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ACTIVE SET COMPLEXITY OF THE AWAY-STEP FRANK--WOLFE
ALGORITHM\ast 

IMMANUEL M. BOMZE\dagger , FRANCESCO RINALDI\ddagger , AND DAMIANO ZEFFIRO\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we study active set identification results for the away-step Frank--
Wolfe algorithm in different settings. We first prove a local identification property that we apply, in
combination with a convergence hypothesis, to get an active set identification result. We then prove,
for nonconvex objectives, a novel O(1/

\surd 
k) convergence rate result and active set identification for

different step sizes (under suitable assumptions on the set of stationary points). By exploiting those
results, we also give explicit active set complexity bounds for both strongly convex and nonconvex
objectives. While we initially consider the probability simplex as feasible set, in an appendix we
show how to adapt some of our results to generic polytopes.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . surface identification, manifold identification, active set complexity

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65K05, 90C06, 90C30

\bfD \bfO \bfI . 10.1137/19M1309419

1. Introduction. Identifying a surface containing a solution (and/or the sup-
port of sparse solutions) represents a relevant task in optimization, since it allows
one to reduce the dimension of the problem at hand and apply a more sophisticated
method in the end (see, e.g., [5, 8, 17, 18, 22, 23, 24]). This is the reason why, in
the last few decades, identification properties of optimization methods have been the
subject of extensive studies.

The Frank--Wolfe (FW) algorithm, first introduced in [19], is a classic first order
optimization method that has recently regained popularity thanks to the way it can
easily handle the structured constraints appearing in many real-world applications.
This method and its variants have indeed been applied in the context of, e.g., sub-
modular optimization problems [1], variational inference problems [29], and sparse
neural network training [20]. It is important to notice that the FW approach has a
relevant drawback with respect to other algorithms: even when dealing with the sim-
plest polytopes, it cannot identify the active set in finite time (see, e.g., [11]). Due to
the renewed interest in the method, it has hence become a relevant issue to determine
whether some FW variants admit active set identification properties similar to those
of other first order methods. In this paper we focus on the away-step Frank--Wolfe
(AFW) method and analyze active set identification properties for problems of the
form

min \{ f(x) | x \in \Delta n - 1\} ,

where the objective f is a differentiable function with Lipschitz regular gradient and
the feasible set

\Delta n - 1 =

\Biggl\{ 
x \in \BbbR n :

n\sum 
i=1

xi = 1, x \geq 0

\Biggr\} 
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ACTIVE SET COMPLEXITY OF THE AFW ALGORITHM 2471

is the probability simplex. When the algorithm converges to a stationary point x\ast we
say that it identifies the active set if it correctly determines all of those constraints
whose multiplier is positive at x\ast (see (2.1)). The active set complexity is then defined
as the number of iterations after which every sequence generated by the algorithm
identifies this subset of constraints. In this paper, we extend the active set complexity
definition to include sequences convergent to certain subsets of stationary points.

1.1. Contributions. It is a classic result that on polytopes and under strict
complementarity conditions the AFW with exact line search identifies the face con-
taining the minimum in finite time for strongly convex objectives [21]. More general
active set identification properties for FW variants have recently been analyzed in
[11], where the authors proved active set identification for sequences convergent to a
stationary point, and AFW convergence to a stationary point for C2 objectives with
a finite number of stationary points and satisfying a technical convexity-concavity
assumption. This assumption is substantially a generalization of a property related
to (possibly neither concave nor convex) quadratic functions. The main contributions
of this article with respect to [11] are twofold:

\bullet First, we give quantitative local and global active set identification complexity
bounds under suitable assumptions on the objective. The key element in the
computation of those bounds is a quantity that we call ``active set radius.""
This radius determines a neighborhood of a stationary point for which the
AFW at each iteration identifies a constraint whose multiplier is positive (if
there are any remaining to be identified still). In particular, to get the active
set complexity bound it is sufficient to know how many iterations it takes for
the AFW sequence to enter this neighborhood.

\bullet Second, we analyze the identification properties of AFW without the technical
convexity-concavity C2 assumption used in [11]. Instead, we consider general
nonconvex objectives with Lipschitz gradient. More specifically, we prove
active set identification under different conditions on the step size and some
additional hypotheses on the support of stationary points.

In order to prove our results, we consider step sizes dependent on the Lipschitz
constant of the gradient (see, e.g., [2, 26] and references therein). By exploiting
the affine invariance property of the AFW (see, e.g., [27]), we also extend some of
the results to generic polytopes. In our analysis we see how the AFW identification
properties are related to the value of Lagrangian multipliers on stationary points.
This, to the best of our knowledge, is the first time that some active set complexity
bounds are given for a variant of the FW algorithm.

This paper is organized as follows: after presenting the AFW method and the
setting in section 2, we study the local behavior of this algorithm regarding the active
set in section 3. In section 4 we provide active set identification results in a quite
general context, and apply these to the strongly convex case for obtaining complexity
bounds. Section 5 treats the nonconvex case, giving both global and local active set
complexity bounds. In the final section, section 6, we draw some conclusions. To
improve readability, some technical details are deferred to the appendices.

1.2. Related work. In [13] the authors proved that the projected gradient
method and other converging sequential quadratic programming methods identify
quasi-polyhedral faces under some nondegeneracy conditions. In [14] those results
were extended to the case of exposed faces in polyhedral sets without the nonde-
generacy assumptions. This extension is particularly relevant to our work since the
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2472 I. M. BOMZE, F. RINALDI, AND D. ZEFFIRO

identification of exposed faces in polyhedral sets is the framework that we use in
studying the AFW on polytopes. In [39] the results of [13] were generalized to certain
nonpolyhedral surfaces called ``Cp identifiable"" contained in the boundary of convex
sets. A key insight in these early works was the openness of a generalized normal cone
defined for the identifiable surface containing a nondegenerate stationary point. This
openness guarantees that, in a neighborhood of the stationary point, the projection
of the gradient identifies the related surface. It turns out that for linearly constrained
sets the generalized normal cone is related to positive Lagrangian multipliers on the
stationary point.

A generalization of [13] to nonconvex sets was proved in [12], while an extension
to nonsmooth objectives was first proved in [25]. Active set identification results have
also been proved for a variety of projected gradient, proximal gradient, and stochastic
gradient related methods (see, for instance, [37] and references therein).

Recently, explicit active set complexity bounds have been given for some of the
methods listed above. Bounds for proximal gradient and block coordinate descent
methods were analyzed in [35, 34] under strong convexity assumptions on the objec-
tive. A more systematic analysis covering many gradient related proximal methods
(like, e.g., accelerated gradient, quasi-Newton, and stochastic gradient proximal meth-
ods) was carried out in [37].

As for FW-like methods, in addition to the results in [21, 11] discussed earlier,
identification results have been proved in [16] for fully corrective variants on the
probability simplex. However, since fully corrective variants require computing the
minimum of the objective on a given face at each iteration, they are not suited for
nonconvex problems.

2. Preliminaries. In this article, f : \Delta n - 1 \rightarrow \BbbR is a function with a gradient
having Lipschitz constant L. The constant L is also used as a Lipschitz constant for
\nabla f with respect to the norm \| \cdot \| 1. This does not require any additional hypothesis
on f since \| \cdot \| 1 \geq \| \cdot \| , so that

\| \nabla f(x)  - \nabla f(y)\| \leq L\| x - y\| \leq L\| x - y\| 1

for every x, y \in \Delta n - 1. We denote by \scrX \ast the set of points satisfying first order
optimality conditions for the minimization of f on \Delta n - 1; that is, \nabla f(x)\top d \geq 0 for
every d feasible direction at x. We call \scrX \ast the set of stationary points (see, e.g., [6]).

For x \in \BbbR n and X \subset \BbbR n, the function dist(x,X) is the standard point-set distance
and for A \subset \BbbR n the function dist(A,X) is the infimum of the distance between points
in the following set:

dist(A,X) = inf
a\in A,x\in X

\| a - x\| .

We define dist1 in the same way but with respect to \| \cdot \| 1. We denote with

supp(x) = \{ i \in [1 : n] | xi \not = 0\} 

the support of a point x \in \BbbR n.
Given a (convex and bounded) polytope P and a vector c we define the face of P

exposed by c as

\scrF (c) = argmax\{ c\top x | x \in P\} .
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ACTIVE SET COMPLEXITY OF THE AFW ALGORITHM 2473

It follows from the definition that the face of P exposed by a linear function is always
unique and nonempty. For a sequence \{ a(k)\} k\in \BbbN 0

we drop the subscript and write
simply \{ a(k)\} (unless, of course, the sequence is defined on some other index set). We
use the notation a(k) \rightarrow A for the convergence of \{ a(k)\} to the set A as equivalent to
dist(a(k), A) \rightarrow 0.

We now introduce the multiplier functions, which were recently used in [17] to
define an active set strategy for minimization over the probability simplex.

For every x \in \Delta n - 1, i \in [1 : n] the multiplier function \lambda i : \Delta n - 1 \rightarrow \BbbR is defined
as

\lambda i(x) = \nabla f(x)\top (ei  - x) ,

or in vector form

\lambda (x) = \nabla f(x)  - x\top \nabla f(x)e .

For every x \in \scrX \ast these functions coincide with the Lagrangian multipliers of the
constraints xi \geq 0.

We define the extended support in x \in \scrX \ast as

I(x) = \{ i \in [1 : n] | \lambda i(x) = 0\} 

and with

(2.1) Ic(x) = \{ 1, . . . , .n\} \setminus I(x)

the set of constraints whose multiplier is positive in x, where by optimality conditions
we have \lambda i(x) \geq 0 for every i \in [1 : n]. Therefore,

\lambda i(x) > 0 \forall i \in Ic(x) .

FW variants require a linear minimization oracle (LMO) for the feasible set (the
probability simplex in our case):

LMO\Delta n - 1
(r) \in argmin\{ x\top r | x \in \Delta n - 1\} .

Keeping in mind that

\Delta n - 1 = conv(\{ ei, i = 1, . . . , n\} ) ,

we can assume that LMO\Delta n - 1
(r) always returns a vertex of the probability simplex,

that is,
LMO\Delta n - 1(r) = e\^\imath 

with \^\imath \in argmini ri.
Algorithm 2.1 is the classical FW method on the probability simplex. At each

iteration, this first order method generates a descent direction that points from the
current iterate x(k) to a vertex sk minimizing the scalar product with the gradient, and
then moves along this search direction of a suitable step size if stationarity conditions
are not satisfied. It is well known [15, 38] that the method exhibits a zigzagging
behavior as the sequence of iterates \{ x(k)\} approaches a solution on the boundary
of the feasible set. In particular, when this happens the sequence \{ x(k)\} converges
slowly and, as we already mentioned, it does not identify the smallest face containing
the solution in finite time.
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2474 I. M. BOMZE, F. RINALDI, AND D. ZEFFIRO

Algorithm 2.1 FW method on the probability simplex.

1: Initialize x(0) \in \Delta n - 1, k := 0

2: Set sk := e\^\imath , with \^\imath \in argmini \nabla f(x(k))i and d
(k)
\scrF \scrW := sk  - x(k)

3: if x(k) is stationary then
4: STOP
5: end if
6: Choose the step size \alpha k \in (0, 1] with a suitable criterion

7: Update: x(k+1) := x(k) + \alpha kd
(k)
\scrF \scrW 

8: Set k := k + 1. Go to step 2.

Algorithm 2.2 AFW on the probability simplex.

1: Initialize x(0) \in \Delta n - 1, k := 0

2: Set sk := e\^\imath , with \^\imath \in argmini \nabla f(x(k))i and d
(k)
\scrF \scrW := sk  - x(k)

3: if x(k) is stationary then
4: STOP
5: end if
6: Let vk := e\^\jmath , with \^\jmath \in argmaxj\in Sk

\nabla f(x(k))j , Sk := \{ j : x
(k)
j > 0\} , and d

(k)
\scrA :=

x(k)  - vk
7: if  - \nabla f(x(k))\top d

(k)
\scrF \scrW \geq  - \nabla f(x(k))\top d

(k)
\scrA then

8: d(k) := d
(k)
\scrF \scrW , and \alpha max

k := 1
9: else

10: d(k) := d
(k)
\scrA , and \alpha max

k := x
(k)
i /(1  - x

(k)
i )

11: end if
12: Choose the step size \alpha k \in (0, \alpha max

k ] with a suitable criterion
13: Update: x(k+1) := x(k) + \alpha kd

(k)

14: Set k := k + 1. Go to step 2.

Both of these issues are solved by the away-step variant of the FW method,
reported in Algorithm 2.2. The AFW at every iteration chooses between the clas-

sic FW direction and the away-step direction d
(k)
\scrA calculated in Step 6. This away

direction shifts weight away from the worst vertex to the other vertices used to rep-
resent the iterate x(k). Here the worst vertex (among those having positive weight
in the iterate representation) is the one with the greatest scalar product with the
gradient, or, equivalently, the one that maximizes the approximation of f given by
y \rightarrow f(x(k)) + \nabla f(x(k))\top (y  - x(k)). The step size upper bound \alpha max

k in Step 12 is
the maximal possible for the away direction given the boundary conditions. When
the algorithm performs an away step, we have that either the support of the current
iterate stays the same or decreases by one. In the latter case \alpha k = \alpha max

k and we
get rid of the component whose index is associated to the away direction. On the
other hand, when the algorithm performs an FW step, only the vertex given by the
LMO can be added to the support of the current iterate. These two properties are
fundamental for the active set identification of the AFW.

3. Local active set variables identification property of the AFW. In
this section we prove a rather technical proposition which is the key tool to give
quantitative estimates for the active set complexity. It states that when the sequence is
close enough to a fixed stationary point at every step, the AFW identifies one variable
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ACTIVE SET COMPLEXITY OF THE AFW ALGORITHM 2475

violating the complementarity conditions with respect to the multiplier functions on
this stationary point (if it exists), and it sets the variable to 0 with an away step.
The main difficulty is giving a tight estimate for how close the sequence must be to a
stationary point for this identifying away step to take place.

Let \{ x(k)\} be the sequence of points generated by the AFW, and let x\ast be a fixed
point in \scrX \ast . We write for simplicity I and Ic instead of I(x\ast ) and Ic(x\ast ), respectively,
in the rest of this section, since x\ast does not change. Note that by complementary
slackness we have x\ast 

j = 0 for all j \in Ic.
The first result of this section is a technical lemma that allows us to bound the

Lipschitz constant of the multipliers on stationary points.

Lemma 3.1. Given h > 0, x(k) \in \Delta n - 1 such that \| x(k)  - x\ast \| 1 \leq h, let

Ok = \{ i \in Ic | x(k)
i = 0\} ,

and assume that Ok \not = Ic. Let \delta k = maxi\in [1:n]\setminus Ok
\lambda i(x

\ast ). For every i \in \{ 1, . . . , n\} ,

(3.1) | \lambda i(x
\ast )  - \lambda i(x

(k))| \leq h
\Bigl( 
L +

\delta k
2

\Bigr) 
.

Proof. By considering the definition of \lambda (x), we can write

| \lambda i(x
(k))  - \lambda i(x

\ast )| 
(3.2)

= | \nabla f(x(k))i  - \nabla f(x\ast )i + \nabla f(x\ast )\top (x\ast  - x(k)) + (\nabla f(x\ast )  - \nabla f(x(k)))\top x(k)| 
\leq | \nabla f(x\ast )i  - \nabla f(x(k))i + (\nabla f(x(k))  - \nabla f(x\ast ))\top x(k)| + | \nabla f(x\ast )\top (x\ast  - x(k))| .

By taking into account the fact that x(k) \in \Delta n - 1 and the gradient of f is Lipschitz
continuous, we have

(3.3)

| \nabla f(x(k))i  - \nabla f(x\ast )i + (\nabla f(x\ast )  - \nabla f(x(k)))\top x(k)| 
= | (\nabla f(x\ast )  - \nabla f(x(k)))\top (x(k)  - ei)| 
\leq \| \nabla f(x\ast )  - \nabla f(x(k))\| 1\| x(k)  - ei\| \infty 
\leq Lh ,

where the last inequality is justified by the H\"older inequality with exponents 1,\infty .
We now bound the second term in the right-hand side of (3.2). Let

uj = max\{ 0, x\ast 
j  - x

(k)
j \} , lj = max\{ 0, - (x\ast 

j  - x
(k)
j )\} .

We have
\sum 

j\in [1:n] x
\ast 
j =

\sum 
j\in [1:n] x

(k)
j = 1 since \{ x\ast , x(k)\} \subset \Delta n - 1, so that\sum 

j\in [1:n]

(x\ast 
j  - x

(k)
j ) =

\sum 
j\in [1:n]

(uj  - lj) = 0 and hence
\sum 

j\in [1:n]

uj =
\sum 

i\in [1:n]

lj .

Moreover, h\prime def
= 2

\sum 
j\in [1:n] uj = 2

\sum 
j\in [1:n] lj =

\sum 
j\in [1:n](uj + lj) =

\sum 
j\in [1:n] | x\ast 

j

 - x
(k)
j | \leq h, hence

h\prime /2 =
\sum 

j\in [1:n]

uj =
\sum 

j\in [1:n]

lj \leq h/2 .
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We can finally bound the second piece of (3.2), using uj = lj = 0 for all j \in Ok

(because x
(k)
j = x\ast 

j = 0):

(3.4)
| \nabla f(x\ast )\top (x\ast  - x(k))| = | \nabla f(x\ast )\top u - \nabla f(x\ast )\top l| \leq h\prime 

2
(\nabla f(x\ast )M  - \nabla f(x\ast )m)

\leq h

2
(\nabla f(x\ast )M  - \nabla f(x\ast )m) ,

where \nabla f(x(k))M and \nabla f(x(k))m are, respectively, the maximum and minimum com-
ponent of the gradient in [1 : n] \setminus Ok.

Now, considering inequalities (3.2), (3.3), and (3.4), we can write

| \lambda i(x
(k))  - \lambda i(x

\ast )| \leq Lh +
h

2
(\nabla f(x\ast )M  - \nabla f(x\ast )m) .

By taking into account the definition of \delta k and the fact that \lambda (x\ast )j \geq 0 for all j, we
can write

\delta k = max
i,j\in [1:n]\setminus Ok

(\nabla f(x\ast )i  - \nabla f(x\ast )j) \geq \nabla f(x\ast )M  - \nabla f(x\ast )m .

We can finally write

| \lambda i(x
(k))  - \lambda i(x

\ast )| \leq h
\Bigl( 
L +

\delta k
2

\Bigr) 
,

thus concluding the proof.

We now show a few simple but important results that connect the multipliers and
the directions selected by the AFW algorithm. For a fixed x(k) the multipliers \lambda i(x

(k))
are the values of the linear function x \mapsto \rightarrow \nabla f(x(k))\top x on the vertices of \Delta n - 1 minus
the constant \nabla f(x(k))\top x(k), which in turn are the values considered in the AFW to
select the direction. This basic observation is essentially everything we need for the
next results.

Lemma 3.2. Using the notation introduced in Algorithm 2.2, we have the follow-
ing:

(a) If max\{ \lambda i(x
(k)) | i \in Sk\} > max\{  - \lambda i(x

(k)) | i \in [1 : n]\} , then the AFW per-

forms an away step with d(k) = d
(k)
\scrA = x(k) - e\^\imath for some \^\imath \in argmax\{ \lambda i(x

(k)) | 
i \in Sk\} .

(b) For every i \in [1 : n] \setminus Sk, if \lambda i(x
(k)) > 0, then x

(k+1)
i = x

(k)
i = 0.

Proof. (a) By the definition of the away direction d
(k)
\scrA it follows that

d
(k)
\scrA \in argmax\{  - \nabla f(x(k))\top d | d = x(k)  - ei, i \in Sk\} ,

which implies

(3.5)
d
(k)
\scrA = x(k)  - e\^\imath for some \^\imath \in argmax\{  - \nabla f(x(k))\top (x(k)  - ei) | i \in Sk\} 

= argmax\{ \lambda i(x
(k)) | i \in Sk\} .

As a consequence of (3.5)
(3.6)

 - \nabla f(x(k))\top d
(k)
\scrA = max\{  - \nabla f(x(k))\top d | d = x(k) - ei, i \in Sk\} = max\{ \lambda i(x

(k)) | i \in Sk\} ,

where the second equality follows from \lambda i(x
(k)) =  - \nabla f(x(k))\top d with d = x(k)  - ei.
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Analogously,

(3.7)
 - \nabla f(x(k))\top d

(k)
\scrF \scrW = max\{  - \nabla f(x(k))\top d | d = ei  - x(k), i \in \{ 1, . . . , n\} \} 

= max\{  - \lambda i(x
(k)) | i \in \{ 1, . . . , n\} \} .

We can now prove that  - \nabla f(x(k))\top d
(k)
\scrF \scrW <  - \nabla f(x(k))\top d

(k)
\scrA , so that the away direc-

tion is selected under assumption (a):

 - \nabla f(x(k))\top d
(k)
\scrF \scrW = max\{  - \lambda i(x

(k)) | i \in \{ 1, , . . . , n\} \} 

< max\{ \lambda i(x
(k)) | i \in Sk\} =  - \nabla f(x(k))\top d

(k)
\scrA ,

where we used (3.6) and (3.7) for the first and second equality, respectively, and the
inequality is true by hypothesis.

(b) By considering the fact that x
(k)
i = 0, we surely cannot choose the vertex ei to

define the away-step direction. Furthermore, since \lambda (x(k))i = \nabla f(x(k))\top (ei  - x(k)) >
0, direction d = ei - x(k) cannot be chosen as the FW direction at step k as well. This

guarantees that x
(k+1)
i = 0.

For x \in \scrX \ast such that Ic(x) \not = \emptyset , we define \delta min(x) as

\delta min(x) = min
i\in Ic(x)

\lambda i(x)

and the active set radius r\ast (x) as

r\ast (x) =

\Biggl\{ 
\delta min(x)

\delta min(x)+2L if Ic(x) \not = \emptyset ,
+\infty if Ic(x) = \emptyset .

In the rest of this section, we write r\ast and \delta min instead of r\ast (x\ast ) and \delta min(x\ast ). Having
introduced these constants, we can now state the AFW local identification theorem.

Theorem 3.3. Assume that for every k such that d(k) = d
(k)
\scrA the step size \alpha k

is either maximal with respect to the boundary conditions (that is, \alpha k = \alpha max
k ) or

\alpha k \geq  - \nabla f(x(k))\top d(k)

L\| d(k)\| 2 . If \| x(k)  - x\ast \| 1 < r\ast then

(3.8) | Jk+1| \leq max\{ 0, | Jk|  - 1\} .

The latter relation also holds in the case Ic = \emptyset .
In the proof, we split [1 : n] into three subsets I, Jk \subset Ic, and Ok = Ic \setminus Jk and

use Lemma 3.1 to control the variation of the multiplier functions on each of these
three subsets. We examine two possible cases under the assumption of being close
enough to a stationary point. If Jk = \emptyset , which means that the current iteration of
the AFW has identified the extended support of the stationary point, then we show
that the AFW chooses a direction contained in the extended support, so that also
Jk+1 = \emptyset . If Jk \not = \emptyset , we show that in the neighborhood claimed by the theorem
the largest multiplier in absolute value is always positive, with index in Jk, and big
enough, so that the corresponding away step is maximal. This means that the AFW
at the iteration k + 1 identifies a new active variable.

Proof. If Ic = \emptyset , or, equivalently, if \lambda (x\ast ) = 0, then there is nothing to prove
since Jk \subset Ic = \emptyset \Rightarrow | Jk| = | Jk+1| = 0.
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So assume Ic \not = \emptyset . Recall that \lambda i(x
\ast ) > 0 for every i \in Ic, so that necessarily

\delta min > 0.
For every i \in [1 : n], by Lemma 3.1

(3.9)

\lambda i(x
(k)) \geq \lambda i(x

\ast )  - \| x(k)  - x\ast \| 1
\Bigl( 
L +

\delta k
2

\Bigr) 
> \lambda i(x

\ast )  - r\ast 

\Bigl( 
L +

\delta k
2

\Bigr) 
= \lambda i(x

\ast )  - 
\delta min(L + \delta k

2 )

2L + \delta min
.

We now distinguish two cases.
Case 1. | Jk| = 0. Then \delta k = 0 because Jk \cup I = I and \lambda i(x

\ast ) = 0 for every
i \in I. Relation (3.9) becomes

\lambda i(x
(k)) \geq \lambda i(x

\ast )  - \delta minL

2L + \delta min
,

so that for every i \in Ic, since \lambda i(x
\ast ) \geq \delta min, we have

(3.10) \lambda i(x
(k)) \geq \delta min  - \delta minL

2L + \delta min
> 0 .

This means that for every i \in Ic we have x
(k)
i = 0 by the Case 1 condition Jk = \emptyset 

and \lambda i(x
(k)) > 0 by (3.10). We can then apply part (b) of Lemma 3.2 and conclude

x
(k+1)
i = 0 for every i \in Ic. Hence Jk+1 = \emptyset = Jk and Theorem 3.3 is proved in this

case.
Case 2. | Jk| > 0. For every i \in argmax\{ \lambda j(x

\ast ) | j \in Jk\} , we have

\lambda i(x
\ast ) = max

j\in Jk

\lambda j(x
\ast ) = max

j\in Jk\cup I
\lambda j(x

\ast ) ,

where we used the fact that \lambda j(x
\ast ) = 0 < \lambda i(x

\ast ) for every j \in I. Then by the
definition of \delta k, it follows that

\lambda i(x
\ast ) = \delta k .

Thus (3.9) implies

(3.11) \lambda i(x
(k)) > \lambda i(x

\ast )  - 
\delta min(L + \delta k

2 )

2L + \delta min
= \delta k  - 

\delta min(L + \delta k
2 )

2L + \delta min
,

where we used (3.9) in the inequality. But since \delta k \geq \delta min and the function \delta min \mapsto \rightarrow 
 - \delta min

2L+\delta min
is decreasing in \BbbR >0, we have

(3.12) \delta k  - 
\delta min(L + \delta k

2 )

2L + \delta min
\geq \delta k  - 

\delta k(L + \delta k
2 )

2L + \delta k
=

\delta k
2

.

Concatenating (3.11) with (3.12), we finally obtain

(3.13) \lambda i(x
(k)) >

\delta k
2

.

We now show that d(k) = x(k)  - e\^\jmath with \^\jmath \in Jk.
For every j \in I, since \lambda j(x

\ast ) = 0, again by Lemma 3.1, we have

(3.14)

| \lambda j(x
(k))| = | \lambda j(x

(k))  - \lambda j(x
\ast )| \leq \| x(k)  - x\ast \| 1(L + \delta k/2)

< r\ast (L + \delta k/2) =
\delta min(L + \delta k

2 )

2L + \delta min
\leq \delta k/2 ,
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where we used \| x(k)  - x\ast \| 1 < r\ast , which is true by definition, in the first inequality,
and rearranged (3.12) to get the last inequality. For every j \in Ic, by (3.9), we can
write

\lambda j(x
(k)) > \delta min  - 

\delta min(L + \delta k
2 )

2L + \delta min
>  - \delta k

2
.

Using this together with (3.14) and (3.11), we get  - \lambda j(x
(k)) < \delta k/2 < \lambda h(x(k)) for

every j \in [1 : n], h \in argmax\{ \lambda q(x\ast ) | q \in Jk\} . So the hypothesis of Lemma 3.2 is

satisfied and d(k) = d
(k)
\scrA = x(k)  - e\^\jmath with \^\jmath \in argmax\{ \lambda j(x

(k)) | j \in Sk\} . We need to
show \^\jmath \in Jk. But Sk \subseteq I \cup Jk, and by (3.14) if \^\jmath \in I, then \lambda l(x

(k)) < \delta k/2 < \lambda j(x
(k))

for every j \in argmax\{ \lambda j(x
\ast ) | j \in Jk\} . If \^\jmath \in Ok, then x

(k)
\^\jmath = 0 and \^\jmath /\in Sk. Hence

we can conclude argmax\{ \lambda j(x
(k)) | j \in Sk\} \subseteq Jk and d(k) = x(k)  - e\^\jmath with \^\jmath \in Jk. In

particular, by (3.13) we get

(3.15) max\{ \lambda j(x
(k)) | j \in Jk\} = \lambda \^\jmath (x

(k)) >
\delta k
2

.

We now want to show that \alpha k = \alpha max
k . Assume by contradiction \alpha k < \alpha max. Then

by the lower bound on the step size and (3.13),

(3.16) \alpha k \geq  - \nabla f(x(k))\top d(k)

L\| d(k)\| 2
=

\lambda i(x
(k))

L\| d(k)\| 2
\geq \delta min

2L\| d(k)\| 2
,

where in the last inequality we used (3.15) together with \delta k \geq \delta min. Also, by
Lemma A.1
(3.17)

\| d(k)\| = \| e\^\jmath  - x(k)\| \leq 
\surd 

2(e\^\jmath  - x(k))\^\jmath =  - 
\surd 

2d
(k)
\^\jmath \Rightarrow 

d
(k)
\^\jmath 

\| d(k)\| 2
\leq 

d
(k)
\^\jmath \surd 

2\| d(k)\| 
\leq  - 1/2,

x
(k)
\^\jmath = (x(k)  - x\ast )\^\jmath \leq 

\| x(k)  - x\ast \| 1
2

<
r\ast 
2

=
\delta min

4L + 2\delta min
.

Finally, combining (3.17) with (3.16),

x
(k+1)
\^\jmath = x

(k)
\^\jmath + d

(k)
\^\jmath \alpha k <

r\ast 
2

 - \| d(k)\| 2

2
\alpha k \leq r\ast 

2
 - \| d(k)\| 2

2

\delta min

2L\| d(k)\| 2

=
\delta min

4L + 2\delta min
 - \delta min

4L
< 0 ,

where we used (3.16) to bound \alpha k in the first inequality, (3.17) to bound x
(k)
\^\jmath and

d
(k)
\^\jmath 

\| d(k)\| 2 . Hence x
(k+1)
\^\jmath < 0, a contradiction.

4. Active set complexity bounds. Before giving the active set complexity
bounds in several settings it is important to clarify that by active set associated to a
stationary point x\ast we do not mean the set supp(x\ast )c = \{ i \in [1 : n] | x\ast 

i = 0\} , but
the set Ic(x\ast ) related to those constraints whose multipliers are positive in x\ast . In
general, Ic(x\ast ) \subset supp(x\ast )c by complementarity conditions, with

(4.1) supp(x\ast )c = Ic(x\ast ) \leftrightarrow strict complementarity holds in x\ast .

D
ow

nl
oa

de
d 

11
/1

8/
21

 to
 1

47
.1

62
.2

13
.1

11
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2480 I. M. BOMZE, F. RINALDI, AND D. ZEFFIRO

The face \scrF of \Delta n - 1 defined by the constraints with indices in Ic(x\ast ) has a nice
geometrical interpretation: it is the face of \Delta n - 1 exposed by  - \nabla f(x\ast ).

It is at this point natural to require that the sequence \{ x(k)\} converges to a subset
A of \scrX \ast for which Ic is constant. This motivates the following definition.

Definition 4.1. A compact subset A of \scrX \ast is said to have the support identifi-
cation property (SIP) if there exists an index set IcA \subset [1 : n] such that

Ic(x) = IcA \forall x \in A .

In other words, A has the SIP if and only if Ic(x) or, equivalently, the extended support
I(x) is constant for x varying in A. The geometrical interpretation of Definition 4.1 is
the following: for every point x in the subset A, the negative gradient  - \nabla f(x) exposes
the same face. This is trivially true if A is a singleton so that the notion of subset with
the SIP generalizes the one of stationary point. From the geometrical interpretation
it is clear that A has the SIP also if it is contained in the relative interior of a face
\scrF of \Delta n - 1 and strict complementarity conditions hold for every point in A. In this
case the negative gradient of the points in A always exposes \scrF . As a pathological
example, for f \equiv 0 all the subsets of \Delta n - 1 have the SIP because every x \in \Delta n - 1 is
stationary with Ic(x) = \emptyset .

For a set A with the SIP we define

r\ast (A) = min
x\in A

r\ast (x) .

Thanks to the SIP, r\ast is continuous on A and we always have r\ast (A) > 0. We can
finally give a rigorous definition of what it means to solve the active set problem.

Definition 4.2. Consider an algorithm generating a sequence \{ x(k)\} converging
to a subset A of \scrX \ast enjoying the SIP. We say that this algorithm solves the active set

problem in M steps if x
(k)
i = 0 for every i \in IcA, k \geq M . If, given a set of conditions

on (A, f, x(0)), M is the minimum number which has this property for every sequence
generated by the algorithm, then we say that the active set complexity of the algorithm
is M , under the given conditions.

We can now apply Theorem 3.3 to show that once a sequence is definitely close
enough to a set A enjoying the SIP, the AFW identifies the active set in at most | IcA| 
steps. We first need to define a quantity that we use as a lower bound on the step
sizes:

(4.2) \=\alpha k = min

\biggl( 
\alpha max
k ,

 - \nabla f(x(k))\top d(k)

L\| d(k)\| 2

\biggr) 
.

Theorem 4.3. Let \{ x(k)\} be a sequence generated by the AFW, with step size
\alpha k \geq \=\alpha k. Let \scrX \ast be the set of stationary points of a function f : \Delta n - 1 \rightarrow \BbbR with \nabla f
having Lipschitz constant L. Assume that there exists a compact subset A of \scrX \ast with
the SIP such that x(k) \rightarrow A. Then there exists M such that

x
(k)
i = 0 for every k \geq M and all i \in IcA .

We refer the reader to Remark 4.4 for some examples of step size strategies sat-
isfying (4.2).
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Proof. Let Jk = \{ i \in IcA | x(k)
i > 0\} and choose \=k such that dist1(x(k), A) < r\ast (A)

for every k \geq \=k. Then for every k \geq \=k there exists y\ast \in A with \| x(k)  - y\ast \| 1 <
r\ast (A) \leq r\ast (y\ast ). Since by hypothesis for every y\ast \in A the support of the multiplier
function is IcA applying Theorem 3.3 with y\ast as a fixed point, we obtain that | Jk+1| \leq 
max(0, | Jk|  - 1). This means that it takes at most | J\=k| \leq | IcA| steps for all the variables
with indices in IcA to be 0. Again by (3.8), we conclude by induction | Jk| = 0 for
every k \geq M = \=k + | IcA| , since | J\=k+| Ic

A| | = 0.

Remark 4.4. In Appendix B we prove that (4.2) is always a lower bound on the
step size obtained by the exact line search. We also prove that

\alpha k \geq min
\Bigl( 
\alpha max
k , c

pk
L\| d(k)\| 2

\Bigr) 
for some c > 0

for the Armijo line search, and if we impose the weak Wolfe conditions, setting \alpha k =
\alpha max
k whenever those conditions cannot be satisfied. When c \geq 1, then (4.2) is, of

course, a lower bound for the step size \alpha k, and when c < 1 we can still recover (4.2)
by considering \~L = L

c instead of L as Lipschitz constant.

The proof of Theorem 4.3 also gives a relatively simple upper bound for the
complexity of the active set problem.

Proposition 4.5. Under the assumptions of Theorem 4.3, the active set com-
plexity is at most

min\{ \=k \in \BbbN 0 | dist1(x(k), A) < r\ast (A) \forall k \geq \=k\} + | IcA| .

We now report an explicit bound for the strongly convex case, and will analyze
in depth the nonconvex case later in section 5. If f is u-strongly convex, then f(x\ast )
is the global minimum of f over \Delta n - 1 if x\ast is the (unique) stationary point; further,
it is easy to see that the following inequality holds for every x on \Delta n - 1:

(4.3) f(x) \geq f(x\ast ) +
u1

2
\| x - x\ast \| 21 ,

with u1 = u/n.

Corollary 4.6. Let \{ x(k)\} be the sequence of points generated by AFW with
\alpha k \geq \=\alpha k. Assume that f is strongly convex, and let

(4.4) hk \leq qkh0 ,

with q < 1 and hk = f(x(k)) - f(x\ast ), be the convergence rate related to the AFW (see
[31, Theorem 8]). Then the active set complexity is

(4.5) max

\biggl( 
0,

\biggl\lceil 
ln(h0)  - ln(u1r\ast (x\ast )2/2)

ln(1/q)

\biggr\rceil \biggr) 
+ | Ic| .

Proof. Notice that by the linear convergence rate (4.4), and the fact that q < 1,
the number of steps needed to reach the condition

(4.6) hk \leq u1

2
r\ast (x\ast )2

is at most

\=k = max

\biggl( 
0,

\biggl\lceil 
ln(h0)  - ln(u1r\ast (x\ast )2/2)

ln(1/q)

\biggr\rceil \biggr) 
.
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We claim that if condition (4.6) holds, then it takes at most | Ic| steps for the sequence
to be definitely in the active set. Indeed, if qkh0 \leq u1

2 r\ast (x\ast )2, then necessarily

x(k) \in B1(x\ast , r\ast (x\ast )) by (4.3), and by monotonicity of the bound (4.4) we then
have x(k+h) \in B1(x\ast , r\ast (x\ast )) for every h \geq 0. Once the sequence is definitely in
B1(x\ast , r\ast (x\ast )) by (3.8) it takes at most | J\=k| \leq | Ic| steps for all the variables with
indices in Ic to be 0. To conclude, again by (3.8), since | J\=k+| Ic| | = 0, by induction

| Jm| = 0 for every m \geq \=k + | Ic| .
Remark 4.7. In Corollary 4.6, if we assume the linear rate (4.4) (which may not

hold in the nonconvex case), then the strong convexity of f can be replaced by the
condition (4.3).

An extension of Corollary 4.6 to generic polytopes, requiring additional theoretical
results, is presented in Appendix C.

5. Active set complexity for nonconvex objectives. In this section, we fo-
cus on problems with nonconvex objectives. We first give a more explicit convergence
rate for AFW in the nonconvex case, then we prove a general active set identification
result for the method. Finally, we analyze both local and global active set complex-
ity bounds related to AFW. A fundamental element in our analysis is the FW gap
function g : \Delta n - 1 \rightarrow \BbbR defined as

g(x) = max
i\in [1:n]

\{  - \lambda i(x)\} .

We clearly have g(x) \geq 0 for every x \in \Delta n - 1, with equality if and only if x is a
stationary point. The reason why this function is called an FW gap is evident from
the relation

g(x(k)) =  - \nabla f(x(k))\top d
(k)
\scrF \scrW .

This is a standard quantity appearing in the analysis of FW variants (see, e.g., [27])
and is computed for free at each iteration of an FW-like algorithm. In [30], the
author uses the gap to analyze the convergence rate of the classic FW algorithm in
the nonconvex case. More specifically, a convergence rate of O( 1\surd 

k
) is proved for the

minimal FW gap up to iteration k:

g\ast k = min
0\leq i\leq k - 1

g(x(i)) .

The results extend in a nice and straightforward way the ones reported in [32] for
proving the convergence of gradient methods in the nonconvex case. Inspired by the
analysis of the AFW method for strongly convex objectives reported in [36], we now
study the AFW convergence rate in the nonconvex case with respect to the sequence
\{ g\ast k\} .

5.1. Global convergence. We start investigating the minimal FW gap, giving
estimates of rates of convergence. In the next theorem and in the subsequent corol-
lary, Corollary 5.2, we assume that the AFW starts from a vertex of the probability
simplex. Thanks to the affine invariance properties of the AFW this is not a restric-
tive assumption. For a generic starting point one can indeed apply the same theorem
to the AFW starting from en+1 for \~f : \Delta n \rightarrow \BbbR satisfying

(5.1) \~f(y) = f(y1e1 + \cdot \cdot \cdot + ynen + yn+1x
(0)) ,
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where x(0) \in \Delta n - 1 is the desired starting point (see also Corollary 5.3). Formally,
this leads to the computation of a sequence \{ y(k)\} on \Delta n which can be mapped to a
sequence \{ x(k)\} on \Delta n - 1 by the affine transformation

(5.2) p(y) = y1e1 + \cdot \cdot \cdot + ynen + yn+1x
(0) .

In Appendix C, we discuss the invariance of the AFW under affine transformations
in more detail.

Theorem 5.1. Let f\ast = minx\in \Delta n - 1 f(x), and let \{ x(k)\} be a sequence generated

by the AFW algorithm applied to f on \Delta n - 1, with x(0) a vertex of \Delta n - 1. Assume
that the step size \alpha k is equal to or greater than \=\alpha k (as defined in (4.2)), and that

(5.3) f(x(k))  - f(x(k) + \alpha kd
(k)) \geq \rho \=\alpha k

\Bigl( 
 - \nabla f(x(k))\top d(k)

\Bigr) 
for some fixed \rho > 0. Then for every T \in \BbbN ,

(5.4) g\ast T \leq max

\left(  \sqrt{} 4L(f(x(0))  - f\ast )

\rho T
,

4(f(x(0))  - f\ast )

T

\right)  .

Proof. Let rk =  - \nabla f(x(k)) and gk = g(x(k)). We distinguish three cases.

Case 1. \=\alpha k < \alpha max
k . Then \=\alpha k =  - \nabla f(x(k))\top d(k)

L\| d(k)\| 2 and relation (5.3) becomes

f(x(k))  - f(x(k) + \alpha kd
(k)) \geq \rho \=\alpha kr

\top 
k d

(k) =
\rho 

L\| d(k)\| 2
(r\top k d

(k))2,

and consequently,

(5.5) f(x(k))  - f(x(k+1)) \geq \rho 

L\| d(k)\| 2
(r\top k d

(k))2 \geq \rho 

L\| d(k)\| 2
g2k \geq \rho g2k

2L
,

where we used r\top k d
(k) \geq gk in the second inequality and \| d(k)\| \leq 

\surd 
2 in the third one.

As for Sk, by hypothesis we have either d(k) = d
(k)
\scrF \scrW so that d(k) = ei  - x(k) or

d(k) = d
(k)
\scrA = x(k)  - ei for some i \in [1 : n]. In particular, Sk+1 \subseteq Sk \cup \{ i\} so that

| Sk+1| \leq | Sk| + 1.

Case 2. \alpha k = \=\alpha k = \alpha max
k = 1, d(k) = d

(k)
\scrF \scrW . By the standard descent lemma [7,

Proposition 6.1.2] applied to f with center x(k) and \alpha = 1

f(x(k+1)) = f(x(k) + d(k)) \leq f(x(k)) + \nabla f(x(k))\top d(k) +
L

2
\| d(k)\| 2 .

Since by the Case 2 condition min
\bigl(  - \nabla f(x(k))\top d(k)

\| d(k)\| 2L
, 1
\bigr) 

= \alpha k = 1, we have

 - \nabla f(x(k))\top d(k)

\| d(k)\| 2L
\geq 1 , so  - L\| d(k)\| 2 \geq \nabla f(x(k))\top d(k) ,

hence we can write

(5.6) f(x(k))  - f(x(k+1)) \geq  - \nabla f(x(k))\top d(k)  - L

2
\| d(k)\| 2 \geq  - \nabla f(x(k))\top d(k)

2
\geq 1

2
gk .

Reasoning as in Case 1 we also have | Sk+1| \leq | Sk| + 1.
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Case 3. \alpha k = \=\alpha k = \alpha max
k , d(k) = d

(k)
\scrA . Then d(k) = x(k)  - ei for i \in Sk and

x
(k+1)
j = (1 + \alpha k)x

(k)
j  - \alpha k(ei)j ,

with \alpha k = \alpha max
k =

x
(k)
i

1 - x
(k)
i

. Therefore, x
(k+1)
j = 0 for j \in [1 : n] \setminus Sk \cup \{ i\} and

x
(k+1)
j \not = 0 for j \in Sk \setminus \{ i\} . In particular, | Sk+1| = | Sk|  - 1.

For i = 1, 2, 3 now let ni(T ) be the number of Case 1 steps done in the first T
iterations of the AFW. We have by induction on the recurrence relation we proved
for | Sk| that

(5.7) | ST |  - | S0| \leq n1(T ) + n2(T )  - n3(T )

for every T \in \BbbN .
Since n3(T ) = T  - n1(T )  - n2(T ), from (5.7) we get

(5.8) n1(T ) + n2(T ) \geq T + | ST |  - | S0| 
2

\geq T

2
,

where we used | S0| = 1 \leq | ST | . Now let CT
i be the set of iteration counters up to

T  - 1 corresponding to Case 1 steps for i \in \{ 1, 2, 3\} , which satisfies | CT
i | = ni(T ). We

have by summing (5.5) and (5.6) for the indices in CT
1 and CT

2 , respectively,

(5.9)
\sum 

k\in CT
1

f(x(k))  - f(x(k+1)) +
\sum 

k\in CT
2

f(x(k+1))  - f(x(k)) \geq 
\sum 

k\in CT
1

\rho g2k
2L

+
\sum 

k\in CT
2

1

2
gk .

We now lower bound the right-hand side of (5.9) in terms of g\ast T as follows:

(5.10)

\sum 
k\in CT

1

\rho g2k
2L

+
\sum 

k\in CT
2

1

2
gk \geq | CT

1 | min
k\in CT

1

\rho g2k
2L

+ | CT
2 | min

k\in CT
2

gk
2

\geq (| CT
1 | + | CT

2 | ) min

\biggl( 
\rho (g\ast T )2

2L
,
g\ast T
2

\biggr) 
= [n1(T ) + n2(T )] min

\biggl( 
\rho 

(g\ast T )2

2L
,
g\ast T
2

\biggr) 
\geq T

2
min

\biggl( 
\rho (g\ast T )2

2L
,
g\ast T
2

\biggr) 
.

Since the left-hand side of (5.9) can clearly be upper bounded by f(x(0))  - f\ast , we
have

f(x(0))  - f\ast \geq T

2
min

\biggl( 
\rho (g\ast T )2

2L
,
g\ast T
2

\biggr) 
.

To finish, if T
2 min

\Bigl( 
g\ast 
T

2 ,
\rho (g\ast 

T )2

2L

\Bigr) 
=

Tg\ast 
T

4 , we then have

(5.11) g\ast T \leq 4(f(x(0))  - f\ast )

T
,

and otherwise,

(5.12) g\ast T \leq 

\sqrt{} 
4L(f(x(0))  - f\ast )

\rho T
.

The claim follows by taking the max in the system formed by (5.11) and (5.12).
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In Appendix B, we prove that condition (5.3) is satisfied by exact line search and
Armijo line search as well. We also prove that it is satisfied if we impose the weak
Wolfe conditions and take \alpha max

k whenever the conditions are incompatible with the
constraint \alpha k \leq \alpha max

k .
When the step sizes coincide with the lower bounds \=\alpha k or are obtained using

exact line search, we have the following corollary.

Corollary 5.2. Under the assumptions of Theorem 5.1, if \alpha k = \=\alpha k or if \alpha k is
selected by exact line search, then for every T \in \BbbN ,

(5.13) g\ast T \leq max

\Biggl( \sqrt{} 
8L(f(x(0))  - f\ast )

T
,

4(f(x(0))  - f\ast )

T

\Biggr) 
.

Proof. By points 2 and 3 of Lemma B.1, relation (5.3) is satisfied with \rho = 1
2 for

both \alpha k = \=\alpha k and \alpha k given by exact line search, and we also have \alpha k \geq \=\alpha k in both
cases. The conclusion follows directly from Theorem 5.1.

Applying the trick of adding the starting point as a vertex allows us to drop the
assumptions of starting from a vertex in Theorem 5.1.

Corollary 5.3. Let x(0) \in \Delta n - 1, and let \{ y(k)\} be a sequence generated by
the AFW applied to the objective function \~f defined in (5.1) with y(0) = en+1. Let
\{ x(k)\} = \{ p(y(k))\} , for the transformation p defined in (5.2). Then under the as-
sumptions of Theorem 5.1 on \alpha k and f , the bound (5.4) and Corollary 5.2 still hold.

Proof. The multipliers are invariant by affine transformation (see Appendix C for
further details), and since the FW gap depends on the multipliers, it is also invariant
under affine transformation. Also adding the multiplier related to x(0) does not change
the FW gap, which is always realized in one of the vertices of the original simplex
since it is the maximum of a linear function plus a constant. Therefore, the FW gap
is invariant with respect to the transformation p, so that the same arguments used
for Theorem 5.1 and Corollary 5.2 can still be applied to \{ x(k)\} = \{ p(y(k))\} .

Since adding a vertex alters the active set identification properties of the problem
(e.g., the active set radius), we cannot apply the above results directly in the rest of
this article. Instead we use some key intermediate results presented in the proof of
Theorem 5.1.

5.2. A general active set identification result. In this section we give a
general active set identification result in the nonconvex setting. When the step sizes
do not coincide with the lower bound (4.2) we need strict complementarity in this
context. If A \subseteq \scrX \ast enjoys the SIP and if strict complementarity is satisfied for every
x \in A, then as a direct consequence of (4.1) we have

(5.14) supp(x) = [1 : n] \setminus Ic(x) = [1 : n] \setminus IcA

for every x \in A. In this case we can then define supp(A) as the (common) support of
the points in A.

For the result we need an observation on connectedness which seems to be folklore
in an optimization context. This property is needed, e.g., for the proof of [32, Theorem
4.1.2] and similar results are discussed in [3]. However, we are not aware of an explicit
proof for this property, so for the readers' convenience we provide a short argument.

Lemma 5.4. Let \{ x(k)\} be a bounded sequence in \BbbR n such that \| x(k) - x(k+1)\| \rightarrow 0.
Then the set of limit points of \{ x(k)\} is connected.
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Proof. Assume by contradiction that there are two open sets U1 and U2 separating
the limit points of \{ x(k)\} . Then there must exist an infinite number of points from
\{ x(k)\} both in U1 and U2, and in particular, a subsequence \{ x(k(j))\} of \{ x(k)\} such
that x(k(j)) \in U1 and x(k(j)+1) \in U c

1 for every j \in \BbbN 0. By the condition \| x(k(j))  - 
x(k(j)+1)\| \rightarrow 0 we obtain

(5.15) dist(x(k(j)), U c
1 ) \rightarrow 0 .

Since \{ x(k(j))\} is bounded by hypothesis it has a nonempty set of limit points. But
every limit point of \{ x(k(j))\} must be necessarily in U c

1 by (5.15) and also in the
closure of U1 (because \{ x(k(j))\} \subset U1) and therefore not in U2, a contradiction.

We proceed with the announced result.

Theorem 5.5. Let \{ x(k)\} be the sequence generated by the AFW method with
step sizes satisfying \alpha k \geq \=\alpha k and (5.3), where \=\alpha k is given by (4.2). Let \scrX \ast be the
subset of stationary points of f . We have the following:

(a) x(k) \rightarrow \scrX \ast as k \rightarrow \infty without any further assumptions.
(b) If \alpha k = \=\alpha k, then \{ x(k)\} converges to a connected component A of \scrX \ast . If,

additionally, A has the SIP, then \{ x(k)\} identifies IcA in finite time.

Assume now that \scrX \ast =
\bigcup C

i=1 Ai with Ai compact for each i \in [1 : C], with distinct
supports and such that Ai has the SIP for each i \in [1 :C].

(c) If \alpha k \geq \=\alpha k and if strict complementarity holds for all points in \scrX \ast , then
\{ x(k)\} converges to Al for some l \in [1 : C] and identifies IcAl

in finite time.

Proof. (a) By the proof of Theorem 5.1 and the continuity of the multiplier func-
tion, we have

(5.16) x(k(j)) \rightarrow g - 1(0) = \scrX \ast ,

where \{ k(j)\} is the sequence of indexes corresponding to Case 1 or Case 2 steps. Let
k\prime (j) be the sequence of indexes corresponding to Case 3 steps. Since for such steps
\alpha k\prime (j) = \=\alpha k\prime (j) we can apply Corollary B.2 to obtain

(5.17) \| x(k\prime (j))  - x(k\prime (j)+1)\| \rightarrow 0 .

Combining (5.16), (5.17), and the fact that there can be at most n  - 1 consecutive
Case 3 steps, we get x(k) \rightarrow \scrX \ast .

(b) By the boundedness of f and point 2 of Lemma B.1, if \alpha k = \=\alpha k, then \| x(k+1) - 
x(k)\| \rightarrow 0. Now Lemma 5.4 together with point (a) ensures that the set of limit points
must be contained in a connected component A of \scrX \ast . By Theorem 4.3 it follows
that if A has the SIP, then \{ x(k)\} identifies IcA in finite time.

(c) Consider a disjoint family of subsets \{ Ui\} Ci=1 of \Delta n - 1 with Ui = \{ x \in 
\Delta n - 1 | dist1(x,Ai) \leq ri\} , where ri is small enough to ensure some conditions that
we now specify. First, we need

ri < r\ast (Ai)

so that ri is smaller than the active set radius of every x \in Ai, and in particular, for
every x \in Ui there exists x\ast \in Ai such that

(5.18) \| x - x\ast \| 1 < r\ast (x\ast ) .

D
ow

nl
oa

de
d 

11
/1

8/
21

 to
 1

47
.1

62
.2

13
.1

11
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACTIVE SET COMPLEXITY OF THE AFW ALGORITHM 2487

Second, we choose ri small enough so that \{ Ui\} Ci=1 are disjoint and

(5.19) supp(y) \supseteq supp(Ai) \forall y \in Ui ,

where these conditions can always be satisfied thanks to the compactness of Ai.
Assume now by contradiction that the set S of limit points of \{ x(k)\} intersects

more than one of the \{ Ai\} Ci=1. In particular, let Al minimize | supp(Al)| among the
sets containing points of S. By point (a) x(k) \in \cup C

i=1Ui for k \geq M large enough
and we can define an infinite sequence \{ t(j)\} of exit times greater than M for Ul so
that x(t(j)) \in Ul and x(t(j)+1) \in \cup i\in [1:C]\setminus lUi. Up to considering a subsequence we can

assume x(t(j)+1) \in Um for a fixed m \not = l for every j \in \BbbN 0.
We now distinguish two cases as in the proof of Theorem 3.3, where by (5.18) the

hypotheses of Theorem 3.3 are satisfied for k = t(j) and some x\ast \in Al.

Case 1. x
(t(j))
h = 0 for every h \in IcAl

. In the notation of Theorem 3.3 this

corresponds to the case | Jt(j)| = 0. Then by (3.10) we also have \lambda h(x(t(j))) > 0 for

every h \in IcAl
. Thus x

(t(j)+1)
h = x

(t(j))
h = 0 for every h \in IcAl

by Lemma 3.2, so that
we can write

(5.20) supp(Am) \subseteq supp(x(t(j)+1)) \subseteq [1 : n] \setminus IcAl
= supp(Al) ,

where the first inclusion is justified by (5.19) for i = m and the second by strict
complementarity (see also (5.14) and the related discussion). But since by hypothesis
supp(Am) \not = supp(Al) the inclusion (5.20) is strict and so it is in contradiction with
the minimality of | supp(Al)| .

Case 2. | Jt(j)| > 0. Then reasoning as in the proof of Theorem 3.3 we obtain

d(t(j)) = x(t(j))  - e\=h for some \=h \in Jt(j) \subset IcAl
. Let \~x\ast \in Al, and let \~d = \alpha t(j)d

(t(j)).

The sum of the components of \~d is 0 with the only negative component being \~d\=h, and
therefore,

(5.21) \~d\=h =  - 
\sum 

h\in [1:n]\setminus \=h

\~dh =  - 
\sum 

h\in [1:n]\setminus \=h

| \~dh| .

We claim that \| x(t(j)+1)  - \~x\ast \| 1 \leq \| x(t(j))  - \~x\ast \| 1. This is enough to finish because
since \~x\ast \in Al is arbitrary, then it follows dist1(x(t(j)+1), Al) \leq dist1(x(t(j)), Al) so that
x(t(j)+1) \in Ul, a contradiction.

We have

\| \~x\ast  - x(t(j)+1)\| 1 = \| \~x\ast  - x(t(j))  - \alpha t(j)d
(t(j))\| 1

=| \~x\ast 
\=h  - x

(t(j))
\=h

 - \~d\=h| +
\sum 

h\in [1:n]\setminus \=h

| \~x\ast 
h  - x

(t(j))
h  - \~dh| 

=| \~x\ast 
\=h  - x

(t(j))
\=h

| + \~d\=h +
\sum 

h\in [1:n]\setminus \=h

| \~x\ast 
h  - x

(t(j))
h  - \~dh| 

\leq | \~x\ast 
\=h  - x

(t(j))
\=h

| + \~d\=h +
\sum 

h\in [1:n]\setminus \~h

(| \~x\ast 
h  - x

(t(j))
h | + | \~dh| )

=\| x(t(j))  - \~x\ast \| 1 + \~d\=h +
\sum 

h\in [1:n]\setminus \=h

| \~dh| = \| x(t(j))  - \~x\ast \| 1 ,

where in the third equality we used 0 = \~x\ast 
\=h
\leq  - \~d\=h \leq x

(t(j))
\=h

and in the last equality
we used (5.21).
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Reasoning by contradiction we have proved that all of the limit points of \{ x(k)\} 
are in Al for some l \in [1, . . . , C]. The conclusion follows immediately from Theo-
rem 4.3.

5.3. Quantitative version of active set identification. Let q : \BbbR >0 \rightarrow \BbbN 0

be such that f(x(k))  - f(x(k+1)) \leq \varepsilon for every k \geq q(\varepsilon ). In this section, we give
global active set complexity bounds for nonconvex objectives as a function of q, which
measures how long it takes for \gamma k = f(x(k))  - f(x(k+1)) to fall definitely under a
threshold value. We assume that the gap function g(x) satisfies the H\"olderian error
bound condition

(5.22) g(x) \geq \theta dist1(x,\scrX \ast )p

for some \theta , p > 0. This condition is satisfied, e.g., if f(x) (and therefore, \nabla f(x)) is
a semialgebraic function. In this case then g(x) is also semialgebraic because it is
obtained by sums, products, and maxima of semialgebraic functions, and (5.22) holds
by \Lojasiewicz' inequality (Corollary 2.6.7 in [9]; see also [10] and references therein)
applied to g and dist1(x,\scrX \ast ).

In the convex case, condition (5.22) on the FW gap g(x) is weaker than the
more common H\"olderian error bound condition on the objective; see [10, 28, 40].
This follows trivially from the fact that the FW gap g(x) is always larger than the
objective gap f(x)  - f\ast for convex f . The H\"olderian error bound assumption on the
gap allows us to give more explicit active set complexity bounds.

Theorem 5.6. Assume \scrX \ast =
\bigcup 

i\in [1:C] Ai, where Ai is compact and with the SIP

for every i \in [1 : C] and 0 < d
def
= min\{ i,j\} \subset [1:C] dist1(Ai, Aj). Let \=r\ast be the minimum

active set radius of the sets \{ Ai\} Ci=1. Assume that g(x) satisfies (5.22). Assume that
the step sizes satisfy \alpha k = \=\alpha k, with \=\alpha k given by (4.2). Then the active set complexity
is at most q(\=\varepsilon ) + n - 1 for \=\varepsilon satisfying the following conditions:

(5.23) \=\varepsilon < L ,

\Biggl( 
2
\surd 
L\=\varepsilon 

\theta 

\Biggr) 1
p

< \=r\ast , and 2

\Biggl( 
2
\surd 
L\=\varepsilon 

\theta 

\Biggr) 1
p

+ 2n

\sqrt{} 
2\=\varepsilon 

L
\leq d .

The proof is substantially a quantitative version of the argument used to prove
point (b) of Theorem 5.5.

Proof. Fix k \geq q(\=\varepsilon ), so that

(5.24) f(x(k))  - f(x(k+1)) \leq \=\varepsilon .

We refer to Case 1 steps for i \in [1 : 3] following the definitions in Theorem 5.1. If the
step k is a Case 1 step, then by (5.5) with \rho = 1/2 we have

f(x(k))  - f(x(k+1)) \geq g(x(k))2

4L
,

and this together with (5.24) implies

2
\surd 
L\=\varepsilon \geq 2

\sqrt{} 
L(f(x(k))  - f(x(k+1))) \geq g(x(k)) .

Analogously, if the step k is a Case 2 step, then by (5.6) we have

f(x(k))  - f(x(k+1)) \geq g(x(k))

2
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so that 2\=\varepsilon \geq g(x(k)). By the leftmost condition in (5.23) we have \=\varepsilon < L so that
2
\surd 
L\=\varepsilon \geq 2\=\varepsilon , and therefore, for both Case 1 and Case 2 steps we have

(5.25) g(x(k)) \leq 2
\surd 
L\=\varepsilon .

By inverting relation (B.1), we also have

(5.26) \| x(k)  - x(k+1)\| \leq 
\sqrt{} 

2(f(x(k))  - f(x(k+1)))

L
\leq 
\sqrt{} 

2\=\varepsilon 

L
.

Now let \=k \geq q(\=\varepsilon ) be such that step \=k is a Case 1 or Case 2 step. By the error bound
condition together with (5.25),

(5.27) dist1(x(\=k),\scrX \ast ) \leq 

\Biggl( 
g(x(\=k))

\theta 

\Biggr) 1
p

\leq 

\Biggl( 
2
\surd 
L\=\varepsilon 

\theta 

\Biggr) 1
p

< \=r\ast ,

where we used (5.25) in the second inequality and the second condition of (5.23) in the
third inequality. In particular, there exists l such that dist1(x(\=k), Al) \leq (2

\surd 
L\=\varepsilon /\theta )1/p.

We now claim that IcAl
is already identified at the step \=k.

First, we claim that for every Case 1 or Case 2 step with index \tau \geq \=k we have
dist1(x(\tau ), Al) \leq (g(x(\tau ))/\theta )1/p. We reason by induction on the sequence \{ s(k\prime )\} of
Case 1 or Case 2 steps following \=k, so that, in particular, s(1) = \=k and dist1(x(s(1)), Al)
\leq g(x(s(1))) is true by (5.27). Since there can be at most n  - 1 consecutive Case 3
steps, we have s(k\prime + 1)  - s(k\prime ) \leq n for every k\prime \in \BbbN 0. Therefore,
(5.28)

\| x(s(k\prime ))  - x(s(k\prime +1))\| 1 \leq 
s(k\prime +1) - 1\sum 
i=s(k\prime )

\| x(i+1)  - x(i)\| 1 \leq 2

s(k\prime +1) - 1\sum 
i=s(k\prime )

\| x(i+1)  - x(i)\| 

\leq 2[s(k\prime + 1)  - s(k\prime )]

\sqrt{} 
2\=\varepsilon 

L
\leq 2n

\sqrt{} 
2\=\varepsilon 

L
,

where in the second inequality we used part 3 of Lemma A.1 to bound each of the
summands of the left-hand side, and in the third inequality we used (5.26). Assume
now by contradiction,

dist1(x(s(k\prime +1)), Al) > (g(x(s(k\prime +1)))/\theta )1/p .

Then by (5.27) applied to s(k\prime + 1) instead of \=k, there must necessarily exist j \not = l
such that

dist1(x(s(k\prime +1)), Aj) \leq (g(x(s(k\prime +1)))/\theta )1/p .

In particular we have
(5.29)

\| x(s(k\prime ))  - x(s(k\prime +1))\| 1 \geq dist1(Al, Aj)  - dist1(x(s(k\prime +1)), Aj)  - dist1(x(s(k\prime )), Al)

\geq d - 

\Biggl( 
g(x(s(k\prime )))

\theta 

\Biggr) 1
p

 - 

\Biggl( 
g(x(s(k\prime +1)))

\theta 

\Biggr) 1
p

\geq d - 2

\Biggl( 
2
\surd 
L\=\varepsilon 

\theta 

\Biggr) 1
p

,

where we used (5.25) in the last inequality. But by the second condition of (5.23), we
have

(5.30) d - 2

\Biggl( 
2
\surd 
L\=\varepsilon 

\theta 

\Biggr) 1
p

> 2n

\sqrt{} 
2\=\varepsilon 

L
.
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Concatenating (5.28), (5.30), and (5.29), we get a contradiction and the claim is
proved. An immediate consequence of this claim is dist1(x(\tau ), Al) < \=r\ast by (5.27)
applied to \tau instead of \=k, where \tau \geq \=k is an index corresponding to a Case 1 or Case
2 step.

To finish the proof, first we have that there exists an index \=k \in [q(\=\varepsilon ), q(\=\varepsilon ) +
n  - 1] corresponding to a Case 1 or Case 2 step, since there can be at most n  - 1
consecutive Case 3 steps. Second, since by (5.27) we have dist1(x(\=k), Al) < \=r\ast and
\=k does not correspond to a Case 3 step, by the local identification Theorem 3.3

necessarily x
(\=k)
i = 0 \forall i \in IcAl

. Moreover, by the claim every Case 1 and Case 2

step following step \=k happens for points inside B1(Al, \=r\ast ) so it does not change the
components corresponding to IcAl

by the local identification Theorem 3.3. At the same

time, Case 3 steps do not increase the support, so that x
(\=k+l)
i = 0 for every i \in IcAl

,

l \geq 0. Thus active set identification happens in \=k \leq q(\=\varepsilon ) + n - 1 steps.

Remark 5.7. When we have an explicit expression for the convergence rate q(\varepsilon ),
then we can get an active set complexity bound using Theorem 5.6. For instance,
we can compare this result with the one for strongly convex objectives, assuming
C = 1, p = 2, \theta = u1/2, and f(x(k))  - f(x(k+1)) \leq h0q

k for some q \in (0, 1). These
conditions are always satisfied by strongly convex objectives. Applying the theorem
we obtain the active set complexity bound

(5.31) q(\=\varepsilon ) + n - 1 \leq 
\biggl\lceil 

max

\biggl( 
0,

ln(h0)  - ln(min(L, \=r4\ast u
2
1/16L))

ln(1/q)

\biggr) \biggr\rceil 
+ n,

which is always larger than the bound given in (4.5). This is expected, given the
weaker assumptions on the convergence of the objective and the weaker (at least in
the convex case) error bound.

Remark 5.8. Assume that strict complementarity holds at every stationary point,
so that the points in Ai have a common support, for i \in [1 :C]; cf. (5.14). Let

(5.32) cmin = min
x\in \scrX \ast 

min
j:xj \not =0

xj

be the minimal nonzero component of a stationary point. Then the method converges
to a set Al and identifies its support in at most q(\=\varepsilon ) + | IcAl

| iterations, where here the
conditions on \=\varepsilon have no explicit dependence on n:

\=\varepsilon < L , r(\=\varepsilon ) + l(\=\varepsilon ) < min(\=r\ast , cmin/2) ,

with r(\=\varepsilon ) =
\bigl( 
2
\surd 
L\=\varepsilon 
\theta 

\bigr) 1
p and l(\=\varepsilon ) = 2

\sqrt{} 
2\=\varepsilon 
L . We do not discuss the proof since it roughly

follows the same lines of arguments leading to the proof of Theorem 5.6.

5.4. Local active set complexity bound. A key hypothesis to ensure local
convergence to a strict local minimum is

(5.33) x(k) \in argmax\{ f(x) | x \in conv(x(k), x(k+1))\} ,

which, in particular, holds when \alpha k = \=\alpha k as it is proved in Lemma B.1. The property
(5.33) is obviously stronger than the usual monotonicity, and it ensures that the
sequence cannot escape from connected components of sublevel sets. When f is convex
it is immediate to check that (5.33) holds if and only if \{ f(x(k))\} is monotonically
nonincreasing.
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Theorem 5.9. Let x\ast be a stationary point which is also a strict local minimizer,
isolated from the other stationary points, with value \~f = f(x\ast ). Then let \beta be such
that there exists a connected component Vx\ast ,\beta of f - 1(( - \infty , \beta ]) satisfying

Vx\ast ,\beta \cap \scrX \ast = \{ x\ast \} = argmin\{ f(x) | x \in Vx\ast ,\beta \} .

Then for any x(0) \in Vx\ast ,\beta , the sequence \{ x(k)\} generated by the AFW with step size
\alpha k = \=\alpha k converges to x\ast and identifies the extended support in at most\Biggl\lceil 

max

\Biggl( 
4(f(x(0))  - \~f)

\tau 
,

8L(f(x(0))  - \~f)

\tau 2

\Biggr) \Biggr\rceil 
+ n

steps with

\tau = min\{ g(x) | x \in f - 1([m,+\infty )) \cap Vx\ast ,\beta \} ,

where
m = min\{ f(x) | x \in Vx\ast ,\beta \setminus Br\ast (x\ast )(x

\ast )\} .

Proof. As in the proof of Corollary 5.2, the assumptions of Theorem 5.1 are
satisfied with \rho = 1

2 . By point 1 of Lemma B.1, the condition \alpha k = \=\alpha k on the step

sizes implies that \{ x(k)\} satisfies (5.33). In particular, \{ x(k)\} cannot leave connected
components of level sets so that \{ x(k)\} \subset Vx\ast ,\beta and

lim
k\rightarrow \infty 

f(x(k)) \geq \~f .

By (5.7) and (5.9) it follows that

(5.34) f(x(0))  - \~f \geq [n1(T ) + n2(T )] min

\biggl( 
(g\ast T )2

4L
,
g\ast T
2

\biggr) 
.

Moreover, applying (5.8) we obtain

(5.35) n1(T ) + n2(T ) \geq T + | ST |  - | S0| 
2

\geq T  - n + 1

2
,

where the second inequality follows from | ST |  - | S0| \geq  - n + 1. Concatenating (5.34)
and (5.35) we get

(5.36) f(x(0))  - \~f \geq T  - n + 1

2
min

\biggl( 
(g\ast T )2

4L
,
g\ast T
2

\biggr) 
,

from which we have the following bound on g\ast T :

(5.37) g\ast T \leq max

\left(  \sqrt{} 8L(f(x(0))  - \~f)

T  - n + 1
,

4(f(x(0))  - \~f)

T  - n + 1

\right)  
for T \geq n. It is now straightforward to check that if

\=h =

\Biggl\lceil 
max

\Biggl( 
4(f(x(0))  - \~f)

\tau 
,

8L(f(x(0))  - \~f)

\tau 2

\Biggr) \Biggr\rceil 
+ n ,
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then

g\ast \=h < \tau .

Since (5.34) is derived considering the gap g only in Case 1 and Case 2 indexes, we

have that there exists \~h \leq \=h Case 1 or Case 2 index such that g(x(\~h)) < \tau . Therefore,

by the definition of \tau , we get f(x(\~h)) < m. We claim that x(h) \in Br\ast (x\ast )(x
\ast ) for every

h \geq \~h. Indeed, since f(x(\~h)) < m and \{ x(k)\} cannot leave connected components of
level sets we have for every h \geq \~h,

x(h) \in Vx\ast ,\beta \cap f - 1(( - \infty ,m)) \subset Br\ast (x\ast )(x
\ast ) ,

where the inclusion follows directly from the definition of m. Since the index \~h
corresponds to a Case 1 or a Case 2 step done in the active set region Br\ast (x\ast )(x

\ast ) by
the local identification Theorem 3.3 the method must have already done all the Case
3 steps needed to identify Ic(x\ast ). Then we obtain the active set complexity bound

(5.38) \~h \leq \=h =

\Biggl\lceil 
max

\Biggl( 
4(f(x(0))  - \~f)

\tau 
,

8L(f(x(0))  - \~f)

\tau 2

\Biggr) \Biggr\rceil 
+ n ,

as desired.

6. Conclusions. We proved general results for the AFW finite time active set
convergence problem, giving explicit bounds on the number of steps necessary to iden-
tify the extended support of a solution. As applications of these results we computed
the active set complexity for strongly convex functions and nonconvex functions. Pos-
sible expansions of these results are finding adaptations for other FW variants and,
more generally, for other first order methods. It also remains to be seen if these
identification properties of the AFW can be extended to problems with nonlinear
constraints.

Appendix A. Elementary inequalities. In several proofs we need some
elementary inequalities concerning the euclidean norm \| \cdot \| and the norm \| \cdot \| 1.

Lemma A.1. Given \{ x, y\} \subset \Delta n - 1, i \in [1 : n] we have that
1. \| ei  - x\| \leq 

\surd 
2(ei  - x)i holds; that

2. (y  - x)i \leq \| y  - x\| 1/2 holds; and
3. if \{ x(k)\} is a sequence generated on the probability simplex by the AFW, then

\| x(k+1)  - x(k)\| 1 \leq 2\| x(k+1)  - x(k)\| for every k.

Proof. 1. (ei  - x)j =  - xj for j \not = i, (ei  - x)i = 1  - xi =
\sum 

j \not =i xj . In particular

\| ei  - x\| =

\biggl( \sum 
j \not =i

x2
j + (ei  - x)2i

\biggr) 1
2

\leq 
\biggl( \biggl( \sum 

j \not =i

xj

\biggr) 2

+ (1  - xi)
2

\biggr) 1
2

=
\surd 

2

\biggl( \sum 
j \not =i

xj

\biggr) 
=

\surd 
2(ei  - x)i .

2. Since
\sum 

j\in [1:n] xj =
\sum 

j\in [1:n] yj so that
\sum 

(x - y)j = 0, we have

(y  - x)i =
\sum 
j \not =i

(x - y)j ,
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and as a consequence,

\| y  - x\| 1 =
\sum 

j\in [1:n]

| (y  - x)j | \geq (y  - x)i +
\sum 
j \not =i

(x - y)j = 2(y  - x)i .

3. We have x(k+1)  - x(k) = \alpha kd
(k) with d(k) = \pm (ei  - x(k)) for some i \in [1 : n]. By

homogeneity it suffices to prove \| d(k)\| \geq 1
2\| d

(k)\| 1. We have

\| d(k)\| \geq 1  - x
(k)
i =

1

2
(1  - x

(k)
i ) +

\sum 
j \not =i

x
(k)
j =

1

2
\| d(k)\| 1 ,

where in the first equality we used
\sum n

i=1 x
(k)
i = 1 (so that 1  - x

(k)
i =

\sum 
j \not =i x

(k)
j ) and

in the second equality we used 0 \leq x(k) \leq 1.

Appendix B. Technical results related to step sizes. We now prove
several properties related to the step size given in (4.2).

Lemma B.1. Consider a sequence \{ x(k)\} in \Delta n - 1 such that x(k+1) = x(k)+\alpha kd
(k)

with \alpha k \in \BbbR \geq 0, d
(k) \in \BbbR n. Let \=\alpha k be defined as in (4.2), let pk =  - \nabla f(x(k))\top d(k),

and assume pk > 0. Then we have the following:
1. If 0 \leq \alpha k \leq 2pk/(\| d(k)\| 2L), the sequence \{ x(k)\} has the property (5.33).
2. If \alpha k = \=\alpha k, then (5.3) is satisfied with \rho = 1

2 . Additionally, we have

(B.1) f(x(k))  - f(x(k+1)) \geq L
\| x(k+1)  - x(k)\| 2

2
.

3. If \alpha k is given by exact line search, then \alpha k \geq \=\alpha k and (5.3) is again satisfied
with \rho = 1

2 .

If \alpha k \leq \alpha max
k , the condition of point 1 implies 0 \leq \alpha k \leq 2\=\alpha k.

Proof. By the standard descent lemma [7, Proposition 6.1.2], we have

(B.2) f(x(k))  - f(x(k) + \alpha d(k)) \geq \alpha pk  - \alpha 2L\| d(k)\| 2

2
.

It is immediate to check

(B.3) \alpha \nabla f(x(k))\top d(k) + \alpha 2L\| d(k)\| 2

2
\leq 0

for every 0 \leq \alpha \leq 2pk

L\| d(k)\| 2 . Furthermore,

(B.4) \alpha pk  - \alpha 2L\| d(k)\| 2

2
\geq \alpha pk/2 \geq \alpha 2L\| d(k)\| 2

2

for every 0 \leq \alpha \leq pk

L\| d(k)\| 2 .

1. For every x \in conv(x(k), x(k+1)) \subseteq 
\bigl\{ 
x(k) + \alpha d(k) | 0 \leq \alpha \leq 2pk

L\| d(k)\| 2

\bigr\} 
, we have

f(x) = f(x(k) + \alpha d(k)) \leq f(x(k)) + \alpha \nabla f(x(k))\top d(k) + \alpha 2L\| d(k)\| 2

2
\leq f(x(k)) ,

where we used (B.2) in the first inequality and (B.3) in the second inequality.
2. We have

f(x(k))  - f(x(k+1)) = f(x(k))  - f(x(k) + \=\alpha kd
(k)) \geq \=\alpha kpk/2 ,

D
ow

nl
oa

de
d 

11
/1

8/
21

 to
 1

47
.1

62
.2

13
.1

11
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2494 I. M. BOMZE, F. RINALDI, AND D. ZEFFIRO

where we can apply (B.4) since 0 \leq \=\alpha k \leq pk

L\| d(k)\| 2 . Again by (B.4)

f(x(k)) - f(x(k+1)) = f(x(k)) - f(x(k) + \=\alpha kd
(k)) \geq \=\alpha 2

k

L\| d(k)\| 2

2
= L

\| x(k)  - x(k+1)\| 2

2
.

3. If \alpha k = \alpha max
k , then there is nothing to prove since \=\alpha k \leq \alpha max

k . Otherwise, we
have

(B.5) 0 =
\partial 

\partial \alpha 
f(x(k) + \alpha d(k))| \alpha =\alpha k

= \nabla f(x(k) + \alpha kd
(k))\top d(k),

and therefore,

(B.6)

 - \nabla f(x(k))\top d(k) =  - \nabla f(x(k))\top d(k) + \nabla f(x(k) + \alpha kd
(k))\top d(k)

=  - (\nabla f(x(k))  - \nabla f(x(k) + \alpha kd
(k)))\top d(k)

\leq L\| d(k)\| \| x(k)  - (x(k) + \alpha kd
(k))\| 

= \alpha kL\| d(k)\| 2 ,

where we used (B.5) in the first equality and the Lipschitz condition in the inequality.
From (B.6) it follows that

\alpha k \geq  - \nabla f(x(k))\top d(k)

L\| d(k)\| 2
\geq \=\alpha k,

and this proves the first claim. As for the second,

f(x(k))  - f(x(k) + \alpha kd
(k)) \geq f(x(k))  - f(x(k) + \=\alpha kd

(k)) \geq \=\alpha k

2
pk ,

where the first inequality follows from the definition of exact line search and the
second by point 2 of this lemma.

Corollary B.2. Under the hypotheses of Lemma B.1, assume that f(x(k)) is
monotonically decreasing and assume that for some subsequence k(j) we have x(k(j)+1)

= x(k(j)) + \=\alpha k(j)d
(k(j)). Then

\| x(k(j))  - x(k(j)+1)\| \rightarrow 0 .

Proof. By (B.1) we have

f(x(k(j)))  - f(x(k(j)+1)) \geq L

2
\| x(k(j))  - x(k(j)+1)\| 2,

and the conclusion follows by monotonicity and boundedness.

We now briefly recall the Armijo line search and the Wolfe conditions with a
couple of adaptations to our setting. For the Armijo search we impose the usual
condition of sufficient decrease

(B.7) f(x(k))  - f(x(k) + \alpha kd
(k)) \geq c1\alpha kpk ,

and assume that the tentative step sizes are given by \beta 
(0)
k = \alpha max

k , \beta 
(j+1)
k = \gamma \beta 

(j)
k for

c1, \gamma \in (0, 1).
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Lemma B.3. If \alpha k is determined by the Armijo line search described above, then

(B.8) \alpha k \geq min

\biggl( 
\alpha max
k , 2\gamma (1  - c1)

pk
L\| d(k)\| 2

\biggr) 
\geq min\{ 1, 2\gamma (1  - c1)\} \=\alpha k

with \=\alpha k = min(\alpha max
k , pk

L\| d(k)\| 2 ) as in (4.2), and (5.3) holds with \rho = c1 min\{ 1, 2\gamma (1  - 
c1)\} < 1.

Proof. From the upper bound on f given in (B.2) it follows that

(B.9) f(x(k))  - f(x(k) + \alpha d(k)) \geq c1\alpha pk for \alpha \in 
\biggl[ 
0, 2(1  - c1)

pk
L\| d(k)\| 2

\biggr] 
and

\alpha k > 2\gamma (1  - c1)
pk

L\| d(k)\| 2
.

Therefore,

(B.10) \alpha k \geq min

\biggl( 
\alpha max
k , 2\gamma (1  - c1)

pk
L\| d(k)\| 2

\biggr) 
\geq min\{ 1, 2\gamma (1  - c1)\} \=\alpha k ,

which proves (B.8). We also have

(B.11) f(x(k))  - f(x(k) + \alpha kd
(k)) \geq c1\alpha kpk \geq c1 min\{ 1, 2\gamma (1  - c1)\} \=\alpha kpk ,

where we used the Armijo condition (B.7) in the first inequality and (B.8) in the
second. Hence, by c1, \gamma \in (0, 1) and c1(1  - c1) \leq 1

4 , we get that (5.3) holds with
\rho = c1 min\{ 1, 2\gamma (1  - c1)\} < 1.

The weak Wolfe conditions [33] are (B.7) together with

(B.12)  - \nabla f(x(k) + \alpha kd
(k))\top d(k) \leq c2pk

for some c2 \in (c1, 1).

Lemma B.4. Assume \alpha k = min(\alpha max
k , \~\alpha k) with \~\alpha k satisfying the weak Wolfe con-

ditions. Then

(B.13) \alpha k \geq min

\biggl( 
\alpha max
k , (1  - c2)

pk
L\| d(k)\| 2

\biggr) 
\geq (1  - c2)\=\alpha k

and (5.3) holds with \rho = c1(1  - c2) < 1.

Proof. Case (a). \alpha k = \alpha max
k . Then, trivially, \alpha k \geq \=\alpha k and by point 2 of

Lemma B.1, (5.3) is satisfied with \rho = 1
2 .

Case (b). The second weak Wolfe condition holds. We have

(B.14)

c2pk \geq  - \nabla f(x(k) + \alpha kd
(k))\top d(k) = ( - \nabla f(x(k)) + (\nabla f(x(k))

 - \nabla f(x(k) + \alpha kd
(k))))\top d(k)

\geq pk  - \alpha kL\| d(k)\| 2 ,

where we used (B.12) in the first inequality. Rearranging (B.14) we obtain

(B.15) \alpha k \geq (1  - c2)pk
L\| d(k)\| 2

.
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As for part 1 we can now use the Armijo condition (B.7) to obtain (5.3) with \rho =
c1(1  - c2):

(B.16) f(x(k))  - f(x(k) + \alpha kd
(k)) \geq c1\alpha kpk \geq c1(1  - c2)\=\alpha kpk ,

where we used (B.15) in the second inequality. To conclude, since 1
4 \geq c1(1  - c1)

> c1(1  - c2) for 0 < c1 < c2 < 1, the bound (5.3) holds in both cases with \rho =
c1(1  - c2).

Appendix C. AFW complexity for generic polytopes. It is well known as
anticipated in the introduction that every application of the AFW to a polytope can be
seen as an application of the AFW to the probability simplex. Even though rewriting
an optimization problem on the simplex can lead to a dramatic increase in complexity,
this equivalence is still useful because it allows us to extend the properties we proved
on the simplex to generic polytopes. Furthermore, in practice the AFW only needs a
linear minimization oracle and the points appearing in the convex combination giving
the current iterate [31], while knowledge of the whole transformation between the
polytope and the simplex is not needed.

Let P be a polytope and f : P \rightarrow \BbbR n be a function with gradient having Lipschitz
constant L. In this section we show the connection between the active set and the face
of the polytope exposed by  - \nabla f(y\ast ), where y\ast is a stationary point for f . We then
proceed to show with a couple of examples how the results proved for the probability
simplex can be adapted to general polytopes. In particular, we generalize Theorem 4.3,
thus proving that under a convergence assumption the AFW identifies the face exposed
by the gradients of some stationary points. An analogous result is already well known
for the gradient projection algorithm, and was first proved in [14] building on [13],
which used an additional strict complementarity assumption but worked in a more
general setting than polytopes, that of convex compact sets with a polyhedral optimal
face.

Before stating the generalized theorem we need to introduce additional notation
and prove a few properties mostly concerning the generalization of the simplex mul-
tiplier function \lambda to polytopes.

To define the AFW algorithm we need a finite set of atoms \scrA such that conv(\scrA ) =
P . As for the probability simplex we can then define for every a \in \scrA the multiplier
function \lambda a : P \rightarrow \BbbR by

\lambda a(y) = \nabla f(y)\top (a - y) .

Finally, let A be a matrix having as columns the atoms in \scrA , so that A is also a linear
transformation mapping \Delta | \scrA |  - 1 in P with Aei = Ai \in \scrA (but the same results hold
with the same proofs if we have an affine transformation ei \rightarrow Aei + b).

In order to apply Theorem 3.3 we need to check that the transformed problem

min\{ f(Ax) | x \in \Delta | \scrA |  - 1\} 

still has all the necessary properties under the assumptions we made on f . Let \~f(x) =
f(Ax). First, it is easy to see that the gradient of \~f is still Lipschitz. Also \lambda is invariant
under affine transformation, meaning that \lambda Ai(Ax) = \lambda i(x) for every i \in [1 : | \scrA | ],
x \in \Delta | \scrA |  - 1. Indeed,

\lambda Ai(Ax) = \nabla f(Ax)\top (Ai  - Ax) = \nabla f(Ax)\top A(ei  - x) = \nabla \~f(x)\top (ei  - x) = \lambda i(x) .

Let Y \ast be the set of stationary points for f on P , so that by invariance of multipliers
\scrX \ast = A - 1(Y \ast ) is the set of stationary points for \~f . The invariance of the identification
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property follows immediately from the invariance of \lambda : if the support of the multiplier
functions for f restricted to B is \{ Ai\} i\in Ic , then the support of the multiplier functions
for \~f restricted to A - 1(B) is Ic.

We now show the connection between the face exposed by  - \nabla f and the support
of the multiplier function. Let y\ast = Ax\ast \in Y \ast , and let

P \ast (y\ast ) = \{ y \in P | \nabla f(y\ast )\top y = \nabla f(y\ast )\top y\ast \} 
= argmax\{  - \nabla f(y\ast )\top y | y \in P\} = \scrF ( - \nabla f(y\ast ))

be the face of the polytope P exposed by  - \nabla f(y\ast ). We also define

I(y\ast ) = \{ a \in \scrA | \lambda a(y\ast ) = 0\} , Ic(y\ast ) = \scrA \setminus I(y\ast ) .

The complementarity conditions for the generalized multiplier function \lambda can be stated
very simply in terms of inclusion in P \ast (y\ast ): since y\ast \in P \ast (y\ast ) we have \lambda a(y\ast ) = 0
for every a \in P \ast (y\ast ), \lambda a(y\ast ) > 0 for every a /\in P \ast (y\ast ). But P is the convex hull of
the set of atoms in \scrA so that the previous relations mean that the face P \ast (y\ast ) is the
convex hull of I(y\ast ),

P \ast (y\ast ) = conv(\{ a \in \scrA | \lambda a(y\ast ) = 0\} ) = conv(I(y\ast )) ,

or in other words since \lambda Ai(y\ast ) = 0 if and only if i \in I(x\ast ),

(C.1) P \ast (y\ast ) = conv(\{ a \in \scrA | a = Ai, i \in I(x\ast )\} ) .

A consequence of (C.1) is that given any subset B of P with the SIP, we necessarily
get P \ast (w) = P \ast (z) for every w, z \in B, since I(w) = I(z). For such a subset B we
can then define

P \ast (B) = P \ast (y\ast ) for any y\ast \in B ,

where the definition does not depend on the specific y\ast \in B considered. We can now
restate Theorem 4.3 in slightly different terms.

Theorem C.1. Let \{ y(k)\} be a sequence generated by the AFW on P , and let
\{ x(k)\} be the corresponding sequence of weights in \Delta | \scrA |  - 1 such that \{ y(k)\} = \{ Ax(k)\} .
Assume that the step sizes satisfy \alpha k \geq \=\alpha k (using \~f instead of f in (4.2)). If there
exists a compact subset B of Y \ast with the SIP such that y(k) \rightarrow B, then there exists
M such that

y(k) \in P \ast (B) for every k \geq M .

Proof. The proof follows from Theorem 4.3 and the affine invariance properties
discussed above.

In Theorem C.1, in order to compute \=\alpha k the Lipschitz constant L of \nabla \~f (defined
on the simplex) is necessary. When optimizing on a general polytope, the calculation
of an accurate estimate of L for \~f may be problematic. However, by Lemma B.1 if
the AFW uses exact line search, the step size \=\alpha k (and, in particular, the constant L)
is not needed because the inequality \alpha k \geq \=\alpha k is automatically satisfied.

We now generalize the analysis of the strongly convex case. The technical prob-
lem here is that strong convexity, which is used in Corollary 4.6, is not maintained
by affine transformations, so that instead we have to use a weaker error bound condi-
tion. As a possible alternative, in [31] linear convergence of the AFW is proved with
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dependence only on affine invariant parameters, so that any version of Theorem 3.3
and Corollary 4.6 depending on those parameters instead of u1, L would not need this
additional analysis.

Let y\ast be the unique minimizer of f on P , and let r\ast (y\ast ) = r\ast (x) for any x such
that Ax = y\ast , where by the invariance of multipliers r\ast (y\ast ) is well defined. Then let
u > 0 be the strong convexity constant of f , so that

f(y) \geq f(y\ast ) +
u

2
\| y  - y\ast \| 2 .

The function \~f inherits the error bound condition necessary for Corollary 4.6 from
the strong convexity of f : for every x \in \Delta | \scrA |  - 1 by [4, Lemma 2.2], we have

dist(x,\scrX \ast ) \leq \theta A\| Ax - y\ast \| ,

where \theta A is the Hoffman constant related to [AT , [I; e; - e]T ]T . As a consequence, if
\~f\ast is the minimum of \~f ,

\~f(x)  - \~f\ast = f(Ax)  - f(y\ast ) \geq u

2
\| Ax - y\ast \| 2 \geq u

2\theta 2A
dist(x,\scrX \ast )2,

and using that n\| \cdot \| 2 \geq \| \cdot \| 21, we can finally retrieve an error bound condition with
respect to \| \cdot \| 1:

(C.2) \~f(x)  - \~f\ast \geq u

2n\theta 2A
dist1(x,\scrX \ast )2 .

Having proved this error bound condition for \~f we can generalize (3.5).

Corollary C.2. The sequence \{ y(k)\} generated by the AFW is in P \ast (y\ast ) for

k \geq max

\biggl( 
0,

ln(h0)  - ln(uAr\ast (y\ast )2/2)

ln(1/q)

\biggr) 
+ | Ic(y\ast )| ,

where q \in (0, 1) is the constant related to the linear convergence rate f(y(k)) - f(y\ast ) \leq 
qk(f(y(0))  - f(y\ast )), uA = u

2n\theta 2
A
.

Proof. Let I = \{ i \in [1 : | \scrA | ] | Ai \in I(y\ast )\} , P \ast = P \ast (y\ast ). Since P \ast = conv(\scrA \cap P \ast )
and by (C.1) conv(\scrA \cap P \ast ) = conv(\{ Ai | i \in I\} ), the theorem is equivalent to proving
that for every k larger than the bound, we have y(k) \in conv(\{ Ai | i \in I\} ). Let
\{ x(k)\} be the sequence generated by the AFW on the probability simplex, so that
y(k) = Ax(k). We need to prove that, for every k larger than the bound, we have

x(k) \in conv(\{ ei | i \in I\} ) ,

or in other words, x
(k)
i = 0 for every i \in Ic.

Reasoning as in Corollary 4.6 we get that dist1(x(k),\scrX \ast ) < r\ast (y\ast ) for every

(C.3) k \geq ln(h0)  - ln(uAr\ast (y\ast )2/2)

ln(1/q)
.

Let \=k be the minimum index such that (C.3) holds. For every k \geq \=k there exists
x\ast \in \scrX \ast with \| x(k)  - x\ast \| 1 < r\ast (y\ast ). But \lambda i(x) = \lambda Ai(y\ast ) for every x \in \scrX \ast by the
invariance of \lambda , so that we can apply Theorem 3.3 with fixed point x\ast and obtain

that if Jk = \{ i \in Ic | x(k)
i > 0\} , then Jk+1 \leq max(0, Jk  - 1). The conclusion follows

exactly as in Corollary 4.6.
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