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Abstract

In this paper, we argue for the utility of deterministic inference in
the classical problem of numerical linear algebra, that of solving a linear
system. We show how the Gaussian belief propagation solver, known to
work for symmetric matrices can be modified to handle nonsymmetric
matrices. Furthermore, we introduce a new algorithm for matrix inver-
sion that corresponds to the generalized belief propagation derived from
the cluster variation method (or Kikuchi approximation). We relate these
algorithms to LU and block LU decompositions and provide certain guar-
antees based on theorems from the theory of belief propagation. All pro-
posed algorithms are compared with classical solvers (e.g., Gauss-Seidel,
BiCGSTAB) with application to linear elliptic equations. We also show
how the Gaussian belief propagation can be used as multigrid smoother,
resulting in a substantially more robust solver than the one based on the
Gauss-Seidel iterative method.

1 Introduction

A basic problem of numerical linear algebra is to solve a linear equation

Ax = b (1)

with an invertible matrix A. The textbook technique is the LU decomposition,
equivalent to Gaussian elimination [11, ch. 3]. However, when A is large and
sparse, algorithms that exploit sparsity are used instead of the direct elimina-
tion [8]. Among iterative methods for sparse systems, one can mention classi-
cal relaxation techniques such as Gauss-Seidel (GS), Jacobi, Richardson, and
projection methods such as conjugate gradients, generalized minimal residuals,
biconjugate gradients, and others [25, 24].
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An easy way to understand the projection methods is to reformulate the
original equation as an optimization problem [27]. For example, for a symmetric
positive-definite matrix A, one has

x? = arg min
x

(
xTAx

2
− xTb

)
. (2)

Such a reformulation allows one to apply new techniques and leads to meth-
ods of steepest descent, conjugate directions, and cheap and efficient conjugate
gradients [14].

Another reformulation of the problem is known, but is less explored. It also
goes back to Gauss and his version of elimination. To derive an LU solution
of (1), one can consider the probability density function p(x) of multivariate
normal distribution (see also equation (13) below)

p(x) ∼ exp

(
−xTAx

2
+ bTx

)
. (3)

We can consider the first component x1 of x and integrate it out in (3) (a
process called “marginalization”). The resulting marginal distribution for the
remaining components x2, x3, . . . is again multivariate normal, but with the
covariance matrix given by the Schur complement of A11

1 and the mean vector
modified accordingly, i.e.

A22 ← A22 −
A21A12

A11
, b2 ← b2 −

A21b1
A11

. (4)

It is well known that the LU decomposition consists of the very same steps
[28]. When x1 is not a scalar, but a subset of variables, marginalization of
multivariate normal distribution results in a block LU decomposition.

Thus, the most popular direct technique for the solution of linear equations
with dense matrices is intimately connected with the marginalization problem,
which belongs to the class of inference problems. Recently, many other in-
triguing connections between statistical inference and linear algebra have been
pointed out. For instance, in [7], [12], and [4], the authors provide a method
to recover the Petrov-Galerkin condition from the Bayesian update and con-
struct a Bayesian version of the conjugate gradients. Paper [19] constructs a
state-of-the-art multigrid solver using the game theory and statistical inference.
These works demonstrate that ideas from statistical inference allow for new and
useful insights into problems of linear algebra. It is thus reasonable to explore
how other inference algorithms are translated to the realm of numerical linear
algebra. Among them are expectation propagation [18], Markov chain Monte
Carlo, mean field, other variational Bayesian approximations [6, chapters 8, 10],

1In the article we use boldface for matrices or matrix blocks, and regular font for scalar
values and matrix components. In this case A11 is an element of the matrix A in the first row
and the first column, and A22 is a square matrix that contains all elements of A excluding
the first row and the first column.
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[32], and belief propagation with its generalized counterparts. The latter two
are the focus of the present work.

The first comparison between classical methods and belief propagation ap-
peared in [33]. Then in [26], authors argued explicitly for the belief propagation
as a solver and later, Bickson [5] presented a more systematic treatment of the
Gaussian belief propagation (GaBP) in the same context. Among other pro-
posed methods was an algorithm that treats nonsymmetric matrices through
diagonal weighting [5, 5.4] and the usual trick from linear algebra, A→ ATA.
Both techniques are of limited use because of slow convergence in the first case
and fill-in in the second. We improve on these results and propose several new
algorithms.

In particular, in this work we:

• explain how belief propagation can be applied to nonsymmetric matrices
with no computation overhead compared to the original belief propagation
(which was limited to symmetric matrices) (Algorithm 1);

• design a family of linear solvers based on the generalized belief propaga-
tion (Algorithm 2) and relate them to the block LU decomposition (see
Section 3.3);

• introduce a two-layer region graph and derive generalized belief propa-
gation rules (36) that are substantially less demanding computationally
compared to the basic generalized belief propagation algorithm (see (44));

• show how proofs of sufficient condition for convergence and consistency
for the original GaBP can be modified to hold for the new algorithms (for
GaBP see A, B, for generalized GaBP – C, D);

• explain how one can speed up GaBP using multigrid methodology which
results in a robust solver (see Figure 4);

• implement the new algorithms [1] and benchmark them against several
classical multigrid solvers.

The rest of the paper is organized as follows. In Section 2.1, we start with the
intuitive explanation of GaBP based on the connection between the algorithm
and Gaussian elimination. The general description of how to treat the problem
(1) as an inference problem together with the basic terminology and main facts
about Gaussian belief propagation are introduced in Section 2. In Section 2.3 we
introduce GaBP that can be used for nonsymmetric matrices, prove consistency
of the proposed algorithm, and establish a sufficient condition for convergence in
appendices A, B. In Section 3, extensions of the belief propagation are given: in
3.1, we describe the generalized belief propagation algorithm (GaBP) (parent-
to-child in [39]); in 3.2, we derive message update rules for region graphs with
two layers, and in 3.3, we discuss the generalized GaBP from the elimination
perspective and explain why the algorithm can be applied to the case AT 6=
A; the resulting algorithm is introduced in Section 3.4 and analyzed in C, D.
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Figure 1: Both (a) and (b) sketch the graph, corresponding to the matrix A
fron equation (5). We use Mji to represent the pair of messages (Λji, µji) (see
equation (8)) from the node i to j. Figures (a) and (b) shows different order
of elimination. For example, in case of (a) one first exclude x1 and x2 from the
equation for x3 and then solve resulting equation to obtain x5.

Section 4 explains how to use GaBP within a multigrid scheme, we discuss
smoothing properties, complexity and describe a rather unusual behaviour for
singularly perturbed elliptic equations. Section 5 contains numerical examples.
In Section 6, we summarize the main results and discuss possible future research.

2 Gaussian belief propagation

2.1 GaBP from the elimination perspective

To build intuition about GaBP, we consider connection with the Gaussian elimi-
nation first. Ideas of this section are similar to those in [22], but the presentation
is more straightforward and after appropriate modifications (see Section 2.3),
applies to non-symmetric matrices as well.

To illustrate the main ideas, consider a linear problem Ax = b with the
matrix and right-hand side defined as

A =


A11 0 A13 0 0
0 A22 A23 0 0
A31 A32 A33 0 A35

0 0 0 A44 A45

0 0 A53 A54 A55

 , b ∈ R5. (5)

For simplicity, require that A be positive definite and that all elements of A,
not explicitly indicated as zeros, are nonzero.

To obtain GaBP rules, we introduce a graph of the matrix (5). For this
section, it is sufficient to associate the set of vertices with the set of diagonal
terms and the collection of edges with nonzero entries Aij , i 6= j. One can
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find the resulting graph in figure 1. The correspondence between graphs and
matrices is discussed in detail in two subsequent subsections 2.2, 2.3.

Suppose one wants to calculate variable x5. To do that, we exclude variables
x1, x2 from the equation for x3 and then eliminate variables x3, x4 from the
equation for x5(

A33 −
A31A13

A11
− A32A23

A22

)
︸ ︷︷ ︸

=Ã33

x3 +A35x5 = b3 −
A31b1
A11

− A32b2
A22︸ ︷︷ ︸

=b̃3

; (6a)

(
A55 −

A53A35

Ã33

− A54A45

A44

)
x5 = b5 −

A53b̃3

Ã33

− A54b4
A44

. (6b)

Figure 1a captures this particular elimination order. In the same vein, to find
x3 one may follow the order presented in figure 1b. The resulting equations are

(
A55 −

A54A45

A44

)
︸ ︷︷ ︸

=Ã55

x5 +A53x3 = b5 −
A53b4
A44︸ ︷︷ ︸

=b̃5

; (7a)

(
A33 −

A35A53

Ã55

− A31A13

A11
− A32A23

A22

)
x3 = b3 −

A31b1
A11

− A32b2
A22

− A35b̃5

Ã55

.

(7b)

From these calculations, one can make two observations:

1. In the course of elimination one successively changes the diagonal elements
Ajj and the right-hand side bj .

2. The exclusion schemes in figures 1a and 1b share the same computations.
For example, terms A31A13

/
A11, A32A23

/
A22 and A54A45

/
A44 appear on

the way to equation (7b) as well as to (6b). It would be more advantageous
to reuse the same computations, not to redo them each time one needs to
eliminate a variable.

The first observation suggests that one can introduce corrections to the diagonal
terms and bj , that come from the elimination of variable i. For the sake of conve-
nience, we denote them Λji and µjiΛji, respectively. For example, equation (6a)
becomes

(A33 + Λ31 + Λ32)x3 +A35x5 = b3 + Λ32µ32 + Λ31µ31. (8)

Since corrections are the same for any order of elimination, to reuse them, we
can regard Λji and µji as a message that node i sends to node j along the edge
of the graph. Once computed, these messages are in use in expressions like (8)
and (9). To complete rewriting the elimination in terms of messages, one needs
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to introduce the rules to update messages when a new variable is excluded. To
derive the rules, we rewrite equation (7b) using the definition of messages

(A55 + Λ53 + Λ54)x5 = b5 + Λ53µ53 + Λ54µ54, (9)

and use (8) to get

Λ53 = − A35A53

A33 + Λ31 + Λ32
, µ53 =

b3 + Λ31µ31 + Λ32µ32

A35
. (10)

It is easy to see that one needs to accumulate all messages from neighbors of i
except for j to send the message from node i to node j. Since the update rule
includes only messages from the previous stages of elimination, one can iterate
equations like (10) till convergence. And then, when all messages arrive, the
solution can be read off as follows

xj =

bj +
∑

k∈neighbours of j

Λjkµjk

Ajj +
∑

k∈neighbours of j

Λjk
. (11)

Note that (7) and (6) have exactly this form. Equations for the update of
messages that we deduced in this section coincide with the GaBP update rules
given by (19), which are derived from the probabilistic perspective below.

To summarize, the GaBP rules can be understood as a scheme that propa-
gates messages on the graph, corresponding to the matrix of the linear system
under consideration. These messages, namely Λji and µji, represent the correc-
tions to the diagonal terms of matrix A and to the right-hand side b, resulting
from the elimination of variable xi from the j-th equation, Ajjxj+Ajixi+ · · · =
bj . Consistency, convergence, stopping criteria, and other practical matters are
discussed in the following two sections.

2.2 Conventional belief propagation

Here we give a more traditional introduction to GaBP as a technique for sta-
tistical inference in graphical models. Following [5, 26], we reformulate (1) as
an inference problem. For this purpose, consider a small subset of undirected
graph models that are known as Gauss-Markov random fields. First, we de-
fine a pairwise Markov random field. The graph Γ is the set of edges E and
vertices V. Each vertex i corresponds to the random variable xi (discrete or
continuous), and each edge corresponds to interactions between variables. The
set of non-negative integrable functions {φi, ψij} together with the graph Γ
completely specifies the form of the probability density function of a pairwise
Markov random field

p(x) =
1

Z

∏
i∈V

φi(xi)
∏

(ij)∈E

ψij(xi, xj) ≡
1

Z
exp (−E(x)) . (12)

Here, Z is a normalization constant (known in statistical physics as a partition
function). The second equation in (12) (that is, the Gibbs distribution) should
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be considered as a definition of energy E(x). The Gauss-Markov random field
is a particular instance of a pairwise Markov model with a joint probability
density function given by a multivariate normal distribution

p(x) =
1

Z
exp

(
−xTAx

2
+ bTx

)
≡ N

(
x|A−1b

mean
, A−1

covariance
matrix

)
, (13)

where A is a symmetric positive-definite matrix. The edges of Γ correspond to
the nonzero Aij , and note that the splitting of the product in (12) into φi and
ψij is not unique. A common task in the inference process is a computation of
a partial distribution (or a marginalization)

pr(xr) =
∑
x\xr

p(x). (14)

Integrals replace sums if x ∈ RN . For the Gauss-Markov model, marginal
distributions are known explicitly. For individual components of the vector x,
which is distributed according to (13), one can obtain distributions in closed
form

pi(xi) = N
(
xi|
(
A−1b

)
i
,
(
A−1

)
ii

)
≡ N (xi|µi, βi) . (15)

As the means of marginal distributions for the model (13) coincide with the
elements of the solution vector for (1), methods from the domain of probabilistic
inference can be applied directly to obtain the solution.

A popular algorithm that exploits the structure of the underlying graph
to find the marginal distribution efficiently is Pearl’s belief propagation [20].
Pearl’s algorithm operates with local messages that spread from node to node
along the graph edges, and beliefs (approximate or exact marginals) are com-
puted as a normalized product of all incoming messages after the convergence.
More precisely, belief propagation consists of (i) the message update rule

mij(xj)←
∑
xi

φi(xi)ψij(xi, xj)
∏

k∈N(i)\j

mki(xi), (16)

where mij is a message from node i to node j and N(i) is the set of neighbors
of the node i, and (ii) the formula for marginals

bi(xi) ∼ φi(xi)
∏

k∈N(i)

mki(xi). (17)

Although, for continuous random variables the problem of marginalization
and the algorithm of belief propagation are harder in general, it is not the case
for the normal distribution. Namely, for the Gauss-Markov model, one can
parameterize messages in the form of the normal distribution

mji(xi) ∼ exp

(
−Λji (xi − µji)2

2

)
, (18)
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and explicitly derive update rules, means, and precision

µ
(n+1)
ji =

bj +
∑

k∈N(j)\i
Λ

(n)
kj µ

(n)
kj

Aji
, Λ

(n+1)
ji = − AijAji

Ajj +
∑

k∈N(j)\i
Λ

(n)
kj

;

µ
(n)
i =

bi +
∑

j∈N(i)

Λ
(n)
ji µ

(n)
ji

Aii +
∑

j∈N(i)

Λ
(n)
ji

, β
(n)
i = Aii +

∑
j∈N(i)

Λ
(n)
ji .

(19)

These update rules correspond to the flood schedule such that at the current
iteration step, each node sends messages to all its neighbours based on messages
received at the previous step. Equations for the mean and precision should
be put to use only after saturation according to some criteria, for example
|µ(n+1) − µ(n)| ≤ tolerance, and the same for Λ. Rules (19) are collectively
known as Gaussian belief propagation.

Belief propagation was designed to give an exact answer if Γ has no loops. In
the presence of loops, the result appears to be approximate if delivered at all. In
the case of GaBP, the situation is more optimistic. We briefly recall some useful
facts about GaBP that we discuss later in more detail. If GaBP converges on the
graph of arbitrary topology, the means are exact, but variances can be incorrect
[33]. The best sufficient condition for convergence of the Gauss-Markov model
with symmetric positive-definite matrix can be found in [17], we discuss it later
in greater detail. The fixed point of GaBP is unique [13]. On the tree, GaBP is
equivalent to the Gaussian elimination [22].

Many different schemes that extend belief propagation and GaBP have been
developed [38], [9], [29], [18], [10]. Here, we are mainly interested in generalized
belief propagation proposed in [38] and subsequently developed in [37], [36] ,[39].
This new algorithm is significantly more accurate [39, Fig. 15] than Pearl’s
algorithm, but at the same time it can be computationally costly. In what
follows, we show how to use the generalized belief propagation in the context of
numerical linear algebra.

2.3 GaBP for a nonsymmetric linear system

As explained in Section 2.1, the GaBP rules can be understood as corrections
to the right-hand side and the diagonal elements of the matrix under successive
elimination of variables. It means that in principle, one can apply the rules
to solve at least some nonsymmetric systems. However, there is a problem
which is specific to nonsymmetric case. Namely, it is possible to have Aij = 0
and Aji 6= 0. In this case, rules (19) lead to singularity as Aij appears in the
denominator. Since parametrization of messages is not unique both from the
elimination and probabilistic perspectives, it is possible to define new set of
messages Λ̃ and m as follows

m
(n)
ji ≡ µ

(n)
ji Λ

(n)
ji , Λ̃

(n)
ji ≡ Λ

(n)
ji

/
Aji. (20)
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Algorithm 1 GaBP for a nonsymmetric linear system.

Form directed graph G = {V, E} based on A.
while error > tolerance do

for j ∈ V do
m = bj +

∑
k∈N(j)

mkj

Σ = Ajj +
∑

k∈N(j)

Λ̃kjAkj

xj ← m/Σ
for (j, i) ∈ E do

Λ̃ji ← −Aij/
(

Σ− Λ̃ijAij

)
µ̃ji ← Λ̃ji (m−mij)

end for
end for
error = ‖Ax− b‖∞

end while

Then update rules become

m
(n+1)
ji = Λ̃

(n+1)
ji

bj +
∑

k∈N(j)\i

m
(n)
kj

 , Λ̃
(n+1)
ji = − Aij

Ajj +
∑

k∈N(j)\i
Λ̃

(n)
kj Akj

;

µ
(n)
i =

bi +
∑

j∈N(i)

m
(n)
ji

Aii +
∑

j∈N(i)

Λ̃
(n)
ji Aji

, β
(n)
i = Aii +

∑
j∈N(i)

Λ̃
(n)
ji Aji.

(21)

Note that reparametrization (20) has a problem in that it is not one-to-one
if Aji = 0. However, the quick look at the equations (6), (7) makes clear that
indeed it is possible to define messages in that way. That is, if Ajk = 0, one
does not need to eliminate xk from the second equation so the message Λkj is
indeed zero.

For a given matrix A ∈ RN×N , we construct a graph with N vertices v ∈ V
corresponding to the variables x1, . . . , xN and the set of directed edges E . The
edge pointing from the vertex j to the vertex i belongs to the set of edges
iff Aij 6= 0, i.e. Aij 6= 0 ⇔ eji ∈ E . This definition fixes the correspondence
between directed graphs and nonsymmetric matrices and allows us to use GaBP
(see Algorithm 1) beyond its usual domain of applicability.

Algorithm 1 is sequential, but can run in parallel after some modifications.
The stopping criteria can be different, for example, it is possible to use different
norms, or error =

∥∥x(n+1) − x(n)
∥∥
∞, or

error = max
(∥∥∥µ̃(n+1) − µ̃(n)

∥∥∥
∞
,
∥∥∥Λ̃(n+1) − Λ̃(n)

∥∥∥
∞

)
. (22)
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Note that the update of Λ̃ decouples from the one for µ̃. So it is possible to
construct an algorithm that computes only messages Λ̃ and returns diagonal
elements for the inverse matrix. Later, these messages can be used in the course
of all successive iterations if one resorts to the error correction scheme. We
discuss how the algorithm of this kind can be utilized to decrease the number
of floating point operations in the context of a multigrid scheme.

One of the central results of the present work is that two classical theorems
from GaBP theory, summarized below, can be readily established for nonsym-
metric matrices.

Theorem 2.1. If there is N ∈ N such that µ̃
(N+k)
e = µ̃

(N)
e , Λ̃

(N+k)
e = Λ̃

(N)
e for

all e ∈ E and for any k ∈ N, then µ
(N+k)
i = µ

(N)
i =

(
A−1b

)
i
.

The analogous result for symmetric matrices first appeared in [33]. In A, we
show how to extend the proof for the nonsymmetric case.

Theorem 2.2. If Aii 6= 0 ∀i, |̃R|ij = (1− δij) |Aij |
|Aii| , and ρ(|̃R|) < 1, then the

Algorithm 1 converges to the solution x? = A−1b for any b.

Sufficient condition for symmetric positive-definite matrices was established
in [17]. Section B contains the proof with necessary modifications that holds
for nonsymmetric matrices.

To make connections with the classical theory of iterative methods, we give
another (less general) sufficient condition.

Corollary 2.0.1. If A is the M -matrix (see [24, Definition 1.30, Theorem
1.31]), Algorithm 1 converges to the solution x? = A−1b for any b.

Proof. For M -matrix ρ(I −D−1A) < 1, Aij ≤ 0, i 6= j and Aii > 0, where D

is a diagonal of A. It means that R̃ = I−D−1A =
∣∣∣R̃∣∣∣ and ρ

(∣∣∣R̃∣∣∣) < 1.

3 Generalized GaBP solvers

3.1 Parent-to-child schedule

We present a particular version of the parent-to-child schedule from [39] applied
to the pairwise Markov graphical models.

First, we define a region r as a connected subgraph of the original graph
Γ. Each vertex a1 in the region graph is a region that may be connected by a
directed edge with another vertex a2 if a2 ⊂ a1. The direction of the edge is
from a larger region to smaller. If there is a directed edge from a to b, then a
is a parent of b, and b is a child of a. If the vertices a and b are connected by a
directed path starting from a, then a is an ancestor of b, and b is a descendent
of a. The set of all vertices of the factor graph is R, the set of all edges is
ER, the set of all parents, children, ancestors, descendants of a are P (a), C(a),

10



1 2 3

4 5 6

7 8 9

(a)

235689+1 123456+1

56890 2356-1 4578+1

890 690 560 58-1 45-1

60 5+1

(b)

Figure 2: Pairwise Markov model and valid region graph with counting numbers.
Shaded nodes belong to the shadow of 5689, and nodes with thick borders to
the Markov blanket of 5689. See Section 3.1 for details.

A(a), and D(a), respectively. We supplement each region r ∈ R with a counting
number,

cr = 1−
∑
i∈A(r)

ci, (23)

and require that each vertex v ∈ V and each edge e ∈ E of the original graph
be counted exactly once, ∑

r∈R,v∈r
cr =

∑
r∈R,e∈r

cr = 1. (24)

The definitions of a counting number (23) and condition (24) are justified in the
framework of the cluster variation method [21] (or the Kikuchi approximation
[16]). Equation (24) is a result of the Möbius inversion formula applied to the
sum over partially ordered sets [3], and (24) can be proven using definitions of
Möbius and Zeta functions [3, equation 16].

A sample region graph is shown in Figure 2. For example, by region 5689,
we mean all nodes and all links between them that are present on the original
graph. It is easy to see that the counting number condition (24) is satisfied for
all the links and nodes.

The last two definitions that we need are the shadow of the region S(r) =
D(r)∪r and a Markov blanket of the region B(r) = P (S(r)) \S(r). An example
of both the shadow and Markov blanket of region 5689 can be found in Figure 2b.

A parent-to-child algorithm consists of three elements: (i) messages that
propagate along the directed edges of the region graph

ma→b(xb), (25)

where xb corresponds to variables belong to the cluster b, (ii) a formula for the
cluster beliefs

br(xr) ∼
∏
i∈Vr

φi(xi)
∏

(ij)∈Er

ψij(xi, xj)
∏

a∈B(r), b∈S(r)

ma→b(xb), (26)

11



1 2 3

4 5 6

7 8 9

(a)

123 456 789

1 2 3 4 5 6 7 8 9

147 258 369

(b)

123 456 789

147 258 369

(c)

Figure 3: An example of a region graph. (a) - the original graph partitioning,
(b) - the region graph, and (c) - the hypergraph structure. In Section 5, this
partitioning is referred to as “line GaBP”.

and (iii) message update rules that follow from the consistency conditions

∀l, r ∈ R, l ⊂ r ⇒
∑
xr\xl

br(xr) = bl(xl). (27)

In [39, equation 114], one can find message update rules for the general
situation, but for our simple region graph, conditions (27) suffice.

3.2 Two-layer generalized GaBP

In this section, we consider the simplest possible valid region graph that consists
of two layers, Figure 3b. The large regions, the horizontal and vertical stripes in
3a, are parents of small regions presented by the individual nodes. To proceed,
we need to establish some further notation. First, we define a projector on the
region k,

(Πk)ij =

{
δij , i, j ∈ k,
0, otherwise.

(28)

Here, |j| = |k| and |i| > |k| is chosen to be conformable depending on the
context. Ordering is global, i.e., it is fixed for the whole graph and maintained
the same way in all manipulations. We also introduce brackets,

ΠT
kAΠk = [A]k ,Π

T
k b = [b]k ; (29a)

ΠkCΠT
k = ]C[k ,Πkb = ]b[k , (29b)

where C ∈ R|k|×|k| and according to our notation, the sizes of the matrix and
the vector (29b) depend of the context whereas in (29a) the size of the matrix
is |k| × |k| and the size of the vector is |k|.

Let {Li} and {li} be sets of large and small regions in the two-layer region
graph. For messages, we use the following parameterizations

mab(xb) = N
(
xb
∣∣µab,Λ−1ab ) = N (xb |µab,Σab ) (30)

12



According to (26), the belief of any region reads

bL(xL) = N (xL |ΣLmL,ΣL ) , (31a)

mL = [b]L +
∑

a∈B(L)
b∈S(L)

]Λabµab[b , (31b)

ΣL =

[A]L +
∑

a∈B(L)
b∈S(L)

]Λab[b


−1

. (31c)

For the small region l, the shadow is S(l) = l and the Markov blanket is B(l) =
P (l), whereas for the large region L, the shadow is S(L) = C(L) and the Markov
blanket is B(L) = P (C(L))\L. Consistency condition (27) allows one to derive
update rules for each message sent from the parent region to the child region,

mLl(xl) =

∫
dxL
dxl
N
(
xl

∣∣∣Σ̃b̃, Σ̃) , (32a)

b̃ = [b]L − ][b]l[l +
∑

a∈B(L)
b∈S(L)\l

]Λabµab[b , (32b)

Σ̃ =

[A]L − ][A]l[l +
∑

a∈B(L)
b∈S(L)\l

]Λab[b


−1

. (32c)

Using standard results for marginals of the normal distribution, we can deduce

ΛLl =
([

Σ̃
]
l

)−1

, µLl =
[
Σ̃b̃
]
l
. (33)

If region L has many children and |l| � |L|, the direct use of equation (32c) is
not efficient. Instead, we use the formula following from the Woodbury matrix
identity, [(

A + ][B]l[l
)−1
]
l

=
(([

A−1
]
l

)−1
+ [B]l

)−1

, (34a)[(
A + ][B]l[l

)−1 (
b + ][c]l[l

)]
l

=

=
(([

A−1
]
l

)−1
+ [B]l

)−1 (([
A−1

]
l

)−1 [
A−1b

]
l
+ [c]l

)
,

(34b)

13



and split for each child region l,

b̃ =

[b]L +
∑

a∈B(L)
b∈S(L)

]Λabµab[b

−
][b]l[l +

∑
a∈P (l)\L

]Λalµal[l

 = b̃0 − b̃l,

(35a)

Σ̃
−1

=

[A]L +
∑

a∈B(L)
b∈S(L)

]Λab[b

−
][A]l[l +

∑
a∈P (l)\L

]Λal[l

 = Λ̃0 − Λ̃l.

(35b)

Then, for precision and mean of messages, we obtain

ΛLl =
([

Λ̃
−1

0

]
l

)−1

− Λ̃l, (36a)

µLl = Λ−1
Ll

(([
Λ̃
−1

0

]
l

)−1 [
Λ̃
−1

0 b̃0

]
l
− b̃l

)
. (36b)

Equations (36) are especially useful in the situation when the small regions
consist of the single node, i.e. the case of graph in Figure 3. In this situation,
one needs to invert the matrix corresponding to the large region only once
whereas the direct application of (33) leads to |C(a)| inversions.

From formulae (36), one can derive GaBP rules. As the large regions in the
Bethe approximation consist of two vertices with the edge connecting them, we
can rewrite messages as

Λ(ij)i ≡ Λji, µ(ij)i ≡ µji. (37)

Then, the Gaussian belief propagation rules follow from

Λ̃0 =

Aii +
∑

k∈N(i)\j
Λki Aij

Aji Ajj +
∑

k∈N(j)\i
Λkj

 , (38a)

Λ̃i = Aii +
∑

k∈N(i)\j

Λki, (38b)

]
Λ̃i

[
i

=

(
Aii +

∑
k∈N(i)\j

Λki 0

0 0

)
. (38c)

The validity of the presented rules for nonsymmetric linear problems does not
follow from the derivation above. Nevertheless, one can apply the generalized
GaBP rules with no modifications to solve them, as we explain in the next
sections.

14



3.3 Elimination perspective

First, we define a hypergraph G based on the region graph. The set of nodes
coincides with the set of large regions, and each common child corresponds to
the edge in the graph. The example of such a hypergraph is shown in Figure 3c.
With this definition, messages from equations (32) can be redefined with no
reference to the small region as long as a one-to-one correspondence between
edges of G and child regions of the original region graph are established. Now
we study the single message from region j to region i with k = j∩i and j = j\k.
According to (32) and (33), the precision part of the message is

Λji =

(((
Ajj Ajk

Akj 0

)−1
)
kk

)−1

= −AkjA
−1

jj
Ajk, (39)

and the mean is

µji =

((
Ajj Ajk

Akj 0

)−1(
bj
0

))
k

= −Λ−1
ji AkjA

−1

jj
bj . (40)

So the subset k of Ai and bi receive a correction from region j,

∆ (Ai)kk = −AkjA
−1

jj
Ajk, (41a)

∆ (bi)k = −AkjA
−1

jj
bj . (41b)

The corrections above are the same as in the ordinary block LU decomposition,(
Ajj Ajk

Akj Akk

)
=

(
I 0

AkjA
−1

jj
I

)(
Ajj Ajk

0 Akk −AkjA
−1

jj
Ajk.

)
(42)

Thus, we have a correspondence between the block LU operations and the gener-
alized GaBP for the two-layer region graph. As in the case of the regular GaBP,
LU applies in the fashion of dynamic programming, i.e., one does not just solve
a smaller subproblem as in the block iterative scheme, but rather forms a re-
cursive procedure that decouples different blocks from each other. Again, one
should reparametrize messages for them to be valid for the arbitrary invertible
matrix A. Note that if Ajk = 0, then Λji is not invertible. However, this is not
a problem because in this case Ai does not receive corrections ∆ (Ai)kk, and
the reparametrization for the mean messages mLl ≡ ΛLlµLl resolves the issue.

3.4 The algorithm

In the case of generalized GaBP, messages propagate on the region graph. To
remind, {Li} is the set of large regions, and {li} is the set of small regions. The
algorithm, as we describe it in this section, acts on a given region graph. We do
not provide an algorithm or recommendations on how to build a region graph.
Some observations about the influence of a particular choice of the large regions
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Algorithm 2 Generalized two-layer GaBP for a nonsymmetric linear system.

For a given two-layer region graph G = {R, ER}.
while error > tolerance do

for L ∈ {Li} ⊂ R do

b̃0 = [b]L
Λ̃0 = [A]L
for l ∈ C(L) do

b̃0 ← b̃0 +
∑

L′∈P (C(l))\L
]mL′ l[l

Λ̃0 ← Λ̃0 +
∑

L′∈P (C(l))\L
]ΛL′ l[l

end for
[x]L ← Λ̃−1

0 b̃0

for l ∈ C(L) do

mLl ←
([

Λ̃−1
0

]
l

)−1

[x]l − ][b]l[l −
∑

L′∈P (C(l))\L
mL′ l

ΛLl ←
([

Λ̃−1
0

]
l

)−1

− ][A]l[l −
∑

L′∈P (C(l))\L
ΛL′ l

end for
end for
error = ‖Ax− b‖∞

end while

can be found in Section 5. Regarding complexity, for each region, one needs to
solve a linear system of |L| equations, and also find a submatrix of the inverse
matrix of size |L|×|L|. We do not specify how to do it. But generally, the former
task is hard to accomplish asymptotically faster than the whole inverse, so the
computational cost of the entire scheme depends mostly on this operation. For
this reason, it what follows we mostly consider region graphs with small regions
each of which contains a single node. In this situation, one can avoid fill-in
and estimate only the diagonal of the inverse matrix which is usually more
straightforward. Also, there is no need for an additional inverse step during the
message update. Moreover, when all small regions are single nodes, the whole
algorithm is either a method that speeds up GaBP or a particular schedule of
GaBP depending on the chosen way of finding the inverse and the solution of a
linear system.

To perform a worst-case analysis both of Algorithm 2 and update rules (36),
for a given region with N variables, we denote the number of children by M ,
the number of variables of each child region by ni, the number of parents for
each child by pi, and use the LU decomposition to find an inverse. For the
Algorithm 2, the number of operations is

#1 =

M∑
i=1

[
3

2
n3
i + 2ni (ni + 1) (pi − 1)

]
+

3

2
N3. (43)
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The first term in brackets is due to the inverse during the message update
stage, the second term in brackets is due to the message update and message
accumulation steps, the last term is from the inverse of a matrix for the large
region. For update rules (36), we obtain

#2 =

M∑
i=1

[
3

2
n3
i + (M − 1)ni (ni + 1) (pi − 1)

]
+M

3

2
N3. (44)

Since

#2 −#1 = (M − 3)

M∑
i=1

ni (ni + 1) (pi − 1) + (M − 1)
3

2
N3, (45)

one obtains a speed-up if M > 3 for an arbitrary region graph. For certain
regular partitions, for example the one in Figure 3a, M scales like N , and
in this cases, the Algorithm 2 performs O(N3) operations whereas rules (36)
perform O(N4) operations for each large region.

It is easy to see that if the LU method is employed, the number of operations
for the single sweep is O(K), where K is an overall number of variables, only
if the number of variables, for some regular partition for which the limit makes
sense, in each large region scales like O(1). Clearly, LU is not the best option for
all cases, for example, matrices can have a particular structure (tridiagonal as
Figure 3a), or it may be more advantageous to use probing or other techniques
of estimation of certain subblocks of the inverse matrix [30] in combination with
some iterative scheme for the solution of linear system.

The Algorithm 2 can be justified theoretically on the basis of the following
two theorems.

Theorem 3.1. If there is N ∈ N such that m
(N+k)
e = m

(N)
e , Λ

(N+k)
e = Λ

(N)
e

for all e ∈ ER and for any k ∈ N, then for each large region [x]L ≡ Λ̃−1
0 b̃0 =[

A−1b
]
L

(see Algorithm 2 for details).

That is, the steady state of the message flow, if it exists, corresponds to the
exact solution. The proof is given in C.

For the sufficient condition for convergence we need additional definitions.
First, based on a given region graph {R, ER}, we define a set of variable subsets

F ≡
(
∪
i
{li}

)
∪
(
∪
j

{
Lj\ ∪

p∈C(Lj)
{lp}

})
, (46)

where li is a small region and Lj is a large region. Using F , we form a partition
of the matrix A and the right-hand-side vector b

A =

Aii Aij . . .
Aji Ajj . . .

...
...

. . .

 ,b =

bi
bj
...

 , (47)
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where each diagonal block corresponds to the element of the set F . We also
define

Ãij = A−1
ii Aij ≡ Iij − R̃ij ,∥∥∥R̃∥∥∥

ij
≡
∥∥∥R̃ij

∥∥∥ , b̃i = A−1
ii bi.

(48)

Note that the second line in the preceding equation contains a definition of

matrix
∥∥∥R̃∥∥∥, which depends on the operator norm ‖·‖ (see [15, ch. 5, Definition

5.6.3]).
The following statement gives sufficient conditions for convergence.

Theorem 3.2. If for matrix (47) which is based on partition (46) det Aii 6= 0 ∀i
and ρ

(∥∥∥R̃∥∥∥) < 1 in some operator norm, then two-layer generalized GaBP

(algorithm 2) converges to the exact solution x = A−1b.

The proof of this theorems appears in D. From the second part of the argu-
ment in D.2, one can deduce the following

Corollary 3.0.1. Generalized GaBP (algorithm 2) converges whenever GaBP
converges (Theorem 2.2) and all submatrices corresponding to the large blocks
are invertible (see equations (46), (47)).

The opposite does not hold. For example, consider a matrix

A =



10 1.5 2 2 0 2 0
2 4 2.5 0 2 0 0
2 3 5 0 0 0 1
2 0 0 10 0.5 1 0
0 2 0 0.5 5 0 1
2 0 0 1 0 7 1
0 0 1 0 1 1 2


=

A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,

A11 ∈ R3×3, A22 ∈ R2×2, A33 ∈ R2×2.

(49)

In this case, the spectral radius of matrix
∣∣∣R̃∣∣∣ defined in Theorem 2.2 equals

∼ 1.03 and GaBP diverges2. On the other hand, the spectral radius of
∣∣∣R̃∣∣∣

defined by (48) and the partition given in (49) is smaller than one in l∞ and
spectral norms [15, Examples 5.6.5, 5.6.6] (see [1] for further details).

4 GaBP as a smoother for the multigrid method

The most straightforward view on the geometric multigrid is to describe it as an
acceleration scheme for classical iterative methods. For completeness, we briefly
recall the main ideas.

2Note that the divergence of GaBP does not follow from
∣∣∣R̃∣∣∣ > 1 as Theorem 2.2 provides

only sufficient conditions. For this particular case, the pathological behavior of GaBP follows
from the numerical experiment (see [1] for details).
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Algorithm 3 GaBP as a smoother.

Compute a residual rn = b−Axn.
Apply µ sweeps of Algorithm 1 or 2 to the linear system Ae = rn.
Perform an error correction xn+1 = xn + eµ.

The multigrid consists of four essential elements: a projection operator

IV
′

V : V → V
′

(V , V
′

are linear spaces) that reduces the number of degrees

of freedom, an interpolation operator IV
V ′

: V
′ → V that acts in the ”inverse”

way, a smoothing operator SV : V → V which is usually a classical relaxation
method, and a set of linear operators AV ′ that approximate A on coarse spaces

V
′
. What we describe next is a two-grid cycle.

• For the current approximation xn of solutions of Ax = b, one performs
several relaxation steps x = Sνxn.

• Then, based on properties of S, the linear space V
′

and the projection

operator IV
′

V : V → V
′

are constructed. The purpose of this space is to
represent the residual r = b−Ax and an error e = xexact − x accurately

using fewer degrees of freedom
∣∣∣V ′ ∣∣∣ < |V |.

• Having the space V
′
, one constructs an operator A

′
that approximates A

and solves the error equation A
′
e
′

= IV
′

V r.

• The error, after projection back to V , gives the next approximation to the

exact solution, xn+1 = Sµ
(
xn + IV

V ′
e
′
)

.

The multigrid utilizes a two-grid cycle to solve the error equation A
′
e
′

= IV
′

V r
itself. It produces the chain of spaces (grids in the geometric setup), projection
operators that allow moving between them, and a set of approximate linear
operators. For more details, we refer the reader to other resources: a simple
introduction to geometric multigrid can be found in [25, ch. 13], for the algebraic
multigrid a recent review [35], physical considerations about algebraic multigrid
can be found in the introduction of [23], and among other books on the subject,
[31] provides a comprehensive introduction for practitioners.

Here, we consider only linear systems of equations arising from finite differ-
ence discretization of elliptic equations with smooth coefficients in two space
dimensions. In this case it is possible to use grids in place of linear spaces. Let

the finest grid contain 2J + 1 points GJ =
{

(i+ j)h|h = 2−J , i, j = 0, 2J
}

, then

the coarser grid GJ−1 contains each second points along both directions. As

we are working in the physical space, the restriction operator IV
′

V computes a
weighted average of neighbouring points, operator IV

V ′
performs interpolation,

and A on the grid GJ′ is a finite difference approximation of the differential
operator. In this article we always use full weighting restriction [31, eq. 2.3.3]
and bilinear interpolation [31, eq. 2.3.7].
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The smoother should be a mapping S : xn → xn+1. Although GaBP is not
of this form, one can use an error correction scheme as explained in Algorithm 3.
In the next two subsections we analyze smoothing properties of Algorithm 3 and
estimate its computational complexity.

4.1 Local Fourier Analysis

Local Fourier Analysis allows us to compute the spectral radius of the two-grid
cycle, the smoothing factor of the relaxation scheme, and the error contraction in
a chosen norm [31, ch. 4]. In this subsection, we apply the analysis to the central
difference discretization of the Laplace equation in two spatial dimensions

1

h2

 −1
−1 4 −1

−1

uij = fij . (50)

If after µ sweeps of Algorithm 1 the solution has a form Srn, then the output
of Algorithm 3 is xn+1 = S (b−Axn) + xn. Thus, for the error we have

en+1 = (I− SA) en. (51)

Now we need to find a stencil of the operator S. For GaBP it differs for parallel
and sequential versions. For one and two sweeps of parallel version on the
infinite lattice we have

S1
paralleluij =

h2

4
uij ,S

2
paralleluij =

h2

12

 1
1 4 1

1

uij . (52)

It is easy to compute symbols

S1
parallel(θ) =

h2

4
,S2

parallel(θ) =
h2

3

(
1 + cos

(
θ1 + θ2

2

)
cos

(
θ1 − θ2

2

))
,

A(θ) =
4

h2

(
1− cos

(
θ1 + θ2

2

)
cos

(
θ1 − θ2

2

))
.

(53)

As the smoothing factor is

µ = max
θ∈high

|1− S (θ) A (θ)| , high = [−π, π[
2 \
[
−π

2
,
π

2

[2
, (54)

we can conclude that the parallel version of GaBP shows no smoothing proper-
ties. This conclusion is confirmed by our numerical experiments.

In the sequential case, one can deduce the form of S based on the elimination
perspective. When one starts to move along the lattice, messages correspond to
the elimination of variables, which means that

S−1
sequential =

1

h2

−1 4
−1

 . (55)
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Figure 4: Convergence histories for different anisotropies ε: (a) two GaBP
sweeps and (b) three GaBP sweeps for presmoothing and postsmoothing. In
both cases, the fine grid consists of 26 + 1 points, and the coarsest grid consists
of 23 + 1 points along each coordinate line. For comparison, if ε = 10−3, multi-
grid with Gauss-Seidel smoother (3 presmoothing and postsmoothing sweeps)
converges after ∼ 400 iterations. The sharp drops of the residual are the re-
sult of the cumulative effect that eludes explanation via Local Fourier Analysis.
Namely, for small epsilon, vertical lines are effectively decoupled from each other.
Scheme (a) needs 15 iterations to solve exactly systems of linear equations for
each line, and scheme (b) need 10 iterations. See Section 4.1 for details.

Then, for the smoothing factor we have

µ = max
θ∈high

√∣∣∣∣ cos (θ1 − θ2) + 1

4 cos (θ1) + 4 cos (θ2)− cos (θ1 − θ2)− 9

∣∣∣∣ =
1

2
, (56)

for θ2 = π
2 and θ1 = 2 arctan 1

3 . This means that the smoothing factor for the
sequential GaBP coincides with the one for sequential Gauss-Seidel iteration
scheme [31, Example 4.3.4]. It is also clear that for the anisotropic problem

1

h2

 −1
−ε 2(1 + ε) −ε

−1

uij = fij , (57)

both Gauss-Seidel scheme and sequential GaBP lose their smoothing properties
when ε → 0. However, numerical experiments (figure 4) show that the conver-
gence rate of GaBP does not depend on ε. An explanation for this particular
case is straightforward. For sufficiently small ε equations for each vertical line
(i.e., in y direction) are independent. GaBP is an exact solver for trees. The
single multigrid iteration eliminates variables from 2 + 2 = 4 neighbours in case
4a and from 3 + 3 = 6 neighbours in case 4b. When messages cover the whole
line of 26 − 1 = 63 nodes, the system of linear equations for each vertical line is
solved exactly. It gives 63/4 ∼ 15 iterations for 4a, and 63/6 ∼ 10 iterations for
4b.
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Sweeps Stencil GaBP line GaBP GS x/y-GS

1
5 points 18N 38N 9N 14N
9 points 32N N/A 17N 21N

2
5 points 30N 65N 18N 28N
9 points 56N N/A 34N 42N

M ≥ 3
5 points 12N ·M + 6N 28N ·M + 9N 9N ·M 14N ·M
9 points 24N ·M + 8N N/A 17N ·M 21N ·M

Table 1: Computational complexity of GaBP (error correction scheme) with
precomputed Λ messages in comparison with the classical Gauss-Seidel relax-
ation schemes. Line GaBP refers to the partition presented in Figure 3a and
x/y-GS is a classical line smoother. As one can see from the theory of gener-
alized GaBP, it is not possible to apply line GaBP for 9 points stencil, because
large regions do not cover all edges of the original graph. However, one indeed
can construct line GaBP smoothers for this case, too, but we do not consider
them here.

The effect displayed in Figure 4 is a manifestation of the dynamic nature of
GaBP. Even as part of the multigrid it maintains information about all previous
iterations. More convergence histories can be found below, in the section with
numerical examples. Overall, we conclude that sequential GaBP as part of the
multigrid behaves similarly to Gauss-Seidel in the absence of anisotropy, but is
substantially more robust in the presence of anisotropy. The behavior captured
in Figure 4 also illustrates that Local Fourier Analysis is not an appropriate
tool to analyze GaBP.

4.2 Reducing computational complexity

The number of floating point operations per iteration for algorithms 1 and 2
depends on the graph of the matrix A. Here, we consider the operator with the
dense 9 point stencil

A =

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 , (58)

which can come from the second order finite difference approximation of a dif-
ferential operator containing second and first derivatives. The same analysis for
the 5 points stencil is straightforward. For convenience, we split Algorithm 1
(sequential version) into three parts:

• Accumulation stage. Σ and m are computed.

• Update stage. New messages Λ̃ and µ̃ are constructed from the previous
ones.

• Termination stage. The final answer m/Σ is obtained.
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We also neglect all effects from boundaries. Under these assumptions, the num-
ber of floating point operations for the single sweep GaBP is

#GaBP1 = 4N + 8N︸ ︷︷ ︸
accumulate

+ 8N + 12N︸ ︷︷ ︸
update

+ N︸︷︷︸
terminate

+ 18N︸︷︷︸
r=b−Ax0

+ N︸︷︷︸
+x0

= 52N. (59)

Here, we perform only a half of accumulation stage and a half of update stage,
because we do not need to receive messages from nodes that we have not visited
yet, nor we need to send messages to already visited nodes.

For lexicographical Gauss-Seidel scheme, the number of floating point op-
erations is #LEX GS = 17N. It means that a single sweep of 1 takes slightly
fewer floating point operations than three sweeps of Gauss-Seidel smoother
#GaBP1

∼ 3#LEX GS. For M sweeps of GaBP one has #GaBPM
= N(64M−12).

In the context of multigrid, it is important to have a cheap smoother, but even
52N is too expensive. However, it is possible to reduce computational complex-
ity by precomputing all required messages Λ̃, which depend only on the matrix
A and not on the right-hand-side vector. For M sweeps of GaBP with pre-

computed Λ̃, we have #Λ̃
GaBPM

= N(24M + 8). We summarize all these results
regarding the complexity of GaBP in Table 1.

5 Numerical examples

In this section, we present numerical experiments with matrices that arise from
second-order finite difference approximations of two-dimensional elliptic differ-
ential equations with (x, y) ∈ [0, 1]

2
. The grid is assumed to be uniform and

consists of 26 − 1 inner points along each direction. We use Dirichlet bound-
ary conditions in all the examples. These conditions are not specified directly
and should be extracted from the exact solution. In the same vein, the form
of the source term g(x, y) (ride-hand side) can be derived from the exact solu-
tion and is not given explicitly. In all the experiments, the stopping criterion
is ‖r‖∞ ≤ 2 · 10−4. In the tables below, Nit denotes the number of iterations
and N is the number of variables. Before we begin the main discussion, we
summarize the main properties of the solvers that are used.

5.1 Note about solvers and smoothers

In addition to the number of floating point operations (FLOP) (see Table 1), an
important characteristic of a solver is its degree of parallelism, which is provided
for various solvers in the following table (for classical methods see e.g. [31, ch.
6]):
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Solvers Process in parallel
parallel GaBP, Jacobi all point
sequential GaBP, GS the single point

red-black GaBP, red-black GS the half of all points
4-colors GaBP, 4-colors GS the quarter of all points

x− or y−GS a single line
zebra-line GS, alternating zebra GS a half of all lines

line GaBP all lines

Note that the line version of GaBP possesses a better degree of parallelism than
GS versions. When we consider GaBP as a multigrid component, we always use
V-cycle, bilinear restriction, and prolongation operators and LU as a coarse-grid
solver. In our notation V (J1, J2) means that the fine grid consists of 2J1 − 1
points, the coarse grid of 2J1−(J2−1) − 1 points; numbers (n,m) before the
smoother name refer to the number of pre- and post-smoothing steps.

5.2 GaBP as a stand-alone solver

Classical relaxation methods are rarely used outside the AMG (algebraic multi-
grid) or GMG (geometric multigrid) to solve linear systems. Nevertheless, we
present an example of their performance below. As a linear problem we use the
following elliptic boundary value problem:(

a(x, y)
∂2

∂x2
+ b(x, y)

∂2

∂y2
+ α(x, y)

∂

∂x
+ β(x, y)

∂

∂y

)
φ = g, (x, y) ∈ [0, 1]

2
;

a = e−x(y+2) + 10, α = cos
(
π
(
x+

y

2

))
cos(2πx) + 4;

b = e−2x+2y cos2
(

2π
(

2x+
y

2

))
+ 3, β = e2x−2y

(60)

with g(x, y) and boundary conditions chosen such that φexact = cos(πx) cos(πy)
is the exact solution (this method of manufactured solutions is used in the re-
maining examples as well). The performance of various methods on this problem
is shown in the following table:

Solver Nit FLOP, 103 ·N
sequential GaBP 1548 99

parallel GaBP 3299 211
GS 3102 53

4-colors GS 2620 45
4-colors GaBP 1865 119

Jacobi 4746 81
error correction 4-colors GaBP (3) 706 56
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The last line in the table corresponds to the three sweeps of the error correction
scheme with precomputed messages Λ (see Section 4.2). We see that GaBP does
not provide particular advantages over classical relaxation methods as a stand-
alone solver, even though there are some reports of its excellent performance
(see, e.g., [33], [5]). The main bottleneck here is the computational complexity
of the scheme. To some extent, one can mitigate this problem by precomputing
Λ before the iteration process begins. Still, in this particular situation, both
the 4-colors GS and Jacobi provide better alternatives due to their low cost and
high degree of parallelism. We observe the analogous behavior for other elliptic
problems.

5.3 GaBP as a multigrid smoother

As a rule, relaxation solvers become applicable to real large-scale problems and
are competitive with projection methods only in the framework of multigrid
schemes. We now present several situations that could potentially challenge
state-of-the-art GMG smoothers. Note that in this section, we always use the
error correction version of GaBP. Since we apply the same version of multigrid,
we compute the FLOP score solely for the smoother and on the fine level only.

5.4 Large mixed derivative

The first equation of interest is of the form(
∂2

∂x2
+

∂2

∂y2
+ (2− ε) ∂2

∂x∂y

)
φ = g, (x, y) ∈ [0, 1]

2
,

φexact = 2x3y4.

(61)

The main problem here is that for small ε, the ellipticity is almost lost. Below
one can see the table with the best in terms of FLOP V -cycle solver of each kind:

ε = 0.01 ε = −0.01
Solver, V (6, 6) Nit FLOP, N Nit FLOP, N

4-color GaBP (0, 4) 23 2392 28 2917
4-color GS (1, 1) 70 2380 84 2856

zebra-line GS (0, 1) 104 2184 127 2667
alternating-zebra GS (0, 1) 64 2688 78 3276

We can see that the performance of GaBP is comparable with the 4-color GS
smoother. So GaBP can be considered to be robust for the almost non-elliptic
equations. We also stress that both 4-color GS and GaBP are preferable over
the line smoothers for this problem because of their better degree of parallelism.
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5.5 Boundary layers

The other practically relevant case that is a challenge for standard geometrical
smoothers is an advection-diffusion problem in which advection dominates. We
take as an example the following problem:(

−ε ∂
2

∂x2
− ε ∂

2

∂y2
+

∂

∂x
+

∂

∂y

)
φ(x, y) = 0, (x, y) ∈ [0, 1]

2
,

φexact =
2e−1

/
ε − e(x−1)

/
ε − e(y−1)

/
ε

e−1
/
ε − 1

.

(62)

As one can see, there are two boundary layers near x = 1 and y = 1, each of
width ∼ ε. The solution is not large, but the derivative is ∼ 1

/
ε. The table

below shows the performance results.

ε = 0.02 ε = 0.01
Solver, V (6, 6) Nit FLOP, N Nit FLOP, N

red-black GaBP (5, 0) 5 330 3 198
red-black GS ∀(n,m) diverge diverge
zebra-line GS (2, 2) 5 280 diverge

alternating-zebra GS (1, 1) 4 224 3 168
line GaBP (0, 2) 5 325 5 325

We observe two interesting trends. First, for ε = 0.02, it is not possible to
apply the red-black GS. However, it is still possible to construct a smoother
from GaBP, using a sufficiently large number of sweeps. Second, the line GaBP
smoother with a reasonable amount of steps performs nearly as well as the
alternating-zebra GS. Still, since the GABP can process all lines simultane-
ously, we conclude that it can outperform classical geometric smoothers for
such advection-dominated elliptic problems. Furthermore, if the precomputa-
tion of Λ is affordable from the perspective of the additional storage required,
it is far better to use the red-black GaBP smoother.

5.6 Inner layers

We consider another advection-dominated diffusion problem(
ε
∂2

∂x2
+ ε

∂2

∂y2
+ x

∂

∂x
+ y

∂

∂y

)
φ = g, (x, y) ∈ [0, 1]

2
,

φexact = e−(x+y−1)2
/
ε.

(63)

This equation differs from (62) in two respects: 1) the solution has two inner
layers, and 2) they are not aligned with the coordinate lines. Now the perfor-
mance is as follows.
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ε = 0.015 ε = 0.01
Solver, V (6, 6) Nit FLOP, N Nit FLOP, N

red-black GaBP (3, 0) 7 294 13 546
red-black GS ∀(n,m) diverge diverge
zebra-line GS (2, 0) 9 252 diverge

alternating-zebra GS (1, 1) 4 224 5 280
line GaBP (0, 2) 8 520 8 520

For this problem we can see the same pattern as for the previous example. The
classical red-black solver is unable to smooth the error, whereas the GaBP-based
color iteration scheme works fine. Additionally, due to its excellent degree of
parallelism, the red-black GaBP significantly outperforms the alternating-zebra
GS smoother.

5.7 Stretched grid

Another situation of practical interest is given by the following problem:(
u (x|p, η)

∂2

∂x2
+ u (y|p, η)

∂2

∂y2

)
φ = g, (x, y) ∈ [0, 1]

2
,

u (x|p, η) = 1 +

((
x− 1

2

)2

+ η

)p /
ε,

φexact = cos(2π(x+ y)) sin(2π(x− y)).

(64)

To understand this problem, consider the finite difference discretization of the
Laplace equation on a grid which is highly concentrated near the edges of the
domain. If one denotes ain and abn to be characteristic scales of the coefficients,
related to inner and boundary points respectively, the ratio abn

/
ain will be large.

We achieve the same effect in equation (64) on the uniform grid by multiply-

ing second derivatives by positive terms of the form
(

1 +
((
x− 1

2

)2
+ η
)p /

ε
)

which are approximately equal to 1 inside the domain, but grow rapidly to large
values near the boundaries. The table below shows thee results.

p, η, ε = 20, 1
/

2, 10−6 p, η, ε = 20, 1
/

2, 8 · 10−8

Solver, V (6, 6) Nit FLOP, N Nit FLOP, N
red-black GaBP (3, 0) 18 756 23 966

red-black GS (3, 0) 68 1836 97 2619
zebra-line GS (4, 0) 50 2800 72 4032

alternating-zebra GS (1, 1) 10 560 12 672
line GaBP (0, 2) 20 1300 23 1495

In this table, the first set of parameters p, η, ε = 20, 1
/

2, 10−6 corresponds to
the linear stretching of the grid by a factor of ∼ 40 and the second p, η, ε =
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20, 1
/

2, 8 · 10−8 to the linear stretching by a factor of ∼ 160. We conclude
that there is a version of the red-black GaBP with excellent convergence rate
and good degree of parallelism. The same is true for the line GaBP smoother.
Both of them can be used as an alternative to the classical alternating-zebra
smoother.

5.8 Comparison with a projection method

For the sake of completeness, we also give an example of the performance of
BiCGSTAB and GaBP-based multigrid for problem (60).

Solver Nit FLOP, 103 ·N
V (6, 6), 4-color GaBP (1, 1) 21 ∼ 3

BiCGSTAB 255 ∼ 38

As one may have anticipated, the projection method without a suitable precon-
ditioner cannot outperform the geometric multigrid.

Overall, based on the presented result, we conclude that different versions
of GaBP perform either comparably well or better than the state-of-the-art
smoothers for GMG. The main disadvantage of GaBP is its computational com-
plexity. Even though with a precomputed Λ, one can substantially decrease the
number of FLOPs, the cost of a single iteration is still higher than for the
classical smoothers. However, its clear advantages are the robustness and the
degree of parallelism. The former allows one to construct new point-based re-
laxation schemes for situations where classical point-based relaxation methods
fail. And the latter enables the line GaBP to outperform the alternating-zebra
GS smoother.

6 Conclusions

In this paper, we have introduced a new class of solvers for linear systems that
are based on the generalized belief propagation algorithm. The solvers work
for both symmetric and nonsymmetric matrices. We show how to reduce the
complexity of the resulting algorithm in comparison to that of the straight-
forward application of the generalized belief propagation. A clear connection
between the block LU decomposition and the new algorithm is established. Ex-
isting proofs for symmetric systems are generalized to nonsymmetric systems,
and two new proofs for a block version of the GaBP are given. Furthermore,
we show how to use the geometric multigrid to accelerate the GaBP, which
with a precomputed Λ̃ results in a robust solver with the same computational
complexity as the one based on the Gauss-Seidel smoother.

We have demonstrated the performance of the new algorithm with several
examples of boundary-value problems of varying complexity. The numerical
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experiments show that the GaBP is a competitive alternative to classical relax-
ation schemes. The reason for the good performance of GaBP is that it retains
some information about all the previous stages, whereas the Gauss-Seidel, Ja-
cobi, and Richardson solvers do not. Even though large computational overhead
is a disadvantage of GaBP, the problem can be alleviated within the framework
of the multigrid scheme at the expense of additional storage and precomputa-
tion of some messages. Moreover, as part of the multigrid, the GaBP not only
smooths high-frequency components of the error, but also effectively decreases
the low-frequencies. Our numerical experiments indicate that this feature pro-
motes additional robustness. For example, the convergence rate of GaBP for
anisotropic model elliptic problem given by

(
∂2
x + ε∂2

y

)
u(x, y) = 0 does not de-

pend on ε, which is a somewhat unexpected result. Moreover, in the case of
sharp inner and boundary layers, stretched grids, and large mixed derivatives,
GaBP retains smoothing properties and performs better than the state-of-the-
art geometrical smoothers.

The generalized GaBP introduced in the present work is in some sense a
block version of the regular GaBP. Our numerical experiments show that the
convergence rate increases with the size of the blocks such that after certain
scale the generalized GaBP can compete with Krylov subspace methods (see a
numerical example at [1]). However, the computational cost increases as well.
In practical applications, one should balance these two tendencies to construct
an optimal solver. Some considerations about the choice of the blocks can be
found in [34], [37], but the issue is not yet fully resolved.

The generalized GaBP and GaBP as its particular case come from a domain
of variational inference. To the best of our knowledge, there is currently no sys-
tematic analysis of the general relationship between deterministic/probabilistic
inference and linear solvers. In our opinion, such a link may be useful for new
interpretation of known techniques and provide insights that may lead to more
efficient algorithms for numerical linear algebra.
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Appendices

A Consistency of GaBP

Here, following [33] we prove

Theorem 2.1. If there is N ∈ N such that µ̃
(N+k)
e = µ̃

(N)
e , Λ̃

(N+k)
e = Λ̃

(N)
e for

all e ∈ E and for any k ∈ N, then µ
(N+k)
i = µ

(N)
i =

(
A−1b

)
i
.

That is, if there is a steady state under mapping (21), the solution given by
the GaBP rules is exact.
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
∗ ∗ ∗ 0
0 ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗


(a)

1 2

3 4

(b)

1 y1

3 y2 2 y3

2y4 4 y5 3y6 4 y7

4 y8 1y9 4 y10

T2(x1)

(c)

Figure 5: (a) – matrix with nonzero elements denoted by ∗; (b) – directed graph
corresponding to the matrix. Note that by our convention eij agrees with Aji
not Aij ; (c) – computation tree of depth 3 for the first node T3(x1) generated
by a flood schedule. The subtree inside the box is T2(x1).

We note that the proof in [33] also holds for the nonsymmetric case. We
present a slightly different version of their reasoning, without referencing graph-
ical models for normal distribution.

The first concept that we need is a computation tree, which captures the
order of operations under the GaBP iteration scheme. The computation tree
contains copies of vertices and edges of the graph corresponding to A. The
matrix is supposed to be fixed so the computation tree depends on the root node
i and the number of steps n. We denote it by Tn(xi). To obtain Tn(xi) from
Tn−1(xi), we consider each vertex m ∈ VTn−1(xi) that has no incidence edges,
find the corresponding variable on the graph of A, add to Tn−1(xi) copies of each
neighbour k of m such that ekm ∈ EA except for l for which eml ∈ ETn−1(xi).
The example of the tree T3(x1) is in figure 5c, the T2(x1) in the dashed box
exemplifies the recursion process.

By the construction of the computation tree, the following proposition is
true.

Proposition A.1. If x
(n)
i is the solution on the n-th step of the algorithm 1,

then it coincides with the one obtained after the elimination of all variables but
xi (the root) from the computation tree Tn(xi).

To relate the matrix B of the computation tree Tn(xi) to the matrix A, we
define the matrix O [33, eq. 15] that connects original variables with copies

y = Ox,d = Ob, (65)

or, more precisely, yj is a copy of xi ⇒ Oji = 1 and
∑
i

Oji = 1. For example,
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matrix O for the tree in figure 5c is

OT =


1 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 1 0
0 0 0 0 1 0 1

 . (66)

Now it is not hard to establish the connection between B and A [33, eq. 17]

BO + E = OA, (67)

where E is nonzero only for the subset of variables that n steps away from the
root node on the computation tree Tn(xi). The final part of the proof depends
on the following statement [33, Periodic beliefs lemma].

Proposition A.2. If there is N ∈ N such that µ̃
(N+k)
e = µ̃

(N)
e , Λ̃

(N+k)
e = Λ̃

(N)
e

for all e ∈ E and for any k ∈ N, then it is possible to construct an arbitrary
large computation tree TM (xi) for any root node xi such that Oµ(N) = B̃−1d̃.

Where B̃ij 6= Bij and d̃i 6= di only for i = j that are M steps away from the
root node.

The crucial part here is that not only the solution for the root node coincides
with the steady state solution of GaBP, but also the same is true for all the
variables on the modified computation tree.

The proof is as follows. First, following the recursion procedure, we construct
a computation tree of desired depth M . Then we continue to grow the tree till
the subtrees of nodes M steps away from the root reach the depth N which
corresponds to the steady state of GaBP. Now, elimination of subtrees results
in the desired modified tree with the matrix B̃ and the right-hand side d̃.

Since we can construct an arbitrary modified computation tree, we can al-
ways get for arbitrary large M

B̃O = OA for the first M rows. (68)

And we know that by construction of the modified computation tree

B̃Oµ(N) = d̃. (69)

So we conclude that

OAµ(N) = Ob for the first M rows. (70)

Note, that OTO is a diagonal matrix that counts the number of copies of each
variable, therefore we can always choose M large enough to make det

(
OTO

)
6=

0 and Aµ(N) = b which means that the iterative scheme defined by the algo-
rithm 1 is consistent.
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B Convergence of GaBP

Here we present the version of the proof from [17] that extends to nonsymmetric
matrices. Our modifications are relatively minor, but for the sake of logical
coherence, we reproduce here the minimal set of arguments from [17] tuning
definitions and proposition when needed. The main result of this section is

Theorem 2.2. If Aii 6= 0 ∀i, |̃R|ij = (1− δij) |Aij |
|Aii| , and ρ(|̃R|) < 1, then the

Algorithm 1 converges to the solution x? = A−1b for any b.

The whole idea of the proof [17] is to relate GaBP operations with the
recursive update of the weights of walks on the graph, corresponding to the
matrix A. For the start, we define a walk w as a an ordered set of vertices
w =

(
i1, i2, . . . , il(w)

)
where l(w) is a length of the walk w and ∀k < l(w) ⇒

eikik+1
∈ E . Each walk possesses a weight

φ(w) = Ail(w)il(w)−1
· · ·Ai3i2Ai2i1 . (71)

Note that the order is backward, which is a consequence of our definition of the
directed graph. For the symmetric matrix, when the order is not essential, the
equation (71) coincides with the weight defined in [17, 3.1]. Now, if we have a

system Ax = b, we can rescale it using b̃j = bj/Ajj . This procedure is valid for
any A with nonzero diagonal and results in the equivalent system

Ãx = b̃, Ãij = δij + (1− δij)
Aij
Aii
≡ δij − R̃ij (72)

It is possible to represent the solution of (72) in the form of Neumann series

(see [15, ch. 5]) because ρ
(
R̃
)
< 1 and therefore

Ã−1 =
(
I− R̃

)−1

=

∞∑
n=0

R̃n. (73)

However, for being able to rearrange terms in the sum as necessary, which is
sufficient to rewrite the inverse matrix using walks, one needs to require absolute

convergence which is ρ(|̃R|) < 1. Having this condition it is not hard to prove
[17, Proposition 1, Proposition 5]

Proposition B.1. If ρ(|̃R|) < 1, then Ã−1
ij =

∑
w:j→i

φ(w) and x?i ≡
(
Ã−1b̃

)
i

=∑
k∈V

∑
w:k→i

φ(w)̃bk.

Here, by w : j → i we mean the set of walks which start from the vertex

j and end at the vertex i. If one defines [17, 3.2] sets of single-visit k
\i→ i

and single-revisit i
\i→ i walks by all walks which are not visiting the node i in
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between given start and end points, the sum over walks can be decomposed [17,
eq. 12, 13; Proposition 9]

x?i =

b̃i +
∑
k∈V

b̃k ∑
w:k
\i→i

φ(w)


/

1−
∑
w:i
\i→i

φ(w)

 . (74)

The decomposition follows from ”topological” considerations alone which de-
pend only on the structure of walks and not on the particular definition of the
weight. The last result that we need is [17, Lemma 18]

Proposition B.2. For each finite length walk k → j on directed graph of the
matrix A there is n and unique walk on the computation tree Tn(xi).

Now, if we can relate update rules (21) with the recursive structure of walks
on a tree, the proof of the proposition 2.2 is done.

On the tree, for each vertex i, the sum over single-revisit walks splits into
sums over subtrees Tk∪i, which are maximal connected parts that contain i and
among N(i), only k. Then∑

w:i
\i→i

φ(w) =
∑

k∈N(i)

∑
w:i
\i→i

w∈Tk∪i

φ(w), (75)

but the sums over subtrees Tk∪i can be written as a sum over Tk\i ≡ Tk∪i\ {i},∑
w:i
\i→i

w∈Tk∪i

φ(w) =
R̃kiR̃ik

1−
∑

w:k
\k→k

w∈Tk\i

φ(w)
=

R̃kiR̃ik
1−

∑
m∈N(k)\i

∑
w:k
\k→k

w∈Tm∪k

φ(w)
, (76)

where we used [17, eq. 12, Proposition 9]∑
w:k→k

φ(w) =
1

1−
∑

w:k
\k→k

φ(w)
. (77)

Using the definition of R̃, it is easy to see that if one denotes

− Aii
Aki

∑
w:i
\i→i

w∈Tk∪i

φ(w) = Λ̃ki, (78)

then the update rule (76) coincides with the one for Λ̃ in (21). Note that (78)
is well defined because if Aki = 0, there is no contribution from this particular
subtree, and we do not need to use the walk from there. In the same vein, the
sum in the numerator of (74) can be decomposed

∑
k∈V

b̃k ∑
w:k
\i→i

φ(w)

 =
∑

m∈N(i)

∑
k∈Tm∪i

b̃k ∑
w:k
\i→i

w∈Tm∪i

φ(w)

 . (79)
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Figure 6: (a) – partition of the original graph on large regions; (b) – flat represen-
tation of the two-layer region graph; (c) – computation tree for the generalized
GaBP.

Again, using the sum over subtrees Tk\i

∑
k∈Tm∪i

b̃k ∑
w:k
\i→i

w∈Tm∪i

φ(w)

 = R̃im
∑

k∈Tm\i

b̃k ∑
w:k→m
w∈Tm\i

φ(w)

 , (80)

decomposition on single-visit walks [17, eq. 13] and equations (78), (76), we
obtain

µ̃miΛ̃mi
Aii

≡
∑

k∈Tm∪i

b̃k ∑
w:k
\i→i

w∈Tm∪i

φ(w)

 =

=
Λ̃miAmm
Aii

b̃m +
∑

l∈N(m)\i

∑
k∈Tl∪m

b̃k ∑
w:k
\m→m

w∈Tl∪m

φ(w)


 .

(81)

The parameterization introduced in (81) leads to the same update rule for µ̃
as in (21). With that, the sufficient condition, given in proposition 2.2, is
established.

C Consistency of generalized GaBP

Here we prove that the two-layer generalized GaBP is consistent.

Theorem 3.1. If there is N ∈ N such that m
(N+k)
e = m

(N)
e , Λ

(N+k)
e = Λ

(N)
e

for all e ∈ ER and for any k ∈ N, then for each large region [x]L ≡ Λ̃−1
0 b̃0 =[

A−1b
]
L

(see Algorithm 2 for details).
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The idea of the proof is the same as for the regular GaBP. One needs to relate,
considering the operations of generalized GaBP, equations that the generalized
GaBP solves during the N -th step, with the original system of linear equations,
and then to show that those systems coincide for a sufficiently large N if steady
state exists.

To do so, we introduce a flat version of the region graph (an example is
shown in figure 6b) that provides less detailed information about parent-child
structure. The flat region graph is an undirected graph {V, E}, where V is the

set of large regions and
(
L,L

′
)
∈ E if L and L

′
has at least one common child

(the example is in figure 6b).
Now one can introduce the computation tree exactly in the same way as for

GaBP. The only difference is that, because of an overlap between large regions,
when we add a leaf node, we include overlapping variables to the root node. An
example of the computation tree T3(B) as well as the T2(B) is in figure 6c. By
construction of the computation tree, we know that the following is true.

Proposition C.1. Elimination of all the variables on the computation tree
TN (B) leads to the solution xB that coincides with the one on the N -th step of
generalized GaBP.

The relation between the matrix B, corresponding to the computation tree,
and the original matrix A is the same as in the equation (67) if one introduces
the matrix O

Oij =

{
1 if yi is the copy of xj ,

0 otherwise.
(82)

Here, x are variables on the graph of matrix A, and y are the ones on the
computation tree.

Having the same relation between A and B, we can repeat the rest of the
proof, using the same arguments as in Section A. So it follows that generalized
GaBP is consistent and proposition 3.1 is true.

D Convergence of generalized GaBP

In this section, we present a sufficient condition for the convergence of the two-
layer generalized GaBP.

Theorem 3.2. If for matrix (47) which is based on partition (46) det Aii 6= 0 ∀i
and ρ

(∥∥∥R̃∥∥∥) < 1 in some operator norm, then two-layer generalized GaBP

(algorithm 2) converges to the exact solution x = A−1b.

The proof consists of two parts. In the first one, we show that single-visit and
single-revisit walks on a tree possess the same update rules as generalized GaBP
messages. In the second part, we show that it is always possible to reorganize
walks on the graph coming from the partition F (see equations (46) and (47))
to restore each walk on a computation tree.
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D.1 Walk structure on a tree

To complete the first part, we define for a given partition F (equation (46)) of
a matrix A the weight of a walk w = (i1i2 . . . iL) by the product of matrices

φ(w) = R̃iLiL−1
· · · R̃i3i2R̃i2i1 . (83)

In the view of the standard result [2, ch. 8, Theorem 8.9] on absolute conver-
gence in complete finite metric spaces it is possible to rearrange terms of the
sum, such that we can formulate the following statement.

Proposition D.1. If ρ
(∥∥∥R̃∥∥∥) < 1, then

(
Ã−1

)
ii

=
∞∑
n=0

(
R̃n
)
ii

=
∑

w:i→i
φ(w),

xi ≡
∑
j∈V

(
Ã−1

)
ij

b̃j =
∑
j∈V

∑
w:j→i

φ(w)b̃j.

Here we used the same definition for the set of walks as in the Appendix B.
Again, [17, eq. 12, 13] allows us to rewrite the diagonal blocks of the inverse
matrix and the solution vector using single-visit and single-revisit walks

(
Ã−1

)
ii

=

Iii −
∑
w:i
\i→i

φ(w)


−1

,

xi =
(
Ã−1

)
ii

b̃i +
∑
j∈V

∑
w:j
\i→i

φ(w)b̃j

 .

(84)

On the tree we can split the sums over contributions from subtrees Tk∪i for each
k ∈ N(i). Therefore, from comparison with algorithm 2, we can deduce that∑

j∈Tk∪i

∑
w:j
\i→i

w∈Tk∪i

φ(w)b̃j = (Aii)
−1

mki,
∑
w:i
\i→i

w∈Tk∪i

φ(w) = − (Aii)
−1

Λki. (85)

Messages in algorithm 2 propagate along edges of the region graph, whereas
messages that we have just defined flow along edges of a graph of the matrix
R̃. To have a more straightforward connection between them, we consider
R̃ as a matrix originates from the computation tree itself. Under this set of
circumstances, there is a one-to-one correspondence between messages (85) and
the ones in algorithm 2.
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For single-revisit walks, one has∑
w:i
\i→i

w∈Tk∪i

φ(w) = (Aii)
−1

Aik

∑
w:k→k
w∈Tk\i

φ(w) (Akk)
−1

Aki =

= (Aii)
−1

Aik

Ikk −
∑

w:k
\k→k

w∈Tk\i

φ(w)


−1

(Akk)
−1

Aki ⇒

⇒ Λki = −Aik

Akk +
∑

m∈N(k)\i

Λmk

−1

Aki.

(86)

If we consider the following matrix
 0 Aik

Aki

(
Akk +

∑
m∈N(k)\i

Λmk

)
−1

ii

= Λ−1
ki , (87)

one can immediately see that update rules (86) indeed coincide with (33).
For single-visit walks, we have∑

j∈Tk∪i

∑
w:j
\i→i

w∈Tk∪i

φ(w)b̃j = − (Aii)
−1

Aik

∑
j∈Tk\i

∑
w:j→k
w∈Tk\i

φ(w)b̃j =

= − (Aii)
−1

Aik

Ikk −
∑

w:k
\k→k

w∈Tk\i

φ(w)


−1
b̃k +

∑
j∈Tk\i

∑
w:j
\k→k

w∈Tk\i

φ(w)b̃j

 ,

(88)

or using (85), we get

mki = −Aik

Akk +
∑

m∈N(k)\i

Λmk

−1bk +
∑

p∈N(k)\i

mpk

 . (89)

Since mki = Λkiµki and

µki =


 0 Aik

Aki

(
Akk +

∑
m∈N(k)\i

Λmk

)
−1(

0
bk +

∑
p∈N(k)\i

mpk

)
ii

(90)

we recover update rules (33). So we conclude that on the computation tree
update rules for the two-layer generalized GaBP coincide with recursive relations
for the single-visit and single-revisit walks.
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Figure 7: (a) – graph of the matrix A, each node corresponds to the diago-
nal block; (b) – refined version of (a), submatrix Aii is split by four blocks
Ai1i1 ,Ai1i2 ,Ai2i1 ,Ai2i2 .

D.2 Walk-sums and the graph refinement

The second part of the proof establishes the connection between sets of walks
on the graph of the matrix R̃ and walks on the computation tree. First, for the
matrix (47) we split a single region i into two parts i1 and i2

A =


Ai1i1 Ai1i2 Ai1j . . .
Ai2i1 Ai2i2 Ai2j . . .
Aji1 Aji2 Ajj . . .

...
...

...
. . .

 ,b =


bi1
bi2
bj
...

 . (91)

The transformation of the graph is in figure 7. We refer to this procedure as to
the elementary refinement of the region i. From the construction of the refined
matrix A, the following proposition holds.

Proposition D.2. There is a one-to-one correspondence between walks on the
graph of R̃ and the one obtained by the elementary refinement of the region i
excluding three situations: 1) walk crosses i, 2) walk ends at i, 3) walk starts
at i.

We discuss each of these situations separately. First, we need to introduce

a new notation. Let k
M−→ l be the set of walks, where each walk starts from k,

ends at l and newer leaves the subset M . It is easy to see that on the refined
graph

φ

(
k
{i1,i2}−→ l

)
=
(

(Aii)
−1
)
lk

Akk, where l, k = {i1, i2} . (92)

• Walk on R̃ that crosses i has a form wcross = (. . . jik . . . ) (see figure 7a).
The weight of this walk is

φ(wcross) = · · · (Akk)
−1

Aki (Aii)
−1

Aij · · · . (93)
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On the refined graph we can consider the set of all walks that coincides
with w outside i. The sum of weight of all these walks is

φ(w)refined =
∑

l,k∈{i1,i2}

· · · (Akk)
−1

Aklφ

(
l
{i1,i2}−→ k

)
(All)

−1
Alj · · · .

(94)
We see that due to equation (92), weights are the same.

• Walk on R̃ that ends at i has a form wend = (. . . ji) and a weight

φ(w) = (Aii)
−1

Aij · · · . (95)

On the refined graph we have two set of walks

φ(w)prefined =
∑

l∈{i1,i2}

φ

(
l
{i1,i2}−→ p

)
(All)

−1
Alj · · · , p ∈ {i1, i2} (96)

that can be combined to have the same weight. Namely, using (92) we
find that [

(Aii)
−1

Aij · · ·
]
l?

=
(
φ(w)lrefined

)
?
, l = {i1, i2} . (97)

• Walk on R̃ that starts at i has a form wstart = (ij . . . ) and a weight

φ(wstart) = · · · (Ajj)
−1

Aji. (98)

It is possible to relate this walk to two sets of walks w1 = (i1j . . . ), w2 =
(i2j . . . ) on the refined graph multiplying by the corresponding inverse
matrices(

φ(wstart) (Aii)
−1
)
?l

=
∑

k={i1,i2}

(
φ(wk)φ

(
l
{i1,i2}−→ k

)
(All)

−1

)
?

, (99)

where l = {i1, i2}. The re-weight is needed because the original linear sys-
tem and the refined one are multiplied by different block diagonal matrices
and have different inverses.

We know the following two propositions to be true.

Proposition D.3. Any computation tree can be, by the set of elementary re-
finements, turned to a computation tree of GaBP under a proper schedule (see
discision before [17, Lemma 18]) operating on the graph of the matrix (47) par-
titioned according to F .

Proposition D.4. For each walk on the graph of the matrix (47), there is a
unique walk on a sufficiently large computation tree formed by a proper schedule.

Hence for each walk on the computation tree, it is always possible to find a
unique set of walks on the graph of the matrix (47) that has the same weight
after the multiplication by an appropriate inverse matrix (see 99). It allows us
to conclude that if it is possible to define a walk-sum for matrix (47) (see propo-
sition D.1), walk-sum on the computation tree converges too, so the proposition
3.2 is proven.
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