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GIBBS MEASURE DYNAMICS FOR THE FRACTIONAL NLS

CHENMIN SUN, NIKOLAY TZVETKOV

Abstract. We construct global solutions on a full measure set with respect to the Gibbs
measure for the one dimensional cubic fractional nonlinear Schrödinger equation (FNLS)

with weak dispersion (−∂2
x)

α/2, α < 2 by quite different methods, depending on the
value of α. We show that if α > 6

5
, the sequence of smooth solutions for FNLS with

truncated initial data converges almost surely, and the obtained limit has recurrence
properties as the time goes to infinity. The analysis requires to go beyond the available
deterministic theory of the equation. When 1 < α ≤ 6

5
, we are not able so far to get

the recurrence properties but we succeeded to use a method of Bourgain-Bulut to prove
the convergence of the solutions of the FNLS equation with regularized both data and
nonlinearity. Finally, if 7

8
< α ≤ 1 we can construct global solutions in a much weaker

sense by a classical compactness argument.

1. Introduction

1.1. Motivation. Invariant Gibbs measures for Hamiltonian PDE’s were extensively stud-
ied in the last 35 years. These studies aim to provide macroscopic properties for these
PDE’s. They have several perspectives. One of them (see the introduction of the seminal
paper [24]) is the extension of the recurrence properties of the solutions of Hamiltonian
PDE’s from integrable to non integrable models. Another (see [4, 5, 6, 7, 8, 10, 11, 12,
17, 18, 19, 21, 30, 31, 33, 34, 35, 36, 42, 43, 44, 45]) is the construction of low regularity
solutions. As a consequence of the above mentioned works, when considering the initial
value problem of a Hamiltonian PDE for initial data on the support of the Gibbs measure,
we now have methods to get weak solutions, to prove uniqueness of weak solutions and to
get strong solutions (leading to recurrence properties). It turns out that all these methods
can be naturally applied in the context of the fractional NLS which is the goal of this
article. It will be revealed that the strength of the dispersion will crucially influence on
the nature of the obtained solutions. Our results leave the picture incomplete, several
interesting problems remain to be understood.

1.2. The fractional nonlinear Schrödinger equation. We are interested in the one
dimensional defocusing cubic fractional nonlinear Schrödinger equation (FNLS)

(1.1) i∂tu+ |Dx|αu+ |u|2u = 0, (t, x) ∈ R× T,

where u is complex-valued and |Dx|α = (−∂2x)α/2 is defined as the Fourier-multiplier
̂|Dx|αf(n) = |n|αf̂(n). The parameter α measures the strength of the dispersion. The
equation (1.1) is a Hamiltonian system with conserved energy functional

H(u) =

∫

T

||Dx|
α
2 u|2dx+

1

2

∫

T

|u|4dx .
1
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Moreover, the mass M(u) =
∫
T
|u|2dx is also conserved along the flow of (1.1). The

fractional Schrödinger equations was introduced in the theory of the fractional quantum
mechanics where the Feynmann path integrals approach is generalized to α-stable Lévy
process [29]. Also, it appears in the water wave models (see [27] and references therein).
Finally, we refer to [28] where the fractional NLS on the line appears as a limit of the
discrete NLS with long range interactions.

1.3. Construction of the Gibbs measure. Roughly speaking, our aim in this article
is to study how much dispersion α is needed to construct an invariant Gibbs measure for
(1.1). There are two aspects of the analysis. The first is the construction of the Gibbs
measure, and the second is the construction of a dynamics on the support of the measure,
leading to invariance of the Gibbs measure. In this subsection, we discuss the measure
construction.

Let (gn)n∈Z be a sequence of independent, standard complex-valued Gaussian random
variables on a probability space (Ω,F ,P). Let us consider the Gaussian measure µ on

H
α−1
2

−ǫ(T) for any ǫ > 0, induced by the map

(1.2) ω 7−→
∑

n∈Z

gn(ω)

[n]
α
2

einx,

where [n]
α
2 = (1 + |n|α) 1

2 . Set EN = span{einx : |n| ≤ N}. We denote by

ΠN : H
α−1
2

−ǫ(T) −→ EN

the corresponding projection.

If α > 1, it is well-known that for 0 ≤ σ < α−1
2 , ‖|D|σu‖L∞(T) is µ-almost surely finite.

Then the Gibbs measure ρ associated with (1.1) is

dρ(u) = e−V (u)dµ(u), V (u) =
1

2
‖u‖4L4(T).

Formally, the measure ρ can be seen as Z−1 exp(−H(u)−M(u))du.

However, if α ≤ 1, due to the fact that ‖u‖L4(T) = ∞, µ-almost surely, a renormalization
is needed, as described for instance in [11] for the case α = 1. More precisely, we set

αN = Eµ

[
‖ΠNu‖2L2(T)

]

and

fN(u) =
1

2
‖ΠNu‖4L4(T) − 2αN‖ΠNu‖2L2 + α2

N .

Further, we define

dρN (u) = βNe
−fN (u)dµ(u),

where βN is chosen so that ρN is a probability measure. Denote by

HN (u) = ‖|Dx|
α
2 u‖2L2 + fN (u)



GIBBS MEASURE DYNAMICS FOR THE FRACTIONAL NLS 3

the renormalized Hamiltonian functional, and the associated Hamiltonian equation

i∂tu =
δHN

δu

reads

i∂tuN + |Dx|αuN + FN (uN ) = 0,

where FN stands for

FN (uN ) = ΠN (|uN |2uN )− 2αNuN .

Similarly to [11], we will prove the following statement.

Proposition 1.1. Assume that α ∈
(
7
8 , 1

]
and 1 ≤ p < ∞. Then the sequence (fN )N≥1

converges in Lp(dµ(u)) to some limit denoted by f(u). Moreover,

e−f(u) ∈ Lp(dµ(u)).

Therefore, we can define a probability measure ρ by

dρ(u) = C∞e
−f(u)dµ(u).

The lower bound α > 7
8 is by no means optimal, here we perform the simplest argu-

ment we found providing a framework for weak solutions techniques. Since α > 1
2 is the

threshold for the renormalization of the squre of (1.2), we expect that the construction of
the Gibbs measure can be performed for any α > 1

2 .

Observe that the measures µ and ρ depend on α but for conciseness we omit the explicit
mentioning of this dependence.

1.4. Weak solutions. The measure construction of the previous subsection essentially
implies the existence of weak solutions of (1.1) as we explain below. Consider

(1.3) i∂tu+ |Dx|αu+ΠN (|u|2u) = 0, u|t=0 =
∑

|n|≤N

gn(ω)

[n]
α
2

einx .

The projection of the equation (1.3)onto EN is a Hamiltonian ODE with a conserved
energy

HN (u) =

∫

T

|ΠNu|2dx+
1

2

∫

T

|ΠNu|4dx .

Hence for any fixed N , (1.3) has almost surely a unique global solution uωN . We have the
following statement.

Theorem 1. Assume that α > 1 and σ < α−1
2 . There is a subsequence (Nk)k∈N, Nk → ∞

of (1, 2, 3, · · · ) and a sequence of C(R;Hσ(T)) valued random variables (ũNk
)k∈N with the

same law as (uωNk
)k∈N such that (ũNk

)k∈N converges a.s. in C(R;Hσ(T)) to some limit

u which solves (1.1) in the distributional sense. Moreover, ρ is invariant under the map
u(0) 7→ u(t), t ∈ R.

For α ≤ 1 we get convergence only after a renormalisation. Here is the precise statement.
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Theorem 2. Assume that α ∈
(
7
8 , 1

]
and σ < α−1

2 . Then there is a divergente sequence
of real numbers (cN )N∈N, there is a subsequence (Nk)k∈N, Nk → ∞ of (1, 2, 3, · · · ) and a
sequence of C(R;Hσ(T)) valued random variables (ũNk

)k∈N with the same law as (uωNk
)k∈N,

such that the sequence (eitcNk ũNk
)k∈N converges a.s. in C(R;Hσ(T)) to some limit u.

Moreover, ρ defined by Proposition 1.1 is invariant under the map u(0) 7→ u(t), t ∈ R.

1.5. Uniqueness of the weak solutions. In the case α > 1 we can strongly improve
Theorem 1 by showing that almost surely, the whole sequence (uN )N∈N of solutions to
(1.3) converges1 (without changing it).

Theorem 3. Assume that α > 1 and σ < α−1
2 . The sequence (uωN )N∈N of solutions of

(1.3) converges a.s. in C(R;Hσ(T)) to some limit u which solves (1.1) in the distributional
sense. Moreover, ρ is invariant under the map u(0) 7→ u(t), t ∈ R.

The proof of Theorem 3 uses a method introduced by Bourgain-Bulut in [6, 7, 8]. We
also mention that similar arguments were used by N. Burq and the second author in the
context of the probabilistic continuous dependence with respect to the initial data for the
nonlinear wave equation with data of super-critical regularity (see [14]).

We point out that in Theorems 1, 2, 3 we do not show that the obtained limit satisfy
the flow property which prevents us to apply the Poincaré recurrence theorem.

1.6. Strong solutions. In this article we call strong solutions these solutions which are
the unique limits of smooth solutions of (1.1), satisfying the flow property. For that
purpose we need to define the global flow of (1.1) for smooth data. The following theorem
of J. Thirouin assures the global well-posedness of (1.1) for smooth data.

Theorem 4 ([40]). Assume that α > 2
3 . Then for every u0 ∈ C∞(T) there is a unique

solution u ∈ C(R;C∞(T)) of

i∂tu+ |Dx|αu+ |u|2u = 0, u|t=0 = u0.

Moreover, the flow map has a unique extension to the energy space H
α
2 (T).

In view of Theorem 4 and the remarkable recent work by F. Flandoli on the Euler
equation [22] one may ask whether it is possible to construct weak solutions for α ∈ (78 , 1]
by using the smooth solutions of Theorem 4 as an approximation sequence (compare with
Theorem 1 and Theorem 2).

It tuns out that if the dispersion is slightly stronger than α > 1, we have the following
convergence result.

Theorem 5. Assume that α > 6
5 and σ < α−1

2 . Then the sequence of smooth solutions
(uN )N∈N of

i∂tuN + |Dx|αuN + |uN |2uN = 0, u|t=0 =
∑

|n|≤N

gn(ω)e
inx

[n]
α
2

,

1In an appendix we shall extend Theorem 3 to higher dimensions.



GIBBS MEASURE DYNAMICS FOR THE FRACTIONAL NLS 5

defined by Theorem 4 converges almost surely in C(R;Hσ(T)) to a limit which solves (1.1)
in the distributional sense.

More importantly, the unique limit satisfies the flow property. The following statement
is essentially a more precise formulation of Theorem 5.

Theorem 6. Assume that α > 6
5 . There exists a measurable set Σ of full ρ measure, so

that for any φ ∈ Σ, the Cauchy problem

i∂tu+ |Dx|αu+ |u|2u = 0, u|t=0 = φ

has a global solution such that

u(t, ·)− e
it
π
‖φ‖2

L2(T)eit|Dx|αφ ∈ C(R;Hs(T))

for some s ∈
(
1
2 − α

4 , α − 1
)
. The solution is unique in the sense that for every T > 0,

(1.4) e
− it

π
‖φ‖2

L2(T)u(t, ·)− eit|Dx|αφ ∈ Xs,b
T , b > 1/2,

where Xs,b
T is the Bourgain space localized on [−T, T ] (see (2.1) below). If we denote by

Φ(t) the solution map then Φ(t) satisfies:

Φ(t)(Σ) = Σ, ∀t ∈ R and Φ(t1) ◦ Φ(t2) = Φ(t1 + t2), ∀t1, t2 ∈ R.

Moreover, for all σ < α−1
2 and t ∈ R,

‖u(t, ·)‖Hσ (T) ≤ Λ(φ) log3(1 + |t|),
where Λ(φ) is a constant depending on φ ∈ Σ. Finally, for any ρ measurable set A ⊂ Σ
and for any t ∈ R, ρ(A) = ρ(Φ(t)A).

If α > 4
3 , from the deterministic local well-posedness result in [15], the proof of Theo-

rem 6 is much easier, see [18]. In fact, FNLS is known to be locally well-posed for initial
data in Hs(T) with s ≥ 1

2 − α
4 . If α > 4

3 , we have α−1
2 > 1

2 − α
4 . Since the initial data is

µ-a.s. supported on H
α−1
2

−(T), the deterministic theory applies. However, if 6
5 < α ≤ 4

3
then we need to prove a new probabilistic local well-posedness result. We conjecture
that it is possible to extend Theorem 6 to the range α > 1 by adapting a more involved
resolution ansatz (see Remark 5.2 below). We will address this issue in a forthcoming work.

For α > 1, a typical function with respect to µ is an L∞ function. As a consequence,
if we were dealing with a similar problem for a parabolic PDE then thanks to the nice
L∞ mapping properties of the heat flow the analysis would become essentially trivial. On
the other hand, since we are dealing with a dispersive PDE, the linear problem is only
well-posed in L2 in the scale of the Lp spaces which makes that even at positive regu-
larities, refined detereministic estimates and probabilistic considerations are essential in
the analysis. A similar comment applies in the context of [13, 14] and all subsequent works.

The proof of Theorem 6 is divided into two parts. Firstly, we need to establish a local
well-posedness theory. For this, we follow the roadmap of [5] (see also the subsequent



6 CHENMIN SUN, NIKOLAY TZVETKOV

works [16], [32]). An important new feature is that in sharp contrast with the case α = 2,
for a general α, the values of

|n1|α − |n2|α + |n3|α − |n1 − n2 + n3|α, n1, n2, n3 ∈ Z

may be dense in an interval of size 1. This causes losses of regularity which are delicate to

control. We also emphasize that the phase factor e
− it

π
‖φ‖2

L2(T) in (1.4) makes the unique-
ness class different from [5, 16, 32]. Secondly, we need to extend the local solution to the
global one and to prove the invariance of the good data set Σ along the flow by using the
measure invariance argument introduced by Bourgain in [4]. Compared with the existing
literature (see for example [10, 12, 38] and references therein), the smoother part in the
Bourgain space does not belong to the initial data space. This fact makes the choice of
the Σ more delicate. In particular, we make use of spaces with sum structure.

As a consequence of Theorem 6 and the Poincaré recurrence theorem, we get the fol-
lowing statement (we consider Σ equipped with the topology inherited by the separable
space Hσ(T)).

Corollary 1.2. In the context of Theorem 6 for µ almost every u0 ∈ Σ and all t ∈ R,
there is a subsequence (nk)k∈N, nk → ∞ of (1, 2, 3, · · · ) , such that the solution of

i∂tu+ |Dx|αu+ |u|2u = 0, u|t=0 = u0

satisfies

lim
nk→∞

‖u(nkt)− u0‖Hσ(T) = 0, σ <
α− 1

2
.

Another application of the flow property is the following stability result.

Corollary 1.3. Let f1, f2 ∈ L1(dµ) and let Φ(t) be the flow of

i∂tu+ |Dx|αu+ |u|2u = 0, u|t=0 = u0

defined µ a.s. Then for every t ∈ R, the transports of the measures

f1(u)dµ(u), f2(u)dµ(u)

by Φ(t) are given by
F1(t, u)dµ(u), F2(t, u)dµ(u)

respectively, for suitable F1(t, ·), F2(t, ·) ∈ L1(dµ). Moreover

‖F1(t, ·)− F2(t, ·)‖L1(dµ) = ‖f1 − f2‖L1(dµ) .

Corollary 1.3 describes a general feature. A similar statement holds each time we
deal with a PDE defining a flow under which a measure is quasi-invariant. For example,
thanks to a recent work by Forlano-Trenberth the result of Corollary 1.3 remains true if
the measure µ is replaced by the measure induced by the map

ω 7−→
∑

n∈Z

gn(ω)

(1 + |n|s) 1
2

einx,

for s > α large enough. We refer to [23] for the precise restriction on s. There is a gap
between the best s and α leaving an interesting open problem.
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Remark 1.4. As already mentioned, it is not clear to us how to get the the flow property
described by Theorem 6 by the method of Bourgain-Bulut. At the present moment, in
the case α ∈ (1, 65 ] we only know how to prove almost sure convergence of the solutions of
the ODE’s :

i∂tu+ |Dx|αu+ΠN (|ΠNu|2ΠNu) = 0, u|t=0 =
∑

n∈Z

gn(ω)

[n]
α
2

einx.

A similar comment applies to [6, 7, 8].

This article is organized as follows. In Section 2, we collect some preliminaries including
the bilinear Strichartz inequality for the fractional NLS which has its own interest. From
Section 3 to Section 6, we deal with the case α > 6

5 and prove Theorem 5 and Theorem 6.
More precisely, in Section 3 we prove the probabilistic local well-posedness by assuming the
crucial deterministic and probabilistic tri-linear estimates which will be proved in Section
4 and Section 5. Then in Section 6, we detail the globalization procedure which allows us
to obtain interesting dynamical properties, i.e. Corollary 1.2 and Corollary 1.2. Section 7
is devoted to the proof of Theorem 3 by using the argument of Bourgain-Bulut. In Section
8 we deal with the case α < 1 and prove Theorem 2 by standard Nelson type argument and
probabilistic compactness method. Finally we add an appendix to generalize the Bourgain-
Bulut argument to high dimensional fractional NLS on any compact Riemannian manifold
without boundary.

Acknowledgements. The authors are supported by the ANR grant ODA (ANR-18-
CE40- 0020-01). We would like to thank Sahbi Keraani for his comments while the first
author visited the Laboratoire Paul Painlevé of Lille University. We are grateful to Phil
Sosoe for several nice discussions while the authors visited Cornell University, in particular
for pointing out the reference [24].

2. Preliminaries

2.1. Calculus inequalities.

Lemma 2.1 ([23]). If n1 − n2 + n3 − n = 0, we define the resonant function Φ(n) :=
|n1|α − |n2|α + |n3|α − |n|α. If {n1, n3} 6= {n2, n}, Φ(n) never vanishes. Moreover,

|Φ(n)| & |n1 − n2||n2 − n3||n|α−2
max ,

where |n|max = max{|n1|, |n2|, |n3|, |n|}.
Proof. See Lemma 2.1 of [23]. �

Lemma 2.2. Let a > 1 ≥ b ≥ 0 with a+ b > 1. Then there exists C > 0, such that∫

R

dy

〈x− y〉a〈y〉b ≤ C

〈x〉b ,

for any x ∈ R.

Proof. We break the integral into
∫
|y|≤|x|/2 and

∫
|y|>|x|/2. When |y| ≤ |x|/2, we have

∫

|y|≤|x|/2

dy

〈x− y〉a〈y〉b ≤ C〈x〉−a+1−b log〈x〉 ≤ C〈x〉−b.
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When |y| > |x|/2, we have
∫

|y|>|x|/2

dy

〈x− y〉a〈y〉b ≤ C〈x〉−b.

�

Lemma 2.3. Assume that 1
2 < β ≤ 1, then for all γ < 2β − 1, there exists Cγ > 0, such

that for any a ∈ R,
∑

n∈Z

1

〈n〉β〈n− a〉β ≤ Cγ
〈a〉γ .

Proof. We cut the sum in two parts
∑

|n|≤|a|/2
〈n〉−β〈n− a〉−β +

∑

|n|>|a|/2
〈n〉−β〈n− a〉−β .

Then the first term can be majorized by

C〈a〉−β
∑

|n|≤ |a|
2

〈n〉−β ≤ C〈a〉1−2β log〈a〉.

The second term can be bounded by Cγ〈a〉−γ , thanks to 2β − 1 > 0. �

2.2. Strichartz estimates and applications. We proceed by the standard argument
reducing the L4 Strichartz estimate to a counting lemma. Denote by

Sα(t) = eit|Dx|α

the Schrödinger semi-group. Recall that the Bourgain space Xs,b is associated with the
norm

‖u‖2Xs,b :=

∫

R

∑

n∈Z
〈n〉2s〈τ − |n|α〉2b|û(τ, n)|2dτ.

For finite time interval I ⊂ R, the localized Bourgain space Xs,b
I is defined via the norm

(2.1) ‖u‖
Xs,b

I
:= inf {‖v‖Xs,b : v|I = u} .

We will also use the notation Xs,b
T to stand for Xs,b

[−T,T ]. We have the following standard

statements.

Lemma 2.4 ([39]). Let η ∈ S(R). Then for 0 < T < 1, s ∈ R and −1
2 < b′ ≤ b < 1

2 , we
have the estimate

‖η(t/T )u‖Xs,b′ . T b−b
′‖u‖Xs,b .

Lemma 2.5 ([25]). Let η ∈ S(R). Then for s ∈ R, 1 > b > 1
2 , we have the estimate

∥∥∥η(t)
∫ t

0
Sα(t− t′)F (t′)dt′

∥∥∥
Xs,b

. ‖F‖Xs,b−1 .
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Now we are going to derive some linear and bilinear Xs,b estimates. Define the set of
integers

Aa,l,N1,N2(r) := {k ∈ Z : N1 ≤ |k| ≤ 2N1, N2 ≤ |a− k| ≤ 2N2, ||k|α + |a− k|α − l| ≤ r}
and Aa,l,N (r) := Aa,l,N,N (r). For a dyadic number N ≥ 1, we denote by PN the Fourier
projector on

N ≤ 〈n〉 ≤ 2N.

For an interval J ⊂ R, we denote by PJ the Fourier projector:

P̂Jf(n) = 1J(n)f̂(n).

We have the following estimate.

Lemma 2.6. For any finite time interval I ⊂ R, there exists C > 0, depending only on
|I|, such that

‖Sα(t)PNf‖2L4(I;L4(T)) ≤ C sup
a,l

(
#Aa,l,N (1/2)

)1/2‖PNf‖2L2(T).

Proof. We use an almost orthogonality argument in the time variable. Without loss of
generality, we assume that I = [0, 1] and f = PNf . From a direct computation, we have

(2.2) ‖Sα(t)f‖2L4(I;L4
x)

=
(∑

a∈Z
‖ga(t)‖2L2

t (I)

)1/2
,

where

ga(t) =
∑

k∈Z
f̂(k)f̂(a− k)eitϕa(k), ϕa(k) = |k|α + |a− k|α.

We fix φ ∈ C∞
c (Ĩ), such that φ|I ≡ 1 where Ĩ is a slight enlargement of I. Thus

∫

I
|ga(t)|2dt ≤

∫

R

φ(t)
∣∣∣
∑

k

f̂(k)f̂ (a− k)eitϕa(k)
∣∣∣
2
dt

=

∫

R

φ(t)
∣∣∣
∑

l

∑

k:|ϕa(k)−l|≤ 1
2

f̂(k)f̂(a− k)eitϕa(k)
∣∣∣
2
dt

=
∑

l,l′

∑

|ϕa(k)−l|≤ 1
2

∑

|ϕa(k′)−l′|≤ 1
2

f̂(k)f̂(a− k)f̂(k′)f̂(a− k′)φ̂(ϕa(k
′)− ϕa(k))

≤C
∑

l,l′

1

1 + |l − l′|2
∑

k,k′

1Aa,l,N (1/2)(k)1Aa,l′,N (1/2)(k
′)|F (a, k)F (a, k′)|,

where F (a, k) = f̂(k)f̂(a− k) (here we use a slight abuse of notation : by |ϕa(k)− l| ≤ 1
2 ,

we mean −1
2 < ϕa(k) − l ≤ 1

2).

Now, by Schur’s test, we arrive at
∫

I
|ga(t)|2dt ≤ C

∑

l

∣∣∣
∑

k

1Aa,l,N (1/2)(k)|F (a, k)|
∣∣∣
2
.
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Therefore, by Cauchy-Schwarz, we have

(2.2) ≤C
(∑

a,l

∣∣∣
∑

k

1Aa,l,N (1/2)(k)|f̂(k)f̂ (a− k)|
∣∣∣
2)1/2

≤C
(∑

l,a

∑

k

|f̂(k)f̂(a− k)|21Aa,l,N (1/2)(k)#(Aa,l,N (1/2))
)1/2

≤C sup
a,l

(
#Aa,l,N (1/2)

)1/2‖f‖2L2(T).

This completes the proof of Lemma 2.6. �

We shall use the following elementary lemma.

Lemma 2.7. Let I, J be two intervals and ϕ be a C1 function, then

#{k ∈ J ∩ Z : ϕ(k) ∈ I} ≤ 1 +
|I|

infξ∈J |ϕ′(ξ)| .

Proposition 2.8. For r ≥ 1
100and 1 < α < 2, we have

#Aa,l,N1,N2(r) ≤ Cmin(N1, N2)
1−α

2 r1/2.

Proof. First we assume that N1 ≪ N2 (a similar argument applies in the case N2 ≪
N1). Then for ϕa(ξ) = |ξ|α + |a − ξ|α, we have |ϕ′

a(ξ)| & Nα−1
2 . From Lemma 2.7,

we have #Aa,l,N1,N2(r) . rN
−(α−1)
2 + 1. On the other hand, we have the trivial bound

#Aa,l,N1,N2(r) . N1. We can conclude in this case since

min(N1, rN
−(α−1)
2 + 1) . N

1−α
2

1 r1/2.

Now we assume that N1 ∼ N2 ∼ N . If r & Nα, we have the trivial estimate

#Aa,l,N(r) . N . N1−α
2 r

1
2 .

Now we assume that r ≪ Nα. Let 0 < θ < 1 to be chosen later. We have

#Aa,l,N (r) = #A1(θ) + #A2(θ) + #A3(θ),

where

A1(θ) = Aa,l,N (r) ∩ {k : |k − a/2| ≤ θ−1},
A2(θ) = Aa,l,N (r) ∩ {k : |k − a/2| > θ−1, k(a− k) < 0},
A3(θ) = Aa,l,N (r) ∩ {k : |k − a/2| > θ−1, k(a− k) ≥ 0}.

We have trivially that #A1(θ) ≤ 2θ−1. If ξ and a− ξ have different signs, we have

|ϕ′
a(ξ)| = α

∣∣|ξ|α−1 + |a− ξ|α−1
∣∣ & Nα−1.

Thus #A2(θ) . rN1−α. If ξ and a− ξ have the same signs, we deduce that

|ϕ′
a(ξ)| = α||ξ|α−1 − |a− ξ|α−1| & |2a− ξ|

max{|ξ|2−α, |a− ξ|2−α} ≥ θ−1

N2−α ,
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hence #A3(θ) . rθN2−α. Therefore,

#Aa,l,N (r) . θ−1 + rθN2−α + rN1−α.(2.3)

If r ≪ Nα, we choose θ such that the first two terms have the same size. Therefore,
θ = r−1/2N

α
2
−1. It follows that #Aa,l,N (r) ≤ N1−α

2 r1/2, where we used the fact that
r ≪ Nα, in order to estimate the third term in the r.h.s. of (2.3). This completes the
proof of Proposition 2.8. �

Corollary 2.9. Let 1 < α ≤ 2, we have the following linear and bilinear Strichartz
estimates:

(1) ‖Sα(t)PNf‖L4(I;L4(T)) ≤ CN
1
2(

1
2
−α

4 )‖PNf‖L2(T).

(2) ‖Sα(t)PMf · Sα(t)PN‖L2(I;L2(T)) ≤ Cmin{M,N} 1
2
−α

4 ‖PMf‖L2(T)‖PN g‖L2(T).

Moreover, for any interval J with length |J |, we have

(2.4) ‖Sα(t)PJf‖L4(I;L4(T)) ≤ C|J | 12( 1
2
−α

4 )‖f‖L2(T).

Proof. (1) is the direct consequence of Lemma 2.6 and Proposition 2.8, applied with r = 1.
For (2), we may assume that N > 2100M , otherwise, it is a consequence of (1) and the
Hölder’s inequality. To proceed, we first remark that the linear Strichartz estiamte (1)
also holds true if we replace PNf by any function with Fourier modes supported on an

interval of size N . This can be seen quickly by considering f̃ = feix·k0, where k0 is near
the center of such an interval. Now we write

PNg =
∑

j

Pj,Mg, Pj,Mg = PjM≤|D|≤(j+1)MPNg.

From almost orthogonality,

‖Sα(t)PMf · Sα(t)PNg‖2L2(I;L2(T)) ≤ C
∑

j

‖Sα(t)PMf · Sα(t)Pj,Mg‖2L2(I;L2(T)).

For each term in the summation, we use Cauchy-Schwarz and (1) to majorize it by

M1−α
2 ‖PMf‖2L2(T)‖Pj,Mg‖2L2(T).

Finally, summing over j, we obtain (2). To prove the last assertion, we denote by nJ , the

center of the interval J and consider the function f̃ = eixnJ · PJf , then ̂̃
f is supported

on |n| ≤ |J |, and we obtain the desired estimate from (1). This completes the proof of
Corollary 2.9. �

Proposition 2.10. Let 1 < α ≤ 2. For u1, u2 ∈ L2(R× T) such that

ûj(τ, k) = 1Kj≤|τ−|k|α|<2Kj
1Nj≤|k|<2Nj

ûj(τ, k), j = 1, 2,

we have the estimate

‖u1u2‖L2 . min(N1, N2)
1
2
−α

4 ·min(K1,K2)
1/2 max(K1,K2)

1/4‖u1‖L2 · ‖u2‖L2 .
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Proof. By duality, it is sufficient to show that for any v ∈ L2(R × T), ‖v‖L2 = 1, we have
(2.5)∣∣∣

∫

R×T

u1u2vdxdt
∣∣∣ ≤ min(N1, N2)

1
2
−α

4 ·min(K1,K2)
1/2 max(K1,K2)

1/4‖u1‖L2‖u2‖L2 .

The left hand-side of (2.5) can be written as

(2.6)
∣∣∣
∫

τ1+τ2+τ3=0

∑

k1+k2+k3=0

û1(τ1, k1)û2(τ2, k2)v̂(τ3, k3)
∣∣∣.

By the Cauchy-Schwarz inequality, (2.6) can be bounded by

‖û1‖L2
τ,k

‖û2‖L2
τ,k

‖v̂‖L2
τ,k

· sup
(τ3,k3)

(mes(A(τ3, k3)))
1/2,

where

A(τ3, k3) ={(τ1, k1) : K1 ≤ |τ1 − |k1|α| < 2K1,K2 ≤ |τ3 + τ1 + |k3 + k1|α| < 2K2}
∩{(τ1, k1) : N1 ≤ |k1| < 2N1, N2 ≤ |k3 + k1| < 2N2}.

Eliminating τ1, we can write A(τ3, k3) ≤ min(K1,K2)#B(k3), where

B(τ3, k3) ={k1 : N1 ≤ |k1| < 2N1, N2 ≤ |k3 + k1| < 2N2}
∩{k1 : |τ3 + |k1|α + |k3 + k1|α| . max(K1,K2)}.

Applying Proposition 2.8, we have #B(τ3, k3) . min(N1, N2)
1−α

2 max(K1,K2)
1/2. There-

fore,

mes(A(τ3, k3))
1/2 ≤ min(K1,K2)

1/2 max(K1,K2)
1/4 ·min(N1, N2)

1
2
−α

4

and we obtain (2.5). This completes the proof of Proposition 2.10. �

Corollary 2.11. Let 1 < α ≤ 2. For any s ≥ 1
2 − α

4 , 0 < ǫ≪ 1 and N ≫M , we have

(1) ‖PNf‖L4
t,x

. N
s
2 ‖PNf‖

X0, 38
.

(2) ‖PNf ·PMg‖L2
t,x

.M s‖PNf‖
X0, 38

‖PMg‖
X0, 38

.

(3) ‖PNf ·PMg‖L2
t,x

.M
s
3 ‖PNf‖

X0, 14
‖PMg‖L6

t,x
.

Proof. The inequalities (1) and (2) are immediate consequences of the Proposition 2.10.
To prove (3), we write

PNf =
∑

J

PNPJf,

where we sum over intervals J of the size M . By almost orthogonality, we have

‖PNf ·PMf‖2L2
t,x

.
∑

J

‖PNPJf ·PMg‖2L2
t,x
.

For each fixed J , using Hölder, interpolation and the box-localized Strichartz (2.4), we
obtain that

‖PNPJf ·PMg‖L2
t,x

.M
s
3 ‖PNPJf‖

X0, 14
· ‖PMg‖L6

t,x
.

Summing the square of the inequality above over J , we complete the proof. �
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Another consequence of Proposition 2.10 is the following trilinear Xs,b estimate, which
yields the deterministic local well-posedness result in [15].

Corollary 2.12. Let 1 < α ≤ 2. For s ≥ 1
2 − α

4 , 0 < ǫ≪ 1, we have

‖u1u2u3‖
Xs,− 1

2+ǫ . ‖u1‖
Xs, 38

‖u2‖
Xs, 38

‖u3‖
Xs, 38

.

2.3. Probabilistic estimates. We present two probabilistic lemmas related to the Gauss-
ian random variables. Recall that (gn)n∈Z denotes a family of independent standard
complex-valued Gaussian random variables on a probability space (Ω,F ,P).

Lemma 2.13 (Wiener chaos estimates). Let c : Zk → C. Set

S(ω) =
∑

(n1,··· ,nk)∈Zk

c(n1, · · · , nk)gn1(ω) · · · gnk
(ω).

Suppose that S ∈ L2(Ω). Then there is a constant Ck such that for every p ≥ 2,

‖S‖Lp(Ω) ≤ Ck p
k
2 ‖S‖L2(Ω).

For a proof of Lemma 2.13, we refer to [37].

Lemma 2.14 (Probabilistic Strichartz estimate). Let

fω(t, x) =
∑

n∈Z
cngn(ω)e

i(nx−[n]αt) .

Then for 2 ≤ q <∞, there exists T0 < 0 and c > 0 such that for all T ≤ T0, R > 0

P{ω : ‖fω‖Lq([−T,T ]×T) > R‖cn‖l2n} ≤ exp(−cT− 2
qR2).

Proof. We can assume that ‖cn‖l2 = 1. By Lemma 2.13, there exists C0 > 0, independent
of (cn)n∈Z, such that

∥∥∑

n∈Z
cn gn(ω)

∥∥
Lr(Ω)

≤ C0

√
r ,

for every r ≥ 2. Therefore, for r ≥ q, by the Minkowski inequality, we have

(E[‖fω‖rLq([−T,T ]×T)])
1
r ≤ C1

√
rT

1
q .

Then by Chebyshev’s inequality, we have

P{ω : ‖fω‖Lq([−T,T ]×T) > R} ≤ Cr1R
−rr

r
2T

r
q .

By taking r = R2C−2
1 e−2T− 2

q , we obtain

Cr1R
−rr

r
2T

r
q = e−R

2/((eC1)2 T 2/q) = e−cT
− 2

q R2

with c = (eC1)
−2. This completes the proof of Lemma 2.14. �
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3. Local well posedness for 6
5 < α < 2

In this section, we prove a local well-posedness result for in the case 6
5 < α < 2. We

remark that if α > 4
3 , then

α−1
2 > 1

2 − α
4 , and the deterministic local well-posedness of the

cubic FNLS applies. Hence we will only focus on the case 6
5 < α ≤ 4

3 , where additional
arguments are needed.

Introducing the gauge transform

v(t, x) = u(t, x)e
it
π

∫
T
|u|2 ,

the FNLS (1.1) is transformed to the Wick-ordered FNLS

(3.1) i∂tv + |Dx|αv +
(
|v|2 − 1

π

∫

T

|v|2dx
)
v = 0

with the same initial data as u. The flow of (3.1), if exists, will be denoted by Ψ(t). We
also denote by ΨN(t) the flow map of the truncated Wick-ordered FNLS

(3.2) i∂tvN + |Dx|αvN +ΠN

((
|ΠNvN |2 −

1

π

∫

T

|ΠNvN |2dx
)
ΠNvN

)
= 0.

By inverting the gauge transformation,

uN (t, x) := e−
it
π

∫
T
|ΠNvN |2dxΠNvN (t, x) + Π⊥

NvN (t, x)

satisfies the truncated FNLS

i∂tuN + |Dx|αuN +ΠN
(
|ΠNuN |2ΠNuN

)
= 0,

with the same initial data as vN . Though the Wick-ordered FNLS (truncated or not)
is equivalent to the original FNLS in our setting, it turns out that the use of the gauge
transformation removes trivial resonances, which improves the regularity at multi-linear
level.

The Wick-ordered nonlinearity can be written as

N (v) :=
(
|v|2 − 1

π

∫

T

|v|2
)
v.

More generally, N (v) can be written as the trilinear form

N (v, v, v) := N1(v, v, v) −N0(v, v, v),

where the trilinear forms N1(·, ·, ·) and N0(·, ·, ·) are defined as

N0(f1, f2, f3) :=
∑

n∈Z
f̂1(n)f̂2(n)f̂3(n)e

inx,

N1(f1, f2, f3) :=
∑

n2 6=n1,n3

f̂1(n1)f̂2(n2)f̂3(n3)e
i(n1−n2+n3)x.

(3.3)

Here and in the sequel, n2 6= n1, n3 means that n2 6= n1 and n2 6= n3.
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The resolution of (3.1) and (3.2) will be achieved by writing

v(t) = Sα(t)φ+ w(t),

where the nonlinear part w is pretended to be smoother, and it satisfies the integral
equation

w(t) = −i
∫ t

0
Sα(t− t′)N

(
Sα(t

′)v0 + w(t′)
)
dt′.

In order to formulate our local existence result, we need to introduce several quantities.
First, we take χ0 ∈ C∞

c (−2, 2), χ0(t) = 1 for |t| ≤ 1, such that
∑

l∈Z
χ0(t− l) = 1, ∀ t ∈ R.

Define

Ws,ǫ(φ) :=
∑

l∈Z
〈l〉−2

∥∥χ0(t)N (Sα(t+ l)φ)
∥∥
Xs,− 1

2+2ǫ ,

‖φ‖Vq,ǫ := ‖φ‖
FL

α
2 − 2ǫ

3 , 2ǫ
+
∑

l∈Z
〈l〉−2

∥∥χ0(t)Sα(t+ l)φ
∥∥
Lq
tW

α−1
2 − ǫ

2 , 1ǫ
x

,

‖φ‖Ṽq,ǫ := ‖φ‖
FL

α
2 −ǫ, 2ǫ

+
∑

l∈Z
〈l〉−2

∥∥χ0(t)Sα(t+ l)φ
∥∥
Lq
tW

α−1
2 −ǫ, 1ǫ

x

.

(3.4)

The Fourier-Lebesgue norm if defined by ‖f‖FLs,r :=
∥∥〈n〉sf̂(n)

∥∥
lr
. We denote by Vq,ǫ

the functions with finite Vq,ǫ norm and Ws,ǫ the measurable subset of H
α−1
2

−ǫ where the
functions have finite Ws,ǫ quantity. Obviously, Vq,ǫ →֒ Ṽq,ǫ, hence the auxiliary norm Ṽq,ǫ
is weaker. We remark that Ws,ǫ(·) is not a norm. Since the partial sum ΠN is uniformly
bounded in Lp(T) for 1 < p <∞, we have the following statement.

Lemma 3.1. There exists a uniform constant A0 ≥ 1, such that for all N ∈ N,

‖ΠN‖Vq,ǫ→Vq,ǫ ≤ A0, ‖Π⊥
N‖Vq,ǫ→Vq,ǫ ≤ A0.

Proposition 3.2. Assume that 6
5 < α < 2, 2 ≪ q < ∞ is large enough and 0 < ǫ ≪ 1 is

small enough. Let N ∈ N∪{∞}, s ∈
[
1
2 − α

4 , α−1
)
. There exist c > 0, κ > 0, independent

of N such that the following holds true. The Cauchy problem 2 (3.2) with initial data
vN (0) = φN + rN is locally well-posed for data rN ∈ Hs(T) and φN in some suitable set.
More precisely, for every R ≥ 1, if

(
Ws,ǫ(φN )

) 1
3 + ‖φN‖Vq,ǫ ≤ R and ‖rN‖Hs(T) ≤ R,

there is a unique solution of (3.2) in the class

Sα(t)(φN + rN ) +X
s, 1

2
+2ǫ

τR on [−τR, τR] where τR = cR−κ.

In particular, the solution can be written as vN (t) = Sα(t)(φN + rN ) + wN (t), with

‖wN‖
X

s, 12+2ǫ
τR

≤ R−1.

2By convention, Π∞ = Id.
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By inverting the gauge transformation, we obtain the local existence for the flow ΦN (t)
as well as Φ(t). Note that even the global existence of ΦN (t) is not an issue, the important
point in Proposition 3.2 are the uniform in N bounds. It is standard that ρN is invariant
under ΦN (t) thanks to the Liouville theorem for divergence free vector fields and the in-
variance of complex gaussians under rotations.

Furthermore, we have a more general local convergence result, which will be useful in
the construction of the global dynamics. For R > 0, we introduce the notation

BR :=
{
φ ∈ H α−1

2
−ǫ(T) :

(
Ws,ǫ(φN )

) 1
3 + ‖φ‖Vq,ǫ ≤ R

}
.

Proposition 3.3. Assume that R ≥ 1 and α, q, ǫ are the numerical constants as in
Proposition 3.2. Let (φ0,k) ⊂ BR, φ0 ∈ BR. Assume that (r0,k) ⊂ Hs(T) satisfying
‖r0,k‖Hs(T) ≤ 2R. Let Nk → ∞ be a subsequence of N. Assume moreover that

lim
k→∞

Ws,ǫ(φ0,k − φ0) = 0, lim
k→∞

‖r0,k − r0‖Hs(T) = 0.

Then there exist c > 0, κ > 0, such that on [−TR, TR] with TR = cR−κ, we have

ΦNk
(t)(φ0,k + r0,k) = e

it
π
‖ΠNk

(φ0,k+r0,k)‖2L2(T)
(
ΠNk

Sα(t)(φ0,k + r0,k) + wk(t)
)
+Π⊥

Nk
Sα(t)φ0,k,

Φ(t)(φ0 + r0) = e
it
π
‖φ0+r0‖2

L2(T)
(
Sα(t)(φ0 + r0) + w(t)

)
.

Furthermore,

lim
k→∞

‖wk −w‖
X

s, 12+2ǫ

TR

= 0, and in particular, lim
k→∞

sup
|t|≤TR

‖wk(t)− w(t)‖Hs(T) = 0.

The proof of Proposition 3.2 and Proposition 3.3 depends on the following deterministic
multilinear estimate. Let η ∈ C∞

c ((−1, 1)) and ηT (t) = η
(
t
T

)
.

Proposition 3.4. Let α ∈
(
6
5 , 2

)
and s ∈

[
1
2 − α

4 , α − 1
)
. There exist 2 ≪ q < ∞, large

enough, 0 < ǫ ≪ 1, small enough and θ = θ(ǫ, q) > 0, such that for all 0 < T < 1,

f1, f2, f3 ∈ Zq,ǫ and u1, u2, u3 ∈ Xs, 1
2
+ǫ, the following estimates hold:

(1) ‖ηT (t)N (Sα(t)f1, u2, u3)‖
Xs,− 1

2+2ǫ . T θ‖f1‖Zq,ǫ‖u2‖
Xs, 12+ǫ‖u3‖Xs, 12+ǫ ,

(2) ‖ηT (t)N (u1, Sα(t)f2, u3)‖
Xs,− 1

2+2ǫ . T θ‖u1‖
Xs, 12+ǫ‖f2‖Zq,ǫ‖u3‖

Xs, 12+2ǫ ,

(3) ‖ηT (t)N (u1, u2, Sα(t)f3)‖
Xs,− 1

2+2ǫ . T θ‖u1‖
Xs, 12+2ǫ‖u2‖Xs, 12+ǫ‖f3‖Zq,ǫ ,

(4) ‖ηT (t)N (Sα(t)f1, u2, Sα(t)f3)‖
Xs,− 1

2+2ǫ . T θ‖f1‖Zq,ǫ‖u2‖
Xs, 12+ǫ‖f3‖Zq,ǫ ,

(5) ‖ηT (t)N (Sα(t)f1, Sα(t)f2, u3)‖
Xs,− 1

2+2ǫ . T θ‖f1‖Zq,ǫ‖f2‖Zq,ǫ‖u3‖
Xs, 12+2ǫ ,

(6) ‖ηT (t)N (u1, Sα(t)f2, Sα(t)f3)‖
Xs,− 1

2+2ǫ . T θ‖u1‖
Xs, 12+ǫ‖f2‖Zq,ǫ‖f3‖Zq,ǫ .

We will postpone the proof of Proposition 3.4 to the next section and use it to prove
the local existence results, Proposition 3.2 and Proposition 3.3, in the rest of this section.
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Proof of Proposition 3.2. For simplicity, we drop the subindex N everywhere. Consider
the mapping

Γ : w(t) → −i
∫ t

0
Sα(t− t′)N

(
ηT (t

′)
(
Sα(t

′)(φ+ r) + w(t′)
))
dt′,

and we want to show that Γ is a contraction on a ball of X
s, 1

2
+ǫ

T . For given u on [−T, T ]×T,
we denote by ũ an extension of u onto R×T. Note that from Lemma 2.5, we deduce that

∥∥∥
∫ t

0
Sα(t− t′)N (ũ(t′))dt′

∥∥∥
X

s, 12+2ǫ

T

. ‖ηT (t)N (ũ)‖
Xs,− 1

2+2ǫ ,

where ηT (t) = η(t/T ) is a smooth cutoff on [−2T, 2T ], ηT (t) = 1 for t ∈ [−T, T ]. Take
w̃ an extension of w on R × T with the property w̃(t) = w(t) for t ∈ [−T, T ]. For
ũ(t) = ηT (t)

(
Sα(t)φ+ Sα(t)r + w̃(t)

)
, from Proposition 3.4, we have

‖N (ũ)‖
Xs,− 1

2+2ǫ . T θ
(
‖φ‖3Vq,ǫ +Ws,ǫ(φ) + ‖ηT (t)(Sα(t)r + w̃)‖3

Xs, 12+ǫ

)
.

This implies that

‖Γ(w)‖
X

s, 12+2ǫ

T

. T θ
(
‖φ‖3Vq,ǫ + ‖r‖3Hs

x
+Ws,ǫ(φ) + ‖w‖3

X
s, 12+ǫ

T

)
.

Moreover, if w1, w2 ∈ X
s, 1

2
+ǫ

T , the same argument, after doing simple algebraic manipula-
tions, yields

‖Γ(w1)− Γ(w2)‖
X

s, 12+2ǫ

T

.T θ
(
‖φ‖2Vq,ǫ +Ws,ǫ(φ) + ‖r‖3Hs

x
+ ‖w1‖2

X
s, 12 ǫ

T

+ ‖w2‖3
X

s, 12+ǫ

T

)
‖w1 − w2‖

X
s, 12+ǫ

T

.

Hence Γ is a contraction in the ball B
X

s, 12+ǫ

T

(R−1), provided that

‖φ‖Vq,ǫ +
(
Ws,ǫ(φN )

) 1
3 ≤ R, T ≤ TR := cR−κ,

with c > 0 small enough and κ > 0 large enough. This proves the existence and uniqueness
of wN (t) for all N ∈ N ∪ {∞}. This completes the proof of Proposition 3.2. �

Proof of Proposition 3.3. To simplify the notation, we denote by z(t) = ηT (t)Sα(t)φ0, zk(t) =
ηT (t)Sα(t)φ0,k, and y(t) = ηT (t)Sα(t)r0, yk(t) = ηT (t)Sα(t)r0,k. By inverting the gauge
transformation, for t belonging to the time interval of local existence theory, we have

wk(t) = −iΠNk

∫ t

0
Sα(t)N

(
zk + yk + wk

)
(t′)dt′,

and

w(t) = −i
∫ t

0
Sα(t− t′)N

(
z + y + w

)
(t′)dt′.
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Taking the difference, we get

‖wk − w‖
X

s, 12+2ǫ

T

≤
∥∥∥Π⊥

Nk

∫ t

0
Sα(t− t′)N (z + y + w)(t′)dt′

∥∥∥
X

s, 12+2ǫ

T

+
∥∥∥
∫ t

0
Sα(t− t′)ΠNk

(
N (z + y + w)(t′)−N (zk + yk + wk)(t

′)
)
dt′

∥∥∥
X

s, 12+2ǫ

T

.

The first term on the right side is o(1), as k → ∞, since N (z + y + w) ∈ X
s,− 1

2
+ǫ

T . Note
that N (z + y + w)−N (zk + yk + wk) consists of the terms

N (z − zk, z − zk, z − zk), N (w − wk + y − yk, ·, ·), N (·, w − wk + y − yk, ·), · · ·
Therefore, the second term on the right hand-side of the last inequality can be bounded
by

CWs,ǫ(φ0,k − φ0) + CR2T θ
(
‖wk − w‖

X
s, 12+ǫ

T

+ ‖r0,k − r0‖Hs
x

)
,

where we used Proposition 3.4. By choosing c > 0 small enough, κ > 0 large enough such
that CT θR2 < 1

2 , we have

‖wk − w‖
X

s, 12+2ǫ

T

≤ 2CWs,ǫ(φ0,k − φ0) + T θR2‖r0,k − r0‖Hs
x
= o(1), k → ∞.

This completes the proof of Proposition 3.3. �

4. Deterministic trilinear estimate

In this section, we prove the trilinear estimates in Proposition 3.4. Note that by the
symmetric role of the first place and the third place in the expression of N (·, ·, ·), it is
sufficient to prove (1), (2), (4), (5) of Proposition 3.4. Note also that from the embedding

W
α−1
2

−ǫ, 1
ǫ

x →֒W
α−1
2

−3ǫ,∞
x and FLα

2
−ǫ, 2

ǫ →֒ FLα
2
−ǫ,∞,

it would be sufficient to prove stronger estimates by replacing Zq,ǫ with Lqt,locW
α−1
2

−3ǫ,∞
x ∩

FLα
2
−ǫ,∞. In what follows, we may insert the smooth cutoff function ηT on [−2T, 2T ]

without additional mention. We will carry out a case-by-case analysis on

‖ηT (t)N0(v1, v2, v3)‖
Xs,− 1

2+2ǫ and ‖ηT (t)N1(v1, v2, v3)‖
Xs,− 1

2+2ǫ

where vj takes one of the following forms

(I) vj = ηT (t)
∑

n∈Z
f̂j(n)e

i(nx+|n|αt) ∈ L∞
t FLα

2
−ǫ,∞ ∩ LqtW

α−1
2

−3ǫ,∞
x ,

(II) vj = ηT (t)vj ∈ Xs, 1
2
+ǫ.

By normalization, we may assume that

sup
|t|≤1

‖Sα(t)fj‖
Lq
tW

α−1
2 −3ǫ,∞

x

+ ‖fj‖FLα
2 −ǫ,∞ = 1 if vj is of type I.

and

‖vj‖
Xs, 12+ǫ = 1 if vj is of type II.
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In the sequel we will suppose that f̂j(n) = φ(n), i.e. that all fj are equal. Under this
assumption the analysis is essentially the same and it will be satisfied in the applications
of Proposition 3.4.

Throughout this section, 6
5 < α < 2 and 1

2 − α
4 ≤ s < α − 1. First we have a simple

estimate for the part N0(·, ·, ·).
Proposition 4.1. For any small ǫ > 0 and q < ∞ large enough, there exists θ > 0, such
that for 0 < T < 1,

(4.1) ‖ηT (t)N0(v1, v2, v3)‖
Xs,− 1

2+2ǫ . T θ.

One may remark that this proposition holds true for all α > 1.

Proof. By Lemma 2.4 and the definition,

‖ηT (t)N0(v1, v2, v3)‖
Xs,− 1

2+2ǫ . T ǫ‖ηT (t)N0(v1, v2, v3)‖
Xs,− 1

2+3ǫ

=T ǫ
∥∥∥ 〈n〉s

〈τ − |n|α〉 1
2
−3ǫ

∫

τ=τ1−τ2+τ3
v̂1(τ1, n)v̂2(τ2, n)v̂3(τ3, n)dτ1dτ2

∥∥∥
l2nL

2
τ

.
(4.2)

By abusing the notation, we may replace vj by ηT vj if necessary.

• Case (1): v1, v2, v3 are of type (II). Writting v̂j(τ,n) = 〈n〉−s〈τj −|n|α〉− 1
2
−ǫVj(τ, n), we

estimate the L2
τ norm of the second term of the right side by

T ǫ
∥∥∥〈n〉s

∫
v̂1(τ1, n)v̂2(τ2, n)v̂3(τ − (τ1 − τ2), n)dτ1dτ2

∥∥∥
L2
τ

.T ǫ〈n〉−2s
∥∥∥
∫

V1(τ1, n)V 2(τ2, n)V3(τ − (τ1 − τ2), n)

〈τ1 − |n|α〉 1
2
+ǫ〈τ2 − |n|α〉 1

2
+ǫ〈τ − (τ1 − τ2)− |n|α〉 1

2
+ǫ
dτ1dτ2

∥∥∥
L2
τ

.T ǫ〈n〉−2s‖V1(·, n)‖L2
τ
‖V2(·, n)‖L2

τ
‖V3(·, n)‖L2

τ
,

(4.3)

where at the last step, we used Minkowski to pass the L2
τ inside the integral and then

Cauchy-Schwarz in τ1, τ2 variables. Finally, taking l2n of the right side of (4.3), we obtain
(4.1) in this case.
• Case (2): Exactly two vj of type (I), say, v1(I), v2(I) and v3(II). With the same notation

V3(τ, n) = 〈n〉s〈τ − |n|α〉 1
2
+ǫv̂3(τ, n), we estimate

(4.2) .T ǫ
∥∥∥|φ(n)|2

∫

τ=τ1−τ2+τ3

η̂T (τ1 − |n|α)η̂T (τ2 − |n|α)V3(τ3, n)
〈τ3 − |n|α〉 1

2
+ǫ〈τ − |n|α〉 1

2
−3ǫ

dτ1dτ2

∥∥∥
l2nL

2
τ

.T
1
2 ‖〈n〉−α‖l2n‖V3‖l∞n L2

τ
. T

1
2 ,

where we used the fact that ηT (t) = η(T−1t) and ‖η̂T ‖L2(R) = O(T 1/2).
• Case (3): Exactly one vj of type (I), say, v1(I), v2(II), v3(II).

With the same notations, we have

(4.2) .T ǫ‖〈n〉−sφ(n)‖l2n
∥∥∥
∫

η̂T (τ1 − |n|α)V 2(τ2, n)V3(τ − (τ1 − τ2), n)dτ1dτ2

〈τ2 − |n|α〉 1
2
+ǫ〈τ − (τ1 − τ2)− |n|α〉 1

2
+ǫ〈τ − |n|α〉 1

2
−3ǫ

∥∥∥
l∞n L2

τ

.T ǫ‖η̂T ‖L1
τ1
‖V2‖l∞n L2

τ2
‖V3‖l∞n L2

τ
. T ǫ.
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• Case (4): All uj of type (I), then

(4.2) .T ǫ
∥∥∥ 〈n〉s|φ(n)|3

〈τ − |n|α〉 1
2
−3ǫ

∫
η̂T (τ1 − |n|α)η̂T (τ2 − |n|α)η̂T (τ − τ1 + τ2 − |n|α)dτ1dτ2

∥∥∥
l2nL

2
τ

.T ǫ
∥∥∥〈n〉s|φ(n)|3

∫
|η̂T (τ1 − |n|α)η̂T (τ2 − |n|α)|‖ η̂T (τ − τ1 + τ2 − |n|α)

〈τ − |n|α〉 1
2
−3ǫ

‖L2
τ
dτ1dτ2

∥∥∥
l2n

.T ǫ.

This completes the proof of Proposition 4.1. �

4.1. Estimate on N1 for high modulations.
In the following two subsections, we will prove the following trilinear estimate for N1

Proposition 4.2. Assume that v1, v2, v3 are not all of type (I). Then there exists 0 < ǫ≪
1, small enough, 2 ≪ q <∞, large enough, and θ = θ(ǫ) > 0 such that for 0 < T < 1,

(4.4) ‖ηT (t)N1(v1, v2, v3)‖
Xs,− 1

2+2ǫ . T θ.

Without loss of generality, in what follows, we assume that v1, v2, v3 are not all of type
(II), since in this case, we can directly apply3 Corollary 2.12. We decompose v1, v2, v3
dyadically with frequencies of sizes N1, N2, N3, respectively and denote them by PNjvj
respectively. We denote by N(1), N(2), N(3) the decreasing ordering of N1, N2, N3. By
relabeling the index, we denote by v(j) = PN(j)

v∗, the corresponding vj-factors. In the
following, we use subscripts to imply that functions or variables are arranged in the de-
creasing order of the spatial frequencies N1, N2, N3. By duality, we need to estimate

(4.5)

∫ 2T

−2T

∫

T

N1(v1, v2, v3) · 〈Dx〉svdtdx,

where ‖v‖
X0, 12−2ǫ ≤ 1 and v has compact support in t. It turns out that we can only treat

∫ 2T

−2T

∫

T

N1

(
v(1), v(2), v(3)

)
· 〈Dx〉svdtdx,

and the analysis for other situations has no significant difference. In the high modulation
cases, the main contribution comes from

∫ 2T

−2T

∫

T

v1v2v3 · 〈Dx〉svdtdx,

and we use the bilinear Strichartz inequalities and the regularization in the co-normal
regularity (the 3

8 exponent in the Strichartz inequality).
The first goal of this subsection is to reduce the matter to the low modulation cases.

More precisely, if there is any vj of type (II), we will reduce the estimate to the contribution
where in the Fourier side,

〈τj − |nj|α〉 ≪ Kj , if vj is of type (II),

3Since we will only use Xs,b type norms in this case, we can replace each Fourier coefficient in the
expression of N1(·, ·, ·) by its absolute value and then apply Corollary 2.12 for the full multiplication
v1v2v3.
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for some suitable Kj , depending on different situations. We need to estimate the dyadic
summation in N(1), N(2), N(3), N for the following terms4:

A =
∣∣∣
∫ 2T

−2T

∫

T

v(1)v(2)v(3) · 〈Dx〉svdtdx
∣∣∣, B =

∣∣∣
∫ 2T

−2T

(
v(1), v(2)

)
L2
x

(
v(3), 〈Dx〉sPNv

)
L2
x
dt
∣∣∣,

and

C =
∣∣∣
∫ 2T

−2T

(
v(1), 〈Dx〉sPNv

)
L2
x

(
v(2), v(3)

)
L2
x
dt
∣∣∣.5

For the proof in the rest subsections, we fix the index σ = α−1
2 − 3ǫ.

4.1.1. Estimates for the high modulations of B, C.
We first estimate the quantities B and C. Note that B = 0 unless N(1) ∼ N(2) and

N(3) ∼ N . By Cauchy-Schwarz and then Hölder for the time integration, we have

B . N s‖v(1)‖L4
tL

2
x
‖v(2)‖L4

tL
2
x
‖v(3)‖L4

tL
2
x
‖PNv‖L4

tL
2
x
.

Since there is at least one of v(j) of type (II), using the interpolation between X0,0 = L2
tL

2
x

and X0, 1
2
+2ǫ →֒ L∞

t L
2
x, we bound the L4

tL
2
x norm of v(j)(II) as follows

‖v(j)(II)‖X0, 14+ǫ . T
1
4 ‖v(j)(II)‖X0, 12+ǫ ,

where we used Lemma 2.4. Note that no matter type (I) or type (II), the dyadic summation
over N(1) ∼ N(2), N ∼ N(3) always converges, and we obtain that

∑

N(1),N(2),N(3),N dyadic
N(1)∼N(2),N(3)∼N

N s‖v(1)‖L4
tL

2
x
‖v(2)‖L4

tL
2
x
‖v(3)‖L4

tL
2
x
‖PNv‖L4

tL
2
x
. T

1
4 .

Similarly, C = 0 unless N(1) ∼ N and N(2) ∼ N(3). If v(1) is of type II, we obtain the same
estimate as for B, and the dyadic summation over N(1) ∼ N,N(2) ∼ N(3) converges. Now
we assume that v(1) is of type (I). There are essentially two possibilities, either v(2) is of
type (I) and v(3) is of type (II), or both are of type (II). For the former case, we bound C
by

C . N s−σ
(1) N

−σ
(2) N

−s
(3)‖v(1)‖Lq

tH
σ
x
‖v(2)‖Lq

tH
σ
x
‖v(3)‖Lq1

t Hs
x
‖PNv‖Lq1

t L2
x

where for small ǫ > 0, large q <∞,

q1 =
2q

q − 2
, almost 2.

By interpolation between X0,0 = L2
tL

2
x and X0, 1

2
+ǫ →֒ L∞

t L
2
x, we have X

s, 1+2ǫ
q →֒ Lq1t H

s
x,

thus
C . N s−σ

(1) N
−σ
(2) N

−s
(3)‖v(1)‖Lq

tH
σ
x
‖v(2)‖Lq

tH
σ
x
‖v(3)‖

X
s, 1+2ǫ

q
‖PNv‖

X
0, 1+2ǫ

q
.

We can choose q large enough such that 1+2ǫ
q < ǫ. For the case where both v(2) and v(3)

are of type (II), we have

C . N s−σ
(1) N−s

(2)N
−s
(3)‖v(1)‖Lq

tH
σ
x
‖v(2)‖

L
3q
q−1
t Hs

x

‖v(3)‖
L

3q
q−1
t Hs

x

‖PNv‖
L

3q
q−1
t L2

x

,

4The term N0 has been treated in the last subsection.
5 A,B, C depend on the dyadic numbers N(1), N(2), N(3), N and we omit the indices here.
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and by interpolation, we obtain that

C . N s−σ
(1) N

−s
(2)N

−s
(3)‖v(1)‖Lq

tH
σ
x
‖v(2)‖Xs, 16+δ(q,ǫ)‖v(3)‖Xs, 16+δ(q,ǫ)‖PNv‖

X0, 16+δ(q,ǫ) ,

where

δ(q, ǫ) =
(1 + 2ǫ)(q + 2)

6q
− 1

6
< ǫ,

provided that q is chosen large enough. For each vj of type (II) and v, we divide them as

vj(τ, n) = vhighj + vlowj , v(τ, n) = vhigh + vlow,

where

̂
vhighj (τ, n) = 1

〈τ−|n|α〉
1
3 ≥Ns−σ

(1)

v̂j(τ, n), v̂high(τ, n) = 1
〈τ−|n|α〉

1
3 ≥Ns−σ

(1)

v̂(τ, n).

Then for the case v(2) = v(2)(I), v(3) = v(3)(II), if one of vlow(3) ,PNv
low = 0, we have

∑

N(1),N(2),N(3),N
N(1)∼N,N(2)∼N(3)

N s−σ
(1) N−s

(2)N
−s
(3)‖v(1)‖Lq

tH
σ
x
‖v(2)‖Lq

tH
σ
x
‖v(3)‖

X
s, 1+2ǫ

q
‖PNv‖

X
0, 1+2ǫ

q

.T 1/2.

For the case v(2) = v(2)(II), v(3) = v(3)(II), if one of vlow(2) , v
low
(3) ,PNv

low = 0, we have
∑

N(1),N(2),N(3),N
N(1)∼N,N(2)∼N(3)

N s−σ
(1) N−s

(2)N
−s
(3)‖v(1)‖Lq

tH
σ
x
‖v(2)‖Xs, 16+δ(q,ǫ)‖v(3)‖Xs, 16+δ(q,ǫ)‖PNv‖

X0, 16+δ(q,ǫ)

. T 1/3.

4.1.2. Estimates for the high modulations of A.
Since there is no significant issue, we will drop the conjugate sign. It remains to estimate

the dyadic summation over N(1), N(2), N(3), N for

A =
∣∣∣
∫ 2T

−2T

∫

T

v(1)v(2)v(3) · 〈Dx〉svdtdx
∣∣∣.

• Case A: v(1) and v(2) are of type (II).
In this case v(3) must be of type (I). Regrouping the terms as ‖v(1)v(3)‖L2

t,x
·‖v(2)〈Dx〉sPNv‖L2

t,x

and using Corollary 2.11, we have

A . N sN
s
3

(3)N
s
(2)‖v(1)‖X0, 14

‖v(2)‖X0, 38
‖v(3)‖L6

t,x
‖PNv‖

X0, 38
.

Since v(3) is of type (I)6, ‖v(3)‖L6
t,x

. N−σ
(3)

, we obtain that

A . T ǫN sN s
(2)N

s
3
−σ

(3) ‖v(1)‖X0, 14+ǫ‖v(2)‖X0, 38
‖PNv‖

X0, 38
.

Note that s
3 − α−1

2 < 0, then if in the Fourier side, either 〈τj − |nj |α〉
1
8
−ǫ & (N ∧ N(2))

ǫ,

j = 1, 2 or 〈τ−|n|α〉 1
8
−ǫ & (N∧N(2))

ǫ hold true for some ǫ > 0, the dyadic summation over

6Here we insert some time-localization of size 1 for v(3).
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N(1) ≥ N(2) ≥ N(3), N ≤ N(1) converges. Hence it remains to estimate the contributions
to (4.5) with a cutoff on the Fourier side on the region satisfying

〈τ − |n|α〉 1
8 ≪ (N(2) ∧N)2ǫ and

〈τj − |nj |α〉
1
8 ≪ (N(2) ∧N)2ǫ, if vj of type (II) and N(3) ≪ N(1).

(4.6)

• Case B: v(1) is of type (II) and v(2) is of type (I).
Suppose first that v(3) is of type (II). Then by the same argument (changing the su-

perindices v(2) and v(3) ) as for the case A, we obtain (4.4), except for the low modulation
cases in the Fourier side:

〈τ − |n|α〉 1
8 ≪ (N(3) ∧N)2ǫ and

〈τj − |nj |α〉
1
8 ≪ (N(3) ∧N)2ǫ, if vj of type (II) and N(2) ≪ N(1).

(4.7)

Now suppose that v(3) is of type (I). From Hölder and the embedding X
0, 1+2ǫ

q →֒ L
2q
q−2

t L2
x

as before, we have

A .N s‖v(1)‖
L

2q
q−2
t L2

x

‖v(2)‖Lq
tL

∞
x
‖v(3)‖Lq

tL
∞
x
‖PNv‖

L
2q
q−2
t L2

x

.N−σ
(2) N

−σ
(3) ‖v(1)‖Xs, 1+2ǫ

q
‖PNv‖

X
0, 1+2ǫ

q
.

From the same reason, the dyadic summation converges, since in the case N(2) ≪ N(1), we

must have N ∼ N(1). Finally the T θ factor appears when we use Lemma 2.4 to estimate

‖v(1)‖
X

s, 1+2ǫ
q

. T
1
2 ‖v(1)‖Xs, 12+2ǫ , if q is chosen large enough, namely such that 1+2ǫ

q < ǫ.

• Case C: v(1) is of type (I), and v(2), v(3) are of type (II).
Using the bilinear Strichartz estimate and Lemma 2.4, we have

A .N s‖v(1)v(2)‖L2
t,x
‖v(3)PNv‖L2

t,x

.T 2ǫ(N(1))
s−σ(N(2))

−s‖v(2)‖Xs, 38+2ǫ‖v(3)‖Xs, 38
‖PNv‖

X0, 38
.

If N(2) ∼ N(1), the dyadic summation converges directly, without reducing to the low
modulation. Hence, it remains to estimate the contribution to (4.5) from the region
satisfying

〈τ − |n|α〉 1
8 ≪ N s−σ

(1) N
−s
(2) and

〈τj − |nj|α〉
1
8 ≪ N s−σ

(1) N−s
(2) , if vj is of type (II) and N(2) ≪ N(1).

(4.8)

• Case D: v(1) of type (I), and either v(2)(II), v(3)(I) or v(2)(I), v(3)(II).
Suppose that v(2) = v(2)(I) and v(3) = v(3)(II). We have

A .N s‖v(1)‖Lq
tL

∞
x
‖v(2)‖Lq

tL
∞
x
‖v(3)‖

L
2q
q−2
t L2

x

‖PNv‖
L

2q
q−2
t L2

x

.T ǫN s(N(1)N(2))
−σN−s

(3)
‖v(3)‖

X
s, 1+2ǫ

q +ǫ‖PNv‖
X

0, 1+2ǫ
q
,

where we use the interpolation X
0, 1+2ǫ

q ⊂ L
2q
q−2

t L2
x and Lemma 2.4 as before. Since s <

α − 1, we may choose ǫ ≪ 1, q ≫ 1, such that s < 2σ and 1+2ǫ
q < ǫ, then if N(2) ∼ N(1),
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the dyadic summation converges. Otherwise, it reduces to estimate the contribution to
(4.4) from the Fourier region satisfying

〈τ − |n|α〉 1
2 ≪ N s−σ

(1) and

〈τj − |nj |α〉
1
2 ≪ N s−σ

(1) if vj is of type (II) and N(2) ≪ N(1).
(4.9)

Suppose that v(2) = v(2)(II) and v(3) = v(3)(I), then we obtain the similar bound (switch-
ing the role of v(2) and v(3) and using bilinear Strichartz)

A . T ǫN sN−σ
(1) N

−σ
(3) N

−s
(2)‖v(2)‖Xs, 38+2ǫ‖PNv‖

X0, 38+ǫ .

Hence it reduces the matter to the same low modulation case (4.9). In summary, when
PNjvj is of type (II), we may write it as

PNjvj = PNjv
low
j +PNjv

high
j , PNv = PNv

low +PNv
high

where

P̂Njv
low
j = 1〈τ−|n|α〉≤KP̂Njvj(τ, n), P̂Nvlow = 1〈τ−|n|α〉≤KP̂Nv(τ, n),

and the modulation K is given specifically, according to the case (A), (B), (C), (D). The
PNjv

low
j is called the low-modulation portion. From the discussions above, if at least one

of the type (II) PN1v1,PN2v2,PN3v3 or PNv has zero low modulation portion, we have
∫

N1

(
PN1v1PN2v2PN3v3

)
·PNvdtdx . T θcN1,N2,N3,N ,

where ∑

N1,N2,N3,N dyadic

cN1,N2,N3,N . 1.

Therefore, the main contributions come from the high modulation part PNjv
high
j and

PNv
high 7. In what follows, we assume that 〈τ − |n|α〉 ≪ K and 〈τj − |nj|α〉 ≪ K if

vj = vj(II) without stating explicitly. Moreover, we assume that each vj is decomposed
dyadically in spatial frequency |nj| ∼ Nj , satisfying N(2) ≪ N(1) for Cases (B)(C)(D), and
N(3) ≪ N(1) for Case (A).

4.2. Low modulation reduction. The goal of this subsection is to setup suitable low-
modulation estimates that we need. Set

Γ(n) := {(n1, n2, n3) ∈ Z3 : n = n1 − n2 + n3, n2 6= n1, n3},
and

Γ2(λ, n) := {(τ1, τ2, τ3) ∈ R3 : λ+ |n|α = τ1 − τ2 + τ3}.
Let us recall a standard representation for functions in Xs,b. Given a function f(t, x), we
can write f as

f(t, x) =

∫
〈λ〉−b

(∑

m

〈m〉2s〈λ〉2b|f̂(λ+ |m|α,m)|2
) 1

2
(
eiλt

∑

n

aλ(n)e
inx+i|n|αλ

)
dλ,

7Note that we have inserted implicitly time cutoff functions to perform the integration in t over finite
intervals.
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where

aλ(n) =
f̂(λ+ |n|α, n)

(∑
m〈m〉2s|f̂(λ+ |m|α,m)|2

) 1
2

.

Note that
∑

n〈n〉2s|aλ(n)|2 = 1. For ‖f‖Xs,b ≤ 1, if its modulation is bounded from above
by some K ≥ 1, then by Cauchy-Schwarz, we have

∫
〈λ〉−b

(∑

n

〈n〉2s〈λ〉2b|f̂(λ+ |n|α, n)|2
) 1

2
dλ . 1 +K1−2b .

As explained in the last subsection, we need to estimate the low-modulation component of
‖ηT (t)N1(v1, v2, v3)‖

Xs,− 1
2+2ǫ . Since at least one of v1, v2, v3 is of type (II), we can replace

vj(II) by ηT (t)vj(II), and estimate only ‖κ(t)N1(v1, v2, v3)‖
Xs,− 1

2+2ǫ , with some fixed time

cutoff κ ∈ C∞
c (R), κ(t) ≡ 1 if |t| ≤ 1 and κ(t)ηT (t) = ηT (t), for T < 1. We denote by

(κ(t)N1(v1, v2, v3))
low
K the modulation smaller than K. By the Hölder inequality, we have

‖(κ(t)N1(v1, v2, v3))
low
K ‖

Xs,− 1
2+2ǫ

=
(∑

n

〈n〉2s
∫

|λ|<K

|(Ft,xκ(t)N1(v1, v2, v3))(λ+ |n|α, n)|2
〈λ〉1−4ǫ

dλ
)1/2

.K2ǫ‖1|λ|<K〈n〉sFt,x(κ(t)N1(v1, v2, v3))(λ+ |n|α, n)‖L∞
λ l2n

.

Note that

(Ft,xN1(v1, v2, v3))(τ, n) =
∑

(n1,n2,n3)∈Γ(n)

∫

(τ1,τ2,τ3)∈Γ2(τ−|n|α,n)
v̂1(τ1, n1)v̂2(τ2, n2)v̂3(τ3, n3)dτ1dτ2,

where

v̂j(τj, nj) = φ(nj)δ(τj − |nj|α) if vj is of type (I) 8

or

v̂j(τj, nj) =

∫

|λj |<K
〈λj〉−

1
2
+ǫcj(λj)aλj (nj)δ(τj − λj − |nj|α)dλj if vj is of type (II),

with
∑

nj
〈nj〉2s|aλj (nj)|2 = 1 and

cj(λj) =
(∑

mj

〈mj〉2s〈λj〉1−2ǫ|v̂j(λj + |mj|α,mj)|2
) 1

2
.

Therefore, if there is exactly one vj of type (II), say v1(I), v2(I), v3(II), a direct calculation
yields

(Ft,xκ(t)N1(v1, v2, v3))(τ, n)

:=
∑

(n1,n2,n3)∈Γ(n)

∫

|λ3|<K
〈λ3〉−

1
2
+ǫc3(λ3)φ(n1)φ(n2)

×κ̂ (τ − λ3 − |n1|α + |n2|α − |n3|α) aλ3(n3)dλ3.

8 We send the time-cutoff ηT (t) to the vj of type (II).
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If v2, v3 are of type (II), and v1 of type (I), we have

(Ft,xκ(t)N1(v1, v2, v3))(τ, n)

:=
∑

(n1,n2,n3)∈Γ(n)

∫∫

|λ2|<K,|λ3|<K
〈λ2〉−

1
2
+ǫ〈λ3〉−

1
2
+ǫc2(λ2)c3(λ3)φ(n1)

×κ̂ (τ + λ2 − λ3 − |n1|α + |n2|α − |n3|α) aλ2(n2)aλ3(n3)dλ2dλ3.
Since we only care about the low modulation part ofN1(v1, v2, v3), below |λ| . K, applying
the Hölder inequality, we obtain that

‖(κ(t)N1(v1, v2, v3))
low
K ‖

Xs,− 1
2+2ǫ . K2ǫ sup

〈λ〉<K
‖〈n〉s(Ft,x(κ(t)N1(v1, v2, v3))(λ+ |n|α, n)‖l2n .

Since vj = ηT (t)vj , if it is of type (II), from Lemma 2.4, we have
∫

R

|cj(λj)|2dλj = ‖vj‖
Xs, 12−ǫ . T 2ǫ‖vj‖

Xs, 12+ǫ .

Therefore, we obtain that

‖(κ(t)N1(v1, v2, v3))
low
K ‖

Xs,− 1
2+2ǫ

.T 2ǫK3ǫ sup
|λ|<K

|λj |<K,j=2,3

∥∥∥
∑

(n1,n2,n3)∈Γ(n)
φ(n1)aλ2(n2)aλ3(n3)κ̂(λ+ λ2 − λ3 − Φ(n))

∥∥∥
l2n

(4.10)

or

‖(κ(t)N1(v1, v2, v3))
low
K ‖

Xs,− 1
2+2ǫ

.T 2ǫK2ǫ sup
|λ|<K
|λ3|<K

∥∥∥
∑

(n1,n2,n3)∈Γ(n)
φ(n1)φ(n2)aλ3(n3)κ̂(λ− λ3 − Φ(n))

∥∥∥
l2n
,(4.11)

depending on how many vj are of type (II).
From the discussion of the last subsection, to finish the proof, we need to estimate the

R.H.S. of (4.10) and (4.11), according to the constraint K, defined as (4.6),(4.7),(4.8)
and (4.9), according to Case (A),(B),(C),(D), respectively. We will do this by dyadically
decomposing |nj| ∼ Nj . In what follows, we only estimate each dyadic pieces of R.H.S
of (4.10) or (4.11), satisfying that N(2) ≪ N(1), for Cases (B)(C)(D), and N(3) ≪ N(1)

for Case (A), and deduce the correct numerology so that the final dyadic summation over
N1, N2, N3 will converge. In summary, we have to deal with the following cases:
• Case 1: v(1) = v(1)(I),v(2) = v(2)(II), v(3) = v(3)(II) and N(2) ≪ N(1). The modulation
bound in this case is

K1 = N
8(s−σ)
(1) N−8s

(2) .

Therefore, the dyadic pieces of (4.11) is bounded by

T 2ǫK3ǫ
1 sup

|µ|.K1

( ∑

|n|.N(1)

〈n〉2s
∣∣∣

∑

(n1,n2,n3)∈Γ(n)
κ̂(µ− Φ(n))a1(n1)a2(n2)a3(n3)

∣∣∣
2)1/2

,

where a(1)(n) = φ(n) and
∑

|n|∼N(j) |a(j)(n)|2 . N−2s
(j) , j = 2, 3.
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• Case 2: v(1) = v(1)(I), and exactly one of v(2), v(3) is of type (II) and N(2) ≪ N(1). In
this case, the modulation bound is

K2 = N
2(s−σ)
(1) ,

and the dyadic pieces of (4.10) is bounded by

T ǫK2ǫ
2 sup

|µ|.K2

( ∑

|n|.N(1)

〈n〉2s
∣∣∣

∑

(n1,n2,n3)∈Γ(n)
κ̂(µ − Φ(n))a1(n1)a2(n2)a3(n3)

∣∣∣
2)1/2

,

where a(1)(n) = φ(n), and one of a(2)(n), a(3)(n) is φ(n), while the rest one satisfies∑
|n|∼N(j)

|a(j)(n)|2 . N−2s
(j) .

• Case 3: v(1) = v(1)(II), and one of v(2), v(3) is of type (I) and N(3) ≪ N(1). In this case,
the modulation bound is

K3 = N ǫ
(2).

and the dyadic pieces of (4.10) (or (4.11)) are bounded by

T ǫK3ǫ
3 sup

|µ|.K3

( ∑

|n|.N(1)

〈n〉2s
∣∣∣

∑

(n1,n2,n3)∈Γ(n)
κ̂(µ − Φ(n))a1(n1)a2(n2)a3(n3)

∣∣∣
2)1/2

,

where
∑

|n|∼N(1)
|a(1)(n)|2 ∼ N−2s

(1) , a(j)(n) = φ(n) or
∑

|n|∼N(j)
|a(j)(n)|2 . N−2s

(j) . More-

over, at least one of a(2)(n), a(3)(n) is of the form φ(n).

4.3. Estimate of low modulation cases: Using the fact that κ ∈ S(R), we observe
that modulo an error of CL(N(1))

−L, for any L ∈ N, we may reduce the estimate to the

following expression 9.

(4.12) T ǫN s+ǫ
(1) sup

|µ|.K

( ∑

|n|.N(1)

∣∣∣
∑

(n1,n2,n3)∈Γ(n)
|Φ(n)−µ|≤1

a1(n1)a2(n2)a3(n3)
∣∣∣
2)1/2

.

Now we perform the case-by-case analysis. Denote by

Φ̃(n, n2, n3) = |n+ n2 − n3|α − |n2|α + |n3|α − |n|α.

• Case 1: Denote bj(n) = aj(n)〈n〉s, if vj is of type (II). We first assume that n1 =
n(1), n2 = n(2) and n3 = n(3).

A := {(n, n2, n3) :n3 6= n2, n3 6= n, |nj| ∼ Nj , j = 2, 3; |n + n2 − n3| ∼ N1;

|Φ̃(n, n2, n3)− µ| ≤ 1},

9In the situation where Φ(n) ∈ Z, namely α = 2, we can simply reduce the constraint by Φ(n) = µ.
However, for α < 2, the values of Φ(n) maybe dense in an interval, and this will be responsible for the loss
of derivatives when we perform the counting argument.
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where µ can be viewed as a fixed parameter. Note that |φ(n+n2−n3)| . (N(1))
−α

2
+2ǫ on

A. Applying Cauchy-Schwarz to the summation over n2, n3, we obtain that

(4.12) .T ǫN
(s−α

2 )+2ǫ

(1) N−s
(2)N

−s
(3)

×
[ ∑

|n|.N(1)

( ∑

n2,n3

|b2(n2)|21A(n, n2, n3)
)( ∑

n2,n3

|b3(n3)|21A(n, n2, n3)
)]1/2

.

The second line of the right hand side can be majorized by
[ ∑

|n|.N(1)

∑

n2,n3

|b2(n2)|21A(n, n2, n3)
]1/2

· sup
|n|.N(1)

( ∑

n2,n3

|b3(n3)|21A(n, n2, n3)
)1/2

.

Thanks to N(1) ≫ N(2), viewing n2 as parameter, for fixed n, n3,

∣∣∣ ∂Φ̃
∂n2

∣∣∣ ∼ |n+ n2 − n3|α−1 ∼ Nα−1
(1) , thus

∑

n2

1A(n, n2, n3) . 1.

Thus
(∑

n2,n3
|b3(n3)|21A(n, n2, n3)

)1/2
. 1. Viewing n as parameter, for fixed n2, n3,

∣∣∣∂Φ̃
∂n

∣∣∣ ∼
∣∣∣|n+ n2 − n3|α−1 − |n|α−1

∣∣∣ ∼ |n2 − n3|Nα−2
(1) ,

then
∑

n 1A(n, n2, n3) . 1 +
(N(1))

2−α

|n2−n3| . Therefore, if N
2−α
(1) ≫ N(2), we obtain that

( ∑

|n|.N(1)

∑

n2,n3

|b2(n2)|21A(n, n2, n3)
)1/2

. N
(1−α

2 )+2ǫ

(1) .

This yields

(4.12) . T ǫN
(s−α

2
+1−α

2 )+3ǫ

(1) N−s
(2)N

−s
(3) ,

which is conclusive, if s < α− 1. If N2−α
(1) . N(2), we estimate

∑

|n|.N(1)

∑

n2,n3

|b2(n2)|21A(n, n2, n3)

≤
∑

n2

|b2(n2)|2
[ ∑

n3:|n3−n2|&(N(1))2−α

∑

n

1A(n, n2, n3) +
∑

n3:|n3−n2|≪(N(1))2−α

∑

n

1A(n, n2, n3)
]

.N(3) +N2−α+ǫ
(1) .

Therefore,

(4.12) . T ǫ
[
N
s−α

2
+1−α

2
+3ǫ

(1) N−s
(2)N

−s
(3) +N

s−α
2
+3ǫ

(1) N−s
(2)N

−s
(3)N

1
2

(3)

]
, 10

which can be majorized by T ǫ(N(1))
−δ(ǫ), for some δ(ǫ) > 0, provided that s < α− 1. For

the remaining case n2 = n(1), there is no significant difference in the argument.

10This bound can not be improved if we perform the Wiener chaos estimate as in [5], due to the loss in
the counting.
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• Case 2: Denote bj(n) = aj(n)〈n〉s, if vj is of type (II), where µ can be viewed as a fixed

parameter. The modulation bound is K2 = N
2(s−σ)
(1) . Without loss of generality, we may

assume that n1 = n(1) and a1(n1) = φ(n1). Since N(1) ≫ N(2), we must have

|Φ(n)| & |n2 − n3||n2 − n1|N2−α
(1) & Nα−1

(1) ,

where Φ(n) is defined in Lemma 2.1. For non-zero contributions, |Φ(n) − µ| ≤ 1 ,where
|µ| . K2, it holds

Nα−1
(1) . |Φ(n)| ≤ |µ|+ |Φ(n)− µ| . N

2(s−σ)
(1) .

This constraint is violated since 2(s − σ) < α − 1 if ǫ > 0 is chosen small enough. This
means that all the contributions are zero. The same argument applies to the case where
n2 = n(1).
• Case 3: Note that the case where v(2), v(3) are both of type (I) is already considered
in the Case(B). It turns out there that the high-modulation analysis is conclusive. Now
we assume that v(2) = v(2)(II) and v(3) = v(3)(I), this is the situation in Case (A), and we

have N(3) ≪ N(1). In this case, we still have |Φ(n)| & Nα−1
(1)

, and the constraint for the

non-zero contributions is

Nα−1
(1) . |Φ(n)| ≤ |µ|+ |Φ(n)− µ| . N16ǫ

(1) ,

which is empty for small ǫ. Thus the contributions in this case are all zero. This completes
the proof of Proposition 4.2. Hence the proof of Proposition 3.4 is also completed.

Remark 4.3. There is a room in the reduction to low modulations, but the case when
the highest frequency is of type (I) is independent of this reduction, and it leads to the
restriction s < α − 1. More precisely, the use of the Fourier-Lebesgue space gives α/2
regularization, while the degeneration of the curvature of the resonant surface causes a
derivative loss of order 1− α

2 . Therefore, we need to impose s− α
2 +

(
1− α

2

)
< 0 (s comes

from the fact that we evaluate the nonlinearity in Xs,b). We emphasize that here, the
reason for the restriction s < α− 1 is different from the same restriction appearing in the
next section.

5. Probabilistic linear and trilinear estimates

In order to use measure invariance arguments to construct global solutions, we need
to prove large deviation estimates for the linear norm ‖ · ‖Vq,ǫ and the trilinear quantity
Ws,ǫ(·) defined in (3.4). Let us introduce some notations. For M < K ≤ ∞, we set

zM1,K(t) = Sα(t)Π
⊥
MΠK

(∑

n∈Z

gn(ω)

[n]
α
2

einx
)
=

∑

M<|n|≤K

gn(ω)

[n]
α
2

einx−i|n|
αt.

Lemma 5.1. Fix η ∈ C∞
c (R) and assume that 1 < α < 2, Mj < Kj ≤ ∞, j = 1, 2, 3.

Then for any s < α− 1, 0 < ǫ≪ 1, there exist 0 < ǫ0 ≪ 1, c > 0, such that for any λ ≥ 1,

P

{
ω :

∥∥∥
∫ t

0
Sα(t− t′)η(t′)N

(
zM1
1,K1

, zM2
1,K2

, zM3
1,K3

)
(t′)dt′

∥∥∥
Xs, 12+ǫ

> max{M1,M2,M3}−ǫ0λ
}

≤ exp
(
− cλ2/3

)
.
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Proof. From Lemma 2.5, we have
∥∥∥
∫ t

0
Sα(t− t′)η(t′)N

(
zM1
1,K1

, zM2
1,K2

, zM3
1,K3

)∥∥∥
Xs, 12+ǫ

.
∥∥∥η(t)N0

(
zM1
1,K1

, zM2
1,K2

, zM3
1,K3

)∥∥∥
Xs,− 1

2+ǫ
+

∥∥∥η(t)N1

(
zM1
1,K1

, zM2
1,K2

, zM3
1,K3

)∥∥∥
Xs,− 1

2+ǫ
.

Set
IMj ,Kj := {n ∈ Z :Mj < |n| ≤ Kj}.

Note that ∥∥∥η(t)N0

(
zM1
1,K1

, zM2
1,K2

, zM3
1,K3

)∥∥∥
Xs,− 1

2+ǫ

=
∥∥∥1n∈∩3

j=1IMj,Kj
〈n〉s〈τ − |n|α〉− 1

2
+ǫη̂(τ − |n|α) |gn(ω)|

2gn(ω)

[n]
3α
2

∥∥∥
L2
τ l

2
n

.

By Minkowski’s inequality, for p ≥ 2, we have∥∥∥η(t)N0

(
zM1
1,K1

, zM2
1,K2

, zM3
1,K3

)∥∥∥
Lp(Ω;Xs,− 1

2+ǫ)

≤
∥∥∥1n∈∩3

j=1IMj,Kj
〈n〉s〈τ − |n|α〉− 1

2
+ǫη̂(τ − |n|α) |gn(ω)|

2gn(ω)

[n]
3α
2

∥∥∥
L2
τ l

2
nL

p(Ω)
.

(5.1)

It follows from the property of Gaussian random variables that

(RHS) of (5.1) .p3/2
∥∥∥1n∈∩3

j=1IMj,Nj
〈n〉s− 3α

2 〈τ − |n|α〉− 1
2
+ǫη̂(τ − |n|α)

∥∥∥
L2
τ l

2
n

.p3/2 max{M1,M2,M3}s+
1
2
− 3α

2 . p3/2max{M1,M2,M3}−
(

3α
2
−s− 1

2

)
,

in which the index is negative. Recall the notation

Γ(n) := {(n1, n2, n3) : n = n1 − n2 + n3, n2 6= n1, n2 6= n3}.
Similarly, applying Minkowski’s inequality and the Wiener chaos estimate of Lemma 2.13,
we have

∥∥∥η(t)N1

(
zK1
1,N1

, zK2
1,N2

, zK3
1,N3

)∥∥∥
2

Lp(Ω;Xs,− 1
2+ǫ)

.p3
∥∥∥〈τ − |n|α〉− 1

2
+ǫ〈n〉s

∑

(n1,n2,n3)∈Γ(n)
nj∈IMj,Kj

,j=1,2,3

gn1(ω)gn2
(ω)gn3(ω)

[n1]
α
2 [n2]

α
2 [n3]

α
2

η̂(τ − |n|α − Φ(n))
∥∥∥
2

L2
τ l

2
nL

2(Ω)
.

(5.2)

For fixed n, using independence, we have
∥∥∥

∑

(n1,n2,n3)∈Γ(n)
nj∈IMj,Kj

,j=1,2,3

gn1(ω)gn2
(ω)gn3(ω)

[n1]
α
2 [n2]

α
2 [n3]

α
2

η̂(τ − |n|α − Φ(n))
∥∥∥
2

L2(Ω)

.
∑

(n1,n2,n3)∈Γ(n)
nj∈IMj,Kj

,j=1,2,3

|η̂(τ − |n|α − Φ(n))|2
〈n1〉α〈n2〉α〈n3〉α

.
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Therefore,

(RHS) of (5.2) .p3
∫

R

∑

n

∑

(n1,n2,n3)∈Γ(n)
nj∈IMj,Kj

,j=1,2,3

〈n〉2s〈τ − |n|α〉−1+2ǫ|η̂(τ − |n|α − Φ(n))|2
〈n1〉α〈n2〉α〈n3〉α

dτ.

Since |η̂(τ)| ≤ CL〈τ〉−L for any L ∈ N, applying Lemma 2.2, we have

(RHS) of (5.2) . p3J, J :=
∑

n

∑

(n1,n2,n3)∈Γ(n)
nj∈IMj,Kj

,j=1,2,3

〈n〉2s
〈n1〉α〈n2〉α〈n3〉α〈Φ(n)〉1−2ǫ

.

We decompose the summation into dyadic pieces |nj| ∼ Nj where Mj/2 ≤ Nj ≤ 2Kj for
j = 1, 2, 3. We write

J =
∑

N1,N2,N3

JN1,N2,N3 .

Denote by N(1) ≥ N(2) ≥ N(3) the non-increasing order of N1, N2, N3. Recall that from

Lemma 2.1, |Φ(n)| & |n1 − n2||n2 − n3|Nα−2
(1) .

If N1 ∼ N2 ∼ N3, we have

JN1,N2,N3 .N
2s−3α+(2−α)(1−2ǫ)
(1)

∑

n2 6=n1,n3

|nj |∼Nj ,j=1,2,3

1

〈n1 − n2〉1−2ǫ〈n2 − n3〉1−2ǫ

.N2s+3−4α+2αǫ
(1) .

(5.3)

If N(1) ∼ N(2) ≫ N(3), we have

JN1,N2,N3 .N
2s−2α+(2−α)(1−2ǫ)
(1) N−α

(3)

∑

n2 6=n1,n3

|nj |∼Nj ,j=1,2,3

1

〈n1 − n2〉1−2ǫ〈n2 − n3〉1−2ǫ

.N
2s−2α+(2−α)(1−2ǫ)+4ǫ
(1) .

(5.4)

The worst case is N(1) ≫ N(2) ≥ N(3), saying
11 N1 ∼ N(1), |Φ(n)| & Nα−1

(1) |n2 − n3|, thus

JN1,N2,N3 .N
2s−α−(α−1)(1−ǫ)
(1) ·N−α

(2) N
−α
(3)

∑

n2 6=n1,n3

|nj |∼Nj ,j=1,2,3

1

〈n2 − n3〉1−2ǫ

.N
2s−2(α−1)+(α−1)ǫ
(1) ·N−α+2ǫ

(2) N1−α
(3) .

(5.5)

If s < α− 1, we may choose ǫ > 0 such that s < α− 1− ǫ.
To estimate J , we write

J =
∑

N1∼N2∼N3

JN1,N2,N3 +
∑

N(1)≫N(2)≥N(3)

JN1,N2,N3 +
∑

N(1)∼N(2)≫N(3)

JN1,N2,N3 .

For the summation over dyadic integers satisfying N1 ∼ N2 ∼ N3 ∼ N(1), the non-
zero contributions satisfy N(1) & max{M1,M2,M3}, thus the dyadic summation over

11Other cases are similar or better.
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N1 ∼ N2 ∼ N3 is bounded by max{M1,M2,M3}2s+3−4α+2αǫ. For the summation over
dyadic integers satisfying N(1) ≫ N(2) ≥ N(3), the non-zero contributions satisfy N(1) ≥
max{M1,M2,M3}, hence the summation can be bounded by max{M1,M2,M3}(α−3)ǫ.
From the constraint of s, we have

J . max{M1,M2,M3}−(3−α)ǫ.

The rest argument follows from an application of Chebyshev’s inequality, as in the proof
of Lemma 2.14. �

Remark 5.2. From (5.3),(5.4) and (5.5), we see that the constraint s < α − 1 comes
only from the high-low-low frequency interactions. The other cases give s < 4α − 3 and
s < 3α − 2 respectively. In these other cases the condition s ≥ 1

2 − α
4 gives the full

range α > 1. The situation therefore reminds the impressive recent work [20] and as a
consequence we conjecture that Theorem 6 and Theorem 5 can be extended to α > 1, and
even to some values of α ≤ 1 after suitable renormalizations.

Corollary 5.3. Assume that 1 < α < 2, then for any s < α − 1, there exist ǫ0 > 0, 0 <
ǫ ≪ 1, c > 0, such that for any λ ≥ 1, i1, i2, i3 ∈ {0, 1} and M ∈ N, K ∈ N ∪ {+∞},
M ≤ K

P

{
ω :M ǫ0(i1+i2+i3)Ws,ǫ

(
ΠK(Π⊥

M )i1φω,
(
ΠK(Π⊥

M )i2φω,
(
ΠK(Π⊥

M )i3φω
)
> λ

}
≤ e−cλ

2/3
.

Proof. Denote by φij := ΠK(Π⊥
M )ijφω. From the Wiener chaos estimates, it is sufficient

to obtain the following estimate for large p <∞:
∥∥∥
∑

l∈Z
〈l〉−2

∥∥∥
∫ t

0
χ0(t)Sα(t− t′)N

(
zM1
1,K , z

M2
1,K , z

M3
1,K

)
(t′ + l)dt′

∥∥∥
Xs, 12+2ǫ

∥∥∥
Lp(Ω)

≤ CM−ǫ0p3/2,

where Mj = M if ij = 1 and Mj = 0 if ij = 0. Since
∑

l∈Z〈l〉−2 < ∞, it is sufficient to
show that for any l ∈ Z

∥∥∥
∫ t

0
χ0(t)Sα(t− t′)N

(
zM1
1,K , z

M2
1,K , z

M3
1,K

)
(t′ + l)dt′

∥∥∥
Lp
(
Ω;Xs, 12+2ǫ

) ≤ CM−ǫ0p3/2.(5.6)

Since Sα(l)φ
ω has the same law as φω, we obtain (5.6) from the same proof of Lemma 5.1.

This completes the proof of Corollary 5.3.
�

Lemma 5.4. Assume that 1 < α < 2 and M < K ≤ ∞. Then for any t0 ∈ R, any ǫ > 0,
there exist 2 ≤ q <∞, 0 < ǫ0 ≪ 1, such that for all λ ≥ 1,

P

{
ω :

∥∥zM1,K
∥∥
Vq,ǫ > M−ǫ0λ

}
< e−cλ

2
,

where c > 0 is some uniform constant.

Proof. Denote by σ0 =
α−1
2 − ǫ

2 , σ1 =
α
2 − 2ǫ

3 , r =
1
ǫ . From Wiener chaos estimates and by

the same argument as in the proof of Corollary 5.3, it would be sufficient to show that for
all large p <∞, ∥∥∥‖χ0(t)z

M
1,K‖Lq

tFLσ1,2r∩Lq
tW

σ0,r
x

∥∥∥
Lp(Ω)

≤ CM−ǫ0√p.
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We first deal with the Fourier-Lebesgue norm FLσ1,2r. Note that Sα(t) keeps the Fourier-
Lebesgue norm invariant, it suffices to show that for large p,

∥∥1M≤|n|≤K〈n〉σ1−
α
2 gn(ω)

∥∥
Lp(Ω;l2rn )

≤ CM−ǫ0√p.

Note that
(
α
2 − σ1

)
2r = 4

3 > 1, take p ≥ 2r, from Minkowski, we have
∥∥1M≤|n|≤K〈n〉σ1−

α
2 gn(ω)

∥∥
Lp(Ω;l2rn )

≤
∥∥1M≤|n|≤K〈n〉σ1−

α
2 gn(ω)

∥∥
l2rn Lp(Ω)

.

From a property of the Gaussian random variables, we have
∥∥1M≤|n|≤K〈n〉σ1−

α
2 gn(ω)

∥∥
l2rn Lp(Ω)

≤C√
p‖1|n|≥M 〈n〉σ1−2α‖l2rn ≤ CM− 1

6r
√
p.

Next we deal with the Sobolev norm LqtW
σ0,r
x . Again, for p ≥ 2r, p ≥ q, we have

∥∥∥‖χ0(t)z
M
1,K‖Lq

tW
σ0,r
x

∥∥∥
Lp(Ω)

=
∥∥∥
∥∥∥χ0(t)

∑

M≤|n|≤K

〈n〉σ0gn(ω)einx+i|n|αt
[n]

α
2

∥∥∥
Lq
tL

r
x

∥∥∥
Lp(Ω)

≤
∥∥∥
∥∥∥χ0(t)

∑

M≤|n|≤K

〈n〉σ0gn(ω)einx+i|n|
αt

[n]
α
2

∥∥∥
Lp(Ω)

∥∥∥
Lq
tL

r
x

.

By Wiener chaos estimate, there exists C > 0, such that for any (t, x),

∥∥∥χ0(t)
∑

M≤|n|≤K

〈n〉σ0gn(ω)einx+i|n|αt
[n]

α
2

∥∥∥
Lp(Ω)

≤C√
q‖1M≤|n|≤K〈n〉σ0−

α
2 ‖l2n

≤CM− ǫ
2
√
p.

The proof of Lemma 5.4 is now complete. �

6. Global well-posedness and flow property when 6
5 < α < 2

6.1. Enhanced local convergence. Throughout this section, we fix the small parameter
ǫ > 0, and the large parameter q < ∞ as required in the previous sections. We also fix
the constants

6

5
< α < 2, σ =

α− 1

2
− ǫ,

1

2
− α

4
< s < α− 1.

We remark that in contrast with previous situations (as for instance in [12],[38]), here
the nonlinear evolution part though more regular lives in different function spaces which
may not be embedded into the function space of the linear evolution part. This causes
difficulties to construct the invariant data set. To overcome this difficulty, we define the
summed space Ys,ǫ := Vq,ǫ +Hs(T) via the norm

‖u‖Vq,ǫ+Hs := inf{‖u1‖Vq,ǫ + ‖u2‖Hs(T) : if u = u1 + u2 for some u1 ∈ Vq,ǫ, u2 ∈ Hs(T)}.
Since Vq,ǫ and Hs(T) are continuously embedded into L2(T), from Lemma 2.3.1 of [2],
(Vq,ǫ + Hs, ‖ · ‖Vq,ǫ+Hs) is a normed space. We introduce the summed space structure,
since the gauged linear evolution part should be measured by Vq,ǫ norm and the quantity
Ws,ǫ, while the nonlinear evolution should be measured by Hs norm. The analysis in this
section is somewhat soft and topological.
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We need to introduce some notations. For functions f1, f2, f3, we extend the nonlinear
quantity Ws,ǫ(·) to the following canonical trilinear form:

Ws,ǫ(f1, f2, f3) :=
∑

l∈Z
〈l〉−2

∥∥χ0(t)N
((
Sα(t+ l)f1, Sα(t+ l)f2, Sα(t+ l)f3

)∥∥
Xs,− 1

2+2ǫ .

Note that for any two fixed entries, Ws,ǫ(·, f2, f3),Ws,ǫ(f1, ·, f3) satisfy the triangle in-
equality. Given a finite set J of functions, the notation

∑

fj∈J
Ws,ǫ

(
f1, f2, f3

)

means to sum over all possible f1, f2, f3 ∈ J of Ws,ǫ(f1, f2, f3). For the projector Π⊥
N , we

denote by (
Π⊥
N

)j
= Π⊥

N , if j = 1;
(
Π⊥
N

)j
= Id, if j = 0.

We will make use of the following simple quasi-invariance property.

Lemma 6.1 (Quasi-invariance). There exists a constant A1 > 0, such that for all |t0| ≤ 1
2

and all φ, φ1, φ2, φ3

Ws,ǫ

(
Sα(t0)φ1, Sα(t0)φ2, Sα(t0)φ3

)
≤ A1Ws,ǫ(φ1, φ2, φ3), ‖Sα(t0)φ‖Vq,ǫ ≤ A1‖φ‖Vq,ǫ .

Proof. From the support property of χ0, we have for any t ∈ R, |t0| ≤ 1
2 ,

χ0(t− t0) = χ0(t− t0)
∑

|m|≤3

χ0(t−m).

Note that the Xs,b norm is invariant under the time-shifting, from Lemma 2.4, we have
∥∥χ0(t)N

(
Sα(t0 + t+ l)φ1, Sα(t0 + t+ l)φ2, Sα(t0 + t+ l)φ3

)∥∥
Xs,b

≤C
∑

|m|≤3

∥∥χ0(t−m)N
(
Sα(t+ l)φ1, Sα(t+ l)φ2, Sα(t+ l)φ3

)∥∥
Xs,b

≤C
∑

|m|≤3

‖χ0(t)N
(
Sα(t+ l +m)φ1, Sα(t+ l +m)φ2, Sα(t+ l +m)φ3

)∥∥
Xs,b .

Multiplying by 〈l〉−2 and sum over l ∈ Z, we obtain the first inequality. The second one
follows from a similar argument, and we omit the details. This completes the proof of
Lemma 6.1. �

Lemma 6.2. For all f1, f2, f3 ∈ Ṽq,ǫ and g1, g2, g3 ∈ Hs,, the following estimates hold

(1) Ws,ǫ(f1, g2, g3) . ‖f1‖Ṽq,ǫ‖g2‖Hs‖h3‖Hs ,

(2) Ws,ǫ(g1, f2, g3) . ‖g1‖Hs‖f2‖Ṽq,ǫ‖g3‖Hs ,

(3) Ws,ǫ(g1, g2, f3) . ‖g1‖Hs‖g2‖Hs‖f3‖Ṽq,ǫ ,

(4) Ws,ǫ(f1, g2, f3) . ‖f1‖Ṽq,ǫ‖g2‖Hs‖f3‖Ṽq,ǫ ,

(5) Ws,ǫ(f1, f2, g3) . ‖f1‖Ṽq,ǫ‖f2‖Ṽq,ǫ‖g3‖Hs ,

(6) Ws,ǫ(g1, f2, f3) . ‖g1‖Hs‖f2‖Ṽq,ǫ‖f3‖Ṽq,ǫ ,

(7) Ws,ǫ(g1, g2, g3) . ‖g1‖Hs‖g2‖Hs‖g3‖Hs .
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Proof. Since the proof of each inequality is an application of the corresponding inequality
in Proposition 3.4 and Corollary 2.12, we only prove (1). Take another cutoff χ̃0(t) such
that χ̃0(t) = 1 on the support of χ0. Thus for every l ∈ Z, from Lemma 2.5 and (1) of
Proposition 3.4, we estimate

∥∥∥χ0(t)

∫ t

0
Sα(t− t′)N

(
Sα(t

′ + l)f1, Sα(t
′ + l)g2, Sα(t

′ + l)g3
)
dt′

∥∥∥
Xs, 12+2ǫ

=
∥∥∥χ0(t)

∫ t

0
Sα(t− t′)N

(
χ̃3
0(t

′)Sα(t
′ + l)f1, Sα(t

′ + l)g2, Sα(t
′ + l)g3

)
dt′

∥∥∥
Xs, 12+2ǫ

.‖Sα(l)f1‖Zq,ǫ‖χ̃0(t)Sα(t+ l)g2‖
Xs, 12+2ǫ‖χ̃0(t)Sα(t+ l)g3‖

Xs, 12+2ǫ

.‖χl(t)Sα(t)f1‖
L∞
t FL

α
2 −ǫ, 2ǫ ∩Lq

tW
α−1
2 −ǫ, 1ǫ

x

‖g2‖Hs‖g3‖Hs .

To complete the proof of Lemma 6.2, we multiply by 〈l〉−2 and sum over l ∈ Z. �

For φ,ψ, we define the pseudo-distance

d(φ,ψ) :=
∑

f2,f3∈{φ,ψ}
2Ws,ǫ

(
φ− ψ, f2, f3

)
+

∑

f1,f3∈{φ,ψ}
Ws,ǫ

(
f1, φ− ψ, f3

)
.(6.1)

Note that d(φ,ψ) = d(ψ, φ). For i1, i2, i3 ∈ {0, 1}, we define

Γi1,i2,i3N,s,ǫ (f1, f2, f3) := Ws,ǫ

((
Π⊥
N

)i1f1,
((
Π⊥
N

)i2f2,
((
Π⊥
N

)i3f3
)
.(6.2)

We denote by Γi1,i2,i3N,s,ǫ (f) := Γi1,i2,i3N,s,ǫ (f, f, f). For any two fixed entries, Γi1,i2,i3N,s,ǫ satisfies the
triangle inequality for the third entry. We will also need the following lemma.

Lemma 6.3. Let V,W be two normed spaces. Let (φk)k∈N ⊂ V + W be a bounded
sequence and φ ∈ V +W . Assume that φk → φ in V +W . Then there exist subsequences
(ϕk)k∈N ⊂ V and (ψk)k∈N ⊂W , ϕ ∈ V, ψ ∈W , satisfying

lim sup
k→∞

(
‖ϕk‖V + ‖ψk‖W

)
≤ ‖φ‖V +W + 1,

‖ϕ‖V + ‖ψ‖W ≤ ‖φ‖V +W + 1,

such that ϕk → ϕ in V and ψk → ψ in W .

Proof. By definition, for any k, there exist fk ∈ V, gk ∈ W , such that φk − φ = fk + gk,
fk → 0 in V and gk → 0 in W . There exist ϕ ∈ V, ψ ∈W , such that

‖ϕ‖V + ‖ψ‖W ≤ ‖φ‖V +W + 1.

Let ϕk = ϕ+ fk and ψk = ψ + gk, then

‖ϕk‖V + ‖ψk‖W ≤ ‖ϕ‖V + ‖ψ‖W + ‖fk‖V + ‖gk‖W ≤ ‖φ‖V +W + 1 + o(1)

as k → ∞. This completes the proof of Lemma 6.3. �

The key step to construct the invariant set and the global dynamics is the following
enhanced local convergence result.
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Proposition 6.4 (Enhanced local convergence). Assume that α, q, ǫ be the numerical
constants as in Proposition 3.2. Let (φk) ⊂ Vq,ǫ +Hs, φ ∈ Vq,ǫ +Hs satisfying

‖φk‖Vq,ǫ+Hs + ‖φ‖Vq,ǫ+Hs ≤ R, lim
k→∞

‖φk − φ‖Vq,ǫ+Hs = 0.

Let Nk → ∞ be a subsequence of N. For Jk = {φk, φ}, assume that
∑

fj∈Jk

i1,i2,i3∈{0,1}

Γi1,i2,i3Nk,s,ǫ
(f1, f2, f3) ≤ R3.(6.3)

Assume moreover that

lim
k→∞

∑

fj∈Jk

i1,i2,i3∈{0,1}
i1+i2+i3>0

Γi1,i2,i3Nk,s,ǫ
(f1, f2, f3) = 0,(6.4)

and

lim
k→∞

d(φk, φ) = 0.(6.5)

Then there exist c > 0, κ > 0, such that for all t ∈ [−τR, τR] with τR = c(R + 2)−κ, we
have

lim
k→∞

‖ΦNk
(t)φk − Φ(t)φ‖Vq,ǫ+Hs = 0.(6.6)

Furthermore, with Jk,t = {ΦNk
(t)φk,Φ(t)φ}, we have

lim
k→∞

∑

fj∈Jk,t

i1,i2,i3∈{0,1}
i1+i2+i3>0

Γi1,i2,i3Nk,s,ǫ
(f1, f2, f3) = 0,(6.7)

and

lim
k→∞

d
(
ΦNk

(t)φk,Φ(t)φ
)
= 0.(6.8)

Remark 6.5. As a consequence of (6.3) and (6.5), we have Ws,ǫ(φk − φ) → 0. This
convergence relation is enough to prove that ΦNk

(t)φk − Φ(t)φ → 0 in Vq,ǫ + Hs. The
closeness of the conditions (6.4),(6.5) are important for the iteration.

Proof. Thanks to Lemma 6.3, there exist sequences (φ0,k)k∈N ⊂ Vq,ǫ, (r0,k)k∈N ⊂ Hs(T),
and φ0 ∈ Vq,ǫ, r0 ∈ Hs, such that

φk = φ0,k + r0,k, φ = φ0 + r0,(6.9)

satisfying

‖φ0,k‖Vq,ǫ + ‖r0,k‖Hs ≤ R+ 2, ‖φ0‖Vq,ǫ + ‖r0‖Hs ≤ R+ 2

and

lim
k→∞

(
‖φ0,k − φ0‖Vq,ǫ + ‖r0,k − r0‖Hs

)
= 0.

Moreover, we have

lim
k→∞

‖Π⊥
Nk
r0‖Hs = 0, and lim

k→∞
‖Π⊥

Nk
r0,k‖Hs = 0(6.10)
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by writing ‖ΠNk
r0,k‖Hs ≤ ‖ΠNk

r0‖Hs + ‖Π⊥
Nk

(r0 − r0,k)‖Hs . Developing the trilinear

expression of Ws,ǫ(φ0,k − φ0) = Ws,ǫ

(
(φk − φ0) − (r0,k − r0)

)
, from the hypothesis and

Lemma 6.2, we deduce that

lim
k→∞

Ws,ǫ(φ0,k − φ0) = 0.

All the hypothesis of Proposition 3.3 are satisfied. We thus deduce that for all t ∈ [−τR, τR],
with τR = c(R+ 2)−κ,

ΦNk
(t)φk = e

it
π
‖ΠNk

φk‖2L2ΠNk
Sα(t)φ0,k +Π⊥

Nk
Sα(t)φ0,k︸ ︷︷ ︸

Vq,ǫ part

+ e
it
π
‖ΠNk

φk‖2L2
(
ΠNk

Sα(t)r0,k + wk(t))
)
+Π⊥

Nk
Sα(t)r0,k︸ ︷︷ ︸

Hs part

,

Φ(t)φ = e
it
π
‖φ‖2

L2Sα(t)φ0︸ ︷︷ ︸
Vq,ǫ part

+ e
it
π
‖φ‖2

L2
(
Sα(t)r0 + w(t))

)
︸ ︷︷ ︸

Hs part

,

where wk(t) ∈ ENk
. Moreover,

lim
k→∞

sup
|t|≤τR

‖wk(t)− w(t)‖Hs = 0.(6.11)

Denote by bk(t) = e
it
π
‖ΠNk

φk‖2L2 , b(t) = e
it
π
‖φ‖2

L2 . Clearly, since φk → φ in L2(T), bk(t) →
b(t) for all t ∈ R. Taking the difference of ΦNk

(t)φk and Φ(t)φ, we have

ΦNk
(t)φk − Φ(t)φ = ϕk(t) + ψk(t),

where

ϕk(t) =
(
bk(t)− b(t)

)
ΠNk

Sα(t)φ0,k +
(
1− b(t)

)
Π⊥
Nk
Sα(t)φ0 +Π⊥

Nk
Sα(t)

(
φ0,k − φ0

)

+b(t)ΠNk
Sα(t)(φ0,k − φ0),

ψk(t) =bk(t)
(
ΠNk

Sα(t)(r0,k − r0) + wk(t)− w(t)
)
+ (bk(t)− b(t))

(
ΠNk

Sα(t)r0 + w(t)
)

+(1− b(t))Π⊥
Nk
Sα(t)r0 +Π⊥

Nk
Sα(t)(r0,k − r0).

From (6.11), we have for all |t| ≤ τR, ψk(t) → 0 in Hs. To show that ΦNk
(t)φk converges

to Φ(t)φ in Vq,ǫ +Hs, it will be sufficient to prove that ϕk(t) → 0 in Vq,ǫ for all |t| ≤ τR.
We note that ΠNk

,Π⊥
Nk

are uniformly bounded on Vq,ǫ, since they can be represented by
Hilbert transformation, up to modulation. Thus from Lemma 6.1 we have

lim
k→∞

‖
(
bk(t)− b(t)

)
ΠNk

Sα(t)φ0,k‖Vq,ǫ = 0.

Next we prove that Π⊥
Nk
Sα(t)φ0 converges to 0 in Vq,ǫ. The Fourier-Lebesgue norm

FLα
2
−ǫ, 2

ǫ of Π⊥
Nk
Sα(t)φ0 converges to 0 can be deduced easily from the fact that S(t)φ0 ∈

FLα
2
−ǫ, 2

ǫ . For the Sobolev norm LqtW
α−1
2

−ǫ, 1
ǫ

x , we first observe that for almost every t′ ∈ R,

Π⊥
Nk
Sα(t

′)Sα(t)φ0 → 0 inW
α−1
2

−ǫ, 1
ǫ

x . Indeed, the uniform boundeness of Π⊥
Nk

onW
α−1
2

−ǫ, 1
ǫ

x

allows us to first prove the convergence for smooth functions and then a density argument.
By Lebesgue’s dominating convergence theorem, we have Π⊥

Nk
χl(t

′)Sα(t′)Sα(t)φ0 → 0 in
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LqtW
α−1
2

−ǫ, 1
ǫ

x , for all l ∈ Z. Consequently, Π⊥
Nk
Sα(t)φ0 → 0 in Vq,ǫ. The convergence of

the term Π⊥
Nk
Sα(t)(φ0,k −φ0) follows from the convergence of φ0,k to φ0 in Vq,ǫ. Since the

definition of Vq,ǫ norm allows us to obtain a comparable norm after shifting |t| ≤ 1. This
proves (6.6).

Next we verify (6.7) and (6.8). We first claim that after changing the constant R to
R+(2R)3 and Jk to {φ0,k, φ0}, (6.3),(6.4),(6.5) still hold. Indeed, for each fj ∈ {φ0,k, φ0},
by decomposition (6.9), there is a f̃j ∈ {φk, φ}, such that gj = f̃j − fj ∈ {r0,k, r0}.
Therefore, we can write

Γi1,i2,i3Nk,s,ǫ
(f1, f2, f3) ≤ Γi1,i2,i3Nk,s,ǫ

(f̃1, f2, f3) +Ws,ǫ

(
(Π⊥

Nk
)i1g1, (Π

⊥
Nk

)i2f2, (Π
⊥
Nk

)i3f3
)
,

and the second term can be bounded by R3 from Proposition 6.2. We successively replace

f2 by f̃2 and a term bounded by R3. Thus we obtain the analogue for (6.3) for φ0,k, φ0
with the upper bound R+ 23R3. Now if one of i1, i2, i3 is non zero, say i1 = 1, we have

Γ1,i2,i3
Nk,s,ǫ

(f1, f2, f3) ≤ Γ1,i2,i3
Nk,s,ǫ

(f̃1, f2, f3) +Ws,ǫ

(
Π⊥
Nk
g1, (Π

⊥
Nk

)i2f2, (Π
⊥
Nk

)i3f3
)
.

From Proposition 6.2 and (6.10), the second term of r.h.s can be bounded by CR2‖Π⊥
Nk
g1‖Hs ·,

and it converges to 0. Next, we write

Γ1,i2,i3
Nk,s,ǫ

(f̃1, f2, f3) ≤Γ1,i2,i3
Nk,s,ǫ

(f̃1, f̃2, f3) +Ws,ǫ

(
Π⊥
Nk
f̃1, (Π

⊥
Nk

)i2g2, (Π
⊥
Nk

)i3f3
)

≤Γ1,i2,i3
Nk,s,ǫ

(f̃1, f̃2, f̃3) +Ws,ǫ

(
Π⊥
Nk
f̃1, (Π

⊥
Nk

)i2g2, (Π
⊥
Nk

)i3f3
)

+Ws,ǫ

(
Π⊥
Nk
f̃1, (Π

⊥
Nk

)i2 f̃2, (Π
⊥
Nk

)i3g3
)
.

Thus from Proposition 6.2 and the assumption (6.4),

Γ1,i2,i3
Nk,s,ǫ

(f1, f2, f3) ≤ o(1) +CR2‖Π⊥
Nk
f̃1‖Ṽq,ǫ .

Since by definition, ‖Π⊥
Nf‖Ṽq,ǫ ≤ CN−ǫ/2‖Π⊥

Nf‖Vq,ǫ , we have Γ1,i2,i3
Nk,s,ǫ

(f1, f2, f3) = o(1), as

k → ∞. For the convergence of d(φ0,k, φ0), by decomposition (6.9) and using the triangle
inequality, we have

d(φ0,k, φ0) ≤
∑

f2,f3∈{φ0,k ,φ0}
Ws,ǫ(φk − φ, f2, f3) +Ws,ǫ(r0,k − r0, f2, f3)

+
∑

f1,f3∈{φ0,k ,φ0}
Ws,ǫ(f1, φk − φ, f3) +Ws,ǫ(f1, r0,k − r0, f3).

From Proposition 6.2, the terms containing the entries r0,k − r0 converge to 0, and the
rests containing only φk − φ, φk, φ as entries, which can be bounded by d(φk, φ). Thus
d(φ0,k, φ0) → 0 as k → ∞.

Next we verify (6.7). Note that

Π⊥
Nk

ΦNk
(t)φk = Π⊥

Nk
Sα(t)φ0,k +Π⊥

Nk
Sα(t)r0,k

and

Π⊥
Nk

Φ(t)φ = b(t)Π⊥
Nk
Sα(t)φ+ b(t)Π⊥

Nk
w(t).
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For any f1, f2, f3 ∈ {ΦNk
(t)φk,Φ(t)φ}, by the triangle inequality, Γ1,i2,i3

Nk,s,ǫ

(
f1, f2, f3

)
can be

bounded by linear combinations of

Ws,ǫ

(
Π⊥
Nk
Sα(t)f̃1, f2, f3

)
, f̃1 ∈ {φ0,k, b(t)φ0}

and
Ws,ǫ

(
Π⊥
Nk
Sα(t)g1, f2, f3

)
, g1 ∈ {r0,k, b(t)w(t)}.

Since ‖ · ‖Vq,ǫ and Ws,ǫ(·, ·, ·) is quasi-invariant under an Sα(t) action for |t| ≤ 1, we obtain
(6.7) after using the triangle inequalities, Proposition 6.2 and the previous claim. Finally,
to verify (6.8), we observe that d

(
ΦNk

(t)φk,Φ(t)φ
)
can be expressed as linear combinations

of the forms

Ws,ǫ

(
ϕk(t) + ψk(t), f2, f3

)
, Ws,ǫ

(
f1, ϕk(t) + ψk(t), f3), f1, f2, f3 ∈ {ΦNk

(t)φk,Φ(t)φ}
which contains the terms of the following forms:

Ws,ǫ

(
ψk(t), ·, ·

)
,Ws,ǫ(·, ψk(t), ·);Ws,ǫ(ϕk(t), ·, ·),Ws,ǫ(·, ϕk(t), ·).

From Proposition 6.2, the first two type of terms containing ψk(t) converge to 0. For the
other two terms, if there is one place · filled by some functions in Hs, it converges to 0,
by Proposition 6.2 and the fact that ϕk(t) → 0 in Vq,ǫ. The last possibility to treat is the
term Ws,ǫ(ϕk(t), ϕk(t), ϕk(t)). By the triangle inequality, it can be bounded by the terms
of the form

Ws,ǫ(ϕ1,k(t), ϕ2,k(t), ϕ3,k(t)),

where ϕj,k(t) is one of the functions:
(
bk(t)− b(t)

)
ΠNk

Sα(t)φ0,k,
(
1− b(t)

)
Π⊥
Nk
Sα(t)φ0

Π⊥
Nk
Sα(t)

(
φ0,k − φ0

)
, b(t)ΠNk

Sα(t)(φ0,k − φ0).

From the quasi-invariance of the quantity Ws,ǫ(·, ·, ·) under the Sα(t) action and hypothesis
(6.4), (6.5), we deduce that Ws,ǫ(ϕ1,k(t), ϕ2,k(t), ϕ3,k(t)) converges to 0, hence (6.8) is
verified. The proof of Proposition 6.4 is now complete. �

6.2. Construction of the global flow.

Proposition 6.6. Assume that s ∈
[
1
2− α

4 −α−1
)
and σ ≤ α−1

2 −ǫ. There exist constants
C > 0,D > 0, δ > 0 such that for all m ∈ N, N ≥ 1, there exists a ρN measurable set

Σ̃mN ⊂ Hσ(T), such that

ρN (H
σ \ Σ̃mN ) ≤ 2−m+1.

For all φ ∈ Σ̃mN , t ∈ R,

‖ΦN (t)φ‖Vq,ǫ+Hs +N δ‖Π⊥
NΦN (t)φ‖Vq,ǫ+Hs ≤ Cm3/2 (1 + log(1 + |t|))3/2 ,

and for all i1, i2, i3 ∈ {0, 1},
Γi1,i2,i3N,s,ǫ

(
ΦN(t)φ

)
≤ CN−δ(i1+i2+i3)m3/2 (1 + log(1 + |t|))3/2 .

In particular,

‖ΦN (t)φ‖Hσ(T) ≤ Cm3/2 (1 + log(1 + |t|))3/2 .
Moreover, for all t0 ∈ R, m ∈ N, N ≥ 1,

(6.12) ΦN (t0)(Σ̃
m
N ) ⊂ Σ̃

Dm(1+log2(1+|t0|))
N .
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We need the following lemma.

Lemma 6.7. Assume that φ ∈ Vq,ǫ +Hs such that for some R > 0, δ > 0,

‖φ‖Vq,ǫ+Hs ≤ R, ‖Π⊥
Nφ‖Vq,ǫ+Hs ≤ N−δR.

Then there exists φ0 ∈ Vq,ǫ, r0 ∈ Hs, such that

‖φ0‖Vq,ǫ + ‖r0‖Hs ≤ 2A0(R+ 1), ‖Π⊥
Nφ0‖Vq,ǫ + ‖Π⊥

Nr0‖Hs ≤ N−δA0(R+ 1),

where A0 > 0 is a uniform constant.

Proof. By definition, there exists ϕN , ϕ ∈ Vq,ǫ and ψN , ψ ∈ Hs, such that

φ = ϕ+ ψ, Π⊥
Nφ = ϕN + ψN

and

‖ϕ‖Vq,ǫ + ‖ψ‖Hs ≤ R+ 1, ‖ϕN‖Vq,ǫ + ‖ψN‖Hs ≤ N−δ(R+ 1).

Note that in a priori, we do not know if ϕN ∈ E⊥
N and ψN ∈ E⊥

N . Since (Π⊥
N )

2φ = Π⊥
Nφ,

we can replace ϕN , ψN by Π⊥
NϕN ,Π

⊥
NψN , from Lemma 3.1, we have

‖Π⊥
NϕN‖Vq,ǫ + ‖Π⊥

NψN‖Hs ≤ A0N
−δ(R+ 1), ‖ΠNϕ‖Vq,ǫ + ‖ΠNψ‖Hs ≤ A0(R+ 1).

Let φ0 = ΠNϕ + Π⊥
NϕN , r0 = ΠNψ + Π⊥

NψN and using the triangle inequality, the proof
of Lemma 6.7 is complete. �

Proof of Proposition 6.6. The construction is slightly different compared to [10], due to
the multi-linear and sum space structures. For m,k ∈ N and D > 0 to be chosen later, we
define the set

Bm,k
N (D) :=

{
φ ∈ Hσ(T) : ‖φ‖Vq,ǫ+Hs ≤ D(mk)3/2, ‖Π⊥

Nφ‖Vq,ǫ+Hs ≤ N−δD(mk)3/2}
∩
{
φ ∈ Hσ(T) : ∀i1, i2, i3 ∈ {0, 1},Γi1 ,i2,i3N,s,ǫ (φ) ≤ N−δ(i1+i2+i3)D3(mk)9/2

}
.

(6.13)

By Lemma 6.7, for φ ∈ Bm,k
N (D), there exists a decomposition φ = φ0 + r0, such that

‖φ0‖Vq,ǫ + ‖r0‖Hs ≤ 2A0D(mk)3/2, ‖Π⊥
Nφ0‖Vq,ǫ + ‖Π⊥

Nr0‖Hs ≤ A0N
−δD(mk)3/2 .

Arguing as in the proof of Proposition 6.4, we deduce that there exists C0 > 0, and δ < ǫ
6 ,

such that

Γi1,i2,i3N,s,ǫ (φ0) ≤ C0N
−δ(i1+i2+i3)D3(mk)9/2,∀i1, i2, i3 ∈ {0, 1}.

From Proposition 3.2, the time for local existence is τm,k = c(2A0D)−κ(mk)−
3κ
2 . Then for

any |t| ≤ τm,k, we can write the solution as

ΦN (t)φ = ϕN (t) + ψN (t),

ϕN (t) = e
it
π
‖ΠNφ‖2L2ΠNSα(t)φ0 +Π⊥

NSα(t)φ0 ∈ Vq,ǫ ,

ψN (t) = e
it
π
‖ΠNφ‖2L2

(
ΠNSα(t)r0 + wN (t)

)
+Π⊥

NSα(t)r0 ∈ Hs

with the property that wN (t) ∈ EN , and

sup
|t|≤τm,k

(
‖ϕN (t)‖Vq,ǫ + ‖ψN (t)‖Hs

)
≤ 4A0D(mk)3/2,
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since Sα(t) keeps invariant of the Hs norm, quasi-invariant the Vq,ǫ and Π⊥
NwN = 0.

Therefore, for |t| ≤ τm,k

‖ΦN (t)φ‖Vq,ǫ+Hs ≤ 4A0D(mk)3/2.

Since

Π⊥
NΦN (t)φ = Π⊥

NSα(t)(φ0 + r0),

from the quasi-invariance of the norm Vq,ǫ under Sα(t), |t| ≤ 1
2 , we obtain that

‖Π⊥
NΦN (t)φ‖Vq,ǫ+Hs ≤ A1‖Π⊥

Nφ‖Vq,ǫ+Hs ≤ A1N
−δD(mk)3/2.

Next, we estimate the quantities Γi1,i2,i3N,s,ǫ (ΦN (t)φ) for all i1, i2, i3 ∈ {0, 1}. By expanding

ΦN (t)φ = ϕN (t) + ψN (t) and using the triangle inequality, we note that except for the

term Γi1,i2,i3N,s,ǫ (ϕN (t)), the other terms are of the form

Γi1,i2,i3N,s,ǫ (ψN (t), ·, ·),Γi1 ,i2,i3N,s,ǫ (·, ψN (t), ·),Γi1,i2,i3N,s,ǫ (·, ·, ψN (t)).

Therefore, from Proposition 6.2, the terms containing ψN in one of their entries can be
estimated by

C
∥∥ψN (t)

∥∥3
Hs + C‖ϕN (t)‖3Ṽq,ǫ ≤ CD3(mk)3/2.

Furthermore, if one of i1 + i2 + i3 > 0, we gain N−δ with δ < ǫ
6 from either ‖Π⊥

Nr0‖Hs ≤
A0N

−δD(mk)3/2 or ‖Π⊥
Nφ0‖Vq,ǫ ≤ A0N

−δD(mk)3/2. For the term Γi1,i2,i3N,s,ǫ (ϕN (t)), we use

the triangle inequality to estimate it by the sum of the terms Γi1,i2,i3N,s,ǫ (f1, f2, f3), where

f1, f2, f3 ∈ {e
it
π
‖ΠNφ‖2L2ΠNSα(t)φ0,Π

⊥
NSα(t)φ0}. From Lemma 6.1, we obtain that

Γi1,i2,i3N,s,ǫ (ϕN (t)) ≤ 23C0A1N
−δ(i1+i2+i3)D3(mk)9/2.

Consequently, for all |t| ≤ τm,k and i1, i2, i3 ∈ {0, 1},

Γi1,i2,i3N,s,ǫ

(
ΦN (t)φ

)
≤ C1N

−δ(i1+i2+i3)D3(mk)9/2.

Since ‖φ‖Vq,ǫ+Hs ≤ ‖φ‖Vq,ǫ , we deduce from Corollary 5.3 and Lemma 5.4 that

ρN (H
σ \Bm,k

N (D)) ≤ e−cD
2/3mk.

Next, we set

(6.14) Σ̃m,kN (D) :=
⋂

|j|≤ 2k

τm,k

ΦN (−jτm,k)
(
Bm,k
N (D)

)
,

from the invariance of ρN under the flow ΦN (t), we have

ρN
(
Hσ \ Σ̃m,kN (D)

)
≤

∑

|j|≤ 2k

τm,k

ρN
(
Hσ \ ΦN (−jτm,k)

(
Bm,k
N (D)

))

≤2k+2

τm,k
ρN

(
Hσ \Bm,k

N (D)
)
≤ 2k+2

c
Dκ(mk)

3κ
2 e−cD

2/3(mk) ≤ 2−mk,
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provided that D is chosen large enough. Now we define the desired data set by

(6.15) Σ̃mN :=
⋂

k≥1

Σ̃m,kN (D).

It is clear that ρN
(
Hσ \ Σ̃mN

)
≤ 2−m+1.

Finally, we prove (6.12). Let m0 = Dm log2(1 + |t0|). Take any φ ∈ Σ̃mN , by def-

initions (6.14) and (6.15), we need to show that for any l ≥ 1 and |j| ≤ 2l/τm0,l,

ΦN (jτm0,l)ΦN (t0)φ ∈ Bm0,l
N (D). By definition of the set Bm,k

N (D) in (6.13), we observe
that for any C0 ≥ 1 and l0 ≥, l0 ∈ N,

(6.16) Bm,k
N (C0D) ⊂ B

(⌊C
2
3
1 ⌋+1)m,k

N (D), Bm,l0k
N (D) = Bl0m,k

N (D).

Moreover, a previous argument (the local theory) yields

(6.17) ΦN (t)(B
m,k
N (D)) ⊂ Bm,k

N (C2D),∀|t| ≤ τm,k

where C2 > 4A0+A1+C1 is some uniform constant. For t0 6= 0, without loss of generality,
we assume that |t0| ≥ 1. Then there exists k0 ∈ N, such that 2k0 ≤ |t0| < 2k0+1. Denote

by k1 = k0 + 2. Take φ ∈ Σ̃mN . If l < k1, then |t0 + jτm0,l| ≤ 22k1−1, and there exists

|j2| ≤ 22k1/τm,2k1 , such that |t0+ jτm0,l− j2τm,2k1 | ≤ τm,2k1 . Thus by definition and (6.17)

ΦN (t0 + jτm0,l)φ = ΦN (t0 + jτm0,l − j2τm,2k1)ΦN (j2τm,2k1)φ ∈ Bm,2k1
N (C2D).

Using (6.16), we have

ΦN (t0 + jτm0,l)φ ∈ B
(⌊C

2
3
2 ⌋+1)2mk1,1

N (D) ⊂ Bm0,l
N (D),

provided that D is chosen large enough. If l ≥ k1, then |t0+ jτm0,l| ≤ 22l−1. Then without

loss of generality, there exists j2 ≤ 22l/τm,2l, such that

j2τm,2l ≤ |t0 + jτm0,l| ≤ (j2 + 1)τm,2l,

and we can write

ΦN(t0 + jτm0,l)φ = ΦN (t0 + jτm0,l − j2τm,2l)ΦN (j2τm,2l)φ ∈ Bm,2l
N (C2D).

Again from (6.16), we have ΦN (t0 + jτm0,l)φ ∈ B
(⌊C

2
3
2 ⌋+1)2m,l

N (D) ⊂ Bm0,l
N (D). This

completes the proof of Proposition 6.6. �

Define

Σm :=
{
φ ∈ Vq,ǫ +Hs : ∃Nk → ∞, φk ∈ Σ̃mNk

, ‖φk − φ‖Vq,ǫ+Hs → 0,d(φk, φ) → 0,

and
∑

fj∈{φk ,φ}
i1+i2+i3>0

Γi1,i2,i3Nk,s,ǫ
(f1, f2, f3) → 0

}
.

Lemma 6.8. Assume that σ ≤ α−1
2 − ǫ as in Proposition 6.6. Then

lim sup
N→∞

Σ̃mN =

∞⋂

N=1

⋃

N ′=N

Σ̃mN ⊂ Σm.(6.18)
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and

ρ(Σm) ≥ ρ(Hσ)− 2−m.

Proof. We first prove the inclusion (6.18). Take φ ∈ lim supN Σ̃mN , there exists a sequence

Nk → ∞, such that φ ∈ Σ̃mNk
for all k. We set φk = φ, then trivially we verify that φ ∈ Σm.

By Fatou’s lemma,

ρ(Σm) = ρ
(
lim sup
N→∞

Σ̃mN
)
≥ lim sup

N→∞
ρ
(
Σ̃mN

)
.

From the construction of the Gibbs measure, we know that

lim
N→∞

(
ρ
(
Σ̃mN

)
− ρN

(
Σ̃mN

))
= 0.

Therefore, from Proposition 6.6, we have

lim sup
N→∞

ρ
(
Σ̃mN

)
≥ lim sup

N→∞
ρN

(
Σ̃mN

)
≥ ρ(Hσ)− 2−m.

�

Consequently, the set

Σ :=

∞⋃

m=1

Σm

is of full ρ measure. The last step to prove Theorem 6 is the following proposition, ensuring
the global existence and the flow property of Φ(t).

Proposition 6.9. For every integer m ∈ N and every φ ∈ Σm, the solution Φ(t)φ with
initial data φ is globally defined. Moreover, there exists C > 0, such that for every φ ∈ Σm

and t ∈ R, we have

‖Φ(t)φ‖Vq,ǫ+Hs +
(
Ws,ǫ(Φ(t)φ)

) 1
3 ≤ Cm

3
2
(
1 + log(1 + |t|)

)3/2
.

Furthermore, Φ(t)Σ = Σ. In other words, the flow map Φ(t) is globally defined on Σ.

Proof of Proposition 6.9. Take φ ∈ Σm, by definition, there is a sequence Nk → ∞, and a

sequence φk ∈ Σ̃mNk
, such that

‖φk − φ‖Vq,ǫ+Hs + d(φk, φ) → 0, k → ∞,

and

(6.19) lim
k→∞

∑

fj∈{φk ,φ,}
i1+i2+i3>0

Γi1,i2,i3Nk,s,ǫ
(f1, f2, f3) = 0.

By definition, for all k ∈ N and t ∈ R we have

‖ΦNk
(t)φk‖Vq,ǫ+Hs +N δ

k‖Π⊥
Nk

ΦNk
(t)φk‖Vq,ǫ+Hs ≤ Cm

3
2
(
1 + log(1 + |t|)

)3/2
,(6.20)

Γi1,i2,i3Nk,s,ǫ
(ΦNk

(t)φk) ≤ CN
−δ(i1+i2+i3)
k m

9
2

(
1 + log(1 + |t|)

)9/2
.(6.21)

At t = 0, passing k to the limit, we obtain that ‖φ‖Vq,ǫ+Hs ≤ C(m+1)3/2. Using triangle
inequality, we deduce that for any f1, f2, f3 ∈ {φk, φ},

Γ0,0,0
Nk,s,ǫ

(f1, f2, f3) ≤ Γ0,0,0
Nk,s,ǫ

(φk) + 3d(φk, φ).
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Thus from (6.21) and (6.19) we have
∑

fj∈{φk,φ,}
i1,i2,i3∈{0,1}

Γi1,i2,i3Nk,s,ǫ
(f1, f2, f3) ≤ C(m+ 1)9/2.

Denote by ΛT = 2Cm
3
2

(
1+ log(1+ |t|)

)3/2
for any given T > 0. We need show that there

exists a uniform constant C ′ > 0, such that Φ(t)φ exists on [0, T ] and satisfies

‖Φ(t)φ‖Vq,ǫ+Hs +
(
Ws,ǫ(Φ(t)φ)

) 1
3 ≤ C ′ΛT .

Let τT = c2−κ(ΛT +1)−κ, the time in Proposition 6.4 for R = 2(ΛT +1) and divide [0, T ]
by NT ∼ T/τT intervals of size τT . With R = 2(ΛT +1), the hypotheses of Proposition 6.4
are satisfied. Thus we have for t ∈ [0, τT ],

lim
k→∞

‖ΦNk
(t)φk − Φ(t)φ‖Vq,ǫ+Hs = 0.(6.22)

Furthermore, with Jk,t = {ΦNk
(t)φk,Φ(t)φ}, we have

lim
k→∞

∑

fj∈Jk,t

i1,i2,i3∈{0,1}
i1+i2+i3>0

Γi1,i2,i3Nk,s,ǫ
(f1, f2, f3) = 0,

and

lim
k→∞

d
(
ΦNk

(t)φk,Φ(t)φ
)
= 0.(6.23)

Note that ΦNk
(t)φk ∈ Σ̃

Dm(1+log(1+|t|))
Nk

, then by definition

Φ(t)φ ∈ ΣDm(1+log2(1+|t|)), ∀|t| ≤ τT .

By passing k to infinity, (6.22) implies that

‖Φ(t)φ‖Vq,ǫ+Hs ≤ Cm
3
2 (1 + log(1 + |τT |))3/2 ≤ R/2.

Similarly, using (6.23) and passing k → ∞ of (6.21) at t = τT , we obtain that
∑

fj∈Jk,t

i1,i2,i3∈{0,1}
i1+i2+i3>0

Γi1,i2,i3Nk,s,ǫ
(f1, f2, f3) ≤ R3/2.

In particular, the hypotheses of Proposition 6.4 are satisfied for the initial data Φ(τT )φ and
the approximating sequence (ΦNk

(τT )φk)k∈N, with the same R = 2(ΛT + 1). This allows
us to repeatedly use Proposition 6.4 to the interval [2τT , 3τT ], · · · , [(NT − 1)τT , NT τT ].
This procedure shows that the solution Φ(t)φ exists globally in t ∈ R. Moreover,

Φ(t)φ ∈ ΣDm(1+log2(1+|t|))

holds for all t ∈ R. This implies that Φ(t)Σm ⊂ Σ, hence Φ(t)Σ ⊂ Σ. By reversibility, we
have Φ(t)Σ = Σ. Note that the structure of the solution allows us to pass to the limit of
the relation

ΦN (t+ s) = ΦN (t) ◦ ΦN (s),∀t, s ∈ R.
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Therefore, the limit flow Φ(t) satisfies the group property. This completes the proof of
Proposition 6.9. �

6.3. Measure invariance. To prove the measure convergence, by reversibility of the flow
Φ(t) and the reduction argument in [10] (see also [42, 38]), it suffices to show that for any
R > 0 any any Hσ compact subset of BR, we have

ρ(K) ≤ ρ(Φ(t)ρ(K)),(6.24)

where

BR :=
{
φ : ‖φ‖Vq,ǫ+Hs ≤ R, Ws,ǫ(φ) ≤ R3

}
.

We need the following approximation lemma.

Lemma 6.10. There exists C0 > 0, such that the following holds true. For every large
R ≥ 1, small ǫ > 0, and every compact set K ⊂ BR with respect to the Hσ topology, there
exists N0 ≥ 1, κ > 0, c > 0, such that for all N ≥ N0, φ ∈ K, |t| ≤ τR = cR−κ, we have

‖Φ(t)φ−ΦN (t)φ‖Hσ < ǫ.

Proof. This is a simple consequence of the local well-posedness. Write

Φ(t)φ = e
it
π
‖φ‖2

L2
(
ΠNΨ(t)φ,Π⊥

NΨ(t)φ
)
, ΦN(t)φ =

(
e

it
π
‖ΠNφ‖2L2ΠNΨN (t)φ,Π

⊥
NΨN (t)φ

)
,

where ΨN (t)φ (Ψ(t)φ) is the local solution of the Wick-ordered truncated (non-truncated)
equation. Note that from the compactness of K in Hσ, the convergences of ‖ΠNφ‖L2

to ‖φ‖L2 and ‖Π⊥
Nφ‖Hσ to 0 are uniform. Therefore, it suffices to prove the uniform

convergence of ΨN (t)φ to Ψ(t)φ in Hσ.
From Proposition 3.2, we have, for |t| ≤ τR = cR−κ

ΨN (t)φ = Sα(t)φ+ wN (t), Ψ(t)φ = Sα(t)φ+ w(t),

where the nonlinear parts wN (t) ∈ EN , w(t) ∈ Hs satisfy the integral equations:

wN (t) = −iΠN
∫ t

0
Sα(t− t′)N

(
ΨN (t

′)φ
)
dt′, w(t) = −i

∫ t

0
Sα(t− t′)N

(
Ψ(t′)φ

)
dt′,

and

‖wN‖
X

s, 12+2ǫ

T

+ ‖w‖
X

s, 12+2ǫ

T

≤ T θR3,

if T ≤ τR. Expanding the trilinear expression N (·) and using Proposition 3.4, we obtain
that

‖wN (t)− w(t)‖
X

s1,
1
2+2ǫ

T

≤ ‖Π⊥
Nw‖

X
s1,

1
2+2ǫ

T

+ CT θR3‖wN − w‖
X

s1,
1
2+2ǫ

T

,

where s1 ∈ [12 − α
4 , s). Taking κ > 0 large enough and T ≤ TR = cR−κ, we obtain that

‖wN − w‖
X

s1,
1
2+2ǫ

TR

≤ C‖Π⊥
Nw‖

X
s1,

1
2+2ǫ

T

≤ CN−(s−s1)T θR3.

This proves the uniform convergence of ΨN (t)φ − Ψ(t)φ to 0 in Hs1(T) →֒ Hσ(T). The
proof of Lemma 6.10 is now complete. �
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To finish the proof of the measure invariance, we observe that for any ǫ > 0, from
Fatou’s lemma and the approximation Lemma 6.10, we have

ρ
(
Φ(t)(K) +BHσ

δ

)
≥ lim

N→∞
ρN

(
Φ(t)(K) +BHσ

δ

)
≥ lim sup

N→∞
ρN

(
ΦN (t)(K) +BHσ

cδ

)
,

for all |t| ≤ τR. Thus from invariance of ρN under ΦN (t), we have

lim sup
N→∞

ρN (ΦN (t)(K) +BHσ

cδ ) ≥ lim sup
N→∞

ρN (K) = ρ(K).

Passing δ → 0, we obtain that for |t| ≤ TR, we have ρ(Φ(t)(K)) ≥ ρ(K). Iterating the
argument, we obtain (6.24) for all t ∈ R. This proves the invariance of the Gibbs measure.
The proof of Theorem 6 is then complete.

Proof of Corollary 1.3. From the invariance of the Gibbs measure dρ = e−V dµ by Φ(t),
the transported measure µt = Φ(t)∗µ is absolutely continuous with respect to µ. By the
Radon-Nikodym theorem, for every t ∈ R there exists a function G(t) ∈ L1(dµ), G ≥ 0
such that µt = G(t)dµ. Set

dνj(u) = fj(u)dµ(u), j = 1, 2

and dνtj(u) = Φ(t)∗dνj(u). Then for a test function Ψ, we can write
∫

Hσ

Ψ(u)dνtj(u) =

∫

Hσ

Ψ(Φ(t)(u))dνj(t)

=

∫

Hσ

Ψ(Φ(t)(u))fj(u)dµ(u)

=

∫

Hσ

Ψ(u)fj(Φ(−t)(u))G(t, u)dµ(u) .

Therefore dνtj(u) = Fj(t, u)dµ(u) with Fj(t, u) = fj(Φ(−t)(u))G(t, u). Next, we can write
∫

Hσ

|F1(t, u)− F2(t, u)|dµ(u) =

∫

Hσ

|f1(Φ(−t)(u))− f2(Φ(−t)(u))|G(t, u)dµ(u)

=

∫

Hσ

|f1(u)− f2(u)|dµ(u).

This completes the proof of Corollary 1.3. �

6.4. Almost sure convergence of smooth solutions. In this section, we prove The-
orem 5. The key point is the following local stability result, which is a version of the
enhanced local convergence.

Proposition 6.11 (local stability). Assume that α, q, ǫ be the numerical constants as in
Proposition 3.2. Let (φk) ⊂ Vq,ǫ +Hs, φ ∈ Vq,ǫ +Hs satisfying

‖φk‖Vq,ǫ+Hs + ‖φ‖Vq,ǫ+Hs ≤ R, lim
k→∞

‖φk − φ‖Vq,ǫ+Hs = 0.

Assume moreover that
lim
k→∞

d(φk, φ) = 0

and for all k ∈ N,
Ws,ǫ(φk) ≤ R3, Ws,ǫ(φ) ≤ R3.
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Then there exist c > 0, κ > 0, such that for all t ∈ [−τR, τR] with τR = c(R + 2)−κ, we
have

lim
k→∞

sup
|t|≤τR

‖Φ(t)φk − Φ(t)φ‖Vq,ǫ+Hs = 0.

Furthermore, with Jk,t = {Φ(t)φk,Φ(t)φ}, we have

lim
k→∞

d
(
Φ(t)φk,Φ(t)φ

)
= 0.

Remark 6.12. Comparing with Proposition 6.4, the only difference here is that instead of
comparing the flow Φ(t)φ with the truncated truncated flow ΦNk

(t)φk, we compare it with
the real flow Φ(t)φk.

Proof. The proof is almost the same as the proof of Proposition 6.4, and we only give a
sketch. First we have the same decomposition φk = φ0,k + r0,k, φ = φ0 + r0 as in (6.9)
with the same property. Arguing as before, we have

d(φ0,k, φ0) → 0.

On the same local existence time interval [−τR, τR] as in Proposition 6.4, we have for any
|t| ≤ τR, the difference of Φ(t)φk − Φ(t)φ can be written as ϕk(t) + ψk(t), where the Vq,ǫ
part is ϕk(t) = bk(t)Sα(t)φ0,k − b(t)Sα(t)φ0, with bk(t) = e

it
π
‖φk‖2L2 , b(t) = e

it
π
‖φ‖2

L2 . The
Hs part is ψk(t) = bk(t)Sα(t)r0,k − b(t)Sα(t)r0 + bk(t)wk(t)− b(t)w(t), where

‖r0,k − r0‖Hs → 0, sup
|t|≤τR

‖wk(t)− w(t)‖Hs → 0.

Thus by quasi-invariance of the Vq,ǫ norm and the quantity Ws,ǫ(·) under Sα(t), we deduce
that

sup
|t|≤τR

‖ϕk(t)‖Vq,ǫ → 0, sup
|t|≤τR

‖ψk(t)‖Hs → 0, d(Φ(t)φk,Φ(t)φ) → 0.

This completes the proof of Proposition 6.11. �

Now we prove Theorem 5.

Proof of Theorem 5. We follow the argument in [38]. By the Borel-Cantelli lemma, it is
sufficient to show that for any T > 0, we have the almost convergence of the smooth
solutions on the time interval [0, T ]. We introduce an extra data set

Σ̃ :=
∞⋃

l=1

∞⋂

l′=l

Σ̃l′ ,

where

Σ̃l :=
{
φ : N ǫ0(i1+i2+i3)Ws,ǫ

(
(Π⊥

N )
i1φ, (Π⊥

N )
i2φ, (Π⊥

N )i3φ
)
≤ l

3
2 ,∀i1, i2, i3 ∈ {0, 1}

}
,

with ǫ0 > 0 as in Corollary 5.3. Consequently,

µ((Σ̃l)
c) < e−cl

and by Borel-Cantelli, Σ̃ has full µ and ρ measure. Since Σ constructed in Theorem 6

also has full ρ measure, the proof will be finished once we show that for any φ ∈ Σ ∩ Σ̃,

the global solution Φ(t)(ΠNφ) converges to Φ(t)φ in C([0, T ];H
α−1
2

−ǫ(T)). We will in fact
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prove the convergence in the stronger topology C
(
[0, T ];Vq,ǫ +Hs

)
.

For any φ ∈ Σ∩ Σ̃, there exists m ∈ N, such that φ ∈ Σm. By Proposition 6.9, we have
for all |t| ≤ T , with Λm,T = Cm3/2(1 + log(1 + |T |))3/2, we have

‖Φ(t)φ‖Vq,ǫ+Hs +
(
Ws,ǫ(Φ(t)φ)

) 1
3 ≤ Λm,T .

Moreover, from the construction of Σ̃,

‖φ−ΠNφ‖Vq,ǫ+Hs → 0, d(ΠNφ, φ) → 0, as N → ∞.

Set φN = ΠNφ. We have that for N ≥ N0, large enough,

‖φN‖Vq,ǫ +Ws,ǫ(φN ) ≤ 2Λm,T .

Let R = 3Λm,T and we divide [0, T ] into NR ∼ T/τR intervals of equal length τR. Applying
Proposition 6.11 to φN , φ and R, we obtain that for all t ∈ [0, τR],

d(Φ(t)φN ,Φ(t)φ) → 0, sup
t∈[0,τR]

‖Φ(t)φN − Φ(t)φ‖Vq,ǫ+Hs → 0.

In particular,

‖Φ(t)φ‖Vq,ǫ+Hs = lim
N→∞

‖Φ(t)φN‖Vq,ǫ+Hs .

Furthermore, by definition and using the triangle inequality, we have

Ws,ǫ(Φ(t)φ) = lim
N→∞

Ws,ǫ(Φ(t)φN ).

Therefore, for some N1 ≥ N0 and for all N ≥ N1,

‖Φ(τR)φN‖Vq,ǫ+Hs +
(
Ws,ǫ(Φ(t)φN )

) 1
3 ≤ 2Λm,T .

This allows us to apply Proposition 6.11 to Φ(τR)φN ,Φ(τR)φ on [τR, 2τR]. Successively,
after NR steps, we prove the convergence of Φ(t)φN to Φ(t)φ to the whole interval [0, T ].

�

7. Convergence of the whole sequence of solutions for the truncated

equation when α > 1

Recall that we denote by ΦN (t) the flow of the truncated equation

i∂tu+ |Dx|αu+ΠN (|ΠNu|2ΠNu) = 0, u|t=0 = φ,

defined on any Sobolev space Hs(T). The measure ρN is invariant under ΦN (t) and as a
consequence we have the following statement.

7.1. New probabilistic a priori estimates.

Lemma 7.1. Let F : Hs1(T) → Hs2(T) (s1 ≥ s2 ≥ 0) be a measurable map with respect to
the canonical Borel σ-algebras on Hs(T). Then for every t ∈ R, and almost every x ∈ T,
we have

EρN [F (ΦN (t)φ)(x)] = EρN [F (φ)(x)] ,

as soon as

EρN [‖F (φ)‖L1(T)] <∞.
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In particular, if for some Fourier multiplier f(Dx) and some 1 ≤ q, r <∞, there holds

‖EρN [|f(Dx)φ(x)|q]‖Lr(T) <∞,

then we have for 1 ≤ ν <∞,

‖EρN [|f(Dx)(ΦN (t)φ)(x)|q]‖Lν([0,T ];Lr(T)) = T
1
ν ‖EρN [|f(Dx)φ(x)|q]‖Lr(T) .

Proof. Actually, the matter is to make the definition of x 7→ EρN [F (φ)(x)] precise as an

L1 function on T. Define a function F̃ from Hs1 × T to C by

(φ, x) 7→ F̃ (φ, x) := F (φ)(x).

From the assumption and the Fubini theorem, the function F̃ is a well-defined L1 function
on Hs1 × T. Moreover, for a.e. x ∈ T, the function

x 7→ EρN [F (φ)(x)] :=

∫

Hs1

F̃ (φ, x)dρN (φ)

is defined as a L1 function on T.
Now from the invariance of Gibbs measure ρN on Hs1(T) along ΦN (t), we have that

EρN [‖F (ΦN (t)φ)‖L1(T)] = EρN [‖F (φ)‖L1(T)] <∞.

Thus EρN [F (ΦN (t)φ)(x)] is defined for almost every x ∈ T as an L1 function. Now it
remains to show the desired equality. For any θ ∈ C∞(T), we have from the Fubini
theorem that

〈EρN [F (ΦN (t)φ)] , θ〉 =
∫

T

(∫

Hs1

F (ΦN (t)φ)(x)dρN

)
θ(x)dx

=

∫

Hs1

(∫

T

F (ΦN (t)φ)(x)θ(x)dx

)
dρN

=

∫

Hs1

〈F (ΦN (t)φ), θ〉dρN

=

∫

Hs1

〈F (φ), θ〉dρN ,

where in the last step we have used the invariance property by viewing φ 7→ 〈F (ΦN (t)φ), θ〉
as a continuous functional on Hs1(T). Using Fubini again, we obtain that

EρN [〈F (φ), θ〉] = 〈EρN [F (φ)(·)], θ〉.
This implies that for any t ∈ R and almost every x ∈ T,

EρN [F (ΦN (t)φ)(x)] = EρN [F (φ)(x)].

Similarly, we define

G̃(φ, x) :=
(
f(Dx)φ

)
(x)

and x 7→ EρN
[
G̃(φ, x)

]
as a measurable function on T. The same invariance argument as

before yields E
[
G̃(ΦN (t)φ, x)

]
= E

[
G̃(φ, x)

]
, for every t ∈ R and almost every x ∈ T. The

final conclusion is then immediate. This completes the proof of Lemma 7.1. �

The following probabilistic estimate uses the invariant of the Gibbs measure for the
truncated system.
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Lemma 7.2. Let T > 0, σ < α−1
2 and 2 ≤ q, r < ∞. There exist positive constants

Cσ,α,T,q,r and c(σ, α, T, q, r), such that for all N ∈ N and λ > 0,

µ
(
{φ : ‖ΦN (t)φ‖Lq

tW
σ,r
x ([0,T ]×T) > λ}

)
< Cσ,α,T,q,r exp

(
− λc(σ,α,T,q,r)

)
.

Proof. To simplify the notation, we will use LqtW
σ,r
x instead of LqtW

σ,r
x ([0, T ] × T) in the

argument below. Let λ1 > 0 to be chosen later, we split

µ
(
{φ : ‖ΦN (t)φ‖Lq

tW
σ,r
x

> λ}
)
≤µ

(
{φ : ‖ΦN (t)φ‖Lq

tW
σ,r
x

> λ, ‖ΠNφ‖L4
x
≤ λ1}

)

+µ
(
{φ : ‖ΦN (t)φ‖Lq

tW
σ,r
x

> λ, ‖ΠNφ‖L4
x
> λ1}

)
.

Recall that dρN = exp
(
− 1

4‖ΠNφ‖4L4
x

)
dµ is the associated Gibbs measure for the truncated

system, and the first term on the right side of the last inequality is bounded from above
by

e
1
4
λ41ρN

(
φ : ‖ΦN (t)φ‖Lq

tW
σ,r
x

> λ
)
,

while the second term can be bounded above by exp
(
−cλ21

)
. It remains to estimate

ρN
(
φ : ‖ΦN (t)φ‖Lq

tW
σ,r
x

> λ
)
.

Let q1 ≥ max{q, r} which will be fixed later. Using Chebyshev’s inequality and then
Minkowski’s inequality, we have

(7.1) ρN
({
φ : ‖ΦN (t)φ‖Lq

tW
σ,r
x

> λ
})

≤ 1

λq1

∥∥∥
( ∫

Hσ(T)
|DσΦN (t)φ|q1 dρN

) 1
q1

∥∥∥
q1

Lq
tL

r
x

,

Applying Lemma 7.1, the right side of (7.1) can be bounded above by

T
q1
q

λq1

∥∥∥
(∫ ∣∣∣Dσφ(x)

∣∣∣
q1
dρN

)∥∥∥
Lr
x

≤ T
q1
q

λq1

∥∥∥
(∫ ∣∣∣Dσφ(x)

∣∣∣
q1
dµN

)∥∥∥
Lr
x

≤ Cq1T
q1
q q

q1
2
1

λq1
,

where we have used the Wiener chaos estimate for the random series
∑

|n|≤N

gn(ω)e
inx

〈n〉α−2σ
,

and the constant C depends on α, σ, q, r.

Putting everything together, we obtain that

µ
(
{φ : ‖ΦN (t)φ‖Lq

tW
σ,r
x

> λ}
)
≤ e

λ41
4

(CT
1
q
√
q1

λ

)q1
+ e−cλ

2
1 .

We take q1 = λ2

A with A > C2T
q
2 , then the first term on the right side is majorized by

exp
(
λ41/4− λ2 log(A)/(2A)

)
. Now we choose λ1 = λ1/2 (logA/A)1/4, thus

λ41
4

− λ2 logA

2A
= −λ

2 logA

4A
.

With this choice, the proof of Lemma 7.2 is now complete. �

The same argument as in the proof of Lemma 7.2 yields the following statement.
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Corollary 7.3. Under the same restriction on the numerologies, we have for all M < N
and λ > 0,

µ
({
φ : ‖Π⊥

MΦN (t)φ‖Lq
tW

σ,r
x ([0,T ]×T) > λ

})
≤ C(α, σ, T, q, r) exp

(
− (θλ)c(α,σ,T,q,r)

)
,

with θ = θ(T,M) = T− 1
qMα−1−2σ.

7.2. The convergence argument. In this subsection, we prove the Theorem 3. By a
Borel-Cantelli type argument, it is sufficient to prove the convergence of the sequence
(uN )N∈N of the truncated equations

i∂tu+ |Dx|αu+ΠN (|ΠNu|2ΠNu) = 0, u|t=0 = φ

on C([0, T ];Hσ(T)) for any given T > 0, where 0 < σ < α−1
2 . To simplify the notation,

we will denote by vN (t) = ΠNΦN (t)φ, which is the low frequency portion of the solution
ΦN (t)φ. Because vN = ΠNvN , vN (t) satisfies the same equation

i∂tvN + |Dx|αvN +ΠN (|vN |2vN ) = 0.

Since the high frequency part Π⊥
NΦN(t) solves the linear equation, it suffices to prove the

convergence of the sequence (vN )N≥1. We will simply write LqtW
s,r
x to stand for the space-

time norm Lq([0, T ];W s,r(T)), and LqtW
s,r
x (I) the norm Lq(I;W s,r(T)), where I ⊂ R is a

time interval.
• Step 1: A deterministic estimate.
Pick σ1 ∈

(
σ, α−1

2

)
, r > 2

σ1−σ , 2 < q <∞, large enough, and B(N) < N to be determined

later. For each N , we associate with a small number η = η(N) > 0 and partition the
interval [0, T ] into T/η intervals enabled as Ij = [tj , tj+1] with length η. Let N1 ∈ [N, 2N ].
With F (v) = |v|2v, we write

vN1(t)− vN (t) =Sα(t− tj)(vN1(tj)− vN (tj))− i

∫ t

tj

Sα(t− t′)Π⊥
NΠN1F (vN1)(t

′)dt′

−i
∫ t

tj

Sα(t− t′)ΠN [F (vN1(t
′)− F (vN )(t

′)]dt′

= : Ij + IIj + IIIj

with respectively. For Ij, we estimate it simply by

(7.2) ‖Ij‖L∞
t Hσ

x (Ij)
≤ ‖vN1(tj)− vN (tj)‖Hσ

x
.

For IIj, using Hölder’s inequality and the product rule, we have

‖IIj‖L∞
t Hσ

x
≤N−(σ1−σ)‖F (uN1)‖L1

tH
σ1
x (Ij)

.N−(σ1−σ)‖uN1‖L2q
t H

σ1
x (Ij)

‖uN1‖2L2(2q)′

t L∞
x (Ij)

.
(7.3)

To estimate IIIj, note that by triangle inequality, we have

‖IIIj‖L∞
t Hσ

x
≤‖|vN1 |2(vN1 − vN )‖L1

tH
σ
x (Ij)

+ ‖uN1vN (vN1 − vN )‖L1
tH

σ
x (Ij)

+‖(uN1 − uN )v
2
N‖L1

tH
σ
x (Ij)



52 CHENMIN SUN, NIKOLAY TZVETKOV

Applying Lemma 9.4, the right side can be majorized by

‖vN1 − vN‖Lq′

t H
σ
x (Ij)

(
‖|vN1 |2‖Lq

tB
σ2
r,2(Ij)

+ ‖|vN |2‖Lq
tB

σ2
r,2(Ij)

)

where σ2 = σ1+σ
2 and r > 2

σ1−σ = 1
σ2−σ . Applying Lemma 9.3 and using the fact that

W σ1,r is embedded into Bσ2
r,2, we have

‖IIIj‖L∞
t Hσ

x
.‖vN1 − vN‖Lq′

t H
σ
x (Ij)

‖vN1‖L2q
t L∞

x (Ij)
‖vN1‖L2q

t W
σ1,r
x (Ij)

+‖vN1 − vN‖Lq′

t H
σ
x (Ij)

‖vN‖L2q
t L∞

x (Ij)
‖vN‖L2q

t W
σ1,r
x (Ij)

.

Thus

(7.4) ‖IIIj‖L∞
t Hσ

x (Ij)
. η

1
q′ ‖vN1 − vN‖L∞

t Hσ
x (Ij)

1∑

ν=0

‖vNν‖L2q
t L∞

x (Ij)
‖vNν‖L2q

t W
σ1,r
x (Ij)

.

Note that W σ1,r is embedded into L∞, combing (7.2),(7.3) and (7.4), we have

‖vN1 − vN‖L∞
t Hσ

x (Ij)
≤‖vN1(tj)− vN (tj)‖Hσ

x
+ CTN

−(σ1−σ)‖vN1‖2L2q
t W

σ1,r
x

+Cη1/q
′‖vN1 − vN‖L∞

t Hσ
x (Ij)

1∑

ν=0

‖vNν‖2L2q
t W

σ1,r
x

,
(7.5)

provided that 2(2q)′ < 2q, if q is chosen large enough. Note that the constant C depends
on σ1, σ, q, r.

Assume for the moment that

‖vN‖L2q
t W

σ1,r
x

< B(N), ‖vN1‖L2q
t W

σ1,r
x

< 5B(N).

We take η = (8CB(N))−q
′
, it follows from (7.5) that

‖vN1 − vN‖L∞
t Hσ

x (Ij)
≤ 2‖vN1(tj)− vN (tj)‖Hσ

x
+C ′

TN
−(σ1−σ)B(N)2.

Consequently, if

B(N) < N
σ1−σ

4 ,

by iteration, we obtain that

‖vN1 − vN‖L∞
t Hσ

x
≤2

T
η
+1

(
‖vN1(0)− vN (0)‖Hσ

x
+N−σ1−σ

2

)

≤ exp
(
2T log2(4CB(N)2)q

′
)
N−σ1−σ

2 .

We take

B(N) = (c1 logN)
1

2q′ ,

for some suitable c1 = c1(T, σ, σ1), small enough, the right hand side of the inequality

above can be majorized by N−σ1−σ
4 .

• Step 2: Good data set.
For any dyadic number N , we define the set

ΩN :={φ : ‖Π⊥
Nφ‖Hσ

x
< N−(σ1−σ), ‖ΠNΦN (t)φ‖L2q

t W
σ1,r
x

+ ‖Π2NΦ2N (t)φ‖L2q
t W

σ1,r
x

< B(N)}
∩{φ : max

N≤N1≤2N
‖Π⊥

M0
ΦN1(t)φ‖Lq

tW
σ1,r
x

≤ 1}
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where M0 =M0(N) will be chosen later. From Lemma 7.2 and Lemma 7.3, we have

µ(Ω \ ΩN ) < e−B(N)c +Ne−T
c
2qM

(α−1−2σ)c
0 .

The choice of B(N) and M0 should assure that the series

∞∑

k=0

µ(Ω \Ω2k)

converges. We first choose

M0 = (logN)C0

with C0 = C0(q, r, σ1, σ, T ) large enough, such that

∞∑

k=0

2k exp
(
− T

c
2q kC0

)
<∞, while

B(N) = (c1 logN)
1

2q′

for some small constant c1 > 0 to be fixed later. The good data set is then chosen as

G :=

∞⋃

m=0

∞⋂

k=m

Ω2k ,

which has full µ measure, thanks to Borel-Cantelli.
• Step 3: Continuity argument.

Fix φ ∈ G, our goal is to show that the sequence (ΦN (t)φ)N is Cauchy in C([0, T ];Hσ(T)).
Recall the notation vN (t) = ΠNΦN (t)φ. By definition, there exists k0 ∈ N, such that
φ ∈ Ω2k for all k ≥ k0. Denote by N0 = 2k for some k ≥ k0. We claim that for all large
N0 and N0 ≤ N1 ≤ 2N0, ‖vN1‖L2q

t W
σ1,r
x

< 4B(N0).

Indeed, for fixed N0 and N1, we define the set

S := {T ′ ∈ [0, T ] : ‖vN1‖L2q
t W

σ1,r
x ([0,T ′]) < 4B(N0)}.

We first show that S is not empty. Note that vN1(t) takes value in a finite dimensional
space and by conservation of L2 norm, ‖vN1‖L∞

t L2
x
= ‖ΠN1φ‖L2

x
. Then by the equivalence

of the norm, there exists KN1 > 0, such that

‖vN1‖L∞
t W

σ1,r
x ([0,δ]) ≤ KN1‖ΠN1φ‖L2

x
.

Coming back to the definition of ΩN0 Thus by Hölder’s inequality,

‖vN1‖L2q
t W

σ1,r
x ([0,δ])

≤ δ
1
2qKN1‖ΠN1φ‖L2

x
.

Hence if δ = δN is small enough, ‖vN1‖L2q
t W

σ1,r
x ([0,δN ]) < 4B(N0). In particular, S 6= ∅.

Next we show that S = [0, T ]. We argue by contradiction. Suppose that T0 = supS < T .
By continuity of the function

t′ 7→ ‖vN1‖L2q
t W

σ1,r
x ([0,t′]),

there exists δ′ > 0, T0 + δ′ < T , such that

‖vN1‖L2q
t W

σ1,r
x ([0,T0+δ′])

< 5B(N0).
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Then from the argument in the last part of Step 1, we obtain that

‖vN1 − vN0‖L∞
t Hσ

x ([0,T0+δ
′]) < N

−σ1−σ
4

0 .

Notice that if N0 ≤ N1 < 2N0, we have

‖vN1‖L2q
t W

σ1,r
x ([0,T0+δ′])

≤‖Π⊥
M0
vN1‖L2q

t W
σ1,r
x ([0,T0+δ′])

+ ‖ΠM0(vN1 − vN0)‖L2q
t W

σ1,r
x ([0,T0+δ′])

+‖Π⊥
M0
vN0‖L2q

t W
σ1,r
x ([0,T0+δ′])

+ ‖vN0‖L2q
t W

σ1,r
x ([0,T0+δ′])

≤2 + T
1
2qM

σ1−σ+ 1
2
− 1

r
0 ‖vN1 − vN0‖L∞

t Hσ
x ([0,T0+δ

′]) +B(N0)

≤2 + 2B(N0) + T
1
2q (logN0)

2C0‖vN1 − vN0‖L∞
t Hσ

x ([0,T0+δ
′]).

For N0 ≫ 1, the first and third terms are strictly smaller than B(N0), thus

‖vN1‖L2q
t W

σ1,r
x ([0,T0+δ′])

< 4B(N0),

which is a contradiction.

Now since S = [0, T ], we have that for any N1 ∈ [N0, 2N0],

‖vN1 − vN0‖L∞
t Hσ

x
< N

−σ1−σ
4

0 .

This implies that (vN (t))N is a Cauchy sequence in C([0, T ];Hσ(T)). Since Π⊥
NΦN (t)φ =

Π⊥
NSα(t)φ is linear, it is automatically a Cauchy sequence in C([0, T ];Hσ(T)). The proof

of Theorem 3 is now complete.

8. Weak dispersion case: α < 1

8.1. Definition of Gibbs measure. Recall that the renormalized Hamiltonian

HN(u) =

∫

T

||Dx|
α
2 u|2 + 1

2

∫

T

|ΠNu|4 − 2αN

∫

T

|ΠNu|2 + α2
N ,

where

αN = E[‖ΠNu‖2L2 ].

Consider the equation

i∂tu =
δHN

δu
,

which reads

i∂tu+ |Dx|
α
2 u+ FN (u) = 0,

where

FN (u) = ΠN (|ΠNu|2ΠNu)− 2αNΠNu.

Let X = H
α−1
2

−ǫ(T). The first step is to show that the sequence (FN (u))N≥1 is a Cauchy
sequence in Lp

(
X ,B, µ;H−σ(T)

)
. We need a large deviation lemma. Let

bN (u) := ‖ΠNu‖2L2 − αN .
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Lemma 8.1. There exist C, c > 0 so that for all 1 ≤M < N large enough, and all λ > 0,
we have

µ({u : |bN (u)− bM (u)| > λ}) ≤ Ce−cλM
α
, if λ &M1−α,

and

µ({u : |bN (u)− bM (u)| > λ}) ≤ Ce−cλ
2M2α−1

, if λ≪M1−α.

Remark 8.2. If we use Lemma 4.8 of [41] (based on Wiener chaos estimates) we obtain

the rougher bound Ce−λM
α
2 , which is enough for our purposes. Here we give an estimate

which is of its own interest.

Proof. Denote by

RM,N (ω) :=
∑

M≤|n|≤N

|gn(ω)|2
([n]

α
2 )2

,

where gn(ω) =
hn(ω)+iln(ω)√

2
and E[|gn|2] = 1. We have

µ{u : |bN (u)− bM (u)| > λ} = P{ω : |RM,N (ω)− E[RM,N ]| > λ},
where

RM,N (ω)− E[RM,N ] =
∑

M≤|n|≤N
anXn(ω), an = ([n]−

α
2 )2,Xn(ω) = |gn(ω)|2 − 1.

P

{
ω :

∣∣∣
∑

M≤|n|≤N
anXn(ω)

∣∣∣ > λ
}
≤P

{
ω :

∑

M≤|n|≤N
anXn(ω) > λ

}

+P

{
ω :

∑

M≤|n|≤N
anXn(ω) < −λ

}
.

First we estimate the probability of the event {∑M≤|n|≤N anXn > λ}. For any θ > 0, we

have

P

{
ω :

∑

M≤|n|≤N
anXn(ω) > λ

}
= P

{
ω : e

∑
M≤|n|≤N θanXn(ω) > eθλ

}
(8.1)

Using Chebyshev’s inequality, the r.h.s. of (8.1) can be bounded by

e−θλE
[
e
∑

M≤|n|≤N θan(|gn|2−1)
]
≤ e−θλe−

∑
M≤|n|≤N θan

∏

M≤|n|≤N
E
[
eθan|gn|

2]
,

where we have used the independence. Since each gn can be identified as a standard two
dimensional Gaussian random variable, we have

∏

M≤|n|≤N
E
[
eθan|gn|

2]
=

∏

M≤|n|≤N

( 1

2π

∫

R2

e−
|z|2

2
(1−θan)dz

)
=

∏

M≤|n|≤N

1

1− θan
,

provided that θan < 1. We will finally choose suitable θ such that θan <
1
2 . From the

elementary inequality

−y − log(1− y) ≤ C0y
2,
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uniformly in 0 < y < 1
2 , we deduce that

e−θλ−
∑

M≤|n|≤N θan
∏

M≤|n|≤N
E

[
eθan|gn|

2
]
=e−θλ+

∑
M≤|n|≤N (−θan−log(1−θan))

≤e−θλ+C0
∑

M≤|n|≤N θ2a2n ≤ e−θλ+C0θ2ǫM ,

where
ǫM =

∑

|n|≥M
a2n ∼M−(2α−1).

Similarly, for the event {ω :
∑

M≤|n|≤N anXn(ω) < −λ}, we can rewrite it as

{
ω : eθ

∑
M≤|n|≤N an(1−|gn|2) > eλθ

}
.

Again by Chebyshev, the probability of this event is bounded by

e−λθE
[
e
∑

M≤|n|≤N θan(1−|gn|2)
]
= e−λθ+

∑
M≤|n|≤N θan

∏

M≤|n|≤N
E[e−θan|gn|

2
]

Again from

E[e−θan|gn|
2
] =

1

2π

∫

R2

e−
|z|2

2
(1+θan)dz =

1

1 + θan
,

we have
P
{
ω :

∑

M≤|n|≤N
anXn(ω) < −λ

}
≤ e−λθ+

∑
M≤|n|≤N [θan−log(1+θan)].

From the inequality

y − log(1 + y) ≤ y2

2
, ∀ 0 < y < 1,

we have

P
{
ω :

∑

M≤|n|≤N
anXn(ω) < −λ

}
≤ e−λθ+

1
2

∑
M≤|n|≤N θ2a2n = e−λθ+

1
2
ǫMθ2 .

In summary, we have that, for all θ > 0, λ > 0

P
{
ω :

∣∣ ∑

M≤|n|≤N
anXn(ω)

∣∣ > λ
}
≤ 2e−λθ+C0ǫMθ2 .

The function θ 7→ −λθ + C0ǫMθ
2 attains its minimum at θ0 =

λ
2C0ǫM

∼ λM2α−1. If

λ

2C0ǫM
≤ Mα

4
, i.e. λ ≤ C0ǫMM

α

2
∼M1−α,

we choose θ = θ0 (thus the condition θan ≤ 1
2 for all M ≤ |n| ≤ N are satisfied), and we

deduce that the desired probability is bounded by 2e
− λ2

4C0ǫM ≤ e−c
′λ2M2α−1

. Otherwise

λ >
C0ǫMM

α

2
, i.e.

λ

2
>
C0ǫMM

α

4
∼M1−α.

we take θ = Mα

4 , and the desired probability is bounded by

2e−
λMα

4
+C0ǫM

M2α

42 = 2e−
Mα

4

(
λ−C0ǫMMα

4

)
≤ 2e−

Mαλ
8 .
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The proof of Lemma 8.1 is now complete. �

Proposition 8.3. Assume that 2
3 < α < 1 and σ > 3(1−α)

2 . For all p ≥ 2, the sequence
(FN (u))N≥1 is a Cauchy sequence in the space Lp(X ,B, µ;H−σ(T). More precisely, there
exists ǫ0 > 0, C > 0, such that for all 1 ≤M < N ,

∫

X
‖FN (u)− FM (u)‖p

H−σ(T)
dµ(u) ≤ C

M ǫ0
.

Proof. We prove for p = 2, and the estimate for the other values of p will follow from
Wiener chaos estimates. Note that FN (u) = GN (u) + 2bN (u)ΠNu where

GN (u) = ΠN
(
|ΠNu|2ΠNu

)
− 2‖ΠNu‖2L2ΠNu.

Therefore, from Lemma 8.3 and Lemma 8.1, it suffices to obtain the same type of estimate
for ∫

X
‖GN (u)−GM (u)‖2H−σ(T)dµ(u).

Write

χN := |φωN |2φωN − 2‖φωN‖2L2(T)φ
ω
N ,

and it suffices to show that

E

[
‖χN − χM‖2H−σ(T)

]
≤ C

M ǫ0
.

From the definition of φωN , we have

χN =
∑

|n1|,|n2|,|n3|≤N
n2 6=n1,n3

gn1gn2
gn3

[n1]
α
2 [n2]

α
2 [n3]

α
2

ei(n1−n2+n3)x,

and

χN − χM =
∑

n∈Z
einx

∑

B
(n)
M,N

gn1gn2
gn3

[n1]
α
2 [n2]

α
2 [n3]

α
2

,

where

B
(n)
M,N = {(n1, n2, n3) ∈ Z3 :|n1|, |n2|, |n3| ≤ N,n2 6= n1, n3

and |n1| > M or |n2| > M or |n3| > M,

n1 − n2 + n3 = n}.
Since (gn) are independent and centered, we deduce that

E[‖χN − χM‖2H−σ(T)] =
∑

n∈Z

1

〈n〉2σE
[∣∣∣

∑

B
(n)
M,N

gn1gn2
gn3

[n1]
α
2 [n2]

α
2 [n3]

α
2

∣∣∣
2]

≤
∑

n∈Z

C

〈n〉2σ
∑

n1−n2+n3=n
M<max{|n1|,|n2|,|n3|}≤N

n2 6=n1,n3

1

〈n1〉α〈n2〉α〈n3〉α
.
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To estimate the second summation, without loss of generality, we may assume that |n1| ≥
M . Then applying Lemma 2.3, the second summation can be estimated by

∑

M<|n1|≤N

Cγ
〈n1〉α〈n− n1〉γ

for some γ < 2α − 1. If α > 2
3 , then 3α − 2 > 0, and we can choose γ > 0 such that

α+ γ > 1. If |n| ≪M , then

∑

|n|≪M,|n1|>M

Cγ
〈n〉2σ〈n1〉α〈n − n1〉γ

≤
∑

|n|≪M

Cγ
〈n〉2σM3α−2

≤ Cγ
M ǫ0

,

provided that σ > 3(1−α)
2 . If |n| &M , we separate the region of summation into |n−n1| <

|n1|
2 , |n1|

2 ≤ |n− n1| < 2|n1| and |n− n1| ≥ 2|n1|. We have

∑

|n1|>M,|n−n1|< |n1|
2

Cγ
〈n〉2σ〈n1〉α〈n− n1〉γ

≤
∑

|n1|>M

Cγ |n1|1−γ
〈n1〉α+2σ

≤ Cγ
M ǫ0

,

provided that σ > 3(1−α)
2 . If |n1|

2 ≤ |n− n1| < 4|n1|, we have

∑

|n1|>M,|n|&M,
|n1|
2

≤|n−n1|<4|n1|

Cγ
〈n〉2σ〈n1〉α〈n− n1〉γ

≤
∑

|n1|>M

Cγ
〈n1〉α+γ

∑

|n|≤5|n1|

1

〈n〉2σ ≤ Cγ
M ǫ0

,

provided that σ > 3(1−α)
2 . Finally, for |n− n1| > 4|n1|, we have |n1| ≤ |n|

3 and |n − n1| ≥
|n| − |n1| ≥ 2|n|

3 , hence

∑

|n1|>M,|n−n1|>4|n1|

Cγ
〈n〉2σ〈n1〉α〈n− n1〉γ

≤
∑

|n|&M,|n1|≤ |n|
3

Cγ
〈n〉2σ+γ〈n1〉α

≤ Cγ
M ǫ0

,

provided that σ > 3(1−α)
2 . This completes the proof of Proposition 8.3. �

Denote by

gN (u) :=
1

2
‖ΠNu‖4L4 − ‖ΠNu‖4L2 , then gN (u) = fN (u)− bN (u)

2.

Lemma 8.4. Assume that 3
4 < α ≤ 1, then the sequence (gN )N≥1 is a Cauchy sequence

in L2(X ,B; dµ). More precisely, for all p ≥ 2 and 1 ≤M < N ,

(8.2) ‖gN (u)− gM (u)‖Lp(dµ) ≤ C(p− 1)2M− 4α−3
2 .

Furthermore, for any λ > 0,

(8.3) µ{u ∈ X : |gN (u)− gM (u)| > λ} ≤ Ce−cλ
1/2M

4α−3
4 .

Proof. We prove the estimate for p = 2, and the general case will follow from Wiener chaos
estimates. Introduce the set

AN := {(n1, n2, n3, n4) ∈ Z4 : |n1|, |n2|, |n3|, |n4| ≤ N,n1 − n2 + n3 − n4 = 0, n2 6= n1, n3}
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and

AM,N := {(n1, n2, n3, n4) ∈ Z4 :|n1|, |n2|, |n3|, |n4| ≤ N,n1 − n2 + n3 − n4 = 0,

n2 6= n1, n3,max(|n1|, |n2|, |n3|, |n4|) > M}.
From direct computation, we have

fN (φN ) = −
∑

AN

gn1gn2
gn3gn4

[n1]
α
2 [n2]

α
2 [n3]

α
2 [n4]

α
2

+
∑

|n|≤N

|gn|4
([n]

α
2 )4

,

and

fN (φN )− fM (φM ) = −
∑

AM,N

gn1gn2
gn3gn4

[n1]
α
2 [n2]

α
2 [n3]

α
2 [n4]

α
2

+
∑

M≤|n|≤N

|gn|4
([n]

α
2 )4

.

Now we estimate

‖fN (u)− fM (u)‖2L2(dµ) = E
[
|fN (φN )− fM (φM )|2

]

≤C
∑

(n1,n2,n3,n4)∈AN

∑

(m1,m2,m3,m4)∈AN

E

[ gn1gn2
gn3gn4

[n1]
α
2 [n2]

α
2 [n3]

α
2 [n4]

α
2

gm1
gm2gm3

gm4

[m1]
α
2 [m2]

α
2 [m3]

α
2 [m4]

α
2

]

+C
∑

M≤|n|,|m|≤N
E

[ |gn|4|gm|4
([n]

α
2 )4([m]

α
2 )4

]

(8.4)

By the independence of the Gaussian variables,

E

[ gn1gn2
gn3gn4

[n1]
α
2 [n2]

α
2 [n3]

α
2 [n4]

α
2

gm1
gm2gm3

gm4

[m1]
α
2 [m2]

α
2 [m3]

α
2 [m4]

α
2

]
= 0

unless {n1, n2, n3, n4} = {m1,m2,m3,m4}. Therefore,

(8.4) ≤C
∑

AN

1

([n1]
α
2 [n2]

α
2 [n3]

α
2 [n4]

α
2 )2

+ C
( ∑

M≤|n|≤N

1

([n]
α
2 )4

)2

(8.5)

The second term on the right side can be bounded by C
M2(2α−1) , provided that 2α > 1. For

the first term, by symmetry of the sum, we may majorize it by

(8.6) C
∑

n1,n2,n3∈Z,|n1|>M

1

〈n1〉α〈n2〉α〈n3〉α〈n1 − n2 + n3〉α
.

Applying Lemma 2.3, we have

(8.6) ≤C
∑

n1,n2∈Z,|n1|>M

1

〈n1〉α〈n2〉α〈n1 − n2〉2α−1

≤C
∑

|n1|>M

1

〈n1〉4α−2
≤ C

M4α−3
,

provided that α > 3
4 , where from the first inequality to the second, we divide the region

of summation as |n1 − n2| ≤ |n1|
2 , |n1|

2 ≤ |n1 − n2| < 4|n1| and |n1 − n2| ≥ 4|n1| as in the
proof of Proposition 8.3.
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To prove (8.3), using Tchebyshev inequality and (8.2), for any p > 0, we have

µ{u ∈ X(T) : |gN (u)− gM (u)| > λ} ≤
(

C

λM
4α−3

2

)p
(p − 1)2p.

Choosing p =
(
λM

4α−3
2

C

)1/2
e−1, we obtain that (8.3). This completes the proof. �

Following the argument in [11], we prove Proposition 1.1.

Proof of Proposition 1.1. We use Nelson type argument. First we prove the large deviation
for fN (u)− fM(u). Recall that fN(u) = gN (u) + bN (u)

2, we have

fN(u)− fM (u) = gN (u)− gM (u) + (bN (u)− bM (u))(bN (u) + bM (u)).

Therefore, µ{u : |fN (u)− fM (u)| > a} can be bounded by

µ{u : |gN (u)− gM (u)| > a/2}+ µ{u : |bN (u)− bM (u)||bN (u) + bM (u)| > a/2}.

By Lemma 8.4, the first measure can be bounded by Ce−ca
1/2M

4α−3
4 . To estimate the

second measure, we write

(bN (u)− bM (u))(bN (u) + bM (u)) = (bN (u)− bM (u))2 + 2bM (u)(bN (u)− bM (u)).

From Lemma 8.1,

µ{u : |bN (u)− bM (u)|2 > a/4} ≤ Ce−ca
1/2Mα

.

It remains to estimate µ{u : |bM (u)(bN (u) − bM (u))| > a/4}. From Lemma 8.1, we have
for any a′ ≥ 1,

µ{u : |bM (u)| > a′} ≤ Ce−ca
′
.

Therefore, for any a′ > 0, we have

µ{u : |bN (u)− bM (u)||bM (u)| > a/4}
≤µ{u : |bM (u)| > a′}+ µ{u : |bM (u)(bN (u)− bM (u))| > a/4, |bM (u)| ≤ a′}
≤µ{u : |bM (u)| > a′}+ µ{u : |bN (u)− bM (u)| > a/(4a′)}
≤Ce−ca′ + Ce−c

a
4a′

Mα

,

provided that a
a′ & M1−α, where we have used Lemma 8.1. When α > 2

3 , we must have

M
α
2 > M1−α. By optimally choosing a′ = a1/2M

α
2 , we obtain that

µ{u : |bN (u)− bM (u)||bN (u) + bM (u)| > a/2} ≤ Ce−ca
1/2M

α
2 < Ce−ca

1/2M
4α−3

4 .

Therefore, for a ≥ 1,

µ{u : |fN (u)− fM(u)| > a} ≤ Ce−ca
1/2M

4α−3
4 .

This yields the Lp convergence of fN (u). To complete the proof, we need show that

‖e−fN (u)‖Lp(dµ) ≤ C,

independent of N . Since we can write

−fN (u) = α2
N − 1

2

∫

T

(
|ΠNu|2 − 2αN

)2
,
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we have
−fN(u) ≤ α2

N ≤ CM2(1−α).

For fixed λ ≥ 1 large, we choose M such that M2(1−α) = θ log λ with 0 < θ ≪ 1 such that
log λ− CM2(1−α) ≥ 1

2 log λ, thus

−fN (u) + fM(u) ≥ −fN(u)− CM (1−α) ≥ 1

2
log λ.

Therefore,

µ
{
u : −fN(u) > log λ

}
≤ µ

{
u : −fN (u)+fM (u) >

1

2
log λ

}
≤ Ce−c(log λ)

1
2+ 4α−3

8(1−α) ≤ CLλ
−L

for all L ∈ N, provided that

1

2
+

4α− 3

8(1 − α)
> 1, i.e. α >

7

8
.

This completes the proof of Proposition 1.1. �

Finally, the proof of Theorem 2 (the same for Theorem 1) follows from the same prob-
abilistic compactness argument as in [11], and we omit the details here.

9. Appendix: General convergence theorem and deterministic nonlinear

estiamtes on compact manifold

It turns out that the argument of Bourgain-Bulut also works for the fractional NLS
with a quite general nonlinearity on any compact Riemannian manifold. More precisely,
let (M, g0) be a compact Riemannian manifold (without boundary) of dimension d. De-
note by ∆g0 the Beltrami-Laplace operator with eigenvalues (−λ2n)n∈N and associated
eigenfunctions (ϕn(x))n∈N (−∆g0ϕn = λ2nϕn). Consider the truncated fractional NLS

(9.1)





i∂tu+ (−∆g0)
α
2 u+ΠN (|u|p−1u) = 0,

u|t=0 =
∑

λn≤N

gn(ω)

λ2n + 1
ϕn(x),

where ΠN is the orthogonal projection (with respect to the L2(M) scalar product) on
span(ϕn)1≤λn≤N . We have the following theorem12:

Theorem 7. Assume that α > d and σ < α−d
2 . The sequence (uωN )N∈N of solutions of

(9.1) converges a.s. in C(R;Hσ(M)) to some limit u which solves

i∂tu+ (−∆g0)
α
2 u+ |u|p−1u = 0

in the distributional sense.

The proof of Theorem 7 follows from the same lines as in the proof of Theorem 3. We
only sketch here the main ingredients. For the probabilistic side, to establish the ana-
logues of Lemma 7.2 and Corollary 7.3, we can not use that fact that ϕn(x) are bounded,
uniformly in n. We should use instead the following average effect of eigenfunctions due
to Hörmander.

12 For simplicity we consider only the polynomial nonlinearity here, our argument applies to more
general nonlinearities having polynomial growth and defocusing feature.
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Lemma 9.1. There exists C = C(M, g0) > 0, such that for any N , we have

C−1Nd ≤
∑

N≤λn≤2N

|ϕn(x)|2 ≤ CNd

For the deterministic side, we need to prove a relatively standard nonlinear estimate
needed in the convergence argument. We present it here for its own interest. The following
proposition proved in [9] allows us to reduce the analysis to paraproduct type arguments
in Rd.

Proposition 9.2 ([9]). Let P be an elliptic self-adjoint differential operator of order m > 0
on a compact manifold M of dimension d. Let ψ ∈ C∞(R), κ : U ⊂ Rd → V ⊂ M a
coordinate patch, and χ1, χ2 ∈ C∞

c (V ) such that χ2 = 1 near the support of χ1. Then
there exists a sequence (ψj)j≥0 of C∞

c (U × Rd) such that, for every L ∈ N and for every
h ∈ (0, 1), ν ∈ [0, L], f ∈ C∞(M), we have

∥∥∥κ∗ (χ1ψ(h
mP )f)−

L−1∑

j=1

hjψj(x, hDx)κ
∗(χ2f)

∥∥∥
Hν(Rd)

≤ CLh
L−ν‖f‖L2(M).

Moreover, ψ0(x, ξ) = χ1(κ(x))ψ(pm(x, ξ)) and

supp(ψj) ⊂ {(x, ξ) ∈ U × Rd : κ(x) ∈ supp(χ1), pm(x, ξ) ∈ supp(ψ)},
where pm is the principle symbol of P .

We will use different notations for the Littlewood-Paley decomposition in this appendix.
We denote by ∆l = ψ(−22l∆g0) for l ≥ 1 and ∆0 = ψ0(−∆g0), where ψ0 ∈ C∞

c (|ξ| ≤ 2)

and ψ ∈ C∞
c (12 < |ξ| ≤ 2). The Besov space Bs

r,q(M) is defined via the norm

‖f‖Bs
r,q(M) :=

∥∥2ls‖∆lf‖Lr(M)

∥∥
lq(N)

=
(∑

l≥0

2qls‖∆lf‖qLr(M)

) 1
q
.

The Sobolev space Hs(M) in then Bs
2,2(M).

Lemma 9.3. Let F : C → C satisfies F (0) = 0 and

|F (z)| ≤ C|z|ν , |∂lF (z)| ≤ C|z|ν−l, l = 1, 2,

with ν ≥ 2. Then for any σ ∈ (0, 1), 2 ≤ r <∞ we have

‖F (u)‖Bσ
r,2(M) ≤ C‖u‖ν−1

L∞(M)‖u‖Bσ
r,2(M).

Proof. It is sufficient to estimate ‖∆lF (u)‖L2(M) in one coordinate patch. Applying Propo-

sition 9.2 to the operator ∆l = ψ(−2−2l∆g0), we have

κ∗(χ1∆lF (u)) =

L−1∑

j=0

ψj(x, 2
−lDx)κ

∗(χ2F (u)) +RL,l

with

ψ0(x, ξ) = χ1(κ(x))χ
(
|ξ|2g0

)
, |ξ|2g0 :=

∑

i,j

gi,j0 (x)ξiξj ,
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and

‖RL,l‖Lr(Rd) . ‖RL,l‖Hν(Rd) . 2−l(L−ν)‖F (u)‖L2(M),

where we take L > ν large enough such that Hν(Rd) →֒ Lr(Rd). Let

1 = θ0(ξ) +
∞∑

l=1

θ(2−lξ)

be a dyadic partition of unity in Rd, θ0 ∈ C∞
c (Rd), θ ∈ C∞

c (Rd \ {0}). Denote by θj(·) =
θ(2−j·), for j ≥ 1, we denote by ∆̃j = θj(D) be the usual Littlewood-Paley dyadic projector

in Rd and

S̃j :=
∑

k≤j
∆̃k.

Note that on the support of χ1,

a|ξ|2 ≤ |ξ|2g0 ≤ b|ξ|2,
in view of the support property of ψj , the standard pseudodifferential calculus implies, if
|l′ − l| ≥ ν0 for some fixed positive constant ν0, we have

‖θl′(D)ψj(x, 2
−lD)κ∗(χ2F (u))‖Lr(Rd) . 2−l‖ρ(2−l′D)κ∗(χ2F (u))‖L2(Rd)

for some ρ ∈ C∞
c (Rd \ {0}). Therefore, we have

‖κ∗(χ1∆lF (u))‖Lr(Rd) .
∑

|l′−l|≤ν0
‖∆̃l′(κ

∗(χ2F (u)))‖Lr(Rd) + 2−l‖F (u)‖L2(M).(9.2)

We could replace the error by 2−l‖F (u)‖Lr(M) since Lr(M) →֒ L2(M). Denote by v =
κ∗u = u ◦ κ, and χ̃j = χj ◦ κ, j = 1, 2. Without loss of generality, we may assume that v

has compact suppourt in Rd. Observe that

‖[∆̃l, χ̃2]‖Lr(Rd)→Lr(Rd) . 2−l,

we have

‖κ∗(χ1∆lF (u))‖Lr(Rd) .
∑

|l′−l|≤ν0
‖χ̃2∆̃l′(F (v))‖Lr(Rd) + 2−l‖F (u)‖Lr(M).

Now we have reduced all the functions and operators to Rd and we can perform the
standard analysis. We write

F (v) =
∑

j≥0

[
F (S̃jv)− F (S̃j−1v)

]
:=

∑

j≥0

mj∆̃jv,

with the convention that S̃−1 = 0, where

mj =

∫ 1

0
F ′(τ S̃jv + (1− τ)S̃j−1v)dτ.

We write the product as
∑

j≥0

mj∆̃jv =
∑

j≥0

S̃j−2mj∆̃jv +
∑

k,j:k≥j−2

∆̃kmj∆̃jv.
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The first term on the right hand side can be estimated as
∥∥∥χ̃2∆̃l

(∑

j≥0

S̃j−2mj∆jv
)∥∥∥

Lr(Rd)

≤
∥∥∥

∑

|j−l|≤2

S̃j−2mj · χ̃2∆̃jv
∥∥∥
Lr(Rd)

+ 2−l
∥∥∥

∑

|j−l|≤2

S̃j−2mj · ∆̃jv
∥∥∥
Lr(Rd)

. sup
j

‖S̃j−2mj‖L∞(Rd)

( ∑

|j−l|≤2

‖χ̃2∆̃jv‖Lr(Rd) + 2−l‖v‖Lr(Rd)

)

.‖u‖p−1
L∞(M)

( ∑

|j−l|≤2

‖∆ju‖Lr(M) + C2−l‖u‖Lr(M)

)
,

where in the last inequality, we have used the estimates

‖S̃j−2mj‖L∞(Rd) . ‖v‖p−1
L∞(Rd)

. ‖u‖p−1
L∞(M), ‖v‖Lr(Rd) ≤ ‖u‖Lr(M).

Moreover, we have also applied Proposition 9.2 to replace ‖χ̃2∆̃jv‖Lr(Rd) by ‖∆ju‖Lr(M)

and an error term absorbed in 2−j‖u‖Lr(M), as in the argument we have used just now.
Therefore,

∑

l≥0

22lσ
∥∥∥χ̃2∆̃l

(∑

j≥0

S̃j−2mj∆̃jv
)∥∥∥

2

Lr(Rd)
.

(
‖u‖p−1

L∞(M)‖u‖Bσ
r,2(M)

)2
.

To estiamte the other term, we write

χ̃2∆̃l

( ∑

k,j:k≥j−2

∆̃kmj∆̃jv
)
= χ̃2∆̃l

( ∑

k≥l−10

∑

j≤k+2

∆̃kmj∆̃jv
)
.

Thanks to Bernstein, we apply the following type of control
∥∥∥

∑

k≥l−10

∑

j≤k+2

∆̃kG · ∆̃jH
∥∥∥
Lr(Rd)

.
∑

k≥l−10

∑

j≤k+2

2−k‖∇x

(
∆̃kG · ∆̃jH

)
‖Lr(Rd)

and obtain that∥∥∥χ̃2∆̃l

( ∑

k≥l−10

∑

j≤k+2

∆̃kmj∆̃jv
)∥∥∥

Lr(Rd)

.
∑

k≥l−10

∑

j≤k+2

2−k
(
‖∆̃k∇mj‖L∞(Rd)‖∆̃jv‖Lr(Rd) + ‖∆̃kmj‖L∞(Rd)‖∆̃j∇v‖Lr(Rd)

)
.

(9.3)

Note that v = χ̃3v for some χ̃3 ∈ C∞
c (Rd), and we have from commutator estimate that

‖∆̃jv‖Lr(Rd) . ‖χ̃3∆̃jv‖Lr(Rd) + 2−j‖u‖Lr(M),

‖∆̃j∇v‖Lr(Rd) . 2j‖χ̃3∆̃jv‖Lr(Rd) + ‖u‖Lr(M).

Now from the pointwise estimate

‖∆̃k∇mj‖L∞(Rd) . 2j
(
‖S̃jv‖p−1

L∞(Rd)
+ ‖S̃j−1v‖p−1

L∞(Rd)

)
. 2j‖u‖p−1

L∞(M),
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we have

(9.3) .‖u‖p−1
L∞(M)

∑

k≥l−10

∑

j≤k+2

(
2−(k−j)‖χ̃3∆̃jv‖Lr(Rd) + 2−k‖u‖Lr(M)

)

.‖u‖p−1
L∞(M)

∑

k≥l−10

∑

j≤k+2

(
2−(k−j)‖∆ju‖Lr(M) + 2−k‖u‖Lr(M)

)

.‖u‖p−1
L∞(M)

∑

k≥l−10

2−kσ
∑

j≤k+2

2−(k−j)(1−σ)2jσ‖∆ju‖Lr(M)

+l2−l‖u‖p−1
L∞(M)‖u‖Lr(M).

Thus Young’s convolution inequality on l2 yields
∑

l≥0

22lσ
∥∥∥χ̃2∆̃l

( ∑

k≥l−10

∑

j≤k+2

∆̃kmj∆̃jv
)∥∥∥

2

Lr(Rd)
. ‖u‖2Bσ

r,2(M)‖u‖
p−1
L∞(M).

This completes the proof of Lemma 9.3. �

We also need the following type of paraproduct estimate.

Lemma 9.4. We have

‖fg‖Hs(M) ≤ Cs,σ1,r‖f‖Hs(M)‖g‖Bσ1
r,2(M)

for any 0 < s < σ1 < 1 and r > d
σ1−s .

Proof. Applying (9.2) by replacing F (u) to f · g, we have

‖κ∗(χ1∆l(fg))‖L2(Rd) ≤C
∑

|l′−l|≤ν0
‖∆̃l′(κ

∗(χ2(fg)))‖L2(Rd) + C2−l‖fg‖L2(M).

Again, we denote by χ̃1 = χ1 ◦κ, v = f ◦κ = χ̃3v, and w = g ◦κ = χ̃3w with χ̃3 ∈ C∞
c (U).

Now we write
v · w = Tvw + Twv +R(v,w),

with

Tvw =
∑

j≥0

S̃j−2v∆̃jw, Twv =
∑

j≥0

S̃j−2w∆̃jv, and R(v,w) =
∑

|j−k|≤2

∆̃jv∆̃kw.

We estimate

‖χ̃1∆̃l(Twv)‖L2(Rd) ≤
∥∥∥∆̃l

( ∑

|j−l|≤2

S̃j−2w∆̃jv
)∥∥∥

L2(Rd)

≤
∑

|j−l|≤2

‖S̃j−2w‖L∞(Rd)‖∆̃j(χ̃3v)‖L2(Rd)

.‖g‖L∞(M)

∑

|j−l|≤2

(
‖∆jf‖L2(M) + 2−l‖f‖L2(M)

)
,

where in the last inequality, we have used the ‖[∆̃j , χ̃3]‖L2→L2 ≤ C2−j and Proposition
9.2 as in the proof of Lemma 9.3. Therefore, from the embedding Bσ1

r,2 →֒ L∞, we have

‖χ̃1(Twv)‖Hs(Rd) . ‖g‖L∞(M)‖f‖Hs(M) . ‖g‖Bσ1
r,2(M)‖f‖Hs(M).
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Similarly,

2ls‖χ̃1∆̃lR(v,w))‖L2(Rd) ≤2ls
∥∥∥∆̃l

( ∑

|j−k|≤2,j≥l−10

∆̃jv∆̃kw
)∥∥∥

L2(Rd)

.2ls
∑

|j−k|≤2,j≥l−10

‖∆̃kw‖L∞(Rd)‖∆̃j(χ̃3v)‖L2(Rd)

.2ls‖g‖L∞(M)

∑

j≥l−10

(
‖∆jf‖L2(M) + 2−j‖f‖L2(M)

)

.‖g‖L∞(M)

( ∑

j≥l−10

2js‖∆jf‖L2(M) · 2−(j−l)s + 2−(1−s)l‖f‖L2(M)

)
.

Young’s convolution inequality gives

‖χ̃1R(v,w)‖Hs(Rd) ≤ C‖g‖L∞(M)‖f‖Hs(M).

The treatement for the term Tvw is a little different, since we still need put L2 norm on
f . We estimate

2ls‖χ̃1∆̃l(Tvw)‖L2(Rd) ≤C2ls
∑

|j−l|≤2

‖S̃j−2v‖L2(Rd)‖∆̃j(χ̃3w)‖L∞(Rd)

≤C2ls‖f‖L2(M)

∑

|j−l|≤2

‖∆̃j(χ̃3w)‖L∞(Rd)

≤C2ls‖f‖L2(M)

∑

|j−l|≤2

2
jd
r ‖∆̃j(χ̃3w)‖Lr(Rd),

where we have used Bernstein in the last inequality. Thanks to s + d
r < σ1 < 1, we can

bound the right hand side by

C2l(s+
d
r )‖f‖L2(M)

∑

|j−l|≤2

‖∆jg‖Lr(M) + C2−l(1−σ1)‖f‖L2(M)‖g‖Lr(M).

Finally, we complete the proof of Lemma 9.4 by taking the l2 norm of the above quantity.
�

Thanks to the established estimates, the proof of Theorem 7 can be done exactly as we
did in the proof of Theorem 3.
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