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Compressive Computed Tomography Reconstruction through Denoising1

Approximate Message Passing∗2

Alessandro Perelli† , Michael Lexa‡ , Ali Can‡ , and Mike E. Davies§3

4

Abstract. X-ray Computed Tomography (CT) reconstruction from a sparse number of views is a useful way5
to reduce either the radiation dose or the acquisition time, for example in fixed-gantry CT systems,6
however this results in an ill-posed inverse problem whose solution is typically computationally7
demanding. Approximate Message Passing (AMP) techniques represent the state of the art for8
solving undersampling Compressed Sensing problems with random linear measurements but there9
are still not clear solutions on how AMP should be modified and how it performs with real world10
problems. This paper investigates the question of whether we can employ an AMP framework for11
real sparse view CT imaging? The proposed algorithm for approximate inference in tomographic12
reconstruction incorporates a number of advances from within the AMP community, resulting in the13
Denoising Generalised Approximate Message Passing CT algorithm (D-GAMP-CT). Specifically,14
this exploits the use of sophisticated image denoisers to regularise the reconstruction. While in15
order to reduce the probability of divergence the (Radon) system and Poission non-linear noise16
model are treated separately, exploiting the existence of efficient preconditioners for the former and17
the generalised noise modelling in GAMP for the latter. Experiments with simulated and real CT18
baggage scans confirm that the performance of the proposed algorithm outperforms statistical CT19
optimisation solvers.20

Key words. X-ray Computed Tomography, Compressed Sensing, Approximate Message Passing, Image denois-21
ing, Preconditioning, Iterative algorithms22

AMS subject classifications. 47A52, 49M30, 65J22, 94A0823

1. Introduction. X-ray Computed Tomography (CT) is one of the most widely used imag-24

ing techniques for medical diagnosis, image-guided radiotherapy, material characterization and25

security applications. Reducing X-ray radiation exposure is an important concern in particular26

for diagnostic CT where patients are subjected to repeated scans and for CT baggage scan-27

ners since the transmitted energy is related to the lifetime of the X-ray source. Furthermore,28

CT scanners employing Dual Energy (DE) systems tend to either reduce the acquisition data29

per energy or increase the dose and acquisition time. To lower the X-ray dose, two different30

strategies can be implemented: reducing the X-ray flux toward each detector element, i.e.31

the milliampere per seconds (low-mAs) per projection, or decrease the number of projections32

(sparse-views) per rotation. Similarly fixed gantry systems, e.g. [26], designed to accelerate33

scan time tend to further restrict the set of projections that can be acquired.34
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2 A. PERELLI, M. LEXA, A. CAN, AND MIKE E. DAVIES

CT image reconstruction from sparse views and low dose, achieved by conventional filtered35

back projection (FBP) algorithms, is generally affected by noticeable streaking artifacts, due36

to insufficient sampling, and is not of acceptable quality for diagnostic purposes [8]. There is37

therefore a need in CT imaging applications for high quality image reconstruction algorithms38

that can accommodate sparse views and low dose. Many approaches have been proposed39

to solve this problem [62]. In particular, state of the art statistical image reconstruction40

typically aims to minimize a cost function defined as a sum of a data fidelity term that takes41

into account the measurement’s statistical model and the geometry of the acquisition system,42

and a regularization term that imposes a prior model on the solution. Generally, the cost43

function for X-ray CT is either the negative log-likelihood function [18] or a penalized weighted44

least-squares (PWLS) cost function with a weighted quadratic approximation of the Poisson45

measurement noise model [28], [38]. Although several types of iterative algorithms have been46

designed to solve the statistical X-ray CT problem which can provide images with enhanced47

resolution and reduced artifacts compared to the FBP [57], in general current methods require48

many iterations to converge yielding a high computation time, and are often not suitable for49

clinical/industrial CT uses [6].50

A large number of iterative algorithms have been utilized for statistical CT reconstruction,51

among these are coordinate descent [73], preconditioned conjugate gradient [22] and ordered52

subsets [19]. Recently researchers have developed new algorithms with faster convergence by53

using splitting techniques [47], alternating direction method of multipliers based algorithm54

[12] or combining Nesterov momentum techniques with ordered subsets to accelerate gradient55

descent methods [31]. In general, any first-order iterative method requires at each iteration the56

computation of at least one forward and back projection operator, together with a proximal57

mapping to account for the regularization term. These represent the main contributions to the58

overall computational time. In order to accelerate the reconstruction, it is therefore necessary59

to either design faster CT operators or develop iterative algorithms that can converge in fewer60

iterations.61

In this work, we investigate the use of an emerging reconstruction method from Com-62

pressed Sensing (CS), called Approximate Message Passing (AMP) [17], for sparse view CT63

reconstruction. AMP based inference refers to a family of iterative algorithms first proposed64

in [17] for Compressed Sensing problems with an i.i.d. random Gaussian system matrix and65

a sparse signal model. AMP is a form of approximate Bayesian inference based on the notion66

of message passing or loopy belief propagation and is also strongly connected to the family67

of Expectation Propagation and Expectation Consistent approximation algorithms [42]. In68

essence, message passing algorithms work by iteratively updating marginal probabilities on69

the unknown variables until a locally consistent posterior probability model is obtained. The70

compelling aspect of the AMP family of algorithms is that they are designed to work in the71

large system limit (for random systems) which enables the central limit theorem to be invoked.72

This in turn simplifies the messages to be Gaussian distributions, requiring the algorithm to73

only pass means and variances. The result is a very efficient algorithm that is remarkably74

similar to the more traditional iterative shrinkage algorithm but with an additional ”Onsager75

correction term” [17]. It also has many similarities to the Alternating Direction Method of76

Multipliers (ADMM) algorithm [51].77
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COMPRESSIVE COMPUTED TOMOGRAPHY RECONSTRUCTION THROUGH DENOISING AMP 3

Today, AMP based algorithms provide the state-of-the-art performance in CS reconstruc-78

tion both in terms of computation and reconstruction performance, e.g. [69, 27, 35]. For79

Gaussian measurements and random i.i.d. Gaussian sensing matrix, the convergence of the80

algorithm has been theoretically proven and, furthermore, it can be accurately quantified81

through its state evolution (SE) equations, exhibiting exponential convergence, in practice82

converging in very few iterations, for soft-thresholding function [5], linear denoisers [4] and83

a class of non-separable denoisers [7]. AMP can also incorporate non-Gaussian noise models84

through Rangan’s Generalized Approximate Message Passing (GAMP) [50] and can approxi-85

mate the Minimum Mean Square Error (MMSE) estimator by using a correctly matched prior86

or by exploiting learning structures such as Expectation Maximization [69] or SURE [27]. It87

has even been shown to be capable of incorporating sophisticated black box denoising algo-88

rithms in place of a signal prior model, resulting in the Denoising AMP (D-AMP) framework89

[35]. However, a key criticism directed at AMP, and its generalizations, is that they are spe-90

cialist algorithms for i.i.d. and related measurement matrices and hence it is unclear to what91

extent they can be successfully applied to real word sensing problems.92

There has been some work exploring the convergence properties of AMP and its general-93

izations to other matrix classes [53], S-AMP [10], and linking the algorithm with more classical94

optimization strategies such as ADMM [51]. A key problem of AMP is that when the mea-95

surement matrix is poorly conditioned and/or contains a significant mean offset the algorithm96

tends to diverge. One strategy for tackling this that is commonly used in loopy belief propa-97

gation is to incorporate damping to help stabilize the algorithm, [59, 68]. However, damping98

comes at the cost of significantly reducing the algorithm’s convergence speed. It is also not99

clear what the value of the Onsager term is for general (deterministic) measurement matrices100

and whether the SE equations still provide a good prediction of the algorithm’s performance.101

Finally, Vector AMP [52] is a class of convergent algorithms with poorly conditioned matri-102

ces but the behavior with Fourier matrices is not rigorously understood. In summary, VAMP103

is a promising method for Fourier-based imaging while we do not know whether AMP based104

techniques can provide a competitive reconstruction framework to state-of-the-art methods105

for general real world imaging problems. The aim of this paper is to explore these issues for106

the specific case of sparse view CT imaging.107

1.1. Main Contributions. Our approach to develop an AMP based algorithm for CT108

reconstruction builds on a number of the recent developments in the field and, in particular,109

it makes use of the following key points: i) the design of a good preconditioner for the system110

based on the forward measurement model; ii) the inclusion of a non-linear Poisson noise model111

through the GAMP formulation; and iii) the incorporation of a broader class of signal prior112

than sparsity based models, through the D-AMP framework to enable the exploitation of113

state-of-the-art image denoising functions. We also demonstrate empirically the value of the114

Onsager term in the resulting algorithm and the accuracy of the generalized state evolution115

equations [50] even in this non-random setting.116

As far as the authors are aware, this is the first work aimed at designing a denoising117

message passing based algorithm for CT reconstruction. A key challenge in applying GAMP118

to CT is the fact that the CT measurement operator for parallel or fan beam geometry has the119

form of a Radon type transform and is very ill-conditioned. This would require a significant120
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4 A. PERELLI, M. LEXA, A. CAN, AND MIKE E. DAVIES

level of damping to stabilize it and would be extremely slow [53]. The solution that we follow121

here is to replace the ill-conditioned operator with a much better conditioned one through122

preconditioning, exploiting the filtered back projection property of the system model [37]. The123

same procedure can be applied for different CT geometries like 2D fan-beam and 3D helical.124

Another key challenge for CT reconstruction is how to accurately represent the Poisson125

noise model in the system. This can be approximated as a weighted L2 error criterion [19],126

but then the preconditioner needs to account for both the system operator and the weighting127

matrix. While such preconditioners have been proposed, e.g. [31], they do not exploit the128

geometry of the measurement system and the subsequent system remains poorly conditioned,129

resulting in only modest improvements in convergence. In contrast, we will see that in the130

GAMP framework [50] the system operator and the noise process are naturally decoupled.131

This allows us a fully exploit a geometric preconditioner [37].132

The final ingredient of our algorithm, which we call D-GAMP-CT, is the incorporation of133

the Block-matching and 3D filtering (BM3D) denoiser [14] to implicitly define a signal model134

through a sophisticated denoiser, rather than simply a sparse factorizable prior distribution135

[35]. While the proposed approach can leverage generic denoisers, we have utilized the BM3D136

denoiser since it provides state-of-the-art accuracy performance among deterministic denoisers137

and it also exploits a new implementation with reduced computational complexity [44]. We138

note that this framework is not restricted to the use of the BM3D denoiser but can be further139

extended to deep learning-based denoisers [74]. However for deep learning-based denoisers, it140

is crucial for achieving high denoising performance to have a high quality noiseless training141

database and it is often challenging or infeasible to obtain noiseless images in medical imaging.142

We will see that the flexibility of using such a denoiser within GAMP yields to a better143

reconstruction of the image structure compared to more popular regularization, such as Total144

Variation (TV) minimization.145

1.2. Relation to Existing Work. The main issue of stabilizing AMP algorithms for non146

i.i.d. measurement matrices has already received attention in the literature. As previously147

discussed, damping is a popular solution [53, 59, 68] and, for example, has been applied148

successfully to hyperspectral imaging reconstruction [70, 64]. Schemes have also been proposed149

for modifying the algorithm when the matrix contains a significant non-zero offset [68, 33].150

These approaches are fundamentally different from the one we present here where both issues151

are solved through our choice of a geometric preconditioner. Other aspects of our algorithm,152

such as the exploitation of general denoisers [35, 7], and the use of generalized noise models153

[50] have already appeared in the literature. Here we combine these to define a state of the154

art algorithm for sparse view CT reconstruction.155

A new class of AMP algorithms called Vector AMP (VAMP) [52] (and the similar or-156

thogonal AMP in [32]) that directly tackle the ill-conditioning problem in AMP by exploiting157

the singular value decomposition (SVD) of the measurement matrix. Such algorithms exhibit158

impressive performance and have provable reconstruction guarantees for the class of right-159

orthogonally invariant random matrices characterized by a scalar SE equation. The main160

intuition for such algorithms is that using the SVD of the measurement matrix , Φ = USVT ,161

the right-orthogonal random component, VT can be decoupled from the poorly conditioned162

component, US which is dealt with via a linear MMSE estimator component within the VAMP163
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iteration [52]. While this significantly increases the class of matrices for which AMP tech-164

niques can be applied it still requires the calculation of the SVD. For large imaging problems,165

such as 2D or 3D CT imaging such a calculation is not practical as the operators themselves166

are computed on the fly and not stored in matrix form. In contrast, the approach we propose167

here similarly removes the ill-conditioning, but by right-multiplying by an easy to compute168

preconditioner, thus making it more attractive to large scale CT imaging applications. An-169

other difference from VAMP is therefore that our preconditioner modifies the signal space and170

thus the signal model is defined in the preconditioned space rather than the original image171

space.172

Finally, it is useful to draw a link with the existing literature on model based iterative173

reconstruction (MBIR) for CT imaging. Current state-of-the-art MBIR solutions for CT are174

based on minimizing a regularized negative log-likelihood (NLL) cost function or its approx-175

imation using penalized weighted least squares, [19, 18, 39], which can be interpreted as a176

Bayesian maximum a posteriori (MAP) estimator. This MAP framework can also be mod-177

ified to incorporate denoising functions using the Plug-and-play (PnP) framework [48, 67].178

In contrast, our proposed algorithm takes the MMSE estimator perspective on AMP and we179

analyse the equations of the SE prediction associate with the MMSE formulation of GAMP.180

Furthermore, as MAP estimation reduces to an optimization problem, the conditioning effects181

of the noise and system models are intertwined such that typical preconditioning has only a182

limited benefit. Using a preconditioned GAMP framework allows us to decouple these two183

effects.184

1.3. Notation. Matrices or discrete operators and column vectors are written respectively185

in capital and normal boldface type, i.e. A and a to distinguish from scalars and continuous186

variables written in normal weight. (·T ) and (·H) refer respectively to the transpose and the187

conjugate transpose of a matrix and 1 refers to a vector of ones. Non-random quantities and188

random realizations are not distinguished typographically while random variable are written189

with capital letters. The conditional probability density function of y given x is denoted190

alternatively by pY |X(y|x) or p(y|x). A Gaussian random variable x with vector mean a and191

isotropic variance b is denoted by x ∼ N (a, bI). 〈a,b〉 = bTa refers to the vectors inner192

product.193

1.4. Structure of the Paper. The remainder of this paper is structured as follows: Section194

2 briefly describes the physical model of transmission X-ray CT from the continuous to discrete195

domain, introduces the Poisson non linear noise model and the approximations that lead to the196

Plug-and-play statistical CT reconstruction problem. The section concludes with a discussion197

on the effects of the system and noise models on the conditioning of the problem. Section198

3 reviews the original AMP algorithm for CS reconstruction, while Section 4 presents the199

proposed D-GAMP-CT algorithm highlighting the innovations which consist in utilizing the200

preconditioning for the Radon operator and incorporating the non linear CT Poisson noise201

model. Furthermore, we show empirical results for the SE of D-GAMP-CT. Finally, in Sections202

6 and 7 comprehensive results of D-GAMP-CT on a numerical phantom and experimental203

acquisitions of cargo luggage are shown together with a comparison of its performance with204

state-of-the-art algorithm for model-based CT reconstruction.205
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6 A. PERELLI, M. LEXA, A. CAN, AND MIKE E. DAVIES

2. X-ray Computed Tomography Model.206

2.1. Continuous-to-discrete model. X-ray CT produces images of attenuation coeffi-207

cients of the object or patient being scanned. A typical geometry of a CT scanner involves208

an incoherent source of X-ray radiation and a detector array recording the intensity of the209

radiation exiting the object along a number of paths. If the intensity of the source of radiation,210

I0, passing through the object is known, then Beer’s law provides the expected intensity after211

transmission, Ii of the i-th ray as:212

(2.1) Ii = I0e
−

∫
Li
µ(~ν)dl

+ εi213

where
∫
Li
·dl is the line integral along Li which is the path of the ith ray through the object214

from the source to the detector, µ(~ν) is the spatial distribution of attenuation and εi models215

the scatter and other background noise in the ith measurement. Equation (2.1) assumes a216

monoenergetic X-ray source which does not usually hold in practice. However, a common217

effective strategy for dealing with this consists of applying a polychromatic-to-monochromatic218

source correction pre-processing step [72], and in the rest of the paper we will therefore assume219

that we have a monoenergetic source or that it has already been appropriately corrected.220

To obtain a discrete model, we should approximate the continuous attenuation function,221

µ(~ν) ∈ L2(R2), here defined over the 2D domain, using a finite basis expansion:222

(2.2) µ(~ν) ≈
N∑
j=1

µjbj(~ν)223

where µ = [µ1, . . . , µN ]T is the vector of attenuation coefficients and bj(~ν) define the N basis224

functions associated with a discrete sampling on a
√
N ×

√
N Cartesian grid.225

According to the parameterization in Eq. (2.2), the line integral becomes a summation:226

(2.3)

∫
Li

µ(~ν)dl ≈
N∑
j=1

µj

∫
Li

bj(~ν)dl =
N∑
j=1

aijµj .227

where aij represents the i, j element of the system matrix describing the line integral along the228

i-path from source through object at pixel position j onto each detector. Repeating this over229

all lines defines the full view linear tomographic system matrix A = [aij ], where we assume230

that a sufficient density of lines has been taken such that the operator, A, is one-to-one and231

hence invertible on its range, e.g. [2]. The matrix A is constructed as an over-determined232

matrix of dimensions J × N where J is the product between the number of detectors Ndec233

and the number of projections Nθ.234

Considering the sparse view scenario, the sub-sampled CT operator can now be represented235

as the application of a row sub-selection operator, S of dimensions M × J , to A, such that236

the linear part of the measurement system can be described in matrix form by237

(2.4) Φ = SA ∈ RM×N238

with an effective undersampling ratio given by M/N .239
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In the case of normal exposure, the transmitted photon flux, Ii, follows a Poisson distri-240

bution. Using the discrete parameterization, Eqs. (2.2) and (2.3), we obtain the following241

discrete generalized linear model:242

(2.5) Yi ∼ Poisson
{
I0e
−zi + εi

}
, i = 1, . . . ,M243

where zi represents the discrete (linear) projection of the ith ray such that, z = Φµ.244

2.2. Sparse view CT reconstruction. The sparse view CT reconstruction problem aims245

to estimate the attenuation coefficients, µ, from the measurements y = [y1, . . . , yM ]T subject246

to Eq. (2.5) and any additional regularization. The negative log-likelihood (NLL) function247

for (2.5) given y has the form [18]:248

(2.6) − L(µ) =
M∑
i=1

{
yi log

[
I0e
−[Φµ]i + εi

]
−
[
I0e
−[Φµ]i + εi

]}
.249

In the case of high/normal exposure a common practice is to use a quadratic approximation250

of Eq. (2.6) which leads to a Weighted Least Squares (WLS) approximation [18] based on251

taking the logarithm of the data, li = log
(

I0
yi−εi

)
. This is equivalent to observing z corrupted252

with a data-dependent Gaussian noise, e, with inverse covariance W = diag
[

(yi−εi)2
yi

]
:253

(2.7) l = z + e = Φµ+ e254

The NLL can then be approximated as:255

(2.8) − L(µ) ≈ const. +
(
Φµ− l

)T
W
(
Φµ− l

)
.256

For low dosage the logarithm cannot be utilized since the argument may not be non-negative,257

therefore Eq. (2.6) has to be used.258

2.3. Conditioning in sparse view CT. It is instructive to consider the issues in minimizing259

(2.8). Most popular reconstruction algorithms solve a regularized form of (2.8) to further260

incorporate prior information of the image to be reconstructed:261

(2.9) min
µ∈RN+

1

2
||y −Φµ||2W + λP (µ)262

with P usually a convex and possibly non-smooth regularization function. Assuming (2.9)263

is convex, many first order methods, like FISTA, can be applied to solve the optimization264

problem. Furthermore, it is possible to integrate denoising priors, such as BM3D or deep265

learning-based denoisers into ADMM or other algorithms using the non-convex Plug-and-play266

PP-WLS framework. However the convergence rate of such methods is highly dependent on267

the conditioning of the problem which in turn is a function of the Lipschitz constant of the268

data fit term L = σmax(ΦTWΦ) where σmax is the maximum eigenvalue. A large value of L269

requires the use of a small step-size to ensure stability and results in slow convergence.270

This manuscript is for review purposes only.



8 A. PERELLI, M. LEXA, A. CAN, AND MIKE E. DAVIES

If the weighting matrix W ∝ I, we are faced with the challenge of finding a preconditioner271

for the system matrix Φ = SA and fortunately there exist good preconditioners for this272

scenario based on the geometry of the tomographic problem. For example, this has been used273

in [37] where solutions for the direct inversion of A through a filter back projection operator274

are exploited. Indeed, both W and ΦTΦ are separately easy to precondition.275

However, together, as in the PP-WLS framework, it is much more challenging. One276

approach that has been proposed [31] is to construct a diagonal preconditioner, D, that277

majorizes the matrix, ΦTWΦ:278

(2.10) D = diag
(
ΦTWΦ1

)
> ΦTWΦ279

This solution exploits the non-negativity property of the measurement matrix Φ. Unfortu-280

nately, this type of preconditioner does not take into account the geometric structure in the281

system and therefore typically only provides modest speed improvements. Moreover adaptive282

methods for estimating the Lipschitz constant of accelerated first order solvers for composite283

minimization [25], backtracking line search [11] or adaptive restart [43] have been proposed.284

For the problem of CT reconstruction, heuristic line search techniques have been used as in285

[29]. However, these methods do not fundamentally change the Lipschitz constant and so may286

still be limited by ill-conditioning.287

We will see that the GAMP framework enables us to avoid such problems by decoupling288

the measurement and noise components of the system. We are therefore able to exploit a289

preconditioner designed specifically for A which we detail next.290

2.4. Preconditioning of the Radon operator. The aim is to replace the poorly condi-291

tioned operator, A with a new operator, Ã, that has a small condition number, i.e. it is a292

nearly tight frame, by mapping to a preconditioned image space. For 2D CT with parallel pro-293

jections or fan-beam with appropriate resampling, our proposed solution is to use a cone filter294

applied in the image domain that amplifies high spatial frequencies, as has previously been295

used to accelerate reconstruction convergence of Conjugate Gradient solver for PWLS [22],296

[47](Sec. III D). In order to construct a discrete preconditioner, while staying geometrically297

exact to the continuous setting we follow the work [13]; since the operator ATA is approxi-298

mately block-Toeplitz for shift invariant imaging CT problem, circulant preconditioners also299

called ”Fourier” diagonalizing preconditioners have been applied to both image restoration300

problems [36](Sec. III A), and also shift-variant CT problems [22].301

The continuous 2D X-ray Transform is a linear operator A : L2(R2) → L2([0, π) × R) which302

computes the line integral of a function in the 2D input space. The Fourier central slice303

Theorem states that304

(2.11) A = F−1
γ Ωω−1F305

where F is the 2D Fourier transform (FT), Ω is the coordinate transform operator from306

Cartesian to polar coordinates, ω−1 = (γ cos δ, γ sin δ) and F−1
γ is the inverse 1D FT with307

respect to γ. The output of the linear operator is the sinogram that is a function of δ and the308

polar space variable ρ. Both A and ATA are normal-convolutional operators since309

(2.12) ATAµ = µ~
1

|γ|
310
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and in the frequency domain311

ATA = FH(Ωω−1)T (F−1
γ )HF−1

γ Ωω−1F (a)
= FH(Ωω−1)TΩω−1F(2.13)312

(b)
= FH |detJω|F = FHD

(
1

|ρ|

)
F313

where (a) follows from Fγ being an unitary operator and (b) derives from the back-projection314

CT filter formulation where Jω defines the Jacobian of ω and D
(

1
|ρ|

)
is the diagonal polar315

Fourier space operator. From the continuous to the discrete domain, the Fourier-based Radon316

transform can be written as [34, 40]:317

(2.14) A = F−1
γ Ωω−1F318

where F is the 2D unitary discrete Fourier transform operator which takes as input the image319

µ of dimensions I × I, with I =
√
N . The operator Ωω−1 performs a discretized version of320

the continuous coordinate transform in Eq. (2.12) which outputs a matrix of polar coordinate321

samples that are equally-spaced along ρ at the discrete locations {i∆ρ} for i = − I
2 , . . . ,

I
2 − 1.322

The degree of approximation between continuous to discrete domain within the Fourier-based323

approaches is determined by the non-uniform interpolation in the frequency space [45]. In [23],324

a min-max analysis provides the interpolator that minimizes the worst case error. Whilst no325

analytical formula exists for specifying the optimal choice of the scaling function, the Kaiser-326

Bessel interpolation kernel can provide good compromise between accuracy and simplicity.327

The non-uniform FFT operator Ωω−1F takes as input the I × I input image matrix328

and output a matrix of dimensions Ndec × Nθ; Fγ applies the 1D unitary discrete Fourier329

transform (DFT) matrix separately to each of the radial lines vectors of dimension Ndec and330

it is defined as the Kronecker product between a 1D DFT matrix F1 and the identity matrix,331

i.e. Fγ = F1 ⊗ INθ . Therefore, the final output is a vector of dimensions J = Ndec ·Nθ where332

Ndec is the number of detectors and Nθ is the number of angles (or number of projections)333

in agreement with (2.4). This formulation has the advantage of being approximately, up to334

the gridding interpolation, one-to-one. Since Ωω−1F and hence A are poorly conditioned, one335

solution is to replace A with a better conditioned modified transform Ã. This is equivalent336

to working in a new preconditioned signal space, x = Vµ via real-valued the linear transform337

(2.15) V = F−1C
1
2 F338

where C = diag
(

1√
a2+b2

)
is a diagonal matrix, on the vector space, that normalizes the FT339

components by the sampling rate relative to the Cartesian samples (a, b), with |ρ| =
√
a2 + b2,340

which corresponds to the point spread function of the ATA at a one-pixel point source located341

at the center of the field-of-view [13](V.A). By applying V as right preconditioner for A, we342

obtain the following expression343

(2.16) Ã = AV−1 = F−1
γ Ωω−1FF−1C−

1
2 F = F−1

γ Ωω−1C−
1
2 F344

It is worth noting that the operators defined in both Eqs. (2.14) and (2.16) and the linear345

transform V can be seen to remain real valued through the usual conjugate symmetry argu-346

ments. Since the operator C is symmetric and F1 is an orthogonal operator, the mapping347
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from image to image results348

ÃT Ã = (AV−1)T (AV−1) = V−T (ATA)V−1
349

= V−T [FH(Ωω−1)T (F−1
γ )HF−1

γ Ωω−1F]V−1 (a)
= V−T [FH(Ωω−1)TΩω−1F]V−1

350

(b)
= F−1C−

1
2 F
[
FHCF

]
F−1C−

1
2 F = I(2.17)351

where (a) comes from Fγ being 1D unitary discrete Fourier transform matrix and (b) follows352

from the linear transformation in Eq. (2.15). The operator ÃT Ã is real, symmetric and353

positive definite. Both the matrix preconditioner in Eq. (2.15) and its inverse have fast354

O(I log I) implementations. Other Fourier based preconditioners could have been chosen355

like the Pseudo Polar FT based left preconditioner. While it has the advantage that the356

operator is assured to be one-to-one and empirically the singular value spread of Ã, the left357

preconditioning (in the measurement space) changes the statistical noise model.358

For sparse view CT, the row sub-sampling operator S ∈ RM×J is applied, such that the359

overall linear measurement system can be expressed by360

(2.18) Φ̃ = SÃ ∈ RM×N .361

An important consequence of applying such preconditioning is that the image prior to be used362

in the GAMP reconstruction framework needs to be defined on x in the preconditioned space.363

It will also be necessary to apply a final post-processing step to map the estimated vector, x,364

back into the image domain µ.365

3. Review of the Generalized Approximate Message Passing algorithm. In this Section,366

we review the formulation of the GAMP algorithm proposed in [50] which is a generalization367

of the original AMP algorithm [17]. AMP belongs to a families of iterative algorithms for368

solving linear systems of the type in Eq. (2.8) based on different Gaussian approximations369

of loopy Belief Propagation. In this respect AMP, S-AMP, VAMP represent alternative ways370

to perform variational inference but all of them enjoy rigorous state evolution behavior. All371

these algorithms share the same iterative structure of performing a MAP or MSE estimation372

of the vector mean and scalar variance in the image domain and in the measurement domain.373

MAP or MSE− input domain MAP or MSE−measurement domain374

x = gin(r, τr) s = gout(p, τp)375

τx = τrg
′
in(r, τr) τs = −g′out(p, τp)376377

The difference between the algorithms relies on how the mean and variances are computed,378

i.e. the functions gin, gout together with the vectors r,p and to which classes of random379

measurement matrices they can be applied. We develop our framework based on the GAMP380

formulation which is detailed in the following and we will describe how it differs from the381

VAMP algorithm. GAMP considers a class of generalized linear Bayesian inference problems,382

precisely estimating an unknown high dimensional input vector µ ∈ RN observed by a mix-383

ing random linear operator Φ ∈ RM×N followed by a component-wise and nonlinear noise384

measurement model.385
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In detail, the Bayesian forward model consists of an unknown random vector µ generated386

from a prior separable distribution p(µ) =
∏N
i=1 p(µi); the input vector is then multiplied by a387

measurement matrix Φ whose elements are i.i.d. random Gaussian distributed N
(
0, 1

M

)
, i.e.388

z = Φµ. Finally each component of the vector z generates a nonlinear output yj , j = 1, . . . ,M389

described by a conditional probability distribution (or likelihood) py|z(y|z).390

Given the fully connected graphical model with arbitrary separable prior and separable391

likelihood, GAMP is an efficient and tractable message passing method based on a Gaussian392

approximation of loopy belief propagation (BP) in the large system limit. GAMP is con-393

structed as an iterative algorithm which sequentially estimates the vector mean associated394

with samples µ and z and the scalar second order statistic (variances). By construction,395

GAMP can perform Max-Sum loopy BP for approximate MAP estimation, or Sum-Product396

loopy BP computing approximate MMSE estimates; we will focus on the latter estimation397

problem in this paper.398

GAMP algorithm converts the vector MMSE estimation problem to a sequence, indexed399

by t, of scalar MMSE estimations in the input signal and measurement domain, based on the400

large system limit assumption. Algorithmically, given the linear estimate zt = Φµt, GAMP401

employs a MMSE estimator of zt, which results from a Gaussian approximation of the sum-402

product loopy BP on the dense graph (induced by Φ), and it propagates these means and403

isotropic variances estimates backward through Φ to give a noisy estimate for µ. Then, the404

algorithm performs a MMSE estimate of µ and propagates it forwards onto the measurements405

again. In order to approximately perform sum-product loopy BP and to obtain the MMSE406

estimates, GAMP provides a framework to construct two scalar functions in the input and407

measurement domain, gout(·) and gin(·) respectively. We review how to construct the function408

gout(·) in the measurement domain; we consider the conditional probability distribution409

(3.1) p(zt|pt,y, τ tp) ∝ e
log pY |Zt (y|z

t)e
− 1

2τtp
(zt−pt)T (zt−pt)

410

which can be interpreted as the posterior density function of the random variable Ξt ∼411

N (pt, τ tpI) with observation Y ∼ pY |Zt(y|zt) where Zt is a random variable associated with412

the linear estimate whose instance is zt. By construction of the approximate sum-product413

loopy BP, the messages Ξt ∼ N (pt, τ tpI) are Gaussian with scalar variance and the mean is414

defined as a perturbed version of the linear estimate zt, i.e.415

(3.2) pt = zt − τ tpst−1
416

where the term (perturbation) τ tps
t−1 represents the Onsager term. Given p(zt|pt,y, τ tp), the417

approximate iterative BP for the MMSE problem is achieved by computing418

zt0 := Ep(zt|pt,y,τ tp)[z
t|pt,y, τ tp](3.3)419

gout(p
t,y, τ tp) = st :=

1

τ tp
(zt0 − pt)(3.4)420

where zt0 is the MMSE estimate of Zt given Ξt. The variance τ ts is calculated as the average421
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of the negative derivative of gout(p
t
i, yi, τ

t
p) respect to pi ∀i = 1, . . . ,M as follows422

τ tsi = − ∂

∂pi
gout(p

t
i, yi, τ

t
p)

(a)
=

1

τ tp

[
1−

Var(zti |pti, yi, τ tp)
τ tp

]
(3.5)423

τ ts =
1

M

M∑
i=1

τ tsi424

where the equality (a) follows from the derivation in [50, Appendix D]. The vector mean of425

the linear estimate R ∼ N (rt, τ trI) in the input domain is426

(3.6) rt = xt + τ trΦ
T st427

Finally, to obtain an approximate MMSE vector mean and scalar variance estimates in428

input signal domain given rt, the function gin(·) has to be constructed as follows429

gin(rt) = µt+1 = E[µ|rt, τ tr ](3.7)430

τ t+1
µ =

1

N

N∑
i=1

Var(µi|rti , τ tr)431

In the next Section we focus on the main modifications we have introduced the the GAMP432

algorithm which concern how to include the preconditioning in the linear operator, how to433

calculate Eq. (3.1) for the case of non linear Poisson noise model and extend to non separable434

input signal models, i.e. how to calculate (3.7) without the explicit knowledge of the prior435

distribution of the unknown input signal.436

4. D-GAMP-CT: Denoising CT with Poisson noise based AMP. The proposed algo-437

rithm for CT reconstruction is built upon the GAMP framework with the following innovation:438

i) incorporate the preconditioner for the Radon operator, introduced in Section 2.4, such that439

the iterative algorithm is performed in the preconditioned space together with a new operator440

with a smaller condition number. Furthermore, the algorithm utilises the following properties:441

ii) exploit the GAMP formulation (3) for the non linear Poisson noise model in Eq. (2.5);442

iii) use a generic denoiser in the non linear step to capture the data-dependent structure of443

complex images [35]. The benefit of employing i) and ii) relies on the property of decoupling444

the measurements and noise components unlike the solution in (2.10).445

4.1. Preconditioning of the measurement operator. As described in Section 2.4, the446

Radon operator (2.14) can be preconditioned by using (2.15) such that the combined operator447

Ã has a condition number considerably lower than A [1, 3]. Combining (2.15) and (2.4), we448

define the modified system matrix, Φ̃, as449

Φ̃ = SAV−1 = ΦV−1(4.1)450

Φ̃T = V−1ATST = V−1ΦT
451

The computational complexity of both operators, Φ̃ and Φ̃T is of order O(N logN), since452

they are defined as a composition of element-wise operators with complexity O(N) and the453
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V−1

Preconditioner

A

Radon
measurement

matrix

S

Subsampling
operator

λ = e−z

Non linearity

pY |Λ

Poisson
noise

likelihood

x ∈ RN µ z λ y ∈ ZM

Figure 1: Computed Tomography estimation model with Poisson noise model and matrix
preconditioner V in the image domain.

FFT, with complexity O(N logN). In an equivalent way, the preconditioning leads to the454

following change of coordinates in the signal domain within each iteration t:455

µt = V−1xt → xt = Vµt456

4.2. Incorporation of the Poisson Noise Model in GAMP. We consider the sparse views457

X-ray CT transmission model where the input vector µ ∈ RN is passed through the linear458

Radon CT operator together with the angular subsampling operator, that is modelled as459

(4.2) λa = e−za = e−[Φ̃x]
a , a = 1, . . . ,M460

where the linear term is z = SAµ = Φµ = Φ̃x from Eq. (4.1) and (4.2). Finally, each compo-461

nent λa randomly generates an output component ya of the vector y ∈ ZM . The conditional462

probability distribution of the i.i.d. random variable Y given the linear measurement Z is an463

exponential-Poisson distribution [39]464

(4.3) pY |Z(y|z) =
M∏
a=1

1

ya!
e−(e−za )e−yaza465

Fig. 1 shows the block diagram of the generative measurement model; x is the precondi-466

tioned vector which is mapped through V−1 to the vector representing the CT attenuation467

coefficients µ. It is the input of the Radon system model A and subsequently to the sparse468

view operator S as described in Eq. (2.4). According to the transmission CT model an ex-469

ponential non-linearity is applied to the corresponding linear measurement vector z. Finally,470

the Poisson likelihood pY |Z models the CT noise as described in Eq. (2.5), given the linear471

system z = Φ̃x. While the expression of the likelihood pY |Z in Eq. (4.3) relates the random472

variables Y and Z, and therefore it already includes the non-linearity (4.2), in Fig. (1) we473

have highlighted the non-linear block followed by an auxiliary likelihood pY |Λ.474

In this section, we describe how to perform the MMSE estimation in the measurement475

domain for the nonlinear CT Poisson noise model. Given p(zt|pt,y, τ tp) as defined in Eq.476

(3.1) with pY |Z(y|z) in (4.3) and the vector pt detailed in line (6) of the Algorithm 4.1, the477

approximate iterative BP for the MMSE problem is achieved by computing478

(4.4) st(pt,y, τ tp) =
1

τ tp
(zt0 − pt), zt0 := Ep(zt|pt,y,τ tp)[z

t|pt,y, τ tp]479
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To obtain st(pt,y, τ tp), we need to evaluate the expectation E(zt|pt,y, τ tp) respect to p(zt|pt,y, τ tp),480

where481

1

M
log p(y|zt) = −〈zt,y〉 − 〈e−zt ,1〉 − 〈log(y!),1〉(4.5)482

p(zt|pt,y) ∝ e
−〈zt,y〉−〈e−zt ,1〉−〈log(y!),1〉− 1

2τtp
||zt−pt||22

, zt ∈ RM≥0483

The expectation requires solving the following ratio of integrals for each element indexed with484

a = 1, . . . ,M :485

(4.6) E[zta|pta, ya, τ tp] =

∫
R≥0

ztae
log pY |Zt (ya|z

t
a)e
− 1

2τtp
(zta−pta)2

dzta∫
R≥0

elog pY |Zt (ya|zta)e
− 1

2τtp
(zta−pta)2

dzta

486

Unfortunately no closed form solution appears to exist and therefore Laplace’s method [65] is487

used to approximate the posterior mean zt0 and τ ts. In Appendix A, the calculation for zt0 and488

Var[zt|pt] is detailed.489

It is worth noting that the solution obtained by BM3D-CT-GAMP, using the Poisson noise490

model, is different from the solution of the regularized NLL minimization problem stated in491

Eq. (2.6).492

4.3. Denoising: Non-Linear Input Module. Whilst the original GAMP algorithm was493

developed on a factorial (sparse) signal model, the framework has been shown to be amenable494

to much broader classes of estimators [35, 7]. Since the GAMP algorithm approximates the495

estimate for x as a Gaussian noise corrupted version of the true signal with variance τ tr as in496

Eq. (4.8), it is meaningful to employ, instead of a prior-based non linear scalar function, a497

denoiser Dτ tr
which acts as a standard non-linear mapping498

(4.7) Dτ tr
(·) : RN → RN , r 7−→ Dτ tr

(r)499

that, given a noisy signal estimate500

(4.8) r = x +
√
τ trψ501

with ψ ∼ N (0, I), outputs an estimate of x. We treat Dτ tr
(·) as a black box estimator, i.e.,502

we do not require knowledge of its functional form [35].503

The main reason for using a generic denoiser in the non linear step is to capture the504

data-dependent structure of complex images, rather than a simple factorial model, obtaining505

a sequence of estimates eventually converging faster to the true preconditioned signal x; this506

provides the flexibility in using a variety of denoisers. Given the estimated signal507

(4.9) rt = xt + τ trV
−1ΦT st508

which is the input of the denoiser, the output vector estimate and the scalar variance are509

given by510

xt+1 = Dτ tr
(rt)(4.10)511

τ t+1
x = τ trD

′
τ tr

(rt)512
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where D′τ tr
(·) denotes the divergence of the denoiser, which is by definition the sum of the513

partial derivatives with respect to each element xi, i = 1, . . . , N of x and it is a scalar, i.e.514

(4.11) D′τ tr (r) = divr(Dτ tr
(r)) =

1

N

N∑
i=1

∂Dτ tr
(r)

∂ri
515

For input vector r belonging to a simple class of signals C, it is possible to construct a denoiser516

which compute the conditional mean as in the MMSE formulation of GAMP in Eq. (3.7),517

but for a general class of signals, the denoiser Dτ tr
(r) does not necessarily correspond to a518

mean estimator. By design, the denoiser Dτ tr
(·) is acting in the preconditioned image space519

which consists of a high pass filtering of the image in the original spatial domain. The main520

properties of the denoiser are to be monotone, which means that the risk521

(4.12) R(x, τ tr) =
1

N
E‖Dτ tr

(x +
√
τ trψ)− x‖22522

is a non-decreasing function of τ tr , and proper, i.e. supx∈C R(x, τ tr) ≤ ντ tr , for ν ∈ (0, 1); this523

implies that given an estimate of τ tr , it results τ t+1
r ≤ τ tr . Therefore, even when the input of524

the denoiser belongs to the preconditioned space, as in Eqs. (4.2) - (4.9) which highlight the525

fact that the noise is no more uncorrelated, traditional denoisers can still be used at the cost526

of a decrease in the rate or reduction of the risk. Similar arguments are used in plug-and-play527

framework [9] where at each iteration the noise term is in general correlated to the signal.528

In our framework, because of the design of the preconditioner as a high-pass filter, it is529

possible to utilize better denoisers which can handle this signal mapping; one choice that we530

have compared in the result is by using a modification of the proximal-based TV denoiser531

where the ‖ · ‖(VTV)−1 norm is used instead of the l2 norm.532

In Section 6.3, we show that using this tailored denoiser leads to an improvement in the533

accuracy error only at earlier iterations, before convergence, compared to l2 proximal TV map.534

The analytic calculation of D′τ tr
(·) is often not available and it is in general data-dependent,535

but a good approximation can be obtained through the Monte Carlo technique. In [46] the536

authors showed that given a denoiser Dτ tr
(·) and an i.i.d. random vector b ∼ N (0, I), the537

divergence can be estimated as538

(4.13) D′τ tr (r) ≈ 1

N
Eb

[
1

ε
bT
(
Dτ tr

(r + εb)−Dτ tr
(r)
)]
, ε→ 0539

where the expectation over the random variable b is calculated using a Monte-Carlo method,540

i.e. generate K i.i.d. N (0, I) samples vectors, estimate the divergence for each vector and541

then obtain the global divergence by averaging:542

(4.14) D′τ tr (r) =
1

NK

K∑
j=1

bTj

(
Dτ tr

(r + εbj)−Dτ tr
(r)

ε

)
543

Given the vectorized image lying in a high dimensional space, it has been empirically observed544

[46] that we can accurately approximate the expected value using only a single random sample,545

i.e. K = 1. In all the simulations we have used the Monte Carlo method with K = 1.546
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Denoising

MMSE estimator - measurement domain

Change of the signal domain

V−1

V−1

Φ

ΦT

− compute

z0

× τ tp

×

τ ts

+Dτ tr

xt µt

τ tps
t−1

pt

y

st

rt−1

Figure 2: Block diagram of the D-GAMP-CT framework highlighting the 3 steps: 1) Denoising
the signal estimate; 2) Preconditioning: change of the signal domain; 3) MMSE estimator for
the non linear Poisson noise model.

With this method, the calculation of the Onsager term is more efficient since it requires547

only one more application of the denoiser. Moreover, it follows from Eq. (4.10) that the de-548

noiser Dτ tr
(·), introduced in Section 4.3 acts on the high pass filtered image x, whose expression549

is in Eq. (4.2).550

The block diagram for the mean calculation of the proposed D-GAMP-CT algorithm is551

shown in Fig. 2; each iteration flow can be decomposed in 3 main steps: the MMSE estimation552

for the Poisson noise channel of the output vector pt, the preconditioning, which involves a553

change of the signal domain, and the denoising of the signal estimate. Fig. 2 graphically554

describes the steps for updating the mean vector variables of D-GAMP-CT algorithm listed555

in Algorithm 4.1; the denoising block corresponds to lines 15 and 18, while the application of556

the preconditioning matrix is needed in line 4 and 15 and finally the MMSE estimation in the557

measurement domain corresponds to lines 6, 9, 10.558

4.4. State evolution of D-GAMP-CT. A significant characteristic of GAMP is that the559

MSE performance can be precisely predicted by a scalar SE analysis, with i.i.d. Gaussian560

random system matrices in the large system limit [49]; in particular, the GAMP SE formulation561

extends the AMP SE to arbitrary noise distributions.562

In addition, if a generic denoiser is used within the AMP (D-AMP) iterations as in Eq.563

(4.10), it is shown heuristically in [35] that the MSE can be similarly predicted by the SE564

and, recently, a rigorous derivation of the SE for D-AMP is derived in [7].565

The heuristic SE equations for the proposed D-GAMP-CT are based on the GAMP SE566

derivation [49] where the signal to estimate lies in the preconditioned domain and a denoiser567

is utilized as the non-linear input function. We should stress that a rigorous analysis for568

denoising GAMP has not yet been derived and that the SE analysis of D-AMP cannot be569

directly applied to denoising GAMP.570
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Algorithm 4.1 D-GAMP-CT: Denoising Preconditioned Approximate Message Passing

1: Initialization: set t = 0, r0 = 0, x0 = 0, τ0
x = 1

2: for 1, . . . , Tmax do
3: Step 1: Estimate in the measurement domain
4: zt = ΦV−1xt

5: τ tp = 1
M ‖ΦV−1‖2F τ tx

6: pt = zt − τ tpst−1

7:

8: Step 2: Poisson noise model
9: zt0 = Ep(zt|pt,y,τ tp)[z

t|pt,y, τ tp]

10: st =
zt0−pt

τ tp


MMSE estimation in the
measurement domain.

11: τ ts = 1
Mτ tp

∑M
i=1

[
1− Var(zti |pti,yi,τ tp)

τ tp

]
12:

13: Step 3: Estimate in the signal domain
14: 1

τ tr
= 1

N ‖ΦV−1‖2F τ ts
15: rt = xt + τ trV

−1ΦT st

16:

17: Step 4: Denoising step
18: xt+1 = Dτ tr

(rt)

 MAP/MSE estimation in the
input domain.

19: τ t+1
x = τ trD

′
τ tr

(rt)
20: end for
21: return µt = V−1xt

The D-GAMP-CT SE equations follow the GAMP SE formulation [49]; for the input and571

output vectors, we define 2 sets of vectors572

θtr = (x, rt,xt)(4.15)573

θtp = (z, zt,y,pt)(4.16)574

θtp contains the components of the true and unknown vector z, its D-GAMP-CT estimates zt575

and pt (line 6) and the observed measurement vector y, while θtp contains the unknown input576

vector x and the D-GAMP-CT estimates xt, and rt (line 15). The main results in [49] state577

that for a fixed iteration t and N → +∞ the joint empirical distribution of the elements for578

the vectors θtr and θtp converges empirically with second-order moments PL(2) to the random579

vectors as580

lim
N→+∞

θtr
PL(2)

= θ̂tr(ξ
t
r) = (X, R̂t, X̂t+1)(4.17)581

lim
N→+∞

θtp
PL(2)

= θ̂tp(K
t
p) = (Z, Ẑt, Y, P t)(4.18)582

lim
N→+∞

τ tr = τ̂ tr , lim
N→+∞

τ tp = τ̂ tp,(4.19)583
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with584

(4.20) R̂t = X + V t, V t ∼ N (0, ξtr) and X̂t = Dτ̂r(R̂
t)585

for the input vector estimation and586

(4.21) (Z,P t) ∼ N (0,Kt
p), Ẑ

t = Ep(zt|pt,y,τ̂ tp)[P
t, Y, τ̂ tp]587

for the output vector. The SE equations in [49, Algorithm 3] produce a recursive scheme for588

calculating the parameters ξtr, τ̂r of the distributions θ̂tr and Kt
p, τ̂

t
p for θ̂tp. In the case pY |Z589

matches the true distribution in Eq. (4.3), then it results that590

(4.22) τ̂ tr = ξtr = −E−1

[
∂

∂pt
gout(P

t, Y, τ̂ tp)

]
591

where the expectation is taken over θ̂tp(K
t
p) with592

(4.23) Kt
p =

[
τ̂0
x τ̂0

x − τ̂ tp
τ̂0
x − τ̂ tp τ̂0

x − τ̂ tp

]
593

and τ̂0
x is set with an initial value and τ̂ tp = βτ̂ tx, Kt

p = βKt
x with β = M

N . Following the594

derivation in [24, 49], the error and sensitivity functions are defined.595

The error functions characterize the MSEs of the denoiser under Gaussian noise while596

the sensitivity functions describe the expected divergence of the estimator. The parameter597

τ̂ tx depends on both the error and sensitivity functions as follow. For the class of denoising598

functions Dτ̂r(·) that are uniformly Lipshitz and convergent under Gaussian noise, which599

includes several non-separable denoisers [24], the sensitivity function is defined as600

(4.24) τ̂ tx = Ain(τ̂ tr , ξ
t
r) = lim

N→∞
〈∇Dτ̂r(x + vt)〉, vt ∼ N (0, ξtrI)601

and the error function is602

(4.25) Ein(τ̂ tr , ξ
t
r) = lim

N→∞

1

N
‖Dτ̂r(x + vt)− x‖2, vt ∼ N (0, ξtrI)603

Unfortunately, the SE prediction is only valid in the random large system limit and therefore604

one may wonder what its relevance is in the considered CT problem. Here we argue that the605

empirical accuracy of the SE predictions provides an insight into the validity of D-GAMP-CT606

approximations when applied to such general linear models.607

In particular, we claim that the small discrepancy is mainly due to the fast that the SE608

is derived under the ”matched” condition while we calculate the posterior mean zt0 and τ ts by609

the Laplace approximation in Eq. (4.6).610

In Section 7, we present empirical evidence that the SE for D-GAMP-CT based on a real611

CT dataset provides an excellent prediction of the actual MSE achieved by D-GAMP-CT at612

each iteration.613

This manuscript is for review purposes only.



COMPRESSIVE COMPUTED TOMOGRAPHY RECONSTRUCTION THROUGH DENOISING AMP 19

5. Comparison with Other Methodologies.614

5.1. Vector AMP (VAMP). Recently a new message passing algorithm VAMP (or its615

generalization VGAMP [60]) has been proposed which enjoys convergence guarantees for a616

larger class of random system matrices, i.e. right-orthogonal invariant. VAMP has been617

succesfully used in imaging application, like CT [56], and inverse scattering [61]. One difficulty618

within VAMP algorithm relies on the fact that its implementation requires either to compute619

the SVD of the system operator, or computing the covariance of the LMMSE estimator, i.e.620

inverting an high-dimensional symmetric matrix. Therefore, VAMP is particularly appealing621

for problems where it can be possible to compute the SVD of the system operator, either622

because it is available in matrix form, or because it can be decomposed by a fast orthogonal623

operator, like FFT, which leads to a fast computation of the trace of the inverse LMMSE624

covariance matrix. While in MRI it is possible to exploit the FFT form of the operator,625

unfortunately in CT, it is not generally possible to have a matrix form operator and therefore626

it becomes time consuming either computing the SVD off-line or estimating the inverse of the627

LMMSE covariance matrix.628

5.2. VAMP with Signal Whitening. As described in the Introduction 1.2, different prac-629

tical approaches have been proposed to handle non-random matrices within AMP or VAMP630

framework. An approach is the randomization of the input signal or scrambling its sample631

locations (or flipping its sample signs), then applying the sensing matrix on the randomized632

samples and finally, sub-sampling the resulting transform coefficients. Randomization meth-633

ods de-correlate the signal with the sensing matrix, but generally this can be applied only with634

orthogonal sensing matrices, like Fourier matrix, but it does not apply to the Radon matrix635

for the reasons explained in Section 2.4. Furthermore, pre-randomizing the input might be636

physically not possible to implement and computationally inefficient.637

A more efficient method presented in [58] is based on whitening the input signal and638

it is designed specifically for low-frequency Fourier matrix by using an appropriate wavelet639

transform as whitening operator. Instead, the aim of the proposed method based on precon-640

ditioning is to construct a new operator, close to be orthogonal, in an efficient manner, i.e.641

by exploiting the FFT. An interesting alternative to explore in the future is to use a wavelet642

transform T as whitening operator in conjunction with a Radon operator A. Several wavelets,643

e.g., Haar, Daubechies, can achieve O(N) complexity and the overall complexity of the com-644

position AT would be O(N logN). Similarly, the proposed Fourier-based preconditioning645

enjoys low O(N logN) computational cost.646

5.3. Plug-and-Play Optimization. Recent works [41, 30] have explored the Plug-and-play647

(PnP) incorporation of modern denoisers within the explicit regularization objective function648

in Eq. (2.9), as described in Section 2.3, or an alternative approach called regularization by649

denoising [55]. PnP approaches achieve state of the art recovery results in imaging applications650

even if they do not minimize an explicit MAP objective function [30] as for the regularization651

by denoising approach it is not completely understood what underlying objective function is652

being minimised by these algorithms - see the clarifications and new interpretations presented653

in [54]. We have compared our proposed framework with the Plug-and-Play ADMM (PnP-654

ADMM) optimization algorithm [63] in Sections 6 and 7.655
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6. Simulation Results with Numerical Phantom. We discuss the numerical results for 2D656

CT reconstruction using the “2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge”657

full dataset as ground-truth; the slice 170 of dimension (512×512) from the ”L067 full 1mm”658

acquisition is shown in fig. 3(b) and we have simulated a fan beam geometry, depicted in659

Fig. 3(a); we consider bN5 c = 102 views in the sinogram domain, obtained from a regular660

angular undersampling of the full projection measurements (1024 views = 2N), resulting661

in, approximately, 10 times undersampling ratio. The CT projection and back-projection662

operators are implemented using the ASTRA Toolbox [66].663
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Figure 3: (a) Fan-beam geometry, (b) AAPM phantom - dataset L067 full 1mm, slice 170,
(c) Sinogram for normal dose, I0 = 105, (d) Sinogram for low dose, I0 = 104.

This manuscript is for review purposes only.



COMPRESSIVE COMPUTED TOMOGRAPHY RECONSTRUCTION THROUGH DENOISING AMP 21

The simulations include the Poisson noise model with different levels of intensity: an initial664

intensity of I0 = 105, which is referred to as normal dose in the toolbox, and I0 = 104 for the665

low dose case. The sparse views sinograms, for the 2 levels of intensity, are shown in Figs.666

3(c)-(d) where it is worth noticing the low values in case of low dose; we will show that the667

Gaussian approximation of the CT noise is less effective with low beam intensity.668
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Figure 4: (a) FBP Normal dose, (b) FBP low dose. Normal dose: (c) BM3D-GAMP-CT, (d)
BM3D-ADMM-WLS (PnP).
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6.1. Comparison D-GAMP-CT and Plug-and-play algorithms. Figs. 4(a)-(b) show the669

FBP with ramp filter, for the normal and low photon intensities, which produces very poor670

reconstructions with strong streaking artifacts. In Figs. 4(c)-(d) are shown the reconstruction671

results for the normal dosage obtained using respectively BM3D-GAMP-CT algorithm 4.1,672

which reaches the convergence in 10 iterations, and the BM3D plug-and-play algorithm with673

WLS data fidelity term, implemented using the ADMM solver (BM3D-ADMM-WLS). The674

BM3D-GAMP-CT is built upon the GAMP Toolbox [21] and D-AMP Toolbox [20], while the675

BM3D denoiser is implemented using the Matlab toolbox [15] and the BM3D plug-and-play676

algorithm is implemented using [67] and is used as the reference reconstruction algorithm677

to compare with our proposed method. The image denoising algorithm BM3D is used as678

the denoiser in D-GAMP-CT since it provides good reconstruction performance and keeps679

computation time reasonable. It is worth noting that from Figs. 4(c)-(d), BM3D-GAMP-680

CT achieves a better qualitative reconstruction compared to BM3D-ADMM-WLS (PnP),681

whose output retains streaking noise artifacts in the inner region probably due to the the rays682

intercepting the hard tissue or bones. In Figs. 5(a)-(b) the results with low dose are shown for,683

respectively, BM3D-GAMP-CT and BM3D-ADMM-WLS. It is important to highlight that,684

in this case, the weighted Gaussian noise approximation, is not accurate due to the presence685

of zero values in the sinogram related in particular to the rays intercepting the bones. Taking686

the logarithm of the measurement leads to errors, especially in the region surrounded by hard687

tissue/bones; this is also confirmed quantitatively in Table 1. For a quantitative comparison,688

we have chosen the PSNR as the metric, defined as the ratio between the ground truth and689

the mean square error of the estimation, and the SSIM metric [71] which scores images in the690

interval [0, 1], where a higher index represents better quality.691
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Figure 5: Low dose: (a) BM3D-GAMP-CT, (b) BM3D-ADMM-WLS (PnP).
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Finally, it is worth comparing the proposed framework with a first order optimization692

solver for the regularized Poisson likelihood CT model. From the definition of the NLL func-693

tion for a mixed Poisson Gaussian CT noise model in Eq. (2.6), we consider an approximation694

of Eq. (2.6) where we model the Poisson noise, neglecting the Gaussian noise (ε ≈ 0); there-695

fore, the associated NLL function can be rewritten in vector form as696

(6.1) L(µ) =< I0e
−Φµ,1 > − < y, log(I0e

−Φµ) >697

The original regularized MAP Poisson objective function can be expressed as698

(6.2) µ̂NLL = arg min
µ
L(µ) +R(µ) + χB(µ)699

where the non-negativity constraint on µ is enforced by the characteristic function χB(µ) on700

the set B = {µ : µi ≥ 0,∀i}. We applied ADMM with splitting to solve (6.2) as it has been701

proposed in [16]. Figures 6(a)-(b) show respectively the results with normal and low dose by702

applying BM3D-ADMM-NLL (with BM3D denoiser, the plug-and-play ADMM minimizes a703

different MAP cost function compared to (6.2) with no explicit regularization R(µ)).704
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Figure 6: BM3D-ADMM-NLL (PnP): (a) Normal Dose, (b) Low Dose.

Table 1 also reports the quantitative results in terms of PSNR and SSIM for both low and705

high dose intensity values. The convergence plots in terms of MSE (dB) against iterations706

of the BM3D-GAMP-CT, BM3D-ADMM-WLS, BM3D-ADMM-NLL algorithms are shown707

in Fig. 7. In both normal and low dose scenario, it can be seen that BM3D-GAMP-CT708

produces a better quantitative reconstruction in terms of PSNR (dB) compared to BM3D-709

ADMM-WLS, and it requires lower total running time. For computational time evaluation,710

the simulations are run on an Intel®Xeon 2GHz machine using 8 cores.711
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Table 1: PSNR and time comparison

Algorithms PSNR [dB] SSIM Time

Low photon intensity: I0 = 104

FBP 31.5 0.36 45 sec
BM3D-ADMM-WLS (PnP) 58.2 0.82 7.8 min
BM3D-ADMM-NLL (PnP) 60.2 0.86 8 min
BM3D-GAMP-CT 64.4 0.95 4.5 min

High photon intensity: I0 = 105

FBP 40.2 0.60 45 sec
BM3D-ADMM-WLS (PnP) 65.6 0.88 7.8 min
BM3D-ADMM-NLL (PnP) 67.1 0.91 8 min
BM3D-GAMP-CT 70.4 0.97 4.5 min
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Figure 7: Comparison between BM3D-GAMP-CT, BM3D-ADMM-NLL and BM3D-ADMM-
WLS: (a) MSE vs iterations; (b) MSE vs running time (sec).

6.2. Comparison computational cost and running time. From Algorithm 4.1 it is possi-712

ble to estimate the order of complexity of the BM3D-GAMP-CT algorithm. At each iteration,713

2 matrix vector multiplications are required in lines 5 and 14. For both operators Φ̃ and Φ̃T714

defined in Eq. (4.1), the matrix multiplication has a computational complexity of O(N logN),715

since it is defined as a composition of element-wise operator of complexity O(N) and the op-716

erator A of complexity O(N logN). The computation of the output vector mean zt0 (line 9)717

and the variance τ ts does not involve matrix vector multiplications but summation of order N718

as described in Appendix A. In addition, each iteration requires the application of one denois-719

ing function in (line 18) whose complexity depends on the actual implementation, since it is720

treated as a black box and the update of the variance τ tx requires to compute the divergence721
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of the denoiser D′τr(r) which is implemented by Monte Carlo SURE [46] whose complexity722

is equivalent to one denoising function. On the other hand, BM3D-ADMM-WLS algorithm723

also requires at each iteration 2 matrix vector multiplications, solving one optimization sub-724

problem with Conjugate Gradient (CG) and applying one denoiser (instead of complexity of725

2 denoising functions required by BM3D-GAMP-CT). In our simulations shown in Fig. 7(b),726

the running time per iteration of BM3D-GAMP-CT is higher than the one of BM3D-ADMM-727

WLS because even the optimized implementation of BM3D [15] has an higher cost compared728

to the CG solver. However, the total running time of BM3D-GAMP-CT is lower (around 3729

min as shown in Table 1 and Fig. 7(b)) because fewer iterations are needed to converge. Fi-730

nally, compared to BM3D-ADMM-WLS the computation for the BM3D-ADMM-NLL solver731

with splitting requires to additionally inverting a circulant matrix by conjugate gradient whose732

complexity is at least of order O(N logN).733

6.3. Proximal-based TV denoiser. We show the reconstruction results using a different734

denoiser, the proximal Total Variation (TV) and we compare the result using a ‖ · ‖(VTV)−1735

matrix norm instead of the L2 norm for the proximal-based TV denoiser to properly handle736

the input signal in the preconditioned domain [9]. Fig. 8(b) shows the running time of737

prox(VTV)TV-GAMP-CT, proxTV-GAMP-CT and proxTV-ADMM-WLS; we observe that738

the total running time of the proxTV-GAMP-CT based algorithm is lower of the proxTV-739

PnP Plug-and-play and, together with the previous results with BM3D, D-GAMP-CT leads740

to a reduction in both number of iterations and total running time compared to the PnP741

approach, irrespective to the type of denoiser used. Furthermore, by comparing with the plot742

in Fig. 7(b) while the MSE accuracy at convergence achieved with proxTV is about 9dB743

worse compared to BM3D, the iteration time with proxTV is lower since the complexity of744

proxTV is only of order of O(N).745
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Figure 8: Comparison between prox(VTV)TV-GAMP-CT, proxTV-GAMP-CT and proxTV-
ADMM-WLS: (a) MSE vs iterations; (b) MSE vs running time (sec).
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Interestingly, the prox(VTV)TV-GAMP-CT, compared to the proxTV-GAMP-CT, leads to746

an improvement in the accuracy error only at earlier iterations, before convergence, while both747

converges close to the same MSE value. This is intuitively expected because the prox(VTV)TV748

tends to better reduce the noise variance at earlier iterations since it takes into account the749

appropriate norm for the preconditioned space but at convergence the achieved accuracy is750

almost equivalent to the l2 norm-based proxTV.751

6.4. Comparison between BM3D-GAMP-CT and BM3D-VAMP-CT. We analyze the752

performance of the BM3D-GAMP-CT and BM3D-VAMP-CT which is an alternative type753

of message passing algorithm (as described in Section 5.1). The SVD-based implementation754

of VAMP requires the calculation of the eigenvalues of the symmetric matrix AAT , with755

A being the forward system matrix. In the ASTRA toolbox, A is defined in form of an756

operator, for fast computations. Therefore, it is not efficient to estimate the eigenvalues in757

high dimensions since it requires to generate the M columns of AAT by calculating M times758

A(AT (ei)), being ei the i-th unity vector, i = 1, . . . ,M , and then calculating the eigenvalues759

By using the Matlab command eig, it takes around 10 min to generate the eigenvalues. We760

report an estimated value for the condition number κ = λmax
λmin

∼ 5 × 104. Moreover, Fig.761

9 shows that both algorithms behave similarly and they converge at similar values of MSE762

(0.8 dB difference). This simulations seem not to be in disagreement with earlier results in763

[52](Figs. 3 and 4) where VAMP and GAMP with damping exhibit similar MSE behavior.764

From the simulation, both in terms of computation and accuracy, BM3D-GAMP-CT (with765

preconditioning) outperforms BM3D-VAMP-CT for this CT dataset.766
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Figure 9: MSE plot: comparison between BM3D-VAMP-CT and BM3D-GAMP-CT.

7. Experimental Results. In this section, we investigate the reconstruction quality of767

D-GAMP-CT on real CT data. The D-GAMP-CT framework has been applied for CT re-768

construction on real luggage scans obtained using Morpho CTX5500 Air Cargo dual energy769

system with fan beam CT geometry. This is a single-row scanner with 476 detector channels770
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and a 80 cm field of view. For each transversal location, two slices were acquired one at 100771

KVp, the other at 198 KVp; at each energy, the full acquisition of a single slice contains772

720 views/projections. The reconstruction has been performed for each energy independently773

and here we consider only the results obtained for 100 kVp. The reconstructed images are of774

512× 512 array size. The total dataset contains 44 scanned slices (images).775
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Figure 10: Full CT reconstruction and ROI using BM3D-GAMP-CT with preconditioning
and Poisson noise model: (a)-(c) slice 10, (b)-(d) slice 42.
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The results in Fig. 10 show two slices and the zoom around the region of interest (ROI)776

from the reconstruction with BM3D-GAMP-CT using 72 views regularly undersampled out of777

the full set of views constituted of 720 views. For computing the quantitative performances in778

terms of PSNR and SSIM, the FBP with full number of projections (720 views) is considered779

as a proxy for the ground truth. In the figure it is possible to see that the scanned object780

contains highly resolved metal staples, bottle of fluid, wires. The number of iterations for781

BM3D-GAMP-CT algorithms tends to converge in around 15 iterations as shown in Section782

7.3. In Figure 11 we show the reconstruction for 2 slices of the entire volume (10 and 42)783

obtained with FBP using 72 views for one of the image slices.784
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Figure 11: Filtered Back Projection with 72 projections: (a) slice 10; (b) slice 42.

7.1. Role of the Onsager term. Given the similarity between iterative shrinkage algo-785

rithms and the GAMP family of algorithms, it is interesting to evaluate the importance of786

the Onsager term τ tps
t−1 in the D-GAMP-CT algorithm 4.1 to check whether it improves the787

reconstruction. Without the Onsager term the GAMP algorithm behaves like a denoising788

iterative thresholding algorithm [35]. The reconstruction for slices 10 and 42 without the789

Onsager term is shown in Fig. 12 which highlights a substantial reduction in performance in790

both cases, as it is also quantitatively confirmed by the PSNR value in table 2.791

The Onsager term yields a PSNR improvement of 6 dB, for this particular CT reconstruc-792

tion instance. Furthermore if we consider the algorithm with Onsager term, although the time793

per iteration is almost doubled because of the computation of an additional denoiser, the total794

running time is lower compared to the version without Onsager term because it converges in795

few iterations (15 respect to 40).796
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Figure 12: CT image reconstruction using BM3D-AMP without Onsager term for: (a) slice
10; (b) slice 42.

Table 2: PSNR for of BM3D-GAMP-CT with/without Onsager term

Algorithms PSNR [dB] SSIM Time

BM3D-GAMP-CT 61.2 0.85 3.5 min
BM3D-GAMP-CT without Onsager term 55.1 0.71 4 min
BM3D-GAMP with damping 50.3 0.65 4.5 min

7.2. Role of the Preconditioner. By applying the Denoising Generalized Approximate797

Message Passing algorithm, which includes the exponential Poisson noise model, the iteration798

estimates diverge. Therefore, for comparison we applied damping [59, 68] in estimating vec-799

torised image at iteration t, i.e. xt = ηxx
t + (1− ηx)xt−1, with 0 < ηx < 1 the damping factor800

and on the estimated linear measurement vector, i.e. st = ηrs
t+(1−ηr)st−1, with 0 < ηr < 1,801

where the vector variables x and s are calculated as in Algorithm 4.1. In this case, the BM3D-802

GAMP-CT algorithm (without preconditioning) starts to converge for ηr = 0.95 and with a803

good amount of damping on the estimated xt, ηx = 0.65. Fig. 13 shows the reconstruction of804

damped BM3D-GAMP-CT and Table 2 reports the quantitative metrics. BM3D-GAMP-CT805

exhibits improved PSNR and SSIM over both BM3D-GAMP-CT without the Onsager term806

or with damping. Furthermore, the computational time both without Onsager term or with807

damping is higher since the algorithms require more iterations, 40 and 25 respectively, to808

converge compared to 15 iterations needed by BM3D-GAMP-CT. Regarding the behavior of809
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the damping for ill-conditioned matrices, our results are coherent with previous simulations810

reported in [68](Fig. 1D) where the adaptive damping in GAMP does not prevent divergence811

for high values of condition number of the system matrix A. Therefore, damping is effective812

for low condition number (less than 10), while our Radon transform has condition number813

of order ∼ 104. Therefore, our results confirm that damping is not very effective for high814

ill-conditioned matrix.815
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Figure 13: BM3D-GAMP-CT reconstruction with damping ηx = 0.65, ηz = 0.9 for: (a) slice
10; (b) slice 42.

7.3. Comparison against Plug-and-play approach. We present a comparison between D-816

GAMP-CT and PnP, using ADMM for solving the NLL minimization (6.2), using BM3D and817

TV denoisers. We are comparing 3 different methods: BM3D-GAMP-CT and the Plug-and-818

play approach with NLL data fidelity term BM3D-ADMM-NLL and TV-ADMM-NLL. Since819

the denoisers implicitly imposed in the cost function that BM3D-ADMM-NLL minimizes is820

different from the one of TV-ADMM-NLL, the 2 solvers yield different accuracies.821

In Fig. 14, we show the qualitative results of one reconstructed slice. From inspection,822

it is clear that the reconstruction with BM3D-GAMP-CT better retains the details in the823

ROI. This is confirmed quantitatively in Figs. 15(a)-(b) which show the convergence of the824

MSE against iterations and running time. Table 3 contains the quantitative details in terms825

of PSNR, SSIM and time. If we analyze the algorithms using the same denoiser (BM3D),826

Fig. 15(a) shows that the BM3D-GAMP-CT (line in black) converges faster both in terms of827

number of iterations and total running time compared to BM3D-ADMM-NLL for Plug-and-828

Play optimization. Furthermore, at convergence BM3D-GAMP-CT yields to a reduction in829

PSNR of 3 dB.830
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Figure 14: Recontruction of slice 20 with: (a) BM3D-GAMP-CT, (b) BM3D-ADMM-NLL
(PnP) (c) TV-ADMM-NLL (PnP) - NLL objective (6.2) with TV denoiser.
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Table 3: PSNR of BM3D-GAMP-CT, BM3D-ADMM-NLL and TV-ADMM-NLL

Algorithms PSNR [dB] SSIM Time

BM3D-GAMP-CT 61.3 0.85 3.5 min
BM3D-ADMM-NLL (PnP) 58.2 0.78 11 min
TV-ADMM-NLL (PnP) 56.8 0.72 6.5 min
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Figure 15: Comparison between BM3D-GAMP-CT, BM3D-ADMM-NLL and TV-ADMM-
NLL: (a) MSE vs iterations; (b) MSE vs running time (sec).

We have tried a different denoiser, TV, for the PP framework and we can observe from831

Figs. 15 that at earlier iterations BM3D-ADMM-NLL and TV-ADMM-NLL perform similarly832

because the input estimate is highly noisy but at convergence the BM3D reaches higher PSNR833

and SSIM. Interestingly, the running time of TV-ADMM-NLL is lower compared to BM3D-834

ADMM-NLL since they converge almost at the same number of iterations but the TV denoiser835

is computationally faster than BM3D. However, BM3D-GAMP-CT is faster in total running836

time than TV-ADMM-NLL because BM3D-GAMP-CT converges in almost 1
6 the number of837

iterations of TV-ADMM-NLL.838

7.4. State Evolution Analysis. An important aspect of D-GAMP-CT is its internal vari-839

ance estimate within the algorithm and in the SE equations. This not only provides an840

estimate of uncertainty with the algorithm, it also essentially allows the algorithm to adapt841

its ”step size” on the fly [51]. It is therefore instructive to see how precise such an estimate842

is. If accurate, this term should ensure a fast convergence rate of the algorithm. Given the843

actual MSE estimate, taking as reference the full views FBP reconstruction, we can calculate844

the predicted MSE at the next iteration and compare with the actual estimate.845

Our empirical results run on the experimental data acquired using the 2D fan beam CT846

geometry show that the SE prediction gives an accurate estimate of the true MSE of BM3D-847
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GAMP-CT at each iteration as depicted in Figure 16.848
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Figure 16: Deterministic state evolution and MSE estimates using BM3D-AMP-CT and
BM3D-ADMM-NLL.

Fig. 16 shows the theoretical SE (prediction of the MSE) of the proposed D-GAMP-CT849

algorithm (in red) and the actual performance of the algorithm with BM3D. The 2 curves850

are almost matched; the little discrepancy is due to the fact that the SE is derived under the851

”matched” case indicated in Eq. (4.22), i.e. exact estimation of the variance of the MMSE852

for the Poisson noise while, as described in Eq. (4.6), we estimate it by using the Laplace853

approximation method. Moreover, this plot highlights that the Laplace approximation is854

accurate since the error with the SE is only around 0.1 dB. Furthermore, the Plug-and-play855

solver BM3D-ADMM-NLL (black curve) performs always worse than D-GAMP-CT and also856

the MSE behavior of BM3D-ADMM-NLL cannot be predicted by SE equations.857

8. Conclusions and Future Research. In this work, we have presented a Generalized858

Approximate Message Passing type of iterative algorithm for solving X-ray CT reconstruction859

from a limited number of projections. The proposed framework relies on the design of an860

appropriate preconditioner for the ill-conditioned measurement matrix and a statistical model861

for the non linear Poisson measurement noise. In addition, exploiting the flexibility of the862

GAMP framework we can decouple the action of the preconditioner from the noise model,863

which is not possible with optimization solvers for minimizing the Plug-and-play PP-WLS864

objective function.865

We have experimentally shown the important role of the Onsager term regarding recon-866

struction performance improvement and the ability of the state evolution analysis to estimate867

the current MSE through the iterations. Numerical results on simulations and experimental868

Cargo dataset demonstrate how the D-GAMP-CT framework provides high reconstruction869

accuracy and reduced running time compared to state-of-the-art Plug-and-play optimization870

iterative algorithms for CT reconstruction. In addition D-GAMP-CT allows different prior871

image models to be used on the signal by employing different denoisers.872
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Finally, further acceleration of the D-GAMP-CT may be possible utilizing the Ordered873

Subsets principle [19], however its implementation is not straight forward within the GAMP874

framework and is also left for future research.875
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Appendix A. Laplace method for approximating the posterior mean of the Nonlinear885

noise distribution.886

In order to evaluate the expression in (4.6), we write the ration of integrals in the following887

form (where we have not indicated the iteration t for notation simplicity)888

(A.1) E(za|pa, ya, τp) =

∫
R≥0

g(za)e
log p(ya|za)π(za)dza∫

R≥0
elog p(ya|za)π(za)dza

889

where π(za) = e
− 1

2τp
(za−p̂a)2

and g(za) = za. We set890

L = log π +
1

M
log p(ya|za) = − 1

2τp
(za − pa)2 +

1

M

[
− zaya − e−za − log(ya!)

]
891

L∗ = log za + L = log g(za) + log π(za) +
1

M
log p(ya|za)892

= log za −
1

2τp
(za − pa)2 +

1

M

[
− zaya − e−za − log(ya!)

]
(A.2)893

Therefore, the MMSE can be written as894

(A.3) E(za|pa, ya, τp) =

∫
R≥0

eM ·L
∗
dza∫

R≥0
eM ·Ldza

895

We consider the probability density function L(za) which we expect to have a peak at the896

point z0a and the Taylor-expansion of L(za) at z0a is897

(A.4) L(za) ≈ L(z0a)− 1

2

∂2L(za)

∂z2
a

(za − z0a)2 + . . .898

The Laplace’s method [65] is a way to approximate L(za) by an unnormalized Gaussian and899

approximate the partition function ZP =
∫
L(za)dza with the one of the Gaussian900

(A.5) ZQ = L(z0a)
√

2π901
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The Laplace approximation leads to902 ∫
emL(za)dza ≈

∫
emL(z0a )−m(za−z0a )2/(2σ2)dza903

=
√

2πσn−1/2emL(z0a )(A.6)904

with σ2 = − 1
L′′ (z0a )

; this integral form is similar to the one in Eq. (4.6) for the numerator905

and denominator respectively. Considering the denominator, we need to calculate the points906

where the derivative is zero in order to find z0a :907

∂L(za)

∂za
= − 1

τp
(za − pa)− ya + e−za908

with ya ∈ Z+, za =
[
Φ̃x
]
a
∈ R≥0; then, to find ∂L(za)

∂za
= 0, it results909

−(za − pa)
τp

− ya + e−za = 0910

log

[
− (za − pa)

τp
− ya

]
= za911

Finally, the second derivative is912

∂2L(za)

∂z2
a

∣∣∣∣
za0

= −za0
τp
− e−za0913

Similar procedure for the numerator (σ∗ and z∗a0); therefore, taking the ratio of the 2 approx-914

imations it yields to915

(A.7) E[za|pa] =
σ∗

σ
eL
∗(z∗a0 )−L(za0 )

916

For the variance, given the approximation A.7, we can use the standard formula917

(A.8) Var[za|pa] = E[z2
a|pa]− E[za|pa]2918
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