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Abstract

Quaternion matrices are employed successfully in many color image processing ap-
plications. In particular, a pure quaternion matrix can be used to represent red, green
and blue channels of color images. A low-rank approximation for a pure quaternion ma-
trix can be obtained by using the quaternion singular value decomposition. However,
this approximation is not optimal in the sense that the resulting low-rank approximation
matrix may not be pure quaternion, i.e., the low-rank matrix contains real component
which is not useful for the representation of a color image. The main contribution
of this paper is to find an optimal rank-r pure quaternion matrix approximation for
a pure quaternion matrix (a color image). Our idea is to use a projection on a low-
rank quaternion matrix manifold and a projection on a quaternion matrix with zero
real component, and develop an alternating projections algorithm to find such optimal
low-rank pure quaternion matrix approximation. The convergence of the projection
algorithm can be established by showing that the low-rank quaternion matrix manifold
and the zero real component quaternion matrix manifold has a non-trivial intersection
point. Numerical examples on synthetic pure quaternion matrices and color images
are presented to illustrate the projection algorithm can find optimal low-rank pure
quaternion approximation for pure quaternion matrices or color images.

Keywords: Color images, pure quaternion matrices, low-rank approximation, manifolds

1 Introduction

The RGB color model is one of the most commonly applied additive color models. Each
pixel using the RGB color model consists of three channels, i.e., red (R), green (G), and
blue(B), which can be encoded on the three imaginary parts of a quaternion. The quaternion
representation for color images has been proposed and widely employed in the literature
[7, 9, 14, 20, 28, 29, 32]. It is a main advantage of the quaternion approach that color
images can be studied and processed holistically as a vector field [9, 29, 32]. Tools and
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methods for gray-scale image processing are extended to the color image processing field
via the quaternion algebra theory and computation, such as the matrix completion [16], the
Fourier transform [28, 29], the wavelet transform [10], the principal component analysis [41],
and the dictionary learning algorithms [4, 38, 40].

In this paper, we also employ the quaternion matrix representation for an RGB color
image and target at the optimal rank-r approximation that should also represent an RGB
color image. Note that the representation quaternion matrix should be pure quaternion,
i.e., admitting a zero real part, since we assign the red, green, and blue channels to the
three imaginary parts respectively. Without the pure quaternion restriction, a low-rank
approximation of any quaternion matrix can be obtained by the quaternion singular value
decomposition (QSVD) [42], i.e., the quaternion counterpart for the Eckart-Young-Mirsky
theorem. Neverthelss, this low-rank approximation may not be optimal in the sense that
the approximation matrix is not necessarily a pure quaternion matrix. That is, the approx-
imation matrix contains real component information which is useless for a color image. We
take a 2-by-2 pure quaternion matrix for illustration. Denote

A =

(
1 0
0 0

)
i +

(
0 1
0 1

)
j +

(
0 0
1 0

)
k, (1)

where i, j and k are three imaginary units in the quaternion algebra. By applying the QSVD
on A, we can calculate an optimal rank-1 approximation as

Ã =

(
0 −0.35
0 0.35

)
+

(
0.85 0
0.35 0

)
i +

(
0 −0.85
0 −0.85

)
j +

(
0.35 0
0.85 0

)
k.

Obviously, the approximation matrix Ã contains real components. In this case, the pure
quaternion part of Ã

Ãp =

(
0.85 0
0.35 0

)
i +

(
0 −0.85
0 −0.85

)
j +

(
0.35 0
0.85 0

)
k

is usually chosen as the pure quaternion approximation of A. However, rank
(
Ãp

)
= 2,

which is saying that Ãp is not an optimal rank-1 pure quaternion approximation of A.
In color image processing, we are interested in finding an optimal fixed-rank pure quater-

nion approximation of a color image. Mathematically, it can be formulated as the following
optimization problem

min ‖A−X‖2F,
s.t. rank(X) = r,

Re(X) = 0,
(2)

where A is a given pure quaternion matrix and Re(X) denotes the real part of X. In the
literature, there are several algorithms [17, 18, 20, 26, 27] for computing the eigenvalues as
well as the singular values of quaternion matrices. To our best knowledge, this is the first
attempt to study the low-rank pure quaternion approximation problem.

1.1 The Contribution

Alternating projection method finds a point in the intersection of two closed convex sets by
iteratively projecting a point first onto one set and then the other. It has a long history which
can be traced back to John Von Neumann [35], where the alternating projections between
two closed subspaces of a Hilbert space is guaranteed to globally converge to a intersection
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point of the two subspaces, if they intersect non-trivially. Alternating projection method
has been used in a wide range of some classical mathematics problems as well as engineering
applications because of it is a gradient-free method (without requiring tuning the step size)
and usually has fast speed of convergence. See, e.g., convex feasibility problem [5], signal
processing [8], finance [15], machine learning [37], an so on ([2, 12, 13, 19, 22, 23, 33, 39]
and references therein).

By contrast, alternating projection method on nonconvex sets are remained rather un-
developed. Cadzow [6] showed the convergence of an alternating projections scheme by the
Zangwill’s global convergence theorem. Lewis and Malich [24] further showed that alter-
nating projection method converges locally at a linear rate when two manifolds intersect
transversally. Later, Fredrik and Marcus [3] generalized the “transversally” intersecting
condition as the “nontangentially” intersecting condition.

In this paper, we consider the alternating projection method on two manifolds: one is
a fixed-rank quaternion matrix manifold and the other is a zero real component quaternion
matrix manifold. The convergence results for the alternating projections algorithm on these
two manifolds are derived. Furthermore, we propose an initialization strategy to make the
alternating projection method more practical and reliable. Numerical examples on synthetic
pure quaternion matrices and color images are presented to illustrate the performances of
the proposed algorithm.

The rest of this paper is organized as follows. In Section 2, we summarize some notations
used throughout this paper. The preliminaries for quaternion matrix and manifolds theory
are presented. We also study the intersection of the low-rank quaternion matrix manifold
and the zero real component quaternion matrix manifold. In Section 3, an alternating
projections algorithm is given and proved to linearly converge to a good approximation. We
further propose an initialization strategy in Section 4 to make the alternating projection
method more practical and reliable. In Section 5, we conduct some numerical experiments
to demonstrate our theoretical results. Some concluding remarks are given in Section 6.

2 Mathematical Preliminaries

2.1 Quaternion and Quaternion Matrix

A quaternion number consists of one real part and three imaginary parts given by

q = qr + qii + qjj + qkk

where qr, qi, qj , qk ∈ R and i, j,k are three imaginary units. Throughout this paper, any
boldface symbol indicates a quaternion number, vector, or matrix. We use H to denote the
quaternion algebra. The quaternion q is called a pure quaternion if it has a zero real part,
i.e., qr = 0. The conjugate and modulus of q are respectively defined by

q∗ = qr − qii− qjj− qkk and |q| =
√
q2
r + q2

i + q2
j + q2

k.

Quaternions form a division algebra when equipped with the componentwise addition, the
componentwise scalar multiplication over R, and the Hamilton product given by

• i · 1 = 1 · i = i, j · 1 = 1 · j = j, k · 1 = 1 · k = k;

• i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ik = −ki = j.
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Note that the quaternion multiplication is noncommutative, i.e., pq may not equal qp for
all p,q ∈ H.

A quaternion matrix is represented by A = A0 +A1i +A2j +A3k ∈ Hm×n and the real
part of A is denoted by Re(A) = A0. The identity quaternion matrix I is the same as the
classical identity matrix. The inverse B of a quaternion matrix A exists if AB = BA = I.
A quaternion matrix is unitary if A∗A = AA∗ = I, where A∗ is the conjugate transpose of
A. An alternative approach to handle an m×n quaternion matrix is to consider the subset
of the ring R4m×4n:

Γ :=

X =


A0 −A1 A2 −A3

A1 A0 −A3 A2

−A2 A3 A0 −A1

A3 −A2 A1 A0

 ∈ R4m×4n : A0, A1, A2, A3 ∈ Rm×n

 .

Inheriting the operations on R4m×4n, Γ actually forms a subring. Define a mapping φ as

φ : A = A0 +A1i +A2j +A3k ∈ Hm×n 7→ Â =


A0 −A1 A2 −A3

A1 A0 −A3 A2

−A2 A3 A0 −A1

A3 −A2 A1 A0

 ∈ Γ. (3)

Then φ is a bijection and preserves the operations, which guarantees that the quaternion
matrix set Hm×n and the real matrix set Γ are essentially the same (Remark 2.1 in [42]). In

addition, Â in (3) is called the real representation of A.
Due to the non-commutative nature of quaternion multiplication, the linear independence

of a set of vectors over Hn can be defined as right and left linear independence, respectively.
v1, ..,vn ∈ Hn are said to be right (left) linear independent if there dose not exist nonzero
quaternions a1, ...,an such that

v1a1 + · · ·+ vnan = 0 (a1v1 + · · ·+ anvn = 0).

Based on the definition of right independence of quaternion vectors, we can introduce the
rank of a quaternion matrix.

Definition 2.1 ([42]). The maximum number of right linearly independent columns of a
quaternion matrix A ∈ Hn1×n2 is called the rank of A.

Nevertheless, the rank could be different from the maximum number of left linearly
independent columns or right linearly independent rows since the quaternion multiplication
is noncommutative. Moreover, the singular value decomposition of a quaternion matrix
reveals the rank of the quaternion matrix which can be given as follows.

Theorem 2.1 (QSVD [42]). Let A ∈ Hn1×n2 with rank(A) = r. Then there exist two
unitary quaternion matrices U = [u1,u2, · · · ,un1 ] ∈ Hn1×n1 and V = [v1,v2, · · ·vn2 ] ∈
Hn2×n2 such that

A = UΣV∗, (4)

where Σ = diag(σ1, · · · , σr, 0, · · · , 0) ∈ Rn1×n2 and σ1 ≥ σ2 ≥ · · · ≥ σr are positive singular
values of A.

Compared with the real and complex cases, the singular values of a quaternion matrix
are still real numbers, while the two unitary matrices are quaternion matrices. Similar to the
complex matrix case, an optimal rank-r approximation of A can be given as

∑r
i=1 σiuiv

∗
i .
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2.2 Manifolds

A smooth manifold is a pair (M, ϕ), where M is a topological manifold and ϕ is a smooth
structure onM. Let γ : R→M, t→ γ(t) be a smooth curve inM with γ(0) = x, and Υ(x)
be the set of all real-valued functions f : M→ R which are smooth around x ∈ M. Then
the mapping

vx : Υ(x)→ R, f → vxf :=
df(γ(t))

dt
|t=0

is called the tangent vector of x to the curve γ at t = 0. The set of all derivations of M at
x is a vector space called the tangent space to M at x, and is denoted by TM(x).

Some well known matrix manifolds in the literature are the orthogonal Stiefel manifold,
the Grassmann manifold and the fixed rank matrix manifold which can be constructed from
Rm×n by taking embedded or quotient operations. In order to better understand manifolds
with its related definitions (e.g., charts, atlases and tangent spaces) and some optimization
algorithms on matrix manifolds, we refer to [1, 21] and the references therein. Here, we
focus on the fixed rank matrix manifold whose dimension and tangent space are given as
follows.

Lemma 2.2 (Proposition 2.1 in [34]). Let M be the set of m× n real matrices with a fixed
rank r. Then M is an embedded manifold of Rm×n with dimension (m + n − r)r. Suppose
that the skinny SVD of X ∈ M is given by X = UΣV T , with U ∈ Rm×r and V ∈ Rn×r
being two column unitary marices. Its tangent space TM(X) at X is given by

TM(X) =

{
[U,U⊥]

(
Rr×r Rr×(n−r)

R(m−r)×r 0(m−r)×(n−r)

)
[V, V⊥]T

}
,

where U⊥ and V⊥ are the unitary complements of U and V , respectively.

In this section, our aim is to show the intersection of the fixed rank quaternion matrix
set and the zero real component quaternion matrix set is a manifold, which provides a
theoretical guarantee of the local linear convergence for the alternating projection method
proposed in the next section. The angle between two manifolds plays an important role in
checking the alternating projection method can be applied or not, then we need to introduce
the following definitions first.

Definition 2.2 (Definition 3.1 in [3]). Suppose that M1 and M2 are two manifolds, then
given A ∈M1 ∩M2, set

F ξj = {Bj ∈Mj\A, ‖Bj −A‖ ≤ ξ and Bj −A ⊥ TM1∩M2
(A)}, j = 1, 2.

If F ξj 6= 0, j = 1, 2, for all ξ > 0, we define the angle α(A) of M1 and M2 at A as

α(A) = cos−1(σ(A)),

where

σ(A) = lim
ξ→0

sup
B1∈F ξ1 ,B2∈F ξ2

{
〈B1 −A,B2 −A〉
‖B1 −A‖‖B2 −A‖

}
.

Definition 2.3 (Definition 3.3 in [3]). Suppose that M1 and M2 are two manifolds. Points
A ∈ M1 ∩M2 where the angle is defined will be called nontrivial intersection points. For
such points, we say that A is tangential if α(A) = 0 and non-tangential if α(A) > 0.
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For quaternion matrices, we can also show the fixed-rank ones form a manifold. The
proof can be found in Appendix.

Lemma 2.3. Denote Q := {E = E0 + E1i + E2j + E3k ∈ Hm×n, rank(E) = r}. Then Q
is an embedded submanifold of R4m×4n with dimension 4(m+ n− r)r.

By the real representation of a quaternion matrix given in (3), we can get Q is isomorphic
to the set of structured real matrices:

Mr :=

X =


A0 −A1 A2 −A3

A1 A0 −A3 A2

−A2 A3 A0 −A1

A3 −A2 A1 A0

 ∈ R4m×4n, rank(X) = 4r

 , (5)

and the set of pure quaternion matrices is isomorphic to the set of structured real matrices:

M∗ :=

X =


0 −A1 A2 −A3

A1 0 −A3 A2

−A2 A3 0 −A1

A3 −A2 A1 0

 ∈ R4m×4n

 , (6)

respectively. Obviously, M∗ is a linear subspace, thus also a manifold. After that the main
task of this section can be rewritten as proving

Mr∗ :=Mr ∩M∗ =

X =


0 −A1 A2 −A3

A1 0 −A3 A2

−A2 A3 0 −A1

A3 −A2 A1 0

 ∈ R4m×4n, rank(X) = 4r


(7)

is a manifold. Moreover, Mr and M∗ can be seen as the vanishing of different polynomials
sets over Rn, which motivated us to apply algebraic geometry methods to study the above
problem. Before moving on, we need to introduce the following definitions and results which
are needed in the sequel.

Theorem 2.4 (Theorem 2.1 in [36]). Given a real algebraic variety V ∈ Rn, we can write
V =

⋃m
j=0 Vj where each Vj is either void or a C(∞)-manifold of dimension j. Moreover,

each Vj contains at most a finite number of connected components.

Theorem 2.4 shows us that the main part of a variety is a manifold. For a given real
algebraic variety V ∈ Rn, if we identity Rn as a subset of Cn and denote IR(V) as the set of
real polynomials that vanish on V, then V has a related complex variety given by its Zariski
closure

VZar = {z ∈ Cn : p(z) = 0, ∀p ∈ IR(V)},

which is defined as the subset in Cn of common zeros to all polynomials that vanish on V.
A given real algebraic variety V is called irreducible if there does not exist any non-trivial
decompositions of the form V = V1

⋃
V2, where V1 and V2 are real algebraic varieties. A

point z ∈ V is non-singular if it is non-singular in the sense of algebraic geometry as an
element of VZar. Denote ∇ as the gradient operator and set NV(z) = {∇p(z) : p ∈ IR(V)}.
The set of non-singular points in V is denoted as Vns. The following results provide some
criteria to check whether a point is a non-singular point or not.
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Lemma 2.5 (Proposition 6.3 in [3]). Let V ∈ Rn be a irreducible real algebraic variety of
dimension m. Then dimNV(z) ≤ n −m for all z ∈ V and z is non-singular if and only if
dimNV(z) = n−m.

Lemma 2.6 (Proposition 6.4 in [3]). Let V be an irreducible real algebraic variety of dimen-
sion m. Then the decomposition V =

⋃m
j=1Mj in Theorem 2.4 can be chosen as Vns =Mm.

Lemma 2.7 (Proposition 6.5 in [3]). Suppose that V1 and V2 are irreducible real algebraic
varieties and that V = V1 ∩ V2 is irreducible and strictly smaller that both V1 and V2. Then
each point in Vns1 ∩ Vns2 ∩ Vns is a non-trivial intersection point.

Lemma 2.8 (Theorem 6.6 in [3]). Suppose that V1 and V2 are irreducible real algebraic
varieties and that V = V1∩V2 is irreducible and strictly smaller that both V1 and V2. Let the
dimension of V is m. If Vns,nt 6= 0, then V \ Vns,nt is a real algebraic variety of dimension
strictly less than m. A sufficient condition for this to happen is that there exist a point
A ∈ Vns1 ∩ Vns2 such that

dim(TVns1
(A) + TVns2

(A)) ≤ m.

In practice, we need to check a given variety is irreducible or not, thus the following
results are needed.

Definition 2.4 (Definition 6.7 in [3]). Suppose we are given a number j ∈ N and an index
set I such that for each i ∈ I, there exist an open connected Ωi ⊆ Rj and a real analytic
map φi : Ωi → V. Then V is said to be covered with analytic patches, if for each A ∈ V,
there exists an i ∈ I and a radius rA such that

Vrn ∩BallRn(A, rA) = Imφi ∩BallRn(A, rA).

Lemma 2.9 (Proposition 6.8 in [3]). Let V be a real algebraic variety. If V is connected
and can be covered with analytic patches, then V is irreducible.

The following lemma show us a method to compute the dimension of a variety.

Lemma 2.10 (Proposition 6.9 in [3]). Under the assumption of Lemma 2.9, suppose in
addition that an open subset of V is the image of a bijective real analytic map defined on a
subset of Rd. Then V has dimension d.

For an arbitrary quaternion matrix A = A0 +A1i +A2j +A3k ∈ Hm×n, denote

Vsr :=

X =


A0 −A1 A2 −A3

A1 A0 −A3 A2

−A2 A3 A0 −A1

A3 −A2 A1 A0

 ∈ R4m×4n, rank(X) ≤ 4r

 . (8)

Then we can derive the following results.

Theorem 2.11. Let M∗ and Vsr be given as in (6) and (8), respectively. Then M∗ is an
affine subspaces of dimension 3mn, Vsr is an irreducible real algebraic variety of dimension
4(m+ n)r − 4r2, and

V := Vsr ∩M∗ =

X =


0 −A1 A2 −A3

A1 0 −A3 A2

−A2 A3 0 −A1

A3 −A2 A1 0

 ∈ R4m×4n, rank(X) ≤ 4r

 (9)

is an irreducible algebraic variety of dimension 3(m+ n)r − 3r2.
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Proof. First, denote

Γ :=

X =


A0 −A1 A2 −A3

A1 A0 −A3 A2

−A2 A3 A0 −A1

A3 −A2 A1 A0

 ∈ R4m×4n, Ai, i = 0, 1, 2, 3 ∈ Rm×n

 .

Obviously, Γ is a linear space of dimension 4mn. The set M∗ is obtained by adding the
constraint A0 = 0 to Γ. Thus, it is an affine space with dimension 3mn.

Second, we will show that Vsr is an irreducible real algebraic variety with dimension
4(m + n)r − 4r2. It is well known that a matrix has rank r if and only if there exists at
least a non-zero r × r nonsingular minor which is a matrix obtained by deleting n− r rows
and columns and all the (r + 1)× (r + 1) minors are zeros. Then if a matrix in Γ has rank
4r then there exists at least a non-zero 4r × 4r invertible minor and all (4r + 1)× (4r + 1)
minors are zero. Hence, Vsr is the variety induced by the determinants of these minors. By
the quaternion singular value decomposition given in [42], any A ∈ Γ with rank(A) ≤ 4r
can be factorized into

A = USV T =

(
U0 −U1 U2 −U3

U1 U0 −U3 U2

−U2 U3 U0 −U1

U3 −U2 U1 U0

)(
Σ 0 0 0
0 Σ 0 0
0 0 Σ 0
0 0 0 Σ

)(
V0 −V1 V2 −V3

V1 V0 −V3 V2

−V2 V3 V0 −V1

V3 −V2 V1 V0

)T
,

(10)

with Ui ∈ Rm×r, Vi ∈ Rn×r (i = 0, 1, 2, 3) and Σ ∈ Rr×r being a diagonal matrix. In the
other hand, if a matrix A can be expressed as (10), then rank(A) ≤ 4r, i.e, A ∈ Vsr. We see
that Vsr is connected and can be covered with one real polynomial. Then Vsr is irreducible
by Lemma 2.9.

Next, choose a subset of Vsr with the diagonal elements of Σ being nonzero and different
with each other. Then the freedom of the column unitary matrices U ∈ R4m×4r and V ∈
R4n×4r in (10) are 4mr − r(4r+1)

2 and 4nr − r(4r+1)
2 , respectively. And the freedom of the

diagonal matrix S ∈ R4r×4r is r. Thus, the subsets of such matrices can be identified with

R4mr− r(4r+1)
2 , R4nr− r(4r+1)

2 and Rr, respectively. Denote the inverses of the identification by

ι1 : R4mr− r(4r+1)
2 → R4m×4r; ι2 : Rr → R4r×4r; ι3 : R4mr− r(4r+1)

2 → R4n×4r; (11)

and denote Ω ⊂ R4(m+n)r−4r2 as the open set corresponding to those matrices with Σ
possessing different diagonal elements. Define φ : Ω→ Vsr by

φ(y1, y2, y3) = ι1(y1) · ι2(y2) · (ι3(y3))T . (12)

It is easy to see that φ is a polynomial and moreover a bijective correspondence with an
open set Ω. Thus it follows Lemma 2.10 that the dimension of Vsr is 4(m+ n)r − 4r2.

Third, we turn our attention to V = Vsr ∩M∗. Note that V is obtained by adding the
algebraic equations

U0ΣV T0 − U1ΣV T1 − U2ΣV T2 − U3ΣV T3 = 0 (13)

to those entries of matrices in defining Vsr, then it is also a real algebraic variety.
Then, we will apply Lemma 2.9-2.10 to show V is an irreducible real algebraic variety

with dimension 3(m+ n)r − 3r2.
Let U ∈ R4m×4r, V ∈ R4n×4r and S ∈ R4r×4r be defined as (10). We set all the elements

of U0 as undetermined variables and other values are fixed. Then the m×n linear equations
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in (13) relate to the undetermined variables (U0)i,j , i = 1, ...,m, j = 1, ..., r may have 0, 1
or infinite solutions (the number of solutions was decided by the property of V,Σ, and the
other variables of U). Suppose the remaining values are chosen such that the equations
have a unique solution relate to every undermined variable (U0)i,j , i = 1, ...,m, j = 1, ..., r,

respectively. Denote the corresponding matrix by Û , after these (U0)i,j , i = 1, ...,m, j =

1, ..., r are fixed. Then, a real analytic mapping θ from Û , S and V to V can be constructed
as follows:

θ((U1)1,1, ..., (U1)m,r, ..., (U3)1,1, ..., (U3)m,r, σ1, ..., σr, (V0)1,1, ..., (V3)n,r)

=


U0 −U1 U2 −U3

U1 U0 −U3 U2

−U2 U3 U0 −U1

U3 −U2 U1 U0




Σ 0 0 0
0 Σ 0 0
0 0 Σ 0
0 0 0 Σ




V0 −V1 V2 −V3

V1 V0 −V3 V2

−V2 V3 V0 −V1

V3 −V2 V1 V0


T

=


W0 −W1 W2 −W3

W1 W0 −W3 W2

−W2 W3 W0 −W1

W3 −W2 W1 W0

 , (14)

with

W0 = U0ΣV T0 − U1ΣV T1 − U2ΣV T2 − U3ΣV T3 ,W1 = −U0ΣV T1 − U1ΣV T0 + U2ΣV T3 − U3ΣV T2 ,

W2 = U0ΣV T2 + U1ΣV T3 − U2ΣV T0 − U3ΣV T1 ,W3 = −U0ΣV T3 − U1ΣV T2 − U2ΣV T1 − U3ΣV T0 .

Note that the entries of W0 in (14) can be zeros when the variables in Û , S and V are chosen
as above which can guarantee equations in (13) are satisfied. It is saying that V is the image
of θ. Let Γ be a particular connected component of (Û ,Σ, V ). We establish a function ψ
with Γ as follows:

ψΓ(y) = U(y)Σ(y)V (y)T , y ∈ Γ. (15)

Denote I as the set of all possible π and Γ. It can be found that for each matrix in V is
in the image of at least one ψΓ where Γ ∈ I. Then by Definition 2.4, V can be covered by
{ψΓ}Γ∈I.

Furthermore, in order to show V is irreducible we need to show V is connected. It is
sufficient to prove V is path connected, i.e., for any two matrices A,B ∈ V, there exist a
continuous map f from the unit interval [0, 1] to V such that f(0) = A and f(1) = B.
Without loss of generality, we show that for an arbitrary A ∈ Vrn, it is connected with

X =


1̂ 1̂ · · · 1̂

1̂ 1̂ · · · 1̂
...

...
. . .

...

1̂ 1̂ · · · 1̂

 with 1̂ =


0 −1 1 −1
1 0 −1 1
−1 1 0 −1
1 −1 1 0


instead. Suppose that A,B ∈ V are arbitrary and path connected with the X matrix,
respectively. Thus, there are two continuous maps f and g which are from the unit interval
[0, 1] to V with f(0) = A, f(1) = X, g(0) = X and g(1) = B. Setting τ(x) = (1 −
x)f(x) + xg(x), it is easy to see that τ(x) is continuous and satisfying τ(0) = f(0) = A and
τ(1) = g(1) = B. Then V is path connected. Let A be fixed. We assume that the diagonal
elements of Σ are nonnegative and decreasingly ordered and Σii = 1, i = 1, 2, 3, 4. Pick σ
such that σ(i) = σ(j) = k for all i, j and choose Ω such that the representation is in the
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form (12). If the second diagonal value in Σ is negative, then we continuously change it to
the positivity inside Ω. Then the values of y corresponding to columns 1 through 8 of U can
be continuously moved until all elements of the columns 1 through 4 as [1,1, · · · ,1]T with

1 =


1 −1 1 −1
1 1 −1 1
−1 1 1 −1
1 −1 1 1

 .

At this point, all values of U except the first fourth columns vanish, increasing the first
value of each row whenever necessary to stay inside Ω. We can move y so that the columns
1 though 4 of V can be written as [a,a, · · · ,a]T which satisfies 1 · a = 1̂. Thus, the matrix
1̂ can be arrived which is saying that V is connected.

In the end, we need to determine the dimension of V. Consider again the map introduced
earlier as (12), with the difference that the diagonal blocks are zeros. In order to guarantee
(13) is satisfied, (m + n)r − r2 additional constraints are added on these variables. It is

naturally to define a real analytic map on the open subset Ξ of R3(m+n)r−3r2 . By (10),
there exist three matrices U, V and S such that A = USV T . The sets of U ∈ R4m×4r, S =

diag{Σ,Σ,Σ,Σ} ∈ R4r×4r and V ∈ R4n×4r contain 3mr − r(3r+1)
2 , r, and 3nr − r(3r+1)

2
independent variables, respectively. Therefore, U, S and V identify the set of matrices

with R3mr− r(3r+1)
2 , Rr and R3nr− r(3r+1)

2 , respectively. Then we can identify the set of such
matrices with R3(m+n)r−3r2 . Denote the inverse of the identification as

ι1 : R3mr− r(3r+1)
2 → R4m×4r; ι2 : Rr → R4r×4r; ι3 : R3mr− r(3r+1)

2 → R4n×4r;

and Ω ⊂ R3(m+n)r−3r2 as the open set corresponding to matrices with this structure. Ψ is
a bijection with an open subset of V. Hence, by Lemma 2.10 we can derive the dimension
of V is 3(m+ n)r − 3r2.

Moreover, we can get the following results.

Theorem 2.12. Suppose that Mr, M∗ and Vsr are defined as (5), (6) and (8), then
Vnssr =Mr and

dim(span(TMr (A) ∩ TM∗(A)) ≤ 3(m+ n)r − 3r2. (16)

Proof. Recall Lemma 2.5 and Theorem 2.11, we only need to show

dimNVsr (A) = 4mn− (4(m+ n)r − 4r2) = 4(mn−mr − nr + r2)

if and only if rank(A) = 4r. It follows Lemma 2.5 that dimNVsr (A) ≤ 4(mn −mr − nr +
r2), then it is sufficient to show this inequality is strict if rank(A) < 4r and the reverse
inequality holds when rank(A) = 4r. In this proof, the particular identification of Γ given in
Theorem 2.11 with R4mn is important. Given a polynomial p ∈ IVrs (where IVrs is defined
as the set of real polynomials that vanish on Vrs) and two unitary matrices U and V with
proper orders such that qU,V (X) = p(UXV T ) is clearly also in IVrs . Due to the particular
choice of ω, we have ∇q(U,V )

(B) = U∇p(UXV T )V T . Let A be fixed of rank(A) = j ≤ 4r.

Then there exist two unitary matrices Û and V̂ such that ÛAV̂ T = Sj = diag{Σ,Σ,Σ,Σ},
where Σ is a diagonal matrix whose diagonal are σi, i = 1, .., j and 0 elsewhere. It follows
that ∇q(Û,V̂ )

(A) = Û∇p(Sj)V̂ T , which implies that dimNVsr (A) = dimNVsr (S). Then all

R4r+4,4r+4(in order to keep the structure of Vsr) subdeterminants of Γ form polynomials in
IVsr . We can get dimNVsr (S) ≥ 4(mn −mr − nr + r2), then it prove that any matrix X
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in the set Γ with rank(X) = 4r element of Vsr is non-singular. In other direction, if j < r,
similarly as the above we can construct a variety with dimension of 4(mn−mj − nj + j2)

which is bigger than 4(mn −mr − nr + r2). Consider two fixed matrices Ũ ∈ R4m×4 and

Ṽ ∈ R4m×4 and define the map θŨ,Ṽ : R4m×4 → Ṽsr via θŨ,Ṽ (x) = S + xŨṼ T . Then

span

{
d

dx
θŨ,Ṽ (0) : Ũ , Ṽ ∈ R4n×4

}
= Γ,

which is saying that the dimension of the differential geometry tangent space is 4mn. Then
dimNVsr = 0, and Sj is singular. It follows that Vnssr =Mr.

Next, we will prove (16) is satisfied. Choose a point A = USV T ∈ Mr, where U ∈
R4m×4r, S = diag {Σ,Σ,Σ,Σ} and V ∈ R4n×4r. Denote

Ti =

(
Rr×r Rr×(n−r)

R(m−r)×r 0

)
, i = 0, 1, 2, 3.

By Lemma 2.2, the tangent space of Mr at A can be expressed as

TMr
(A) =

[U,U⊥]


T0 −T1 T2 −T3

T1 T0 −T3 T2

−T2 T3 T0 −T1

T3 −T2 T1 T0

 [V, V⊥]T

 .

Then, it is easy to prove TM∗(A) = span(W ), with

W =


0 −1̃m×n 1̃m×n −1̃m×n

1̃m×n 0 −1̃m×n 1̃m×n

−1̃m×n 1̃m×n 0 −1̃m×n

1̃m×n −1̃m×n 1̃m×n 0

 with 1̃ =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 .

After that we can obtain (16).

It follows from Theorem 2.11 that V is an irreducible variety with dimension m = 3(m+
n)r − 3r2, then by Lemma 2.6, Vns can be chosen as a manifold with dimension m =
3(m + n)r − 3r2. Morover, the set of nonsingular points of Vsr forms the manifold Mr.
Hence, by Lemma 2.7, every intersction point ofMr ∩M∗∩Vns is a non-trivial intersection
point, i.e., the angle betweenMr andM∗ is well defined. Denote Vns,nt ⊂ V as the set of all
points inMr ∩M∗∩Vns that are nontangential with respect to the manifoldsMr andM∗.
Then by (16) and Lemma 2.8, we have Vns,nt 6= ∅, which is saying that nontangentiality at
one single intersection point implies nontangentiality at all the points of the manifold.

Based on the above results, we can get the main results of this section.

Theorem 2.13. The set Vns,nt = Mr ∩M∗ = Mr∗ is an 3(m + n)r − 3r2 dimensional
manifold. Its complement V\Vns,nt is a finite set of connected manifolds of lower dimension.

3 Alternating Projections on Manifolds

In this section, the alternating projection method is chosen to solve the problem (2). The
basic idea of alternating projections is to find a point in the intersection of two sets by
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iteratively projecting a point into one set and then the other. Here, one manifold is the fixed
rank r quaternion matrix set Mr given as (5), and the other one is the pure quaternion
matrix setM∗ given as (6). It follows that (2) can be rewritten as finding the nearest matrix
in the set Mr∗ given as (7), i.e., the intersection of the above two manifolds.

We first introduce two projections that project the given matrix onto the two matrix
sets, respectively. Similar to the real and complex matrix cases, the Eckart-Young-Mirsky
low-rank approximation theorem [11] still hold for quaternion matrices. With the singular
value decomposition of quaternion matrix given in Theorem 2.1, the projection onto fixed
rank matrix set Mr can be expressed as

π1(X) =

r∑
i=1

σi(X)ui(X)vTi (X), (17)

where σi(X) are the r first singular values of X, and ui(X),vi(X) are the first r columns
of the unitary matrices of U and V given in Theorem 2.1, respectively. In addition, for an
arbitrary quaternion matrix X = X0 + X1i + X2j + X3k ∈ Hm×n, the projection onto the
affine manifold M∗ is exactly removing the real part, i.e.,

π2(X) = π2(X0 +X1i +X2j +X3k) = X1i +X2j +X3k. (18)

Recall that Mr and M∗ are fix rank manifold and affine manifold introduced in Section
2. Then the projection mappings may not be single valued. We write π1(X) and π2(X) to
denote an arbitrarily closest point to X on the manifolds Mr and M∗, respectively.

Nevertheless, the projection onto the intersection Mr∗ cannot be computed efficiently.
We use π(X) to denote an arbitrarily closest point to X on the intersection Mr∗. Further-
more, the convergence of the alternating projections cannot be guaranteed in general even
when the two non-convex sets have a nonempty intersection, which is different from the
convex case. For instance, suppose K = R2 and denote M1 = {t, (t + 1)(3 − t)/4 : t ∈ R}
and M2 = R × {0}. It easy to see that π1((1, 0)) = (1, 1) and π2((1, 1)) = (1, 0), then the
sequence of alternating projections does not convergence. Therefore, it is more difficult to
consider alternating projections on non-linear manifolds than convex sets.

The following algorithm describes the alternating projections method. of problem (2).

Algorithm 1 Alternating projections on manifolds

Input: Given a quaternion matrix A ∈ Hm×n this algorithm computes optimal rank-r
pure quaternion matrix approximation.
1: Initialize X0 = A;
2: for k = 1, 2, ...
3: Yk+1 = π1(Xk);
4: Xk+1 = π2(Yk+1);
5: end
Output: Xk when the stopping criterion is satisfied.

Combining the above results with Theorem 2.13 and Theorem 5.1 in [3], we can obtain
the main result of this paper.

Theorem 3.1. Let Mr, M∗ and Mr∗ =Mr ∩M∗ be given as (5)- (7), respectively. The
projections onto the manifolds Mr and M∗ are given in (17) and (18), denote π as the
projection onto the manifold Mr∗. Suppose that B ∈ Mr∗ is a non-tangential intersection
point of Mr and M∗, then for any given ε > 0 and 1 > c > σ(B), there exist an r > 0
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such that for any A ∈ B(B, r) the sequence {Xk}∞k=0 generated by the alternating projections
algorithm initializing from A satisfies the following results:

(1) the sequence converges to a point X∞ ∈Mr ∩M∗,

(2) ‖X∞ − π(A)‖ ≤ ε‖A− π(A)‖,

(3) ‖X∞ −Xk‖ ≤ const · ck‖A− π(A)‖.

4 Initialization for Alternating Projections Algorithm

Theoretically, Theorem 3.1 implies that the alternating projections algorithm linearly con-
verges to a good approximation to π(A) assuming that A is in some neighborhood Nε,c of
the intersection manifold. Nevertheless, it is hard to check whether the original matrix is
inside such a neighborhood or not since there is no explicit formula for the radius function
rε,c in terms of the given scalars ε and c. Therefore, it is necessary to design an initialization
strategy to make the alternating projections method more practical and reliable.

Recall the target projection is as follows

π(A) ∈ arg min ‖X−A‖2F,
s.t. Re(X) = 0,

rank(X) = r.
(19)

We aim at an initial point X0 which is close to the intersection of the two manifolds and
π(X0) ≈ π(A). If we apply a convergent iterative methods to the optimization problem (19),
then it is reasonable to regard an iterate after several steps as such a good initial point. The
reasons why we do not use this convergent iterative methods are (i) the convergence of this
guaranteed method could be pretty slow and (ii) the computational cost of the alternating
projections is generally much cheaper.

We reformulate the projection (19) to an unconstrained problem

min 1
2‖X−A‖2F + δS0(X) + 1

2‖X−A‖2F + δSr (X), (20)

where δC denotes the indicator function of the set C. To adapt the convergence conditions
which will be discussed shortly, we further relax the problem (5.4) to

min 1
2‖X−A‖2F + τ

2‖Re(X)‖2F︸ ︷︷ ︸
f(X)

+ 1
2‖X−A‖2F + δSr (X)︸ ︷︷ ︸

g(X)

. (21)

Note that the problems (5.4) and (5.4) are equivalent when τ approaches the infinity.
Li and Pong [25] proposed and investigate the Douglas-Rachford splitting method (DRSM)

for solving the nonconvex optimization problem

min f(x) + g(x).

The DRSM iterates
yk+1 ∈ proxαf (xk) := arg min

y

{
f(y) + 1

2α‖y − x
k‖22
}
,

zk+1 ∈ proxαg(2y
k+1 − xk) := arg min

z

{
g(z) + 1

2α‖2y
k+1 − xk − z‖22

}
,

xk+1 = xk + (zk+1 − yk+1),

Assuming the existence of a cluster point, they proved the following conditions can guarantee
the global convergence to a stationary point:
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(1) f has a Lipschitz continuous gradient whose Lipschitz continuity modulus is bounded
by L,

(2) g is a proper closed function,

(3) f and g are semi-algebraic functions,

(4) 0 < α < 1
L .

In the problem (5.4), the function f(X) is quadratic and thus it is semi-algebraic and
has Lipschitz continuous gradient whose Lipschitz constant is 1 + τ . The manifold Sr can
be characterized by

{Y : det(Yr+1) = 0 for any (r + 1)-by-(r + 1) submatrix Yr+1}.

Hence, this set is a semi-algebraic set, which implies that its indicator function is a semi-
algebraic function. That is, g(X) is also a semi-algebraic function. Therefore, the global
convergence to a stationary point can be guaranteed as long as we choose the stepsize α less
than 1

1+τ .
Furthermore, the proximal operator for αf is implemented by

proxαf (Y) = ( α
1+α+ατA1 + 1

1+α+ατ Y1) + ( α
1+αA2 + 1

1+αY2)i

+ ( α
1+αA3 + 1

1+αY3)j + ( α
1+αA4 + 1

1+αY4)k,

and the proximal operator for αg is

proxαg(Y) = π1

(
α

1+αA + 1
1+αY

)
,

i.e., the truncation to a rank-r quaternion matrix. To sum up, the DRSM for solving (5.4)
iterates 

Yk+1 = ( α
1+α+ατA1 + 1

1+α+ατX
k
1 ) + ( α

1+αA2 + 1
1+αX

k
2 )i

+( α
1+αA3 + 1

1+αX
k
3 )j + ( α

1+αA4 + 1
1+αX

k
4 )k,

Zk+1 ∈ π1

(
α

1+αA + 2
1+αYk+1 − 1

1+αXk
)
,

Xk+1 = Xk + (Zk+1 −Yk+1).

(22)

We perform the DRSM for a fixed number steps and then apply the generated iterate Y k as
the initial point of the alternating projections method. Note that this initialization strategy
is still heuristic and the improvement using this method will be numerically illustrated in
the following section.

5 Numerical Experiments

In this paper, we focus on searching an optimal rank-r pure quaternion matrix approximation
of a given quaternion matrix. Although this problem is difficult, there exist some suboptimal
methods to solve it. For example, in [17], the authors do the rank r truncation of a given
quaternion matrix and then take three imaginary parts as an approximation of the given
quaternion matrix. This method is called “QsvdTr” in the sequel. However, if the real part
of the quaternion matrix is removed, the rank of the quaternion matrix generally changes.
This fact can be guaranteed by the following proposition (The proof can be found in the
Appendix).
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Proposition 5.1. For an arbitrary quaternion A = A0 + A1i + A2j + A3k ∈ Hm×n, with
rank(A) = r ≤ min{m,n}/4, we denote the pure quaternion part of A as Ap = A1i +A2j +
A3k, then

r ≤ rank(Ap) ≤ 4r.

In Subsection 5.1-5.3, the performances of the “QsvdTr” algorithm given in [17] and
the “AltProj” algorithm proposed in Algorithm 2 are compared by testing synthetic data,
random data and color images, respectively. We use the running time and the objective
function values, i.e., ‖Xk−A‖F to compare the results derived by “QsvdTr” and “AltProj”.
All the experiments are performed under Windows 10 and MATLAB R2018a running on a
desktop (Intel Core i7, @ 3.40GHz, 8.00G RAM).

5.1 Synthetic Data

In our first example, we compare the “AltProj” algorithm and “QsvdTr” algorithm by
finding the optimal rank 4 pure quaternion approximation of the pure quaternion matrix

A =


0.37 −0.79 0.04 −0.73 −0.06
−1.42 −0.10 1.01 1.59 −1.59
−0.34 0.38 1.30 −0.66 1.08
−1.98 0.83 0.22 −0.77 0.70
−0.38 −0.14 0.86 0.54 1.65

 i +


0.29 −0.38 −0.13 −1.77 0.20
0.70 −0.69 0.83 −0.16 −0.52
−1.15 1.00 −1.97 0.63 1.57
1.86 −1.14 0.12 −1.27 0.77
2.37 0.15 0.26 −0.30 −0.59

 j

+


0.33 0.74 −1.40 −0.77 0.86
1.13 −1.32 0.36 −0.02 0.50
0.25 −0.68 0.36 −0.71 0.77
0.56 −0.35 0.92 0.87 −0.58
0.64 −1.59 0.37 −1.51 0.19

k.

By applying Algorithm 1 on A, we can get a rank 4 pure quaternion approximation as

A4 =


0.50 −0.73 −0.01 −0.68 0.08
−1.34 −0.11 1.05 1.69 −1.50
−0.29 0.36 1.24 −0.64 1.11
−2.01 0.81 0.11 −0.83 0.56
−0.37 −1.12 0.94 0.57 1.70

 i +


0.23 −0.50 0.08 −1.71 0.37
0.65 −0.95 0.76 −0.17 −0.47
−1.17 0.91 −1.96 0.62 1.63
1.92 −1.01 0.05 −1.30 0.74
2.35 0.09 0.28 −0.28 −0.58

 j

+


0.39 0.65 −1.41 −0.66 0.92
1.07 −1.34 0.34 −0.04 0.36
0.22 −0.76 0.37 −0.70 0.77
0.51 −0.44 0.92 0.82 −0.54
0.67 −1.53 0.35 −1.50 0.16

k.

The singular value decomposition of A4 can be expressed as A4 = USV with

U =


−0.02 −0.11 0.02 0.17 −0.43
−0.10 −0.24 −0.04 −0.19 0.07
0.21 0.14 −0.34 0.17 0.02
0.06 0.24 0.16 0.30 0.36
0.04 −0.01 0.10 0.04 −0.20

 +


−0.27 −0.14 0.30 0.25 0.25
0.35 0.29 0.14 −0.37 0.28
−0.05 −0.50 −0.16 −0.05 0.18
0.33 −0.30 0.18 −0.05 −0.11
0.08 −0.05 0.12 0.34 −0.03

 i

+


−0.15 −0.05 0.13 −0.10 0.16
−0.19 −0.12 −0.10 −0.14 0.46
0.22 −0.04 0.11 −0.22 0.17
−0.40 0.02 −0.32 −0.25 −0.08
−0.32 0.53 −0.22 0.06 0.05

 j +


−0.05 −0.32 −0.34 0.18 0.37
−0.31 −0.07 0.08 0.17 −0.17
−0.23 0.01 0.49 0.21 0.07
0.00 0.03 −0.23 0.23 0.07
−0.33 0.11 0.24 −0.44 −0.09

k,

V =


0.65 0.31 −0.54 0.30 0.32
0.39 −0.08 −0.24 0.18 0.31
−0.09 0.05 0.10 0.18 0.31
0.39 0.28 −0.10 0.24 0.13
−0.06 −0.43 0.12 0.41 0.10

 +


0 0 0 0 0

−0.12 0.12 0.06 −0.48 0.18
0.03 −0.06 −0.07 −0.16 0.38
0.05 0.41 0.42 0.27 0.16
−0.11 −0.14 0.15 0.11 0.04

 i

+


0 0 0 0 0

−0.19 −0.07 0.04 0.05 −0.29
0.38 0.07 −0.59 0.10 −0.28
0.14 0.04 −0.02 0.18 0.03
−0.06 −0.19 −0.08 0.06 −0.13

 j +


0 0 0 0 0

0.11 0.07 −0.03 −0.28 0.37
−0.13 −0.26 −0.22 −0.22 −0.18
0.00 −0.07 0.07 0.39 −0.16
−0.04 0.55 0.08 −0.04 −0.43

k,
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and

S =


5.90 0 0 0 0

0 4.47 0 0 0
0 0 2.96 0 0
0 0 0 1.75 0
0 0 0 0 0

 .

Moreover, by Theorem 2.1 the optimal rank 4 approximation of A can be expressed as
Ã = Ãre + Ãp, where

Ãre =


0.03 0.17 0.10 0.03 −0.02
−0.05 −0.03 0.14 0.03 0.06
0.01 0.02 0.06 0.03 0.04
0.03 −0.07 −0.07 0.02 0.03
−0.03 0.02 0.03 −0.02 −0.02

 ,

Ãp =


0.46 −0.75 0.03 −0.70 0.04
0.06 −1.36 −0.10 1.66 −1.53
−0.04 −0.30 0.37 1.26 −0.65
0.03 −2.00 0.82 0.14 −0.82
−0.02 −0.37 −0.13 0.91 0.56

 i +


0.25 −0.47 0.01 −1.73 0.31
0.67 −0.86 0.78 −0.16 −0.48
−1.17 0.95 −1.96 0.63 1.62
1.91 −1.05 −0.08 −1.29 0.75
2.35 0.11 0.27 −0.29 −0.58

 j

+


0.38 0.69 −1.42 −0.70 0.89
1.09 −1.34 0.34 −0.03 0.40
0.23 −0.73 0.36 −0.71 0.77
0.53 −0.41 0.92 0.84 −0.55
0.66 −1.55 0.36 −1.51 0.17

k.

In this case, Ãp is often chosen as the optimal pure quaternion rank 4 approximation. How-

ever, rank(Ãp) = 5, i.e., Ãp is essentially not a rank 4 approximation. Recall Proposition
5.1 that the rank of a quaternion matrix will increase if its real part is removed. Then if
one want to find a rank r pure quaternion approximation, less than r truncation of A is
suitable. So, we can get a rank 4 pure quaternion approximation

Ap =


1.05 −0.78 0.37 −0.59 0.13
−1.32 0.25 0.69 1.07 −0.26
0.20 −0.06 0.31 0.03 −0.01
−1.30 0.58 0.16 0.73 0.02
−0.27 −0.38 0.98 0.42 −0.03

 i +


0.56 −0.14 −0.15 −0.32 0.00
0.68 −0.44 0.54 −0.42 0.33
−0.78 −0.93 −0.65 0.24 0.12
1.52 −1.07 0.39 −0.97 0.28
1.28 −0.47 0.08 −0.88 0.37

 j

+


0.17 0.09 −0.57 −0.30 0.04
1.21 −1.20 0.86 −0.40 −0.14
0.87 −0.42 0.17 −0.61 0.30
−0.05 −0.72 0.84 0.40 −0.36
1.26 −1.14 0.41 −0.63 −0.08

k,

by deleting the real part of its optimal rank 1 approximation of A. In this case, the objective
function values are ‖A−A4‖F = 0.6479 and ‖A−Ap‖F = 5.3579, respectively. We see that
approximation derived by the proposed “AltProj” algorithm is better than that derived by
the “QsvdTr” algorithm.

5.2 Random Matrices

In our second experiment, we use random low rank pure quaternion matrix to illustrate
the validity of Algorithm 2. In the proposed ‘AltProj” algorithm, the maximum number
of iterations is chosen as 5000 steps. And the iterations stops when the residual, i.e., the
Frobenius norms of the real part is less than 10−6. Since it is hard to generate a random low
rank pure quaternion matrix directly, the following alternative method is applied. We first
generate m-by-n quaternion matrices A = A0 +A1i+A2j+A3k, where the matrix entries of
Ai, i = 0, 1, 2, 3 follow the standard normal distribution. Random quaternion matrices with
ranks 1, 2, 3, 4, 5 and 10 can be derived by applying QSVD truncations on A, respectively. It
follows Proposition 5.1 that the rank of quaternion matrix will increase when the real part is
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deleted. In addition, when the quaternion matrix is randomly generated with small rank, the
columns of the different full rank decompositions with three kinds of conjugate definitions
are always independents then rank(Ap) = 4 rank(A) holds at most times. Although this
result cannot be guaranteed to be correct in general, we often use this method to obtain
approximate solutions of some problems in practical application. Then we can get ranks
4, 8, 12, 16, 20 and 40 pure quaternion matrices by setting the real parts of the these low
rank quaternion matrices to be zeros, respectively.

Tables 1 shows the running times and the objective function values of the computed
solutions from the proposed “AltProj” algorithm and the “QsvdTr” algorithm for ranks
4, 8, 12, 16, 20 and 40 random pure quaternion matrices sets of sizes 100-by-100, 200-by-
200 and 500-by-500, respectively. When the input quaternion matrix A is exactly a low
rank pure quaternion matrix, the proposed “AltProj” algorithm can provide exact recovery
results in the first iteration. However, there is no guarantee that the “QsvdTr” algorithm can
determine the low rank pure quaternion matrix. In the tables, it is clear that the “QsvdTr”
algorithm cannot obtain the underlying low rank factorization. The running times of the
“AltProj” algorithm is nearly two times of “QsvdTr” algorithm.

Table 1: The running times (Time) and the objective function values (OBF-value) by
different algorithms for low rank pure quaternion approximations of random low rank pure
quaternion matrices.

method item
100-by-100 quaternion matrix

r=4 r=8 r=12 r=16 r=20 r=40

QsvdTr
OBF-value 8.89 12.78 15.61 18.05 20.22 28.03
Time (s) 0.28 0.28 0.29 0.29 0.29 0.30

AltProj
OBF-value 4.09e-14 1.65e-13 6.80e-13 1.90e-13 1.30e-13 1.87e-13
Ttime (s) 0.56 0.57 0.57 0.58 0.57 0.58

method item
200-by-200 quaternion matrix

r=4 r=8 r=12 r=16 r=20 r=40

QsvdTr
OBF-value 12.58 17.79 21.91 25.31 28.24 40.22
Time (s) 1.40 1.42 1.41 1.42 1.46 1.44

AltProj
OBF-value 6.07e-14 1.28e-13 2.86e-13 3.40e-13 2.25e-13 3.21e-13
Time (s) 2.79 2.80 2.83 2.84 2.83 2.85

method item
500-by-500 quaternion matrix

r=4 r=8 r=12 r=16 r=20 r=40

QsvdTr
OBF-value 19.57 27.61 33.98 39.07 43.92 62.39
Time (s) 19.11 18.94 19.03 19.13 19.11 19.27

AltProj
OBF-value 9.50e-14 2.70e-13 3.19e-13 6.13e-13 4.66e-13 6.57e-13
Time (s) 38.06 38.14 38.45 38.48 38.21 38.48

In our third experiment, we use random pure quaternion matrix to compare the two
algorithms, where the low rank minimizer is unknown in this setting. The maximum num-
ber of iterations and the tolerance of the residual relate to the “AltProj” algorithm are
chosen as 5000 steps and 10−6, respectively. We randomly generate m-by-n pure quater-
nion matrices A = A1i + A2j + A3k, where the matrix entries of Ai, i = 1, 2, 3 follow the
standard normal distribution. Then by applying the “QsvdTr” algorithm and the proposed
“AltProj” algorithm to A, we can find its optimal ranks 4, 8, 12, 16, 20 and 40 pure quater-
nion approximations, respectively. Table 2 shows that the running times and the objective
function values of the computed solution Xk from the proposed “AltProj” algorithm and
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the “QsvdTr” algorithm. We see from Table 2 that the objective function values computed
by the proposed “AltProj” algorithm are smaller than that derived by the testing “QsvdTr”
algorithm, although the corresponding running times are longer.

Table 2: The running times (Time) and the objective function values (OBF-value) by
different algorithms for low rank pure quaternion approximations of random pure quaternion
matrices.

method item
100-by-100 quaternion matrix

r=4 r=8 r=12 r=16 r=20 r=40

QsvdTr
OBF-value 171.00 166.97 163.10 159.43 155.78 139.52
Time (s) 0.32 0.33 0.32 0.31 0.32 0.31

AltProj
OBF-value 168.48 160.66 152.29 143.66 1.35.24 91.12
Time (s) 1.73 33.36 2.83 48.37 24.01 12.70

method item
200-by-200 quaternion matrix

r=4 r=8 r=12 r=16 r=20 r=40

QsvdTr
OBF-value 342.33 338.21 334.31 330.57 326.79 308.86
Time (s) 1.56 1.55 1.51 1.55 1.56 1.55

AltProj
OBF-value 339.88 332.94 325.36 317.80 310.34 268.59
Time (s) 13.42 11.71 11.31 14.60 29.84 30.48

method item
500-by-500 quaternion matrix

r=4 r=8 r=12 r=16 r=20 r=40

QsvdTr
OBF-value 861.25 857.10 853.01 848.98 844.98 825.60
Time (s) 20.58 20.67 20.32 20.28 20.48 21.75

AltProj
OBF-value 860.02 853.28 846.58 839.92 823.73 794.54
Time (s) 72.04 184.56 175.56 1460.45 405.81 1099.45

5.3 Color Images

In this subsection, we employ the color images ‘peppafamily”, “pepper” and “colortexture”
with sizes 200-by-200 to compare “QsvdTr” algorithm and “AltProj”algorithm in terms of
objective function values and time. The maximum number of iterations and the tolerance of
the residual relate to the “AltProj” algorithm are chosen as 5000 steps and 10−6, respectively.
The original three color images employed in this subsection are shown in the first column of
Figure 1, and the rank 16 and 20 pure quaternion approximations by the “QsvdTr” algorithm
are listed in the second and fourth columns, the optimal rank 16 and 20 pure quaternion
approximations derived by our algorithm are listed in the third and fifth columns. For the
two cases, we can see respectively that the images derived by the “AltProj” algorithm are
better than those derived by “QsvdTr” algorithm in terms of visual quality. The “AltProj”
algorithm can preserve more details than “QsvdTr” algorithm for the three testing images.

Moreover, we also compute the objective function values of ranks 4, 8, 12, 16, 20 and 40
approximations, respectively, which illustrates the validity of our method. The results and
shown in Table 3. It can be seen that the objective function values obtained by “AltProj”
algorithm are much lower than those by “QsvdTr” algorithm. For the “colortexture” and
“pepper” images, the objective function values of the “AltProj” algorithm are nearly half
of that derived by “QsvdTr” algorithm.
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original graph r = 16, QsvdTr r = 16, AltProj r = 20, QsvdTr r = 20, AltProj

Figure 1: ranks 16 and 20 approximations of “peppafamily”, “pepper” and “colortexture”
by QsvdTr and AltProj algorithms, respectively

Table 3: The running times (Time) and the objective function values (OBF-value) by
different algorithms for low rank approximations of color images

method item
peppafamily

r=4 r=8 r=12 r=16 r=20 r=40

QsvdTr
OBF-value 13731.6 10944.1 9450.5 8742.4 8143.7 6470.5
Time (s) 1.55 1.55 1.51 1.55 1.56 1.55

AltProj
OBF-value 9077.2 7351.9 6218.8 5439.9 4770.3 2726.0
Time (s) 189.78 189.06 191.38 190.19 195.46 211.15

method item
pepper

r=4 r=8 r=12 r=16 r=20 r=40

QsvdTr
OBF-value 17831.5 14407.2 12587.8 11147.5 10153.1 7185.0
Time (s) 1.67 1.57 1.68 1.56 1.59 1.56

AltProj
OBF-value 11392.7 8494.4 6804.4 5667.4 4949.5 2923.9
Time (s) 201.76 206.77 221.51 206.21 193.88 199.59

method item
colortexture

r=4 r=8 r=12 r=16 r=20 r=40

QsvdTr
OBF-value 21964.6 18261.4 15485.2 14034.7 13155.7 9530.4
Time (s) 1.63 1.57 1.57 1.63 1.85 1.55

AltProj
OBF-value 14039.5 10864.6 8583.1 7199.8 6527.4 4496.8
Time (s) 219.47 199.95 215.61 205.76 197.87 203.71

5.4 Initialization

The experiments in this section are conducted under Windows 10 and Matlab R2017a run-
ning on a desktop (Intel Core i7-8700, CPU @ 3.20GHz, 16.0G RAM). We still employ the
three color images “peppafamily”, “pepper”, and “colortexture” to verify the effectiveness
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of our proposed initialization strategy using the Douglas-Rachford splitting method in Sec-
tion 4. We test the performances for (1) the alternating projections, (2) DRSM, (3) the
alternating projections initialized by DRSM on the best rank-20 approximations to these
three images. In the DRSM, we set the parameters τ and α adaptively. A large penalty
parameter τ implies a good approximation to the original problem . However, it also leads to
a small stepsize, which may cause a slow convergence and also overflows in the floating point
arithmetic. Hence, we gradually increase τ but keep it constant when it is large enough:

τ0 = 1, τk =

{
2τk−1, k ≤ 1000,
τk−1, k > 1000.

We adopt the strategy for adaptively choosing the stepsize α in [25]:

α0 =
150

1 + τ0
, αk = max

{
0.7αk−1,

0.99

1 + τk

}
,

which satisfy the convergence conditions when k is sufficiently large. When τk is large, the
corresponding αk will be close to zero. Then the coefficients in the iteration (22) will be
close to either zero or O(1) constants. Hence, a large parameter τk will not lead to numerical
problems when iterating.

For the images “peppafamily” and “pepper”, we set the maximum total number of itera-
tions as 5000 steps, where 500 steps of DRSM for initialization. For the image “colortexture”,
for which the involved algorithms converge slower than the other images, we set the maxi-
mum total number of iterations as 10000 steps, where 3000 steps of DRSM for initialization.
We also cease the iterations when the residual, the Frobenius norms of the real part, is less
than 10−6.

Figure 2 displays the residuals decreasing with the iterations and the running time. The
convergence of the DRSM can be very slow although guaranteed. One can conclude from
the numerical comparisons that the alternating projections converges much faster with the
initialization by DRSM than simply taking the original image as the initial point.

We also present the singular values of the original images (quaternion matrices) and the
results for different algorithms in Figure 3. The truncations of the singular values with our
proposed initialization strategy are the most “clear” among these three algorithms. That
is, the final results with the initialization are the closest to an actual rank-20 quaternion
matrix.

6 Conclusion

We propose the alternating projections method for computing the optimal rank-r pure
quaternion approximation to any pure quaternion matrix, which consists of the alternat-
ing projections onto the rank-r quaternion matrix manifold and the pure quaternion matrix
manifold. The linear local convergence for the alternating projections method is proved
employing the manifold structures. In order to guarantee the quality of the limit point
and pursue a faster convergence rate, we also propose an initialization strategy using the
Douglas-Rachford splitting method to search for an initial point in some neighborhood of the
intersection manifold. Furthermore, we also conduct numerical experiments on both ran-
dom matrices and real-world color images to illustrate the effect of our proposed alternating
projections method and the initialization strategy.
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Figure 2: The residuals for the alternating projections, DRSM, the alternating projections
initialized by DRSM. These three rows display the cases for “peppafamily”, “pepper”, and
“colortexture”, respectively. The figures in the left column show the residuals against the
number of iterations, and the figures in the right column show the residuals against the
elapsed time.

References

[1] P.A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix
manifolds, Princeton University Press, 2009.

[2] V.M. Adamyan and D.Z. Arov, A general solution of a problem in linear prediction
of stationary processes, Theory of Probability & Its Applications, 13 (1968), pp. 394-
407.

[3] F. Andersson and M. Carlsson, Alternating projections on nontangential mani-

21



Figure 3: The singular values of the original images and the results for the alternating
projections, DRSM, the alternating projections initialized by DRSM. These three figures
display the cases for “peppafamily”, “pepper”, and “colortexture”, respectively.

folds, Constructive approximation, 38 (2013), pp. 489-525.
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Appendix

Proof of Lemma 2.3: For a rank-r quaternion matrix E = E0 +E1i +E2j +E3k ∈ Q, by
the elementary transformations it can be expressed as

E =

(
A B
C D

)
where A ∈ Hr×r is invertible, B ∈ Hr×(m−r), C ∈ H(n−r)×r and D ∈ H(m−r)×(n−r). It is
easy to find an invertible quaternion matrix

P =

(
A−1 −A−1B

0 In−k

)
such that

EP =

(
A B
C D

)(
A−1 −A−1B

0 In−k

)
=

(
Ir 0

CA−1 D−CA−1B

)
,

with D−CA−1B = 0. Let

U =

{(
A B
C D

)
∈ Hm×n : A is invertible

}
be an open set of Hm×n which contains E. Denote R̂4m×4n as the set of matrices that possess
the structure as the real expression of an m × n quaternion matrix. By the projection φ
defined in (3), U is isomorphic to

Û =

{(
Â B̂

Ĉ D̂

)
∈ R̂4m×4n : Â ∈ R̂4r×4r is invertible

}
,

which is a open subset of R̂4m×4n. Hence, we can define F ◦ φ : U→ R̂4(m−r)×4(n−r) as

F ◦ φ
(

A B
C D

)
= D̂− ĈÂ−1B̂.

Clearly, F ◦ φ is smooth. In order to show it is a submersion, we need to show D(F ◦ φ)(E)

is surjective for each E ∈ U. Note that R̂4(m−r)×4(n−r) is a vector space, the tangent vectors

at F ◦ φ(E) can be identified by the matrices in R̂4(m−r)×4(n−r). Given E =

(
A B
C D

)
and any matrix X ∈ R̂4(m−r)×4(n−r), define a curve τ : (−ξ, ξ)→ Û by

τ(t) =

(
Â B̂

Ĉ D̂ + tX

)
.

Then

(F ◦ φ)∗τ
′
(0) = (F ◦ φ ◦ τ)

′
(t) =

d

dt
|t=0(D̂ + tX − ĈÂ−1B̂) = X,

where (F ◦ φ)∗ is the push-forward projection relate F ◦ φ. Then F ◦ φ is a submersion and
so Q ∩ U is an embedded submanifold of Hm×n. Next, if E′ is an arbitrary quaternion
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matrix with rank(E′) = r, then it can be transformed to a quaternion matrix in U by
a rearrangement along its rows and columns. Let ω denote such a rearrangement which
preserves the quaternion matrix rank. It follows that U0 = ω−1(U) is a neighborhood
of E′ and F ◦ φ ◦ ω : U0 → R̂4(m−r)×4(n−r) is a submersion whose zero level set is Q ∩
U0. Thus every point in Q has a neighborhood U0 ⊆ Hm×n such that Q ∩ U0 is an
embedded submanifold of U0, so Q is an embedded submanifold. Moreover, note that
dim((F ◦φ)∗τ

′
(0)) = 4(m+n)r−4r2 which is saying thatQ possess dimension 4(m+n)r−4r2.

�

Proof of Proposition 5.1: Denote A∗ij = A0 − A1i − A2j + A3k then for two arbitrary
quaternion matrices B,C, we have (BC)∗ij = B∗ijC∗ij. Similarly, we have (BC)∗ik =
B∗ikC∗ik and (BC)∗jk = B∗jkC∗jk. Note that rank(A) = r, then there exist a full column
rank matrix U ∈ Hm×r and a full row rank matrix V ∈ Hr×n such that A = U · V.
Moreover,

A∗ij = U∗ij ·V∗ij,A∗ik = U∗ik ·V∗ik, and A∗jk = U∗jk ·V∗jk.

For the pure quaternion part of A, we have

Ap =
1

4
((A−A∗ij) + (A−A∗jk) + (A−A∗ik)) =

1

4
(3A−A∗ij −A∗ik −A∗jk)

=
1

4
(3UV −U∗ijV∗ij −U∗ikV∗ik −U∗jkV∗jk)

=
1

4
(3U,U∗ij,U∗ik,U∗jk)


V
−V∗ij

−V∗ik

−V∗jk

 .

Then r ≤ rank(Ap) ≤ 4r. This completes the proof.
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