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Abstract

Several fundamental problems that arise in optimization and computer science can be cast
as follows: Given vectors v1, . . . , vm ∈ R

d and a constraint family B ⊆ 2[m], find a set S ∈ B
that maximizes the squared volume of the simplex spanned by the vectors in S. A motivating
example is the ubiquitous data-summarization problem in machine learning and information
retrieval where one is given a collection of feature vectors that represent data such as documents
or images. The volume of a collection of vectors is used as a measure of their diversity, and
partition or matroid constraints over [m] are imposed in order to ensure resource or fairness

constraints. Even with a simple cardinality constraint (B =
(
[m]
r

)
), the problem becomes NP-

hard and has received much attention starting with a result by Khachiyan [Kha95] who gave an
rO(r) approximation algorithm for this problem. Recently, Nikolov and Singh [NS16] presented
a convex program and showed how it can be used to estimate the value of the most diverse
set when there are multiple cardinality constraints (i.e., when B corresponds to a partition
matroid). Their proof of the integrality gap of the convex program relied on an inequality by
Gurvits [Gur06], and was recently extended to regular matroids [SV17, AO17]. The question
of whether these estimation algorithms can be converted into the more useful approximation
algorithms – that also output a set – remained open.

The main contribution of this paper is to give the first approximation algorithms for both
partition and regular matroids. We present novel formulations for the subdeterminant maxi-
mization problem for these matroids; this reduces them to the problem of finding a point that
maximizes the absolute value of a nonconvex function over a Cartesian product of probability
simplices. The technical core of our results is a new anti-concentration inequality for dependent
random variables that arise from these functions which allows us to relate the optimal value of
these nonconvex functions to their value at a random point. Unlike prior work on the constrained
subdeterminant maximization problem, our proofs do not rely on real-stability or convexity and
could be of independent interest both in algorithms and complexity where anti-concentration
phenomena have recently been deployed.
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1 Introduction

A variety of problems in computer science and optimization can be formulated as the following
constrained subdeterminant maximization problem: Given a positive semi-definite (PSD) matrix
L ∈ R

m×m and a family B of subsets of [m] := {1, 2, . . . ,m}, find a set S ∈ B that maximizes
det(LS,S) where LS,S is the principal sub-matrix of L corresponding to rows and columns from
S. Equivalently, if L = V ⊤V where V ∈ R

d×m is a Cholesky decomposition of L, and V1, . . . , Vm

correspond to the columns of V , then the problem is to output a set S ∈ B that maximizes the
squared volume of the parallelepiped spanned by the vectors {Vi : i ∈ S}. If the family B is specified
explicitly as a list of its members, this optimization problem, trivially, has an efficient algorithm.
The interesting case of the problem is when |B| is large (possibly exponential in m) and an efficient
implicit representation or an appropriate separation oracle is given.

This problem, in its various avatars, has received significant attention in optimization, ma-
chine learning, and theoretical computer science due to its practical importance and mathematical
connections. In geometry and optimization, the vector formulation of the subdeterminant maxi-
mization problem for the family B =

(
[m]
r

)
is related to several volume maximization [GKL95] and

matrix low-rank approximation [GT01] problems. In mathematics, the probability distribution on
2[m] in which a set S ⊆ [m] has probability Pr(S) ∝ det(LS,S) is referred to as a determinantal point
process (DPP); see [Lyo02]. DPPs are important objects of study in combinatorics, probability,
physics and, more recently, in computer science as they provide excellent models for diversity in ma-
chine learning [KT12]. Here, the constrained subdeterminant maximization problem corresponds
to a constrained MAP-inference problem – that of finding the most probable set from the family
B; see [CDKV16, CDK+17] for related problems on DPPs. Different constraint families can be
employed to ensure various priors, resource, or fairness constraints on the probability distribution.

Algorithmically, even the simplest of constraints make the constrained subdeterminant maxi-
mization problem NP-hard; for instance, when B =

([m]
r

)
. As the set B becomes more complicated,

algorithms for the constrained subdeterminant maximization problem roughly fall into two classes:
1) approximation algorithms that output a set S ∈ B such that det(LS,S) is within some factor of
the optimal value and, (2) estimation algorithms that just output a number that is within some
factor of the optimal value.

Approximation algorithms for the constrained subdeterminant maximization problem are rare;
[Kha95] proposed the first polynomial-time approximation algorithm for the problem when B =([m]

r

)
which achieved an approximation factor of rO(r) and, importantly, did not depend on the

entries of the underlying matrix. This result was improved by [Nik15] where an algorithm which
achieved an approximation factor of er was presented. On the other hand, it was shown [SEFM15,
ÇM09] that there exists a constant c > 1 such that approximating the B =

([m]
r

)
case with approx-

imation ratio better than cr remains NP-hard.
Among estimation algorithms, recently, [NS16] generalized the result of [Nik15] to the setting

when the family B corresponds to the bases of a partition matroid. They presented an elegant
convex program that allowed them to efficiently estimate the value of the maximum determinant
set from B to within a factor of er where r is the size of the largest set in the partition matroid
B. One of the main ingredients in their proof is an inequality due to [Gur06] concerning real
stable polynomials. Building on this work, [SV17, AO17] presented estimation algorithms for large
classes of families B, such as bases of a regular matroid. While the results of [NS16, SV17, AO17]
made interesting connections between convex programming, real-stable polynomials and matroids
to design estimation algorithms for the constrained subdeterminant maximization problem, the
question of whether these estimation algorithms can be converted into approximation algorithms
remained open.
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Making these approaches constructive is not only crucial for them to be deployed in the prac-
tical problems that motivated their study, mathematically, there seem to be barriers in doing so.
The main contribution of this paper is to present a new methodology to address the constrained
subdeterminant maximization problem that results in approximation algorithms for partition and
regular matroids. We obtain our results through a synthesis of novel nonconvex formulations for
these constraint families with a new anti-concentration inequality. Together, they allow for a simple
polynomial-time randomized algorithm that outputs a set S ∈ B with high probability. Approxima-
tion guarantees of our algorithms are close to prior non-constructive results in several interesting
parameter regimes. The simplicity and generality of our results suggest that our techniques, in
particular the anti-concentration inequality and its use in understanding nonconvex functions, are
likely to find further applications.

1.1 Overview of our contributions

Anti-concentration inequality. We start by describing the common component to both our
applications – an anti-concentration inequality. We consider multi-variate functions in which each
variable is uniformly and independently distributed over a probability simplex. Roughly, our anti-
concentration inequality says that if the restriction of such a function along each variable has a
certain anti-concentration property then the function is anti-concentrated over the entire domain.
Formally, the anti-concentration result applies whenever the multi-variate function satisfies the
following property.

Definition 1.1 (Anti-concentrated functions) For γ ≥ 1, a nonnegative measurable1 function
f : ∆d → R is called γ-anti-concentrated if for every c ∈ (0, 1)

Pr [f(x) ≥ c ·OPT] ≥ 1− γdc,

where x is drawn from the uniform distribution over ∆d and OPT := maxz∈∆d
f(z) is the maximum

value f takes on ∆d.
2

Similarly, for any r ≥ 1 and any p1, p2, . . . , pr ≥ 0, a nonnegative function f :
∏r

i=1 ∆pi → R

is said to be γ-anti-concentrated if for every coordinate i ∈ {1, 2, . . . , r}, and for every choice of
aj ∈ ∆pj for j 6= i, the function x 7→ f(a1, . . . , ai−1, x, ai+1, . . . , ar) is γ-anti-concentrated.

Perhaps one of the simplest examples of an anti-concentrated function is the univariate map t 7→
|at+b| over the domain [0, 1]. It is not hard to see that it satisfies the condition of Definition 1.1 for
γ = 2 (see Lemma 5.1). It also follows that for every multi-affine polynomial p ∈ R[x1, x2, . . . , xr]
the function x 7→ |p(x)| is 2-anti-concentrated. Another class of functions that satisfy such an anti-
concentration property arise by considering norms and volumes in Euclidean spaces; for instance,
functions of the form t 7→ ‖ut+ (1− t)v‖2 for vectors u, v.

Theorem 1.1 (Anti-concentration inequality) Let γ ≥ 1 be a constant. Let r ≥ 2 and
p1, . . . , pr be positive integers. For every γ-anti-concentrated function f :

∏r
i=1 ∆pi → R, if x

is sampled from the uniform distribution on
∏r

i=1 ∆pi, then

Pr

[
f(x) ≥ (γe2)−r ·

r∏

i=1

1

pi
·OPT

]
≥

1

2
,

where OPT := max{f(z) : z ∈
∏r

i=1 ∆pi} is the maximum value f takes on its domain.

1We always assume that the functions we deal with are regular enough. Formally, we require measurability with
respect to the Lebesgue measure.

2∆d denotes the standard (d− 1)−simplex, i.e., ∆d :=
{

x ∈ R
d :

∑d

i=1 xi = 1, x ≥ 0
}

.
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Consequently, the value of a γ-anti-concentrated function at a random point in its domain gives an
estimate of its maximum value. In the simplest non-trivial case, it applies to multi-affine functions
over the hypercube [0, 1]r and says that the value of the function at a random point is at least c−r

times its optimal value, with significant probability (where c > 1 is an absolute constant). It is
also easy to see that the bound in Theorem 1.1 is tight: For p(x) =

∏r
i=1 xi, one can show that the

probability that |p(x)| ≥ (3/4)r over a random choice of x ∈ [0, 1]r is exponentially small.
As an important special case of Theorem 1.1, consider the setting in which pi = 2 for i =

1, 2, . . . , r (i.e., the domain is the hypercube [0, 1]r) and f(x) := |p(x)| where p ∈ R[x1, . . . , xr] is
a multi-affine polynomial. Using the fact noted earlier that such an f is 2-anti-concentrated, we
conclude from Theorem 1.1 that for some absolute constant c > 1 and a uniformly random choice
of x ∈ [0, 1]r,

Pr

[
|p(x)| ≥ c−r · max

z∈[0,1]r
|p(z)|

]
≥

1

2
. (1)

This gives us a way to estimate the maximum of |p(x)| over [0, 1]r by just evaluating it on a certain
number of random points and outputting the largest one. However, this observation does not
directly give us much insight about the problem we typically would like to solve; that of maximizing
|p(b)| over binary vectors b ∈ {0, 1}r . Towards this, note that for a multi-affine polynomial p,

max
z∈{0,1}r

|p(z)| = max
z∈[0,1]r

|p(z)|.

Moreover, the above has a simple algorithmic proof that follows from the convexity of x 7→ |p(x)|
restricted to coordinate-aligned lines. This allows us to use the above algorithm to find a point
b ∈ {0, 1}r whose value is at most cr times worse than optimal given only an evaluation oracle for
p. In particular, no assumptions are made on the analytic properties of p, such as concavity or real
stability. In fact, in most interesting cases, such functions are highly nonconvex, hence standard
convex optimization tools do not apply.

Partition matroids. As a first application of Theorem 1.1, we provide an approximation al-
gorithm for the problem of subdeterminant maximization under partition constraints. Let P :=
{M1,M2, . . . ,Mt} be a partition of [m] := {1, 2, . . . ,m} into non-empty, pairwise disjoint subsets
and let b = (b1, b2, . . . , bt) be a sequence of positive integers. Then the set B := {S ⊆ [m] : |S∩Mi| =
bi for all i = 1, 2, . . . , t} is called a partition family induced by P and b. We first show that the
problem of finding the determinant-maximizing set under partition constraints can be reformulated
as

max
x∈∆

det
(
W (x)⊤W (x)

)1/2

where ∆ is a certain product of simplices, and W (x) is a matrix whose i-th column is a convex
combination of certain vectors derived from L = V ⊤V and the variables in x. Subsequently, we
show that such functions are 2-anti-concentrated, which allows us to apply Theorem 1.1 to obtain
the following result.

Theorem 1.2 (Subdeterminant maximization under partition constraints) There exists a
polynomial-time randomized algorithm such that given a PSD matrix L ∈ R

m×m, a partition
P = {M1,M2, . . . ,Mt} of [m] and a sequence of numbers b = (b1, b2, . . . , bt) ∈ N

t with
∑t

i=1 bi = r,
outputs a set S in the induced partition family B such that with high probability

det(LS,S) ≥ OPT · (2e)−2r ·
t∏

i=1

(
1

pi

)bi

,

where OPT := maxS∈B det(LS,S) and pi := |Mi| for i = 1, 2, . . . , t.
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Prior work by [NS16] outputs a random set whose value is at most er times worse than OPT
in expectation and unlike the theorem above, does not yield a polynomial-time approximation
algorithm, as the probability of success can be exponentially small (see Appendix A). Further, in
the case when pi = O(1) for all i and bi = 1 for all i (i.e., when every part has constant size and
exactly one vector from every part has to be selected) the approximation ratio of our algorithm is
cr for some constant c > 1, which, up to the constant in the base of the exponent, matches their
result.

Regular matroids. Our second result for the constrained subdeterminant maximization problem
is for the case of regular matroids (i.e., when the constraint family B arises as a set of bases of a
regular matroid; see Section 3). To apply Theorem 1.1 we consider the polynomial

h(x) = det(V XB⊤),

where X is a diagonal matrix with Xi,i := xi, B ∈ R
d×m is the linear representation of B and

V ∈ R
d×m is such that V ⊤V = L. We remark that this polynomial has also appeared in previous

work on matroid intersection and matroid parity, e.g., in [Lov79, Har09, CLL14]. We observe that
|h(x)| is 2-anti-concentrated and has a number of desirable properties, which allows us to prove

Theorem 1.3 (Subdeterminant maximization under regular matroid constraints) There
exists a polynomial-time randomized algorithm such that given a PSD matrix L ∈ R

m×m of rank d,
and a totally unimodular matrix B that is a representation of a rank-d regular matroid with bases
B ⊆ 2[m], outputs a set S ∈ B such that with high probability

det(LS,S) ≥ max(2−O(m), 2−O(d logm)) ·OPT,

where OPT := maxS∈B det(LS,S).

There are two recent results for this setting ([SV17] and [AO17]) that provide em- and ed-estimation
algorithms respectively. As in the case of the algorithm for partition matroids, these results only
give an estimate on the value of the optimal solution, and are not constructive. Our algorithm
matches the approximation guarantee of the above-mentioned results in certain regimes and also
outputs an approximately optimal set.

1.2 Discussion and future work

To summarize, motivated by applications in machine learning, we propose and analyze two algo-
rithms for subdeterminant maximization under matroid constraints. Both are based on random
sampling and the bounds on their approximation guarantees follow from our anti-concentration
result. These algorithms provide both an estimate of the value of the optimal solution as well as
a set with the claimed guarantee. The anti-concentration inequality allows us to relate the value
of a multi-variate nonconvex function at a random point to its value at the optimal point, and
multi-linearity allows us to round this random solution. Furthermore, the anti-concentration result
can be applied to any multi-linear polynomial and beyond. In particular, it neither relies on real
stability nor any other convexity-like property of the polynomial; this should be of independent in-
terest. We leave open the problem of extending the anti-concentration inequality from hypercubes
and products of simplices to more general bodies; this might allow us to improve the approximation
ratios.
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1.3 Other related work

A very general anti-concentration result for polynomial functions over convex domains was obtained
by [CW01]. However, there seem to be two issues in applying their result to our setting: 1) when
specialized to our setting, it implies a weaker bound of r−O(r) in Equation (1) to obtain a significant
probability of success and, 2) it does not seem to directly apply to the kind of domains we consider
in this paper (cartesian products of simplices). A more detailed discussion is presented in Section 5.
The above-mentioned result by [CW01] and, more generally, the anti-concentration phenomena has
found several applications in theoretical computer science, especially for Gaussian measures; see
for instance [O’D14, DDS16, CTV06, RV13].

2 Technical Overview

We start by describing the approach of [NS16] for the case of partition matroids. Consider the
following simple variant of the constrained subdeterminant maximization problem for partition
matroids: Given vectors v1, . . . , vr, u1, . . . , ur ∈ R

r the goal is to pick a vector wi ∈ {vi, ui} for each
i so as to maximize |det(W )|, where W ∈ R

r×r is a matrix that has the wis as its columns. Denote
by OPT the maximum value of the determinant in the above problem.

They start by reformulating the problem as polynomial maximization problem as follows. First,
define matrices Ai(xi) := xiviv

⊤
i + (1 − xi)uiu

⊤
i for i = 1, 2, . . . , r. Then, consider the polynomial

p(x, y) := det (
∑r

i=1 yiAi(xi)) and let g(x) be the polynomial that appears as the coefficient of∏r
i=1 yi in p(x, y).3 Multi-linearity of g can be used to reduce the task of finding OPT to that of

finding maxx∈[0,1]r g(x). Then, the difficulty that arises is that g(x) is hard to evaluate. To bypass

this, a general idea by [Gur06] allows them to approximate g(x) by infy>0
p(x,y)∏r
i=1 yi

, giving rise to the

following optimization problem involving two sets of variables

max
x∈[0,1]r

inf
y>0

p(x, y)∏r
i=1 yi

. (2)

Real stability of p(x, y) for any fixed x implies that this program can be efficiently solved using
convex programming. Their main result is that the value of this program is within a factor of er of
OPT. The key component in the proof of this bound is the above-mentioned result [Gur06] that,
in this context where p(x, y) is real-stable with respect to y, implies that, for all x ∈ [0, 1]r

g(x) ≤ inf
y>0

p(x, y)∏r
i=1 yi

≤ er · g(x). (3)

While this immediately implies that one can obtain a number that is within an er factor of OPT,
when trying to obtain an integral solution x ∈ {0, 1}r from the fractional optimal solution x⋆ ∈
[0, 1]r to (2), the intractability of g(x) becomes a bottleneck.4 The authors of [NS16] present a
rounding algorithm which, unfortunately, can require an exponential number of trials to find an
er-approximate solution.
Overview of the proof of Theorem 1.2. Our approach is based on a different formulation
of the problem as polynomial maximization, which has the advantage over g(x) that it is easy to
evaluate and does not rely on real-stability. For every i = 1, 2, . . . , r and t ∈ [0, 1] define a vector

3g(x) is also called the mixed-discriminant of the matrices Ai(xi).
4One can use Equation (3) r times to give an approximation algorithm with factor er

2

; we omit the details.
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wi(t) := (1 − t)vi + tui. Furthermore, for x ∈ [0, 1]r , let W (x) ∈ R
r be a matrix with columns

w1(x1), w2(x2), . . . , wr(xr). The polynomial that we consider is

det(W (x))

which is easy to evaluate for any x. As before, the multi-linearity of det(W (x)) implies the following:

max
x∈[0,1]r

|det(W (x))| = max
x∈{0,1}r

|det(W (x))| = OPT. (4)

Indeed, if we let f(x) := |det(W (x)|, then the multi-linearity of det(W (x)) implies that whenever we
fix all but one of the arguments of f , i.e., s(t) := f(t, y2, y3, . . . , yr) for some y2, y3, . . . , yr ∈ [0, 1],
then s attains its maximum at either 0 or 1. This means, in particular, that given any point
x ∈ [0, 1]r , one can efficiently find a point x̃ ∈ {0, 1}r such that f(x̃) ≥ f(x).

However, the nonconvexity of this formulation is a serious obstacle to solving the optimization
problem in Equation (4). This is where a key insight comes in: f shows a remarkable anti-
concentration property which, in turn, allows us to get an estimate of OPT by evaluating f at a
random point. Formally, the anti-concentration inequality (Theorem 1.1) applies to f and allows
us to deduce that

Pr [f(x) ≥ c−r ·OPT] ≥ 1
2

for some constant c > 1. This also results in a simple approximation algorithm to maximize
f : Sample a point x ∈ [0, 1]r uniformly at random, round x to a vertex x̃ ∈ {0, 1}r such that
f(x̃) ≥ f(x) as above, and output x̃ as a solution.

We should mention that at this point we could also attempt to invoke the following anti-
concentration result (here translated to our setting) proved by [CW01].

Theorem 2.1 (Theorem 2 in [CW01]) Let p ∈ R[x1, x2, . . . , xr] be a polynomial of degree r. If
a point x is sampled uniformly at random from the hypercube [0, 1]r, then for every β ∈ (0, 1)

Pr [|p(x)| ≤ βr ·OPT] ≤ C · β · r,

where C > 0 is an absolute constant.

When applied to our setting, observe that det(W (x)) is indeed a degree-r polynomial in r variables.
We have to pick β so as to make C · β · r < 1, i.e., for β = O(1/Cr), we obtain

Pr
[
f(x) ≥ r−O(r) ·OPT

]
≥ 1

2 .

This implies that the algorithm described above achieves an approximation ratio of (roughly) rr.
Our Theorem 1.1 is a certain strengthening of Theorem 2.1 which asserts that under the same
assumptions

Pr
[
|p(x)| ≥ c−r ·OPT

]
≥

1

2
,

for some absolute constant c > 1. In fact, Theorem 1.1 is a generalization of the above for a larger
class of functions (not only polynomials) and for more general domains – this is useful in the case
of general partition matroids.

We now show how to extend our algorithm to a general instance of the constrained subdetermi-
nant maximization problem under partition constraints and sketch a proof of Theorem 1.2. Recall
that in this problem we are given a PSD matrix L ∈ R

m×m of rank d and a partition family B
induced by a partition of [m] into disjoint sets M1,M2, . . . ,Mt and numbers b1, b2, . . . , bt ∈ N with∑t

i=1 bi = r. The goal is to find a subset S ∈ B(M) such that det(LS,S) is maximized. If we

8



consider a decomposition of L into L = V ⊤V for V ∈ R
d×m then the objective can be rewritten

as det(LS,S) = det(V ⊤
S VS). For simplicity, we assume that b1 = b2 = · · · = bt = 1, which can be

achieved by a simple reduction. To define the relaxation for the general case, for every part Mi for
i = 1, 2, . . . , t, introduce a vector xi ∈ ∆pi where pi := |Mi| and define a vector wi(xi) to be

wi(xi) :=

pi∑

j=1

xijv
i
j

where vi1, v
i
2, . . . , v

i
pi are the columns of V corresponding to indices in Mi. We denote by x the

vector (x1, x2, . . . , xr) and by W (x) ∈ R
d×r the matrix with columns w1(x1), w2(x2), . . . , wr(xr).

Finally we let
f(x1, x2, . . . , xr) := det(W (x)⊤W (x))1/2.

Note that f(x) is no longer a multi-linear polynomial, but as we show in Lemma 5.1 it is 2-anti-
concentrated. Having established this property, Theorem 1.2 follows. Indeed, as in the illustrative
example in the beginning, we can prove that given any fractional point x, we can efficiently find
its integral rounding (i.e., round every component xi to a vertex of the corresponding simplex ∆pi ,
for i = 1, 2, . . . , t) which then provides us with a suitable approximate solution.

Overview of the proof of Theorem 1.3. In the setting of Theorem 1.3 we are given a PSD
matrix L ∈ R

m×m of rank d and a family of bases B ⊆ 2[m] of a regular matroid of rank d. The
goal is to find a set that attains OPT := maxS∈B det(LS,S). The approach of [SV17] to obtain an
estimate on OPT was inspired by that of [NS16] for the partition matroid case and is as follows:5

Given the matrix L = V ⊤V , first, define the following polynomial

g(x) :=
∑

S∈B xS det(V ⊤
S VS).

This polynomial again turns out to be hard to evaluate. As before, an optimization problem
involving two sets of variables, x and y is set up. The purpose of y variables is to give estimates of
values of g(x) and the x variables are constrained to be in the matroid base polytope corresponding
to B. On the one hand, real stability along with the fact that B is a matroid allows them to compute
the optimal solution to this bivariate problem, on the other hand, with some additional effort, they
are able to push the result of [Gur06] to obtain roughly an em estimate of OPT. However, the main
bottleneck is that an iterative rounding approach for finding an approximate integral point does
not seem possible as the matroid polytope corresponding to B may not have a product structure
as in the partition matroid case.

We present a new formulation to capture OPT that does not suffer from the intractability of
the objective function and allows for rounding via a relaxation that maximizes a certain function h
over the hypercube [0, 1]m. Start by noting that the objective becomes det(LS,S) = det(V ⊤

S VS) =
det(VS)

2, which we can simply think of as maximizing |det(VS)| over S ∈ B. Let B ∈ Z
m×d be

the linear representation of the matroid B; i.e., for every set S ⊆ [m] of size d, if S ∈ B then
|det(BS)| = 1, and det(BS) = 0 otherwise. Next, consider h : [0, 1]m → R given by

h(x) := det(V XB⊤),

where X ∈ R
m×m is a diagonal matrix with Xi,i := xi for all i = 1, 2, . . . ,m. It is not hard to see

that h(x) is a polynomial in x and (using the Cauchy-Binet formula) can be written as

h(x) =
∑

S⊆[m],|S|=d

xS det(VS) det(BS),

5The approach of [AO17] is also similar.
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where xS denotes
∏

i∈S xi. Such a function was studied before in the context of matroid intersection
problems [Lov89, Har09, GT17]. Importantly, the restriction of h(x) to indicator vectors of sets of
size d is particularly easy to understand. Indeed, let 1S be the indicator vector of some set S ⊆ [m]
with |S| = d. We have

h(1S) = det(VS) det(BS) =

{
± det(VS) if S ∈ B,

0 if S /∈ B.

Hence, we are interested in the largest magnitude coefficient of a multi-linear polynomial h(x). The
maximum of |h(x)| over [0, 1]m is an upper bound for this quantity. The algorithm then simply
selects a point x ∈ [0, 1]m at random, which by Theorem 1.1 can be related to the maximum value
of |h(x)|, and then performs a rounding.

First, given x ∈ [0, 1]m it constructs a binary vector x̃ ∈ {0, 1}m such that |h(x̃)| ≥ |h(x)|; this
is possible because the function |h(x)| is convex along any coordinate direction. The vector x̃ is
then treated as a set S0 ⊆ [m], but its cardinality is typically larger than d. We then run another
procedure which repeatedly removes elements from S0 while not loosing too much in terms of the
objective. It is based on using h(1S0) as a certain proxy for the sum

∑
S⊆S0

|det(VS) det(BS)|. This

allows us to finally arrive at a set S ⊆ S0 of cardinality d, such that |h(1S)| ≥
(m
d

)−1
|h(1S0)|. The

set S is then the final output.
By applying Theorem 1.1 one can conclude that h(1S0) is within a factor of cm of the maximal

value of |h(x)|, which results in a 2O(m)-approximation guarantee for the algorithm. Alternatively,
by utilizing the fact that h is a polynomial of degree d, one can apply the result by Carbery-
Wright (see Theorem 2.1) to obtain a bound of roughly mO(d), which is better whenever m is large
compared to d.

Overview of the proof of Theorem 1.1. For the sake of clarity, we present only the hypercube
case of the anti-concentration inequality, which corresponds to taking p1 = p2 = · · · = pr = 2 in
the statement of Theorem 1.1. Recall the setting: We are given a function f : [0, 1]r → R≥0

that satisfies a one-dimensional anti-concentration inequality. I.e., for every function of the form
g(t) := f(x1, x2, . . . , xi−1, t, xi+1, . . . , xr) where xj ∈ [0, 1] for j 6= i are fixed and t ∈ [0, 1], it holds
that

Pr

[
g(t) < c · max

t∈[0,1]
g(t)

]
≤ 2c, (5)

where the probability is over a random choice of t ∈ [0, 1]. The goal is to prove a similar statement
for f(x), i.e., Pr [f(x) < α ·OPT] is small, where OPT is the maximum value f takes on the
hypercube and α is a parameter which we want to be as large as possible.

As an initial approach, one can define (for some c > 0) events of the form

Ai :=
{
x ∈ [0, 1]r : f(x1, x2, . . . , xi, x

⋆
i+1, . . . , x

⋆
r) ≥ c · f(x1, x2, . . . , xi−1, x

⋆
i , . . . , x

⋆
r)
}
,

where x⋆ := argmaxx f(x). Note crucially that the events A1, A2, . . . , Ar are not independent.
However, we can still write

Pr [f(x) ≥ cr ·OPT] ≥ Pr [A1 ∩A2 ∩A3 · · · ∩Ar]

= Pr[A1] ·Pr[A2|A1] ·Pr[A3|A1, A2] · · ·Pr[Ar|A1, A2, . . . , Ar−1].

From assumption (5) we know that

Pr[Ai|A1, A2, . . . , Ai−1] ≥ 1− 2c
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for all i = 1, 2, . . . , r and hence

Pr [f(x) ≥ cr ·OPT] ≥ (1− 2c)r.

To get a probability that is not exponentially small, one has to take the value of c roughly O(1/r),
in which case we recover the result by Carbery and Wright [CW01] in our setting. To go beyond
this, a tighter analysis is required. For this we consider the random variables

Zi :=
f(x1, x2, . . . , xi, x

⋆
i+1, . . . , x

⋆
r)

f(x1, x2, . . . , xi−1, x⋆i , . . . , x
⋆
r)

for i = 1, 2, . . . , r. Note that
∏r

i=1 Zi =
f(x)
OPT hence the goal reduces to proving that

Pr

[
r∏

i=1

Zi ≥ c−r

]
≥

1

2
.

To obtain such a bound, we first translate the product to a sum and define Xi := − logZi which
then reduces our task to proving

Pr

[
r∑

i=1

Xi ≤ O(r)

]
≥

1

2
. (6)

the anti-concentration assumption on f translates to the following convenient bound on the CDF
of Xi

Pr[Xi ≥ t|X1,X2, . . . ,Xi−1] ≤ min(1, 2e−t) ∀t∈R.

Hewever, again, the fact that Xi’s are not independet presents itself as a hurdle. To overcome it,
we prove a monotonicity result (Lemma 4.1). It asserts that one can replace the variables Xi in (6)
by independent copies Yi of a random variable with CDF t 7→ min(1, 2e−t). After establishing
this fact, it remains to obtain a tail bound for independent variables, for this, we simply apply
Chebyshev’s inequality.

2.1 Organization of the rest of the paper

We present some notation and preliminaries about matroids and measures in Section 3. In Section
4 we present the proof of our anti-concentration result, Theorem 1.1. In Section 5 we present a
proof of Theorem 1.2 for partition matroids. In Section 6 we present a proof of Theorem 1.3 for
regular matroids. In Section A we present an example to show that the [NS16] algorithm may not
yield a polynomial-time approximation algorithm.

3 Preliminaries

Simplices and Measures The d-dimensional Lebesgue measure (volume) on R
d is denoted by

λd. When the dimension is clear from the context, we use λ to denote the volume. Throughout
this chapter, the probability distributions we consider, are typically uniform over an appropriate
domain.

The standard (d−1)-simplex, denoted by ∆d is defined as the convex hull of e1, e2, . . . , ed ∈ R
d.

Notice that ∆d is a (d−1)-dimensional polytope which is embedded in R
d, and it inherits a (d−1)-

dimensional Lebesgue measure from the hyperplane it lies on. We use µd to denote the induced
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measure λd on the simplex ∆d, normalized so that µd(∆d) = 1. We often deal with Cartesian
products of simplices, which we denote by ∆ =

∏r
i=1 ∆pi, for some sequence p1, p2, . . . , pr ∈ N. For

a point x ∈ ∆, by xi we denote i-th component of x belonging to ∆pi and xij for j ∈ [pi] are the

components of xi within ∆pi . By V (∆), we denote the set of points of ∆ with integer coordinates.
We call V (∆) the set of vertices of ∆.

Multi-linear functions. A function f : Rm → R is called multi-linear if f is a polynomial
function where the degree of each variable is at most 1. Suppose that x1, . . . , xm are m variables.
We denote the monomial

∏
i∈S xi by xS for every S ⊆ [m]. Every multi-linear function can be

written in the form f(x) =
∑

S⊆[m] fSx
S where fS ’s are real numbers, called the coefficients of f .

A function f : Rm → R is called affine when f is a polynomial whose total degree is at most one. A
function f : Rp1 × · · · ×R

pr → R is called block-multi-linear if for every index i ∈ [r] and for every
choice of yj ∈ R

pj , j ∈ [r] \ {i} the function f(y1, . . . , xi, . . . , yr) is an affine function over Rpi.

Matroids. For a comprehensive treatment of matroid theory we refer the reader to [Oxl06].
Below we state the most important definitions and examples of matroids, which are most relevant
to our results. A matroid is a pair M = (U,I) such that U is a finite set and I ⊆ 2U satisfies
the following three axioms: (1) ∅ ∈ I, (2) if S ∈ I and S′ ⊆ S then S′ ∈ I, (3) if A,B ∈ I and
|A| > |B|, then there exists an element a ∈ A \ B such that B ∪ {a} ∈ I. The collection B ⊆ I
of all inclusion-wise maximal elements of M is called the set of bases of the matroid. It is known
that all the sets in B have the same cardinality, which is called the rank of the matroid. In this
paper we often work with sets of bases B of matroids instead of independent sets I, for this reason
we will also refer to a pair (U,B) as a matroid.

Linear and regular matroids. Let U = {W1,W2, . . . ,Wm} ⊆ R
n be a set of vectors. Let B

consists of all subsets of U which form a basis for the linear space generated by all the vectors in U .
M = (U,B) is called a linear matroid. A matrix A ∈ R

r×m is called a representation of a matroid
M = ([m],B), if for every set S ⊆ [m], S is independent in M if and only if the corresponding set
of columns {Ai : i ∈ S} is linearly independent. A matroid M = (M,B) is called a regular matroid
if it is representable by a totally unimodular real matrix. A matrix is called totally unimodular if
the determinant of any of its square submatrices belongs to the set {−1, 0, 1}.

Partition matroids. A matroid M = (M,B) is said to be a partition matroid if there exists
a partition P = {M1,M2, . . . ,Mt} of the ground set M and a sequence of non-negative integers
b = (b1, b2, . . . , bt) such that |B ∩Mi| = bi for all B ∈ B and i = 1, 2, . . . , t.

4 Anti-Concentration Inequality: Proof of Theorem 1.1

Before starting the proof of Theorem 1.1 we first need to establish a certain monotonicity result
that allows us to replace dependent random variables by their independent copies when deriving
tail bounds.

Lemma 4.1 (Monotonicity) Let Y1, Y2, . . . , Yr be real random variables with CDFs f1, f2, . . . , fr :
R → [0, 1] respectively, i.e., fi(x) := Pr[Yi ≤ x] for i ∈ [r] and x ∈ R. Suppose X1,X2, . . . ,Xr are
real random variables such that

Pr[Xi ≤ x|X1,X2, . . . ,Xi−1] ≥ fi(x) for every i = 1, 2, . . . , r and x ∈ R

then for every function G : Rr → R≥0 which is monotone with respect to every coordinate it holds

E [G(X1,X2, . . . ,Xr)] ≤ E [G(Y1, Y2, . . . , Yr)] .

12



Proof: We will prove the claim by induction on r. Consider the case of r = 1 first. Let g1 be
the CDF of X1, we have

E [G(X1)] =

∫
G(x1)dg1(x1).

where the above is a Riemann-Stieltjes integral with respect to g1. Since G is monotone and g1 ≥ f1,
it is an elementary fact on R-S integrals that

∫
G(x1)dg1(x1) ≤ G(x1)df1(x1) = E [G(Y1)]

and hence the claim for r = 1.
Suppose now that the claim holds for (r − 1) ∈ N, we will prove it for r. Denote

H(X1,X2, . . . ,Xr−1) := E [G(X1, . . . ,Xr)|X1, . . . ,Xr−1]

K(Y1, Y2, . . . , Yr−1) := E [G(Y1, . . . , Yr)|Y1, . . . , Yr−1]

(the conditional expectations). From the assumption and the r = 1 case we have that for every
tuple (x1, . . . , xr−1) ∈ R

r−1 we have

H(x1, . . . , xr−1) ≤ K(x1, . . . , xr−1).

Further:

E [G(X1, . . . ,Xr)] = E [H(X1,X2, . . . ,Xr−1)]

≤ E [H(Y1, Y2, . . . , Yr−1)]

≤ E [K(Y1, Y2, . . . , Yr−1)]

= E [G(Y1, . . . , Yr)]

where the transition from the first to the second line follows from the induction hypothesis.

Given the above lemma we are ready to prove Theorem 1.1.

Proof of Theorem 1.1: Let us fix any optimal point x⋆ := (x⋆1, . . . , x
⋆
r), i.e., such that

f(x⋆1, . . . , x
⋆
r) = OPT and consider random variables

Zi := pi
f(x1, x2, . . . , xi, x

⋆
i+1, . . . , x

⋆
r)

f(x1, x2, . . . , xi−1, x⋆i , . . . , x
⋆
r)

under a uniformly random choice of x ∈
∏r

i=1 ∆pi . We now have

f(x1, . . . , xr)

OPT
·

r∏

i=1

pi =

r∏

i=1

Zi,

because
∏r

i=1 Zi is a telescoping product. Since r ≥ 2 to prove the theorem it suffices to show that

Pr

[
r∏

i=1

Zi ≤ (γe2)−r

]
≤

1

r
.

From the definition of anti-concentration, for every i ∈ [r] and every c ∈ (0, 1) we have

Pr[Zi ≤ c|Z1, . . . , Zi−1] ≤ γc. (7)
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In this case it is more convenient to analyze sums than products, hence let us define

Xi := − logZi for all i = 1, 2, . . . , r.

Now our task reduces to finding an upper bound on the probability Pr [
∑r

i=1 Xi ≥ Ω(r)]. From (7)
we obtain that for every x ∈ R≥0 we have

Pr[Xi ≥ x|X1, . . . ,Xi−1] ≤ γe−x.

Let us now define Y1, . . . , Yr ∈ R≥0 to be independent random variables such that for every i ∈ [r]
and x ∈ R≥0

Pr[Yi ≥ x] = min
(
1, γe−x

)
. (8)

We claim that Lemma 4.1 implies that for every x ∈ R≥0 it holds that

Pr

[
r∑

i=1

Xi ≥ x

]
≤ Pr

[
r∑

i=1

Yi ≥ x

]
.

Indeed, to arrive at such a conclusion one can consider the function

G(t1, . . . , tr) :=

[
r∑

i=1

ti ≥ x

]

where [φ] is the Iverson bracket, i.e., it is 1 when φ holds and 0 otherwise. The function G is clearly
monotone and

E [G(X1,X2, . . . ,Xr)] = Pr

[
r∑

i=1

Xi ≥ x

]
.

It is now enough to derive a bound on Pr [
∑r

i=1 Yi ≥ x] for independent variables Y1, . . . , Yr dis-
tributed as in (8). To this end we simply apply the Chebyshev’s inequality. Let us now compute
the expectation and variance of a variable Y distributed as the Yi’s.

Let us denote the density of T by g(x) := γe−x, note also that Y ∈ (log γ,∞). We have

E [Y ] =

∫ ∞

log γ
y(−g′(y))dy = 1 + log(γ).

Similarly

E
[
(E [Y ]− Y )2

]
=

∫ ∞

log γ
(y − 1− log(γ))2(−g′(y))dy = 1.

Now from Chebyshev’s inequality we obtain that for any M > 0

Pr

[
∑

i=1

Yi ≥ E

[
∑

i=1

Yi

]
+M

]
≤

Var [
∑

i=1 Yi]

M2
,

and hence

Pr

[
∑

i=1

Yi ≥ r(1 + log γ) +M

]
≤

r

M2
.

Thus by taking M := r we obtain

Pr

[
∑

i=1

Yi ≥ r(2 + log γ)

]
≤

1

r
.
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Finally, translating this bound to Xi’s and then to Zi’s we conclude

Pr

[
r∏

i=1

Zi ≤
(
γe2
)−r

]
≤

1

r
,

which concludes the proof.

5 Partition Matroids: Proof of Theorem 1.2

5.1 Lemma on Anti-concentration

We start by showing the following lemma saying that the ℓ2 norm of a convex combination of
vectors is anti-concentrated.

Lemma 5.1 Let w1, w2, . . . , wp ∈ R
d be any vectors. Then the function f : ∆p → R defined as

f(x) =
∥∥∥
∑p

j=1 xjwj

∥∥∥ is 2-anticoncentrated.

Proof: We begin by establishing the fact for p = 2. To this end define g(x) := |x1 ‖w1‖ − x2 ‖w2‖|,
we claim that

∀x∈∆2 g(x) ≤ f(x).

The above claim follows simply from triangle inequality. Indeed

‖x1w1‖ = ‖x1w1 + x2w2 − x2w2‖ ≤ ‖x1w1 + x2w2‖+ ‖x2w2‖

and hence
‖x1w1‖ − ‖x2w2‖ ≤ ‖x1w1 + x2w2‖ .

By symmetry ‖x2w2‖ − ‖x1w1‖ ≤ ‖x1w1 + x2w2‖ follows as well. Given the claim and observing
that maxx∈∆2 f(x) = maxx∈∆2 g(x), it is enough to prove 2-anti-concentration of g, since then an
analogous result for f follows. This is in fact the subject of Fact 5.2, hence the p = 2 case follows.

The case of p ≥ 3 is proved differently, by taking advantage of the p = 2 case. The challenge to
prove it comes from the fact that generating a random point from a high-dimensional simplex ∆p

is not equivalent to simply generating its coordinates independently and uniformly at random and
then normalizing the obtained point so that it sums up to one. There are several known methods
for sampling a random point from ∆p, however, no “practical” method seems to be well suited for
this proof and below we simply use the basic definition to deal with it.

Consider any isometric embedding P of ∆p in R
p−1 where it is a full-dimensional polytope.

Then consider the uniform distribution over any box containing P . Conditioned on the sample
landing in P , the corresponding distribution is – by definition – uniform on P and thus (via the
embedding) uniform on ∆p.

Denote the vertices of ∆p in the embedding to be v1, v2, . . . , vp ∈ R
p−1. Let also g̃ : P → R be

the corresponding function g on P , i.e.,

∀x∈∆p g̃




p∑

j=1

xjvj


 = g(x).
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Assume without loss of generality that ‖w1‖ is the largest among ‖w1‖ , ‖w2‖ , . . . , ‖wp‖ and that
v1 = 0. Now, consider any point v ∈ P on the facet opposite to v1, i.e. v =

∑p
j=2 yjvj where

(y2, y3, . . . , yp) ∈ ∆p−1. For z ∈ [0, 1] consider

h(z) = g̃(zv1 + (1− z)v) =

∥∥∥∥∥∥
zw1 + (1− z)

p∑

j=2

yjwj

∥∥∥∥∥∥
.

From the p = 2 case h is 1-anti-concentrated and moreover maxz∈[0,1] h(z) = maxx∈∆p f(z) = ‖w1‖.
Thus for every ray [v1, v] (v ∈ conv{v2, . . . , vp}) we have an anti-concentrated function on it, whose
maximum coincides with the maximum of f , and the simplex P is a disjoint union of such rays.
Seemingly, this already implies anti-concentration of f , however, note that the distribution on the
ray [v1, v] induced from the uniform distribution over P is not uniform and hence the result does
not follow yet.

More formally, let us denote the distribution on [0, 1] which is induced from the uniform distri-
bution on P when restricted to [v1, v] ≡ [0, 1] by µv we would like to prove:

Pr
z∼µv

[h(z) < c · ‖w1‖] ≤ 2pc

but what we know is only that when z is uniformly distributed over [0, 1]:

Pr
z∼U [0,1]

[h(z) < c · ‖w1‖] ≤ 2c.

Thus it remains to understand µv. The density of µv can be derived from the hyperspherical
coordinate system and its Jacobian. In fact it follows that for any fixed ray [0, v] the density µv

on [0, 1] at a point z is proportional to zp−2. Thus the task of proving anti-concentration finally
reduces to the following inequality. Given a set A ⊆ [0, 1] of Lebesgue measure at most 2c, show
that ∫

A

zp−2

p− 1
dz ≤ 2pc.

Because of monotonicity this is equivalent to proving (note that we may assume that 2c < 1 here)

∫ 1

1−2c

zp−2

p− 1
dz ≤ 2pc,

which further reduces to
1− (1− 2c)p−1 ≤ 2pc

the above holds by Bernoulli’s inequality.

Fact 5.2 Let a1, a2 ∈ R be any numbers. Consider the function f : ∆2 → R given by f(x) =
|a1x1 + a2x2|. Then f is 1-anti-concentrated.

Proof: Let us translate the question to a 1−dimensional problem first. Let a = max(|a1|, |a2|) =
maxx∈∆2 f(x) and define g : [0, 1] → R by g(t) = |(1− t)a1 + ta2|. We would like to prove that
when t is sampled uniformly at random from [0, 1] then for every c ∈ (0, 1) we have

Pr[g(t) < c · a] ≤ 2c.
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Assume without loss of generality that g(0) = a ≥ g(1) and that g is not a constant function. There
are two cases: either g has a single root in [0, 1] or it has no roots. We analyze the former, as the
latter then also follows.

Let t0 ∈ (0, 1] be the root of g(t). It is not hard to see that t0 ≥
1
2 , as g(t− t0) is a symmetric

function. Now, the function g on [0, t0] is linear and hence

Pr
t∈[0,t0]

[g(t) < c · a] ≤ c,

and consequently
Pr [(g(t) < c · a) ∧ t ∈ [0, t0]] ≤ c · t0.

By symmetry and the fact that g(1) ≤ g(0) we have

Pr [(g(t) < c · a) ∧ t ∈ [t0, 1]] ≤ Pr [(g(t) < c · a) ∧ t ∈ [0, t0]] ,

and hence
Pr [g(t) < c · a] ≤ 2 · c · t0 ≤ 2 · c.

5.2 Proof of Theorem 1.2

Proof of Theorem 1.2: We start by observing that it suffices to prove the Theorem for the
case when b1 = b2 = · · · = bt = 1. Indeed, when bi’s are not all equal to 1, we can perform a simple
reduction to the all-ones case. Namely, we construct a new instance of the problem, where every
part Mi is repeated bi times. After doing so, we obtain a new instance with r parts M ′

1,M
′
2, . . . ,M

′
r

and b′1 = b′2 = . . . = b′r = 1.
Every feasible solution to the original instance corresponds to a feasible solution to the new

instance (with the same value). Conversely, every feasible solution with non-zero value corresponds
to a feasible solution in the original instance.

Finally, the bound on the approximation ratio follows easily by translating the bound in the
simple case b1 = b2 = . . . = br = 1 to the instance after reduction.

From now on we assume that b1 = b2 = · · · = bt = 1; in this case t = r. Let

L = V ⊤V

be the Cholesky decomposition of the PSD matrix L with V ∈ R
d×m. One can easily see that

LS,S = V ⊤
S VS , for all S ⊆ [m].

For every part Mi (i = 1, 2, . . . , t) consider the pi-simplex ∆Mi
indexed by the elements in Mi, i.e.

∆Mi
=



y ∈ [0, 1]Mi :

∑

j∈Mi

yj = 1



 .

Further, consider ∆ :=
∏t

i=1∆Mi
and a function f : ∆ → R defined as follows

f(x) := det
[
V (x)⊤V (x)

]1/2
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where V (x) ∈ R
d×t matrix, whose ith column is Vi(x) :=

∑
j∈Mi

xjvj . Note that when x ∈ ∆ is

a 0 − 1 vector, i.e., x = 1S for some set S ∈ B then f(x)2 = det(V ⊤
S VS). Thus, there exists a

natural bijection between the elements of B (bases of the partition matroid) and the vertices of
∆ =

∏t
i=1∆pi . Therefore, the optimization problem can be stated as the problem of maximizing

f over the vertices of ∆. That is

max {f(x) : x ∈ ∆ ∩ {0, 1}m}. (9)

We prove that maximizing f over integer points in ∆ is the same as maximizing it over the whole
polytope ∆. This, composed with an algorithm to round a fractional point to a vertex and an anti-
concentration result on f will allow us to conclude Theorem 1.2. We start with the former. Let us
fix all but the first block-coordinates of x ∈ ∆, i.e. x = (y, x′), where y ∈ ∆M1 and x′ ∈

∏t
i=2 ∆Mi

is fixed. Further, denote by V ′(x) the submatrix of V (x) composed of columns V2(x), . . . , Vt(x).
By the formula on the determinant of a block matrix, we have

det
[
V (x)⊤V (x)

]
= det

[
V ′(x)⊤V ′(x)

]
·
(
V1(x)

⊤ ·Π · V1(x)
)

where Π ∈ R
(t−1)×(t−1) is a certain projection matrix. Thus in particular, there exist vectors

{wj}s∈M1 such that

f(x) =

∥∥∥∥∥∥

∑

j∈M1

yjwj

∥∥∥∥∥∥
· det

[
V ′(x)⊤V ′(x)

]1/2
. (10)

Note that the above, as a function of y ∈ ∆M1 is maximized at some vertex y ∈ ∆M1∩{0, 1}
M1 . And

thus (by induction), the whole function f(x) is maximized at an integer vector. This observation
also implies a simple rounding algorithm: given any fractional point x ∈ ∆, go coordinate by
coordinate i = 1, 2, . . . , t and round it to a vertex which provides the largest value of f , this
requires to evaluate f at pi points only.

Thus so far we have proved that an (approximation) algorithm for finding a fractional maximizer
of f over ∆ can be turned into an algorithm maximizing det(V ⊤

S VS) over S ∈ B with the same
guarantee and polynomial overhead in the running time.

We prove that f is 2-anticoncentrated which implies that a value of f at a random point gives,
with high probability, a decent estimate of the optimal value. In fact, 2-anticoncentration, together
with Theorem 1.1 and the observation above implies Theorem 1.2 immediately.

To prove anticoncentration, we need to analyze how does f behave when all but one of its
coordinates are fixed. Without loss of generality fix all but the first coordinate. Note that by (10)

our goal becomes to prove that the function ∆M1 ∋ y 7→
∥∥∥
∑

j∈M1
yjwj

∥∥∥ is 2-anticoncentrated.

However, this exactly what we prove in Lemma 5.1.

6 Regular Matroids: Proof of Theorem 1.3

We start by reducing the subdeterminant maximization problem under a regular matroid constraint
to a polynomial optimization problem as follows. Let B1, B2, . . . , Bm ∈ R

d be the columns of B.
Since B is a representation of the matroid M, a set S ⊆ M is a basis of M if and only the set of
the vectors {Bi : i ∈ S} is linearly independent. Let L = V ⊤V be a Cholesky decomposition of the
PSD matrix L, for V ∈ R

d×m.
Let us now consider any set S ∈

([m]
d

)
and define IS := Diag (1S) . For any S ∈

([m]
d

)
we have

det
(
V ISB

⊤
)
= det

(
∑

i∈S

ViB
⊤
i

)
= det (VS) det

(
B⊤

S

)
.
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Since B is a totally unimodular matrix, |det(BS)| = 1 if S ∈ B(M) and 0 otherwise. Thus for all

S ∈
([m]

d

)

∣∣∣det
(
V ISB

⊤
)∣∣∣ =

{
|det(VS)| if S ∈ B,

0 otherwise.

Since for all S ∈
([m]

d

)
, det(LS,S) = det(V ⊤

S VS) = det(VS)
2, maximizing det(LS,S) over S ∈ B

is equivalent to maximizing |f(x)| for f(x) := det(V XB⊤) over all the 0-1 vectors x ∈ {0, 1}m

subject to
∑m

i=1 xi = d. We give an approximation algorithm for this problem which proceeds in
two phases.

Phase 1: Finding a Fractional Solution.

In the first phase, we drop the
∑m

i=1 xi = d condition and relax the 0− 1 condition to x ∈ [0, 1]m.
Our optimization problem then becomes

max
x

|f(x)|,

s.t. x ∈ [0, 1]m.
(11)

Our algorithm to find an approximate solution to (11) is as follows. We sample a polynomial number
of points x from [0, 1]m uniformly and independently at random. Then, we output the point with
the largest value of |f(x)|. We analyze the performance of this algorithm in two different regimes.
Large d. It follows from the Cauchy-Binet formula that

f(x) =
∑

S∈B

xS det(VS) det(BS). (12)

Moreover, f(x) is multi-affine and easy to compute (because it is just a determinant of an m×m
matrix). We show that |f | is 2-anti-concentrated. To this end, we show that for every i ∈ [m] and
every choice of yj ∈ [0, 1], j ∈ [m] \ {i}, the univariate function

τ 7→ |f (y1, . . . , yi−1, τ, yi+1, . . . , ym) |

is 2-anti-concentrated. Such a function is of the form τ 7→ |aτ + b| for some a, b ∈ R. 2-anti-
concentration of such functions follows easily from Lemma 5.1. Indeed, by setting d = 1 and p = 2
in Lemma 5.1 we obtain the 2-anti-concentration of (τ1, τ2) 7→ |τ1a1 + τ2a2|, which implies our
claim.

Theorem 1.1 implies now that if we sample a uniform point x from [0, 1]m then

Pr
[
|f(x)| > 2−m(2e2)−m ·OPT

]
≥ 1/2.

Where OPT := maxx∈[0,1]m |f(x)| is clearly an upper bound on maxS∈B |det(VS)|. We can amplify
the probability of success by repeating the experiment several times and hence, with high probability
obtain a point x̂ such that

|f(x̂)| > (2e)−2m ·OPT. (13)

Small d. From (12) it is clear that the function f is a polynomial of degree d in m variables.
According to Theorem 2 in [CW01], if we sample x uniformly from the unit hypercube [0, 1]m, then

Pr
[
|f(x)| ≤ βd ·OPT

]
≤ C · β ·m,

for any β > 0 and some absolute constant C > 0. By picking β = 1
2C·m , we conclude that with

constant probability we obtain a vector x̂ such that

|f(x̂)| >

(
1

2mC

)d

·OPT. (14)
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Phase 2: Rounding the Fractional Solution.

We first round x̂ obtained in the previous phase to a 0−1 vector, and then finally to a set Ŝ ∈
([m]

d

)
.

Since f is multi-affine, the restriction of f to the first coordinate is a 1-dimensional affine function.
Therefore, either

|f(0, x̂2, . . . , x̂d)| ≥ |f(x̂)| or |f(1, x̂2, . . . , x̂d)| ≥ |f(x̂)|.

Hence, we can round the first coordinate without decreasing the value of |f(x̂)|, using one call to
the evaluation oracle. We proceed to the next coordinates and round them one at a time. Let
y ∈ {0, 1}m be the outcome of the above rounding algorithm.

Let S0 ⊆ [m] such that 1S0 = y. It is likely that |S0| > d, hence we will need to remove several
elements from S0 to obtain a set of cardinality d. Define a function g : 2[m] → R to be

g(S) := f(1S) = det(VSB
⊤
S ).

Note in particular that g can be computed efficiently. Furthermore, by the Cauchy-Binet formula,
we have

g(S) =
∑

T∈([m]
d )

g(T ) =
∑

T∈([m]
d )

det(VT ) det(BT ) (15)

for every subset S ∈ 2[m]. We have |f(y)| = |f(1S0)| = |g(S0)|. Further, (15) implies that

∑

i∈S0

g(S0 \ {i}) = (|S0| − d)
∑

T∈(S0
d )

g(T ) = (|S0| − d)g(S0).

Consequently, there exists an i ∈ S0 such that:

|g(S0 \ {i})| ≥
|S0| − d

|S0|
|g(S0)|.

In our algorithm we find such an i and consider S1 := S0 \ {i}. This step of removing one element
is repeated until we arrive at a set Ŝ ⊆ [m] of cardinality d. In this process we can guarantee that

|g(Ŝ)| ≥ |g(S0)| ·

|S0|−d∏

j=1

j

j + d
≥

|g(S0)|(m
d

) .

Finally, since |g(Ŝ)| = |det(VŜ)|, we conclude:

|det(VŜ)| ≥
|f(y)|(

m
d

) >
1(
m
d

) max
(
(2e)−2m, (2dC)−d

)
·OPT

hence |det(VŜ)| > max
(
2−O(m), 2−O(d logm)

)
·OPT, and Theorem 1.3 follows.
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A Hard Example for the Nikolov-Singh Algorithm

In this section, we give an example that the algorithm proposed in [NS16] for the subdeterminant
maximization under partition constraints might fail to output a set with non-zero subdeterminant
with high probability, even though the expected value of the returned solution is high.

Lemma A.1 There exists an instance of the subdeterminant maximization problem under partition
constraints, for which the optimal value is equal to 1 and the Algorithm [NS16] outputs a non-zero
solution with exponentially small probability.

Proof: Let L = V ⊤V , where V ∈ R
r×m is a matrix with m = r2. The columns of V are

standard unit vectors e1, e2, . . . , er ∈ R
r each one repeated r times. We consider the problem of

maximizing det(V ⊤
S VS) over sets S ⊆ [m] of cardinality r. This is an instance of the subdeterminant

maximization problem under partition constraints, when there is only one partition of size m and
b1 = r. For such instances the algorithm of [NS16] specializes to that of [Nik15]. It first solves the
convex program

max
x∈P

log det

(
m∑

i=1

xiviv
⊤
i

)

where P = {x ∈ R
m :
∑m

i=1 xi = r, 0 ≤ x ≤ 1}. It is not hard to see that the point

z = (1/r, 1/r, . . . , 1/r) ∈ R
m
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is an optimal solution to the above optimization problem.
The output of the Nikolov-Singh algorithm is a random set S sampled according to a distribution

ρ given by ρ(S) ∝ zS for |S| = r. It can be simply seen to be the uniform distribution over all
subsets of [m] of size r.

Suppose that S is distributed according to ρ. It is immediate to see that det(V ⊤
S
VS) ∈ {0, 1}.

Moreover, the determinant is 1 if and only if exactly one vector is picked from every group of r
copies of standard unit vectors.

Pr
[
det(V ⊤

S VS) = 1
]
=

rr
(
r2

r

) ≈
rrr!

(rr)2
≈

rr · rr

(rr)2er
= e−r.

In the above estimate we used Stirling approximation and ignored small polynomial factors in r.
The above calculation implies that with probability exponentially close to one, the randomized

algorithm of [NS16] returns a trivial solution 0. To obtain a solution of value at least the expectation
(which is also roughly e−r) one needs to run this algorithm about er times.
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