
BIROn - Birkbeck Institutional Research Online

Lachish, Oded and Gur, T. (2021) On the power of relaxed Local Decoding
Algorithms. SIAM Journal on Computing 50 (2), pp. 788-813. ISSN 0097-
5397.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/44619/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/44619/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

A Lower Bound for Relaxed Locally Decodable Codes

Tom Gur
University of Warwick

tom.gur@warwick.ac.uk

Oded Lachish
Birkbeck, University of London

oded@dcs.bbk.ac.uk

November 29, 2020

Abstract

A locally decodable code (LDC) C : {0, 1}k → {0, 1}n is an error correcting code wherein
individual bits of the message can be recovered by only querying a few bits of a noisy codeword.
LDCs found a myriad of applications both in theory and in practice, ranging from probabilistically
checkable proofs to distributed storage. However, despite nearly two decades of extensive study,
the best known constructions of O(1)-query LDCs have super-polynomial blocklength.

The notion of relaxed LDCs is a natural relaxation of LDCs, which aims to bypass the
foregoing barrier by requiring local decoding of nearly all individual message bits, yet allowing
decoding failure (but not error) on the rest. State of the art constructions of O(1)-query relaxed
LDCs achieve blocklength n = O

(
k1+γ

)
for an arbitrarily small constant γ.

We prove a lower bound which shows thatO(1)-query relaxed LDCs cannot achieve blocklength
n = k1+o(1). This resolves an open problem raised by Goldreich in 2004.

1

1 Introduction

Locally decodable codes (LDC) are fundamental objects in coding theory. Loosely speaking, an
LDC is an error correcting code with a robust local-to-global structure which admits a randomised
algorithm that can recover individual message bits by probing a minuscule portion of a noisy
codeword. Thus, rather than reading the entire codeword to decode the entire message, an LDC
allows for reading a small number of locations to decode a single bit of the message.

More precisely, we consider codes C : {0, 1}k → {0, 1}n with linear distance, and say that a code
C is an LDC if there exists a randomised algorithm, called a local decoder, that is given a location
i ∈ [k] and query access to an input w ∈ {0, 1}n such that if w is sufficiently close (typically within
distance that is proportional to the distance of the code) to a valid codeword C(x), the decoder
outputs xi with high probability. The maximal number of queries that the decoder makes is called
the locality of the code.

Since the systematic study of LDCs was initiated in the seminal work of Katz and Trevisan [KT00],
these codes received much attention and made a profound impact on cryptography, complexity
theory, program checking, data structures, quantum information, pseudorandomness, and other
areas in theoretical computer science (see surveys [Tre04, Yek12, KS17] and references therein), as
well as led to significant practical applications in distributed storage [HSX+12].

Unfortunately, despite the success and attention that LDCs gained in the last two decades, there
remains a chasm between the best known upper bounds and lower bounds on LDCs. Specifically,
the best general lower bounds that are currently known (cf. [KdW04, Woo12], building on [KT00]),
show that any `-local LDC must have blocklength

n = Ω
(
k1+ 1

`−1

)
,

where throughout, k is the dimension of the code. Moreover, for specific regimes of parameters, some

improvements are known, e.g., for 3-local LDCs, the blocklength must be Ω̃
(
k

1+ 1
dq/2e−1

)
[KdW04].

In stark contrast, the state-of-the-art construction of O(1)-local LDCs has a super-polynomial
blocklength (cf. [Efr12], building on [Yek08]).

The foregoing barrier has led to the study of relaxed locally decodable codes, in short “relaxed
LDCs”, which were introduced in the highly influential work of Ben-Sasson, Goldreich, Harsha,
Sudan, and Vadhan [BGH+04]. In a recent line of research [GGK15, GG16, BDG17, GG18, GR18,
GRR18, BGGZ18] relaxed LDCs and their variants (such as relaxed locally correctable codes) have
been studied and used to obtain applications to PCPs [MR10, DH13], property testing [CG18], data
structures [CGdW09], and probabilistic proof systems [GGK15, GG16, GR18].

Loosely speaking, this relaxation of LDCs allows the local decoder to declare “decoding failure”
on a small fraction of the indices, yet crucially, still avoid errors. More accurately, a relaxed LDC
C : {0, 1}k → {0, 1}n is a code (with linear distance) for which there exists a decoding radius δ
(typically proportional to the relative distance of the code) and a probabilistic algorithm, called the
relaxed local decoder that receives an index i ∈ [k] and oracle access to a string w ∈ {0, 1}n that is
δ-close to a codeword C(x). The relaxed local decoder is allowed to make a small number of queries
to w (typically O(1) queries) and is required to satisfy the following conditions:

1. Completeness: If the input is a valid codeword (i.e., w = C(x)), the relaxed local decoder
must always output xi.

2

2. Relaxed decoding: Otherwise, with high probability, the decoder must either output xi or a
special “reject” symbol ⊥ (indicating the decoder detected an error and is unable to decode).

As observed in [BGH+04], the foregoing two conditions suffice for obtaining a third condition,
which guarantees that the relaxed local decoder may only reject (i.e., output ⊥) on an arbitrarily
small fraction of the coordinates. (See Section 3 for a formal definition of relaxed LDCs, covering
all three conditions.)

This seemingly modest relaxation turns out to allow the usage of extremely powerful tools from
the theory of probabilistically checkable proofs (PCPs). Relying on the notion of PCPs of proximity,
which they also introduced and constructed, Ben-Sasson et al. [BGH+04] constructed a relaxed
LDC with nearly-linear length. More precisely, they showed that for every constant γ > 0 there
exists an O(1)-local relaxed LDC C : {0, 1}k → {0, 1}n with nearly-linear blocklength n = k1+γ .
We remark that 15 years later, there is no known construction of relaxed LDCs that improves on
[BGH+04].

While the aforementioned relaxed LDCs have blocklength that is nearly exponentially shorter
than that of any known non-relaxed LDC, they do not break the currently known lower bound on
non-relaxed LDCs (cf. [KT00]). This led Goldreich [Gol04] to raise the following open problem:

Do there exist O(1)-local relaxed LDCs with blocklength n = k1+o(1)?

1.1 Our results

Our main contribution resolves the foregoing open problem by providing a strong negative answer.
Namely, we prove the following theorem, which shows that O(1)-local relaxed LDCs cannot achieve
blocklength n = k1+o(1).

Theorem 1 (informal, see Theorem 4.1). For any ` ∈ N and δ ∈ (0, 1), there exists a constant
α = α(`, δ) > 0 such that every `-local relaxed LDC C : {0, 1}k → {0, 1}n with decoding radius δ
satisfies n = Ω

(
k1+α

)
.

To the best of our knowledge, this is the first non-trivial lower bound that was shown for relaxed
LDCs. We remark that Theorem 1 directly extends to the setting of linear relaxed locally correctable
codes, recently introduced in [GRR18].

On adaptivity. For relaxed LDCs with constant decoding radius and non-adaptive decoders (i.e.,
where each query is made independently of the answers to previous queries), the parameter α in
our lower bound of n = Ω

(
k1+α

)
takes the form of α = 1

O(`2)
. In a subsequent paper [DGL21], this

(non-adaptive) lower bound was extended to the adaptive case, using a highly non-trivial argument.
This dependency is quite close to that in the upper bound of Ben-Sasson et al. [BGH+04], who

showed that for any ` ∈ N there exists an `-local non-adaptive relaxed LDC C : {0, 1}k → {0, 1}n

with blocklength n = k1+Θ(1/
√
`).

On perfect completeness. We remark that our techniques generalise to the setting of relaxed
LDCs in which the completeness condition only requires that perfectly valid codewords can be locally
decoded with probability 2/3, rather than probability 1 (i.e., perfect completeness). For simplicity
sake, we focus on decoders with perfect completeness. See remarks in the technical overview. We
remark that in [DGL21], we explicitly show how to deal with non-perfect completeness in a more
general setting.

3

Stronger bounds for ` = 2. While there are exponential lower bounds known for 2-local LDCs
over binary alphabet [Oba02, KdW04], no such result is known for relaxed LDC. We find this to be
an interesting open problem and leave it to future work.

1.2 Related works

There is an extensive literature that is concerned with lower bounds on (non-relaxed) locally decodable
codes in various regimes (see, e.g., [KT00, DJK+02, GKST02, Oba02, KdW04, WdW05, Woo12]),
as well as for the closely related notion of locally correctable codes (see, e.g., [BDYW11, BDSS11,
BGT16, DSW17]), in which the goal is to correct a bit of the codeword rather than a bit of the
message. We stress that none of the aforementioned bounds apply for relaxed LDC (see discussion
in Section 2.1).

Another related notion is that of locally testable codes [GS06], which are, loosely speaking, codes
for which there exist a probabilistic algorithm that accepts valid codewords, and rejects inputs that
are “far” in Hamming distance from any codeword, while only probing a small fraction of the input.
Much stronger upper bounds are known for locally testable codes than for LDCs, and in particular,
there exists O(1)-local LTCs with blocklength n = k · polylog(k) [GS06] (see also [Mei09, Vid13]).
It is also known that LDCs do not imply locally testable codes and vice versa [KV10].

Locally testable codes can be viewed as a special case of property testing (see recent book [Gol17]
and references therein), which deals with algorithms that distinguish whether an input belongs to a
set S or is “far” from any input in S. As is the case with locally testable codes, LDCs and property
testing are very distinct notions. In particular, whereas a local decoder is a local computation
algorithm that operates under the guarantee that the input is close to a codeword, a property tester
is an approximate decision algorithm that distinguishes between exact membership in a set, and
being far from the set. Interestingly, despite these fundamental differences, we are still able to rely
on techniques from [FLV15] that were used in the context of property testing (see Section 2.4).

1.3 Organisation

The rest of the paper is organised as follows. In Section 2 we provide a high-level overview of
our techniques. In Section 3 we cover the necessary preliminaries. Finally, in Section 4 we prove
Theorem 1.

2 Techniques

In this section, we provide an overview of the proof of the lower bound in Theorem 1. We begin in
Section 2.1 by articulating the challenge in proving a lower bound on relaxed LDCs and discuss why
current techniques for non-relaxed LDC lower bounds are inherently incompatible with the setting
of relaxed LDCs.

In Section 2.2, we present our high-level strategy for obtaining the lower bound, which is centred
around using the relaxed local decoder to obtain a “global decoder”; that is, a probabilistic algorithm
that decodes the entire message of a perfectly valid codeword. In Section 2.3, we discuss a naive
attempt towards constructing such a global decoder, and articulate two main technical challenges
that arise.

In Section 2.4, we address the first challenge by arguing that the local views of relaxed local
decoders can be assumed, without loss of generality, to satisfy a structure that can be thought of as

4

a relaxation of combinatorial sunflowers. In Section 2.5, we address the remaining challenge and
present the construction of our global decoder. Finally, in Section 2.6, we discuss the analysis of the
global decoder and how it implies the desired lower bound.

2.1 The challenge

As we mentioned in Section 1.2, the coding theory literature has a large body of works that prove
lower bounds on non-relaxed LDCs. It is tempting to try and apply the methodology used in these
works to our setting of relaxed LDCs.

The caveat, however, is that essentially all LDC lower bound techniques in the literature rely on
the smoothness property of LDCs (cf. [KT00, Theorem 1]). Loosely speaking, a decoder is said to
be smooth if the distribution of queries that it makes is well-spread; that is, no coordinate is being
queried with high probability by the decoder. The smoothness of LDCs provides structural insight
regarding local decoders, which lie at the heart of these techniques.

In stark contrast, relaxed LDCs are not necessarily smooth. In fact, all known constructions of
non-trivial relaxed LDCs (i.e., which achieve parameters that are better than known for non-relaxed
LDCs) are highly non-smooth, in the following sense: for each message index i ∈ [k], a significant
fraction of the queries that the relaxed local decoder makes are concentrated on a small number of
coordinates.

This lack of smoothness is inherent to relaxed LDCs, as it is known that if a relaxed LDC
is smooth, then it implies a non-relaxed LDC with similar parameters [BDG17]. Thus, if it was
possible to make state-of-the-art relaxed LDCs smooth, it would have led to a major breakthrough,
as this would imply non-relaxed LDCs with polynomial length and O(1)-queries.

As observed in [BGH+04], relaxed LDCs can be made to satisfy a weaker condition, known as
average smoothness, which states that the decoder makes nearly uniform queries on average, taken
over all indices i ∈ [k] to be decoded (however, for any particular i ∈ [k], the queries of D given
decoding index i may be highly concentrated). Unfortunately, the average smoothness condition is
a much weaker requirement than smoothness (e.g., see discussion in [BGH+04, Section 4.2.1]), and
it is highly unclear whether it can be used to imply relaxed LDC lower bounds.

Instead, to show a lower bound on relaxed LDCs we use a new methodology that does not rely
on smoothness at all to argue about the structure of the relaxed local decoder. The approach that
we take, which we discuss next in Section 2.2, strongly relies on an observation that the structure of
the local views that relaxed decoders make can be essentially captured by a relaxation of the notion
of sunflowers, to which we refer as daisies and discuss in Section 2.4. We stress that despite some
points of similarity, our techniques are fundamentally different than those in [KT00] (see discussion
at the end of Section 2.6).

2.2 High-level approach

Recall that our goal is to show that every O(1)-local relaxed LDC C : {0, 1}k → {0, 1}n with
decoding radius δ = O(1) satisfies n = Ω

(
k1+α

)
, for some constant α > 0 that depends on the

locality parameter and decoding radius.
Let C be such an `-local relaxed LDC for ` = O(1), and let D be its corresponding relaxed

local decoder. For clarity of exposition, throughout the techniques section we make the simplifying
assumptions that D has the following properties:

1. non-adaptive queries: each query is made independently of the answers to previous queries,

5

2. reduced error probability: the decoder errs with probability O(1/`2),
3. logarithmic randomness complexity: the decoder uses log(n) +O(1) bits to generate its queries.

In the actual proof, we obtain these properties by adapting standard transformations to our setting,
at the cost of deterioration in part of the parameters. The loss in parameters due to the last two
transformations is minor. The adaptive to non-adaptive transformation, on the other hand, increases
the (constant) query complexity by an exponential factor; see Section 4.1 for details.

Our strategy for proving Theorem 1 is to rely on the relaxed local decoder D to construct a
sample-based, global decoder G for the code C. By sample based, we mean that the decoder G
queries each coordinate independently with a certain probability p. By global, we mean that G
decodes the entire message of a perfectly valid codeword. We stress that for our argument, it suffices
for the global decoder to only work under the promise that the input codeword is not corrupted.

Our goal is to show that the global decoder G will successfully decode the entire message, when
the sampling parameter is set as p = 1/n1/2`2 ; we discuss this choice of p in Section 2.5. Note that in
this case, with high probability G only makes O(n1−1/2`2) queries to the input (and so, if it exceeds
the desired query complexity, it can simply reject). However, since it is information-theoretically

impossible to recover a k-bit message via o(k) queries, this will imply that n = Ω
(
k

1+ 1
2`2−1

)
, which

yields the desired lower bound. See Section 4.5 for a precise argument.
Thus, we are left with the task of showing that the set of queries that G makes with parameter

p = 1/n1/2`2 can suffice for simultaneously emulating k invocations of the decoder D with respect
to each decoding index i ∈ [k]. To this end, we shall first need to make a simple, yet important
observation regarding relaxed local decoders, which we discuss next.

2.3 First step towards a global decoder

Recall that we assumed that the relaxed local decoder D is a non-adaptive algorithm with loga-
rithmic randomness complexity, which gets query access to a string w ∈ {0, 1}n. Thus, we can
represent D as a collection of distributions {µi }i∈[k] over subsets of [n] of size `, and functions

{ fi : {0, 1}` → {0, 1,⊥}}i∈[k] as follows.
For every i ∈ [k], the distribution µi corresponds to the choice of local view of the relaxed

decoder D(i) (i.e., D on decoding index i). The function fi is the predicate according to which D(i)
decides whether to decode 0, 1, or reject (output ⊥) given a local view w|I , where I is drawn from
µi. In fact, the decoder may rule according to a predicate that depends on the query set, but for
simplicity, we assume in the high-level overview that it does not. Note that since we assumed that
D(i) has logarithmic randomness complexity (i.e., log(n) + O(1), in the blocklength n), we have
that µi is supported on a linear number of local views (i.e., O(n) sets of size at most ` each); we use
this in Section 2.4, where we apply a combinatorial lemma on the support of µi.

Naively, we would have liked our global decoder G, which queries each location with probability
p = 1/n1/2`2 , to emulate an invocation of the relaxed local decoder D(i) by obtaining a local view of
w restricted to I ∼ µi. Indeed, if the distribution µi is “well spread”, the probability of obtaining a
local view of D(i) is high. Suppose, for instance, that all of the local views are pairwise disjoint. In
this case, the probability of G obtaining any particular local view is at least p` = 1/n1/2`, and since

there are Θ(n) such local views, we can expect the global decoder to obtain Θ(n1− 1
2`) local views.

Unfortunately, if µi is concentrated on a relatively small number of coordinates (as is the case
with all non-trivial relaxed local decoders), it is highly unlikely that the global decoder G will obtain

6

a local view of D(i). For example, if D(i) queries the first coordinate of w with probability 1, then
we can obtain a local view of D(i) with probability at most p, which is negligible.

Even worse, to decode different bits, the relaxed local decoder D may concentrate its queries on
different locations; e.g., it could be the case that for every i ∈ [k], the decoder D would query, say,
location i with probability 1. And so, there could be a large number of coordinates that are heavily
queried by D.

At this point, the approach may appear hopeless. However, this is exactly where the relaxed
decoding condition of relaxed LDCs kicks in. Recall that the relaxed local decoder D does not err
(i.e., outputs the wrong value) with high probability, as long as the codeword is not too corrupted.
Thus, even if we arbitrarily guess the values of highly queried coordinates that the global decoder G
failed to achieve, we could still emulate an invocation of D on a slightly corrupted codeword.

For example, suppose that all of the local views of the relaxed local decoder D contain, say, the
first coordinate, but are otherwise disjoint. Then, by the discussion above, with high probability
the global decoder G will obtain many partial local views, which only lack the value of the first
coordinate. We can then hope to rely on the ability of the relaxed local decoder D to tolerate errors,
and arbitrarily fill in the value of the missing coordinate.

Namely, we could consider both possible values of the first coordinate, and observe the following.
For the right “guess” of the value of the first coordinate, all local views will lead D to decode
correctly, whereas for the incorrect guess, the most of the probability mass in on local views that
will lead D to return either the correct value or ⊥, preventing a consensus on the wrong value. (See
detailed discussion of this approach in Section 2.5.)

However, there are two main challenges that arise when attempting to implement the foregoing
strategy in the general case; namely:

1. The combinatorial structure of the local views of a relaxed local decoder may be complex and
involve many intersections; and

2. Unlike in (non-relaxed) LDCs, a relaxed decoder may output a reject symbol ⊥ with high
probability (possibly with probability 1), even if only one bit of the codeword is corrupted.

We address the first challenge in Section 2.4, in which we make a crucial observation about the
combinatorial structure of relaxed local decoders, and address the second challenge in Section 2.5,
where we describe our construction of the global decoder and its analysis.

2.4 Relaxed sunflowers

For the next discussion, fix i ∈ [k], and denote by L the set of all local views the relaxed local
decoder D might query on input i. Recall that D(i) queries each L ∈ L with probability µi(L).

In Section 2.3, we observed that if the sets L intersect on a single coordinate, i.e., ∩L∈LL = {j}
for some j ∈ [n], and are otherwise pairwise disjoint, then the global decoder G queries many partial
sets L \ { j } with high probability, where not knowing the value at coordinate j still leaves us with
an input within the decoding radius.

More generally, since relaxed LDCs can tolerate a large (constant) fraction of errors, the foregoing
argument can be extended to combinatorial sunflowers ; that is, a collection S := {Sm }m of subsets
of [n] for which there exist a “kernel” K ⊆ [n] such that: (1) ∩mSm = K, and (2) the “petals”
P = {Sm \K } are pairwise disjoint (see Fig. 1(a)), where the kernel is small enough such that by

7

Figure 1: (a) sunflower : all sets {Sm }m intersect on the kernel K and are otherwise pairwise
disjoint; (b) simple daisy (a.k.a., 1-daisy): outside of the kernel K, all sets {Sm }m are pairwise
disjoint; and (c) t-daisy : outside of the kernel K, each point is covered by at most t sets in {Sm }m.
In all figures, the dashed circle represents the kernel K.

changing the values we assign to it we will still remain within the decoding radius. Note that S
could be a subset of the local views L.

Of course, there is no guarantee that the local views of a relaxed local decoder will be sunflowers.
While we could use sunflower lemmas to extract sunflowers out of an arbitrary collection of subsets,
we stress that the size of such sunflowers is very small (in particular, sub-linear). Hence, we cannot
simply restrict our attention to a subset of the local views that is a sunflower, as this would not
preserve the soundness of the relaxed local decoder.

Nevertheless, we can use the relaxed decoding condition of D even if our local views satisfy a
less rigid structure than that of a sunflower. Specifically, for our argument to go through, we need
the local views {Sm }m to only be such that outside of an arbitrarily-structured set K of small
measure, each point is contained in a small (sublinear) number of petals.

Fortunately, Fischer et al. [FLV15] encountered a similar combinatorial structure in the setting
of property testing, which led them to define a couple of generalisations of sunflowers, to which
they refer as “pompoms” and “constellations”, and prove combinatorial lemmas regarding them.
Following [FLV15], we consider a closely related relaxation of sunflowers, which we call daisies.

Loosely speaking, a daisy is a sunflower in which the kernel is not necessarily the intersection of
all petals, but rather a small subset such that every element outside the kernel is contained in a
small number of petals.

More precisely, a collection S := {Sm }m of subsets of [n] is a t-daisy with respect to a kernel
K ⊆ [n] if for every element j ∈ [n] \K, there are at most t subsets S ∈ S such that j is contained
in the petal S \K. We will refer to the special case of a 1-daisy, wherein the petals are disjoint, as
a simple daisy. (See Fig. 1 (b) and (c).)

Using techniques developed in [FLV15], we show a daisy lemma (conceptually resembling a
sunflower lemma) that extracts a t-daisy of large (constant) measure, with a small kernel (i.e., such
that changing its values would keep us within the decoding radius), and where t is sufficiently
small for obtaining petals, with high probability, using the sampling that the global decoder G
performs. See Lemma 4.6 for a precise statement. We remark that the daisy lemma applies to any
collection of (possibly weighted) subsets, and does not rely on the fact that our collection arises
from a relaxed LDC.

8

In more detail, the daisy lemma extracts a t-daisy from the local views of each D(i), which
satisfies the following conditions:

• the measure of the daisy is at least 1/`;
• the size of the kernel Ki is roughly n1− s

` , where s ∈ [`] bounds the maximal size of the petals;

• the number of sets that cover each point outside of the kernel is t = O(n
s−1
`).

Next, we shall use the foregoing daisy lemma to construct the global decoder.

2.5 The global decoder

We are finally ready to describe our construction of the global decoder G for the code C : {0, 1}k →
{0, 1}n, using the relaxed local decoder D.

The global decoder G is given query access to a string w ∈ {0, 1}n, promised to satisfy w = C(x),
for x ∈ {0, 1}k. Its goal is to fully decode x. To this end, G starts by querying each coordinate
wj , for j ∈ [n], independently with probability p = 1/n1/2`2 , and tries to obtain local views of the
relaxed local decoder D(i) for each location i ∈ [k], while reusing the same samples.

Recall that the structure of the local views of D does not guarantee that any local view will
be fully queried in the sampling stage of the global decoder G. However, we can invoke the daisy
lemma that we discussed in Section 2.4 to extract from supp(µi) a sub-collection of sets, of total
measure at least 1/`, which is a daisy Si with kernel Ki, for each i ∈ [k]. Recall that the soundness
error of D is 1/`2, and so the measure of the daisy is significantly larger than the soundness error.

Now, intuitively, since the petals of each daisy (i.e., sets S \K for S ∈ Si) are such that each
point is contained in a small (sublinear) number of petals, we can expect the global decoder G to
fully query a large number of petals of each daisy in { Si }i∈[k]. (See more on this at the end of
Section 2.5.) However, it may happen that none of the kernels K1, . . . ,Kk is queried at all (let
alone fully queried) by G.

Thus, the main challenge is to recover the value of each xi using partial local views of D(i) that
do not include the value of the input w = C(x) on the kernel Ki. For this, we shall need to rely on
the properties of the relaxed local decoder, and the fact that the size of each Ki is small enough
such that by changing it we remain within the decoding radius of the relaxed LDC C.

The idea is to let the global decoder G consider all possible assignments to the kernel, use each
such assignment to complete the queried petals into full local views of the relaxed local decoder D,
and rely on the properties of relaxed LDCs to identify a kernel assignment that corresponds to the
decoding of the correct value.

More precisely, for each i ∈ [k], the global decoder G enumerates over all possible assignments
κ ∈ {0, 1}|Ki| to the kernel, and for every fully queried petal P of Si, considers the output of D(i)
on each local view S ∈ Si that consists of w restricted to the petal P , with the value of κ on the
kernel Ki.

Now, it is crucial to make the observation that by the completeness and relaxed decoding
conditions of relaxed LDCs, no kernel assignment will give rise to a high probability mass on petals
that lead to decoding the wrong value, whereas there exists a least one kernel assignment that will
make all petals lead to decode the correct value. More accurately, since the measure of the daisy Si
is at least 1/`, and the soundness error is at most 1/`2, we have that:

1. Since w is guaranteed to be a valid codeword C(x), then for the correct assignment to the
kernel Ki (i.e., κ ∈ {0, 1}|Ki| such that κ = w|Ki), it holds that all local views S ∈ Si would
have made the decoder D(i) output the correct value xi (see Fig. 2(a)); and,

9

Figure 2: (a) corresponds to a correct “guess” of the kernel assignment, and (b) to a wrong one.
Green sets correspond to local views that make the relaxed local decoder output the correct value
xi. Red sets correspond to local views that lead to outputting the wrong value ¬xi. Blue sets
correspond to local views that lead to reject, i.e., output ⊥.

2. Since changing the value of the kernel Ki still leaves us within the decoding radius, then for
any kernel assignment κ ∈ {0, 1}|Ki|, most of the probability mass is on local views S ∈ Si
that would have not made the decoder D(i) output the wrong value ¬xi (see Fig. 2(b)).

The foregoing discussion naturally suggests that G can decode each xi as follows: if there exists
a kernel assignment that completes all fully-queried petals to local views that are in consensus on a
single value b and no kernel assignment leads to a consensus on ¬b, then output b. We will use the
two properties above to analyse G and show that this event indeed happens with b = xi.

To see that, note that the first item above guarantees that there exists at least one kernel
assignment for each Ki, which makes all petals lead to decoding the correct value xi. The second
item guarantees that, with high probability over the samples of G, no kernel assignment will lead
to a high-mass collection of completions of fully-queried petals to local views that are consistent
with the wrong value ¬xi. Thus the global decoder can enumerate over all kernel assignments, and
decode according to the kernel assignment that leads to a consensus.

We stress that the global decoder G cannot just guess an arbitrary value of the kernel (which will
still leave us within the decoding radius). This is because it could be the case that for some kernel
assignments, most of the probability mass in on petals that will lead to ⊥, and petals that lead to
decoding the wrong value ¬xi will be actually more common than petals that lead to the correct
value xi. However, the key point is that no high-mass collection of petals will lead to decoding the
wrong value, whereas there exists a kernel assignment that will lead all petals to decode the correct
value.

2.6 Analysis of the global decoder

It remains to argue that with high probability, for every i ∈ [k] the global decoder G, described
in Section 2.5, will successfully obtain fully-queried petals that will lead it to correctly decode xi;
that is, a set of petals such that: (1) no kernel assignment will give rise to most of the probability
mass being on petals that lead to decode the wrong value, and (2) there exists at least one kernel
assignment that will make all petals lead to decode the correct value.

10

Observe that it suffices to show that for every i ∈ [k] and kernel assignment κ ∈ {0, 1}|Ki|, the
global decoder G only needs to obtain a single petal that leads to either outputting the correct value
xi or the reject symbol ⊥, given the kernel assignment κ; we shall refer to such petals as “good”.
To see this, note that G only accepts if all petals it queried are in consensus regarding the decoding
value, and so, as long there is at least one petal that corresponds to xi or ⊥, the global decoder
G will not output the wrong value ¬xi. On the other hand, we know that there exists a kernel
assignment for which all petals lead to output the correct value xi (and neither ⊥ nor ¬xi), and so,
as long as G obtains one good petal, it will output xi.

To show that for every i ∈ [k] and kernel assignment κ ∈ {0, 1}|Ki|, the global decoder G obtains
a good petal as above, we first remove all petals that lead to decoding the wrong value. Recall that
the measure of the daisy Si we obtained from the daisy lemma is at least 1/`, and the soundness
error of the relaxed local decoder D is at most 1/`2. Thus the total measure of the good petals is at
least 1/`− 1/`2. We remark that, in fact, it suffices have soundness error, say, 1/(10`). However,
reducing the error to 1/`2 has negligible cost and it makes calculations slightly cleaner.

Next, we show that the measure of the good petals implies that there are many of them. To
this end, observe that since the measure of the good local views is larger than the soundness error,
the fractional size of the set of all elements covered by the good petals must be larger than the
(constant) decoding radius. This is because otherwise, replacing these elements with the values
of a codeword that disagrees with xi will leave w within the decoding radius, and thus break the
soundness condition. Hence, the good petals cover a linear amount of coordinates, and since each
petal is of constant size, we have a linear number of good petals.

Since there are many good petals in the daisy Si, we can apply a lemma, which we call the
simple daisy lemma (see Lemma 4.12), that extracts a simple daisy (i.e., a 1-daisy in which the
petals are pairwise disjoint) from the set of all good local views in our t-daisy (where recall that

t = O(n
s−1
`) and s bounds the maximal size of each of the petals). The resulting simple daisy has

the same kernel Ki of size roughly n1− s
` , and number of petals, each of size at most s, that is larger

than the size of kernel Ki by a multiplicative factor of at least n1/`.
The petals of a simple daisy are disjoint, and so, observe that the probability of querying all (at

most s) elements of any petal during the sampling step is at least ps = 1/ns/2`
2 ≥ 1/n1/2`. Since

our simple daisy contains d := Ω(n
1
` · n1− s

`) pairwise disjoint petals, the probability that no good
petal was queried is bounded by

(1− ps)d ≤
(

1− 1

n
1
2`

)Ω(n
1
` ·n1− s

`)

≤ 2−|Ki|

10k
.

Thus, for any i ∈ [k], taking a union bound over all kernel assignments κ ∈ {0, 1}|Ki|, with
probability at least 9/(10k), for every kernel assignment we find a least one good petal, which by
the discussion above implies that the global decoder G successfully decodes the correct value xi.
Finally, taking another union bound over all decoding indices i ∈ [k], we obtain that the foregoing
holds for all i ∈ [k] simultaneously with probability at least 9/10.

As discussed in Section 2.2, since it is information-theoretically impossible to recover a k-bit
message via o(k) queries, and since the global decoder G decoders k message bits via O(n1−1/2`2)

queries to the input, we deduce that n = Ω
(
k

1+ 1
2`2−1

)
, which yields the desired lower bound.

11

Comparison to the techniques in [KT00]. While on a high level, there are some similarities
between our techniques and the ones in [KT00], we wish to highlight that our techniques are
fundamentally different.

For starters, as we alluded to before, the approach in [KT00] relies on the equivalence of LDCs
and smooth codes, and uses the smoothness in an essential way. Relaxed LDC, on the other hand,
can be very far from smooth; in fact, the strongest constructions of relaxed LDC admit k different
query distributions (one per decoding index), where in each such distribution, different points are
being queried with probability 1. Thus, relaxed LDCs cannot be lower bounded by identifying a
small set of locations (a “kernel”) such that the decoder is uniform outside of this set. Indeed, note
that for any coordinate i ∈ [k], we choose a different daisy.

Moreover, a simple daisy (i.e., where the petals are pairwise disjoint) cannot be large enough
to characterise a relaxed decoder, even for a single coordinate. This is the reason why we cannot
combine the daisy lemma with the simple-daisy lemma and restrict our attention to the latter. We
only use simple daisies for analysing the probability of querying a good petal of a t-daisy, conditioned
on fixing a particular kernel assignment; and so, for each kernel assignment to a t-daisy, we extract
a different simple daisy. Indeed, our algorithm operates by checking assignments to k different, large
t-daisies, for t = nβ , and so for each of these t-daisies, the queries outside of the kernel are also very
far from being smooth.

We believe that our new techniques may be also useful for locally testable codes, and hopefully
(albeit within a different framework) the combinatorial tool of daisies could lead to progress on
non-relaxed LDCs as well.

3 Preliminaries

We begin with standard notation:

• We denote the absolute distance, over alphabet Σ, between two strings x ∈ Σn and y ∈ Σn by

∆̄(x, y) := |{xi 6= yi : i ∈ [n]}| and their relative distance by ∆(x, y) := ∆̄(x,y)
n . If ∆(x, y) ≤ ε,

we say that x is ε-close to y, and otherwise we say that x is ε-far from y. Similarly, we denote
the absolute distance of x from a non-empty set S ⊆ Σn by ∆̄(x, S) := miny∈S ∆̄(x, y) and
the relative distance of x from S by ∆(x, S) := miny∈S ∆(x, y). If ∆(x, S) ≤ ε, we say that
x is ε-close to S, and otherwise we say that x is ε-far from S. We denote the projection of
x ∈ Σn on I ⊆ [n] by x|I .

• We denote by Ax(y) the output of algorithm A given direct access to input y and oracle
access to string x. Given two interactive machines A and B, we denote by (Ax, B(y))(z) the
output of A when interacting with B, where A (respectively, B) is given oracle access to x
(respectively, direct access to y) and both parties have direct access to z.

• Throughout this work, probabilistic expressions that involve a randomised algorithm A are
taken over the inner randomness of A (e.g., when we write Pr[Ax(y) = z], the probability is
taken over the coin-tosses of A).

Coding theory. Let k < n be positive integers and let Γ,Σ be alphabets. A code C : Γk → Σn is
an injective mapping from messages of length k (over the alphabet Γ) to codewords of length n
(over the alphabet Σ). Typically it will be the case that Γ = Σ, in which case we simply say that

12

the code is over the alphabet Σ. We denote by n the blocklength of the code (which we think of as a
function of k) and by k/n the rate of the code. The relative distance of the code is the minimum,
over all distinct messages x, y ∈ Γk, of ∆(C(x), C(y)). We shall sometimes slightly abuse notation
and use C to denote the set of all of its codewords {C(x)}x∈Γk ⊂ Σn.

Locally decodable codes. First, we define the notion of (non-relaxed) locally decodable codes.

Definition 3.1 (Locally Decodable Codes (LDCs)). Let C ⊆ Σn be a code with relative distance
δC . We say that C is a locally decodable code if there exists a constant decoding radius δ < δC/2
and a polynomial time algorithm D that gets oracle access to a string w ∈ Σn and explicit input
i ∈ [k], such that

1. (Perfect) Completeness: For any i ∈ [k] and w = C(x), where x ∈ Σk, it holds that Dw(i) = xi.

2. Decoding: For any i ∈ [k] and any w ∈ Σn that is δ-close to a (unique) codeword C(x),

Pr[Dw(i) = xi] ≥ 2/3.

The query complexity of D is the maximal number of queries that D makes for any input i and w.

Note that the constant 2/3 can be amplified as usual by repeating the process multiple times and
outputting the majority symbol.

Relaxed locally decodable codes [BGH+04] are defined as follows.

Definition 3.2 (RLDC). A code C : Σk → Σn is an `-local relaxed LDC (RLDC) with success rate
ρ if there exists a constant δ ∈ (0, δC/2) and a randomised algorithm D, known as a relaxed decoder,
that on input i ∈ [k] makes ` queries to an oracle w and satisfies the following conditions.

1. (Perfect) Completeness: For any i ∈ [k] and w = C(x), where x ∈ Σk, it holds that Dw(i) = xi.

2. Relaxed Decoding: For any i ∈ [k] and any w ∈ Σn that is δ-close to a (unique) codeword
C(x),

Pr[Dw(i) ∈ {xi,⊥}] ≥ 2/3.

3. Success Rate: For any w ∈ {0, 1}n that is δ-close to a codeword C(x), there exists a set
Iw ⊆ [k] of size at least ρk such that for every i ∈ Iw,

Pr[Dw(i) = xi] ≥ 2/3 .

The randomness complexity of a relaxed decoder is the maximal number of random coin tosses
it requires to select its local view (i.e., the set of queries it makes), where the maximum is taken
over the index i ∈ [k] with respect to which it is invoked. We remark that the first condition can be
relaxed to only hold with high probability, and our techniques generalise to this setting as well; see
[DGL21] for details regarding this generalisation. Furthermore, the second condition can be relaxed
to only hold for a randomly selected index i ∈ [k], and the proof of our main result will still hold.

13

4 Proof of Theorem 1

We begin by restating Theorem 1 more accurately.

Theorem 4.1. Let ` ∈ N and δ ∈ (0, 1). Then, for every `-local relaxed LDC C : {0, 1}k → {0, 1}n
with decoding radius δ it holds that

n = Ω

(
k

1+ 1

22`·log(`)2−1

)
.

Let C : {0, 1}k → {0, 1}n be an `-local relaxed LDC with decoding radius δ = Ω(1) and ` = O(1);
denote its decoder by D. We prove that the blocklength of C is as in the conclusion of Theorem 4.1.
To this end, we begin in Section 4.1 by preprocessing the relaxed local decoder D and endowing
it with properties that make it amenable to our techniques. Then, in Section 4.2 we present two
combinatorial lemmas that will play a key role in our analysis, allowing us to argue about relaxed
decoders via subsets of their local views.

Next, in Section 4.3 we implement the strategy presented in Section 2, by using the relaxed local
decoder to obtain a construction of a global decoder G that receives a valid codeword and decodes
its entire message using query complexity that is sublinear in the blocklength n. We analyse the
global decoder in Section 4.4, and finally, in Section 4.5 we derive the lower bound in Theorem 1
from the analysis of the global decoder.

4.1 Preprocessing

Our argument begins by endowing the decoder D with three properties that will facilitate the
analysis of our lower bound, namely: (1) non-adaptive queries, (2) reduced error probability, and
(3) logarithmic randomness complexity.

All three steps of the preprocessing step follow from straightforward adaptation of standard
techniques to the setting of relaxed LDCs. We begin by transforming the decoder D into a non-
adaptive algorithm via a standard transformation. We note that this transformation increases the
query complexity, while preserving or improving the rest of the parameters of D. This will later
allow us to represent the behaviour of a relaxed decoder by the distribution over its local views.

Claim 4.2 (Non-adaptive queries). If there exists an (adaptive) `-local relaxed decoder for a code
C : {0, 1}k → {0, 1}n, then C also has a non-adaptive 2`-local relaxed decoder with the same decoding
radius.

Proof. Let D be an adaptive `-local relaxed decoder for the code C : {0, 1}k → {0, 1}n. We show
that C also has a non-adaptive 2`-local relaxed decoder with the same decoding radius.

Fix i ∈ [k]. Note that the adaptive decoder D can be viewed as a distribution over binary
decision trees; that is, D(i) first tosses coins to obtain a random string ρ which determines the
binary decision tree that D uses deterministically to determine the output D(i) given query access
to input w.

Recall that every non-leaf vertex of a decision tree is labelled by an index in [n], and one of the
edges leaving it towards a child is labelled 0 and the other is labelled 1. The relaxed local decoder
D uses a decision tree, which it selects at random, by starting from the root of the tree, reading its
label i and querying wi. It then proceeds to the child of the root with the edge corresponding to

14

the value of xi. The child is treated in the same manner as the root if it is an internal vertex, and if
it is a leaf, its label takes value in {0, 1,⊥}, which is the output of D(i).

Let D′ be an algorithm that operates as follows. Given input i ∈ [k], it first tosses coins, exactly
like D(i), to obtain a random string ρ which determines the binary decision tree that D(i) uses.
Then, it queries all of the indices labelling the vertices of the decision tree (corresponding to all
possible queries that D(i) might have been given any possible input w). Finally, D′ uses the query
values to compute the answer D(i) will have returned and returns it. Note that there are 2` such
labels.

The choice of queries of D′ depends only on the decision tree chosen, hence it is non-adaptive.
The query complexity of D′ is 2` and it returns the exact same answer as D will on the same input
and random coin tosses.

Denote by D1 the non-adaptive relaxed decoder obtained by applying Claim 4.2 to the (adaptive)
relaxed decoder D. Next, we amplify the soundness of the decoder D1, as later we shall need to
invoke it multiple times and tolerate a union bound over all invocations. To this end, we use the
following simple claim.

Claim 4.3 (Amplification). If there exists a non-adaptive `-local relaxed decoder for the code C,
which errs with probability at most 1/3, then C also has an amplified non-adaptive O(` · log(1/ε))-
local relaxed decoder that errs with probability at most ε; furthermore, the amplified relaxed decoder
preserves the perfect completeness condition.

Proof. Let D be an `-local relaxed decoder for the code C : {0, 1}k → {0, 1}n, which errs with
probability at most 1/3. We use D to construct an O(` · log(1/ε))-local relaxed decoder D′ that
errs with probability at most ε and has perfect completeness.

On input i ∈ [k] and query access to a string w ∈ {0, 1}n, the relaxed local decoder D′ operates
as follows:

1. Invoke log(1/ε) parallel executions of D with the same input parameters;

2. When the invoked executions attempt to query w, the relaxed local decoder D′ collects all of
the queries and asks them simultaneously, returning the values of the queries to the executions
that requested them;

3. Finally, D′ collects all the outputs from the executions and returns b ∈ {0, 1} if all the
executions returned b, and otherwise returns ⊥.

Note that all the queries are used in a non-adaptive manner, and that there are at most ` · log(1/ε)
of them.

By the completeness of the original relaxed local decoder D, if w is a valid codeword, then b = xi
with probability 1. Hence, D′ has perfect completeness. On the other hand, if w is δ-close to C,
then by the relaxed decoder condition of relaxed LDC, it holds that b 6∈ {xi,⊥} with probability
less than (1/3)log(1/ε) < ε. Thus, D′ has the desired amplified soundness.

We remark that while the foregoing proof is trivial, there is a subtlety that is unique to the
setting of relaxed LDC. Namely, The transformation in Claim 4.3 hampers the success rate condition
of a relaxed LDC. This is because the relaxed decoder can output ⊥ in the majority of invocations
and, say, output the wrong and correct values with equal (but small) probability. However, we stress

15

that our argument does not rely on the aforementioned condition. Denote by D2 the amplified
relaxed decoder obtained by applying Claim 4.3 to the relaxed decoder D1 with respect to soundness
error ε = 1/`2.

Finally, we generalise a lemma due to Goldreich and Sheffet [GS10], which reduces the randomness
complexity of query algorithms, to the setting of relaxed LDCs. This will later allow us to invoke a
relaxed sunflower lemma (see Section 4.2).

Claim 4.4 (Randomness reduction). If there exists a non-adaptive, `-local relaxed decoder for a
binary code C, with constant error probability ε, then C also has an O(`)-local relaxed local decoder
with the same parameters, except with randomness complexity log(n) +O(1).

Proof. Let D be a `-local relaxed decoder for a binary code C with ` = O(1), randomness complexity
r, and constant error probability ε. We use D to construct a relaxed decoder D′ with the same
parameters as D, except it has locality O(`) and randomness complexity log(n) +O(1).

Fix i ∈ [k]. Consider a 2r × 2n matrix where the rows correspond to all possible random strings
γ used by the relaxed local decoder and the columns correspond to all inputs w ∈ {0, 1}n that
are within the decoding radius of C. The entry (γ,w) of the matrix corresponds to the output of
Dw(i; γ), that is, the output of the relaxed local decoder when given query access to w and random
coins γ.

Note that for every codeword w = C(x), by the perfect completeness of D(i) the value of each
entry in a w column equals the correct message value xi. By the relaxed decoding condition of D(i),
for each w column that is within the decoding radius of C, at least 1− ε fraction of the entries are
in {xi,⊥}.

We show that there exists a multi-set, S, of size O(n) of the rows such that the every column w
restricted to S has at most O(ε) fraction of entries taking the wrong value ¬xi. Thus, we obtain a
relaxed local decoder D′ that uses only log2 |S| = log n+O(1) random coins, by simply running the
original decoder D but with respect to random coins selected uniformly from S (rather than from
{0, 1}r). To obtain soundness error ε we use O(1) parallel repetitions.

We use the probabilistic method to show the existence of a small multi-set S as above. Consider
a multi-set S of the rows, of size t, chosen uniformly at random and fix input w. By the Chernoff
bound, with probability 1 − 2−Ω(t) over the choice of S, at most O(ε) fraction of entries of w
restricted to S take the wrong value ¬xi. Thus, by setting t = C · log(2n) +O(1), for a sufficiently
large constant C > 0, and applying the union bound, we obtain that there exists a multi-set S as
desired. Since the new relaxed local decoder selects at random from S, it can be implemented using
log2 t+O(1) random coins.

Denote by D′ the relaxed decoder obtained by applying the randomness reduction in Claim 4.4 to
the relaxed decoder D2. We conclude this subsection by observing that D′ is a non-adaptive `′-local
relaxed decoder with soundness error ε′ and randomness complexity r′, where `′ = O(2` · log(`)) =
O(1), ε′ = 1/`′2, and r′ = log(n) +O(1).

4.2 Relaxed sunflower lemmas

As discussed in the technical overview, we shall view the non-adaptive `′-local relaxed decoder D′

obtained in Section 4.1 as a set of distributions {µi }i∈[k], where each µi is the distribution over

subsets of [n] of size `′, which correspond to the local views of the relaxed decoder D′ on decoding
index i ∈ [k].

16

To argue about the probability of obtaining local views of a (non-adaptive) relaxed local
decoder, we shall consider a structured subset of the local views, which satisfies a relaxed form of a
combinatorial sunflower, to which we refer to as a daisy. Loosely speaking, a t-daisy is a sunflower
in which the kernel is not the intersection of all petals, but rather a subset such that every element
outside the kernel is contained in at most t petals. A formal definition follows.

Definition 4.5 (daisy). Suppose U is a universe set and S is a collection of subsets of U . The
collection S is a t-daisy with a kernel K ⊆ U , if for every u ∈ U \K there are at most t subsets
S ∈ S such that u is contained in the petal S \K.

We will refer to the special case of a 1-daisy, wherein the petals are disjoint, as a simple daisy.
We remark that the notion of a daisy is a generalisation of a sunflower, which provides a unified

view of the notions of “pompoms” and “constellations”, defined in [FLV15], without insisting on
petals of equal size.

In the following it will be convenient to define the degree of an element u ∈ U in a collection
S ⊆ 2U by degS(u) = | {S ∈ S : u ∈ S } |. Using this notation, a t-daisy S satisfies that every point
u outside its kernel has degS(u) ≤ t.

The main parameters of a t-daisy S ⊆ 2U are: (1) the kernel size |K|, (2) the number of sets
|S|, and (3) the degree bound t. As with sunflowers, we are typically interested in finding a large
daisy in a collection of subsets. More generally, since in our setting the collection of subsets will
correspond to local views of a relaxed decoder, which are chosen according to some distribution, we
wish to find a “heavy” daisy in a collection of weighted subsets.

We will need two lemmas: (1) a lemma that takes a weighted collection of subsets and extracts
a t-daisy, for t that is sublinear in n, which consists of heavy sets; and (2) a lemma that takes a
t-daisy and extracts a simple daisy (i.e., 1-daisy), such that the union of its petals covers a large
fraction of the domain.

Note that the former lemma yields a guarantee regarding the weight of the sets in a daisy, which
corresponds to structure representing a relaxed local decoder according to its distribution of local
views, whereas the latter lemma is a purely combinatorial lemma that “flattens out” the weights
and gives a guarantee regarding the number of coordinates that are covered by a simple daisy that
is derived from a t-daisy.

In the rest of this subsection, we will follow the approach in [FLV15] to derive the aforementioned
lemmas, which will be instrumental to our approach.

Extracting a heavy daisy from a weighted collection of subsets. The following lemma
shows that a sufficiently large collection of subsets, weighted according to a distribution, contains a
daisy with a small kernel and heavy petals.

Lemma 4.6 (daisy lemma). Let T be a collection of cn subsets of [n] of size ` each. Let µ be a
distribution over T . Then, for some s ∈ [`], and m = max{1, s − 1}, there exists a cnm/`-daisy
S ⊆ T with a kernel of size at most ` · n1−s/` and petals of size at most s, such that µ(S) ≥ 1/`.

Proof. Let T be a collection of cn subsets of [n] of size ` each. Let µ be a distribution over 2[n], whose
support is T . We show that for some s ∈ [`], and m = max{1, s − 1}, there exists a cnm/`-daisy
S ⊆ T with a kernel of size at most ` · n1−s/` and petals of size at most s, such that µ(S) ≥ 1/`.

Our high-level strategy consists of two steps: (1) we first iteratively construct a sequence of
daisies S1,S2, . . . ,S` ⊆ 2[n] with kernels K1,K2, . . . ,K` ⊆ [n], respectively; and (2) we then argue

17

that there exists s ∈ [`] for which the daisy Ss with respect to kernel Ks satisfies the desired
conditions. We construct this sequence of daisies as follows.

Construction 4.7. Given a collection T of cn subsets of [n] of size ` each, we construct a sequence
of daisies S1,S2, . . . ,S` ∈ 2[n] with kernels K1,K2, . . . ,K` ⊆ [n] as follows.

1. Set T1 = T .

2. Perform the following steps iteratively, for i ∈ [`]:

(a) let Ki be the set of all j ∈ [n] such that degTi(j) > cni/`.

(b) let Si be the family of all subsets T ∈ Ti such that |T \Ki| ≤ i.
(c) let Ti+1 be Ti \ Si.

We proceed to show three structural claims regarding the daisies in the sequence S1,S2, . . . ,S`;
Namely: (1) bounding the sizes of their kernels, (2) showing their union covers the original collection
T , and (3) bounding the number of sets that contain each point outside of their kernels. Subsequently,
we will show that at least one of these daisies satisfies all requirements of the lemma.

We begin with the following claim, which shows that for each i ∈ [`], the daisy Si has a sufficiently
small kernel.

Claim 4.8. For every i ∈ [`], it holds that |Ki| < cn1−i/`.

Proof. By Item 2c of Construction 4.7, for every i ∈ [`], it holds that Ti ⊆ T1. Hence, as |T1| = cn,
we know that |Ti| ≤ cn, for every i ∈ [`].

Fix i ∈ [`]. By Item 2a of Construction 4.7,∑
j∈Ki

degTi(j) > |Ki|cni/` (4.1)

Since all the subsets of [n] have cardinality `,∑
j∈Ki

degTi(j) ≤ `|Ti| ≤ `cn (4.2)

The claim follows from Eqs. (4.1) and (4.2).

The next claim shows that the union of all subsets in all the daisies S1,S2, . . . ,S` covers the
original collection of subsets T (equivalently, T1).

Claim 4.9.
⋃
i∈[`] Si = T1.

Proof. Note that for i = `, the condition in Item 2b of Construction 4.7 lets S` be the family of all
subsets T ∈ T` such that |T \K`| ≤ `. The cardinality of each set in T` is `, and hence, trivially,
S` = T`, which in turn means that every set in T1 is in one of the families in {S1,S2, . . . ,S`} and
the claim follows.

Next, we show a claim which shows that for each i ∈ [`], every point outside of the kernel of Si
is incident in only a small number of sets of Si.

Claim 4.10. For every i ∈ [`], and j ∈ [n] \Ki, degSi(j) ≤ cn
max{1,(i−1)}

` .

18

Proof. For i = 1, the claim follows directly from Item 2a of Construction 4.7.
Suppose towards contradiction that there exists i ∈ {2, 3, . . . , `} and j ∈ [n] \ Ki, such that

degSi(j) > cn(i−1)/`. Let T be a set in Si such that j ∈ T . Let T ′ be the subset of T that consists

of T ∩Ki and every index h ∈ T \Ki such that degSi(h) > cn(i−1)/`. In the following, recall that `
is an absolute constant, independent of n.

The size of T ′ is at least |T ∩Ki|+ 1, because we assumed T ′ has an element in T \Ki. Hence,
|T ′| ≥ `− (i− 1). We next show that

degSi−1
(h) > cn

(i−1)
` ,

for every h ∈ T ′. This implies that T ′ ⊆ Ki−1 and in turn that

|T \Ki−1| = |T | − |T ∩Ki−1| ≤ |T | − |T ′ ∩Ki−1| = |T | − |T ′| ≤ i− 1 .

Thus, T ∈ Si−1 and consequently, by Items 2c and 2b of Construction 4.7, T is not in Si, in
contradiction to our initial assumption.

Next we prove the claim first for h ∈ T ′ ∩ Ki and then for h ∈ T ′ \ Ki. By Item 2a of
Construction 4.7, for every h ∈ T ′ ∩Ki, it holds that degTi(h) > cni/`, which in turn implies that

degTi−1
(h) > cni/` > cn(i−1)/` ,

because Ti ⊆ Ti−1, by Item 2c of Construction 4.7.
By item 2b, Si ⊆ Ti, and recall that we already deduced that Ti ⊆ Ti−1. Thus, Si ⊆ Si−1 ⊆ Ti−1

and therefore, for every h ∈ T ′ \ Ki, we have that degTi−1
(h) ≥ degSi(h) > cn(i−1)/`, where the

inequality follows by the definition of T ′, and the claim follows.

Finally, we rely on Claim 4.8, Claim 4.9, and Claim 4.10 to show that at least one of the daisies
in in the sequence S1,S2, . . . ,S` satisfies all of the conditions of the lemma.

Claim 4.11. For some s ∈ [`], Ss is a cnmax{1,(s−1)}/`-daisy with a kernel K, such that µ(Ss) ≥ 1/`,
|K| < ` · n1−s/`, and |T \K| ≤ s, for every T ∈ Ss.

Proof. By Claim 4.9, the sequence of daisies S1,S2, . . . ,S` covers T1, i.e.,
⋃
j∈[`] Sj = T1. Therefore,

there exists s ∈ [`] such that µ(Ss) ≥ 1/`. We take K to be the set Ks. According to the construction
of Ks, for every T ∈ Ss it holds that |T \Ks| ≤ s, and by Claim 4.8, we have that |Ks| < `n1−s/`.
Finally, by Claim 4.10, degSs(j) ≤ cn

max{1,(s−1)}/`, for every j ∈ [n] \Ks.

This concludes the proof of Lemma 4.6.

Extracting a simple daisy from a t-daisy. The second lemma that we shall need shows that
every t-daisy that covers a large part of the universe set contains a simple daisy (i.e., 1-daisy) of
significant size.

Lemma 4.12 (simple daisy lemma). Let S be a t-daisy with kernel K and petals of size at most s,
such that |

⋃
T∈S T | = c′n. Then, there exists a simple daisy S0 ⊆ S whose kernel is K, such that

|S0| ≥ c′n− |K| if s = 1, and otherwise |S0| ≥ c′n−|K|
ts2

.

19

Proof. Initiate S0 to be the empty set. Our strategy will be to iteratively add pairwise disjoint sets
to S0 until it satisfies the requirements of the lemma. All the sets we shall add to S0 are elements
in the t-daisy S, and therefore S0 ⊆ S, which in turn implies that, for every T ∈ S0, it holds that
|T \K| ≤ t. In the following, denote the subset of the domain that S covers by M =

⋃
T∈S T .

We first deal with the simple case where s = 1; that is, all petals {T \K : T ∈ S } of the daisy
S contain just a single element. The idea is that here, for any point outside the kernel we can choose
a single set that contains the point, obtaining a simple daisy.

In more detail, by definition of M , for every element j ∈M \K, which lies outside the kernel,
there exists at least one petal of S that covers it, i.e., there exists T ∈ S such that T \K = { j };
choose such a set and add it to S0. By our construction of S0, for every distinct sets T1 and T2 in
the daisy S0, it holds that the petals T1 \K and T2 \K are disjoint. Now, Since for every point
outside the kernel j ∈ M \K, there exists at least one T ∈ S0, such that T \K = { j }, we have
that |S0| ≥ c2n− |K|, as required.

We now proceed to the other case, where 1 < s ≤ `. The idea here is that, as before, for any
point outside the kernel we choose a single set that contains the point, only now, we remove all
sets that intersect outside the kernel with the set that we chose, and proceed this way iteratively.
Details follow.

For every j ∈M \K, there exists at least one T ∈ S such that j ∈ T \K; choose such a set and
add it to S0. In addition, remove T from S and also every set T ∗ in S such that T \K and T ∗ \K
are not disjoint. We then reset M to be the union of the sets in S after the sets were removed from
it, and repeat the foregoing process until M \K is empty.

In order to lower bound the size of S0, we shall upper bound the loss in the cardinality of M that
happens in each iteration of removing sets from S. Note that the size of the union of all sets that
are removed from M in a single iteration is at most their number times their size, which is bounded
by ts2. This is the maximum loss in the cardinality of M , since we are over-counting by assuming
that every element of a set T that is added to S0 is contained in another removed set, and hence we

can ignore the set T during the computation. Consequently, we have that |S0| ≥ c′n−|K|
ts2

.

We remark that Lemma 4.12 can also be proved using the following, more succinct argument
that we sketch below, viewed as an independent set in a graph problem. Let (V,E) be a graph whose
vertices are sets in S, and two set S, T ∈ V are connected by an edge if S \K and T \K intersect.
Note that the degree of vertex S is at most |S \K| · t ≤ st. Thus, there exists an independent set of
size at least |V |/st, and it holds that∣∣∣∣∣ ⋃

S∈S
S

∣∣∣∣∣ ≤
∣∣∣∣∣ ⋃
S∈S

(S \K)

∣∣∣∣∣+ |K| ≤
∑
S∈S
|S \K|+ |K| ≤ |V |s+ |K| .

Hence, |V | ≥ (c′n− |K|)/s.

4.3 Construction of a global decoder

Recall that in Section 4.1 we obtained a non-adaptive `′-local relaxed decoder D′ for the code C
with soundness error ε′ and randomness complexity r′, where

`′ = O(2` · log(`)) , ε′ = 1/`′2 , r′ = log(n) +O(1) .

Since D′ is an `′-local non-adaptive decoder, the queries that it makes can be described by a
distribution over `′-tuples of coordinates. More precisely, for every message location i ∈ [k] and

20

query set I chosen by the decoder D′(i), there exist a predicate fi,I : {0, 1}`′ → {0, 1,⊥} and a
distribution µi over size `′ subsets of [k], such that D′(i) = fi(w|I) for I ∼ µi. To simplify notation,
since the query set I will always be clear from the context, we write fi to refer to the corresponding
fi,I . Hereafter, we will identify the relaxed decoder D′(i) with the predicate-distribution pair (fi, µi).

Using the relaxed decoder D′, we construct a sample-based global decoder for the code C, which
with high probability decodes the entire message of a perfectly valid codeword, using O(n1−1/2`′2)
samples. Since it is information-theoretically impossible to recover a k-bit message via o(k) queries,
this will imply that n = Ω(k2`′2/(2`′2−1)). (See Section 4.5 for a precise argument.)

We briefly recall the high-level approach for constructing the global decoder (see Section 2 for a
more detailed description). First, it samples each coordinate independently with certain probability
p and tries to obtain local views of the relaxed local decoder D′(i) for each location i ∈ [k], while
reusing the same samples.

Since the structure of the local views of D′(i) does not guarantee that any local view will be
captured in the aforementioned “binomial sampling” stage, the global decoder considers a subset
of the local views of D′, which has the structure of a daisy; that is, it has a kernel of size that is
smaller than the decoding radius such that outside of the kernel each point is covered by a small
number of sets.

Our analysis will show that the binomial sampling stage is highly likely to yield petals of the
daisy, but not its kernel, which is necessary to complete the petals into local views of the relaxed
local decoder D′. To deal with that, the global decoder enumerates over all of the possible values of
the kernel, and if one of the kernel assignments leads to a consensus of the decoding values for the
corresponding local views, it outputs that value. (See Section 2 for a more detail high-level overview
of the global decoder).

A precise description of the global decoder is given next.

Construction 4.13. Let {(fi, µi)}i∈[k] be the predicate-distribution pairs corresponding to the
relaxed decoder D′ obtained in Section 4.1. For every i ∈ [k], denote by Ki and Pi the kernel and
petals of the daisy Si obtained by invoking Lemma 4.6 with respect to the support of µi.

The global decoder G receives query access to a string w ∈ {0, 1}n and performs the following
steps.

1. Binomial sampling: Set p = n−1/2`′2 , and query each coordinate j ∈ [n] independently with
probability p. Denote by Q the set of all coordinates that were queried. (If the size of Q
exceeds the query complexity, the global decoder can simply reject.)

2. Local view generation: For each i ∈ [k], let P ′i ⊆ Pi be the collection of all petals that were
fully queried in the binomial sampling step (i.e., P ′i = {P ∈ Pi : P ⊆ Q }). For every petal
P ∈ P ′i, denote by w|P the restriction of the input w to P .

3. Global decoding: for every i ∈ [k], decode xi by performing the following steps for every
assignment κ ∈ {0, 1}|K|i to the kernel.

(a) For every fully-queried petal P ∈ P ′i and set S ∈ Si that contains P , let aS,κ ∈ {0, 1}` be
the assignment to S whose petal assignment is w|P and kernel assignment is κ|S\P . Let
A be the set of all such assignments.

(b) If there exists b ∈ {0, 1} such that fi(aS,κ) = b for every aS,κ ∈ A, then output b and
proceed to decode xi+1.

21

We proceed to analyse Construction 4.13 in Section 4.4.

4.4 Analysis of the construction

The following lemma shows that the construction described in Section 4.3 is a (global) decoder
with sublinear query complexity (in the code’s blocklength) that, with high probability, decodes the
entire message encoded in a perfectly valid codeword.

Lemma 4.14. Let G be the algorithm defined in Construction 4.13. Given query access to a valid
codeword w = C(x) for x ∈ {0, 1}k, the algorithm G makes O(n1−1/2`′2) queries to w and satisfies
that Pr[Gw = x] ≥ 2/3.

Proof. Let x ∈ {0, 1}k, and denote w = C(x). Let Q be the set of all coordinates that the global
decoder G queried after sampling each element in [n] with probability p = n−1/2`′2 . Note that by
standard binomial tail bounds, with probability at least 9/10 the total query complexity of G is
|G| = O(n1−1/2`′2), as required (otherwise G can simply abort). Suppose hereafter that this is the
case.

Denote by z ∈ {0, 1}k the output of G. We show that for every i ∈ [k], the probability that
zi 6= xi is less than 1/10k, and thus by a union bound Pr[Gw = x] ≥ 9/10. Thus, the total
probability of success (including obtaining the desired query complexity) is 2/3.

Fix i ∈ [k]. Recall that the global decoder G decodes xi by considering a subset Si of local views
of the relaxed local decoder D′(i), derived from the daisy lemma (Lemma 4.6). More precisely,
during the binomial sampling stage G queries the coordinates Q and obtains a collection of fully
queried petals of the daisy Si, which we denote by P ′i = {P ∈ Pi : P ⊆ Q }.

However, for the global decoder G to rule according to the relaxed local decoder D′(i), it needs
not only the fully-queried petals in P ′i, but rather the complete local views of D′(i) that contain
these petals, i.e., the collection of subsets {S ∈ Si : P ⊆ S }. To this end G needs to obtain the
value of the kernel Ki of Si.

Since there is no guarantee that the kernel was fully queried (i.e., that Ki ⊆ Q), the global
decoder G enumerates over all possible assignments κ ∈ {0, 1}|Ki| to the kernel, and considers the
output of D′(i) on each local view S ∈ Si that consists of w restricted to a petal P ∈ P ′i and value
of κ.

Recall that for every fully-queried petal P ∈ P ′i and set S ∈ Si that contains P , we denote by
aS,κ the assignment to S whose petal assignment is w|P and kernel assignment is κ|S\P . Observe
that, by definition (see Construction 4.13), the global decoder G outputs the correct value xi if the
set of fully-queried petals P ′i is non empty, and the following conditions hold:

1. There exists a kernel assignment κ∗ such that for every fully-queried petal P ∈ P ′i and set
S ∈ Si that contains P , the relaxed local decoder D′(i) outputs the correct value xi given the
local view aS,κ∗ (i.e. fi(aS,κ∗) = xi).

2. For any other kernel assignment κ ∈ {0, 1}|Ki|, there exists a fully-queried petal P ∈ P ′i and
set S ∈ Si that contains P , such that D(i) outputs the correct value xi or aborts given the
local view aS,κ (i.e. fi(aS,κ) ∈ {xi,⊥}).

Note that the first item above guarantees that at least one kernel assignment will lead the global
decoder G to output the correct value xi, whereas the second item guarantees that with high
probability no kernel assignment will lead G to output the incorrect value ¬xi.

22

The next two claims establish that the foregoing conditions are satisfied and that P ′i is non-empty
with high probability. In the following, recall that `′ = O(1), and by Lemma 4.6, there exists s ∈ [`′]
and m = max{1, s− 1} such that, denoting t = cnm/`

′
, the collection Si is a t-daisy with a kernel

Ki of size at most `′ · n1−s/`′ and µi(Si) ≥ 1/`′.

Claim 4.15. There exists a kernel assignment κ∗ ∈ {0, 1}|Ki| such that the assignment aS,κ∗,
for every S ∈ Si containing a queried petal P ∈ P ′i, satisfies fi(aS,κ∗) = xi. Furthermore, P ′i is
non-empty with probability at least 9

10k .

Proof. The existence of the desired kernel assignment is straightforward, we begin by showing it,
and then proceed to the furthermore clause of the claim, which is the main part of the proof.

Set κ∗ to be the kernel assignment that coincides with w; that is κ = w|Ki . In this case, by
definition, for every S ∈ Si the assignment aS,κ∗ equals the local view w|S of the relaxed local
decoder D′(i), for a valid codeword w = C(x).

By the perfect completeness of D′, it holds that given query access to w = C(x), any local view
of D′ leads to outputting xi, and thus fi(aS,κ∗) = xi for all S ∈ Si. It remains to show that with
high probability there exists at least one petal of Si that was queried in the binomial sampling stage.

To this end, we next argue that not only Si has large measure, but that it also covers a large
fraction of the domain [n]. Recall that the weight that the local decoder D′(i) gives Si is larger
than the soundness error of D′(i), i.e., µi(Si) ≥ 1/`′ ≥ ε′. Thus, the fractional size of the set of all
elements covered by Si must be larger than the decoding radius δ (otherwise, replacing Si with the
values of a codeword that disagrees with xi will leave w within the decoding radius, and thus break
the soundness condition), i.e., |

⋃
S∈Si S| > δn.

Now, we can invoke Lemma 4.12 to “pluck” intersecting petals in the t-daisy Si, for t = cnm/`
′
,

where m = max{1, s−1}, and derive a subset that is a simple daisy (a 1-daisy). Namely, Lemma 4.12
implies that there exists a simple daisy S∗i ⊆ Si whose kernel is Ki (same as Si), such that

|S∗i | ≥
δn− |Ki|

ts2
≥ δn− `′ · n1−s/`′

cnm/`′s2
= Ω

(
n1−(m/`′)

)
.

Denote the set of petals of S∗i by P∗i , and note that |P∗i | ≥ (|
⋃
S∈S∗i

S| − |Ki|)/s = Ω(n1−(m/`′)) .
Observe that for any petal P ∈ P∗i , the probability of querying all s elements of P during the

binomial sampling step is ps = n−s/2`
′2

. Since S∗i contains d := Ω(n1−(m/`′)) pairwise disjoint petals,
the probability that no petal of S∗i was queried is

Pr[P∗i = ∅] = (1− ps)d =

(
1− 1

ns/(2`′2)

)Ω(n1−(m/`′))

≤ eΩ
(
−n1−m

`′ −
s

2`′2
)
≤ 1

10k
,

and so P ′i is non-empty with probability at least 9/(10k), concluding the proof of Claim 4.15.

Claim 4.16. For every kernel assignment κ ∈ {0, 1}|Ki|, with probability at least 1− 2−|Ki|

10k , there
exists a queried petal P ∈ P ′i and S ∈ Si containing P such that fi(aS,κ) ∈ {xi,⊥}.

Proof. Let κ ∈ {0, 1}|Ki| be a kernel assignment. By Lemma 4.6, the kernel Ki of the t-daisy Si
satisfies |Ki| ≤ `′ · n1−s/`′ . In particular, note that the fractional size of the kernel is smaller than
the decoding radius δ.

Recall that the global decoder G gets access to a perfectly valid codeword w = C(x), and
emulates query access to a string z that agrees with w outside of the kernel and with κ inside the

23

kernel (i.e., zj = wj for every j ∈ [n] \Ki, and z|Ki = κ). Since |Ki| ≤ δn, we have that z is within
the decoding radius of the relaxed local decoder D′.

By the relaxed decoding condition of D′, it holds that given query access to z, with probability
at least 1− ε′, the local view of z chosen by D′(i) will lead to either outputting the correct value xi
or the abort symbol ⊥; more precisely,

Pr
I∼µi

[fi(z|I) ∈ {xi,⊥}] ≥ 1− ε′ = 1− 1

`′2
. (4.3)

Recall that the global decoder relies on a subset (a t-daisy) Si of the local views of D′(i) to
perform the decoding. We argue that Si contains a high measure (according to µi) set of local
views that correspond to local views that will lead D′(i) to either outputting the correct value
xi or the abort symbol ⊥. To this end, let Gi ⊆ Si be the subset of all “good”S ∈ Si such that
fi(z|S) ∈ {xi,⊥}. Note that Gi is also a t-daisy with respect to the kernel Ki, where t = cnm/`

′
.

By Lemma 4.6, we have that µi(Si) ≥ 1/`′. Thus, Eq. (4.3) implies that

µi(Gi) ≥
1

`′
− 1

`′2
≥ ε′ . (4.4)

Similarly to the argument Claim 4.15, we observe that not only Gi has large measure, but that
it also covers a large fraction of the domain [n]. More accurately, by Eq. (4.4) we have that the
measure of Gi is larger than the soundness error ε′, and so |

⋃
S∈Gi S| > δn.

To see the above, observe that taking any valid codeword α that decodes to xi and replacing
only the contents of the daisy (of measure larger than the soundness error ε′) with the content of a
valid codeword β that decodes to ¬xi, results in a “hybrid” word γ that: (1) decodes to ¬xi with
probability larger than ε′ (because according to the construction, with probability larger than ε′ the
decoder’s local view consists of values from β); and (2) if the daisy does not cover a large fraction of
the domain (more than the decoding radius), then it is still within the decoding radius of α, which
means that, by the second condition of relaxed LDC, it should decode to {xi,⊥} with probability
at least 1 − ε′. In conclusion, if the daisy has measure larger than ε′, then it must cover a large
fraction (the decoding radius) of the domain.

We conclude the proof of the claim by showing that with probability at least 1− 2−|Ki|

10k there
exists a least one petal of Gi that was fully queried in the binomial sampling stage, via a similar
strategy as in Claim 4.15. To this end, we invoke Lemma 4.12 to obtain a simple daisy G∗i ⊆ Gi whose

kernel is Ki (same as the kernel of Gi and Si), such that |G∗i | ≥ Ω
(
n1−(m/`′)

)
, where m = s− 1. We

stress that here we use the fact that the simple daisy lemma (Lemma 4.12) has a stronger conclusion
for the special case where s = 1. Denote the set of petals of G∗i by P∗i , and note that.

|P∗i | =
⋃
G∈G∗i

|G| − |Ki|
s

= Ω
(
n1−(m/`′)

)
.

Observe that for any petal P ∈ P∗i , the probability of querying all s elements of P during the

binomial sampling step is ps = n−s/2`
′2

. Since G∗i contains d := Ω(n1−(m/`′)) pairwise disjoint petals
and |Ki| ≤ `′ · n1−s/`′ , the probability that no petal of G∗i was queried is

Pr[P∗i = ∅] = eΩ
(
−n1− s−1

`′ −
s

2`′2
)
≤ 2−|Ki|

10k
,

which proves Claim 4.16.

24

Wrapping up the argument, for any i ∈ [k], by Claim 4.15, there exists a kernel assignment
for Ki such that with probability 9/(10k) there is a fully queried petal P ∈ P ′i that leads D′(i) to
output the correct value (i.e., there exists S ∈ Si that contains the fully queried petal P such that
fi(aS,κ∗) = xi).

Furthermore, for any i ∈ [k], by Claim 4.16 we have that for any kernel assignment for Ki, with

probability at least 1− 2−|Ki|

10k , there is a fully queried petal P ∈ P ′i that leads D′(i) to either output
the correct value or abort (i.e., there exists S ∈ Si that contains the fully queried petal P such that
fi(aS,κ∗) ∈ {xi,⊥}). Taking a union bound over all possible kernel assignments κ ∈ {0, 1}|Ki|, we
get that with probability at least 9/(10k), there is a set of fully queried petals {Pi ∈ P ′i }i∈[k] such

that for every i ∈ [k], the petal Pi leads D′(i) to either output the correct value or abort.
We thus showed that for every i ∈ [k], the probability that the global decoder G fails to decode

the message bit xi is at most 1/10k. Finally, taking another union bound over all decoding indices
i ∈ [k], we obtain that the foregoing holds for all i ∈ [k] simultaneously with probability at least
9/10. This concludes the proof of Lemma 4.14.

4.5 Deriving the lower bound

Recall that we have started with an `-local relaxed LDC C : {0, 1}k → {0, 1}n with a constant
decoding radius δ and constant locality `, and that we wish to show that the blocklength of C
satisfies n = Ω

(
k1+α

)
, where α = α(`, δ) is a constant.

So far, we have shown the there exists a global decoder G for the code C, which with probability
2/3 decodes the entire message of a perfectly valid codeword, using O(n1−1/2`′2) samples, where
`′ = O(2` · log(`)). The following simple claim shows that decoding an entire codeword requires a
least a number of queries that is linear in the dimension of the code.

Claim 4.17. Let C : {0, 1}k → {0, 1}n be a code. If there exists a randomised algorithm A that
makes q queries to a codeword C(x), for some x ∈ {0, 1}k, such that Pr

[
AC(x) = x

]
≥ 2/3, then

q ≥ k.

Proof. Suppose towards contradiction that the number of queries that A makes is at most k − 1.
We use (the easy direction of) Yao’s minimax principle to show that this implies that A returns the
wrong answer with probability at least 1/2, in contradiction to the claim’s hypothesis. To this end,
it suffices to show that there exists a distribution D over n-bit strings on which every deterministic
algorithm that makes at most k − 1 queries errs with probability at least 1/2.

The distribution D is defined by simply selecting uniformly at random a message x ∈ {0, 1}k
and outputting C(x). Let B be a deterministic algorithm that receives an input w drawn from D
and makes at most k − 1 queries to w.

Let I be the set of queries that the deterministic algorithm makes. Note that I is deterministically
fixed and |I| ≤ k − 1. After querying the indices in I, the algorithm B can be described by a
(deterministic) mapping f from 2|I| to 2k, which maps the local view w|I to a k-bit message. Since
|I| ≤ k − 1, the range of f is of size at most 2k−1, and so it contains at most half of the possible
values of x. Thus, with probability at least 1/2 the input C(x) drawn from D corresponds to an
x ∈ {0, 1}k that is not in the range of f , and hence B errs.

Applying Claim 4.17 with respect to the global decoder G implies that n = Ω(k2`′2/(2`′2−1)),
which concludes the proof of Theorem 1.

25

Acknowledgements

We are grateful to Oded Goldreich for numerous insightful comments and suggestions that sig-
nificantly improved the exposition of this paper. We thank Arnab Bhattacharyya and Sivakanth
Gopi for a helpful discussion regarding LDC and LCC lower bounds. We thank Noga Ron-Zewi for
extended discussions on constructions of relaxed LDCs. We thank Marcel De Sena Dall’Agnol for
helpful comments regarding earlier versions of this manuscript. We thank the anonymous reviewers
for various suggestions that contributed to the exposition of the results and proofs.

References

[BDG17] Jop Briët, Zeev Dvir, and Sivakanth Gopi. Outlaw distributions and locally decodable
codes. In 8th Innovations in Theoretical Computer Science Conference, ITCS 2017,
January 9-11, 2017, Berkeley, CA, USA, pages 20:1–20:19, 2017.

[BDSS11] Arnab Bhattacharyya, Zeev Dvir, Amir Shpilka, and Shubhangi Saraf. Tight lower
bounds for 2-query LCCs over finite fields. In 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 638–647, 2011.

[BDYW11] Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design
matrices with applications to combinatorial geometry and locally correctable codes.
In Proceedings of the forty-third annual ACM Symposium on Theory of Computing
(STOC), pages 519–528, 2011.

[BGGZ18] Jeremiah Blocki, Venkata Gandikota, Elena Grigorescu, and Samson Zhou. Relaxed
locally correctable codes in computationally bounded channels. In 45th International
Colloquium on Automata, Languages, and Programming (ICALP 2018), 2018.

[BGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs and applications to coding. In Proceedings of
the 36th Annual ACM Symposium on Theory of Computing (STOC), 2004.

[BGT16] Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal. Lower bounds for 2-query
LCCs over large alphabet. arXiv preprint arXiv:1611.06980, 2016.

[CG18] Clément L. Canonne and Tom Gur. An adaptivity hierarchy theorem for property
testing. Computational Complexity, 27(4):671–716, 2018.

[CGdW09] Victor Chen, Elena Grigorescu, and Ronald de Wolf. Efficient and error-correcting data
structures for membership and polynomial evaluation. arXiv preprint arXiv:0909.3696,
2009.

[DGL21] Marcel Dall’Agnol, Tom Gur, and Oded Lachish. A structural theorem for local algo-
rithms with applications to coding, testing, and privacy. 32nd ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2021.

[DH13] Irit Dinur and Prahladh Harsha. Composition of low-error 2-query PCPs using decodable
PCPs. SIAM J. Comput., 42(6):2452–2486, 2013.

26

[DJK+02] Amit Deshpande, Rahul Jain, Telikepalli Kavitha, Satyanarayana V Lokam, and Jaiku-
mar Radhakrishnan. Better lower bounds for locally decodable codes. In Proceedings
17th IEEE Annual Conference on Computational Complexity, pages 184–193. IEEE,
2002.

[DSW17] Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Superquadratic lower bound for
3-query locally correctable codes over the reals. Theory of Computing, 13(1):1–36, 2017.

[Efr12] Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J.
Comput., 41(6):1694–1703, 2012.

[FLV15] Eldar Fischer, Oded Lachish, and Yadu Vasudev. Trading query complexity for sample-
based testing and multi-testing scalability. In Proceedings of the IEEE 56th Annual
Symposium on Foundations of Computer Science (FOCS), 2015.

[GG16] Oded Goldreich and Tom Gur. Universal locally verifiable codes and 3-round interactive
proofs of proximity for CSP. Electronic Colloquium on Computational Complexity
(ECCC), 23:192, 2016.

[GG18] Oded Goldreich and Tom Gur. Universal locally testable codes. Chicago J. Theor.
Comput. Sci., 2018.

[GGK15] Oded Goldreich, Tom Gur, and Ilan Komargodski. Strong locally testable codes with
relaxed local decoders. In 30th Conference on Computational Complexity, CCC 2015,
June 17-19, 2015, Portland, Oregon, USA, 2015.

[GKST02] Oded Goldreich, Howard Karloff, Leonard J Schulman, and Luca Trevisan. Lower bounds
for linear locally decodable codes and private information retrieval. In Proceedings 17th
IEEE Annual Conference on Computational Complexity, pages 175–183, 2002.

[Gol04] Oded Goldreich. Short locally testable codes and proofs. In ECCC (later appeared in
Property Testing 2010), 2004.

[Gol17] Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.

[GR18] Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. Computational
Complexity, 27(1):99–207, 2018.

[GRR18] Tom Gur, Govind Ramnarayan, and Ron D. Rothblum. Relaxed locally correctable
codes. In 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, pages 27:1–27:11, 2018.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear
length. Journal of the ACM (JACM), 53(4):558–655, 2006.

[GS10] Oded Goldreich and Or Sheffet. On the randomness complexity of property testing.
Computational Complexity, 19(1), 2010.

[HSX+12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit Gopalan,
Jin Li, and Sergey Yekhanin. Erasure coding in Windows Azure storage. In Presented
as part of the 2012 USENIX Annual Technical Conference, pages 15–26, 2012.

27

[KdW04] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. Journal of Computer and System Sciences,
69(3):395–420, 2004.

[KS17] Swastik Kopparty and Shubhangi Saraf. Local testing and decoding of high-rate error-
correcting codes. Electronic Colloquium on Computational Complexity (ECCC), 24:126,
2017.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In Proceedings of the 32nd Annual ACM Symposium on Theory
of Computing (STOC), 2000.

[KV10] Tali Kaufman and Michael Viderman. Locally testable vs. locally decodable codes.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 670–682. Springer, 2010.

[Mei09] Or Meir. Combinatorial construction of locally testable codes. SIAM Journal on
Computing, 39(2):491–544, 2009.

[MR10] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM,
57(5):29:1–29:29, 2010.

[Oba02] Kenji Obata. Optimal lower bounds for 2-query locally decodable linear codes. In
International Workshop on Randomization and Approximation Techniques in Computer
Science, pages 39–50. Springer, 2002.

[Tre04] Luca Trevisan. Some applications of coding theory in computational complexity. Elec-
tronic Colloquium on Computational Complexity (ECCC), 2004.

[Vid13] Michael Viderman. Strong ltcs with inverse poly-log rate and constant soundness. In
2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS),
pages 330–339. IEEE, 2013.

[WdW05] Stephanie Wehner and Ronald de Wolf. Improved lower bounds for locally decodable
codes and private information retrieval. In International Colloquium on Automata,
Languages, and Programming, pages 1424–1436. Springer, 2005.

[Woo12] David P. Woodruff. A quadratic lower bound for three-query linear locally decodable
codes over any field. Journal of Computer Science and Technology, 27(4):678–686, 2012.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. J.
ACM, 55(1):1:1–1:16, 2008.

[Yek12] Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical
Computer Science, 6(3):139–255, 2012.

28

