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Abstract

A class of evolution equations with nonlocal diffusion is considered in this work. These are integro-
differential equations arising as models of propagation phenomena in continuum media with nonlocal
interactions including neural tissue, porous media flow, peridynamics, models with fractional diffusion,
as well as continuum limits of interacting dynamical systems. The principal challenge of numerical
integration of nonlocal systems stems from the lack of spatial regularity of the data and solutions intrinsic
to nonlocal models. To overcome this problem we propose a semidiscrete numerical scheme based
on the combination of sparse Monte Carlo and discontinuous Galerkin methods. Our method requires
minimal assumptions on the regularity of the data. In particular, the kernel of the nonlocal diffusivity is
assumed to be a square integrable function and may be singular or discontinuous. An important feature
of our method is sparsity. Sparse sampling of points in the Monte Carlo approximation of the nonlocal
term allows to use fewer discretization points without compromising the accuracy. For kernels with
singularities, more points are selected automatically in the regions near the singularities.

We prove convergence of the numerical method and estimate the rate of convergence. There are two
principal ingredients in the error of the numerical method related to the use of Monte Calro and Galerkin
approximations respectively. We analyze both errors. Two representative examples of discontinuous
kernels are presented. The first example features a kernel with a singularity, while the kernel in the
second example experiences jump discontinuity. We show how the information about the singularity in
the former case and the geometry of the discontinuity set in the latter translate into the rate of convergence
of the numerical procedure. In addition, we illustrate the rate of convergence estimate with a numerical
example of an initial value problem, for which an explicit analytic solution is available. Numerical
results are consistent with analytical estimates.

1 Introduction

We propose a numerical method for the initial value problem (IVP) for a nonlinear heat equation with
nonlocal diffusion

∂tu(t, x) = f(u, x, t) +

∫
W (x, y)D (u(t, y)− u(t, x)) dy, x ∈ Q ⊂ Rd, (1.1)

u(0, x) = g(x). (1.2)
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For analytical convenience, we take Q = [0, 1]d as a spatial domain. Throughout this paper, when the
domain of integration is not specified, it is assumed to be Q. Further, g ∈ L2(Q), W ∈ L2(Q2), f is a
bounded measurable function on R × Q × R+, which is Lipschitz continuous in u, continuous in t, and
integrable in x, and D is a Lipschitz continuous function on R :

|D(u1)−D(u2)| ≤ LD|u1 − u2| and |f(u1, x, t)− f(u2, x, t)| ≤ Lf |u1 − u2| (1.3)

for all (x, t) ∈ Q× R. Throughout this paper we assume

sup
u∈R
|D(u)| ≤ 1. (1.4)

This assumption may be dropped if an apriori estimate on ‖u‖C(0,T ;L∞(Q)) for T > 0 is available. Further-
more, the analysis below applies to models with the interaction function of a more general form D(u1, u2)
provided

|D(u1, v1)−D(u2, v2)| ≤ LD (|u1 − u2|+ |v1 − v2|) ∀u1, u2, v1, v2 ∈ R. (1.5)

However, we keep D(u1, u2) := D(u2 − u1) to emphasize the connection to diffusion problems.

Equation (1.1) is a nonlocal diffusion problem. It arises as a continuum limit of interacting particle
systems [24, 17]. Equations of this form are used for modeling population dynamics [31, 7, 30, 2, 6],
neural tissue [8], porous media flows [10, 11], and various other biological and physicochemical processes
involving anomalous diffusion [32, 4]. The key distinction of the evolution equations with nonlocal diffusion
from their classical counterparts is the lack of smoothening property. A priori the solution of (1.1), (1.2) is
a square integrable function in x for all t > 0 [24] and it may not possess much more regularity beyond
that, unless the initial data and kernel W are smooth [21, Theorem 3.3]. The lack of smoothness is a serious
challenge for constructing numerical schemes for (1.1), (1.2) and for analyzing their convergence. All
deterministic quadrature formulas require at least piecewise differentiability for a guaranteed convergence
rate. The problem is even more challenging in high dimensional spatial domains. The main idea underlying
our approach is to use the Monte Carlo approximation of the nonlocal term in (1.1). We take advantage of
the essential feature of the Monte Carlo method: the independence of the convergence rate on the regularity
of the integrand. The second key idea is sparsity, whose use is twofold: First, sparse sampling of points
in the Monte Carlo method is used to minimize computation without compromising the accuracy. For W
with jump discontinuity across Lipschitz hypersurfaces, the use of sparsity is computationally beneficial
starting from d = 2. If the discontinuity set has nontrivial fractal dimension, the sparse Monte Carlo method
performs better than its dense counterpart already for d = 1 (cf. Lemma 4.4). Furthermore, sparsity is the
key for extending the Monte Carlo method for models with singular kernels (see § 4.1). Not only does it
allow to apply the Monte Carlo method for unbounded functions, it also makes it automatically adaptive:
more sample points are selected near the singularities. The combination of these ideas together with the
discontinuous Galerkin method yields a numerical scheme for the IVP (1.1), (1.2) that performs well under
minimal assumptions on the regularity of W and initial data.

This paper is based on our previous work on convergence of interacting particle systems on convergent
graph sequences [21, 22, 18, 24]. Continuum limit is a powerful tool for studying various aspects of network
dynamics including existence, stability, and bifurcations of spatiotemporal patterns [33, 23, 25, 26]. Very
often the derivation of the continuum limit is based on heuristic considerations and its rigorous mathematical
justification is a nontrivial problem. Recently, motivated by the theory of graph limits [20, 19, 5], we proved
convergence to the continuum limit for a broad class of dynamical systems on graphs [21]. Importantly,
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our proof applies to models on random graphs [22] including sparse random graphs [18, 24]. These results
prepared the ground for the numerical method proposed in this paper. There is an intimate relation between
the problem of the continuum limit for interacting particle systems and numerical integration of nonlocal
diffusion models. Given a continuum model (1.1), one can construct the corresponding particle system,
approximating (1.1). This idea had been already mentioned in [21], but has never been detailed. Further,
recent results for the continuum limit of coupled systems on sparse graphs indicate a strong potential of
sparse discretization for numerical integration of nonlocal problems. It is the goal of this paper to present
these ideas in detail.

In the next section, we present a discretization of (1.1), which can be viewed as an interacting dynam-
ical system on a sparse random graph. The structure of the graph is determined by the kernel W , which
defines the asymptotic connectivity of the graph sequence parametrized by the size of the graph. In the
theory of graph limits, such functions are called graphons [19], the term we adopt for the reminder of this
paper. In Section 3, we prove convergence of the semidiscrete (discrete in space and continuous in time)
approximation of (1.1) and turn to estimating the rate of convergence in Sections 4 and 5. There are two
main factors contributing to the error of approximation. The first is due to approximating the nonlocal term
in (1.1) by a random sum (Monte Carlo method), while the second is due to approximating the kernel and
the initial data by piecewise constant functions (discontinuous Galerkin method). The rate of convergence
of the sparse Monte Carlo approximation follows from our previous results [24, Theorem 4.1]. Convergence
of piecewise constant approximation in the L2–norm follows from classical theorems of analysis (cf. the
Lebesgue-Besicovitch Theorem [15] or L2–Martingale Convergence Theorem [34]). However, neither of
these theorems elucidates the rate of convergence. In fact, the example in § 4.2 shows that without additional
hypotheses the algebraic convergence may be arbitrarily slow. To this end, we study what determines the
rate of convergence of piecewise constant approximations for a square integrable function. For Hölder con-
tinuous functions the answer is simple (cf. Lemma 4.1). For discontinuous functions, on the other hand, the
answer naturally depends on the type of discontinuity. In Section 4, we consider two examples elucidating
this issue. The first example is based on a singular (unbounded) graphon. It shows how the information
about the singularity translates into the rate of convergence estimate. Here, we also see how to use sparsity
to optimize computation. The second example adapted from [21], on the other hand, presents a bounded
graphon with jump discontinuity (§ 4.2). In this case, the convergence rate depends on the geometry of the
set of the discontinuity (cf. Lemma 4.4). In the light of these examples, in Section 5, we perform conver-
gence analysis under general assumptions on W . In Section 6, we illustrate rate of convergence estimates
with a numerical example. Here, we choose a nonlinear problem, which has an explicit solution. This allows
us to verify the rate of convergence of the L2-error as the discretization step tends to zero. Special atten-
tion is paid to the dependence of the convergence rate on sparsity. Finally, in Section 7 we present a proof
of a technical Lemma 3.5, which extends the corresponding result in [24] to models in multidimensional
domains and affords a wider range of sparsification.

Numerical methods for nonlocal diffusion problems have been subject of intense research recently due
to their increased use in modeling [28, 14, 13, 4, 3, 29]. Compared to the existing literature, the contribution
of the present work is that our method applies to problems with nonlinear diffusivity as well as to problems
with more general form of the interaction function (cf. (1.5)). The main focus of this paper is how to
deal with models with low regularity of the data. We believe that the combination of the Monte Carlo and
discontinuous Galerkin methods provides an effective tool for numerical integration of nonlocal problems
under minimal regularity assumptions.
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2 The model and its discretization

In this section, we formulate the technical assumptions on the kernel W and describe the numerical scheme
for solving the IVP (1.1)-(1.2).

We assume that W ∈ L2(Q2) is subject to the following assumptions:

max

{
ess supx∈Q

∫
|W (x, y)|dy, ess supy∈Q

∫
|W (x, y)|dx

}
≤W1, (W-1)

Theorem 2.1. Let W ∈ L2(Q2) satisfy (W-1). Then for any g ∈ L2(Q) and T > 0 there is a unique
solution of the IVP (1.1), (1.2) u ∈ C1(0, T ;L2(Q)).

Proof. The proof is as in [18, Theorem 3.1] with minor adjustments.

Next, we note that the kernel in the nonlocal term may be assumed nonnegative. Indeed, by writing
W = W+ −W− as the difference of its positive and negative parts, one can rewrite (1.1) as

∂tu(t, x) = f(u, x, t) +

∫
W+(x, y)D (u(t, y)− u(t, x)) dy −

∫
W−(x, y)D (u(t, y)− u(t, x)) dy,

(2.1)
where the nonlocal terms splits into the difference of two terms with nonnegative kernels. Thus, without
loss of generality, in the remainder of this paper we will assume

W ≥ 0. (2.2)

We approximate the IVP (1.1), (1.2) by the following system of ordinary differential equations

u̇n,̄i = fn,̄i(un,̄i, t) + (αnn
d)−1

∑
j̄∈[n]d

an,̄ij̄D(un,j̄ − un,̄i), ī ∈ [n]d, (2.3)

un,̄i(0) = gn,̄i, (2.4)

where

Qn,̄i =

[
i1 − 1

n
,
i1
n

)
×
[
i2 − 1

n
,
i2
n

)
× · · · ×

[
id − 1

n
,
id
n

)
, (2.5)

gn,̄i = nd
∫
Qn,̄i

g(x)dx, fn,̄i(u, t) = nd
∫
Qn,̄i

f(u, x, t)dx, ī := (i1, i2, . . . , id) ∈ [n]d. (2.6)

The semidiscrete system (2.3) can be viewed as a system of interacting particles on a random graph Γn with
the node set [n]d and adjacency matrix (an,̄ij̄). The positive sequence

αn = n−dγ , 0 ≤ γ < 1, (2.7)

is used to control the sparsity of Γn. The adjacency matrix (an,̄ij̄) is defined as follows. The case W ∈
L∞(Q2) is slightly different and so we treat it separately. Thus, there are two cases to consider.
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(I) Suppose W ∈ L∞(Q2). Without loss of generality, we further assume that 0 ≤W ≤ 1. Then let

Wn,̄ij̄ = n2d

∫
Qn,̄i×Qn,j̄

W (x, y)dxdy, (2.8)

and
P(an,̄ij̄ = 1) = αnWn,̄ij̄ , ī, j̄ ∈ [n]d. (2.9)

If αn ≡ 1(γ = 0) (cf. (2.7)), Γn is a dense W-random graph [20], otherwise Γn is sparse with the
mean degree O(nd(1−γ)), 0 ≤ γ < 1.

(II) Alternatively, if W is in L2(Q2) but not in L∞(Q2) then let

W̃n(x, y) := α−1
n ∧W (x, y) and Wn,̄ij̄ = n2d

∫
Qn,̄i×Qn,j̄

W̃ (x, y)ndxdy, (2.10)

where αn defined in (2.7) with γ ∈ (0, 1). Then

P(an,̄ij̄ = 1) = αnWn,̄i,j̄ , ī, j̄ ∈ [n]d. (2.11)

3 Convergence of the numerical method

In this section, we study convergence of the discrete scheme (2.3), (2.4). We first deal with the more general
case of unbounded graphon W and then specialize the result for W ∈ L∞(Q2).

The following additional mild assumption onW is used to get a wider range of sparsity. Let nonnegative
W ∈ L4(Q2) satisfy

max

{
ess supx∈Q

∫
W k(x, y)dy, ess supy∈Q

∫
W k(x, y)dx

}
≤ W̄k, k ∈ [4]. (W-1s)

Theorem 3.1. Suppose nonnegative W ∈ L4(Q2) is subject to (W-1s), D, f, and g are as in (1.1), (1.2).
Further, αn = n−dγ for some γ ∈ (0, 1). Then for arbitrary 0 < δ < 1− γ, we have

sup
t∈[0,T ]

‖u(t, ·)− un(t, ·)‖L2(Q) ≤ C

(
‖g − gn‖L2(Q) + sup

u∈R, t∈[0,T ]
‖f(u, ·, t)− fn(u, ·, t)‖L2(Q)

+‖W̃n −W‖L2(Q2) + ‖W̃n − PnW̃n‖L2(Q2) + n−d(1−γ−δ)/2
)
,

(3.1)

where C is a positive constant independent of n, and PnW̃n =: Wn stands for the L2-projection of W̃n onto
the finite–dimensional subspace Xn = span{1Qn,̄i×Qn,j̄ , (̄i, j̄) ∈ [n]2d}:

Wn(x, y) =
∑

(̄i,j̄)∈[n]d2

Wn,̄ij̄1Qn,̄i×Qn,j̄ (x, y).

and
fn(u, x, t) =

∑
ī∈[n]d

fn,̄i(u, t)1Qn,̄i(x).

Estimate (3.1) holds almost surely (a.s.) with respect to the random graph model.
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Remark 3.2. The theorem still holds without (W-1s), i.e., for square integrable W subject to (W-1). In this
case, the last term on the right-hand side of (3.1) is replaced by n−d(1/2−γ−δ), γ ∈ (0, 1/2), and δ < 1/2−γ.

The first two terms on the right–hand side of (3.1) correspond to the error of approximation of the
initial data g ∈ L2(Q) and f(u, x, t) by the step functions in x. Further, ‖W̃n −W‖2L2(Q2) and ‖W̃n −
PnW̃n‖2L2(Q2) bound the error of approximation of W by a bounded step function Wn. Here, the first term

‖W̃n −W‖2L2(Q2) is the error of truncating W and the second term ‖W̃n − PnW̃n‖2L2(Q2) is the error of

approximation of the truncated function W̃n by projecting it onto a finite–dimensional subspace. Finally,
the last term on the right–hand side of (3.1) is the error of the approximation of the nonlocal term by the
random sum in (2.3).

For bounded graphons W, Theorem 3.1 implies the following result.

Corollary 3.3. Let W ∈ L∞(Q2). Then under the assumptions of Theorem 3.1 we have

sup
t∈[0,T ]

‖u(t, ·)− un(t, ·)‖L2(Q) ≤ C

(
‖g − gn‖L2(Q) + sup

u∈R, t∈[0,T ]
‖f(u, ·, t)− fn(u, ·, t)‖L2(Q)

+‖Wn − PnWn‖L2(Q2) + n−d(1−γ−δ)/2
)

a.s..

(3.2)

where C is a positive constant independent of n.

Remark 3.4. From (3.2) one can see how to use sparsity to optimize computation. Already for d = 1, if
the largest of the two errors of approximation of g and W by step functions is O(n−κ) with 1/2 < κ < 1
(cf. §4.2) and the nonlinearity f(·) does not depend on x, then taking γ = 1 − 2κ one can use sparse
discretization without compromising the accuracy. This has obvious computational advantages over dense
random and, moreover, deterministic spatial discretization schemes, e.g., Galerkin method. Sparse random
discretization is even more efficient when d > 1.

The proof of Theorem 3.1 modulo a few minor details proceeds as the proof of convergence to the
continuum limit in [22, 24]. First, the solution of the IVP (2.3), (2.4) is compared to that of the IVP for the
averaged equation:

v̇n,̄i = fn,̄i(vn,̄i, t) + n−d
∑
j̄∈[n]d

Wn,̄ij̄D(un,j̄ − un,̄i), ī ∈ [n]d, (3.3)

vn,̄i(0) = gn,̄i. (3.4)

Then the solution of the averaged problem is compared to the solution of the IVP (1.1), (1.2). It is convenient
to view the solution of the averaged problem as a function on R+ ×Q:

vn(t, x) =
∑
ī∈[n]d

vn,̄i(t)1Qn,̄i(x). (3.5)

Likewise, we interpret the solution of the discrete problem (2.3), (2.4) as a function on R+ ×Q :

un(t, x) =
∑
ī∈[n]d

un,̄i(t)1Qn,̄i(x). (3.6)
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We recast the IVP (3.3), (3.4) as follows

∂tvn(t, x) = fn(vn(t, x), x, t) +

∫
Wn(x, y)D (vn(t, y)− vn(t, x)) dy, (3.7)

vn(0, x) = gn(x). (3.8)

The first step of the proof of convergence of the numerical scheme (2.3), (2.4) is accomplished in the
following lemma.

Lemma 3.5. Let nonnegative W ∈ L4(Q2) subject to (W-1s), and αn = n−dγ , γ ∈ (0, 1) (cf. (4.24)).
Then for any T > 0 for solutions of (2.3) and (3.3) subject to the same initial conditions, we have

sup
t∈[0,T ]

‖un(t, ·)− vn(t, ·)‖L2(Q) ≤ Cn−d(1−γ−δ)/2 a.s., (3.9)

where 0 < δ < 1− γ, and positive constant C independent of n.

The proof of the lemma is technical and is relegated to Section 7. The result still holds without for square
integrable functions the additional assumption (W-1s) albeit for a narrower range of γ ∈ (0, 0.5) (cf. [24,
Theorem 4.1]).

Proof of Theorem 3.1. Denote the difference between the solutions of the original IVP (1.1), (1.2) and the
averaged IVP (3.7), (3.8)

wn(t, x) = u(t, x)− vn(t, x). (3.10)

By subtracting (3.3) from (1.1), multiplying the resultant equation by wn, and integrating over Q, we obtain∫
∂twn(t, x)wn(t, x)dx =

∫
(f(u(t, x), x, t)− f(vn(t, x), x, t))wn(t, x)dx

+

∫
(f(vn(t, x), x, t)− fn(vn(t, x), x, t))wn(t, x)dx

+

∫ ∫
W (x, y) [D(u(t, y)− u(t, x))−D(vn(t, y)− vn(t, x))]wn(t, x)dydx

+

∫ ∫
(W (x, y)−Wn(x, y))D(vn(t, y)− vn(t, x))wn(t, x)dydx.

(3.11)

Using Lipschitz continuity of f(u, x, t) in u and an elementary case of the Young’s inequality, we obtain∣∣∣∣∫ (f(u(t, x), x, t)− f(vn(t, x), x, t))wn(t, x)dx

∣∣∣∣ ≤ Lf ∫ wn(t, x)2dx, (3.12)

∣∣∣∣∫ (f(vn(t, x), x, t)− fn(vn(t, x), x, t))wn(t, x)dx

∣∣∣∣ ≤ 1

2

∫
(f(vn(t, x), x, t)− fn(vn(t, x), x, t))2 dx

+
1

2
‖wn(t, ·)‖2,

(3.13)
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where ‖ · ‖ stands for the L2(Q)-norm. Recall that D is bounded by 1 (cf. (1.4)). Using this bound and the
Young’s inequality, we obtain∣∣∣∣∫ ∫ (W (x, y)−Wn(x, y))D(vn(t, y)− vn(t, x))wn(t, x)dydx

∣∣∣∣ ≤ 1

2
‖W −Wn‖L2(Q2)

+
1

2
‖wn‖2 .

(3.14)

Finally, using Lipschitz continuity of D and Young’s inequality, we estimate∣∣∣∣∫ ∫ W (x, y) [D(u(t, y)− u(t, x))−D(vn(t, y)− vn(t, x))]wn(t, x)dydx

∣∣∣∣
≤ LD

∫ ∫
W (x, y) (|wn(t, y)|+ |wn(t, x)|) |wn(t, x)|dydx

≤ LD
∫ ∫

W (x, y)

(
1

2
|wn(t, y)|2 +

3

2
|wn(t, x)|2

)
dydx

≤ 3LD
2

∫ ∫
W (x, y)|wn(t, x)|2dydx+

LD
2

∫ ∫
W (x, y)|wn(t, y)|2dydx

≤ 2W1LD ‖wn‖2 ,

(3.15)

where we used Fubini theorem and (W-1) in the last line.

By combining (3.11)-(3.15), we arrive at

d

dt
‖wn(t, ·)‖2 ≤ L‖wn(t, ·)‖2 + sup

u∈R, t∈[0,T ]
‖f(u, ·, t)− fn(u, ·, t)‖2 + ‖Wn −W‖2, (3.16)

where L = 1 + 2Lf + LD(3W1 +W2).

By Gronwall’s inequality, we have

sup
t∈[0,T ]

‖wn(t, ·)‖ ≤ eLT/2
√
‖wn(0, ·)‖2 + sup

u∈R, t∈[0,T ]
‖f(u, · t)− fn(u, ·, t)‖2 + ‖Wn −W‖2L2(Q2)

≤ eLT/2
(
‖g − gn‖L2(Q) + sup

u∈R, t∈[0,T ]
‖f(u, ·, t)− fn(u, ·, t)‖+ ‖Wn −W‖L2(Q2)

)
.

4 Two examples

The error of approximation of the nonlocal term by a random sum, the last term on the right–hand side
of (3.1), is known explicitly. Next in importance is the error of approximation of the square integrable
graphon W by the step function Wn. This error depends on the regularity of the graphon. In this section,
we consider two representative examples of W : a singular graphon (§ 4.1) and a bounded graphon with
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jump discontinuities (§ 4.2). Motivated by these examples in the next section, we will analyze the rate of
convergence estimates under general assumptions on graphon W .

We will begin with the following estimate for Hölder continuous functions. To this end, φ ∈ Lp(Q), p ≥
1, and

φn(x) =
∑
ī∈[n]d

φn,̄i1Qn,̄i(x), φn,̄i = nd
∫
Qn,̄i

φ(x)dx.

Lemma 4.1. Suppose φ ∈ Lp(Q), p ≥ 1, is a Hölder continuous function

|φ(x)− φ(y)| ≤ C|x− y|β, x, y ∈ Q, β ∈ (0, 1]. (4.17)

Then
‖φ− φn‖Lp(Q) ≤ Chβ. (4.18)

Here and below, h := n−1.

Proof. Using Jensen’s inequality and (4.18), we have

‖φ− φn‖pLp(Q) =

∫
Q

∣∣∣∣∣∣
∑
ī∈[n]d

(
φ(x)− nd

∫
Qn,̄i

φ(y)dy

)
1Qn,̄i(x)

∣∣∣∣∣∣
p

dx

=
∑
ī∈[n]d

∫
Qn,̄i

∣∣∣∣∣nd
∫
Qn,̄i

(φ(x)− φ(y)) dy

∣∣∣∣∣
p

dx

≤ nd
∑
ī∈[n]d

∫
Qn,̄i

∫
Qn,̄i

|φ(x)− φ(y)|p dxdy

≤ Cphpβ.

(4.19)

Remark 4.2. Below, we will freely apply Lemma 4.1 to functions on Q and on Q2. The latter are clearly
covered by the lemma by taking Q := Q2.

4.1 A singular graphon

Consider the problem of approximation by step functions of the singular kernel graphon

W (x, y) =
1

|x− y|λ
, x, y ∈ Q = [0, 1]d, (4.20)

where 0 < λ < d/2.

Lemma 4.3. For γ ∈ (0, 1/2) and 0 < λ < d/2 we have

‖W −Wn‖L2(Q2) ≤ max
{
O
(
hdγ( d

2λ
−1)
)
, O
(
h1−dγ(1+ 1

λ)
)}

. (4.21)
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Proof. 1. Below, we will use the following change of variables (x, y) = T (u, v) for (x, y) and (u, v)
from R2d, defined by

ui = xi − yi and vi = xi + yi, i ∈ [d]. (4.22)

2. Let αn = n−dγ and recall that W̃n = h−dγ ∧W . Denote Q̃ =
{

(x, y) ∈ Q2 : |x− y|−λ ≥ h−dγ
}

.
Further,

‖W − W̃n‖2L2(Q2) =

∫
Q̃2

(
1

|x− y|λ
− ndγ

)2

dxdy

≤ C1

∫
{|u|≤h

dγ
λ }

(
1

|u|λ
− ndγ

)2

du

≤ C2

∫ h
dγ
λ

0

(
1

rλ
− ndγ

)2

rd−1dr

= O
(

(d− 2λ)−1h2dγ( d
2λ
−1)
)
,

(4.23)

where we used (4.22) followed by the change to polar coordinates.

Thus,
‖W − W̃n‖L2(Q2) = O

(
hdγ(

d
2λ
−1)
)
, 0 < λ < d/2, γ > 0. (4.24)

3. Next we turn to estimating
∥∥∥W̃n −Wn

∥∥∥
L2(Q2)

. Since the truncated function W̃n is Lipschitz contin-

uous on Q2, by Lemma 4.1, ∥∥∥W̃n −Wn

∥∥∥
L2(Q2)

≤ L(W̃n)h.

It remains to estimate the Lipschitz constant L(W̃n) ≤ ess supQ2 |∇W̃n|. On Q2 − Q̃,

|∇W̃n| = λ|x− y|−1−λ |∇x,y|x− y|| =
√

2λ|x− y|−1−λ. (4.25)

The gradient approaches its greatest value as |x− y| ↘ h
dγ
λ . Thus,

ess supQ2 |∇W̃n| =
√

2λh−dγ(
1
λ

+1)

and ∥∥∥W̃n −Wn

∥∥∥
L2(Q2)

= O
(
h1−dγ(1+ 1

λ)
)
. (4.26)

4. The statement of the lemma follows (4.24) and (4.26) and the triangle inequality.

Next we choose γ to optimize the rate of convergence in (4.21). By setting the two exponents of h on
the right–hand side of (4.21) equal, we see that the rate is optimal for

γ =
2λ

d(d+ 2)
.

10



With this choice of γ,
‖W −Wn‖L2(Q2) = O(h

2λ
d+2( d

2λ
−1)).

To optimize the rate of convergence of the numerical scheme (2.3), (2.4), one has to choose γ ∈ (0, 1) to
maximize the smallest of the following three exponents

dγ

(
d

2λ
− 1

)
, 1− dγ

(
1 +

1

λ

)
,

d

2
(1− γ) ,

where the last exponent comes from the error of the Monte Carlo approximation (cf. (3.1)).

4.2 {0, 1}-valued functions

The following example is adapted from [21]. It shows how jump discontinuities affect the rate of conver-
gence of approximation by piecewise constant functions. The accuracy of approximation depends on the
geometry of the hypersurface of discontinuity, more precisely, on its fractal dimension.

Let Q+ be a closed subset of Q and consider

f(x) =

{
1, x ∈ Q+

0, otherwise.
(4.27)

Denote by ∂Q+ the boundary of Q and recall the upper box-counting dimension of ∂Q+

β := limh→0
logNh(∂Q+)

− log h
, (4.28)

where Nh(∂Q+) stands for the number of Qn,̄i, ī, j̄ ∈ [n]d, having nonempty intersection with ∂Q+

(cf. [16]).

Lemma 4.4.
‖φ− φn‖Lp(Q) ≤ Ch

d−β
p , (4.29)

for some positive C independent on n.

Proof. As in (4.19), we have

‖φ− φn‖pLp(Q2)
≤ h−d

∑
ī∈[n]d

∫
Qn,̄i

∫
Qn,̄i

|f(x)− f(z)|p dzdx. (4.30)

Note that the only nonzero terms in the sum on the right–hand side of (4.30) are the integrals over Qn,̄i ×
Qn,j̄’s having nonempty intersection with ∂Q+. Thus,

‖φ− φn‖pLp(Q) = hdNh(∂Q+) ≤ Chd−β, (4.31)

where we used (4.28).

Remark 4.5. Note that as β → d− 0 the rate of convergence in (4.29) can be made arbitrarily low.
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5 The rate of convergence of the numerical method

5.1 Approximation by step functions

In this section, we address the rate of convergence of the Galerkin component of the numerical scheme (2.3),
(2.4). Specifically, we study the error of the approximation of the graphon W ∈ L2(Q2) and the initial data
g ∈ L2(Q) by step functions.

We will need an Lp-modulus of continuity of function on a unit d-cube Q = [0, 1]d. In fact, we only
need the L2-modulus of continuity, but present the analysis in the more general Lp-setting, since this does
not require any extra effort. For functions on the real line, the definition of the Lp-modulus of continuity
can be found in [1, 12]. Here, we present a suitable adaptation of this definition for the problem at hand.

Definition 5.1. For φ ∈ Lp(Q) we define the Lp-modulus of continuity

ωp(φ, δ) = sup
|ξ|∞≤δ

‖φ(·+ ξ)− φ(·)‖Lp(Qξ), δ > 0, (5.1)

where |ξ|∞ := maxi∈[d] |ξi| and Qξ = {x ∈ Q : x+ ξ ∈ Q}.

For α ∈ (0, 1], we define a generalized Lipschitz space1

Lip (α,Lp(Q)) = {φ ∈ Lp(Q) : ∃C > 0 : ωp(φ, δ) ≤ Cδα} . (5.2)

Clearly Lip (α,Lp(Q)) contains α-Hölder continuous functions. However, Lipschitz spaces are much larger
than Hölder spaces. For instance, Lip (1/p, Lp(Q)) contains discontinuous functions.

Below, we express the error of approximation of φ ∈ Lp(Q) by a step function through ωp(φ, h). The
analysis works out a little cleaner for dyadic discretization of Q, which will be assumed for the remainder
of this section. Thus, we approximate φ ∈ Lp(Q) by a piecewise constant function

φ2m(x) =
∑

ī∈[2m]d

φQ2m,̄i
1Q2m,̄i

(x), (5.3)

where φQ2m,̄i
stands for the mean value of φ on Q2m ,̄i

φQ2m,̄i
(x) = 2md

∫
Q2m,̄i

φ(x)dx, i ∈ [2m].

Lemma 5.2. For φ ∈ Lip (α,Lp(Q)), we have

‖φ− φ2m‖Lp(Q) ≤ C2−αm, (5.4)

where C is independent of m.
1 Below, we will freely apply the definitions and various estimates established for functions on Q to functions on Q2, for which

they are trivially valid by setting d := 2d. In particular, the definitions of the modulus of continuity and the corresponding Lipschitz
spaces obviously translate to functions on Q2.
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Proof. Fix m ∈ N and denote h := 2−m. To simplify notation, throughout the proof we drop 2m in the
subscript of x2m,i and Q2m ,̄i.

We write

φ2m+1(x) =
∑

ī∈[2m]d

∑
j̄∈{0,1}d

(
2

h

)d ∫
Q′
ī

φ

(
s+ j̄

h

2

)
ds1

Qj̄
ī

(x), (5.5)

where

s+ j̄
h

2
=

(
s1 + j1

h

2
, s2 + j2

h

2
, . . . , sd + jd

h

2

)
,

Qj̄
ī

=

[
xi1−1 + j1

h

2
, xi1−1 + (j1 + 1)

h

2

)
× · · · ×

[
xid−1 + jd

h

2
, xid−1 + (jd + 1)

h

2

)
,

and

Q′ī =

[
xi1−1, xi1−1 +

h

2

)
× · · · ×

[
xid−1, xid−1 +

h

2

)
.

Rewrite (5.3)

φ2m(x) =
∑

ī∈[2m]d

∑
j̄∈{0,1}d

(
1

h

)d ∑
k̄∈{0,1}d

∫
Q′
ī

φ

(
s+ k̄

h

2

)
ds

1
Qj̄
ī

(x). (5.6)

By subtracting (5.5) from (5.6) we have

φ2m − φ2m+1 =
∑

ī∈[2m]d

∑
j̄∈{0,1}d

1

hd


∑

k̄∈{0,1}d

k̄ 6=j̄

∫
Q′
ī

[
φ

(
s+ k̄

h

2

)
− φ

(
s+ j̄

h

2

)]
ds

 1
Qj̄
ī

.

Further,

|φ2m − φ2m+1 |p ≤
∑

ī∈[2m]d

∑
j̄∈{0,1}d

∑
k̄∈{0,1}d

k̄ 6=j̄

∣∣∣∣∣
∫
Q′
ī

[
h−dφ

(
s+ k̄

h

2

)
− φ

(
s+ j̄

h

2

)]
ds

∣∣∣∣∣
p

1
Qj̄
ī

. (5.7)

Integrating both sides of (5.7) over Q and using Jensen’s inequality, we continue

‖φ2m − φ2m+1‖pLp(Q) ≤
∑

j̄∈{0,1}d

∑
k̄∈{0,1}d

k̄ 6=j̄

∑
ī∈[2m]d

∫
Q′
ī

∣∣∣∣φ(s+ k
h

2

)
− φ

(
s+ j̄

h

2

)∣∣∣∣p ds
≤ 2d(2d − 1)ωpp(φ, h).

(5.8)

Thus,

‖φ2m − φ2m+1‖Lp(Q) ≤
[
2d(2d − 1)

]1/p
ωp(φ, 2

−(m+1)) =: Cd,pωp(φ, 2
−(m+1)).
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Since φ ∈ Lip (α,Lp(Q)), we have

‖φ2m − φ2m+1‖Lp(Q) ≤ C2−αm, (5.9)

where C depends on φ, d, and p but not m.

Let m ∈ N be arbitrary but fixed. For any integer M > m we have

‖φ2M − φ2m‖Lp(Q) =

∥∥∥∥∥
M−1∑
k=m

(φ2k+1 − φ2k)

∥∥∥∥∥
Lp(Q)

≤
∞∑
k=m

‖φ2k+1 − φ2k‖Lp(Q)

=

∥∥∥∥∥
∞∑
k=m

(φ2k+1 − φ2k)

∥∥∥∥∥
Lp(Q)

≤
∞∑
k=m

‖φ2k+1 − φ2k‖Lp(Q)

≤
∞∑
k=m

ωp(φ, 2
−(k+1)) ≤ 2−p+1

∞∑
k=m

C2α(k+1) ≤ C2−αm.

(5.10)

By passing M to infinity in (5.10), we get (5.4).

5.2 The rate of convergence

We now can combine Theorem 3.1 and Lemma 5.4 to estimate the convergence rate for (2.3), (2.4). For the
model with a bounded graphon W (cf. (I), Section 2) we have the following theorem.

Theorem 5.3. Suppose that in addition to the assumptions of Theorem 3.1, for some αi ∈ (0, 1], i ∈ [3],
g ∈ Lip

(
α1, L

2(Q)
)
, W ∈ Lip

(
α2, L

2(Q2)
)
∩ L∞(Q2), and f(u, ·, t) ∈ Lip

(
α3, L

2(Q)
)

uniformly for
(u, t) ∈ R× [0, T ], i.e.,

ω2(f(u, ·, t), δ) ≤ Cδα3

where C > 0 is independent of (u, t).

Then
sup
t∈[0,T ]

‖u(t, ·)− un(t, ·)‖ ≤ Cn−α, α = min{α1, α2, α3,
1

2
− γ}, (5.11)

where C is independent of n.

If W ∈ L2(Q2) has singularities then the convergence rate may also depend on the accuracy of ap-
proximation of W by the truncated function W̃n. We do not estimate the truncation error for a general
W ∈ L2(Q2). For an example of how this error can be estimated for a given graphon in practice, we refer
to the example in § 4.1.
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Figure 1: a) The 3-twisted state used to initialize the Kuramoto model (6.12). b) The numerically estimated
exponent characterizing convergence of the numerical scheme (2.3), (2.4), αγ , is plotted as a function of γ
(see Section 6). The numerical estimates and the theoretical predictions are plotted using of the blue stars
and red circles respectively.

6 Numerical example

In this section, we illustrate convergence analysis in the previous sections with a numerical example. To this
end, we consider an IVP for the continuum Kuramoto model with nonlocal nearest–neighbor coupling [27]:

∂tu(t, x) = ω +

∫
[0,1]

K(y − x) sin (u(t, x)− u(t, y)) , (6.12)

u(0, x) = u(q)(x), (6.13)

where u(t, x) ∈ T, T = R/2πZ, stands for the phase of the oscillator at x ∈ [0, 1], ω ∈ R is its intrinsic
frequency. Function K, describing the connectivity of the network, is first defined on [0, 1/2) by

K(x) = 1{y: |y|≤r}(x), r ∈ (−1/2, 1/2), (6.14)

and then extended as a 1–periodic function on R. The initial condition

u(q)(x) = 2π (qx mod 1) , q ∈ Z, (6.15)

is called a q–twisted state (Figure 1a). For ω = 0, u(q) is a stationary solution of (6.12). Thus,

u(t, x) = (2πqx+ ωt) mod 2π (6.16)

solves the IVP (6.12), (6.13). We use the explicit solution (6.16) to compute the error of the numerical
integration of (6.12), (6.13).

To estimate the rate of convergence of the numerical scheme (2.3), (2.4) we use the following values
of parameters: r = 0.2, ω = 0.5, and q = 3. For these parameter values, the travelling wave solution
(6.16) is unstable. We integrated (6.12) numerically for t ∈ [0, 1], using the fourth order Runge–Kutta
method with the time step 10−2. Note that the error of the Runge–Kutta method, i.e., of the discretization in
time is significantly smaller than of that of the discretizing in space (c.f. (2.3), (2.4)). We integrated (6.12)
numerically for different values of γ and for n ∈ {128, 256}. For each pair (γ, n) we repeated the numerical

15



a b

c d

Figure 2: Pixel pictures of the adjacency matrices of sparse graphs generated with the following values of
γ: a) 0.25, b) 0.5, c) 0.75, d) 0.95.

experiment 200 times and computed the mean value of the error of numerical integration (compared to the
exact solution (6.16)). The mean errors ēγ,128 and ēγ,256 computed for n = 128 and n = 256 respectively
are used to determine the convergence rate:

αγ =
ln (ēγ,128/ēγ,256)

ln 2
. (6.17)

The results of this numerical experiment are shown in Figure 1b. Our main goal was to verity the dependence
of the convergence rate on sparsity controlled by γ. The pixel pictures for the adjacency matrices of random
graphs corresponding to the nonlocal nearest–neighbor coupling for n = 512 and different values of γ are
shown in Figure 2. The plot in Figure 1b shows a clear linear relation between the exponent αγ and γ. The
numerical rates plotted by blue stars are slightly lower the theoretical rates (1− γ)/2 plotted in red. Overall
numerical rates show a good fit with the analytical estimate.

7 Proof of Lemma 3.5

In this section, we prove Lemma 3.5. The proof follows the lines of the proof of Theorem 4.1 in [24],
which covers γ ∈ (0, 1/2) for d = 1. Extension to the multidimensional case d > 1 is straightforward.
Lemmas 7.3 and 7.4 adapted from [9] allow to extend the range of γ to (0, 1). The reader not interested in
the extended range of γ may find a simpler proof in [24] easier to follow. For those interested in the full
range of γ, below we present the following proof of Lemma 3.5.
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Theorem 7.1. Let nonnegative W ∈ L4(Q2) satisfy

max

{
ess supx∈Q

∫
W k(x, y)dy, ess supy∈Q

∫
W k(x, y)dx

}
≤ W̄k, k ∈ [4] (W-1s)

and

lim inf
n→∞

αnn
d

lnn
> 0. (7.1)

Then for solutions of (2.3) and (3.3) subject to the same initial conditions and arbitrary 0 < ε < 1/2,
we have

sup
t∈[0,T ]

‖un(t, ·)− vn(t, ·)‖L2(Q) ≤ C(αnn
d)1/2−ε a.s., (7.2)

for arbitrary T > 0 and positive constant C independent of n. In particular, for αn = n−dγ , γ ∈ (0, 1), we
have

sup
t∈[0,T ]

‖un(t, ·)− vn(t, ·)‖L2(Q) ≤ Cn−d(1−γ−δ)/2 a.s., (7.3)

where 0 < δ < 1− γ can be taken arbitrarily small.

We precede the proof of Theorem 7.1 with several auxiliary estimates.

Lemma 7.2. From (W-1s) it follows

max

sup
n∈N

max
ī∈[n]d

n−d
∑
j̄∈[n]d

W k
n,̄ij̄ , sup

n∈N
max
j̄∈[n]d

n−d
∑
ī∈[n]d

W k
n,̄ij̄

 ≤ W̄k, k ∈ [4]. (7.4)

Proof. We prove (7.4) assuming that nonnegative W is in L2(Q2), but not in L∞(Q2). In this case, Wn,̄ij̄

are defined by (4.24). For arbitrary k̄ ∈ [n]d and n ∈ N, we have

∑
∈[n]d

W k
n,̄i,j̄ =

∑
j̄∈[n]d

(
nd
∫
Qn,̄i×Qn,j̄

α−1
n ∧W (x, y)dxdy

)k

≤
∑
j̄∈[n]d

nd
∫
Qn,̄i×Qn,j̄

(
α−kn ∧W (x, y)k

)
dxdy

≤ nd
∑
j̄∈[n]d

∫
Qn,̄i×Qn,j̄

W (x, y)kdxdy

≤ ndW̄k,

(7.5)

where we used Jensen’s inequality in the second line and (W-1s) in the last line. Thus,

sup
n∈N

max
ī∈[n]d

n−d
∑
j̄∈[n]d

W k
n,̄ij̄ ≤ W̄k, k ∈ [k].

The bound for supn∈N maxj̄∈[n]d n
−d∑

ī∈[n]dW
k
n,̄ij̄

is proved similarly.
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Lemma 7.3. For K ≥ 2W̄1, we have

P

max
ī∈[n]d

∑
j̄∈[n]d

∣∣∣∣an,̄ij̄αn
−Wn,̄ij̄

∣∣∣∣ ≥ Knd
 ≤ nd exp

{
−1
2

(
K − 2W̄1

)2
αnd

W̄1 +O(αn) +K

}
. (7.6)

In particular, with probability 1 there exists n0 ∈ N such that

max

max
ī∈[n]d

∑
j̄∈[n]d

∣∣∣∣an,̄ij̄αn
−Wn,̄ij̄

∣∣∣∣ , max
ī∈[n]d

∑
j̄∈[n]d

∣∣∣∣an,j̄īαn
−Wn,j̄ī

∣∣∣∣
 ≤ Knd (7.7)

for all n ≥ n0.

For the next lemma, we will need the following notation

Zn,̄i(t) = n−d
∑
j̄∈[n]d

bn,̄ij̄(t)ηn,̄ij̄ , (7.8)

bn,̄ij̄(t) = D
(
vn,j̄(t)− vn,̄i(t)

)
, (7.9)

ηn,̄ij̄ = an,̄ij̄ − αnWn,̄ij̄ , (7.10)

and Zn = (Zn,̄i, ī ∈ [n]d).

Lemma 7.4. For arbitrary ε > 0, we have

α−2
n

∫ ∞
0

e−Ls‖Zn(s)‖22,ndds ≤ C(αnn
d)1−ε, (7.11)

where C is a positive constant independent of n and

‖Zn(s)‖2,nd =

n−1
∑
j̄∈[n]d

Zn,j̄(s)
2

1/2

. (7.12)

Proof of Theorem 7.1. Recall that f(u, x, t) and D are Lipschitz continuous function in u with Lipschitz
constants Lf and LD respectively.

Further, an,ij , are Bernoulli random variables

P(an,̄ij̄ = 1) = αnWn,̄ij̄ . (7.13)

Denote ψn,̄i := vn,̄i − un,̄i. By subtracting (2.3) from (3.3), multiplying the result by n−dψn,̄i, and
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summing over ī ∈ [n]d, we obtain

1

2

d

dt
‖ψn‖22,nd = N−1

∑
ī∈[n]d

(
f(vn,̄i, t)− f(un,̄i, t)

)
ψn,i︸ ︷︷ ︸

I1

+n−2dα−1
n

∑
ī,j̄∈[n]d

(
αnWn,̄ij̄ − an,̄ij̄

)
D(vn,j̄ − vn,̄i)ψn,̄i︸ ︷︷ ︸

I2

+N−2α−1
n

n∑
ī,j̄∈[n]d

an,̄ij̄
[
D(vn,j̄ − vn,̄i)−D(un,j̄ − un,̄i)

]
ψn,̄i︸ ︷︷ ︸

I3

=: I1 + I2 + I3,

(7.14)

where ‖ · ‖2
2,nd

is the discrete L2-norm (cf. (7.12)).

Using Lipschitz continuity of f in u, we have

|I1| ≤ Lf‖ψn‖22,nd . (7.15)

Using Lipschitz continuity of D and the triangle inequality, we have

|I3| ≤ LDn−2dα−1
n

∑
ī,j̄∈[n]d

an,̄ij̄
(
|ψn,̄i|+ |ψn,j̄ |

)
|ψn,̄i|

≤ LDn−2dα−1
n

3

2

∑
ī,j̄∈[n]d

an,̄i,j̄ψ
2
n,̄i +

1

2

∑
ī,j̄∈[n]d

an,̄ij̄ψ
2
n,j̄

 .

(7.16)

Using Lemma 7.3 and (7.4), we obtain

αnn
−2d

∑
ī,j̄∈[n]d

an,̄ij̄ψ
2
n,̄i ≤ n

−d
∑
ī∈[n]d

n−d ∑
j̄∈[n]d

(∣∣∣∣an,̄ij̄αn
−Wn,̄ij̄

∣∣∣∣+Wn,̄ij̄

)
ψ2
n,̄i


≤ n−d

∑
ī∈[n]d

(
K + W̄1

)
ψ2
n,̄i = (K +W1) ‖ψn‖22,nd .

(7.17)

Similarly,
n−2dα−1

n

∑
ī,j̄∈[n]d

an,̄ij̄∈[n]dψ
2
n,j̄ ≤

(
K + W̄2

)
‖ψn‖22,nd . (7.18)

By plugging (7.17) and (7.18) into (7.16), we have

|I3| ≤ LD
(

2K +
3

2
W̄1 +

1

2
W̄2

)
‖ψ‖2nd,2. (7.19)

It remains to bound I2:

|I2| = |n−dα−1
n

n∑
ī∈[n]d

Zn,̄iψn,̄i| ≤ 2−1α−2
n ‖Zn‖22,nd + 2−1‖ψn‖22,nd . (7.20)
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The combination of (7.14), (7.15), (7.19) and (7.20) yields

d

dt
‖ψn(t)‖22,n ≤ L‖ψn(t)‖22,n +

1

α2
n

‖Zn(t)‖22,n, (7.21)

where L = Lf + LD
(
2K + 3

2W̄1 + 1
2W̄2

)
+ 1

2 .

Using the Gronwall’s inequality and Lemma 7.4, we have

sup
t∈[0,T ]

‖ψn(t)‖22,nd ≤ α
−2
n eLT

∫ ∞
0

e−Ls‖Zn(s)‖22,ndds

≤ α−2
n eLT (ndαn)−1+ε.

(7.22)

Proof of Lemma 7.3. Let

ξn,̄ij̄ =

∣∣∣∣an,̄ij̄αn
−Wn,̄ij̄

∣∣∣∣− 2Wn,̄ij̄

(
1− αnWn,̄ij̄

)
, ī, j̄ ∈ [n]d. (7.23)

Note that for fixed ī ∈ [n]d, {ξn,̄ij̄ , j̄ ∈ [n]d} are mean zero independent RVs. Further, using the definition
of ξn,̄ij̄ , it is straightforward to bound

|ξn,̄ij̄ | ≤ α−1
n + 2Wn,̄ij̄ ≤ 3α−1

n =: M, (7.24)

E ξ2
n,j̄ ≤ 2α−1

n Wn,̄ij̄ + 2W 2
n,̄ij̄ + 4αnW

2
n,̄ij̄ + 4αnW

3
n,̄ij̄ . (7.25)

From (7.25), we have

E

 ∑
j̄∈[n]d

ξ2
n,̄ij̄

 ≤ α−1
n

∑
j̄∈[n]d

(
2Wn,̄ij̄ + αn2W 2

n,̄ij̄ + 4α2
nW

2
n,̄ij̄ + 4α2

nW
3
n,̄ij̄

)
,

≤ α−1
n ndW1 +O (αn) .

(7.26)

Using Bernstein’s inequality and the union bound, we have

P

max
ī∈[n]d

∑
j̄∈[n]d

ξn,̄ij̄ ≥
(
K − 2W̄1

)
nd

 ≤ nd exp

{
−1
2

(
K − 2W̄1

)2
n2d∑

j̄∈ E ξ2
n,̄ij̄

+ (1/3)M
(
K − 2W̄1

)
nd

}

≤ nd exp

{
−1
2

(
K − 2W̄1

)2
n2d

α−1
n nd

(
W̄1 +O(αn)

)
+ α−1

n

(
K − 2W̄1

)
nd

}

≤ N exp

{
−1
2

(
K − 2W̄1

)2
αnn

d

W̄1 +O(αn) +K

}
.

(7.27)
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Finally, the combination of (7.23) and (7.27) yields

P

max
3∈[n]d

∑
j̄∈[n]d

∣∣∣∣an,̄ij̄αn
−Wn,̄ij̄

∣∣∣∣ ≥ Knd
 ≤ P

max
3∈[n]d

∑
j̄∈[n]d

ξn,̄ij̄ ≥

K − 2

nd

∑
j̄∈[n]d

Wn,̄ij̄

nd


≤ P

max
3∈[n]d

∑
j̄∈[n]d

ξn,̄ij̄ ≥
(
K − 2W̄1

)
nd


≤ nd exp

{
−1
2

(
K − 2W̄1

)2
αnd

W̄1 +O(αn) +K

}
.

This proves (7.13). By Borel-Cantelli Lemma, (7.7) follows.

Proof of Lemma 7.4. Recall (7.8)-(7.10) and rewrite∫ ∞
0

e−Ls‖Zn(s)‖22,ndds = n−3d
∑

ī,k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄, (7.28)

where
cn,̄ik̄l̄ =

∫ ∞
0

e−Lsbn,̄ik̄(s)bnīl̄(s)ds and |cn,̄ik̄l̄| ≤ L−1 =: c̄. (7.29)

By (7.1), one can choose a sequence δn ↘ 0 such that

ndδn � α−1
n . (7.30)

Specifically, let

δn :=
1√
lnn

. (7.31)

and define events

Ωn =

(ndαn)−2
n∑

ī,k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄ > δnn
d

 , (7.32)

An,̄i =

 ∑
j̄∈[n]d

∣∣∣∣an,̄ij̄αn
−Wn,̄ij̄

∣∣∣∣ > Knd

 , and An =
⋃
ī∈[n]d

An,̄i. (7.33)

Clearly,
P(Ωn) ≤ P(Ωn ∩Acn) + P(An). (7.34)

We want to show that P (Ωn infinitely often) = 0. By Borel-Cantelli Lemma, it is sufficient to show that∑
n≥1

P(Ωn) <∞.

From Lemma 7.3, we know that
∑

n≥1 P(An) <∞ for K > 2W̄1. In the remainder of the proof, we show
that

∑
n≥1 P(Ωn ∩Acn) is convergent.

21



Applying the exponential Markov inequality to P(Ωn |Acn ), from P(Ωn ∩Acn) ≤ P(Ωn |Acn ) and (7.32),
we have

P(Ωn ∩Acn) ≤ exp

−ndδn + lnE

1Acn exp

(ndαn)−2
n∑

ī,k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄


 . (7.35)

Using the independence of ηn,̄ik̄l̄ in ī ∈ [n]d, we have

E

1Acn exp

(ndαn)−2
∑

ī,k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄


 =

∏
ī∈[n]d

E

1Acn exp

(ndαn)−2
∑

k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄.




(7.36)

Using
ex ≤ 1 + |x|e|x|, x ∈ R,

and the Cauchy-Schwartz inequality, we bound the right–hand side of (7.36) as follows

E

1Acn exp

(ndαn)−2
∑

k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄




≤ 1 + E

1Acn
∣∣∣∣∣∣(ndαn)−2

∑
k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄

∣∣∣∣∣∣ exp


∣∣∣∣∣∣(ndαn)−2

∑
k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄

∣∣∣∣∣∣



≤ 1 +

E

(ndαn)−2
∑

k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄


21/2

×

E

1Acn exp

2(ndαn)−2
∑

k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄



1/2

.

(7.37)

From (7.10), (7.29), and under Acn (cf. (7.33)), we have

1Acn2(ndαn)−2

∣∣∣∣∣∣
n∑

k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄

∣∣∣∣∣∣ ≤ 2Kc̄. (7.38)

Further,

E

(ndαn)−2
∑

k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄


2

≤ (ndαn)−4
∑

j̄,k̄,l̄,p̄∈[n]d

E
(
ηn,̄ij̄ηn,̄ik̄ηn,̄il̄ηn,̄ip̄

)
cn,̄ij̄p̄cn,̄ik̄l̄

≤ (c̄)2

(ndαn)4

 ∑
j̄∈[n]d

E η4
n,̄ij̄ + 6

 ∑
j̄∈[n]d

E η2
īj̄

2 .

(7.39)
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Using (7.10), we estimate sum of the fourth moments of ηn,̄ij̄∑
j̄∈[n]d

E η4
īj̄ =

∑
j̄∈[n]d

{
αnWn,̄ij̄

(
1− αnWn,̄ij̄

)4
+ α4

nW
4
n,̄ij̄

(
1− αnWn,̄ij̄

)}

≤ ndαn

N−1
∑
j̄∈[n]d

Wn,̄ij̄ + α3
nn
−d
∑
j̄∈[n]d

W 4
n,̄ij̄


≤ ndαn

(
W̄1 + α3

nW̄4

)
= O(αnn

d),

(7.40)

where we also use (7.4). Similarly,∑
j̄∈[n]d

E η2
īj̄ =

∑
j̄∈[n]d

{
αnWn,̄ij̄

(
1− αnWn,̄ij̄

)2
+ α2

nW
2
n,̄ij̄

(
1− αnWn,̄ij̄

)}

≤ ndαn

N−1
∑
j̄∈[n]d

Wn,̄ij̄ + αnn
−d
∑
j̄∈[n]d

W 2
n,̄ij̄


≤ ndαn

(
W̄1 + αnW̄2

)
= O(αnN).

(7.41)

By combining (7.39)-(7.41), we obtain

E

(ndαn)−2
n∑

k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄


2

= O
(

(ndαn)−2
)
. (7.42)

By plugging (7.38) and (7.42) into (7.37), we obtain

E

1Acn exp

(ndαn)−2
n∑

k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄


 ≤ 1 +

C1

ndαn
eC2 . (7.43)

Using this bound on the right–hand side of (7.36), we further obtain

E

1Acn exp

(ndαn)−2
n∑

ī,k̄,l̄∈[n]d

cn,̄ik̄l̄ηn,̄ik̄ηn,̄il̄


 ≤ eC3α

−1
n . (7.44)

Using (7.44), from (7.35) we obtain

P(Ωn ∩Acn) ≤ exp
{
−ndδnd + C3α

−1
n

}
→ 0, n→∞. (7.45)

Furthermore, using (7.31) it is straightforward to check that
∞∑
n=1

P(Ωn ∩Acn) <∞.

The statement of the lemma then follows from (7.32)-(7.34) via Borel-Cantelli Lemma.
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