include computing the convex envelope (generi-
cally non-smooth) and its associated proximal operator numerically, and working with
noncovex lower order terms.

Our first method uses concepts from optimal control theory. We first derive the
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∆x 2−5 2−6 2−7 2−8 2−9 2−10 Semi-analytic

Ex. 1 0.4885 0.4971 0.5013 0.5034 0.5044 0.5049 0.50545

Ex. 2 1.0208 1.0227 1.0234 1.0238 1.0240 1.0241 1.02408

Table 2: Energies, I[ū], of the minimizers, ū, found using our modified split Bregman
algorithm [18] for different values of ∆x, and using the control Hamiltonian.

generalized Hamiltonian for the relaxation of the original nonconvex functional. We
analyze this Hamiltonian using the Pontryagin Maximum Principle. This analysis
leads to a system of ODEs which give us semi-analytic solutions for the relaxed prob-
lem, and thus also for the Young measure associated with minimizing sequences for
the original nonconvex energy.

Our second method is entirely numerical, using modifications of the split Bregman
algorithm. Recognizing the similarities between a piecewise linear approximation of
the convex envelope W and the L1 norm, we use a split Bregman inspired algorithm
to find the minimizers of

∫
[W (ux) + V (x, u)]dx. This energy is analogous to a L1

norm of ux plus a L2 norm of u, a canonical structure for the problems from image
processing that motivated the initial development of the split Bregman method [16].
There are, of course, substantial differences between problems in image processing,
and our motivating problems which come from studying microstructure in materi-
als. These differences include the possibility of a noncovex lower order term V (x, u),
which precludes a direct application of methods from convex optimization. We have
developed novel strategies to adapt the split Bregman method to these more general
problems, for example, by recasting the minimization problem as a gradient flow and
using convexity splitting methods.

Our interest in solving the relaxed problem comes from the fact that the non-
convex functionals considered in this paper are connected to their relaxation through
the notion of Young measures. This connection allows us to obtain information about
the microstructures that arise in the original nonconvex problem. In particular, the
Young measure associated with a minimizer of the relaxed problem provides informa-
tion about the nature and the spatial distribution of microstructure in the original
nonconvex problem. We need to justify that the discrete approximations given by al-
gorithm 3.1 do indeed provide useful information about the microstructures, on scales
smaller than the grid spacing, in original nonconvex problem. For this justification we
recall the results from [35] which assert that if the sequence of approximations, {uh},
converges strongly to a minimizer of (1.4) as the size of the mesh, h, goes to zero, then
the corresponding sequence of Young measures νh is a macroscopic approximation of
the optimal measure of the generalized problem, (1.3). In other words, as long as we
have a good approximation to our relaxed problem, then the corresponding Young
measure, and consequently the microstructure, are well approximated.

In general, showing the strong convergence of {uh} is difficult and some results in
this direction are [12, 32]. A useful technique is modifying/truncating the gradients
of the sequence uh, to obtain a “nearby” sequence {ũh} which converges strongly [36].
Similar techniques can be used to show that our numerical solution, and the corre-
sponding Young measure, provide enough information to obtain a good approximation
of the microstructures present in the original problem.

Although we have largely focused on scalar problems in 1 dimension, the under-
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lying methods are ‘dimension-independent’. They do, however, rely on computing
the quasiconvex-envelope of ‘gradient’ part of the functional. This is challenging
for multi-dimensional, vector valued problems, i.e. functionals defined on mappings
u : Ωn ⊂ Rn → Rm [30]. On the other hand, our methods extend to function-
als defined on vector valued functions of one variable, u : Ω ⊂ R → Rm, and
multi-dimensional scalar valued functions, u : Ωn → R. In the latter cases, the
quasiconvexification is given by the convex envelope. For vector valued functions, a
generalized Hamiltonian can be found for the relaxed problem along with an equiv-
alent system of ODE. Similarly, the split Bregman algorithm can be extended using
a multidimensional shrink operator. Our work along these lines, as well as the con-
nection between these results and a Γ–development [1] for the regularized functional∫

[ε2u2
xx+W (ux) +V (x, u)]dx, will be presented elsewhere [19]. Here we outline a nu-

merical example for minimizing a non-convex functional defined on multi-dimensional
scalar functions, using a split-Bregman algorithm along with convexity splitting.

Example 6 : Minimize I[u] =

∫
Ω

[∣∣∣√u2
x + u2

y − 1
∣∣∣+

1

4
(1− u2)2

]
dxdy over BV

functions u : Ω→ R where Ω = [−1, 1]2 and u(x, y) = u0(x, y) = xy on ∂Ω.
I is nonconvex in the gradient (ux, uu) and the lower order ‘Allen-Cahn’ term

(1 − u2)2 is nonconvex in u. The quasiconvexification is obtained by taking the
convex envelope of the gradient term [8], to yield

I[u] =

∫
Ω

[(√
u2
x + u2

y − 1
)

+
+

1

4
(1− u2)2

]
dxdy.

As before, we use the convexity splitting
1

4
(1− u2)2 =

1

4
+
a

2
u2 −

(
(1 + a)

u2

2
− u4

4

)
.

The final ingredient is a multi-dimensional shrink operator [16, 19] that computes

arg min
dx,dy

(√
dx2 + dy2 − 1

)
+

+
γ

2
(dx − ∂xu− bx)2 +

γ

2
(dy − ∂yu− by)2.

We discretize our domain using a square grid with uniform spacing ∆. In our split-
Bregman routine we find it optimal to do one Gauss-Seidel step per each time step [16].
As per our heuristic, we choose the Bregman parameter γ, the spatial discretization
∆ and the time step h to be equal to each other γ = h = ∆.

Putting everything together, the update for u is

uk+1
i,j =

uki,j + h
[
(1 + a)uki,j − (uki,j)

3
]

1 + 4γh/∆2 + ah
+

(
γh

∆2 + ah∆2 + 4γh

)
×[

uk+1
i−1,j + uk+1

i,j−1 + uki+1,j + uki,j+1 + ∆(dx,ki,j − d
x,k
i+1,j + dy,ki,j − d

y,k
i,j+1)

− ∆(bx,ki,j − b
x,k
i+1,j + by,ki,j − b

y,k
i,j+1)

]
.

The update for d is given by a multidimensional shrink operator:

νx,k+1
i,j =

uk+1
i+1,j − u

k+1
i,j

∆
+ bx,ki,j , νy,k+1

i,j =
uk+1
i,j+1 − u

k+1
i,j

∆
+ by,ki,j ,

ρk+1
i,j =

√
(νx,k+1
i,j )2 + (νy,k+1

i,j )2,

(dx,k+1
i,j , dy,k+1

i,j ) = max

(
1− 1

γρk+1
i,j

,min

(
1,

1

ρk+1
i,j

))
(νx,k+1
i,j , νy,k+1

i,j ).
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(a) (b)

(c) (d)

Fig. 11: Numerics for Example 6. (a) Contours of the initial condition u0(x, y) = xy
(b) Contours of the minimizier u1(x, y) shown in (c). The energy Ī is nonconvex
because of the lower order terms, and there are two energy minimizers, shown in
(c) and (d) that are related by u2(x, y) = −u1(x,−y). The domain is [−1, 1]2 and
parameters used in the computations are: ∆ = h = γ = 0.04, and a = 2.5.

Note that (dx, dy) = (νx, νy) for 0 ≤ ρ ≤ 1, so there are no computational issues with
overflow/underflow. The update for b is given by “adding back the noise” [33, 16]

(bx,k+1
i,j , by,k+1

i,j ) = (bx,ki,j , b
y,k
i,j ) +

(
uk+1
i+1,j − u

k+1
i,j

∆
− dx,ki,j ,

uk+1
i,j+1 − u

k+1
i,j

∆
− dy,ki,j

)
.

Our numerical results are shown in Fig. 11.
Example 6 illustrates the application of our method for multi-dimensional prob-

lems in mechanics and microstructure formation. In a related vein, Zhou and Bhat-
tacharya [50] have developed an alternative method for multi-dimensional problems,
that also employs a decoupling between the field u and its gradient ∇u. Their method
uses the alternating direction method of multipliers (ADMM) in contrast to our ap-
proach using the split-Bregman method. Their method is parallelizable and uniquely
suited to implementation on GPUs [50]. It will be interesting, for future work, to
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develop similar, parallelizable algorithms based on our methods.

Appendix A. Convergence of the modified split Bregman algorithm.
Here we restate known results about the split Bregman algorithm [33, 48, 16]

and adapt them to our setting. For convenience we use the following notation:
U = (u, d) ∈ X, E(U) = W(d) + Ṽ (u), where again W(d) is the convexification
of
∫
W (d)dx, and Ṽ is either equal to V if this potential is convex, or it is equal to

V+[u]+(δV−[uk], u−uk)+V−[uk] if we are using a convex splitting. We also consider
the linear operator BU = d−∂xu with the corresponding functional H(U) = λ

2 ‖BU‖
2,

and the corresponding (penalized) unconstrained variational problem

(A.1) min
U

F (U) = min
U

E(U) +H(U).

The main goal of this section is to show that sequence of iterates generated by the
split Bregman algorithm converges to the solution of the original constrained problem,
minU E(U) subject to ux = d or equivalently H(U) = 0.

In other words, the following results show that the modified split Bregman scheme,
and consequently each iterate in our ’gradient flow’ algorithm, is well defined. From
this we can conclude that the solution, uh, we obtain from our numerical scheme is
indeed a minimizer of the discretized version of the relaxed problem, (1.4).

To accomplish this task we will need to consider the two algorithms presented in

Table 3, where the term DPk

E (U,Uk) represents the Bregman distance given by

DPk

E (U,Uk) = E(U)− E(Uk)− 〈P k, U − Uk〉.

Bregman Iteration

U0 = 0 P 0 = 0

Uk+1 = argminU DP
k

E (U,Uk)+ λ
2
‖BU‖2

Pk+1 = Pk − λBTBUk+1

Error Correcting Algorithm

U0 = 0 b0 = 0

Uk+1 = argminU E(U)+ λ
2
‖BU−bk‖2

bk+1 = bk −BUk+1

Table 3: A) Bregman iteration. B) Error correcting algorithm.

To prove the above claim we take the following steps.
1. Show equivalence between the Bregman Iteration and the Error Correcting

Algorithm.
2. Show that the sequence of Bregman iterates {uk} is also a minimizing se-

quence of H(u).
3. Use item 2) to show that the solutions to the Error Correcting Algorithm

converge to a solution of the constrained problem, and thus from 1) so do the
Bregman iterates.

Here again we let X denote a Banach space and we consider functionals E and
H that satisfy the following assumptions.

Hypothesis A.1. Let E : X → R and H : X → R be convex functionals with the
property that if we look at F (U) = E(U) + H(U) then F (U) is coercive. That is
there exist constants 1 ≤ q < p, 1 ≤ r, α1, β1 > 0 and α2, α3 ∈ R such that

F (U) = F (u, d) ≥ β1|d|r + α1|∇u|p + α2|u|q + α3.
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Hypothesis A.2. Let H(U) = (λ/2)‖BU‖2, where B : X → L2 is a bounded linear
operator, define a functional satisfying minU∈X H(U) = 0.

A.1. Equivalence between algorithms. All proofs in this subsection are
based on the results from [48].

To prove the equivalence between the two algorithms we first need this next
lemma.

Lemma A.3. Suppose E and H satisfy Hypotheses A.1 and A.2. Then, for each
Bregman iteration defined using these functionals and given by the algorithm in Ta-
ble 3 there exists a minimizer Uk, and subgradients P k, RK of ∂E(Uk) and ∂H(Uk),
respectively such that

P k−1 = P k +Rk.

Proof. Since H(U) = λ
2 ‖BU‖

2 we note that the functional in each Bregman
iteration is given by

Qk(U) = DPk−1

E (U,Uk−1) +H(U),

Qk(U) = E(U)− E(Uk−1)− 〈P k−1, U − Uk−1〉+
λ

2
‖BU‖2.

It is not hard to check, using the definition for F (U) = E(U) +H(U) and properties
of the Bregman distance, that the functional Qk(U) : X → R is convex, coercive,
bounded from below, and lower semicontinuous. Consequently each Bregman iteration
Qk(U) has a minimizer Uk in X. Moreover, the subgradient optimality condition,

0 ∈ ∂Qk(Uk) = ∂E(Uk)− P k−1 + ∂H(Uk),

gives us
P k−1 ∈ ∂E(Uk) + ∂H(Uk),

showing that there is P k ∈ ∂E(Uk) and Rk ∈ ∂H(Uk) such that P k−1 = P k +Rk.

Remark A.4. Notice that because of the relation P k−1 = P k + Rk we also have
that P k = −

∑k
m=1R

m. We will use this relation in Lemma A.11.

The following proposition establishes the equivalence between the Error Correcting
Algorithm and the Bregman Iteration.

Lemma A.5. Suppose the functionals E and H satisfy Hypotheses A.1 and A.2.
Then, with these functionals the two algorithms from Table 3 are equivalent.

Proof. To show the equivalence between the Bregman iteration, with functional
F kB(U), and the Error Correcting algorithm, with functional F kEC(U), we proceed by
induction. We will denote by U the solutions to the Bregman iteration and by V the
solutions to the Error correcting algorithm. Here P k again refers to the subgradient
for E(U) evaluated at the minimizer Uk of the functional F kB .

It is straightforward to check that for k = 1 both algorithms reduce to finding a
minimizer of the same functional,

min
U

E(U) +
λ

2
‖BU‖2,

so the base case is trivial.
In order to prove the induction step we first need to show that
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1. BTBUk = BTBV k, and that
2. P k = λBT (bk−1 −BV k).

Notice that even for the base case, where we already know that the functionals are
equivalent, it is not immediately clear that the first results holds. Indeed, if B has a
nontrivial kernel, the minimizer for the functional E(U) + H(U) is not unique. We
leave the proof of this first item to Lemma A.6 where it is shown that if for any k the
functionals F kB(U) and F kEC(U) differ by constant, and thus the two algorithms are
equivalent, then any two minimizers, Uk and V k, satisfy BTBUk = BTBV k.

Next we prove item 2). Given that B∗BU1 = B∗BV 1 and recalling the for the
initial iterative step, b0 = 0, it is immediate that P 1 = λB∗(b0 − BV 1). Moreover,
since we know B∗BUk = B∗BV k holds we can use induction and the definition of P k

to prove item 2):

P k = P k−1 − λB∗BUk = λB∗(bk−2 −BV k−1)− λB∗BV k = λB∗(bk−1 −BV k).

We now proceed to show the equivalence of the two algorithms via induction. To
that end, suppose that items 1), and 2) above hold for some k. Then starting with
the Bregman iteration

min
U

E(U)− E(Uk)− 〈P k, U − Uk〉+
λ

2
‖BU‖2

= min
U

E(U)− 〈P k, U〉+
λ

2
‖BU‖2 + C

= min
U

E(U)− λ〈B∗(bk−1 −BV k), U〉+
λ

2
‖BU‖2 + C

= min
U

E(U)− λ〈(bk−1 −BV k), BU〉+
λ

2
‖BU‖2 +

λ

2
‖bk−1 −BV k‖2 + C̄

= min
U

E(U) +
λ

2
‖(bk−1 −BV k)−BU‖2 + C̄

= min
U

E(U) +
λ

2
‖bk −BU‖2 + C̄.

Where on the third line we used 2) from the induction hypothesis, and in the last
line we used the definition of bk. Since the two functionals differ by a constant the
two algorithms are equivalent.

Lemma A.6. Suppose the functionals E(U) and H(U) = λ
2 ‖b − BU‖2 satisfy

Hypothesis A.1. If U and V are two distinct minimizers of

(A.2) E(U) +
λ

2
‖b−BU‖2 + C,

where C ∈ R, λ > 0, and b ∈ L2, then we must have BTBU = BTBV .

Proof. Given that U 6= V , consider a linear combination of these two elements
Z = αU + (1− α)V ∈ X, with α ∈ [0, 1]. Letting

m = min
U∈X

E(U) +
λ

2
‖b−BU‖2 + C,
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we see that

E(Z)+
λ

2
‖b−BZ‖2 + C

≤ αE(U) + (1− α)E(V ) + C

+
λ

2

(
α2‖b−BU‖2 + 2α(1− α)‖b−BU‖ ‖b−BV ‖+ (1− α)2‖b−BV ‖2

)
≤α

(
m− λ

2
‖b−BU‖2

)
+ (1− α)

(
m− λ

2
‖b−BV ‖2

)
+
λ

2

(
α2‖b−BU‖2 + 2α(1− α)‖b−BU‖ ‖b−BV ‖+ (1− α)2‖b−BV ‖2

)
≤m+

λ

2

(
α(α− 1)‖b−BU‖2 + 2α(1− α)‖b−BU‖ ‖b−BV ‖

+α(α− 1)‖b−BV ‖2
)

≤m− λ

2
α(1− α) (‖b−BU‖ − ‖b−BV ‖)2

.

This last inequality implies that ‖b − BU‖ = ‖b − BV ‖ and that every element in
the line Z(α) = αU + (1 − α)V is also a minimizer. In particular, it follows that
‖b − BZ(α)‖2 is constant for all α ∈ [0, 1]. Therefore, the gradient of H(U) =
‖b − BU‖2 at U in the direction of W = V − U 6= 0 and the gradient at V in the
direction of −W are both zero, i.e.

∂H(U) |W=2〈BT (b−BU),W 〉 = 0,

∂H(V ) |−W=2〈BT (b−BV ),−W 〉 = 0.

Subtracting these results we see that 〈BTBU −BTBV,W 〉 = 0.

A.2. Properties of Bregman Iteration. The main goal of this section is to
show that the sequence of Bregman iterates,{Uk}, generated from the algorithm in
Table 3, is also a minimizing sequence of H(U). We state this more precisely in the
following proposition.

Proposition A.7. Suppose we have functionals E and H that satisfy Hypothe-
ses A.1 and A.2. Then, the sequence {Uk} of iterates generated by the Bregman iter-
ation is also a minimizing sequence for H(U). In particular, the sequence converges
weakly to a function Ũ satisfying ‖BŨ‖ = 0.

We prove this proposition in a series of lemmas, which summarize the results
from [33]. The first assertion follows from Lemma A.9, which uses the properties of
the Bregman iteration stated in Lemma A.8. The second assertion follows once we
show that the sequence of iterates is uniformly bounded in X, since this implies that
the sequence converges weakly to a minimizer Ũ of H(U). In particular, to show the
boundedness of the sequence:

1. We notice first that by Hypothesis A.2 the sum E(U) +H(U) is coercive. It
then follows from standard arguments and Poincaré’s inequality that there are
constants c1 > 0, c2 ∈ R such that the norm ‖U‖X ≤ c1(E(U) +H(U) + c2).

2. Then, we may conclude from Lemma A.11 that E(Uk) +H(Uk) ≤ E(Ũ) for
all k.
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We start with some properties of the Bregman iteration. Here we use the notation
Qk(U) to represent the functional corresponding to the kth Bregman iteration

Qk(U) = E(U)− E(Uk−1)− 〈P k−1, U − Uk−1〉+H(U).

The following results follow the analysis in Osher et al [33].

Lemma A.8. Given functionals E and H satisfying Hypotheses A.1 and A.2, the
sequence {Uk} ⊂ X generated by the corresponding Bregman iteration satisfies:

1. Monotonicity: H(Uk) ≤ H(Uk−1)
2. If E(U) <∞ then

DPk

E (U,Uk) +DPk−1

E (Uk, Uk−1) +H(Uk)−H(U) < DPk−1

E (U,Uk−1).

Proof. To prove item 1) let Uk−1 and Uk represent the minimizers of the (k−1)th
and kth Bregman iterations, and let P k−1 be an element in the subgradient of E(U)
evaluated at Uk−1. Then by applying the definition of subgradient to P k−1 we see
that,

〈P k−1, Uk − Uk−1〉+ E(Uk−1) ≤E(Uk)

H(Uk) ≤E(Uk)− 〈P k−1, Uk − Uk−1〉 − E(Uk−1) +H(Uk)

H(Uk) ≤Qk(Uk) ≤ Qk(Uk−1) = H(Uk−1).

Where the second inequality holds because Uk minimizes Qk(Uk).
To prove item 2) we use the definition of the Bregman distance to simplify the

following expression

DPk

E (U,Uk)−DPk−1

E (U,Uk−1) +DPk−1

E (Uk, Uk−1)

= E(U)− E(Uk)− 〈P k, U − Uk〉+ E(Uk−1)− E(U)

+ 〈P k−1, U − Uk−1〉+ E(Uk)− E(Uk−1)− 〈P k−1, Uk − Uk−1〉
=− 〈P k, U − Uk〉+ 〈P k−1, U − Uk−1〉 − 〈P k−1, Uk − Uk−1〉
=〈P k−1 − P k, U − Uk〉.

From Lemma A.3 we know that P k−1 = P k + Rk , with Rk ∈ ∂H(Uk). This allows
us to simplify the expression further leading to

DPk

E (U,Uk)−DPk−1

E (U,Uk−1) +DPk−1

E (Uk, Uk−1) = 〈Rk, U −Uk〉 ≤ H(U)−H(Uk).

After a rearrangement this gives the desired result,

DPk

E (U,Uk) +DPk−1

E (Uk, Uk−1) +H(Uk)−H(U) < DPk−1

E (U,Uk−1).

This next proposition implies that the sequence of Bregman iterates {Uk} is a
minimizing sequence for H(U).

Lemma A.9. Suppose E(U) and H(U) satisfy Hypotheses A.1 and A.2 and that
Ũ is a minimizer of H(U), with E(Ũ) <∞. Then, the sequence {Uk} ⊂ X generated
by the Bregman iteration in Table 3 satisfies

H(Uk) ≤ H(Ũ) +
E(Ũ)

k
.
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Proof. The result follows from adding item 2) in Lemma A.8 for integers 1 through
k:

(A.3) DPk

E (Ũ , Uk) +

k∑
m=1

[
DPm−1

E (Um, Um−1) +H(Um)−H(Ũ)
]
≤ D0(Ũ , U0).

Using the monotonicity property, i.e. H(Um) ≤ H(Um−1), we can replace H(Um)

with H(Uk) for all m = 1, 2, · · · , k. In addition because DPm−1

E (Um, Um−1) ≥ 0 the
above inequality can be simplified to

DPk

E (Ũ , Uk) + k
[
H(Uk)−H(Ũ)

]
≤ D0(Ũ , U0) = E(Ũ).

Lastly, because the Bregman distance is always nonnegative we can rearrange the
terms in this last inequality to obtain the desired result

H(Uk) ≤ H(Ũ) + E(Ũ)/k.

Remark A.10. From the inequality (A.3) one also obtains the following properties
for the sequence of Bregman iterates:

1.
∑k
m=1D

Pm−1

E (Um, Um−1) ≤ E(Ũ).

Since in addition the minH(U) = 0 over X, we also have that

2.
∑k
m=1H(Um) ≤ E(Ũ) as well as

3. kH(Uk) ≤ E(Ũ).

In this next lemma we show that if the functionals E and H satisfy the above
hypothesis and {Uk} is a minimizing sequence, then sequence of values ak = E(Uk)+
H(Uk) is uniformly bounded . Since ‖U‖X ≤ c1(E(U)+H(U)+c2) for some constants
c1 > 0, c2 ∈ R, it follows that the minimizing sequence {Uk} is uniformly bounded
and therefore converges weakly to an element in X.

Lemma A.11. Suppose E(U) and H(U) satisfy Hypotheses A.1 and A.2 and that
Ũ is a minimizer of H(U), with E(Ũ) <∞. Then, the sequence {Uk} ⊂ X generated
by the Bregman iteration in Table 3 satisfies

E(Uk) +H(Uk) ≤ CE(Ũ).
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Proof. To show the result we use item 1) from Remark A.10

E(Ũ) ≥
k∑

m=1

DPm−1

E (Um, Um−1)

≥
k∑

m=1

(
E(Um)− E(Um−1)− 〈Pm−1, Um − Um−1〉

)
≥E(Uk)− E(U0)−

k∑
m=1

〈Pm−1, Um − Um−1〉

≥E(Uk)− E(U0)−

(
k∑

m=1

〈Pm−1, Um − Ũ〉 − 〈Pm−1, Um−1 − Ũ〉

)

≥E(Uk)− E(U0)− 〈P k−1, Uk − Ũ〉+

k−1∑
m=1

〈Pm − Pm−1, Um − Ũ〉.

Using the results from Lemma A.3, Pm−1 = Pm+Rm and P k = −
∑k
m=1R

m we can
write

E(Ũ) ≥E(Uk)− E(U0) +

k−1∑
m=1

〈Rm, Uk − Ũ〉 −
k−1∑
m=1

〈Rm, Um − Ũ〉

≥E(Uk)− E(U0) +

k−1∑
m=1

〈Rm, Uk〉 −
k−1∑
m=1

〈Rm, Um〉.

Since Rm ∈ ∂H(Um) = λB∗BUm we have

E(Ũ) ≥E(Uk)− E(U0) + λ

k−1∑
m=1

〈BUm, BUk〉 − λ
k−1∑
m=1

‖BUm‖2

≥E(Uk)− E(U0)− λ

2

k−1∑
m=1

(
‖BUm‖2 + ‖BUk‖2

)
− λ

k−1∑
m=1

‖BUm‖2

≥E(Uk) +H(Uk)− E(U0)− kH(Uk)− 3

k−1∑
m=1

H(Um).

Since minU∈X H(U) = 0, we can use Remark A.10 to obtain

E(Ũ) ≥ E(Uk) +H(Uk)− E(U0)− 4E(Ũ),

which yields the result of the lemma

E(Uk) +H(Uk) ≤ 5E(Ũ).

A.3. Convergence to solution of constrained problem. We have shown
that the sequence {Uk} of Bregman iterates is a minimizing sequence for H(U) =
λ
2 ‖BU‖

2. In particular this implies that the sequence converges weakly to a function
U∗ ∈ X with the property that ‖BU∗‖ = 0. Because the Bregman iteration and the
Error correcting algorithm are equivalent we also have that U∗ is a solution to an
iterate of the latter. In this next proposition we further show that if U∗ is a solution
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to the Error Correcting algorithm which satisfies ‖BU∗‖ = 0, then it must also be a
solution to the original constrained problem

min
U∈X

E(U) subject to ‖BU‖ = 0,(A.4)

min
(u,d)∈X

W 1(d) + Ṽ (x, u) subject to ‖∂xu− d‖ = 0.

The proof we present here follows the analysis in [16].

Proposition A.12. Suppose the functionals E(U) and H(U) satisfy Hypothe-
ses A.1 and A.2. Consider the Error Correcting algorithm stated in Table 3 and
suppose an iterate U∗ satisfies ‖BU∗‖ = 0. Then U∗ is a solution to the original
constrained problem (A.4).

Proof. Since U∗ is a fixed point for the Error Correcting algorithm there is a b∗

such that

U∗ = argminU∈XE(U) +
λ

2
‖BU − b∗‖.

Suppose now that Ū is a solution to the original constrained problem (A.4), then
‖BŪ‖ = 0. Because U∗ also satisfies the same constrain, we obtain the following
relation ‖BU∗− b∗‖ = ‖BŪ − b∗‖. We can now use this to show that U∗ is a solution
to (A.4). Indeed because U∗ is a minimizer of the Error Correcting functional we see
that

E(U∗) +
λ

2
‖BU∗ − b∗‖ ≤ E(Ū) +

λ

2
‖BŪ − b∗‖

E(U∗) ≤ E(Ū).

The last inequality shows that U∗ is also a minimizer for E(U) and thus solves (A.4).
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