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GIBBS MEASURE DYNAMICS FOR THE FRACTIONAL NLS

CHENMIN SUN, NIKOLAY TZVETKOV

ABSTRACT. We construct global solutions on a full measure set with respect to the Gibbs
measure for the one dimensional cubic fractional nonlinear Schrédinger equation (FNLS)
with weak dispersion (—8,%)‘1/2, a < 2 by quite different methods, depending on the

value of . We show that if a@ > %, the sequence of smooth solutions for FNLS with

truncated initial data converges almost surely, and the obtained limit has recurrence
properties as the time goes to infinity. The analysis requires to go beyond the available
deterministic theory of the equation. When 1 < a < 27 we are not able so far to get
the recurrence properties but we succeeded to use a method of Bourgain-Bulut to prove
the convergence of the solutions of the FNLS equation with regularized both data and
nonlinearity. Finally, if % < a <1 we can construct global solutions in a much weaker
sense by a classical compactness argument.

1. INTRODUCTION

1.1. Motivation. Invariant Gibbs measures for Hamiltonian PDE’s were extensively stud-
ied in the last 35 years. These studies aim to provide macroscopic properties for these
PDE’s. They have several perspectives. One of them (see the introduction of the seminal
paper [24]) is the extension of the recurrence properties of the solutions of Hamiltonian
PDE’s from integrable to non integrable models. Another (see [4, 5] 6] [7, [8, 10, 11 12}
17, 18, 19, 211, 30} BT, B3, B4, [35] [36], [42], 43, 44 [45]) is the construction of low regularity
solutions. As a consequence of the above mentioned works, when considering the initial
value problem of a Hamiltonian PDE for initial data on the support of the Gibbs measure,
we now have methods to get weak solutions, to prove uniqueness of weak solutions and to
get strong solutions (leading to recurrence properties). It turns out that all these methods
can be naturally applied in the context of the fractional NLS which is the goal of this
article. It will be revealed that the strength of the dispersion will crucially influence on
the nature of the obtained solutions. Our results leave the picture incomplete, several
interesting problems remain to be understood.

1.2. The fractional nonlinear Schrédinger equation. We are interested in the one
dimensional defocusing cubic fractional nonlinear Schrédinger equation (FNLS)

(1.1) i0pu + |Dy|*u + |u|>u=0, (t,z) € RxT,
where u is complex-valued and |D,|* = (—92)*/? is defined as the Fourier-multiplier
|Dy|*f(n) = |n|*f(n). The parameter o measures the strength of the dispersion. The

equation (I.I)) is a Hamiltonian system with conserved energy functional

o 1
H(u):/||Dm|2u|2d:17+—/|u|4d:1:.
T X 2 Jr
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Moreover, the mass M(u) = [;|ul?dz is also conserved along the flow of (LI). The
fractional Schrodinger equatlons was introduced in the theory of the fractional quantum
mechanics where the Feynmann path integrals approach is generalized to a-stable Lévy
process [29]. Also, it appears in the water wave models (see [27] and references therein).
Finally, we refer to [28] where the fractional NLS on the line appears as a limit of the
discrete NLS with long range interactions.

1.3. Construction of the Gibbs measure. Roughly speaking, our aim in this article
is to study how much dispersion « is needed to construct an invariant Gibbs measure for
(CI). There are two aspects of the analysis. The first is the construction of the Gibbs
measure, and the second is the construction of a dynamics on the support of the measure,
leading to invariance of the Gibbs measure. In this subsection, we discuss the measure
construction.

Let (gn)nez be a sequence of independent, standard complex-valued Gaussian random
variables on a probability space (€2, F,P). Let us consider the Gaussian measure p on

a—1

H™= ~¢(T) for any € > 0, induced by the map

(1.2) W Z gn(w = emx
nez 2

where [n]2Z = (1 + |n|0‘)% Set Ey = span{e™® : |n| < N}. We denote by
My : H*T ~4(T) — Ey

the corresponding projection.

If a > 1, it is well-known that for 0 < o < 251, ||| D|7u|| Leo(T) 18 p-almost surely finite.
Then the Glbbs measure p associated with (EI:I:I) is

— u 1
dp(w) = ™ Mdu(u),  V(w) = 5 lulfam).

Formally, the measure p can be seen as Z ! exp(—H (u) — M (u))du.

However, if a < 1, due to the fact that ||u||z4(r) = 0o, u-almost surely, a renormalization
is needed, as described for instance in [I1] for the case o = 1. More precisely, we set
2
o = By [yl 3z
and
— 1 11 4 -9 I 2 2
fr(u) = 0Nl paer) — 2an|Ivullze + oy

Further, we define

dpn (u) = Bre™ N dp(u),
where [y is chosen so that py is a probability measure. Denote by

Hy(u) = [|De|Zull 72 + fi(u)
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the renormalized Hamiltonian functional, and the associated Hamiltonian equation

. d0HN
10u = o
reads
i0yun + |Dy|“un + Fy(un) =0,
where Fy stands for
Fy(uy) = (Juy|Pun) — 2anuny.
Similarly to [11], we will prove the following statement.

Proposition 1.1. Assume that o € (%, 1] and 1 < p < co. Then the sequence (fn)n>1

converges in LP(du(u)) to some limit denoted by f(u). Moreover,
e W e LP(dp(u)).
Therefore, we can define a probability measure p by

dp(u) = Cooe T dpu(u).

The lower bound o > % is by no means optimal, here we perform the simplest argu-

ment we found providing a framework for weak solutions techniques. Since o > % is the
threshold for the renormalization of the squre of (L2), we expect that the construction of
the Gibbs measure can be performed for any a > %

Observe that the measures p and p depend on « but for conciseness we omit the explicit
mentioning of this dependence.

1.4. Weak solutions. The measure construction of the previous subsection essentially
implies the existence of weak solutions of (L.1]) as we explain below. Consider

(1.3) i0pu + | Dy |%u + My (Jul?u) =0,  ulimo = Z %Z)eim’.
i< 72

The projection of the equation ([3)onto Ey is a Hamiltonian ODE with a conserved
energy

1
HN(u):/\HNu]2dx+§/]HNu]4dx.
T T

Hence for any fixed IV, (I.3) has almost surely a unique global solution u%;. We have the
following statement.

Theorem 1. Assume that o > 1 and o < O‘T_l There is a subsequence (Ni)ken, N — 00
of (1,2,3,--) and a sequence of C(R; H?(T)) valued random variables (un, )gen with the
same law as (uf Jken such that (U, )ren converges a.s. in C(R;H?(T)) to some limit

u which solves (ILT)) in the distributional sense. Moreover, p is invariant under the map
u(0) — u(t), t € R.

For a < 1 we get convergence only after a renormalisation. Here is the precise statement.
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Theorem 2. Assume that o € (%, 1] and o < 2L, Then there is a divergente sequence

2
of real numbers (cy)nen, there is a subsequence (Ni)ken, Nk — 00 of (1,2,3,---) and a
sequence of C(R; H?(T)) valued random variables (un, )xen with the same law as (uf;, Jken,

such that the sequence (e"““rlin, )ren converges a.s. in C(R;HO(T)) to some limit u.
Moreover, p defined by Proposition [I1] is invariant under the map u(0) — u(t), t € R.

1.5. Uniqueness of the weak solutions. In the case o > 1 we can strongly improve
Theorem [I] by showing that almost surely, the whole sequence (un)nyen of solutions to
(T3) converged] (without changing it).

Theorem 3. Assume that o > 1 and 0 < O‘T_l The sequence (u§;)Nen of solutions of
(L3) converges a.s. in C(R; H(T)) to some limit u which solves (I.1l) in the distributional
sense. Moreover, p is invariant under the map u(0) — u(t), t € R.

The proof of Theorem [B] uses a method introduced by Bourgain-Bulut in [0, [7, §]. We
also mention that similar arguments were used by N. Burq and the second author in the
context of the probabilistic continuous dependence with respect to the initial data for the
nonlinear wave equation with data of super-critical regularity (see [14]).

We point out that in Theorems [II, Bl Bl we do not show that the obtained limit satisfy
the flow property which prevents us to apply the Poincaré recurrence theorem.

1.6. Strong solutions. In this article we call strong solutions these solutions which are
the wunique limits of smooth solutions of (IL]), satisfying the flow property. For that
purpose we need to define the global flow of (1) for smooth data. The following theorem
of J. Thirouin assures the global well-posedness of (1)) for smooth data.

Theorem 4 ([40]). Assume that « > 2. Then for every ug € C*(T) there is a unique
solution v € C(R; C*(T)) of

i0pu 4 | Dy %u + |u?u = 0,  uli—o = ug.
Moreover, the flow map has a unique extension to the energy space H%(T)

In view of Theorem M| and the remarkable recent work by F. Flandoli on the Euler
equation [22] one may ask whether it is possible to construct weak solutions for o € (%, 1]
by using the smooth solutions of Theorem [4] as an approximation sequence (compare with
Theorem [I] and Theorem [2]).

It tuns out that if the dispersion is slightly stronger than o > 1, we have the following
convergence result.

Theorem 5. Assume that o > g and o < O‘T_l Then the sequence of smooth solutions

(un)Nen of

‘ N ) B B gn(w) inc
i + | De|"un + [unPuy =0, ulmg = 3 I

In|<N [

Hp an appendix we shall extend Theorem [3] to higher dimensions.
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defined by Theorem [ converges almost surely in C(R; H?(T)) to a limit which solves (LII)
in the distributional sense.

More importantly, the unique limit satisfies the flow property. The following statement
is essentially a more precise formulation of Theorem Bl

Theorem 6. Assume that o > g. There exists a measurable set X of full p measure, so
that for any ¢ € X, the Cauchy problem

i0pu + | Dp|®u + |u?u =0,  uli—g = ¢

has a global solution such that
it (|12 . o
u(t,) — ™ N2 D=1 g € C(R; HP(T))

for some s € (% - a— 1). The solution is unique in the sense that for every T > 0,
_ ity )2 e
(1.4) e T2y ) — tID=1"g € X2 b > 1/2,

where X:sp’b is the Bourgain space localized on [—T,T] (see (1)) below). If we denote by
®(t) the solution map then ®(t) satisfies:

O(t)(X) =%, VteR and P(t1)o P(ty) = P(t1 +t2), Vi,ta € R,
Moreover, for all o < O‘T_l and t € R,

[u(t, sy < Ale)log?(1+|t]),

where A(@) is a constant depending on ¢ € X. Finally, for any p measurable set A C %
and for any t € R, p(A) = p(P(t)A).

If a > %, from the deterministic local well-posedness result in [I5], the proof of Theo-
rem [6] is much easier, see [I8]. In fact, FNLS is known to be locally well-posed for initial
data in H*(T) with s > % -1 lfa> %, we have O‘T_l > % — . Since the initial data is
p-a.s. supported on H %_(T), the deterministic theory applies. However, if g <a< %
then we need to prove a new probabilistic local well-posedness result. We conjecture
that it is possible to extend Theorem [6] to the range o > 1 by adapting a more involved
resolution ansatz (see Remark [5.2]below). We will address this issue in a forthcoming work.

For a > 1, a typical function with respect to p is an L* function. As a consequence,
if we were dealing with a similar problem for a parabolic PDE then thanks to the nice
L*> mapping properties of the heat flow the analysis would become essentially trivial. On
the other hand, since we are dealing with a dispersive PDE, the linear problem is only
well-posed in L? in the scale of the LP spaces which makes that even at positive regu-
larities, refined detereministic estimates and probabilistic considerations are essential in
the analysis. A similar comment applies in the context of [13, [14] and all subsequent works.

The proof of Theorem [(] is divided into two parts. Firstly, we need to establish a local
well-posedness theory. For this, we follow the roadmap of [5] (see also the subsequent
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works [16], [32]). An important new feature is that in sharp contrast with the case a = 2,
for a general «a, the values of

|n1]|® — [n2|® + |n3|® — |n1 —ng + n3l®, ni,ng,n3 €Z

may be dense in an interval of size 1. This causes losses of regularity which are delicate to

ity g2
control. We also emphasize that the phase factor e ~ 12122 ) in (IL4]) makes the unique-

ness class different from [5l [16] [32]. Secondly, we need to extend the local solution to the
global one and to prove the invariance of the good data set ¥ along the flow by using the
measure invariance argument introduced by Bourgain in [4]. Compared with the existing
literature (see for example [10] 12 [38] and references therein), the smoother part in the
Bourgain space does not belong to the initial data space. This fact makes the choice of
the X more delicate. In particular, we make use of spaces with sum structure.

As a consequence of Theorem [0l and the Poincaré recurrence theorem, we get the fol-
lowing statement (we consider ¥ equipped with the topology inherited by the separable
space H?(T)).

Corollary 1.2. In the context of Theorem [ for p almost every uyg € ¥ and all t € R,
there is a subsequence (ny)ken, Nk — 00 of (1,2,3,-+-) , such that the solution of
i0pu + | Dy u + |ul?u =0, uli—o = ug

satisfies
a—1

2
Another application of the flow property is the following stability result.
Corollary 1.3. Let fi, fo € L'(du) and let ®(t) be the flow of

i0pu + | Dy |“u + |ul*u = 0, uli—o = uo

i lu(nt) = uollgery =0, o<

defined i a.s. Then for every t € R, the transports of the measures

Si(uw)dp(u),  fa(u)dp(u)
by ®(t) are given by
it w)dp(u),  Fa(t, u)dp(u)
respectively, for suitable Fy(t,-), Fa(t,-) € L*(du). Moreover

£t ) — Fot, ey = 1f1 = fallLrap) -

Corollary [I.3] describes a general feature. A similar statement holds each time we
deal with a PDE defining a flow under which a measure is quasi-invariant. For example,
thanks to a recent work by Forlano-Trenberth the result of Corollary [[.3] remains true if
the measure p is replaced by the measure induced by the map

gn(w) ein:c
? E 1 )
nez (1 + ‘n‘S)Q

for s > « large enough. We refer to [23] for the precise restriction on s. There is a gap
between the best s and « leaving an interesting open problem.
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Remark 1.4. As already mentioned, it is not clear to us how to get the the flow property
described by Theorem [6] by the method of Bourgain-Bulut. At the present moment, in

the case o € (1, g] we only know how to prove almost sure convergence of the solutions of
the ODE’s :
. « 2 _ _ gn(w) nx
z(‘)tu + ’Dx’ U+ HN(‘HN?L’ HNU) = O, u‘t:() = E Fe .
nlz
nel

A similar comment applies to [6} 7, [].

This article is organized as follows. In Section 2, we collect some preliminaries including
the bilinear Strichartz inequality for the fractional NLS which has its own interest. From
Section 3 to Section 6, we deal with the case a > g and prove Theorem [l and Theorem [6l
More precisely, in Section 3 we prove the probabilistic local well-posedness by assuming the
crucial deterministic and probabilistic tri-linear estimates which will be proved in Section
4 and Section 5. Then in Section 6, we detail the globalization procedure which allows us
to obtain interesting dynamical properties, i.e. Corollary and Corollary Section 7
is devoted to the proof of Theorem [ by using the argument of Bourgain-Bulut. In Section
8 we deal with the case a < 1 and prove Theorem [2 by standard Nelson type argument and
probabilistic compactness method. Finally we add an appendix to generalize the Bourgain-
Bulut argument to high dimensional fractional NLS on any compact Riemannian manifold
without boundary.

Acknowledgements. The authors are supported by the ANR grant ODA (ANR-18-
CEA40- 0020-01). We would like to thank Sahbi Keraani for his comments while the first
author visited the Laboratoire Paul Painlevé of Lille University. We are grateful to Phil
Sosoe for several nice discussions while the authors visited Cornell University, in particular
for pointing out the reference [24].

2. PRELIMINARIES
2.1. Calculus inequalities.

Lemma 2.1 ([23]). If ny — no +n3 —n = 0, we define the resonant function ®(n) :=
[n1|® — |na|® + |n3|® — |n|®. If {n1,n3} # {ne,n}, ®(W) never vanishes. Moreover,
a—2

max?’

|®(m)| 2 In1 — nallng — nsl|n|
where |n|max = max{|ni|, |nal, |nsl, n|}.
Proof. See Lemma 2.1 of [23]. O
Lemma 2.2. Leta>1>b>0 witha+b> 1. Then there exists C > 0, such that

/ dy < C
R (= y)%(y)® ~ ()’

Proof. We break the integral into f\y|<\x\/2 and f|y‘>|x|/2. When |y| < |z|/2, we have

for any x € R.

/ <lal2 ﬁlﬁ < Cla)™*" 1 log(z) < Cfa) ™.
y|<|z
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When |y| > |z|/2, we have

Ay
/|y>|:c|/2 =)y = Cla)™.

0

Lemma 2.3. Assume that % < B <1, then for all v < 23 — 1, there ewists Cy, > 0, such
that for any a € R,

1 o
2 i ap =

nez

Proof. We cut the sum in two parts
Yo mPa-a)+ Y ()P n—a)
In|<|al/2 In|>|al/2
Then the first term can be majorized by
Cla)™ Y ()™ < Cla)' "> log(a).
n<lgl

The second term can be bounded by C,(a)~7, thanks to 26 — 1 > 0. O

2.2. Strichartz estimates and applications. We proceed by the standard argument
reducing the L* Strichartz estimate to a counting lemma. Denote by

Salt) = 171"

the Schrodinger semi-group. Recall that the Bourgain space X5 is associated with the
norm

e = [ S = k)i,
RnEZ

For finite time interval I C R, the localized Bourgain space Xls’b is defined via the norm
(2.1) lull e = inf {lo] e = s = u}.

We will also use the notation X;’b to stand for X [s_’bT )

statements.

We have the following standard

Lemma 2.4 ([39]). Letn € S(R). Then for0<T <1, s€R and -3 <V <b< i, we
have the estimate

bt/
It/ T)ullxor ST [l xs0-

Lemma 2.5 ([25]). Let n € S(R). Then for s € R,1>b> 3, we have the estimate

<
oy SIFllses.

Hn(t) /Ot St —tF("dt
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Now we are going to derive some linear and bilinear X®® estimates. Define the set of
integers
Aa,l,Nl,Nz(T) = {k €Z : N1 < Vﬁ’ < 2N1, Ny < ]a — k’ < 2N2, Hk‘a + ‘CL — k’a — l‘ < 7’}

and A, n(1) := Agyn,n(r). For a dyadic number N > 1, we denote by Py the Fourier
projector on
N < (n) <2N.

For an interval J C R, we denote by P; the Fourier projector:
P;f(n) =1;(n)f(n).
We have the following estimate.

Lemma 2.6. For any finite time interval I C R, there exists C > 0, depending only on
|I|, such that

Hsa(t)PNfH%‘l(l;L‘l(T)) < C'sup (#A44,,5(1/2))

a,l

1/2
/ PN FlZ2m

Proof. We use an almost orthogonality argument in the time variable. Without loss of
generality, we assume that I = [0,1] and f = Py f. From a direct computation, we have

(2.2) IS0l F 1 rzey = (D llgalt M)

a€Z

where

=S Tk Fla—k)etee® oy (k) = [K* + |a — k|°.

keZ
We fix ¢ € C2°(I), such that ¢|; = 1 where I is a slight enlargement of I. Thus

/1 |9a(t)]?dt < / <z>(t)\Zf(k)ﬂa—k)eiwa(k)fdt
/ s Fmfa - Rt ®

U kilpa(k)—11<2

S S FR)fla—B)F(K)f(a—k)d(pa(k) — galk))

LY |§0a(k)_l|<l|@a(k/) l/| %
<C 1+‘l_l/‘2zlAa1N(l/2 A,y w2 (K)F(a, K)F(a.K)],
L kK

where F(a, k) = ( )f(a — k) (here we use a slight abuse of notation : by |pq (k) —1| < 1,
we mean —3 < ¢,(k) — 1 < 1).

Now, by Schur’s test, we arrive at

[Jlautoat < €337 14,000 b
l k
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Therefore, by Cauchy-Schwarz, we have

@E«%E}XE%WW2Mﬂ> —n)”
<O( S a — L o (s 1/12) v

<Csup (#Aq1n(1/2)) 20122

This completes the proof of Lemma O
We shall use the following elementary lemma.

Lemma 2.7. Let I,J be two intervals and ¢ be a C function, then

1]

#heJNZ:pk)el} <1+ ———
{ R TGk

Proposition 2.8. Forr > ﬁand 1 < a< 2, we have
F# A0 1N N (1) < Cmin(Nl,NQ)l—%rl/?

Proof. First we assume that N < Ny (a similar argument applies in the case Ny <
N1). Then for @, (€) = [€]* + |a — £]*, we have |, (€)] = N, From Lemma 27

we have #A,1 N, N, (1) S rN;(a_l) + 1. On the other hand, we have the trivial bound
#Aa1.8, N (1) S Ni. We can conclude in this case since

min(Nl,rNQ_(a_l) +1) < Nll_%rlm.
Now we assume that Ny ~ No ~ N. If r 2 N we have the trivial estimate
#AN(r) SN S N5,
Now we assume that r < N*. Let 0 < 6 < 1 to be chosen later. We have
# AN (1) = #A1(0) + #A2(0) + #A3(0),

where

A1(0) = Aqin(r) O {k s [k —a/2] <071},

As(0) = Agun(r) N {k 2 [k —a/2] > 07", k(a — k) < 0},

As(0) = Aqan(r) N {k = [k —a/2| > 07", k(a — k) > 0}.
We have trivially that #A4;(0) < 207!, If ¢ and a — ¢ have different signs, we have

[Pa(©l = allgf*™! +la — g7 2 N

Thus #A5(0) <N~ If € and a — ¢ have the same signs, we deduce that

[2a — ¢ 0!

/ _ a—1 _ _ ¢la—1
€)= allel*™ —la —€"| 2 frme gy 2 fea
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hence #A3() < rN?~2. Therefore,
(2.3) #AqN(r) SO+ rONTC 4 N

If r « N% we choose 6 such that the first two terms have the same size. Therefore,
0 = r~1/2N571 It follows that #Aq 1 N(r) < N'=271/2 where we used the fact that
r < N, in order to estimate the third term in the r.h.s. of (23). This completes the
proof of Proposition 2.8 O

Corollary 2.9. Let 1 < a < 2, we have the following linear and bilinear Strichartz
estimates:

11«
(1) 1Sa®Px Fllzaroamy) < CNZED Py fll 2.
. 1_«a
(2) [[Sa®Pnrrf - Sa(O)PN2r;r2(ry) < Cmin{M, N}271||P fllz2(m) [Pl 22 (1)-

Moreover, for any interval J with length |J|, we have

1/(1_«a
(2.4) 1Sa(®P s fll sy < CIT1E GO £l 120

Proof. (1) is the direct consequence of Lemma 2.6l and Proposition 2.8 applied with r» = 1.
For (2), we may assume that N > 21090/ otherwise, it is a consequence of (1) and the
Holder’s inequality. To proceed, we first remark that the linear Strichartz estiamte (1)
also holds true if we replace Py f by any function with Fourier modes supported on an
interval of size N. This can be seen quickly by considering f = fe'**0, where kg is near
the center of such an interval. Now we write

Png = Pimg Pjmg="Pincpi<i+ymPng.
J

From almost orthogonality,

I1Sa (P - Sa(OPNlT2(rr2iry) < C D I1Salt)Parf - Sal)P mll72 (s 2(m))-
i

For each term in the summation, we use Cauchy-Schwarz and (1) to majorize it by
1-2 2 2
M2 ([P fl oy P91y -

Finally, summing over j, we obtain (2). To prove the last assertion, we denote by nj, the

center of the interval J and consider the function f = e . Prf. then f is supported
on |n| < |J|, and we obtain the desired estimate from (1). This completes the proof of
Corollary O

Proposition 2.10. Let 1 < a < 2. For uj,us € L?(R x T) such that
Uj(1,k) = L, <|r—|kjo|<2k; LN, <|k|<2n, Ui (T k), J=1,2,
we have the estimate

. 1_«a .
urug|| 2 < min(Ny, No)2~ 4 - min(K7, Ko)Y2 max(Ky, Ko)Y4|u| 2 - |Juzl| 2.
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Proof. By duality, it is sufficient to show that for any v € L2(R x T), ||v||z2 = 1, we have
(2.5)
‘ / uwwdazdt‘ < min(Nl,Ng)%_% -min(K7, K)Y? max(Ky, Ko)Y*|luy || 12| ug]| 12
RxT

The left hand-side of (Z3]) can be written as

(2.6) ut (71, k1 )ua(7e, k2)v(73, k3)|-

‘ /ﬁ*”*m:o k1 +ka+k3=0
By the Cauchy-Schwarz inequality, (2.6]) can be bounded by

@il 1@l 52 8]z - sup (mes(A(Ts, ks))2,
T, T, T, (7’37]63)

where
A(rs, ks) ={(m1,k1) : K1 <|m — |k1|¥| < 2K, Ko < |13+ 71 + |ks + k1|| < 2K}
N{(71,k1) : N1 < |k1| < 2N1, No < |ks + k1| < 2Ns}.
Eliminating 71, we can write A(73, k3) < min(K;, K2)#B(ks3), where
B(7s, k) ={k1 : N1 < |k1| < 2N1, Na < |ks + k1| < 2Ny}
N{k1 = |13 + [k1]* + |ks + k1|*] S max(Kq, K2)}.
Applying Proposition 2.8, we have #B (73, k3) < min(NVy, N2)1_% max (K1, K3)'/2. There-
fore,
mes(A(73, k3)) /2 < min(K1, K2)Y/2 max(Kq, K2)"/* - min(Ny, Np)2~ 4
and we obtain (2.5]). This completes the proof of Proposition 210l O

Corollary 2.11. Let1 < o < 2. For any s > % -7, 0<e<1and N> M, we have

(1) IPnfles, SNPNSl oz -
(2) IPxf-Pugliz, S MOIPNFIl oz IPargll o
3) IPn/-Pugllz, S MSIPNFIoq|Prrgls -

Proof. The inequalities (1) and (2) are immediate consequences of the Proposition 2101
To prove (3), we write

Pyf=)Y PyP,f,
J
where we sum over intervals J of the size M. By almost orthogonality, we have

Pxf-Puarfl7: S > IPNPsf-Puglis .
-V :

For each fixed J, using Holder, interpolation and the box-localized Strichartz (2.4]), we
obtain that

IPNPsf Purglrz, S MSIPNPfll oy IPaglzs -

Summing the square of the inequality above over .J, we complete the proof. O
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Another consequence of Proposition 2101 is the following trilinear X estimate, which
yields the deterministic local well-posedness result in [15].

Corollary 2.12. Let 1 < a < 2. For s > % -1, 0<e< 1, we have

lwtgus| o 1vc S lutll oz lluall o llusll .-

2.3. Probabilistic estimates. We present two probabilistic lemmas related to the Gauss-
ian random variables. Recall that (g,)ncz denotes a family of independent standard
complex-valued Gaussian random variables on a probability space (2, F,P).

Lemma 2.13 (Wiener chaos estimates). Let c: Z¥ — C. Set

S(w) = Z e(ny, - 7nk)gn1(w)”'gnk(w)’

(nl,m ,nk)GZk
Suppose that S € L*(Q). Then there is a constant C, such that for every p > 2,
k
1S1lze ) < Crp2 (1S L2(0)-
For a proof of Lemma 213 we refer to [37].

Lemma 2.14 (Probabilistic Strichartz estimate). Let

fw(tv ‘/E) = Z Cngn(w)ei(mc_[n}%) .

ne”L

Then for 2 < q < oo, there exists Ty < 0 and ¢ > 0 such that for oll T < Ty, R >0
_2
P{w : | f°llLa(-raix) > Rllealliz} < exp(—cT ™5 R?).

Proof. We can assume that ||c,|;2 = 1. By Lemma[2.I3] there exists Cy > 0, independent
of (¢n)nez, such that
1> engalw)]

nel

L7(9) < CO\/F7
for every r > 2. Therefore, for r > ¢, by the Minkowski inequality, we have
w(|T 1 1
EfNearmyxm) T < CrvrTe.

Then by Chebyshev’s inequality, we have

]P’{w : wa”Lq([_T7T}X’]T) > R} < C{R_TT%TE.

2 _2

By taking r = R?C; %e 2T 4, we obtain

CTR-T75T% — =T/ T20) _ o™i

with ¢ = (eC1)~2. This completes the proof of Lemma 2141 O



14 CHENMIN SUN, NIKOLAY TZVETKOV

3. LOCAL WELL POSEDNESS FOR & < a < 2

In this section, We prove a local Well—posedness result for in the case g < a<2 We
remark that if « > , then 251 > 2 1> and the determlmstlc local well-posedness of the
cubic FNLS applies. Hence we will only focus on the case ? < a < 4, where additional
arguments are needed.

Introducing the gauge transform
v(t,z) = u(t,x)ei?t Je ‘“'2,
the FNLS (I.T)) is transformed to the Wick-ordered FNLS

1
(3.1) 10,0 + |Dal?v + (Jo]? - ;/ v2dz)v = 0
T

with the same initial data as u. The flow of ([B.I]), if exists, will be denoted by W(t). We
also denote by Wy (t) the flow map of the truncated Wick-ordered FNLS

1
(3.2) i@tvN + ‘Dx‘aUN + HN((’HNUN’2 — ;/ ’HNUledx)HNUN) = 0.
T
By inverting the gauge transformation,
un(t,z) == e~ % NPT (1 ) + o (¢, )
satisfies the truncated FNLS
i0wun + | Dy|“un + HN(‘HNUNPHNUN) =0,

with the same initial data as vy. Though the Wick-ordered FNLS (truncated or not)
is equivalent to the original FNLS in our setting, it turns out that the use of the gauge
transformation removes trivial resonances, which improves the regularity at multi-linear
level.

The Wick-ordered nonlinearity can be written as

N () = (jof* - %/T]v]z)v

More generally, N (v) can be written as the trilinear form
N(v,v,v) = Ni(v,v,v) — No(v,v,v),
where the trilinear forms Ni(-,-,-) and /\/0(-, -,+) are defined as

fl7f27f3 Zfl ( )einw7
(33) nez
(f17f27f3 Z f1 ’I’Ll n2)f3(’l’L3) Z("l—n2+n3)x‘
na#ni,ng

Here and in the sequel, no # ni,ng means that no # ny and ny # ns.
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The resolution of (B1]) and (B.2)) will be achieved by writing
v(t) = Sa(t)p + w(t),

where the nonlinear part w is pretended to be smoother, and it satisfies the integral
equation

w(t) = —i /0 Sult — YN (Sa(t'Yuo + w(t'))dr.

In order to formulate our local existence result, we need to introduce several quantities.
First, we take g € C°(—2,2), xo(t) =1 for |t| < 1, such that

> xolt—1)=1, VteR.

LEZ

Define

Weel®) = S0 [X0ON (Salt + D) | oy ne

LEZ
Gay Mol =102+ S0 2 o@Salt + 00l ey
IEZ o
I8lg0e = N16ll, 502 + 2O [x0@Salt + D9 |, azrcs -
IeZ toE

The Fourier-Lebesgue norm if defined by || f||zpsr := H(n)sf(n) ;- We denote by Ve

the functions with finite %€ norm and W#¢ the measurable subset of H “35=¢ where the
functions have finite W, . quantity. Obviously, V%€ < V% hence the auxiliary norm V%€
is weaker. We remark that W, ((-) is not a norm. Since the partial sum Il is uniformly
bounded in LP(T) for 1 < p < oo, we have the following statement.

Lemma 3.1. There exists a uniform constant Ag > 1, such that for all N € N,
T [[pacsyae < Ao, [Ty ]lvacsyae < Ao

Proposition 3.2. Assume that g <a<2,2<Kq<oois large enough and 0 < e < 1 is
small enough. Let N € NU{o0}, s € [% — o= 1). There exist ¢ > 0,k > 0, independent
of N such that the following holds true. The Cauchy problemﬁ B2) with initial data
un(0) = on + 7N is locally well-posed for data ry € H*(T) and ¢n in some suitable set.
More precisely, for every R > 1, if

1
(Ws.e(@n))? + llonllvae < R and |lry | gs(r) < R,

there is a unique solution of [B.2)) in the class

1
Sa(t)(dN +7N) + Xf}f ae on [—Tgr, Tr] where TR = cR™".

In particular, the solution can be written as vy (t) = So(t)(dn +7N) + wn(t), with

||wN||XS,%+2€ S R_l‘

R

2By convention, 1. = Id.
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By inverting the gauge transformation, we obtain the local existence for the flow @ (t)
as well as ®(t). Note that even the global existence of ®x(¢) is not an issue, the important
point in Proposition are the uniform in N bounds. It is standard that py is invariant
under @y (t) thanks to the Liouville theorem for divergence free vector fields and the in-
variance of complex gaussians under rotations.

Furthermore, we have a more general local convergence result, which will be useful in
the construction of the global dynamics. For R > 0, we introduce the notation

Bri= {6 € HT~(T) : (Wae(é))? + [ $llvas < R}.

Proposition 3.3. Assume that R > 1 and «,q,e are the numerical constants as in
Proposition [33. Let (¢or) C Br, ¢o € Br. Assume that (rox) C H*(T) satisfying
70kl s () < 2R. Let Ni, — oo be a subsequence of N. Assume moreover that

lim Wy (¢or — d0) =0, lim |lrox —rollgs(my = 0.
k—o0 k—o0
Then there exist ¢ > 0,k > 0, such that on [—Tg,Tg| with TR = cR™", we have

211 470 1)|I?
Py, (t)(Pok + 10 k) = e T ontrollizq (Ty, Sa(t) (G, + Tok) + wi(t)) + Iy, Sa(t)dok,

&(t) (9o + r0) = ¢ =126 (8, (0) (90 + o) + w(®)).
Furthermore,

wi+2e =0, andin particular,  lim sup |lwg(t) — w(t)|[gs () = 0.

klim |lwy, — w]|
—00 k—o0 mSTR

Tr
The proof of Proposition B.21 and Proposition 3.3l depends on the following deterministic
multilinear estimate. Let n € C2°((—1,1)) and nr(t) = n(%).

Proposition 3.4. Let a € (2,2) and s € [% — o — 1). There exist 2 <K q < 00, large
enough, 0 < € < 1, small enough and 0 = 0(e,q) > 0, such that for all 0 < T < 1,

f1, fo, f3 € Z7¢ and ui,us,ug € Xs’%Jre, the following estimates hold:

D) Nz (N (Sa(t) frouzs us)| e yrae S TN f1llzoe | uzl] [Jus]|

Xs,%+e Xs’%+€ )

(N(S.
) e (ON (un, Sal®)feus) | oy one S Tl oy el o sl oy o
) e (ON (s uz, S ) o yone S Tl oy oo lzl] oy fall 2o
1) I ON(Salt) frouz Sal ) oo < TN il zoc ]l g fall 20
) e (ON (Sald) fi, Salt) fosus) | .- yone S TNl 2l foll zoc s
) e (ON (ur, o) o, Sa®F)] .oy ne S T ]

XS'%+2€ 9

1 f2ll zaell f3l[ 20 -

We will postpone the proof of Proposition [34] to the next section and use it to prove
the local existence results, Proposition and Proposition [3.3] in the rest of this section.

Xs’%+€
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Proof of Proposition[3.2. For simplicity, we drop the subindex N everywhere. Consider
the mapping

D w(t) = —i /0 Sult — YN (nr(#') (Sa(t')(é + 1) + w(t')) )d',

1
and we want to show that I' is a contraction on a ball of X;’2+E. For given won [-T,T]x T,
we denote by u an extension of u onto R x T. Note that from Lemma 2.5 we deduce that

H /0 "t — N @)t

< ~
X;%+2€ ~ ||”7T(t)'/\/’(u) HXS,7%-+2€7

where nr(t) = n(t/T) is a smooth cutoff on [-2T,2T], ny(t) = 1 for t € [-T,T]. Take
w an extension of w on R x T with the property w(t) = w(t) for t € [-T,T]. For
u(t) = nr(t)(Sa(t)g + Sa(t)r + w(t)), from Proposition B4}, we have

NI geae ST (16150 + Weeld) + Inr @ Salor + P ., ).
This implies that

T
T,

o ST (1003 + il + Waed) + ol ...
T

1
. 5,5+
Moreover, if wy,ws € X2

tions, yields

I (we) = D(w2)ll s g s

T

6, the same argument, after doing simple algebraic manipula-

0 2 3 2 3
ST (16030 + W) + Iy + n g+ el g ) = el o

Hence I' is a contraction in the ball B | 1 +.(R71), provided that

XT
1
[llvac + Wse(dn))® <R, T <Tg:=cR™",

with ¢ > 0 small enough and s > 0 large enough. This proves the existence and uniqueness
of wy(t) for all N € NU {oo}. This completes the proof of Proposition O

Proof of Proposition [3.3. To simplify the notation, we denote by z(t) = np(t)Sa(t)po, 2k (t) =

nr(t)Sa(t)pok, and y(t) = nr(t)Sa(t)ro, yr(t) = nr(t)Sa(t)ror. By inverting the gauge
transformation, for ¢ belonging to the time interval of local existence theory, we have

t
wy(t) = —illy, / Sa(OON (21 + y + wg) (')t
0

and
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Taking the difference, we get

t
s =l oy <[ [ Salt =W+ 5+ 0)e)
Xr 0

| [ Sate = M0 Ve - 0)0) = Vot 4 00(0)

) 2+6

The first term on the right side is o(1), as k — oo, since N(z +y +w) € X . Note

that N'(z +y + w) — N (2 + yx + wy) consists of the terms
N(Z—Zk,Z—Zk,Z—Zk), N(w_wk+y_yk77)7 N(7w_wk+y_yk7)7

Therefore, the second term on the right hand-side of the last inequality can be bounded
by
CWis.e(dox — do) + CR*T? (||wy, — Wil o ye + Mo = roll s ),
T

where we used Proposition 3.4l By choosing ¢ > 0 small enough, £ > 0 large enough such
that CTYR? < %, we have

g = wll . e < 20W; (o — ¢0) + TP R?|Iro s — 7oz = o(1), &k — cc.
This completes the proof of Proposition B.3l O

4. DETERMINISTIC TRILINEAR ESTIMATE

In this section, we prove the trilinear estimates in Proposition B4l Note that by the
symmetric role of the first place and the third place in the expression of N (:,-,-), it is
sufficient to prove (1), (2), (4), (5) of PropositionBZl Note also that from the embedding

a1l 1 -3 a_ .2 a_
WiT O WeT % and FLEOF oy FLE e
-3
it would be sufficient to prove stronger estimates by replacing Z%¢ with Lt oWz 5 3600 N

FL2~%°°_ In what follows, we may insert the smooth cutoff function nr on [—2T, 2T
without additional mention. We will carry out a case-by-case analysis on

Iz (DN w1, o2, 03| oy sae and e (N (01,02, 03) |y
where v; takes one of the following forms
D) vy =nr@)>_ fi(n)errin™ € L FLS = n LW, T 2%
nez
(II)  vj =nr(t)v; € xsate
By normalization, we may assume that
sup ||Sa(t )f]H S e +1£jll r g —ce = 1 if v; is of type L

[t|<1
and

HUjHXS,%ﬂ = 1 if v; is of type IL
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In the sequel we will suppose that fj(n) = ¢(n), i.e. that all f; are equal. Under this
assumption the analysis is essentially the same and it will be satisfied in the applications
of Proposition 3.4

Throughout this section, g < a < 2and % — 7 < s < a-—1. First we have a simple
estimate for the part Ny(-,,-).

Proposition 4.1. For any small ¢ > 0 and ¢ < oo large enough, there exists 8 > 0, such
that for 0 <T < 1,

0
(4.1) I (ONo(01,v2, 03) | o, 342 ST
One may remark that this proposition holds true for all a > 1.

Proof. By Lemma [2.4] and the definition,
[l (O)No (v, v2, v3) || o -1 10e S T (ONo(v1,v2,03) | o - 34

n)® _ — N
(n) — / 1)1(7-1,n)vg(Tg,n)vg(Tg,n)dTldTQH .
<T — |’I’L|O‘>2 3¢ T=T1—T2+T3 l%L?—

(4.2)

B

By abusing the notation, we may replace v; by n7v; if necessary.
e Case (1): v1,v2,v3 are of type (II). Writting 0;(r.n) = (n)~*(1; — ]n!a>_%_€Vj(T,n), we
estimate the L2 norm of the second term of the right side by

0 [ G m B @ - (0 - n)ndndn|

/ Vl(Tlvn)v2(7—2vn)‘/3(T - (7—1 - 7_2)771)
(r1 = 0|23 (1 — |n|e) 3+ (T — (11 — 79) — |n|)2 e
ST 2|V () 2 Ve (s )| 2 V3 () | 22

TG

(43) STE <n>—2s

dmidm ‘

12

where at the last step, we used Minkowski to pass the L2 inside the integral and then
Cauchy-Schwarz in 71, 73 variables. Finally, taking [2 of the right side of (&3], we obtain

(1) in this case.
e Case (2): Exactly two v; of type (I), say, vi(I), v2(I) and v3(II). With the same notation

Va(r,n) = (n)*(r — |n|®)3+<G3(7, n), we estimate

@2) <T°

‘¢(n)‘2/ nT(Tl - ‘Tl‘ )77171(7—2 - ‘Tl‘ )Vi’)(T?Hn) drdr
T=T1—T2+73 (13 — |’I’L|a>5+€<7' — |7”L|O‘>§_3E

1 _ 1
STz [(n) ™ Mz 1Valliger2 < T2,

212

where we used the fact that np(t) = n(T'~'t) and 177l 2 (r) = o(T"/?).
e Case (3): Exactly one v; of type (I), say, vi(I), v2(II), v3(II).
With the same notations, we have

_ T]ATTl—naVQTQ,anT— T1—T2,Tld7'1d7'2
@) ST )00 | [ OV elre T = (0 Z)n)dnds
(72— Il — (11— )~ Infe) F¥e(r — [l 3
STV, Vol e, Vol S T°

1oL2
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e Case (4): All u; of type (I), then

@ <o e o [ T =
(T —In|o)z7 1212
< e s 3 = == o 77T( T—T1+T2— |’I’L| )
ST\ () lo(m) [ [ e (m — [n]*)nr (72 — [n]®)]] T [rzdmidrs||
(T —n|*)2™ n
<T*.
This completes the proof of Proposition 4.1l O

4.1. Estimate on N; for high modulations.
In the following two subsections, we will prove the following trilinear estimate for N

Proposition 4.2. Assume that vy, va,vs are not all of type (I). Then there exists 0 < € K
1, small enough, 2 < q < oo, large enough, and 6 = 6(e) > 0 such that for 0 < T < 1,

(4.4) [l (N1 (v, v2,03) [ o110 S 7.

Without loss of generality, in what follows, we assume that v1, ve,v3 are not all of type
(IT), since in this case, we can directly applyﬁ Corollary 2121 We decompose wv1, v, V3
dyadically with frequencies of sizes Ny, Na, N3, respectively and denote them by Py, v;
respectively. We denote by N(y), N2, N(3) the decreasing ordering of Ny, N3, N3. By
relabeling the index, we denote by v(;) = Py, vs, the corresponding vj-factors. In the
following, we use subscripts to imply that functions or variables are arranged in the de-
creasing order of the spatial frequencies Ny, No, N3. By duality, we need to estimate

2T
(4.5) / /./\/1(211,’[)2,’[)3) . (Dx>sﬁdtd$,
=27 JT

where ||v]| KOb-2e S 1 and v has compact support in ¢. It turns out that we can only treat

[ [ i) 0.

and the analysis for other situations has no significant difference. In the high modulation
cases, the main contribution comes from

/ / V10203 - Yudtdr,

and we use the bilinear Strichartz inequalities and the regularization in the co-normal
regularity (the % exponent in the Strichartz inequality).

The first goal of this subsection is to reduce the matter to the low modulation cases.
More precisely, if there is any v; of type (II), we will reduce the estimate to the contribution
where in the Fourier side,

(1 — |nj|*) < Kj, if vj is of type (II),
3Since we will only use X*® type norms in this case, we can replace each Fourier coefficient in the

expression of Ni(-,-,) by its absolute value and then apply Corollary 212 for the full multiplication
V10203,
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for some suitable K;, depending on different situations. We need to estimate the dyadic
summation in N(yy, N2y, N3), IV for the following terms]

— ‘/ /’U(l ’U(3 <Dx>sﬁdtdx s

2T
c=| / (v0), (Da) P0) 1 (v o) | B

For the proof in the rest subsections, we fix the index o = % — 3e.

4.1.1. Estimates for the high modulations of B,C.
We first estimate the quantities B and C. Note that B = 0 unless N(j) ~ N() and
Ny ~ N. By Cauchy-Schwarz and then Holder for the time integration, we have

B=| / (v, v) 12 (03, (D2) Povo) e

B < N°\lvayllzarzallve lnacz lo)ll pacz P avll Lape.-
Since there is at least one of v;) of type (IT), using the interpolation between X%0 = L2 12

and X272 <y L°L2, we bound the L{L2 norm of v(j)(IT) as follows
[[og)y (D] S T |og) (D] o g4

XO Z+s ~

where we used Lemmal[2.4l Note that no matter type (I) or type (II), the dyadic summation
over N(j) ~ N2y, N ~ N(3) always converges, and we obtain that

1
> Nolvay sz lveyllselloe lpapz IPavllpape S T
N(l),N(2)7N(3)7N dyadlc
Ny~N2),N@)~N
Similarly, C = 0 unless N(;) ~ N and N(y) ~ N3). If v(y) is of type II, we obtain the same
estimate as for B, and the dyadic summation over N(jy ~ N, N(g) ~ N(3) converges. Now
we assume that v(y) is of type (I). There are essentially two possibilities, either v(g) is of
type (I) and v is of type (II), or both are of type (II). For the former case, we bound C
by
C S NoNG Nt v g o L oz ool gy [P ool oo
where for small € > 0, large g < oo,
Q= i, almost 2.
q—2
. . 0 2 1+2e
By interpolation between X%9 = L2L2 and X ate oy L¥°L2, we have X ¢ <« LI'H?,
thus

C £ Ny NG N o legsrgloe egag ool s [Pwvoll g s

We can choose ¢ large enough such that
are of type (II), we have

S—0 S S
C SN NG NG vl s, Tl s, Pxel

% e. For the case where both v(9) and w3,

t Hﬂc t x t Lac

4The term Mo has been treated in the last subsection.
5 A,B,C depend on the dyadic numbers N1y, N(2), N(3y, N and we omit the indices here.
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and by interpolation, we obtain that

C SN NN v lzmg vl oz vswo v | ot vs@o PNVl 0250

where ( \( )
(T +2¢)(qg+2 1
5(Qa 6) - 6(] 6 < 65
provided that ¢ is chosen large enough. For each v; of type (II) and v, we divide them as
vj(T,n) = hlgh + leW v(r,n) = vhel 4 ylow

where

o () — . Jhgh () =

v; o (T,n) 1(7—\n|a>% o vi(t,m), ovheb(r n) 1(7—\n|a>% o Lo(r,n).

1) 1)

low

Then for the case vy = v(2)(I),v3) = v3)(I1), if one of ) , P =0, we have

S N NG N I o oo g ol s Pl e
Na):N2),:Ns),N
Nay~N,N2)~Ns)

§T1/2.
For the case vy = v(2)(I1), v(3) = v()(II), if one of U%O‘)N %g‘)”, P o'oY = 0, we have

N(sl)UN(ng SHU ||LqH0||U(2 ||Xs L45(q, e)H (3) ||Xs L1, e)||PNU||XO L15(a.0)
Ny Ne2):N),N
Nay~N,N2)~N3)

STV,
4.1.2. Estimates for the high modulations of A.

Since there is no significant issue, we will drop the conjugate sign. It remains to estimate
the dyadic summation over N(y), N2y, N(3), IV for

—(/ / V) - (Da)vdtda].

e Case A: v(1) and v(y) are of type (II).
In this case v(3) must be of type (I). Regroupmg the terms as [[v(1)v() [l 22 -llve) (Da) " Pl g2
and using Corollary 2.TT] we have ’ ’

A SN NG Nyl o3 lv@)ll o2 loe)llzs Pl o

Since v(g) is of type (I)@, [ves) HL?,I < N(g;’, we obtain that

A S TN N NG llow o g loe o g 1Pl o g-

Note that § — 5= < 0, then if in the Fourier side, either (7; — |n;|“ ) T2 (N A NS,
j=12o0r < - |n| ) 2 (N AN()) hold true for some € > 0, the dyadic summation over

6Here we insert some time-localization of size 1 for v(3)-
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N1y =2 Nig) =2 N3), N < N(y) converges. Hence it remains to estimate the contributions
to ([4.5]) with a cutoff on the Fourier side on the region satisfying

o) (T |n|*)5 < (Nigy A N)* and
(rj — ‘n]]%% < (Ngy A N)%, if v; of type (IT) and N3y < Ny-

e Case B: v(y) is of type (II) and vy is of type (I).

Suppose first that v is of type (II). Then by the same argument (changing the su-
perindices v() and v(3) ) as for the case A, we obtain (f.4]), except for the low modulation
cases in the Fourier side:
wn (T — [n|*)5 < (Ng) A N)* and
' (i — [nj|*)s < (Nggy A N), if v; of type (IT) and Nigy < Npy).

142¢ 29
Now suppose that v(s) is of type (I). From Holder and the embedding X 0.5 L L2
as before, we have

S
ASN Hv(l)HL%?L%H’U(z)HLngo|’U(3)”L§Lg°HPNUHLf@2 )
SNy Nigy o I o, e [P ol] o vz

From the same reason, the dyadic summation converges, since in the case N(g) < N(1), we
must have N ~ N(y. Finally the T? factor appears when we use Lemma 24 to estimate

||'U(1)||X5714;125 < T3 HU(l)HXSv%“f’ if ¢ is chosen large enough, namely such that % < €.

e Case C: v(y) is of type (I), and v(y), v(3) are of type (II).
Using the bilinear Strichartz estimate and Lemma 2.4] we have

ASNlvayvellez v Pavllzz,
ST*(Nwy)* ™" (N@) "oy | o geacllve | e s PN o g

If Ng) ~ N, the dyadic summation converges directly, without reducing to the low
modulation. Hence, it remains to estimate the contribution to (@I]) from the region
satisfying

_ ay L 5—0 NT—S
(T—n|")8 <« Ny N and

(15 — |nj|°‘>§ < N(sl_)"N(;)s, if v; is of type (II) and Ny < N(y).

e Case D: v(y) of type (I), and either v(o)(IT), v(3)(I) or vey (1), vs)(ID).
Suppose that v(g) = v(2)(I) and v(3) = v(3)(II). We have

(4.8)

S
A SN vy lngreellve llLore Hv(3>HL£%L% HPNU”LE@Z :

STN*(NayN@) ™" Nigllog | o, 1ze [PV ne2e,

5 7q q

142¢ 2q
where we use the interpolation X" ¢ C L{?L? and Lemma [24] as before. Since s <
a — 1, we may choose € < 1, ¢ > 1, such that s < 20 and % < €, then if Ng) ~ Ny,
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the dyadic summation converges. Otherwise, it reduces to estimate the contribution to
([#4]) from the Fourier region satisfying
(r = |n*)F < N&;7 and

(4.9)
(15 — ]n]\a>% K N7 if s of type (IT) and Ny < Ny).

Suppose that vy = v(2)(II) and v(3) = v(3)(I), then we obtain the similar bound (switch-
ing the role of v(2) and v(3) and using bilinear Strichartz)
ASTNNGING NG ool o gon Paol oo
Hence it reduces the matter to the same low modulation case (49]). In summary, when
Py, v; is of type (II), we may write it as
PNj vj = PNj U;OW + PNJ.’U;»ligh, Pyv = PNUIOW + PNUhigh
where

— —
—

PN]‘U}OW = (T—\n|a>§KPNj’Uj(T7n)7 Pyvlow = 1(T—\n|a)§KPNU(T7n)7

and the modulation K is given specifically, according to the case (A), (B), (C), (D). The
Py, U;»OW is called the low-modulation portion. From the discussions above, if at least one
of the type (II) Py, v1, Pn,vs, Pn,vs or P v has zero low modulation portion, we have

/Nl (PvalPNZU_QPNa?Jg) - Pyudtdx 5 TGCN1,N2,N3,N7

where
> CNy,Na,Ns,N S 1
Ni,N2,N3,N dyadic
. _— . . high
Therefore, the main contributions come from the high modulation part Pvajlg and

Pyotieh | In what follows, we assume that (7 — |n|*) < K and (15 — Inj|*) < K if
vj = v;(II) without stating explicitly. Moreover, we assume that each v; is decomposed
dyadically in spatial frequency |n;| ~ Nj, satisfying Ny < Ny for Cases (B)(C)(D), and
N(3) < Ny for Case (A).

4.2. Low modulation reduction. The goal of this subsection is to setup suitable low-
modulation estimates that we need. Set
I'(n) := {(n1,na,n3) € 73 :n=mny —ng + nz,ng # ni,n3}t,
and
Lo\ n) = {(11,72,m3) ER3: A+ |n|* =7 — + 73}
Let us recall a standard representation for functions in X*°. Given a function f(t, ), we
can write f as

) = [0 (om0 bl m) (4 Y anfmge =1,

"Note that we have inserted implicitly time cutoff functions to perform the integration in ¢ over finite
intervals.
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where

FO+ Il m)
(o tm)?s F O+ fmie,m)2)

Note that > (n)?*|ax(n)|? = 1. For ||f||x=» < 1, if its modulation is bounded from above
by some K > 1, then by Cauchy-Schwarz, we have

/<A>‘b(z<n>QS<A>2b|ﬂA + Inf,n)?) A1 K

n

ax(n) =

N

As explained in the last subsection, we need to estimate the low-modulation component of
ln7 ()N (v1,v2, 1)3)HXS’7%+2€. Since at least one of vy, v9, v3 is of type (II), we can replace

v (IT) by nr(t)v;(11), and estimate only ||x(t)N (v, ve, ”3)HXS,7%+267 with some fixed time

cutoff k € C°(R), k(t) = 11if |t| < 1 and k(t)nr(t) = nr(t), for T < 1. We denote by

(k(t)N1 (v1,v2,v3))!% the modulation smaller than K. By the Hélder inequality, we have
()N (01, v2, US))IOWHXS hree

Z / [(Frar(t)N1 (v1, v2,03)) (A + ‘"‘a’n)lzd)\yﬂ
A<k <)\>1 —4de

SK*N1)3 <k () Fra (RN (v1,v2,v3)) (A + 0], 7) | gegz -

Note that
el e valrn) = / 01(71, 1) 03 (72, n2) 03(73, n3)dT1dT),
(n1,m2,n3 EF(n (11,72,73) €2 (T—|N|%,N)
where
0j(15,m5) = ¢(n;)o(1; — |n;|*) if v is of type (I)E
or

05 (75, m5) :/u ‘ K<)\j>_%+50j()\j)axj (n;)0(mj — Aj — [nz|*)dN;  if v is of type (II),
<
with > (n]> *lax, (nj)]* = 1 and

1

&) = (2o mi)2 ) 2150 + my | my) ).
m;
Therefore, if there is exactly one v; of type (II), say v1(I), v2(I), v3(II), a direct calculation
yields

(Fear(t)N1(v1,v2,v3))(T, 1)
S (As)™ 73 (As)d(n1)(n2)

(n1,m2,n3)€T (M) Pal<K

XK (T — )\3 — ]nl\a + ‘Tlg’a — ’ngla) a)\S(ng)d)\g.

8 We send the time-cutoff nr(t) to the v; of type (II).
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If vy, vz are of type (II), and vy of type (I), we have
(-B :cH )Nl U17U27U3))(T n)

= Z // > %+E<)\3>_%+E@()\2)63()\3)¢(n1)
(n1,n2,n3)€l () [A2| <K, |)‘3|<K

XK (T + Ao — A3 — \nllo‘ + ’ng‘a — ‘ngfa)a_)\Q(ng)a)\S(ng)d)\gd)\g.

Since we only care about the low modulation part of N7 (v1,v2,v3), below |A| < K, applying
the Holder inequality, we obtain that

(RN (01,02, 03) RV o grae S K> Sup 1(2)* (o (£ ()N (01, 02, 03) ) (A + 1], ) 2 -
<

Since v; = np(t)vy, if it is of type (II), from Lemma 2.4], we have
LI Bars = sl ST*loyl e
Therefore, we obtain that
1
(5N (01,02, v3)) R[] o, 112

(4.10) ST sup H Z d(n1)ax, (n2)axs (n3)R(A + A2 — Az — (7))

A <K _
Pyl j=za (72 ns)El()

12

n

or
| (5 (t)N7 (v1, v2, 1)3))11%WHXS,7%+26

(4.11) STQEK26 sup H Z ¢(n1)ma>\3(ns) (A=X3—@(n))

M<K _
\|>\3‘|<<K (n1,n2,n3)€T(R)

)
2
i

depending on how many v; are of type (II).

From the discussion of the last subsection, to finish the proof, we need to estimate the
R.H.S. of (@I0) and (4I1l), according to the constraint K, defined as (4.0)),([d.7), (48]
and (4.9), according to Case (A),(B),(C),(D), respectively. We will do this by dyadically
decomposing |nj| ~ N;. In what follows, we only estimate each dyadic pieces of R.H.S
of [AI0) or (I, satisfying that Ny < Ny, for Cases (B)(C)(D), and N3y < Nyp)
for Case (A), and deduce the correct numerology so that the final dyadic summation over
N1, Ny, N3 will converge. In summary, we have to deal with the following cases:

e Case 1: vy = v)(1),92) = vy (1), v(z) = v(3) (1) and Ngy < N(3). The modulation
bound in this case is

_ p8(s—o) 8s
Ki=Nay Ny

Therefore, the dyadic pieces of (4.I1]) is bounded by

> R e@amam)ams)| )

‘TL|SN(1) (nl,nz,’ng)er(ﬁ)

where a()(n) = ¢(n) and 3, no) lagy(n)? < N(;)%,j =2,3.

TQEKf’E sup <n>28
|l SK1 Z
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e Case 2: v(;) = v(p)(I), and exactly one of v(y),v(3) is of type (II) and Ny < Nyy. In
this case, the modulation bound is

_ Ar2(s—0)
Ky=Nuy

and the dyadic pieces of (4I0) is bounded by

S R em)am)asimas(ng)| )

|n\§N(1) (m,nz,ng)eF(ﬁ)

TEKQ25 sup <n>28
[l SKo2 Z

where a(1)(n) = ¢(n), and one of a(y)(n), ag)(n) is ¢(n), while the rest one satisfies
e Case 3: v(y) = v(1)(Il), and one of vyy, v(3) is of type (I) and N3y < N(). In this case,
the modulation bound is

and the dyadic pieces of (£.I0) (or ({.I1])) are bounded by

> R e m)aa(na)asng)| )

[n|SN@a) (n1,n2,n3)el(M)

TCK3€ sup (n)?s
I SK3 Z

where 35, a7 ~ NG, ay() = 6(0) or Sy lag (7 £ NG More-
over, at least one of a(g)(n),ae)(n) is of the form ¢(n).

4.3. Estimate of low modulation cases: Using the fact that xk € S(R), we observe
that modulo an error of C’L(N(l))_L, for any L € N, we may reduce the estimate to the
following expression [1.

e 24 1/2
(4.12) T°Ngy sup < > ‘ > al(nl)a2(n2)a3(n3)‘ )

<K
HISE S 1n|<NGy - (n1,n,m8)€T(R)
|®(m)—p|<1

Now we perform the case-by-case analysis. Denote by

®(n,n9,n3) = [n + ng — n3|* — na|* + |n3|* — |n|°.

e Case 1: Denote bj(n) = a;(n)(n)®, if v; is of type (II). We first assume that n; =
n(1), N2 = 1n(2) and n3 = n(s).

A= {(n,n2,n3) n3 # nz,n3 # n, |nj| ~ Nj,j =2,3;|n +ng — n3| ~ Ny;

’Cp(nanQun?)) - ,U,‘ S 1}7

9n the situation where ®(7) € Z, namely o = 2, we can simply reduce the constraint by ®(7) = p.
However, for a < 2, the values of ®(7) maybe dense in an interval, and this will be responsible for the loss
of derivatives when we perform the counting argument.
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where p can be viewed as a fixed parameter. Note that |¢p(n +ng —n3)| < (N(l))_%”e on

A. Applying Cauchy-Schwarz to the summation over ns, n3, we obtain that

‘N ( )+2E SAT—
#EI12) <T°N. N(Q)N(g)

1/2
Z < > ]bg(ng)]21A(n,n2,n3))( > \53(713)!21,4(”,712,713))] ~
[n|SN@y n2ns na2,n3
The second line of the right hand side can be majorized by

> Y )P Latnen)] - s (3 bamn)PLatnang)

<
In|SN(1) 72,13 NSNS noons

Thanks to N(1) > N(y), viewing ns as parameter, for fixed n, ns,
o

]~ In +ny — ng|*! NO‘ . thus ZIA n,ng,n3) S 1.
n2

1/2
Thus <Zn27n3 |b3(n3)|?1.4(n, N2, n3)> < 1. Viewing n as parameter, for fixed no,ns,

oD _ _ _
‘%‘ ~ ‘|n+n2 —ng|* ! — |n| 1‘ ~ |n2—n3|N(O{)2,

(1|\:L(1))n - Therefore, if N(l) > N(9), we obtain that

( Z Z |b2(n2)|21A(n,n2,n3)> 2 SN((ll)—%)Hs'

\n|§N(1) n2,n3

then > 14(n,n2,n3) S1+

This yields

which is conclusive, if s <a—1. If NV (21)0‘ N2y, we estimate

SN Iba(n2)PLa(n, 2, n3)

n|<SNepy n2,n3
~4V(1)

<> lan2)?| 3 3" 1a(n,nz,ns) + 3 > Laln,nz,ms)]

ng:ng—na|2(Ny)2—« n ng:nz—na|<K(Npy)2—e n

2—a+te
SN + NG, te,

Therefore,
€ s—GH1—5+3e s ar—s —SnT—S
@) ST {N(lf TENGING + Ny T NG NG NG )}

which can be majorized by TE(N(I))_‘;(E), for some d(¢) > 0, provided that s < o — 1. For
the remaining case ng = n(y), there is no significant difference in the argument.

10This bound can not be improved if we perform the Wiener chaos estimate as in [5], due to the loss in
the counting.
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e Case 2: Denote b;(n) = a;(n)(n)®, if v; is of type (II), where p can be viewed as a fixed

2(s—o)
Nay

assume that ny = n¢) and a;(n1) = ¢(n1). Since Ny > N(z), we must have

|2(7)| 2 In2 — nsllne — na| NG 2 N
where ®(7) is defined in Lemma 21l For non-zero contributions, |®(7) — u| < 1 ,where
|u| < Ko, it holds

parameter. The modulation bound is Ky = . Without loss of generality, we may

NG S [0@)] < |l + @) — ul S NG

This constraint is violated since 2(s — o) < a — 1 if € > 0 is chosen small enough. This
means that all the contributions are zero. The same argument applies to the case where
ng = n(l)

e Case 3: Note that the case where v(2),v(3) are both of type (I) is already considered
in the Case(B). It turns out there that the high-modulation analysis is conclusive. Now
we assume that vy = v(g)(II) and v(g) = v3)(I), this is the situation in Case (A), and we
have N3y < Ny. In this case, we still have |®(72)| 2 N(O{)_l, and the constraint for the

non-zero contributions is
NG S ()] < [l + ) — il S N

which is empty for small e. Thus the contributions in this case are all zero. This completes
the proof of Proposition Hence the proof of Proposition [3.4] is also completed.

Remark 4.3. There is a room in the reduction to low modulations, but the case when
the highest frequency is of type (I) is independent of this reduction, and it leads to the
restriction s < a — 1. More precisely, the use of the Fourier-Lebesgue space gives «/2
regularization, while the degeneration of the curvature of the resonant surface causes a
derivative loss of order 1 — 5. Therefore, we need to impose s — § + (1 — %) < 0 (s comes
from the fact that we evaluate the nonlinearity in X*?). We emphasize that here, the
reason for the restriction s < o — 1 is different from the same restriction appearing in the
next section.

5. PROBABILISTIC LINEAR AND TRILINEAR ESTIMATES

In order to use measure invariance arguments to construct global solutions, we need
to prove large deviation estimates for the linear norm || - ||ye.c and the trilinear quantity
W ¢(+) defined in (3.4]). Let us introduce some notations. For M < K < oo, we set

e (t) = Sa®TE TR (Y Gn(w znm) .S gn((’;)einm—i\mat.

nez [ ]2 M<|n|<K [n]z

Lemma 5.1. Fiz n € C(R) and assume that 1 < o < 2, M; < K; < o0, j = 1,2,3.
Then for any s < a—1, 0 < e K 1, there exist 0 < ¢g < 1,¢ > 0, such that for any X > 1,

fo | [ Sult=OmIN G, i 2 ) O

<exp ( — c)\2/3).

> max{Ml, Mo, Mg}_m)\

—

Xs’%+€
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Proof. From Lemma 2.5] we have

My M
H/ Sa(t =) )N(ZlKl 211%2721%3)

‘XS %+€

My M My M
<H77 NO 21 Ky0 41 f2<2721 ;(3) ‘Xs,fé-er ‘77 Nl 21 K1721 12<2721 13<3) ‘Xs,f%ﬁ'
Set
IMj,Kj = {n €l: Mj < ‘Tl‘ < Kj}.
Note that
My M
n(t )NO(Zl o P K A, 13<3) ’XS’*%“
2
B Clien |gn (@) [*gn (w)
= tner s, 1= iy — i) | o
By Minkowski’s inequality, for p > 2, we have
My M
n(ON (252 2% ) | g 1o
(5-1) 1 90/() g0 ()
< s o a\—5+€e _ o In W In (W ‘ .
- 1"60?:11%"19 (™ = nf®) 7270 = nf?) [n]%a L212LP(Q2)
It follows from the property of Gaussian random variables that
3/2 _3a 1o~
(RHS) of GI) S0*%||Luers_ 1y, (0% (7 = [0l 75507 = )|

<P max (M, My, M} 3% < ¥ max{My, My, My}~ (F7573),
in which the index is negative. Recall the notation
L) = {(n1,n2,n3) : n = n1 — ng + ng,n2 # ni,n2 # n3}.

Similarly, applying Minkowski’s inequality and the Wiener chaos estimate of Lemma [2.13]
we have

(5. 2)
2
Kz K3
7 2
SPONT — n = = N7 —|n n
(n17n2%3:)€1—‘(ﬁ) [ 1] 2 [’I’L2] 2 [ng] 2 L2 l%LZ (Q)
njEIijKj,j::l,Q,?)
For fixed n, using independence, we have
9 (@) T, (W) s (W) o a2
> Lo Ene LI i — nl° — b(m))|
[n1]2 [na] 2 [ng] 2 Q)

(n1,n2,n3)el(m)
n;j EIM],’K], ,J=1,2,3

<y ki@
- (n1,n2,n3)€(7) (n1)(n2)*(n3)*
nj€ln, x;,0=1,2,3
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Therefore,

Oy P SR D L v s T P

(n1)*(n2)*(n3)®

n (ni1,n2,n3)€l(n)
ni€lny K ;,7=1,2,3

Since [7(7)| < Cr(r)~F for any L € N, applying Lemma 22 we have

(RHS) of B2) Sp*, J:=Y 3 (n)™

@ @ e 7)) 1—2€¢ "
n (ni,n2,n3)El(n) <Tl1> <Tl2> <n3> <q)(n)>

njEIMj,Kj ,J=1,2,3

We decompose the summation into dyadic pieces |n;j| ~ N; where M;/2 < N; < 2K for
7 =1,2,3. We write
J = Z N1 No, N -
N1,N2,N3
Denote by N1y > N(gy > N3 the non-increasing order of Ny, Na, N3. Recall that from
Lemma 211 |®(77)| Z [n1 — na|lng — nglN(ai)_2.
If Ny ~ Ny ~ N3, we have

_ —a)(1— 1
<N2s 3a+(2—a)(1-2¢)
JIN1,No,Ns Sy nﬂ;ﬂg (N1 — ng)1=2¢(ny — ng)i—2

(5.3) Inj|~N;,j=1,2,3

< N2s+3—4dat2ae

SN '
If N(l) ~ N(g) > N(g), we have

< n25—204(2—a)(1-2¢) pr—a 1
N1, N2, N3 NN(1) N(3) m;m (N1 — n2) =26 (ny — ng)i—2¢

(5.4) I |~Nj.j=1,2,3

< 25—2a+(2—a)(1—2¢)+4e
NN(l) .

The worst case is N(1) > N(g) > N(3), Sayin Ny~ Npy, |2(7)| 2 N(Oi)_1|n2 — ngl, thus

2s—a—(a—1)(1—¢) —anT— 1
N1, N2, Ny §N(1) "Ny N, Z (ng — ng)i—2
(55) R 2.3

2s—2(a—1)+(a—1)e —a+2e arl—a
NG Noy T N

If s < a— 1, we may choose € > 0 such that s <a—1—e¢.
To estimate J, we write

J = Z N1, N2, N5 F Z N1, N2 N5 + Z N1, N2, N3-
Ni~Na~N3 Ny>N(2)2N(s) Nay~Nz)>N)
For the summation over dyadic integers satisfying N1 ~ Ny ~ N3 ~ N, the non-
zero contributions satisfy Ny 2 max{ M, My, M3}, thus the dyadic summation over

~

HQOther cases are similar or better.
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N1 ~ Ny ~ N3 is bounded by max{Ml,Mg,M3}28+3_4O‘+20‘6. For the summation over
dyadic integers satisfying N(;) > N(z) > N3), the non-zero contributions satisty Ny >
max{Mj, My, M3}, hence the summation can be bounded by max{Ml,Mg,Mg}(o‘_g)E.
From the constraint of s, we have

J S maX{Ml,MQ,Mg}_(g_a)E.

The rest argument follows from an application of Chebyshev’s inequality, as in the proof
of Lemma [2.74] O

Remark 5.2. From (5.3)),(5.4) and (5.5]), we see that the constraint s < a — 1 comes

only from the high-low-low frequency interactions. The other cases give s < 4o — 3 and

s < 3a — 2 respectively. In these other cases the condition s > % — 7 gives the full

range « > 1. The situation therefore reminds the impressive recent work [20] and as a
consequence we conjecture that Theorem [l and Theorem [ can be extended to o > 1, and
even to some values of a < 1 after suitable renormalizations.

Corollary 5.3. Assume that 1 < o < 2, then for any s < o — 1, there exist g > 0,0 <
e < 1,¢ > 0, such that for any A > 1, iy,i9,i3 € {0,1} and M € N, K € NU {400},
M<K

s A, (I (It o, (I (L) "6, (I (11 6) > X} <

Proof. Denote by ¢;, := Ik (I13,)% ¢*. From the Wiener chaos estimates, it is sufficient
to obtain the following estimate for large p < co:

[0 [ otate = O3 (2t 2500 ¢ +
I€Z

where M; = M if i; = 1 and M; = 0 if i; = 0. Since >, (I)™% < oo, it is sufficient to
show that for any [ € Z
< CM_EOp?’/z.

(56) H / XO t - t )N(Z:]Lw;{7 Z:]Lw;{’ 21 K) (t/ + l) Lr (Q.Xs,%+2e) —

Since S, (1)¢“ has the same law as ¢“, we obtain (5.0]) from the same proof of Lemma [5.1]
This completes the proof of Corollary (5.3l

< C M~ 3/2
Lr(Q)

s 2—+2€

0

Lemma 5.4. Assume that 1 < a <2 and M < K < oco. Then for any ty € R, any ¢ > 0,
there exist 2 < q < 00, 0 < €9 K 1, such that for all X > 1,

Pl o8 > M0N} < 7o,

where ¢ > 0 is some uniform constant.

Proof. Denote by o9 = O‘T_l — 5,01 =5 — %, r= % From Wiener chaos estimates and by

the same argument as in the proof of Corollary (.3], it would be sufficient to show that for
all large p < oo,

< CM™ 0 /p.
Lp(Q) — ¢ VP

M
[ Ix0®)25cll a7 e gowzo
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We first deal with the Fourier-Lebesgue norm FL°+2". Note that S, (t) keeps the Fourier-
Lebesgue norm invariant, it suffices to show that for large p,

[Lar<nl< i)™ % g () I uzry < OM™Ov/p.

Note that (% — 0’1)27“ = % > 1, take p > 2r, from Minkowski, we have

H1M§|"\§K<n>al_%g”(w)HLP(Q;I%T') < HlMSIH\§K<n>Jl_%gn(w)‘ 12rLr ()"

From a property of the Gaussian random variables, we have

— _ 1
pr oy SCVBILps ()7 =2 ligr < CM 5 /.

Next we deal with the Sobolev norm L{W;%". Again, for p > 2r,p > ¢, we have

Lr(©) =[xy > (n)%0gn (w)e

1101 <pn) <1 ()7~ 2 gn(w))|

inx+iln|*t ‘

M
H lIxo(t)21 Kk ||L§W§0”

M<|n|<K Rk Lt (@)

n)7 g, (w einm+i\n|at
oy > PR
M<K [n]2 Lr()IIL{Lr

By Wiener chaos estimate, there exists C' > 0, such that for any (¢, x),

H W) (n)70gn(w)e

o
M<In|<K (]2

inx+iln|*t ‘

oo—%
ey OVAILaszzactl™ g

<OM™3/p.
The proof of Lemma [5.4] is now complete. O

6. GLOBAL WELL-POSEDNESS AND FLOW PROPERTY WHEN g <a<?2

6.1. Enhanced local convergence. Throughout this section, we fix the small parameter
€ > 0, and the large parameter ¢ < oo as required in the previous sections. We also fix
the constants

6 a—1 1 «

g<04<2, g = 9 — €, §—Z<s<a—1.

We remark that in contrast with previous situations (as for instance in [12],[38]), here
the nonlinear evolution part though more regular lives in different function spaces which
may not be embedded into the function space of the linear evolution part. This causes
difficulties to construct the invariant data set. To overcome this difficulty, we define the

summed space V¢ := V9 + H*(T) via the norm

ullvaerms := inf{{lui|lvae 4 [[uz|| sy © if u = uy 4 ug for some uy € V<, uy € H*(T)}.

Since V%€ and H*(T) are continuously embedded into L?(T), from Lemma 2.3.1 of [2],
(V&€ + H*, || - ||yaetrms) is a normed space. We introduce the summed space structure,
since the gauged linear evolution part should be measured by V%€ norm and the quantity
W, while the nonlinear evolution should be measured by H® norm. The analysis in this
section is somewhat soft and topological.
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We need to introduce some notations. For functions fi, fo, f3, we extend the nonlinear
quantity Ws ((-) to the following canonical trilinear form:

Ws,e(fb f27 f3) = Z<l>_2HXO(t)N((Sa(t + l)fly Sa(t + l)f2, Sa(t + l)f3) HXS,7%+26'
lEZ
Note that for any two fixed entries, W (-, f2, f3), Ws.e(f1, -, f3) satisfy the triangle in-
equality. Given a finite set J of functions, the notation
Z Ws,e(fb f27 f3)
fied

means to sum over all possible fi, fa, f3 € J of W ((f1, f2, f3). For the projector I+, we
denote by

(})? =Ty, ifj=1; (N§)’ =1d, if j = 0.
We will make use of the following simple quasi-invariance property.

Lemma 6.1 (Quasi-invariance). There exists a constant Ay > 0, such that for all |ty| < %

and all ¢, $1, P2, ¢3
Wic(Sa(to)d1, Salto)ds, Salto)ds) < AWsc(é1,02,83),  [[Salto)dllvee < Ai[g]lvac.

Proof. From the support property of xq, we have for any t € R, |tg] < %,
Xo(t — t()) = Xo(t — to) Z Xo(t — m)
Im|<3
Note that the X*® norm is invariant under the time-shifting, from Lemma 24} we have
X0 ()N (Sa(to + t + 1)é1, Sa(to + t + 1)da, Sa(to +t +1)d3)|| xas
<C Y Ixolt = MmN (Salt + D1, Sa(t + Do, Salt + 1)¢s)]| gow
Im|<3
<C Y XN (Salt +1+m)dr, Sat +1+m)da, Salt +1+m)ds)|| .-
Im|<3

Multiplying by (I)~2 and sum over [ € Z, we obtain the first inequality. The second one
follows from a similar argument, and we omit the details. This completes the proof of
Lemma [6.1] 0O

Lemma 6.2. For all f1, fo, f3 € Ve and g1, 92,93 € H®, the following estimates hold
) Wse(f1,92,93) S [ fillgaellgzllaslhsl as
2) Wselg1, f2,93) S llgnllm= [ f2ll50.c g3l ae
3) Wselg1,92, f3) < lgrllasllg2ll =l f3ll55a.e
4) Wse(f1,92, f3) S 1fillgaellgall el f5ll5a.e
) ( )
) ( )
) ( )

—_

5 Ws,e f17f27g3 5 Hf1||)~jq,6||f2||)~jq,6||g3||H5 )
6) Wielgr, f2, f3) S llgullms [l f2llpa.cll f3llpa.e
) Weelgr,92,93) S llgullzs llgallzs llgsl zs -

e e e T e T
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Proof. Since the proof of each inequality is an application of the corresponding inequality
in Proposition B.4] and Corollary 2121 we only prove (1). Take another cutoff Xo(¢) such
that Xo(t) = 1 on the support of xo. Thus for every [ € Z, from Lemma and (1) of
Proposition 3.4l we estimate

oyl St — N (Sl + 1Sl + Do, Sult + D)

Xs,%ﬁ»Ze

_HXO /S t—tN (X (t)Sa(t’Jrl)fl,Sa(t’+l)gz,Sa(t’+l)g3)dt’HX87%+2€

SISa (D) fillza<llXo(®)Salt + Dg2ll o112 X0 (#)Sa(t + Dgall o342
Slhxa()Sa(t) f1l]

srut-edoagurt ot 10l Il

To complete the proof of Lemma [6.2] we multiply by (I)~2 and sum over [ € Z. d

For ¢, 1, we define the pseudo-distance
(61) d(@ﬂ/)) = Z 2Ws,e(¢_¢7f27f3) + Z Ws,e(f17¢_¢7f3)'

f2,f3€{o,} f1,f3€{¢,p}
Note that d(¢, 1) = d(¥, ¢). For iy,i9,i3 € {0,1}, we define
(62) 3\1[72253(.]017.]027.]03) SE((HN)Zlfla((H]J\_f)i2f27((]:[jj\_f)i3f3)-

We denote by FZ]\I,::;“( f):= F’K/f;’?’( fy f, f). For any two fixed entries, I‘Z]\I,ZSZEZ3 satisfies the
triangle inequality for the third entry. We will also need the following lemma.

Lemma 6.3. Let V,W be two normed spaces. Let (¢pr)ren C V + W be a bounded
sequence and ¢ € V + W. Assume that ¢, — ¢ in V. + W. Then there exist subsequences
(r)ren CV and (Yr)ren C W, @ € V,4b € W, satisfying

limsup (oxllv + [lellw) < l[6lvew +1,
k—o0
lellv + 1¥lw < llollvew + 1,
such that o — @ 0V and Y — ¢ in W.

Proof. By definition, for any k, there exist fr € V,gr € W, such that ¢ — ¢ = fr + g,
fi—0in V and g — 0 in W. There exist ¢ € V 4 € W, such that

lellv +11¥llw < llollviw + 1.
Let ¢ = ¢ + fr and ¢, =9 + gi, then
leellv + lvellw < llellv + [[¥llw + [1fxllv + llgellw < [|6llviw +1 4 0(1)
as k — oo. This completes the proof of Lemma O

The key step to construct the invariant set and the global dynamics is the following
enhanced local convergence result.
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Proposition 6.4 (Enhanced local convergence). Assume that «,q,e be the numerical
constants as in Proposition [33. Let (¢r) C V€ + H®, ¢ € VI + H® satisfying

[ellvocie + @lvocsnr < B, Tim [ — bllvacsnr = 0.
Let Ny, — oo be a subsequence of N. For J, = {¢g, ¢}, assume that

z ,12,0 3
(63) Z ]%[kz'geg(f17f27f3)<R

fi€Tk
i1,i2,i3€{0,1}

Assume moreover that

. 21712713
(64) le)I{olo Z Nksg(f17f27f3)_0
ijJk

i1,32,i3€{0,1}

i1+i2+i3>0
and
(6.5) lim d(, ) = 0.

k—o0

Then there exist ¢ > 0,5 > 0, such that for all t € [—Tg,TR] with TR = ¢(R + 2)™", we
have

(6.6) Jim ([, (1)r — () ]|vacsr: =0.
Furthermore, with J+ = {®n, (t)dr, ®(t)¢}, we have
(6.7) Qim0 TR fa fs) =
Ji€Tk,t
il,ig,ige{o,l}
i1+12+13>0
and
(6.8) Jim d(@n, (1)or, ®(t)) = 0.

Remark 6.5. As a consequence of (6.3) and (G5), we have Ws (¢ — ¢) — 0. This
convergence relation is enough to prove that ®n, (t)¢pr, — ®(t)¢p — 0 in VI + H*. The
closeness of the conditions (6.4),(C35) are important for the iteration.

Proof. Thanks to Lemma [6.3] there exist sequences (¢o k)ren C V9, (1o k) ken C H*(T),
and ¢g € V¥ rg € H®, such that

(6.9) Ok = Pok +Toks = do+ro,
satisfying
@0 kllvae + Irokllas < R+2, |gollvee + lrollgs < R+ 2
and
Jm (llgo.k = dollvae + llrox —7rollms) = 0.
Moreover, we have

(6.10) kli_)noloHHﬁkroHHs =0, and klingo\\nﬁkro,k\\Hs =0
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by writing ||y, 7okllms < [[HInrollms + HH]le (ro — rok)|lms. Developing the trilinear
expression of W (o — ¢o) = Ws,e((qbk — ¢0) — (ror — ro)), from the hypothesis and
Lemma[6.2] we deduce that

lim W (¢or — ¢0) = 0.
k—o0

All the hypothesis of PropositionB.3lare satisfied. We thus deduce that for all t € [—7g, Tr],
with 7 = ¢(R+2)7",

it 2
O, (81, = e "ML Ty S, (8)dok + TN, Sa(t)bok
V%€ part

it 2

e M Okllhe (T S, (870 g + wi () + TI%, Sa(t)ro,

H*® part
it it
o(t)p = e 19122 5, (1) + e 19122 (S (£)ro + w(t))),

V%€ part Hs part

where wy(t) € En,. Moreover,

(6.11) lim sup |lwg(t) —w(t)||ms = 0.

k=00 |t <rp

Denote by by (t) = e~ A P , b(t) = e Iol72 Clearly, since ¢ — ¢ in L?(T), by(t) —
b(t) for all t € R. Taking the dlﬁerence of @y, (t)¢r and P(t)¢, we have

O () oe — D)@ = @i (t) + Yu(t),
where

oi(t) =(br(t) — b)) N, Sa(t)dos + (1 — b(t)) Iy, Sa(t)do + Iy, Sa(t) (dox — ¢o)
+b(t) Iy, Sa(t)(Po — do),
i(t) =b(t) (T, Sa(t) (ro. — 70) +wi(t) — w(t)) + (bi(t) — b(t)) (T, Sa(t)ro + w(t))
+(1 = b(t)IIy, Sa(t)ro + Iy, Sa(t)(rok — 70)-
From (G.IT]), we have for all |t| < Tg, ¥(t) = 0 in H®. To show that ®n, (t)$s converges
to ®(t)¢ in V9 + H®, it will be sufficient to prove that ¢ (t) — 0 in V%€ for all |t| < 7g.

We note that II Nk,Hﬁk are uniformly bounded on V%€, since they can be represented by
Hilbert transformation, up to modulation. Thus from Lemma we have

Jim | (bx(t) — b(t)) TN, Sa(t) o,k [[yae = 0.

Next we prove that HJLVkSa(t)qSO converges to 0 in V%€, The Fourier-Lebesgue norm
FL57%¢ of Hl Sa(t)po converges to 0 can be deduced easily from the fact that S(t)pg €

1
FL% —e? . For the Sobolev norm Lqu I , we first observe that for almost every t’ € R,

71—6 l

HlkS (t")Sa(t)po — 0in Wm e . Indeed, the uniform boundeness of H}V on W, 2 ¢
allows us to first prove the convergence for smooth functions and then a den81ty argument.
By Lebesgue’s dominating convergence theorem, we have HN X1(t)Sa(t')Sa(t)po — 0 in
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a=1l_ 1
LiW,? “¢ forall l € Z. Consequently, H}VkSa(t)qﬁo — 0 in V9. The convergence of
the term Hﬁk Sa(t) (¢, — ¢o) follows from the convergence of ¢g j to ¢g in V@<, Since the
definition of V%€ norm allows us to obtain a comparable norm after shifting |¢| < 1. This

proves ([6.0)).
Next we verify (6.7) and (G.8]). We first claim that after changing the constant R to

R+ (2R)? and J, to {0,k b0}, (€3)),(6.4),([6.5) still hold. Indeed, for each f; € {¢ok, Po},

by decomposition (63)), there is a f; € {¢y, ¢}, such that g; = f; — f; € {rox, ro}.
Therefore, we can write

TN (f1, fa £3) S TRZ2(F1, foo £3) + Wee (%) g1, (TIY,)2 fo, (T, ) f3),
and the second term can be bounded by R3 from Proposition We successively replace
f2 by f2 and a term bounded by R3. Thus we obtain the analogue for (6.3) for ¢g x, ¢o
with the upper bound R + 23R3. Now if one of i1, 42,43 is non zero, say i; = 1, we have
DN (fr, foo £3) S TN2E(F1, fau f3) + Wae (TR, 01, (T%,) ™ fa, (IR, ) f3).
From PropositionB.2land (6.10), the second term of r.h.s can be bounded by C' R? Hﬂﬁk g1 llms-,
and it converges to 0. Next, we write
TNE2E (fuo for £3) STNEE(fL, fao f3) + W (TR, f1, (0%, ) 2 g2, (T, )™ f3)
1,ia, s > ; ;
<FN;2SZ35(fl7 f27 f3) + WS,G(H]J\_fkfh (H]J\_fk)zzg27 (H]J\_fk)zgf3)
+W8,6 (]‘_‘[Nk‘fl7 (Hﬁk)l2}v‘27 (Hﬁk)lsgi’)) .
Thus from Proposition [6.2] and the assumption (6.4)),

TXEZE (1, o ) < 0(1) + CRATIR, fillg,

Since by definition, ||y f]l5,.. < CN~ /2||T15 f||ya.c, we have F]lvf”;z(fl,fg,fg) =o(1), as
k — oco. For the convergence of d(¢g , ¢o), by decomposition ([6.9) and using the triangle
inequality, we have

d(gor do) < > Wadldr — 6, fa, f3) + Waerog — 70, f2, f3)
f2,f3€{¢o,k,¢0}

+ D Wadlfr, bk — ¢, f3) + Wae(f1,m0k — 70, f3).
f1,£3€{¢o,k,¢0}

From Proposition [6.2], the terms containing the entries 7 — ro converge to 0, and the
rests containing only ¢ — ¢, ¢, ¢ as entries, which can be bounded by d(¢g, ). Thus
d(¢ok, po) — 0 as k — oo.

Next we verify (6.7]). Note that
I, @, (£) 6k = I, Sa(t) 0.k + i, Sa(t)ros

and

Iy, ®(t)¢ = b(t)Iy, Sa(t)$ + b(t) Iy, w(t).
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For any fi, fa, f3 € {®n, (t)dr, P(t)¢}, by the triangle inequality, F]lvfs’i(fl, f2. f3) can be
bounded by linear combinations of
W (I, Sa(t) f1, f2, f3),  f1 € {0k, b(t)o}

and

Wi e(HNk ( )gl7f27f3) g1 € {ro,kvb(t)w(t)}‘
Since || - ||ya.e and W (-, -, -) is quasi-invariant under an S, (t) action for |¢| < 1, we obtain
(67)) after using the triangle inequalities, Proposition and the previous claim. Finally,
to verify (G.8), we observe that d(®, (t)¢x, P(t)¢) can be expressed as linear combinations
of the forms

We e (e (t) + Ur(t), fo, f3), Wae(f1,0k(t) +Ur(t), f3),  f1, fa, f3 € {®n, (t) o, B(t) 0}

which contains the terms of the following forms:

Wae(Vi(t) ) Wae (3 e (8),); We(@r(E), 15 ), Wae (5 @ (t), ).

From Proposition [6.2] the first two type of terms containing 1y (t) converge to 0. For the
other two terms, if there is one place - filled by some functions in H?, it converges to 0,
by Proposition and the fact that @ (t) — 0 in V2. The last possibility to treat is the
term Wi ((¢r(t), vx (), pr(t)). By the triangle inequality, it can be bounded by the terms
of the form

W.e(91,6(t), 02,6 (1), 03,1 (t)),
where ; 1(t) is one of the functions:
(b (t) = b(1)) TN, Sa ()P0 (1 — b(2)) I, Sa(t)o
Iy, Sa(t) (¢0k — ¢0),  b()ILN, Sa(t)(ok — o).

From the quasi-invariance of the quantity W (-, -, -) under the S, (t) action and hypothesis

©4), [©6.5), we deduce that Ws (¢1.5(t), 2.4(t), p3x(t)) converges to 0, hence (6.8) is
verified. The proof of Proposition is now complete. O

6.2. Construction of the global flow.

Proposition 6.6. Assume that s € [% —1—a— 1) and o < O‘T_l —e¢. There exist constants
g > 0,D >0, § > 0 such that for all m € NN > 1, there exists a pny measurable set
Y% c HO(T), such that
px(HT\ SR < 27+,
Forall $ € X7, t € R,
1@ x5 (8)@llvac s + NIy Oy ()l vacyms < Cm? (14 log(1 + [¢)*?,
and for all i1,1i9,i3 € {0,1},
LYl (On(t)g) < ONTFEImY2 (14 log (1 + Jt]))*".
In particular,
1@ (£) | rrozy < Cm®2 (1 + log (1 + [¢]))*/?.
Moreover, for allto € R, m e NN > 1,

(6.12) D (o) () € SAmIHlosa (1ol
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We need the following lemma.
Lemma 6.7. Assume that ¢ € V9 + H® such that for some R > 0,6 > 0,
¢llvactrs <R, |[x¢lvacims < NT°R.
Then there exists ¢o € V€ rg € H?, such that
[¢ollvee + lIrollms < 240(R+1),  [[Tydollvac + [Tgrollas < N7 Ag(R+1),
where Ag > 0 is a uniform constant.
Proof. By definition, there exists ¢y, p € V¢ and ¢y, € H?, such that
¢=p+v, Myé=en+9y

and
lellvac + 6llae < R+1, lonlvae + lénllme < N3 (R+1).
Note that in a priori, we do not know if ¢y € Fy and ¢y € Ex. Since (I1)%¢ = 1%,
we can replace n, ¥y by oy, Iy, from Lemma B.I] we have
My en l[vee + [Ty lms < AN (R+1),  [[Tne|vee + [Tyg|ms < Ag(R+1).
Let ¢g = Iy + HJLV@N, ro = lyvy + H]lvq/)N and using the triangle inequality, the proof
of Lemma [6.7]is complete. d

Proof of Proposition [6.4. The construction is slightly different compared to [10], due to
the multi-linear and sum space structures. For m,k € N and D > 0 to be chosen later, we
define the set

(6.13)
BYM(D) :=={¢ € H7(T) : |¢llvacsns < D(mk)*2, |y llvacsns < N7OD(mk)*/?}
N{¢ € HO(T) : Viy, iy, i3 € {0,1}, T2 (¢) < N7O02H5) D3 ()92},
By Lemma 6.7, for ¢ € Byvl’k (D), there exists a decomposition ¢ = ¢g + r¢, such that
[ ol[vae + lIrollms < 240D (mk)>?, | Hxdollvac + |[Marollms < AgN "0 D(mk)3/?

Arguing as in the proof of Proposition [6.4] we deduce that there exists Cop > 0, and 0 < §,
such that o S
T2 (go) < CoN 2248 D3 (mk)P/2 Viy iy, i € {0, 1}

»S,€

From Proposition [3.2] the time for local existence is 7, ;, = c(QAOD)_“(mk)_%. Then for
any [t| < T, 1, we can write the solution as

DN (t)g = on(t) + YN (1),
— %||HN¢||22H S HJ_S Y€
@N(t) e L=lN a(t)¢0 + N a(t)¢0 € s
Un(t) = e M52 (T S (B)rg + w (1)) + Tk Sa(t)ro € H?
with the property that wy(t) € Ey, and
sup (o () llvee + 4w (#)]ms) < 4AoD(mk)>/?,

|t‘STm,k
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since S, (t) keeps invariant of the H® norm, quasi-invariant the V%¢ and H}VwN = 0.
Therefore, for [t| < 7, i

1@ N5 () 0|lyarrms < 4AgD(mk)>>.

Since
O (1) = My Sa(t)(do + 70),

from the quasi-invariance of the norm V%€ under S, (t), [t| < 3 5, we obtain that
Ty N (D) llvacirrs < Aillxdlvecsns < AN D(mk)*?.

Next, we estimate the quantities Fé\lf’izﬁ (Pn(t)o) for all iy,i9,i3 € {0,1}. By expanding
Py (t)p = pn(t) + PN (t) and using the triangle inequality, we note that except for the

term I‘é\l,’?g?’(go ~n(t)), the other terms are of the form

TR @n (), ) TR (o (), ), TR (- o (1))

Therefore, from Proposition [6.2] the terms containing 1y in one of their entries can be
estimated by

Cllen @), + Cllon B3, < CD¥mk)>2.

Furthermore, if one of i1 + 5 + i3 > 0, we gain N0 with § < & from either HH rollgs <
AgN~°D(mk)3/? or ||y ¢o||vee < AgN~D(mk)3/2. For the term F’]\lf’?é“(cpgv( )), we use

the triangle inequality to estimate it by the sum of the terms F?{,:Zé“ (f1, f2, f3), where
it 2
f1, fa, f3 € {e?”HN(b”L2 N Sa(t)¢o, 113 Sa(t)¢o}. From Lemma 6.1 we obtain that
Iﬂ]'\lf,izé% ((PN(t)) < 2300A1N_(S(i1+i2+i3)D3(m/€)9/2.
Consequently, for all [t| < 7,,, 1, and 1,142,143 € {0,1},
I (B (t)9) < CLN =Pt D3 ()2,
Since ||@llyactms < ||@llyae, we deduce from Corollary 5.3l and Lemma [5.4] that
pr(H7 \ ByH(D)) < e=Pmk,

Next, we set

(6.14) SNH(D) = N Oy (— i) (B (D)),

k
\J|_Tm’k

from the invariance of py under the flow ®y(t), we have

pn(HO\SRMD)) < > pn(H\ @n(—j7ms) (By*(D)))

jil< 22

™m,k

2k+2 2k+2 .
<—pN(HJ \ Bmk(D)) < TDH(mk)%e_CDz/B(Mk) < 2_mk7

m,k
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provided that D is chosen large enough. Now we define the desired data set by
sm <m,k
(6.15) v=[)ZH"(D).
E>1

It is clear that py (H? \ £5) < 2™+,

Finally, we prove (6.12). Let mo = Dmlogy(1 + |to]). Take any ¢ € iﬁ, by def-
initions (6I4) and (6.I5), we need to show that for any I > 1 and [j| < 2!/704,
PN (JTmo1) PN (to)p € B;’;O’l(D). By definition of the set Bx’k(D) in (613), we observe
that for any Cyp > 1 and Iy >,lp € N,

(|_C’1%J+l)m,k

(6.16) By (CoD) C By (D). By"M(D) = By""(D).
Moreover, a previous argument (the local theory) yields
(6.17) O (t)(BN" (D)) € BRM(CaD), VIt < 7y g

where Cy > 4Ag+ A1+ C1 is some uniform constant. For tg # 0, without loss of generality,
we assume that |to| > 1. Then there exists ko € N, such that 250 < |¢o| < 2¥+1. Denote

by k1 = kg + 2. Take ¢ € i% If | < ki, then [tg 4+ jTme| < 22k1-1 " and there exists
2| < 2%%1 /7, 0y, such that [t + §Tymg .1 — J2Tm 2k, | < Tin2k, - Thus by definition and (6.17)

PN (to + JTime.)0 = PN (to + JTme 1 — J2Tm. 2k ) PN (J2Tim, 2k, )@ € B]n\}b’%l(CzD).
Using (6.16]), we have
(LC§J+1)2mk1,1

O (to + jTme1)d € By (D) ¢ BRo'(D),

provided that D is chosen large enough. If I > ki, then [to+ j7y,0.| < 2271, Then without
loss of generality, there exists jo < 22/ Tm,21, such that

J2Tm2t < |to + jTmeal < (G2 + 1) T 21,

and we can write
. . . . [
DN (to + 5Tme)d = PN (to + Tmot — J2Tm2t) BN (JoTma1)d € Br? (CaD).

(Lc§J+1)2m,z

Again from (6.I6), we have ®n(to + jTim,, )¢ € By (D) C Bx’o’l(D). This
completes the proof of Proposition O
Define

Em = {¢ S Vq’e + HS : ElNk — OO,(bk S iﬁk’ H¢k — ¢|’V¢1,e+Hs — O,d((ﬁk,(ﬁ) — O,

and > TR, fo, f3) = 0.
fi€{or,0}
11+12+13>0

Lemma 6.8. Assume that o < O‘T_l — € as in Proposition [6.0. Then

[e.e]

(6.18) lim sup 27 = ﬂ U e
N—roo N=1N'=N
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and
p(S™) > p(H) - 27

Proof. We first prove the inclusion (G.I8]). Take ¢ € limsupy i%, there exists a sequence

Ny — 00, such that ¢ € ijmvk for all k. We set ¢, = ¢, then trivially we verify that ¢ € ¥X™.
By Fatou’s lemma,
p(E™) = p(limsup XF) > limsup p(EF).
N—00 N—o0

From the construction of the Gibbs measure, we know that
I %) — on (ER)) = 0.
Jim (p(ZF) = on (XR)) =0
Therefore, from Proposition [6.6] we have

lim sup p(iﬁ) > limsup pn (iﬁ) > p(H?)—27.
N—oo N—oo

Consequently, the set
o0
— U nm
m=1
is of full p measure. The last step to prove Theorem [@lis the following proposition, ensuring
the global existence and the flow property of ®(t).

Proposition 6.9. For every integer m € N and every ¢ € X™, the solution ®(t)¢ with
initial data ¢ is globally defined. Moreover, there exists C' > 0, such that for every ¢ € ¥™
and t € R, we have
1 3 3/2
1D(E)¢ [vecsrrs + (Wae(@(£)9))3 < Cm2 (1 +log(1 + [1])*/”.
Furthermore, ®(t)X = X. In other words, the flow map ®(t) is globally defined on X.

Proof of Proposition [6-9 Take ¢ € ¥™, by definition, there is a sequence N, — oo, and a
sequence ¢y € Xy , such that

H¢k - ¢||Vq76+HS + d(¢k7 qb) — 07 k — 00,

and

(6.19) Jim > TVRE(f fa f2) = 0.
fj€{¢k7¢7}
i1+1i2+i3>0

By definition, for all £k € N and ¢ € R we have

3 2
(6:20)  [|®, (B)6k v 1 + NE ||, @, (£) Bkl vocs s < O (1 +log(1+[¢])”
(6.21) T (D, (t)gn) < NGO EES) 5 (1 4 log (1 + |t])

At t = 0, passing k to the limit, we obtain that ||¢||yactps < C(m +1)3/2. Using triangle
inequality, we deduce that for any fi, f2, f3 € {¢, 6},

(])Vgge(flu f27 f3) < P?Vde(¢k) + 3d(¢k7 ¢)
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Thus from ([6.21)) and ([6.19) we have
ST TREE(f, fo, f) < Clm+1)2,
fi€{ox, 9.}

i1,i2,i3€{0,1}

Denote by Ap = 20m?s (1+log(1+ |t|))3/2 for any given T" > 0. We need show that there
exists a uniform constant C’ > 0, such that ®(t)¢ exists on [0,7] and satisfies

1)l s e + (We o (B(£)9))7 < C'Ar.

Let 7p = ¢27%(Ar + 1)7%, the time in Proposition [6.4] for R = 2(A7 + 1) and divide [0, T]
by Ny ~ T /7 intervals of size 7p. With R = 2(Ar + 1), the hypotheses of Proposition
are satisfied. Thus we have for ¢ € [0, 7],

(6.22) Jim || @ (t) bk — () llvactas = 0.
Furthermore, with J;; = {®n, (t)¢r, P(t)¢}, we have
lim Z Fé\lf,f;:igs(flv f27 f3) = 07

k—o0
Fi€Tk,t
i1,32,i3€{0,1}
i1+i2+13>0
and
(6.23) lim d(®y, (t)dr, P(t)¢) = 0.
k—oo

Note that @y, (t)dr € f]f,}:n(lﬂog(pr'tm, then by definition
q)(t)(ﬁ c EDm(l—Hogz(l—Ht\))’ V|t| < 7.
By passing k to infinity, (6.22]) implies that
|@O@llvacrme < Cm2(1+log(L+|rr]))*” < R/2.
Similarly, using ([6.23]) and passing k — oo of ([6.21I)) at ¢ = 71, we obtain that
S TWEE(f1, fa f3) < RP/2.
[i€Tk 1
i1,i2,i3€{0,1}
1141i2413>0
In particular, the hypotheses of Proposition [6.4] are satisfied for the initial data ®(77)¢ and
the approximating sequence (P, (71)dk)ken, with the same R = 2(A7r + 1). This allows

us to repeatedly use Proposition to the interval [27r,37r|, - ,[(Nr — 1)7p, Np7r].
This procedure shows that the solution ®(¢)¢ exists globally in ¢t € R. Moreover,

<I>(t)¢ c EDm(l'Hng(l'HtD)

holds for all ¢ € R. This implies that ®(¢)X" C X, hence ®(¢)X C X. By reversibility, we
have ®(t)%X = X. Note that the structure of the solution allows us to pass to the limit of
the relation

On(t+s)=Pn(t) o Py(s),Vt, s € R.
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Therefore, the limit flow ®(t) satisfies the group property. This completes the proof of
Proposition O

6.3. Measure invariance. To prove the measure convergence, by reversibility of the flow
®(t) and the reduction argument in [10] (see also [42] [38]), it suffices to show that for any
R > 0 any any H? compact subset of Br, we have

(6.24) p(K) < p(®(t)p(K)),
where
Br:={¢ : |¢llvecims < R, Wsc(9) < R*}.

We need the following approximation lemma.

Lemma 6.10. There exists Cy > 0, such that the following holds true. For every large
R >1, small € > 0, and every compact set K C Br with respect to the H topology, there
exists Nog > 1,k > 0,¢ > 0, such that for all N > Ny, ¢ € K, |t| < 7p = cR™", we have

[2(t)p — N ()|l <e.
Proof. This is a simple consequence of the local well-posedness. Write
(t)p = e 105z Iy w(t)o, IF (1)), Dn(t)p = (7" Tly Wy (1), T W (1)0),

where WUy (t)¢ (¥(t)¢) is the local solution of the Wick-ordered truncated (non-truncated)
equation. Note that from the compactness of K in HY, the convergences of ||IIy¢| 12
to ||pllz2 and ||y @|lge to 0 are uniform. Therefore, it suffices to prove the uniform
convergence of Wy ()¢ to U(t)¢ in HY.

From Proposition B.2] we have, for |t| < 7p = ¢cR™"

Un(t)p = Sa(t)d +wn(t), W(t)p = Sa(t)e+wl(t),
where the nonlinear parts wy(t) € En,w(t) € H® satisfy the integral equations:
t t
wy (t) = —z'HN/ Sa(t =N (Tn)e)dt', w(t) = —i/ Sa(t =t )N (¥(t)e)dt,
0 0

and
”wN”Xs,%Jr% + HwHXs,%Jrzs < TGR?’,
T T

if T < 7. Expanding the trilinear expression N (-) and using Proposition 34l we obtain
that

0
Jon (t) = wt)| . goae < NGl yon + CT Ry —wl| 4o
XT XT XT
where s1 € [% — %,58). Taking x > 0 large enough and T' < Tr = cR™", we obtain that

L —(s—s1)0 3
|wn — w”X;;,%me < CHHNWHX;L%He < CN-G=sUTORS,
This proves the uniform convergence of Uy (t)¢p — ¥(t)¢ to 0 in H*1(T) — H?(T). The
proof of Lemma [6.10] is now complete. d
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To finish the proof of the measure invariance, we observe that for any ¢ > 0, from
Fatou’s lemma and the approximation Lemma [6.10] we have

p(2(M)(K) + B") 2 lim pw (2(t)(K) + B;") 2 limsup pw (2n(1)(K) + Bj”),

for all |t| < 7. Thus from invariance of py under ®y(t), we have

lim sup p (O (t)(K) + B") > lim sup pN(K) = p(K).
—00

N—oo

Passing 6 — 0, we obtain that for |t| < Tg, we have p(®(t)(K)) > p(K). Iterating the
argument, we obtain (6.24]) for all ¢ € R. This proves the invariance of the Gibbs measure.
The proof of Theorem [0l is then complete.

Proof of Corollary [I.3. From the invariance of the Gibbs measure dp = e~Vdu by ®(t),
the transported measure pu' = ®(t),p is absolutely continuous with respect to p. By the
Radon-Nikodym theorem, for every ¢ € R there exists a function G(t) € L'(du), G > 0
such that ' = G(t)du. Set

dvj(u) = fi(w)du(u), j=1,2

and dvj(u) = ®(t).dv;(u). Then for a test function ¥, we can write

| v = [ w@e)o
= [ @@ @) duw
- / () f5(B(—1) ()Gt u)dp ().

Therefore dv}(u) = Fj(t,u)dp(u) with Fj(t,u) = f;(®(—t)(u))G(t, u). Next, we can write
| W) - Bl = [ 1A@00) - LOEOIGE D)

= [ 1A~ hldut)
This completes the proof of Corollary [[3] O

6.4. Almost sure convergence of smooth solutions. In this section, we prove The-
orem Bl The key point is the following local stability result, which is a version of the
enhanced local convergence.

Proposition 6.11 (local stability). Assume that «,q,€ be the numerical constants as in
Proposition [3.2. Let (¢r) C V< + H®, ¢ € V€ + H? satisfying

[¢kllveerms + |@lvaecrms < R, lim [|¢g — @|lvactms = 0.
k—o00

Assume moreover that
lim d(¢x,$) =0
k—o0
and for all k € N,
Ws,ﬁ(¢k> < R37 Ws,e(qb) < Rg-
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Then there exist ¢ > 0,5 > 0, such that for all t € [—TR,TR] with TR = ¢(R + 2)™", we
have
lim sup [[®(t)¢r — P(t)d||vactms = 0.

oo jt|<rp
Furthermore, with Ji+ = {®(t)¢r, ®(t)¢}, we have
lim d(®(t)gx, ®(t)¢) = 0.
k—00

Remark 6.12. Comparing with Proposition [6.4], the only difference here is that instead of
comparing the flow ®(t)¢ with the truncated truncated flow @y, ()¢, we compare it with
the real flow ®(t)oy.

Proof. The proof is almost the same as the proof of Proposition [6.4], and we only give a
sketch. First we have the same decomposition ¢ = ¢o 1 + 1ok, ¢ = ¢o + ro as in (EI)
with the same property. Arguing as before, we have

d(¢o,k, o) — 0.

On the same local existence time interval [—7g, Tr] as in Proposition [6.4], we have for any
|t| < 7R, the difference of ®(t)¢r, — ®(t)¢ can be written as oy (t) + ¥ (t), where the VI¢
it it
part is g (t) = by(t)Sa(t)dok — b(t)Sa(t)do, with by(t) = e 192 p(t) = e 1952, The
H? part is 1 (t) = b(t)Sa(t)rok — b(t)Sa(t)ro + b (t)wi(t) — b(t)w(t), where
Iro, = rollzs = 0, sup [Jwi(t) — w(t)||gs — 0.
[tI<7r

Thus by quasi-invariance of the V9 norm and the quantity W; (-) under S, (t), we deduce
that

sup ||k (t)[lvae = 0, sup [[Yx(t)||gs — 0, d(P(t)dk, P(t)d) — 0.
[t|I<tr [tI<Tr

This completes the proof of Proposition [6.11] O
Now we prove Theorem Bl

Proof of Theorem[[. We follow the argument in [38]. By the Borel-Cantelli lemma, it is
sufficient to show that for any T > 0, we have the almost convergence of the smooth
solutions on the time interval [0,7]. We introduce an extra data set

5= N5
I=11'=l
where
Si={o : NOOFREDW, ()6, (Ty) 26, (L) 6) < 12, Vi iz iz € {0, 1}},
with €y > 0 as in Corollary (5.3l Consequently,
u(Z0)) < e

and by Borel-Cantelli, S has full p and p measure. Since X constructed in Theorem [6]
also has full p measure, the proof will be finished once we show that for any ¢ € ¥ N X,

e

the global solution ®(¢)(IIy¢) converges to ®(t)¢ in C([0,T7; HTl_E(']I‘)). We will in fact
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prove the convergence in the stronger topology C ([0, T); Vvt + H 5).

For any ¢ € ¥ N Y, there exists m € N, such that ¢ € ¥™. By Proposition 6.9, we have
for all |t| < T, with A,, 7 = Cm32(1 +log(1 + |T]))*/2, we have

[B(0)llvacs 1= + (Wae(@(1)6))% < Annr.
Moreover, from the construction of i,
|l — Nl vaerms — 0, d(yeo,¢) — 0, as N — co.
Set ¢ = IIy¢. We have that for N > Ny, large enough,
[énllvee + Wac(dn) < 281

Let R = 3\, 7 and we divide [0,T] into Nr ~ T'/7p intervals of equal length 7. Applying
Proposition to ¢, ¢ and R, we obtain that for all t € [0, 75|,

d(®()én, D(t)d) =0, sup || ®()dn — (S| vacsms — 0.

te[0,7R]
In particular,
[ @) lvne e = Jm (@0 llvaes e
Furthermore, by definition and using the triangle inequality, we have
Wi o(®(t)9) = lim W (2(t)on).
N—o00
Therefore, for some N1 > Ny and for all N > Ny,

1D()6n [yt s + (Wac(@(E)on))® < 281

This allows us to apply Proposition to ®(Tr)¢N, P(TR)P on [T, 27R]. Successively,
after Np steps, we prove the convergence of ®(t)¢n to ®(t)¢ to the whole interval [0, 7.
O

7. CONVERGENCE OF THE WHOLE SEQUENCE OF SOLUTIONS FOR THE TRUNCATED
EQUATION WHEN « > 1

Recall that we denote by ®x(¢) the flow of the truncated equation
10 + | Dy |“u + Iy (Tyu2Oyu) =0,  wulimo = ¢,
defined on any Sobolev space H*(T). The measure py is invariant under ®(¢) and as a
consequence we have the following statement.

7.1. New probabilistic a priori estimates.

Lemma 7.1. Let F' : H*(T) — H**(T) (s1 > s2 > 0) be a measurable map with respect to
the canonical Borel o-algebras on H*(T). Then for every t € R, and almost every x € T,
we have

By [F(Bx (00)(0)] = Epy [F(0)(a)],
Eon [IIF (@)l L1(m)] < o0
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In particular, if for some Fourier multiplier f(D,) and some 1 < q,r < 0o, there holds
1By [1£(De)6(@) N oy < o0
then we have for 1 < v < oo,
1
IEpy [’f(Dx)(q)N(t)¢)(x)’q]HLV([Q,T];LT-(T)) =T ||Epy Hf(Dx)¢(x)‘q]”Lr(T) .

Proof. Actually, the matter is to make the definition of z +— E,  [F(¢)(x)] precise as an
L' function on T. Define a function F from H*' x T to C by

(6,2) = F(p,2) == F(¢)().

From the assumption and the Fubini theorem, the function F is a well-defined L' function
on H*' x T. Moreover, for a.e. z € T, the function

z s B, [F(¢)(z)] := /H ) F(¢,2)dpn(9)

is defined as a L' function on T.
Now from the invariance of Gibbs measure py on H*!(T) along ®x(¢), we have that

Eon [IF(@n(®)O) L1 ()] = Epn [ F (@)l L1 (m)] < 00

Thus E,, [F(®n(t)¢)(z)] is defined for almost every z € T as an L' function. Now it
remains to show the desired equality. For any § € C°°(T), we have from the Fubini
theorem that

Ep (F@r010)].0) = [ ([ F@x@0)@)py ) o)

- [ (] rex@or@peis) oy
— [ (@n(©0).6)dpx

- / (F(6),0)dpy,
Hs1

where in the last step we have used the invariance property by viewing ¢ — (F(®n(t)¢), 0)
as a continuous functional on H*!(T). Using Fubini again, we obtain that

Eon[(F(9),0)] = (Epy [F(0)()], 0)-
This implies that for any ¢ € R and almost every « € T,

Eon [F (N (1)9)(2)] = Epn [F(9)(2)]-
Similarly, we define N

G(¢,2) = (f(D2)9) (@)

and z — E, [é((b, x)] as a measurable function on T. The same invariance argument as
before yields E[é(@N(t)qb, z)] = E[é(qb, z)], for every t € R and almost every o € T. The
final conclusion is then immediate. This completes the proof of Lemma [T.1] 0

The following probabilistic estimate uses the invariant of the Gibbs measure for the
truncated system.
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Lemma 7.2. Let T > 0,0 < O‘T_l and 2 < q,r < oo. There exist positive constants
CoaTqr and c(o,o,T,q,r), such that for all N € N and X\ > 0,

p <{¢ N (D)ol Lawe o, m1xT) > A}) < Coamgrexp (— @),

Proof. To simplify the notation, we will use L{W;" instead of LIW;"([0,7] x T) in the
argument below. Let A\; > 0 to be chosen later, we split

p({o: 18Ol Lawer > AY) <u({e: 1Nl Lawer > N ITInellLs < Ai})
+u({¢: 1PNl Lawer > A TNl s > Ai}).

Recall that dpy = exp (— 1|1 N@l|74)dp is the associated Gibbs measure for the truncated

system, and the first term on the right side of the last inequality is bounded from above
by

144
e pn (¢ [N ()|l pawer > N),

while the second term can be bounded above by exp (—c)\%) . It remains to estimate

pn (@2 [N ()l Lawer > A).

Let ¢ > max{q,r} which will be fixed later. Using Chebyshev’s inequality and then
Minkowski’s inequality, we have

q1

1
(1) on({: 18Ol gwer > M) < 5

1
([ 1o o)
Ho(T)

L{LL
Applying Lemma [71], the right side of (7.I]) can be bounded above by
a a 4
T e - q1 T q - q1 CUT a q12
AQl </ ‘D ¢(@) de) ‘ Ly = AQl </ ‘D $(@) d'uN) HLQ = AQ ’

where we have used the Wiener chaos estimate for the random series

Z gn(w)eimv
a—20

e

and the constant C depends on «,0,q,r.

Putting everything together, we obtain that

1
1 /CTa 1
1({o: [@n el Lwer > A}) <et (f \/Q1>q e

We take ¢1 = )‘; with A > CQT%, then the first term on the right side is majorized by
exp (A}/4 — A?log(A)/(24)). Now we choose A\ = /2 (log A/A)1/4, thus

)\_‘11 B Alog A B _)\210gA

4 2A 4A
With this choice, the proof of Lemma is now complete. O

The same argument as in the proof of Lemma yields the following statement.
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Corollary 7.3. Under the same restriction on the numerologies, we have for all M < N
and A > 0,

M({¢ : ”H*JCI’N(t)(ﬁHLZW;”([QT}XT) > )\}) < C(a,0,T,q,7)exp ( - (HA)C(‘”’J’T"I’T’)),
with § = (T, M) = T~ 1 M@~1-20

7.2. The convergence argument. In this subsection, we prove the Theorem [Bl By a
Borel-Cantelli type argument, it is sufficient to prove the convergence of the sequence
(un)nen of the truncated equations

10yu + | Dy |“u + HN(|HNu|2HNu) =0, uli==20¢

on C([0,T7; H°(T)) for any given 7' > 0, where 0 < ¢ < 2. To simplify the notation,
we will denote by vy (t) = IIn®n(t)¢p, which is the low frequency portion of the solution
O N (t)p. Because vy = vy, vn(t) satisfies the same equation

’L'atUN -+ |Dx|aUN + HN(|’UN|2UN) = 0.

Since the high frequency part H]%,CP ~(t) solves the linear equation, it suffices to prove the
convergence of the sequence (vy)y>1. We will simply write LW, to stand for the space-
time norm L4([0,T]; W*"(T)), and L{W;"(I) the norm LI([; W*"(T)), where ] C R is a
time interval.

e Step 1: A deterministic estimate.

Pick o1 € (a, O‘T_l), r > 012_0, 2 < ¢ < o0, large enough, and B(N) < N to be determined
later. For each N, we associate with a small number n = n(N) > 0 and partition the
interval [0, 7] into T'/n intervals enabled as I; = [t;, ;1] with length . Let Ny € [N,2N].
With F(v) = |[v|?v, we write

oN, (1) —on(t) =Sa(t — t5) (v, (t5) — v (t))) — i t_t Sa(t — Iy, F (v, ) () dt’
—i : Sa(t — N[F(vn, (') — F(on)(t)]dt’
L 4T 11

with respectively. For I;, we estimate it simply by

(7.2) Il ege mg (1) < Nl () — on ()l g -

For II;, using Holder’s inequality and the product rule, we have
Ll zge rrg <NT N Cuny)llpr e 1,

(7.3) <o

2
) [Jun, ”quHgl (I1;) [Jun, HLf(zq)/Lgo(Ij)’
To estimate III;, note that by triangle inequality, we have
0L 25 mrg <l[low [*(ony = o)l are 1) + Tvy 0w o8y = o8) |21 e (1)

+(@n, _UN)U?VHL%H;’(IJ-)
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Applying Lemma 0.4 the right side can be majorized by

lowy = onll o o 1 (\\\UNllz\\Lngg(Ij) + |!!UN\2\\L;IB§§(Ij))

where g9 = % and r > —2— = 1 Applying Lemma and using the fact that

o1—0 o9—0 "
Wt is embedded into B3, we have
’

MLl zgerrg Sllowy = onl o o g 10Nl 20 Lo () ol 2owznn
+HUN1 - UN”Lttz’Hg(Ij)HUNHquLgo([j)HUN”qung’T(jj)'
Thus

1

1
(7.4) Ml e r;) S 07 lony — onllzee e (1) Z lon, |20 oo (1) 10N p2agpenr )
v=0

Note that W7" is embedded into L>°, combing (7.2)),(7.3) and (7.4), we have
lox, = onllzgerg (1) <llow (85) = ov (t)llg + CrN =T flow, (1720010

(7.5) 1
1/q 2
+C77 /q ||UN1 - UNHL?"H;’(IJ-) Z HUNV ||L?QW;1W7
v=0
provided that 2(2¢)" < 2¢, if q is chosen large enough. Note that the constant C' depends
on o1,0,q,T.
Assume for the moment that

HUN”L%IW;PT < B(N), ”UN1”quW;’1’T <5B(N).
We take n = (3CB(N))~, it follows from (7.5) that
lowy =Nl (1) < 2llow (8) = on (5)llag +CpN~ =D B(N)2.

Consequently, if
0'1 —0

B(N) < N7,

by iteration, we obtain that
Z _0'170'
lons = onllerz <207 (Jlon (0) = on () g + N~727)

<exp (ZT log2(4C'B(N)2)q,) N=727,

We take )
B(N) = (c1log N)27,
for some suitable ¢; = ¢1(T,0,01), small enough, the right hand side of the inequality

og]1—0

above can be majorized by N~ "1
e Step 2: Good data set.
For any dyadic number N, we define the set

Qv ={¢ : I dllmy < N7 In@n ()]l 2oy rrr + [IT2n Pon (8)l] 20y mr < BIN)}

. J_ oq,T
N{¢: NS%%NIIHM0<I>N1(75)¢IIL3WIL <1}




GIBBS MEASURE DYNAMICS FOR THE FRACTIONAL NLS 53
where My = My(N) will be chosen later. From Lemma and Lemma [7.3], we have

p(2\ Q) < e~ BN)® + Ne—T?%Méaflfza)C.

The choice of B(N) and My should assure that the series
D QN 2a)
k=0

converges. We first choose
My = (log N)<

o
with Cy = Cy(q,7,01,0,T) large enough, such that Z 2k exp ( — T2 kco) < 00, while
k=0

B(N) = (¢1log N)&7

for some small constant ¢; > 0 to be fixed later. The good data set is then chosen as

G .= U ﬂ Qok,

m=0 k=m

which has full y measure, thanks to Borel-Cantelli.
e Step 3: Continuity argument.

Fix ¢ € G, our goal is to show that the sequence (P (t)p)n is Cauchy in C([0,T]; H?(T)).
Recall the notation vy(t) = IInPxN(t)¢. By definition, there exists kg € N, such that
@ € Qg for all k£ > ky. Denote by Ny = 2F for some k > ko. We claim that for all large
No and No < Ny < 2No, [lun, [| j2ayy01r < 4B(No).

Indeed, for fixed Ny and N7, we define the set

8 ={T" € [0,T] : [[ow | zayerr < 4B(No)}.

((0,77))

We first show that S is not empty. Note that vy, (t) takes value in a finite dimensional
space and by conservation of L? norm, |luy, || rorz = [1In; ¢[[r2. Then by the equivalence
of the norm, there exists Ky, > 0, such that

”UNI ”L;"’ng’r([o,&]) < Kn, HHN1¢HL%

Coming back to the definition of 2y, Thus by Holder’s inequality,

1
||UN1 ||L3‘1W;’17T([0,5]) <02 Ky, HHN1 ¢||L%

Hence if § = § is small enough, ||vn, ”quwjl”([o sn]) < 4B(Np). In particular, S # 0.

Next we show that S = [0,7]. We argue by contradiction. Suppose that Ty = sup S < 7.
By continuity of the function

t— ”'UN1 ”quwgl”([o,t’])’
there exists &' > 0, Ty + &' < T, such that

lowll 2aw e om0y < BB(No)-
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Then from the argument in the last part of Step 1, we obtain that

o1—0o
4

low, = ono [l g mrg (fom 1571y < No
Notice that if Ny < N1 < 2Ny, we have
[on, ”quw,;’”([o,Tom) §”H1+40’UN1HL?‘ZW;”([O,THJ/]) + [[Magy (v, — ”No)HL?‘ZW,‘;”([O,TOW})
+”H1+40’UN0Hquwgl’T([o,ToJraf]) F ool 2oz jo.p40)
<2+ Tz_lqul_oJr%_% lvnvy = vl Lee 2 (j0,10457) + B(No)
<2+ 2B(Np) + T (log No)>® [[uny, — v, | oo m12 (0,706 -
For Ny > 1, the first and third terms are strictly smaller than B(Ny), thus

”UNI ”quwfl’r([O,To—i-é’}) < 4.3(]\70)7

which is a contradiction.

Now since S = [0, T], we have that for any N; € [Ny, 2Np],

og1—0
4

lony, — oo llLge g < Ny

This implies that (vy(t))y is a Cauchy sequence in C([0,T]; H°(T)). Since I ®y(t)p =
I13;Sa(t)¢ is linear, it is automatically a Cauchy sequence in C([0,T]; H°(T)). The proof
of Theorem [3 is now complete.

8. WEAK DISPERSION CASE: a < 1

8.1. Definition of Gibbs measure. Recall that the renormalized Hamiltonian
o 1
Hy(u) = / | Dy 2 ul? + 5/ ITLyvul* — 2aN/ TLyvul? + oz?v,
T T T

where
ay = E[|[Myull72).
Consider the equation
0H
iatu = —_Na
ou

which reads
O+ |Dy|Zu + Fy(u) = 0,
where

FN(U) = HN(‘HNUPHNU) — QQNHNU.

Let X = H%_G(T). The first step is to show that the sequence (Fy(u))n>1 is a Cauchy
sequence in LP (X, B, u; H_"(']I')). We need a large deviation lemma. Let

by (u) == ||HNuH%2 —apn.
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Lemma 8.1. There exist C,c > 0 so that for all1 < M < N large enough, and all A > 0,
we have

p{u: by (w) = bar(w)] > A}) < Cem MM if A 2 M7,
and
p({u s by (u) — bar(u)| > A}) < Cem MM i\ <« MO,

Remark 8.2. If we use Lemma 4.8 of [41] (based on Wiener chaos estimates) we obtain

_AMS

the rougher bound Ce , which is enough for our purposes. Here we give an estimate

which is of its own interest.

Proof. Denote by
- |gn (@) |
= 2
M<[n|<N

where g, (w) = M\él”(m and E[|g,|?] = 1. We have

plu s oy (u) = bar(u)| > A} = Plw : Ry n(w) — E[RuN]| > A},

where
Run(w) — E[Ryn] = Z anXpn(w), an = ([n]_%)z,Xn(w) = ‘gn(w)P -1
M<|n|<N
IP’{w : ‘ Z aan(w)‘ > )\} §]P’{w: Z anXn(w) > )\}
M<[n|<N M<[n|<N

—HP’{w : Z anXn(w) < —)\}.
M<|n|<N

First we estimate the probability of the event {3/, <y @nXn > A}. For any 6 > 0, we
have -

(8.1) lP’{w CY D anXa(w) > A} = ]P’{w : e2mini<n fanXn (@) eek}
M<[n|<N
Using Chebyshev’s inequality, the r.h.s. of (81]) can be bounded by
0 |:eZ]\/I§\n\§N Gan(\gn\z—l)] < e e Zmgn<n fan H E[eeanlgn\Q],
M<|n|<N

where we have used the independence. Since each g, can be identified as a standard two
dimensional Gaussian random variable, we have
El

anlgnl?] _ 1 _L22 (1 gq, B 1
T eet= TG fe =)= I ey

M<[n|<N M<|n|<N M<|n|<N

provided that fa, < 1. We will finally choose suitable 6 such that fa, < % From the
elementary inequality

—y —log(1 —y) < Coy?,
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uniformly in 0 < y < %, we deduce that

oA pr<jn < Oan H E eean\gw] — oM pr<nj<n (—0an—log(1—0an))

M<|n|<N
<e—9,\+conSWSN92ai < e—e,\+coe2sM7
where
= 3 a2~ MG,
In|>M

Similarly, for the event {w : 3>/« |, <y @nXn(w) < —A}, we can rewrite it as

{w I Em<inien an(1=lgnl?) S eAG}_

Again by Chebyshev, the probability of this event is bounded by
e MR |:eZM§\n\§N ean(1—|gn|2)} - e_)‘0+ZM§\n\SN barn H E[e—Gan\gn|2]
M<|n|<N
Again from

Efo-0onlon?] 1 e‘@(”e“")dz _ 1

27'(' R2 1—|—9an’

we have
Plw: Y apXn(w) < -2} < e M oagpmsnllonloslirton)],
M<|n|<N
From the inequality
2
y—log(l+y) < %, Vo<y<1,

we have
P{w: Z anXn(w) < =A} < oM+ E Carcinin 0207 _ A0+ Een0?
M<|n|<N
In summary, we have that, for all 8 > 0,A > 0
IP’{w: ‘ Z aan(w)| > )\} < 9e—A0+Coenr6?
M<|n|<N

The function 6 — —\0 4+ Chepr6? attains its minimum at 6y = m ~ AMZeLTf

(6% (6%
A ME < GoenMT e
20(]€M 4 2
we choose § = f (thus the condition fa,, < 3 for all M < |n| < N are satisfied), and we
G ) o
deduce that the desired probability is bounded by 2e 4Com < e™¢ APMP* Otherwise
Coeps M* A Coep M®
As QoM A G,

we take 6 = %, and the desired probability is bounded by

_AM® M2 _ﬂ( _M) MO
2e~ T4 TOem T _ 9o~ T A <23
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The proof of Lemma [B1]is now complete. O
Proposition 8.3. Assume that % <a<l1ando> M For all p > 2, the sequence
(Fn(uw))n>1 is a Cauchy sequence in the space LP(X, B, p; H=°(T). More precisely, there
exists eg > 0,C' > 0, such that for all1 < M < N,

C
J 1N = Furlf o gy da) < 57

Proof. We prove for p = 2, and the estimate for the other values of p will follow from
Wiener chaos estimates. Note that Fiy(u) = Gy (u) + 2bny (u)IIyu where

GN(U) = HN(’HNUFHNU) — QHHNUH%QHNU.

Therefore, from Lemma R3] and Lemma [R1] it suffices to obtain the same type of estimate
for

/X 1G () = Gar ()| i)
Write
xn = %1% — 201051172 %

and it suffices to show that

E [HXN—XMH%{*G(T)] < < :

From the definition of ¢%;, we have

xv= > IniInadns __ itm—nztna)a
malmalmsl<n (P12 2] 2 [3] 2
n2#ni,ng
and
g g g
XN — XM = ZWCZ 2
neZ g ?[ng]?
M,N
where

By = {(n1,n2,n3) € Z° |, Inal, [ns| < N, # na,mg
and |ni| > M or |ng| > M or |n3| > M,
nl—n2+n3:n}.

Since (gy,) are independent and centered, we deduce that

gn Inon
Ellxw —xarlfy-em] =3 s E| > Gt E?

]
]\/I N

1
<D > -
— 20
2 <n> A e
M <max{|n1|,|n2|,|n3|} <N
na#ni,ng
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To estimate the second summation, without loss of generality, we may assume that |ni| >
M. Then applying Lemma 23] the second summation can be estimated by

Y
M<|ny|<N (n1)*(n —m1)?

for some v < 2o — 1. If @ > %, then 3a — 2 > 0, and we can choose v > 0 such that
a+vy>1. If |n| < M, then

2 c, C
Z <n>20<n1>o¢<n _ n1>'y < Z <n>20M30c—2 < MZO’

|n| <M, |m\>M |n|<<M

provided that o > ( . If |n] 2 M, we separate the region of summation into |n—n;| <

@, @ <|n—mn1| < 2\711\ and |n —ny| > 2|n;|. We have

> o<y Sl
(n)?7(n1)*(n —n1)7 ~ (np)et2e = Meo’
|n1\>M7\n—n1|<@ |n1|>M
3(1 a)

- If @ < |n — n1| < 4|nq|, we have

> e ) IR
SRy A O A VA A o VR S VA W AR )
@S\n—n1|<4|n1\

provided that o >

provided that o> 3(1 ) Finally, for |n —ni| > 4|n1], we have |n;| < @ and |n —nq| >
In| — |ny| > 2 | hence
> T S L e S 1
|n1\>M,\n—n1\>4\n1| In‘ZMJnl‘S%
3(1 a)

provided that o > . This completes the proof of Proposition B3l O

Denote by
1
gn(u) = §||HNUH%4 — [Myul7z, then gn(u) = fn(u) — by (u)?,

Lemma 8.4. Assume that % < a < 1, then the sequence (gn)n>1 is a Cauchy sequence
in L?(X,B;du). More precisely, for allp > 2 and 1 < M < N,

da—
(82) llgn () = gnr (W) || o gy < Clp—1)2M ™2
Furthermore, for any A > 0,

3

1 4a—3
(8.3) p{u € X - gy (u) — gar(u)] > A} < Ce™ e

Proof. We prove the estimate for p = 2, and the general case will follow from Wiener chaos
estimates. Introduce the set

Ay = {(nl,ng,ng,n4) S Z4 : |’I’L1|, |’I’L2|, |7”L3|, |’I’L4| < N,nit —ng+ng—ng =0,n9 75 nl,ng}
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and
Ay oy = {(n1,n2,n3,n4) € /e :Inal, [nel, [nsl, na| < Nyngp —ng +n3 —ng =0,
ny # ni,n3, max(|ny, [nal, ng|, |nal) > M}.
From direct computation, we have

= 4
fnlen)==> I IngnoIng > 94|

An [n1] % [n2) 2 [n3] 2 [na] 2 WSN([“]%)A‘,

and
’4

fN((bN) B fM((ﬁM) _ Z ggnlyn;gngggm; + Z ’gn

Anrn [n1]% [2]2 [13] 2 [n4] 2 M<|n|<N ([n)2)*

Now we estimate

(8.4)
L () = Fur () 2y = B [1fn (0n) — Far(@nn)?]
C E gnl gnc? gn3§an4 _ gml gmigmgggu _
= 2 2 AT T T o

(n1,n2,n3,n4)€EAN (m1,m2,m3,m4)EAN
|9n|*gm*
€ 3 B[kt
M<[n] Jmj<n - HUT m
By the independence of the Gaussian variables,

9In19ny9n3n, Iy 9maGmsz Imy

[

[[nl]g[nﬂ?[ns]g[m]g [m1]2 [ma) 2 [ms) 2 [m4]§} =0

unless {n1,n9,n3,n4} = {mq, mg, ms, my}. Therefore,

1 1 2
e ED Y e O 2 )

M<|n|<N

The second term on the right side can be bounded by W, provided that 2« > 1. For
the first term, by symmetry of the sum, we may majorize it by

1
(8.6) ¢ Z (n1)®(n2)®(n3g)*(n1 — ng + n3)®

ni,n2,n3€L,|n1|>M

Applying Lemma 2.3 we have

BB <c Y !

« a _ 20—1
n1,n2€%, |n1\>M (n1)®(n2)*(n1 — na)

C
<C Z 4a 2 M4a 3’

|n1\>M

provided that o > %, where from the first inequality to the second, we divide the region

< Il |m]

Sy e < nt —no| < 4|n1| and [ng — na| > 4|ny] as in the

of summation as |n; — ng|
proof of Proposition R3]
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To prove (83)), using Tchebyshev inequality and (8.2]), for any p > 0, we have
C p
€ X(T) s o) — (0] > 0 < (s ) (0= 1
2

4a—3
Choosing p = (’\M%)lﬂe_l, we obtain that (83]). This completes the proof. O
Following the argument in [I1], we prove Proposition [[.11

Proof of Proposition [1.1. We use Nelson type argument. First we prove the large deviation
for fn(u) — far(u). Recall that fy(u) = gn(u) + by (u)?, we have

In(u) = far(u) = gn(u) = grr(u) + (b (w) = bar(w)) (b (w) + bas(w).
Therefore, p{u : |fn(u) — far(u)| > a} can be bounded by
pfu s gy () — gar(u)| > a/2} + pdw - |on (u) — bar(w)[[bn (w) + bar(u)] > a/2}.

4a—3
By Lemma R4l the first measure can be bounded by Ce—c@?M™T" " Ty estimate the
second measure, we write

(b (w) = bar () (b () + bar (w)) = (b (w) — bar (w))? + 2bar (u) (b (u) — bar(u))-
From Lemma B.1]
p{u s by (u) — bar(u)]? > a/4} < Cemea'/?M
It remains to estimate p{u : [bas(uw)(by(u) — bar(w))| > a/4}. From Lemma [BI] we have
for any a’ > 1,
pdu : |bas(u)| > d'} < Ce™e.
Therefore, for any a’ > 0, we have
pfw s |on (u) — bar(w)bar(w)] > a/4}

<p{u: [bar(u)] > a'} + pefu s [oar(u)(bn (u) — bar(u))| > a/4, [bar (u)] < o}

<p{w: [bar(u)] > a'} + pfu s b (u) — bar(u)| > a/(da’)}

Sce—ca’ + Ce—CﬁMa’
provided that 5 2 M 1= where we have used Lemma 81 When a > %, we must have

M?% > M~ By optimally choosing @’ = a'/2M %, we obtain that

4a0—3
4

s s b () — bar ()|[ow () + bag ()] > a/2} < Cemca/*M? o ge—ca?/?M

Therefore, for a > 1,
4a—3

—cal/

plu s |fy() = far(u)] > a} < Cemer ™M

This yields the LP convergence of fy(u). To complete the proof, we need show that
le™ N ) < C,

independent of N. Since we can write

1

_fN(u) = OZ%V — 5 /ﬂ‘ (|HNU|2 _ 20[]\[)2,
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we have

—fy(u) < a% < oM7),
For fixed A > 1 large, we choose M such that M2~ = glog X\ with 0 < # < 1 such that
log A — CM21=%) > Llog \, thus

—fn(u) + far(u) > = fy(u) = CMI7) > “log A,

N =

Therefore,

L log x) 2 50 L
pfu: —fn(u) >log A} < pfu: —fn(u)+far(u) > 3 log A} < Cecllogd) < CpA™
for all L € N, provided that

1—1-740[_3 > 1, ie 04>Z
2 8(1—-a) T 8
This completes the proof of Proposition [L.11 O

Finally, the proof of Theorem 2] (the same for Theorem [I]) follows from the same prob-
abilistic compactness argument as in [I1], and we omit the details here.

9. APPENDIX: GENERAL CONVERGENCE THEOREM AND DETERMINISTIC NONLINEAR
ESTIAMTES ON COMPACT MANIFOLD

It turns out that the argument of Bourgain-Bulut also works for the fractional NLS
with a quite general nonlinearity on any compact Riemannian manifold. More precisely,
let (M, go) be a compact Riemannian manifold (without boundary) of dimension d. De-
note by Ay, the Beltrami-Laplace operator with eigenvalues (=A2),en and associated
eigenfunctions (¢, (7))nen (—Agyn = A2¢n). Consider the truncated fractional NLS

0+ (—Agy) T+ TIn (|ufP~u) = 0,
) (o)

Pn\L
2
o A2 +1

(9.1)

U|t:0 =

where Il is the orthogonal projection (with respect to the L?(M) scalar product) on
span(¢n)1<a,<n. We have the following theore

Theorem 7. Assume that o > d and o < "T_d. The sequence (u%)nen of solutions of

@J) converges a.s. in C(R; H7(M)) to some limit w which solves
1O+ (—Agy)2u + [ufPlu=0
in the distributional sense.
The proof of Theorem [0 follows from the same lines as in the proof of Theorem Bl We
only sketch here the main ingredients. For the probabilistic side, to establish the ana-
logues of Lemma and Corollary [7.3], we can not use that fact that ¢, (x) are bounded,

uniformly in n. We should use instead the following average effect of eigenfunctions due
to Héormander.

12 por simplicity we consider only the polynomial nonlinearity here, our argument applies to more
general nonlinearities having polynomial growth and defocusing feature.



62 CHENMIN SUN, NIKOLAY TZVETKOV

Lemma 9.1. There exists C = C(M, go) > 0, such that for any N, we have

CTIN'< > fen(@) <ON?
N<A<2N

For the deterministic side, we need to prove a relatively standard nonlinear estimate
needed in the convergence argument. We present it here for its own interest. The following
proposition proved in [9] allows us to reduce the analysis to paraproduct type arguments
in RY.

Proposition 9.2 ([9]). Let P be an elliptic self-adjoint differential operator of order m > 0
on a compact manifold M of dimension d. Let ¢y € C®R), k : U C R =V Cc M a
coordinate patch, and xi,x2 € CX(V) such that xo = 1 near the support of x1. Then
there exists a sequence (;);>0 of C°(U x R%) such that, for every L € N and for every
he(0,1), vel0,L], f € C'OO(M), we have

& (a0 P) ) 3 W, D) O o < CoRE I
Moreover, to(w,€) = x1 (5(2))(pm (¢,)) and

j=1 YR
supp(;) C {(2,€) € U x R : (x) € supp(x1), pm (2, €) € supp(¥)},
where p,, is the principle symbol of P.

We will use different notations for the Littlewood-Paley decomposition in this appendix.
We denote by A; = ¢(—2%A,,) for I > 1 and Ag = ¥o(—Ay,), where vy € CX(|¢] < 2)
and ¢ € C°(3 < |€| < 2). The Besov space B; (M) is defined via the norm

1
13,000 = 12180 e iy = (D2 2718010 0)

1>0
The Sobolev space H*(M) in then B3 ,(M).

Lemma 9.3. Let F': C — C satisfies F(0) =0 and
|F(2)| < Clzl", [0'F(z)| < Clzl" 1=1,2,
with v > 2. Then for any o € (0,1), 2 <r < oo we have
IF @57, 00y < Cllullyzt g Il )

Proof. It is sufficient to estimate || A;F'(u)|2(pq) in one coordinate patch. Applying Propo-
sition to the operator A; = ¢(—2_2lA o), we have

K (1 AL F (u Z e K (X2 F'(u)) + Re,

with
¢0(3§‘,£) = Xl(’{(x))x (|£|90 ) |£|g0 . Zgo’] 5@5]7
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and
IRL N ey S IRzl ey S 27 E N F (@) p2 s
where we take L > v large enough such that H”(R%) < L"(R%). Let

1=060(¢) + Y 0(27"¢)
=1

be a dyadic partition of unity in R, 6y € C°(R%),0 € C°(R?\ {0}). Denote by 0;(-) =
6(277-), for j > 1, we denote by A; = 0;(D) be the usual Littlewood-Paley dyadic projector

in R? and
S; = Z Ap.
k<j
Note that on the support of x1,

alé|* < [€]2, < blEP,

in view of the support property of ¢;, the standard pseudodifferential calculus implies, if
|I" — 1] > 1 for some fixed positive constant vy, we have

160 (D)4 (x, 27" D)&* (x2 F ()| 1ty S 2719277 DY&* (x2 F ()| p2 ey
for some p € C®(R%\ {0}). Therefore, we have
9.2) IFO0aAF @) @e S Y AR CeF @)l @a + 27 I1F W) 2200
[ —1<vo

We could replace the error by 27| F(u)||r(n) since L7(M) < L*(M). Denote by v =
K*u=wuor, and Xj = xj ok, j = 1,2. Without loss of generality, we may assume that v
has compact suppourt in R%. Observe that
N~ —1
”[AlvXZ]”LT(]Rd)—wT'(]Rd) S22,

we have

5" CaAF @) pr@ay S > XA (F@)) o may + 27 1 ()|

['=1<vo

Now we have reduced all the functions and operators to R% and we can perform the
standard analysis. We write

F(v) = Z [F(gjv) - F(gj_lv)} = ijﬁjv,

Jj=20 Jj=0
with the convention that S_; = 0, where
1 ~ ~
m; = / F'(15v+ (1 — 7)Sj_1v)dr.
0

We write the product as
ijgjv = Z Svj_Qmj/Aij + Z Ekmj/Avjv.

j=0 Jj=0 k,jik>j—2
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The first term on the right hand side can be estimated as
Hm&(% Sj‘2mjAjv) ‘ L7 (R4)

% Seom -t 2] T S

li—11<2 li—11<2

Ssup|8-2m; om0 1KeAG0l rgeey + 27 0] ey
] .
li—1[<2

Sl (0 1Az ullzr vy + €27l a)),

l7—1<2

L7 (RY)

where in the last inequality, we have used the estimates
3 -1 -1
||Sj—2mj||L°°(Rd) S Hv‘ioo(Rd) S ||uHioo(M)7 HUHLT(Rd) < HUHLT(M)

Moreover, we have also applied Proposition 0.2] to replace ||>Zgﬁjv\|Lr(Rd) by [[Ajull ()

and an error term absorbed in 277 ||ul|r(rq), as in the argument we have used just now.
Therefore,

Z 22l0
>0
To estiamte the other term, we write

§2£1< Z gkmjgjv)zig&( Z Z &kmjﬁjv).

kjik>j—2 k>1—10 j<k+2

2
-1
ey < (I ez, 000)

ol (Y5 amAp)|
Jj=0

Thanks to Bernstein, we apply the following type of control

H Z Z AkG A, H‘Lr(Rd ~ Z Z Z_k”Vﬂc <£kG‘£jH) HLT'(Rd)

E>1—10 j<k+2 E>1—10 j<k+2

and obtain that

[o5( 55 S

E>1—10 j<k-+2

> > 2_k(‘lAkaj\|L<><>(Rd)||AJ‘U\|LT'(R11)Jr||£’€T’LJ'||L°°(W)||£J'VUHL"(W))'
k>1—10 j<k+2

L7 (RY)
(9.3)

Note that v = Y3v for some Y3 € C2°(R%), and we have from commutator estimate that
1850] e may S X340l rmay + 277 [[ull £r ()
1A; Vo prray S 2 IX3850]| £rray + 1l Lr ()

Now from the pointwise estimate

; -1
12Kty S 27 (185005 gy + 18510y ) S 27l gy
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we have

@3 SlulliSng > 2 (27D IRs Aol ey + 27 F e )

E>1—10 j<k+2

Sl Yo 2 (27 A ullr i + 27l )

k>1—10 j<k+2

—ko —(k—j)(1—0)9jo
Slullfopg Do 277 Y 27 E=D0D23 A ju| e g
k>1—10 71<k+2

—l -1
+i2 Hu”ioo(M)”uHLf'(M)-
Thus Young’s convolution inequality on [? yields

S Y S Amdn)| ey S Tl a2
>0

E>1—10 j<k+2
This completes the proof of Lemma [ O

We also need the following type of paraproduct estimate.

Lemma 9.4. We have
HngHé(M) < Cs,al,erHHS(M)”gHB‘:}z(M

Proof. Applying ([@.2]) by replacing F(u) to f - g, we have
5" Ca A fa) ey <C D 1AL (K" (2 (faD) Iz + €271 £3llz -
[I'—1|<vo
Again, we denote by X1 = x10K, v = fok = X3v, and w = gok = 3w with x5 € C°(U).
Now we write
v-w = Tyw + Typv + R(v,w),
with
Tyw = Z gj_gvﬁjw, Tyv = Z S gwA v, and R(v,w) Z A vAkw
j>0 7>0 l7—k|<2
We estimate
I AT oy <[ B Y0 Sioawhyo)|
li—1<2

< Z |’§j—2’wHL°o(Rd)sz(i?»’”)”m(ugd)

li—11<2

SNl Lee (m) Gl llLzomy T2 L2(M) )
Sllgl > (1A fll2 oy + 2711

li—11<2

L2(R9)

where in the last inequality, we have used the H[ﬁj, Xslll 22 < €277 and Proposition
as in the proof of Lemma Therefore, from the embedding B;: b — L, we have

X1 (Tw) |1ty S N9lzoe a1 f s any S 91 B73 vy [ s a0
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Similarly,

251 AR (v, w)) | 12z §2ISH&< 3 Zjvﬁkw)(
|j—k|<2,j>1-10

§2l5 Z ”Ak'w”Loo(Rd)HA]‘(%?)U)”Lz(]Rd)
l7—k|<2,5>1-10

2 glleo oy > (1A F 2oy + 2771 f 2o
§>1-10

Slglzeany (2 27145 Fllzagan - 27970 4+ 270 £ 2 rg)).
§>1—-10

L2(R%)

Young’s convolution inequality gives
X1 R(v, w)]| s may < Cllgll Loo (a1 f 1 as (M)

The treatement for the term T,w is a little different, since we still need put L? norm on
f- We estimate

2l5||>?1&l(va)HL2(Rd) <C2’ Z ||§j—2v||L2(Rd)||£j(>z3w)”L°°(Rd)
l7—1]<2

<O 2oy 3 185 (Rsw)l o gy
l7—11<2

y o~
§C’218||f||L2(M) Z 2J7||AJ(X3U))||LT(Rd)’
li—1<2

where we have used Bernstein in the last inequality. Thanks to s + %l < 01 < 1, we can
bound the right hand side by

a —Il(1—0o
2G| flleigy S 1859l ae) + C27 =D £l 2y gl e r)-
l7-11<2

Finally, we complete the proof of Lemma [@.4] by taking the [?> norm of the above quantity.
O

Thanks to the established estimates, the proof of Theorem [0 can be done exactly as we
did in the proof of Theorem [3l
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