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Abstract

In this paper, we analyze the recently proposed stochastic primal-dual hybrid gradient (SPDHG)
algorithm and provide new theoretical results. In particular, we prove almost sure convergence of the
iterates to a solution with convexity and linear convergence with further structure, using standard step
sizes independent of strong convexity or other regularity constants. In the general convex case, we also
prove the O(1/k) convergence rate for the ergodic sequence, on expected primal-dual gap function. Our
assumption for linear convergence is metric subregularity, which is satisfied for strongly convex-strongly
concave problems in addition to many nonsmooth and/or nonstrongly convex problems, such as linear
programs, Lasso, and support vector machines. We also provide numerical evidence showing that SPDHG
with standard step sizes shows a competitive practical performance against its specialized strongly convex
variant SPDHG-µ and other state-of-the-art algorithms including variance reduction methods.

1 Introduction

Stochastic primal-dual hybrid gradient (SPDHG) algorithm is proposed by Chambolle et al. [6], for solving
the optimization problem

min
x∈X

n∑
i=1

fi(Aix) + g(x), (1.1)

where fi : Yi → R ∪ {+∞} and g : X → R ∪ {+∞} are proper, lower semicontinuous (l.s.c.), convex functions
and f is defined as the separable function such that f(y) =

∑n
i=1 fi(yi). Ai : X → Yi is a linear mapping and

A is defined such that (Ax)i = Aix.
The classical approaches provide numerical solutions to (1.1) via primal-dual methods. In particular, a

common strategy is to have coordinate-based updates for the separable dual variable [6, 52]. These methods
show competitive practical performance and are proven to converge linearly under the assumption that f∗i ,∀i
and g are µi and µg-strongly convex functions, respectively. Step sizes of these methods in turn depend on
µi, µg to obtain linear convergence. SPDHG belongs to this class.

Chambolle et al. provide convergence analysis for SPDHG under various assumptions on the problem
template [6]. Indeed, SPDHG is a variant of celebrated primal-dual hybrid gradient (PDHG) method [7, 8]
where the main difference is stochastic block updates for dual variables at each iteration. In the general convex
case, [6] proved that a particular Bregman distance between the iterates of SPDHG and any primal-dual
solution converges almost surely to 0 and the ergodic sequence has a O(1/k) rate for this quantity. Note
however that this result does not imply the almost sure convergence of the sequence to a solution, in general.
However, this result does not give guarantees on the expected primal-dual gap function (see (4.28), (4.21)),
which is the standard optimality measure. If f∗i and g are strongly convex functions, SPDHG-µ, which is a
variant of SPDHG with step sizes depending on strong convexity constants, is proven to converge linearly [6,
Theorem 6.1]. Estimation of strong convexity constants can be challenging in practice, restricting the use of
SPDHG-µ.
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Since its introduction, SPDHG has been popular in practice, especially in computational imaging, with
implementations in different software packages [16, 26, 32, 38]. Despite the practical interest, fundamental
theoretical results regarding the convergence of SPDHG remained open, including almost sure convergence,
O(1/k) convergence rate for expected primal-dual gap and adaptive linear convergence.

In its most basic form, step sizes of SPDHG are determined using ‖Ai‖ and probabilities of selecting
coordinates [6]. It is often observed in practice that the last iterate of PDHG or SPDHG with these step sizes
has competitive practical performance. Yet, only ergodic rates are known for this method with restrictive
assumptions [6, 8]. In this paper, we analyze SPDHG with standard step sizes and provide new theoretical
results, paving the way for explaining its fast convergence behavior in practice.

1.1 Our contributions

We prove the following results for SPDHG:

General convex case We prove that the iterates of SPDHG converge almost surely to a solution. For
this purpose, we introduce a representation of SPDHG as a fixed point operator in a duplicated space. For
the ergodic sequence, we show that SPDHG has O(1/k) rate of convergence for the expected primal-dual
gap. To prove this result, we introduce a generic technique that is applicable to other stochastic primal-dual
coordinate descent algorithms. Moreover, we prove the same rate for objective residual and feasibility for
linearly constrained problems.

Metrically subregular case When the problem is metrically subregular (see Section 2.3), we prove that
SPDHG has linear convergence with standard step sizes, depending only on Ai and probabilities for selecting
coordinates. Our result shows that without any modification, basic SPDHG adapts to problem structure and
attains linear rate when the assumption holds.

Practical performance We show that SPDHG shows a robust and competitive practical performance
compared to SPDHG-µ of [6] and other state-of-the-art methods including variance reduction and primal-dual
coordinate descent methods.

We summarize our results and compare with those of [6] in Table 2 (Page 26).

2 Preliminaries

2.1 Notation

We assume that X and Y are Euclidean spaces and that Y =
∏n
i=1 Yi. We define Z = X × Y and

z = (x, y) ∈ Z. For positive definite Q, we use 〈x, y〉Q = 〈Qx, y〉 for denoting weighted inner product and
‖x‖2Q = 〈Qx, x〉 for weighted Euclidean norm. We overload these notations to also write for a vector σ with

σi > 0, ‖y‖2σ = 〈y,diag(σ)y〉. For a set C, and positive definite Q, distance of a point x to C, measured in ‖·‖Q
is defined as dist2

Q(x, C) = miny∈C ‖x− y‖2Q = ‖x− PQC (x)‖2Q, where we have defined the projection operator
P implicitly. When Q = I, we drop the subscript and write dist(x, C). For σ ∈ Rn, we use the elementwise
inverse σ−1 = (σ−1

1 , . . . , σ−1
n ). Domain of a function h is denoted as domh. We encode constraints using the

indicator function: δ{b}(x) = 0 if x = b and δ{b}(x) = +∞ if x 6= b.

Given a vector x, we access ith element as xi. We define e(i) ∈ Y such that e(i)j = 1, if j = i and
e(i)j = 0, if j 6= i. Moreover, we use E(i) = e(i)e(i)>. Unless used with a subscript, 1 in Kronecker products
denotes 1n ∈ Rn, all-ones vector.

Given a vector x ∈ X , we use bold symbol x to denote the duplicated version of this vector, which consists
of n copies of x, and the corresponding space is denoted by X = Xn. Similarly, the duplicated dual space is
Y = Yn and Z = X ×Y . The copies might be the same, or different, depending on how x is set. To access
ith copy, we use the notation x(i) ∈ X . For the operator T : Z → Z, and a duplicated vector q ∈ Z, we

denote the output as T (q) =
(
Tx(q)
Ty(q)

)
. For example, ith primal copy is denoted as Tx(q)(i) ∈ X . Similarly, for

the ith primal copy in q, we use qx(i) ∈ X . To access ith primal and dual copies, we use q(i) ∈ Z.
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For example, when we pick one coordinate at a time, we can set X = Rd, Y = Rn, which would result in
the duplicated spaces X = Rdn, Y = Rn2

, and Z = Rdn+n2

.
Probability of selecting an index i ∈ {1, . . . , n} is denoted as pi > 0, with

∑n
i=1 pi = 1. We define

P = diag(p1, . . . , pn) and p = mini pi. Notation Fk defines the filtration generated by randomly selected
indices {i1, . . . , ik−1}. Let Ek [·] := E [· | Fk] denote the conditional expectation with respect to Fk.

The proximal operator of a function h is defined as

proxτ,h(x) = arg min
u∈X

h(u) +
1

2
‖u− x‖2τ−1 . (2.1)

The Fenchel conjugate of h is defined as h∗(y) = supz∈X 〈z, y〉 − h(z).

2.2 Solution

Using Fenchel conjugate, (1.1) is cast as the saddle point problem

min
x∈X

sup
y∈Y

n∑
i=1

〈Aix, yi〉 − f∗i (yi) + g(x). (2.2)

A primal-dual solution (x?, y?) ∈ Z? is characterized as

0 ∈
[
A>y? + ∂g(x?)
Ax? − ∂f∗(y?)

]
= F (x?, y?). (2.3)

Given the functions g and f∗ as in (2.2), we define

Dg(x; z̄) = g(x)− g(x̄) + 〈A>ȳ, x− x̄〉, (2.4)

Df∗(y; z̄) = f∗(y)− f∗(ȳ)− 〈Ax̄, y − ȳ〉. (2.5)

When z̄ = z? = (x?, y?), with z? denoting a primal-dual solution as defined in (2.3), we have that (2.4)
and (2.5) are Bregman distances generated by functions g(x) and f∗(y). In this case, these Bregman distances
measure the distance between x and x?, and y and y?, respectively. Given z, Dh(z; z?) is the Bregman
distance generated by h(z) = g(x) + f∗(y), to measure the distance between z and z?. Moreover, the
primal-dual gap function can be written as G(z) = supz̄∈Z Df∗(x; z̄) +Dg(y; z̄).

2.3 Metric subregularity

For Euclidean spaces U ,V and a set valued mapping F : U ⇒ V, we denote the graph of F by graF =
{(u, v) ∈ U × V : v ∈ Fu}. We say that F is metrically subregular at ū for v̄, with (ū, v̄) ∈ graF , if there
exists η0 > 0 with a neighborhood of subregularity N (ū) such that:

dist(u, F−1v̄) ≤ η0 dist(v̄, Fu), ∀u ∈ N (ū). (2.6)

If N (ū) = U , then F is globally metrically subregular [14]. Absence of metric subregularity is signaled by
η0 = +∞. This assumption is used in the context of deterministic and stochastic primal-dual algorithms
in [15, 29, 31].

In the paper we shall study how the metric subregularity of the Karush-Kuhn-Tucker (KKT) operator F
in (2.3) implies linear convergence of SPDHG.

Metric subregularity of F holds in following cases:

1. f∗i and g are strongly convex functions, since N (z̄) = Z.

2. The problem (1.1) is defined with piecewise linear quadratic (PLQ) functions and dom g and dom f∗

are compact sets, in which case N (z̄) = dom g × dom f∗. In particular the domain of a PLQ function
can be represented as the union of finitely many polyhedral sets and in each set, the function is a
quadratic (see [29, Definition IV.3]). Problems with PLQ functions include Lasso, support vector
machines, linear programs, etc.
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Remark 2.1. In the first example above, compact domains are not needed since metric subregularity holds
globally for these problems. One can also relax strong convexity in the first case to weaker conditions (see [30]).
Importantly, compact domain assumption is only needed in the second example mentioned above in this
paper, for PLQs. The reason, as we see in Theorem 4.5 is the lack of control on the low probability event
that the trajectory makes an excursion far away. The same assumption for proving linear convergence of
another primal-dual coordinate descent method is also needed in [29].

3 Algorithm

The algorithm SPDHG is given as Algorithm 1.

Algorithm 1 Stochastic PDHG (SPDHG) [6, Algorithm 1]

Input: Pick step sizes σi, τ by (3.1) and x0 ∈ X , y0 = y1 = ȳ1 ∈ Y. Given P = diag(p1, . . . , pn).
for k = 1, 2, . . . do
xk = proxτ,g(x

k−1 − τA>ȳk)
Draw ik ∈ {1, . . . , n} such that Pr(ik = i) = pi.
yk+1
ik

= proxσik ,f
∗
ik

(ykik + σikAikx
k)

yk+1
i = yki , ∀i 6= ik
ȳk+1 = yk+1 + P−1(yk+1 − yk),

end for

Remark 3.1. We use serial sampling of blocks in our analysis for the ease of notation. We can extend our
results with other samplings by using expected separable overapproximation (ESO) inequality as in [6].

We use the standard step size rules for primal and dual step sizes [6]:

p−1
i τσi‖Ai‖2 ≤ γ2 < 1. (3.1)

Assumption 1. We have the following assumptions concerning (1.1).

1. fi and g are proper, lower semicontinuous (l.s.c.), convex functions.

2. The set of solutions to (1.1) is nonempty.

3. Slater’s condition holds, namely 0 ∈ ri(dom f −A dom g) where ri stands for relative interior [4].

Slater’s condition is a standard sufficient assumption for strong duality, used frequently for primal-dual
methods [4, 6, 7, 19, 29, 47]. Strong duality ensures that a dual solution exists in (2.2) and the set of
primal-dual solutions is characterized by (2.3).

4 Convergence

We start with a lemma analyzing one iteration behavior of the algorithm. This lemma is essentially the same
as [6, Lemma 4.4] up to minor modifications and is included for completeness, with its proof in Section 8.3.
We first introduce some notations.

V (z) =
1

2
‖x‖2τ−1 +

1

2
‖y‖2σ−1P−1 + 〈Ax, P−1y〉,

Vk(x, y) =
1

2
‖x‖2τ−1 − 〈Ax, P−1(yk − yk−1)〉+

1

2
‖yk − yk−1‖2σ−1P−1 +

1

2
‖y‖2σ−1P−1 .

(4.1)

We also define the full dimensional dual update

ŷk+1
i = proxσi,f∗

i
(yki + σiAix

k), ∀i ∈ {1, . . . , n}. (4.2)

4



Lemma 4.1. Let Assumption 1 hold. It holds for SPDHG that, ∀x ∈ X ,∀y ∈ Y,

Dg(x
k; z) +Df∗(ŷk+1; z) ≤ Vk(xk−1 − x, yk − y)− Ek

[
Vk+1(xk − x, yk+1 − y)

]
− V (zk − zk−1). (4.3)

Moreover, with C1 = 1− γ, under the step size rules in (3.1), we have

V (zk − zk−1) ≥ C1

(
1

2
‖xk − xk−1‖2τ−1 +

1

2
‖yk − yk−1‖2σ−1P−1

)
, (4.4)

Vk(x, y) ≥ C1

(
1

2
‖x‖2τ−1 +

1

2
‖yk − yk−1‖2σ−1P−1

)
+

1

2
‖y‖2σ−1P−1 . (4.5)

4.1 Almost sure convergence

In this section, we present the almost sure convergence of the iterates of SPDHG to a solution of (1.1).
We start by introducing an equivalent representation of SPDHG that is instrumental in our proofs. The

motivation of this representation can be seen as similar to [22], where the focus was on PDHG. In particular,
this representation shifts the primal update so that the algorithm can be written as a fixed point operator.
Since ȳk+1 depends on the selected index ik at iteration k, the operator T is defined such that all the possible
values of ȳk+1 and consequently, of xk+1 are captured.

Lemma 4.2. Let us define T : Z → Z that to (x,y) associates (x̂, ŷ) such that ∀i ∈ {1, . . . , n},
ŷ(i) = proxσ,f∗(y(i) + diag(σ)Ax(i))

ȳ(i) = y(i) + (1 + p−1
i )(ŷ(i)i − y(i)i)e(i)

x̂(i) = proxτ,g(x(i)− τA>ȳ(i))

where x(i) ∈ X , y(i) ∈ Y.
The fixed points of T are of the form (x(i),y(i)) such that (x(i),y(i)) ∈ Z?, ∀i ∈ {1, . . . , n}. Moreover,(

xk+1, ŷk+1
)

=
(
Tx(1⊗ xk, 1⊗ yk)(ik), Ty(1⊗ xk, 1⊗ yk)(1)

)
.

We also denote

S̄ = blkdiag(τ−1Idn×dn, In×n ⊗ σ−1),

P̄ = blkdiag(p1Id×d, . . . , pnId×d, p1In×n, . . . , pnIn×n).

We then have,

‖T (1⊗ xk, 1⊗ yk)− (1⊗ xk, 1⊗ yk)‖2S̄P̄ = Ek
[
‖xk+1 − xk‖2τ−1 + ‖yk+1 − yk‖2σ−1P−1

]
.

Before presenting the proof of the lemma, we use an example to illustrate the notation and the main idea
behind it.

Example 1. Let d = 1, n = 2, then x =
(
x(1)
x(2)

)
∈ R2, y =

(
y(1)
y(2)

)
∈ R4, and

S̄ = diag(τ−1, τ−1, σ−1
1 , σ−1

2 , σ−1
1 , σ−1

2 ) ∈ R6×6,

P̄ = diag(p1, p2, p1, p1, p2, p2) ∈ R6×6.

Then, we have by letting x = 1⊗ xk, y = 1⊗ yk,

ŷ(1) = proxσ,f∗(yk + diag(σ)Axk), ŷ(2) = proxσ,f∗(yk + diag(σ)Axk),

ȳ(1) = yk + (1 + p−1
1 )

[
ŷ(1)1 − yk1

0

]
, ȳ(2) = yk + (1 + p−1

2 )

[
0

ŷ(2)2 − yk2

]
,

x̂(1) = proxτ,g(x
k − τA>ȳ(1)), x̂(2) = proxτ,g(x

k − τA>ȳ(2)).

We have T (1⊗ xk, 1⊗ yk) =

([
x̂(1)
x̂(2)

]
,

[
ŷ(1)
ŷ(2)

])
. By using the definition of ŷk+1 in Theorem 4.1, we see that

(xk+1, ŷk+1) = (x̂(1), ŷ(1)) if ik = 1 and (xk+1, ŷk+1) = (x̂(2), ŷ(1)) if ik = 2. Note that we can take any
copy of ŷ as ŷ(1) = ŷ(2). Moreover, depending on ik, one obtains yk+1 from ŷk+1 with a coordinate-wise
update, as given in SPDHG (see Algorithm 1).
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Proof of Theorem 4.2. Let (x,y) be a fixed point of T . Then it follows that
y(i) = proxσ,f∗(y(i) + diag(σ)Ax(i)), ∀i, ȳ(i) = y(i), ∀i and x(i) = proxτ,g(x(i) − τA>y(i)), ∀i. Hence,
optimality conditions for each i are the same as (2.3). Therefore fixed points of T are such that (x(i),y(i)) ∈
Z?,∀i.

The equality (xk+1, ŷk+1) = (Tx(1⊗ xk, 1⊗ yk)(ik), Ty(1⊗ xk, 1⊗ yk)(1)) is just another way to write the
algorithm. Since when inputted (1⊗ xk, 1⊗ yk), T outputs (1⊗ ŷk+1) for the dual variable, we can simply
take first copy for ŷk+1.

For the last result, we use ‖ŷk+1 − yk‖2σ−1 = Ek
[
‖yk+1 − yk‖2σ−1P−1

]
to show

‖T (1⊗ xk, 1⊗ yk)− (1⊗ xk, 1⊗ yk)‖2S̄P̄

=

n∑
i=1

(
‖Tx(1⊗ xk, 1⊗ yk)(i)− xk‖2τ−1pi + ‖Ty(1⊗ xk, 1⊗ yk)(i)− yk‖2σ−1pi

)
=

n∑
i=1

(
‖Tx(1⊗ xk, 1⊗ yk)(i)− xk‖2τ−1pi

)
+ ‖ŷk+1 − yk‖2σ−1

( n∑
i=1

pi
)

= Ek
[
‖xk+1 − xk‖2τ−1 + ‖yk+1 − yk‖2σ−1P−1

]
,

where we also used that
∑n
i=1 pi = 1.

We proceed with the main theorem of this section. We present the main ideas and ingredients that
make the proof possible in the following proof sketch. The details of the proof using classical arguments
from [5, 11, 24] are deferred to Section 8.1. Let us define

∆k = Vk+1(xk − x?, yk+1 − y?). (4.6)

Theorem 4.3. Let Assumption 1 hold. Then, it holds that E[Vk(xk−1 − x?, yk − y?)] ≤ ∆0,
∑∞
k=1 E[V (zk −

zk−1)] ≤ ∆0. Moreover, almost surely, there exists (x?, y?) ∈ Z?, such that the iterates of SPDHG satisfy
(xk, yk)→ (x?, y?).

Proof sketch. On (4.3), we pick (x, y) = (x?, y?) and by convexity, Dg(x
k; z?) ≥ 0, Df∗(ŷk+1; z?) ≥ 0. Next,

by using the definition of ∆k, we write (4.3) as

Ek
[
∆k
]
≤ ∆k−1 − V (zk − zk−1).

We apply Robbins-Siegmund lemma [43, Theorem 1] to get that almost surely, ∆k converges to a finite valued
random variable and V (zk − zk−1)→ 0. Consequently, by (4.4), ‖yk − yk−1‖ converges to 0 almost surely.
Since almost surely, ∆k converges and ‖yk − yk−1‖ converges to 0, we have that ‖zk − z?‖ converges almost
surely.

Next, we denote qk = (1⊗ xk, 1⊗ yk) and use the arguments in [11, Proposition 2.3], [19, Theorem 1] to
argue that there exists a probability 1 set Ω such that for every z? ∈ Z? and for every ω ∈ Ω, ‖zk(ω)− z?‖
converges and ‖T (qk(ω))− qk(ω)‖ → 0. As for every ω ∈ Ω, (zk(ω))k is bounded, we denote by z̃ = (x̃, ỹ)
one of its cluster points. Then, we denote q̃ = (1⊗ x̃, 1⊗ ỹ) and have that q̃ is a cluster point of (qk(ω))k.

The key step in our proof that enables the result is the fixed point characterization of T in Theorem 4.2.
With this result, we derive z̃ ∈ Z? as q̃ is a fixed point of T .

To sum up, we have shown that at least on some subsequence zk(ω) converges to z̃ ∈ Z?. As for every
ω ∈ Ω and z? ∈ Z?, ‖zk(ω)− z?‖ converges, the result follows.

4.2 Linear convergence

The standard approach for showing linear convergence with metric subregularity is to obtain a Fejer-type
inequality of the form [29]

Ek
[
d(zk+1 − z?)

]
≤ d(zk − z?)− V (T (zk)− zk), (4.7)

for suitably defined distance functions d, V and operator T . However, as evident from (4.3) and the definition of
Vk+1, one iteration result of SPDHG does not fit into this form. When x = x?, y = y?, Vk+1(xk−x?, yk+1−y?)

6



does not only measure distance to solution, but also the distance of subsequent iterates yk+1 and yk. In
addition, Vk+1 includes xk − x? and yk+1 − y? rather than xk+1 − x? and yk+1 − y?, which further presents
a challenge due to asymmetry, for using metric subregularity. Therefore, an intricate analysis is needed to
control the additional terms and handle the asymmetry in Vk+1. In addition, Theorem 4.2 is a necessary tool
to identify T .

We need the following notation and lemma which builds on Lemma 4.2, for easier computations with
metric subregularity. For the operators, we adopt the convention in [29]. Operator C is the concatenation of
subdifferentials, M is the skew symmetric matrix that is formed using matrix A. Operator F is the KKT
operator and H is the “metric” that helps us write the algorithm in proximal point form (see Theorem 4.2).
Due to duplication in Theorem 4.2, we need duplicated versions of C and M . Consistent with the notation
of Theorem 4.2 (also see Section 2.1), we use boldface to denote operators in the duplicated space.

Lemma 4.4. Under the notations of Lemma 4.2, to write compactly the operation of T , let us define the
operators

C : (x, y) 7→ (∂g(x), ∂f∗(y)),

M : (x, y) 7→ (A>y,−Ax),

C : (x,y) 7→ (∂g(x(1)), . . . , ∂g(x(n)), ∂f∗(y(1)), . . . , ∂f∗(y(n))),

M : (x,y) 7→ (A>y(1), . . . , A>y(n),−Ax(1), . . . ,−Ax(n)),

F = C +M,

and

H : (x,y) 7→
(
τ−1x(1) +A>(1 + p−1

1 )E(1)y(1), . . . ,

τ−1x(n) +A>(1 + p−1
n )E(n)y(n), σ−1y(1), . . . , σ−1y(n)

)
.

Let qk = (1 ⊗ xk, 1 ⊗ yk), q̂k+1 = T (qk) and ẑk+1 = (xk+1, ŷk+1) = (q̂k+1
x (ik), q̂k+1

y (1)). Then, we have

(H −M)qk ∈ (C + H)q̂k+1, (M −H)(q̂k+1 − qk) ∈ (C + M)q̂k+1,

Ek
[
dist2(0, F ẑk+1)

]
= Ek

[
dist2(0, (C +M)ẑk+1)

]
= dist2

P̄ (0, (C + M)q̂k+1).

Proof. We start by the representation in Theorem 4.2 by incorporating the update of ȳk+1, and recalling the
definition of E(i) = e(i)e(i)>, ∀i ∈ {1, . . . , n}

ŷ(i) = proxσ,f∗(y(i) + diag(σ)Ax(i))

x̂(i) = proxτ,g(x(i)− τA>
[
y(i) + (1 + p−1

i )E(i)(ŷ(i)− y(i))
]
)

= proxτ,g(x(i)− τA>(1 + p−1
i )E(i)ŷ(i) + τA>(−In×n + (1 + p−1

i )E(i))y(i)).

We now use the definition of proximal operator to obtain

σ−1y(i) +Ax(i) ∈ ∂f∗(ŷ(i)) + σ−1ŷ(i)

τ−1x(i)−A>y(i) +A>(1+p−1
i )E(i)y(i) ∈ ∂g(x̂(i)) + τ−1x̂(i) +A>(1+p−1

i )E(i)ŷ(i).

We identify

Hq=



τ−1x(1) +A>(1 + p−1
1 )E(1)y(1)

...
τ−1x(n) +A>(1 + p−1

n )E(n)y(n)
σ−1y(1)

...
σ−1y(n)


,Mq =



A>y(1)
...

A>y(n)
−Ax(1)

...
−Ax(n)


,Cq =



∂g(x(1))
...

∂g(x(n))
∂f∗(y(1))

...
∂f∗(y(n))


.

We set q = qk and q̂ = q̂k+1 and use the definition of T in Theorem 4.2 to obtain the first inclusion.
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The second inclusion follows by adding to both sides Mq̂k+1 and rearranging.
For the equality, we write

Ek
[
dist2(0, (C +M)ẑk+1)

]
=

n∑
i=1

dist2(0, (C +M)q̂k+1(i))pi

= dist2
P̄ (0, (C + M)q̂k+1),

where the first equality follows by ẑk+1 = (xk+1, ŷk+1) = (q̂k+1
x (ik), q̂k+1

y (1)) and the second equality is by

the definitions of C, M , C, and M and q̂k+1
y (i) = q̂k+1

y (1), ∀i.

We continue with our assumption for linear convergence (see Section 2.3).

Assumption 2. Metric subregularity holds for F (see (2.3), Section 2.3) at all z? ∈ Z? for 0 with constant
η > 0 using ‖ · ‖S with S = diag(τ−11p, σ

−1
1 , . . . , σ−1

n ), and the neighborhood of regularity N (z?) contains
ẑk,∀k.

We present our main theoretical development in the next theorem, which states that SPDHG with step
sizes in (3.1) attains linear convergence with Assumption 2. The proof idea is to utilize the term −V (zk−zk−1)
in (4.3) to obtain contraction. For this, we have to use the results of Theorems 4.2 and 4.4 to write this term
with the fixed point characterization given in Theorem 4.2, which allows using metric subregularity.

We denote
(xk−1
? , yk? ) = arg min

(x,y)∈Z?
Vk(xk−1 − x, yk − y),

which exists since Vk is a nonnegative quadratic function. We define (cf. (4.6))

∆k = Vk+1(xk − xk?, yk+1 − yk+1
? ),

Φk = ∆k − C1

4ζ
‖yk − yk?‖2σ−1 ≥ 0.

Theorem 4.5. Let Assumptions 1 and 2 hold. Then it holds that

Ek
[
∆k
]
≤ ∆k−1 − V (zk − zk−1), (4.8)

and

E
[
C1

2
‖xk − xk?‖2τ−1 +

1

2
‖yk+1 − yk+1

? ‖2σ−1P−1

]
≤ (1− ρ)k2Φ0,

where, ρ =
C1p

2ζ , ζ = 2 + 2η2‖H −M‖2, C1 = 1− γ.

Proof. Starting from the result of Theorem 4.1, we have

Dg(x
k; z) +Df∗(ŷk+1; z) ≤ −Ek

[
Vk+1(xk − x, yk+1 − y)

]
+ Vk(xk−1 − x, yk − y)− V (zk − zk−1). (4.9)

We pick x = xk−1
? , y = yk? , with zk? = (xk−1

? , yk? ) and use convexity to getDg(x
k; zk? ) ≥ 0 andDf∗(ŷk+1; zk? ) ≥ 0.

In addition, we define

∆k−1 = Vk(xk−1 − xk−1
? , yk − yk? )

∆̃k = Vk+1(xk − xk−1
? , yk+1 − yk? ).

We use these definitions in (4.9) to write

Ek
[
∆̃k
]
≤ ∆k−1 − V (zk − zk−1).
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By definition of (xk?, y
k+1
? ), we have ∆k ≤ ∆̃k, which implies that

Ek
[
∆k
]
≤ ∆k−1 − V (zk − zk−1).

Recursion of this inequality gives boundedness of the iterates xk and yk, in expectation. However, it is not
possible to derive sure boundedness of the sequence. Without sure boundedness, the set that includes xk, yk
depends on the specific trajectory of the algorithm, and it is not possible to find a set independent of these.
As metric subregularity holds for PLQs with a bounded neighborhood (see Section 2.3), we cannot utilize
this result and this is the main reason for the need for bounded domains in this case. This assumption would
ensure sure boundedness of the sequence, which gives us a suitable set to use for using metric subregularity
assumption for PLQs.

We recall S = diag(τ−11p, σ
−1
1 , . . . , σ−1

n ), S̄ and P̄ are as defined in Theorem 4.2, and dist2
S(zk,Z?) =

‖zk − PSZ?(zk)‖2S = ‖xk − x̃k?‖2τ−1 + ‖yk − yk?‖2σ−1 where x̃k? is the projection of xk onto the set of solutions
with respect to norm ‖ · ‖τ−1 . We now use Assumption 2 stating that F = C +M is metrically subregular at
PSZ?(ẑk+1) for 0. We recall, qk = (1⊗ xk, 1⊗ yk) and q̂k+1 = T (qk) and estimate as

‖xk − x̃k?‖2τ−1 + ‖yk − yk?‖2σ−1 = dist2
S(zk,Z?) ≤ Ek

[
‖zk − PSZ?(ẑk+1)‖2S

]
≤ 2Ek

[
‖zk − ẑk+1‖2S

]
+ 2Ek

[
‖ẑk+1 − PSZ?(ẑk+1)‖2S

]
, (4.10)

where the first inequality is due to the definition of dist2
S(zk,Z?). Next, we estimate the second term on RHS

2Ek
[
‖ẑk+1 − PSZ?(ẑk+1)‖2S

]
≤ 2η2Ek

[
dist2

S(0, (C +M)ẑk+1)
]

= 2η2 dist2
S̄P̄ (0, (C + M)q̂k+1) ≤ 2η2‖M −H‖2‖q̂k+1 − qk‖2S̄P̄ , (4.11)

with the first inequality being due to metric subregularity of C +M (see Remark 4.6) since dist2
S(ẑk+1,Z?) =

‖ẑk+1−PSZ?(ẑk+1)‖2S . First equality and second inequality are by Theorem 4.4 and Cauchy-Schwarz inequality.
Joining the estimates give

‖xk − x̃k?‖2τ−1 + ‖yk − yk?‖2σ−1 ≤ 2Ek
[
‖zk − ẑk+1‖2S

]
+ 2η2‖M −H‖2‖q̂k+1 − qk‖2S̄P̄ . (4.12)

First, we use ‖ŷk+1 − yk‖2σ−1 = Ek
[
‖yk+1 − yk‖2σ−1P−1

]
to estimate

Ek
[
‖zk − ẑk+1‖2S

]
= Ek

[
‖xk+1 − xk‖2τ−1

]
+ ‖ŷk+1 − yk‖2σ−1

= Ek
[
‖xk+1 − xk‖2τ−1 + ‖yk+1 − yk‖2σ−1P−1

]
. (4.13)

Second, we use Lemma 4.2 to obtain

‖q̂k+1 − qk‖2S̄P̄ = ‖T (1⊗ xk, 1⊗ yk)− (1⊗ xk, 1⊗ yk)‖2S̄P̄
= Ek

[
‖xk+1 − xk‖2τ−1 + ‖yk+1 − yk‖2σ−1P−1

]
. (4.14)

We combine (4.13) and (4.14) in (4.10) to get

1

2
‖xk−x̃k?‖2τ−1 +

1

2
‖yk − yk?‖2σ−1

≤ (2 + 2η2‖N −H‖2)Ek
[

1

2
‖xk+1 − xk‖2τ−1 +

1

2
‖yk+1 − yk‖2σ−1P−1

]
. (4.15)

Herein, we denote ζ = 2 + 2η2‖H −M‖2.
By using (4.4), we have that, for all α ∈ [0, 1]

Ek−1

[
V (zk − zk−1)

]
≥ C1Ek−1

[
1

2
‖xk − xk−1‖2τ−1 +

1

2
‖yk − yk−1‖2σ−1P−1

]
≥ C1

ζ

(
α

2
‖xk−1 − x̃k−1

? ‖2τ−1 +
1

2
‖yk−1 − yk−1

? ‖2σ−1

)
, (4.16)
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where the second inequality is due to (4.15) and α ≥ 1.
We have, by definition of x?k−1 that

∆k−1 ≤ Vk(xk−1 − x̃k−1
? , yk − yk? )

=
1

2
‖xk−1 − x̃k−1

? ‖2τ−1 +
1

2
‖yk − yk?‖2σ−1P−1 +

1

2
‖yk − yk−1‖2σ−1P−1

− 〈P−1A(xk−1 − x̃k−1
? ), yk − yk−1〉.

Next, by Cauchy-Schwarz and Young’s inequalities with (3.1), we have

−〈P−1A(xk−1 − x̃k−1
? ), yk − yk−1〉 ≤ γ

2
‖yk − yk−1‖2σ−1P−1 +

γ

2
‖xk−1 − x̃k−1

? ‖2τ−1 .

Using the final estimate and adding and subtracting 1+γ
2α ‖yk−1 − yk−1

? ‖2σ−1 gives

∆k−1 ≤ 1 + γ

2
‖xk−1 − x̃k−1

? ‖2τ−1 +
1 + γ

2α
‖yk−1 − yk−1

? ‖2σ−1

+
1 + γ

2
‖yk − yk−1‖2σ−1P−1 − 1 + γ

2α
‖yk−1 − yk−1

? ‖2σ−1 . (4.17)

We now take conditional expectation of both sides and use (4.16) to get

Ek−1

[
∆k−1

]
≤ (1 + γ)ζ

C1α
Ek−1

[
V (zk − zk−1)

]
+

1 + γ

2
Ek−1

[
‖yk − yk−1‖2σ−1P−1

]
+

1

2
Ek−1

[
‖yk − yk?‖2σ−1P−1

]
− 1 + γ

2α
‖yk−1 − yk−1

? ‖2σ−1 .

By using (4.4) and requiring that (1+γ)
C1
≤ (1+γ)ζ

C1α
, or equivalently ζ ≥ α, which is not restrictive since α is

finite, and one can increase η as in (2.6) to satisfy the requirement, we can combine the first two terms in the
right hand side to get

Ek−1

[
∆k−1

]
≤ 2(1 + γ)ζ

C1α
Ek−1

[
V (zk − zk−1)

]
+

1

2
Ek−1

[
‖yk − yk?‖2σ−1P−1

]
− 1 + γ

2α
‖yk−1 − yk−1

? ‖2σ−1 .

We now insert this inequality into (4.8) and use that Ek−1

[
Ek
[
∆k
]]

= Ek−1

[
∆k
]

Ek−1

[
∆k
]
≤ Ek−1

[
∆k−1

]
− C1α

2(1 + γ)ζ
Ek−1

[
∆k−1

]
+

C1α

4(1 + γ)ζ
Ek−1

[
‖yk − yk?‖2σ−1P−1

]
− C1

4ζ
‖yk−1 − yk−1

? ‖2σ−1 .

We take full expectation and rearrange to get

E
[
∆k − C1α

4(1 + γ)ζ
‖yk − yk?‖2σ−1P−1

]
≤
(

1− C1α

2(1 + γ)ζ

)
E
[
∆k−1 − C1

4ζ(1− C1α
2(1+γ)ζ )

‖yk−1 − yk−1
? ‖2σ−1

]
. (4.18)

We require

C2 =
C1α

4p(1 + γ)ζ
≤ C1

4ζ
≤ C1

4ζ(1− C1α
2(1+γ)ζ )

⇐⇒ α ≤ (1 + γ)p. (4.19)

Let us pick α = (1 + γ)p so that C2 = C1

4ζ and define

Φk = ∆k − C2‖yk − yk?‖2σ−1 .
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We note (4.16) and (4.8) to have

‖yk − yk?‖2σ−1 ≤ 2ζ

C1
Ek
[
V (zk+1 − zk)

]
≤ 2ζ

C1
Ek
[
∆k
]
.

Then, we can lower bound Φk as

E
[
Φk
]
≥
(

1− C2
2ζ

C1

)
E
[
∆k
]

=
1

2
E
[
∆k
]
. (4.20)

Therefore, it follows that E
[
Φk
]

is nonnegative, by the definition of ∆k and (4.5).
We can now rewrite (4.18) as

E
[
Φk
]
≤ (1− ρ)E

[
Φk−1

]
,

where ρ =
C1p

2ζ . We have shown that Φk converges linearly to 0 in expectation.

By (4.20), it immediately follows that ∆k converges linearly to 0.
To conclude, we note ∆k = Vk+1(xk − xk?, y

k+1 − yk+1
? ), and (4.5), from which we conclude linear

convergence of ‖xk − xk?‖2τ−1 and ‖yk+1 − yk+1
? ‖2σ−1P−1 .

It is obvious to see that 0 < ρ follows by the fact that η is finite by metric subregularity and ρ < 1 follows
since γ < 1 and p ≤ 1.

One important remark about Theorem 4.5 is that the knowledge of the metric subregularity constant η is
not needed for running the algorithm. Step sizes are chosen as (3.1) and linear convergence follows directly
when Assumption 2 holds. Important examples where Assumption 2 holds are given in Section 2.3.

Even though Assumption 2 is more general than prior assumptions for linear convergence and our result
is agnostic to the choice of the step size, we observe in practice that SPDHG can be much faster than the
rate derived in Theorem 4.5. We reflect on this issue more in Section 7 and present some open questions in
this context.

Remark 4.6. Strictly speaking, metric subregularity is used in Theorem 4.5 in the weighted norm, i.e.,

distS(z,Z?) ≤ η distS(0, Fz),

where S = diag(τ−11p, σ
−1
1 , . . . , σ−1

n ). In terms of the definition in (2.6) if η0 is the constant using the
standard Euclidean norm, it is obvious that η ≤ ‖S‖‖S−1‖η0, but we use η in Theorem 4.5 since it can be
smaller, resulting in a better rate.

4.3 Sublinear convergence

In this section, we prove O(1/k) convergence rates for the ergodic sequence with different optimality measures.

4.3.1 Convergence of expected primal-dual gap

We recall the definition of the primal-dual gap function,

G(x̄, ȳ) = sup
z∈Z
H(x̄, ȳ;x, y)

:= sup
z∈Z

g(x̄) + 〈Ax̄, y〉 − f∗(y)− g(x)− 〈Ax, ȳ〉+ f∗(ȳ). (4.21)

It is also possible to consider the restricted primal-dual gap in the sense of [6, 7], which for any set
B = Bx × By ⊆ Z would correspond to

GB(x̄, ȳ) = sup
z∈B
H(x̄, ȳ;x, y). (4.22)

The main quantity of interest for randomized algorithms is the expected restricted primal-dual gap E [GB(x̄, ȳ)].
As also mentioned in [13], showing convergence rate for this quantity is not straightforward, as the interplay of
supremum and expectation can be problematic. In [13], convergence rate is shown in a weaker measure named
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as perturbed gap function. We show in the sequel that obtaining the guarantee in expected primal-dual gap
is also possible, however, with a more involved analysis.

The expected primal-dual gap proof in [6] has a technical issue, near the end of the proof in [6, Theorem
4.3]. Since the supremum of expectation is upper bounded by the expectation of the supremum, which is in
the definition of expected primal-dual gap (4.22), the order of expectation in the proof is incorrect. As we
could not find a simple way of fixing the issue using the existing techniques, we introduce a new technique
and provide a proof to show that the conclusions of [6, Theorem 4.3], for the primal-dual gap, are still correct,
with different constants in the bound.

Our technique in the following proof is inspired by the stochastic approximation literature of variational
inequalities and saddle point problems (see [36, Lemma 3.1, Lemma 6.1] for a reference), where such an
analysis is used to obtain O(1/

√
k) rates. In the new proof, we adapt this idea by using the structure of

primal-dual coordinate descent to obtain the optimal O(1/k) rate of convergence. Our technique uses the
Euclidean structure of the dual update of SPDHG, therefore might not be directly applicable to cases where
general Bregman distances are used for proximal operator, such as in [27, 28].

We start with a lemma to decouple supremum and expectation in the proof.

Lemma 4.7. Given a point ỹ1 ∈ Y, for k ≥ 1, we define the sequences

vk+1 = yk − ŷk+1 − P−1(yk − yk+1), and, ỹk+1 = ỹk − Pvk+1. (4.23)

Then, we have for any y ∈ Y,

K∑
k=1

〈ỹk − y, vk+1〉σ−1 ≤ 1

2
‖ỹ1 − y‖2σ−1P−1 +

K∑
k=1

1

2
‖vk+1‖2σ−1P , (4.24)

E

[
K∑
k=1

1

2
‖vk+1‖2σ−1P

]
≤ 1

C1
∆0. (4.25)

Moreover, vk and ỹk are Fk-measurable and Ek
[
vk+1

]
= 0.

Proof. For brevity in this proof, we denote Υ = σ−1P−1. We have ∀y ∈ Y,

1

2
‖ỹk+1 − y‖2Υ =

1

2
‖ỹk − y‖2Υ − 〈Pvk+1, ỹk − y〉Υ +

1

2
‖Pvk+1‖2Υ

=
1

2
‖ỹk − y‖2σ−1P−1 − 〈vk+1, ỹk − y〉σ−1 +

1

2
‖vk+1‖2σ−1P .

Summing this equality gives the first result.
For the second result, we use Ek

[
P−1(yk − yk+1)

]
= yk − ŷk+1, tower property, and the definition of

variance,

E

[
K∑
k=1

1

2
‖vk+1‖2σ−1P

]
=

K∑
k=1

1

2
E
[
Ek
[
‖vk+1‖2σ−1P

]]
≤

K∑
k=1

1

2
E
[
Ek
[
‖P−1(yk+1 − yk)‖2σ−1P

]]
=

K∑
k=1

1

2
E
[
‖yk+1 − yk‖2σ−1P−1

]
≤ 1

C1
∆0,

where the last inequality follows by
∑∞
k=1 E

[
V (zk+1 − zk)

]
≤ ∆0 from Theorem 4.3 and 1

2‖yk+1−yk‖2σ−1P−1 ≤
1
C1
V (zk+1 − zk) from Theorem 4.1.

Other results follow immediately by the definition of the sequences and the equality Ek
[
yk+1 − yk

]
=

P (ŷk+1 − yk).
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A direct proof of Theorem 4.1 would proceed by developing terms involving random quantities, by utilizing
conditional expectations (see [6]). In this case, however, our approach is to proceed without using conditional
expectation since the quantity of interest requires us to take first supremum and then the expectation of the
estimates. Our proof strategy is to characterize the error term, and then utilize the results Theorem 4.7 to
decouple and bound this term. First, we give the variant of Theorem 4.1 without taking expectations, with
its proof given in Section 8.2.

Lemma 4.8. We define f∗P (y) =
∑n
i=1 pif

∗
i (yi), and similar to (2.5) DP

f∗(ȳ; z) =
∑n
i=1 pif

∗
i (ȳi)− pif∗i (yi)−

〈(Ax)i, pi(ȳ − y)i〉 and recall the definitions of V and Vk from Theorem 4.1 and H from (4.21). Then, it
holds that

H(xk, yk+1;x, y) ≤ Vk(xk−1 − x, yk − y)− Vk+1(xk − x, yk+1 − y)− V (zk − zk−1)

+ Ek +DP−1−I
f∗ (yk; z)−DP−1−I

f∗ (yk+1; z)− 〈y, vk+1〉σ−1 , (4.26)

where vk+1 = yk − ŷk+1 − P−1(yk − yk+1) and

Ek =
1

2

[
‖yk‖2σ−1 − ‖ŷk+1‖2σ−1 −

(
‖yk‖2σ−1P−1 − ‖yk+1‖2σ−1P−1

)]
+

1

2
‖yk+1 − yk‖2σ−1P−1 − 1

2
‖ŷk+1 − yk‖2σ−1 + f∗(yk)− f∗(ŷk+1)

− (f∗P−1(yk)− f∗P−1(yk+1))− 〈Axk, yk − ŷk+1 − P−1(yk − yk+1)〉, (4.27)

and also Ek
[
Ek
]

= 0.

With this lemma, we identify the problematic inner product for deriving the rate for expected gap:
〈y, vk+1〉 (see (4.26)). This is the only term coupling the free variable z and random term vk+1. In the next
theorem, we use Theorem 4.7 to manipulate this inner product. For the rest, we can observe in (4.26) that
the terms with Vk telescopes, Ek has expectation 0 and it is independent of free variable z.

Theorem 4.9. Let Assumption 1 hold. Define the sequences xKav = 1
K

∑K
k=1 x

k and yK+1
av = 1

K

∑K
k=1 y

k+1.
Then, for any set B = Bx × By ⊆ Z, the following result holds for the expected restricted primal dual gap
defined in (4.21)

E
[
sup
z∈B
H(xKav, y

K+1
av ;x, y)

]
= E

[
GB(xKav, y

K+1
av )

]
≤ CB

K
, (4.28)

where

CB =
1 + 2c

2
sup
x∈Bx

‖x0 − x‖2τ−1 + sup
y∈By

‖y1 − y‖2σ−1P−1 + f∗P−1−I(y
1)− f∗P−1−I(y

?)

+

(
1

C1
+ 2c+ c1

)
∆0 + c‖x0‖2τ−1 + c‖y1 − y?‖2σ−1P−1 +

‖σ1/2Aτ1/2‖2
2c1p

‖x?‖2τ−1 ,

where c1 = ‖τ1/2A>σ1/2P−1/2‖, c = ‖τ1/2A>(P−1 − I)σ1/2P 1/2‖, C1 = 1− γ.

Proof. We start from the result of Theorem 4.8. We have for the last term in (4.26)

−〈y, vk+1〉σ−1 = 〈ỹk − y, vk+1〉σ−1 − 〈ỹk, vk+1〉σ−1 , (4.29)

where ỹk is the random sequence defined in Theorem 4.7.
We sum (4.26) after using (4.29) and Theorem 4.1

K∑
k=1

H(xk, yk+1;x, y) ≤ −VK+1(xK − x, yK+1 − y) + V1(x0 − x, y1 − y)

+DP−1−I
f∗ (y1; z)−DP−1−I

f∗ (yK+1; z)

+

K∑
k=1

(
〈ỹk − y, vk+1〉σ−1 − 〈ỹk, vk+1〉σ−1 + Ek

)
, (4.30)
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Next, by Young’s inequality (see also (8.17))

− 〈A(x− xK), P−1(yK+1 − yK)〉 ≤ γ

2
‖x− xK‖2τ−1 +

γ

2
‖yK+1 − yK‖2σ−1P−1 . (4.31)

On (4.30), we use (4.24) from Lem. 4.7 with ỹ1 =y1 =y0, (4.31) with the definition of VK+1(xK−x, yK+1−y)
from Lem. 4.1 (see also (4.5), (8.17)), and γ<1 from (3.1)

K∑
k=1

H(xk, yk+1;x, y) ≤ 1

2
‖x0 − x‖2τ−1 + ‖y1 − y‖2σ−1P−1

+ f∗P−1−I(y
1)− f∗P−1−I(y

K+1) + 〈Ax, (P−1 − I)(yK+1 − y1)〉

+

K∑
k=1

(1

2
‖vk+1‖2σ−1P − 〈ỹk, vk+1〉σ−1 + Ek

)
. (4.32)

We have 〈Ax, (P−1 − I)(yK+1 − y1)〉 ≤ c
(

1
2‖x‖2τ−1 + 1

2‖yK+1 − y1‖2σ−1P−1

)
, where c = ‖τ1/2A>(P−1 −

I)σ1/2P 1/2‖ and 1
2‖x‖2τ−1 ≤ ‖x− x0‖2τ−1 + ‖x0‖2τ−1 .

We use these inequalities, arrange (4.32), and divide both sides by K

1

K

K∑
k=1

H(xk, yk+1;x, y) ≤ 1

K

{
1 + 2c

2
‖x0 − x‖2τ−1 + ‖y1 − y‖2σ−1P−1 + c‖x0‖2τ−1

+
c

2
‖yK+1 − y1‖2σ−1P−1 + f∗P−1−I(y

1)− f∗P−1−I(y
K+1)

+

K∑
k=1

(
1

2
‖vk+1‖2σ−1P − 〈ỹk, vk+1〉σ−1 + Ek

)}
. (4.33)

We now take supremum of (4.33) with respect to z, note that only the first two terms on the right hand side
depend on z = (x, y), and x0, y1 are deterministic. Then we take expectation of both sides of (4.33)

E
[

sup
z∈B

1

K

K∑
k=1

H(xk, yk+1;x, y)

]
≤ 1

K

{
sup
z∈B

{
1 + 2c

2
‖x0 − x‖2τ−1 + ‖y1 − y‖2σ−1P−1

}
+ E

[ c
2
‖yK+1 − y1‖2σ−1P−1 + f∗P−1−I(y

1)− f∗P−1−I(y
K+1)

]
+ c‖x0‖2τ−1

+

K∑
k=1

1

2
E
[
‖vk+1‖2σ−1P

]
−

K∑
k=1

E
[
〈ỹk, vk+1〉σ−1

]
+

K∑
k=1

E
[
Ek
]}

. (4.34)

As ỹk is Fk-measurable, Ek
[
vk+1

]
= 0, by Theorem 4.7, and by the tower property,

E

[
K∑
k=1

〈ỹk, vk+1〉σ−1

]
=

K∑
k=1

E
[
Ek
[
〈ỹk, vk+1〉σ−1

]]
=

K∑
k=1

E
[
〈ỹk,Ek[vk+1]〉σ−1

]
= 0. (4.35)

On (4.34), we use (4.25) from Theorem 4.7, (4.35) and∑K
k=1 E[Ek] =

∑K
k=1 E

[
Ek
[
Ek
]]

= 0, which follows from Theorem 4.8 along with the tower property, to
obtain

E
[

sup
z∈B

1

K

K∑
k=1

H(xk, yk+1;x, y)

]
≤ sup

z∈B

{
1 + 2c

2K
‖x0 − x‖2τ−1 +

1

K
‖y1 − y‖2σ−1P−1

}
+

c

2K
E
[
‖yK+1 − y1‖2σ−1P−1

]
+

c

K
‖x0‖2τ−1

+
1

K
E
[
f∗P−1−I(y

1)− f∗P−1−I(y
K+1)

]
+

1

C1K
∆0. (4.36)

14



By Theorem 4.3 and Theorem 4.1, E
[
‖yK+1 − y?‖2σ−1P−1

]
≤ 2∆0, and by Jensen’s inequality, E

[
‖yK+1 − y?‖σ−1P−1

]
≤√

2∆0. With these estimations we have

E
[
‖yK+1 − y1‖2σ−1P−1

]
≤ 2‖y1 − y?‖2σ−1P−1 + 4∆0. (4.37)

As fi is proper, l.s.c., convex, and Aix
? ∈ ∂f∗i (y?i ), we additionally note that

f∗i (yK+1
i ) ≥ f∗i (y?i ) + 〈Aix?, yK+1

i − y?i 〉
≥ f∗i (y?i )− ‖Aix?‖σi‖yK+1

i − y?i ‖σ−1
i
,

and by substitution, Young’s inequality, and defining c1 = ‖τ1/2A>σ1/2P−1/2‖

E
[
f∗P−1−I(y

K+1)
]

=

n∑
i=1

(
1

pi
− 1

)
E
[
f∗i (yK+1

i )
]

≥
n∑
i=1

(
1

pi
− 1

)(
f∗i (y?i )− 1

2c1
‖Aix?‖2σi −

c1
2
E
[
‖yK+1
i − y?i ‖2σ−1

i

] )
≥

n∑
i=1

(
1

pi
− 1

)
f∗i (y?i )− 1

2c1p
‖Ax?‖2σ −

c1
2
E‖yK+1 − y?‖2σ−1P−1 . (4.38)

We now use (4.37) and (4.38) in (4.36), use E
[
‖yK+1 − y?‖2σ−1P−1

]
≤ 2∆0 and use definition of c1 to obtain

E

[
sup
z∈B

1

K

K∑
k=1

H(xk, yk+1;x, y)

]
≤ 1 + 2c

2K
sup
x∈Bx

‖x0 − x‖2τ−1 +
1

K
sup
y∈By

‖y1 − y‖2σ−1P−1

+
c

K
‖y1 − y?‖2σ−1P−1 +

2c

K
∆0 +

c

K
‖x0‖2τ−1 +

1

K

(
f∗P−1−I(y

1)− f∗P−1−I(y
?)
)

+
‖σ1/2Aτ1/2‖2

2c1pK
‖x?‖2τ−1 +

c1
K

∆0 +
1

C1K
∆0 =:

CB
K
.

We define as CB the constant of right hand side and use Jensen’s inequality on the left hand side with
definitions of xKav and yK+1

av to get the result.

Remark 4.10. In Thm. 4.9, when pi = 1
n , setting scalar step sizes τ = 1

nmaxi ‖Ai‖ , σ = 1
maxi ‖Ai‖ in view

of (3.1) gives O(n[‖A‖+ f∗(y1)− f∗(y?)] ·maxz∈B[‖x‖2 + ‖y‖2]) as the worst case order for CB.

4.3.2 Convergence of objective values

The guarantee for the expected global primal-dual gap (see (4.28)) requires bounded primal and dual domains.
In this section, we show that O(1/k) rate of convergence in terms of objective values and/or feasibility

can be shown with possibly unbounded primal and dual domains. The case f(·) = δb(·) is studied in [34] and
a similar result was derived. The rate in [34] has a different nature in the sense that it is an almost sure
rate where the constant depends on trajectory, whereas our rate is in expectation. We use the smoothed gap
function introduced in [47], which, for (1.1), is defined as

Gα,β(x, y; ẋ, ẏ) = sup
u,v

g(x) + 〈Ax, v〉 − f∗(v)− g(u)− 〈Au, y〉+ f∗(y)− α

2
‖u− ẋ‖2 − β

2
‖v − ẏ‖2. (4.39)

Theorem 4.11. Let Assumption 1 hold. We recall xKav = 1
K

∑K
k=1 x

k.
• If f is L(f)-Lipschitz continuous and y1 ∈ dom f∗,

E
[
f(AxKav) + g(xKav)− f(Ax?)− g(x?)

]
≤ Ce,1

K
.
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• If f(·) = δ{b}(·) with b ∈ Y,

E
[
g(xKav)− g(x?)

]
≤ Ce,2

K
, E

[
‖AxKav − b‖diag(σ)P

]
≤ Ce,3

K
,

where (see Theorem 4.9)

Ce = f∗P−1−I(y
1)− f∗P−1−I(y

?) +

(
1

C1
+ 2c+ c1

)
∆0

+ c‖x0‖2τ−1 + c‖y1 − y?‖2σ−1P−1 +
‖σ1/2Aτ1/2‖2

2c1p
‖x?‖2τ−1 ,

Ce,1 = Ce + 2
pL(f)2 + 1+2γ

2 ‖x0 − x?‖2τ−1 ,

Ce,3 = 1
2

{
‖y? − y1‖σ−1P−1 +

(
‖y? − y1‖2σ−1P−1 + 4Ce + 6‖x? − x0‖τ−1

)1/2}
,

Ce,2 = Ce + 1
2‖y? − y1‖2σ−1P−1 + 1+2γ

2 ‖x0 − x?‖2τ−1 + ‖y?‖σ−1P−1Ce,3.

Proof. For the smoothed gap (see (4.39)), from Theorem 4.9, we have

E
[
G 1+2γ

2K , 1
2K

(xKav, y
K+1
av ;x0, y1)

]
≤ Ce
K
.

To see this, we proceed the same as in the proof of Theorem 4.9 until (4.33). Then, we move the terms
1+2γ
2K ‖x0 − x‖2τ−1 and 1

K ‖y1 − y‖2σ−1P−1 to the left hand side, take supremum, use the definition of smoothed
gap, then take expectations of both sides and use the same estimations as in the first part to conclude.
• When f is Lipschitz continuous in the norm ‖ · ‖σ, we will argue as in [19, Theorem 11]. On (4.39), with

the parameters used in this theorem, we make the following observations. By [4, Corollary 17.19], when f is
L(f)-Lipschitz continuous in the norm ‖ · ‖diag(σ), it follows that ‖y1− y‖2σ−1 ≤ 4L(f)2. By Lipschitzness and
the definition of conjugate function, we can pick y ∈ ∂f(AxKav) 6= ∅ such that 〈AxKav, y〉 − f∗(y) = f(AxKav).
Next by Fenchel-Young inequality, f∗(yK+1

av )− 〈A>yK+1
av , x?〉 ≥ −f(Ax?). We also use p = mini pi to obtain

(see (4.39))

E
[
G 1+2γ

K , 1
K

(xKav, y
K+1
av ;x0, y1)

]
≥ E

[
f(AxKav) + g(xKav)− f(Ax?)− g(x?)

]
− 2

pK
L(f)2 − 1 + 2γ

2K
‖x0 − x?‖2τ−1 ,

where the result directly follows.
• When f(·) = δb(·), we use [47, Lemma 1], to obtain the bounds

E
[
g(xKav)− g(x?)

]
≤ E

[
G 1+2γ

2K , 1
2K

(xKav, y
K+1
av ;x0, y1)

]
+

1 + 2γ

2K
‖x0 − x?‖2τ−1 − E

[
〈y?, AxKav − b〉

]
+

1

2K
‖y? − y1‖2σ−1P−1 ,

E
[
‖AxKav − b‖diag(σ)P

]
≤ 1

2K

{
‖y? − y1‖σ−1P−1 +

(
‖y? − y1‖2σ−1P−1

+ 4KE
[
G 1+2γ

2K , 1
2K

(xKav, y
K+1
av ;x0, y1)

]
+ 2(1 + 2γ)‖x0 − x?‖2τ−1

)1/2}
.

We use Cauchy-Schwarz inequality and the bound of E
[
‖AxKav − b‖diag(σ)P

]
on 〈y?, AxKav − b〉 to conclude.

5 Related works

We summarize the comparison of the most related primal-dual coordinate descent methods (PDCD) in Table 1
at Page 26.
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Primal camp. Stochastic gradient based methods (SGD) can be applied to solve (1.1) [36, 42]. SGD cannot
get linear convergence except special cases [35]. Variance reduction based methods obtain linear convergence
when the functions fi are smooth and g is strongly convex; or fi are smooth and strongly convex [2, 25, 48].
Smoothness of fi is equivalent to strong convexity of f∗i . Therefore, the linear convergence results of these
methods require the similar assumptions as [6]. Moreover, as in [6], variance reduction based methods
require knowing the constants µi and µg to set the algorithmic parameters accordingly, for obtaining linear
convergence.

When fi(·) = δ{bi}(·), SGD-type methods are proposed in [18, 39, 49]. However, these methods only
obtain O(1/k) rate with strong convexity of g, since they focus on the general problem where the objective
can be given in expectation form. Even though this rate is optimal for the given template, it is suboptimal
for (1.1).

Primal-dual camp. This line of research uses coordinate descent type schemes for solving (1.1). Coordinate
descent with random sampling for unconstrained optimization is proposed in [37] and later generalized and
improved in [20, 41]. These methods apply coordinate descent in the primal and obtain linear convergence
rates with smooth and strongly convex fi; or smooth fi and strongly convex g.

Another approach is to apply coordinate ascent in the dual to exploit separability of the dual in (1.1).
Stochastic dual coordinate ascent (SDCA) and its accelerated variant are proposed in [44, 45]. These methods
require smoothness of fi and strong convexity of g for linear convergence and the strong convexity constants
are used in the algorithms for setting the parameters.

The algorithm we analyzed in this paper is SPDHG, proposed in [6]. The authors proved linear convergence
of the modified method SPDHG-µ [6, Theorem 6.1] by assuming strong convexity of f∗i , g and special step sizes
depending on strong convexity constants. Iterate convergence and ergodic O(1/k) rate results in [6, Theorem
4.3] are given in terms of Bregman distances which is not a valid optimality measure in general. Our analysis
for SPDHG shows linear convergence with standard step sizes in (3.1) and with weaker metric subregularity
assumption (see Section 2.3). Moreover, in the general convex case, we prove almost sure convergence of the
iterates to a solution, which is stronger than Bregman distance based almost sure convergence in [6]. Finally,
we prove O(1/k) rate for the ergodic sequence, with possibly unbounded domains, for optimality measures
stronger than Bregman distances, such as expected primal-dual gap. The comparison of the results is also
summarized in Table 2.

PDCD schemes similar to SPDHG are proposed in [13, 19, 52]. These variants assume strong convexity
of f∗i , g for linear rate of convergence. Only [19] proved linear convergence with step sizes independent of
strong convexity constants, to provide a partial answer for adaptivity of PDCD methods to strong convexity.
However, as detailed in Table 1, with dense A matrix and uniform sampling, this method requires step sizes n
times smaller than (3.1) which can be problematic in practice (see Section 6.1). For sublinear convergence, [19]
proved O(1/

√
k) rate on a randomly selected iterate, under similar assumption to ours whereas [52] requires

boundedness of the dual domain, setting a horizon and proves primal-only rates.
PDCD algorithms are also studied in [11, 12, 40]. As mentioned in [6, 19], operator theory-based proofs

of these methods require using step sizes depending on global constants about the problem, causing slow
performance in practice. PDCD methods for linearly constrained problems are studied in [1, 13, 34], with
sublinear rates.

Latafat et al. [29] proposed TriPD-BC and proved linear convergence for this method under metric
subregularity. There are two drawbacks of TriPD-BC for our setting. First, when A is not of special structure,
such as block diagonal, one needs to use duplication for an efficient implementation (see [19]). Second issue
is that as in [19], this method needs to use n times smaller step sizes with dense A. For the details of
duplication and small step sizes, we refer to [19]. The need to use small step sizes seriously affects the
practical performance of the algorithm (see Section 6.1).

Some standard references for deterministic primal-dual algorithms are in [7, 8, 17, 22, 46, 47]. As observed
in [6], coordinate descent-based variants significantly increase the practical performance of these deterministic
methods.

Our results imply global linear convergence for PDHG when n = 1, answering the question posed in [7]:
“It would be interesting to understand whether the steps can be estimated in Algorithm 1 without the a priori
knowledge of µi, µg.” In the third part of Assumption 2, compact domains are not needed for this case. We
highlight that such behaviour of deterministic primal-dual methods is investigated before in [29, 31].
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Linear programming. A related notion to metric subregularity for linear programming is Hoffman’s lemma due
to classical result in [23], which is used to show linear convergence of ADMM-type methods for LPs [33, 50, 51].
The drawback of these approaches is that the knowledge of the constant η is required to run the algorithm,
which is difficult to estimate. Our analysis recovers these results specific to LPs with a simpler algorithm
that does not need the knowledge of η.

6 Numerical evidence

In this section, we support our theoretical findings by showing that SPDHG with step sizes in (3.1) obtains
linear convergence for problems satisfying metric subregularity.

The problems we solve in this section satisfy metric subregularity (see Section 2.3). However, among
these problems, only ridge regression is strongly convex-strongly concave, thus this is the only problem where
existing linear convergence results from [6] apply by using the algorithm SPDHG-µ [6, Theorem 6.1]. We show
that even in this case, when strong convexity constants are small, applying SPDHG can be more beneficial
for some datasets. SPDHG-µ is not applicable for other problems due to lack of strong convexity or strong
concavity. We also illustrate favorable behavior of SPDHG against state-of-the-art methods SVRG [25],
accelerated SVRG [53] and PDCD algorithms using smaller step sizes with dense data, such as [19].

Due to limited space, we include results with one or two datasets for each problem. For SPDHG, as
suggested in [6], we use uniform sampling of coordinates and the step sizes τ = 0.99

nmaxi ‖Ai‖ and σi = 0.99
‖Ai‖ for

all problems. For the other methods, we use the suggested theoretical step sizes in the respective papers and
we do not fine tune any of the methods.

6.1 Sparse recovery with basis pursuit

Basis pursuit is a fundamental problem in signal processing [10] with applications in machine learning [3, 21]:

min
x∈Rd

‖x‖1 : Ax = b. (6.1)

Since basis pursuit is PLQ, metric subregularity holds. In this section, we aim to illustrate the importance of
step sizes, as mentioned in Section 5 and Table 1 and to verify linear convergence of SPDHG. We compare
SPDHG with coordinate descent version of Vu-Condat algorithm from [19], which we refer to as FB-VC-CD.
Since [29] requires duplication for an efficient implementation for this problem, it uses the same step sizes
as [19]. Thus, we only compare with FB-VC-CD and note that the practical performance of [29] is expected
to be similar to FB-VC-CD with same step sizes.

We generate the data matrix A with n = 500 and d = 1000 and entries follow a standard normal
distribution. We generate a covariance matrix Σi,j = ρ|i−j| with ρ = 0.5 and a sparse solution x? with 100
nonzero entries. We then compute b = Ax?.
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Figure 1: Linear convergence of SPDHG for basis pursuit problem.

The analysis of SPDHG by [6] shows O (1/k) rate on the Bregman distance to solution on the ergodic
sequence whereas our analysis proves linear convergence on the last iterate. On the other hand, FB-VC-CD

is proven to have O
(

1/
√
k
)

rate for this problem [19]. FB-VC-CD is tailored specially to exploit sparsity in

the data. However, the data is dense in this problem, which causes FB-VC-CD to use n times smaller step
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sizes as shown in Figure 6.1. Because of this reason, FB-VC-CD exhibits a slow rate whereas SPDHG gets
fast rate as predicted by our theoretical results.

6.2 Lasso and ridge regression

In this section we solve ridge regression and Lasso problems, formulated as

min
x∈Rd

1

2
‖Ax− b‖2 +

λ

2
‖x‖2, and, min

x∈Rd
1

2
‖Ax− b‖2 + λ‖x‖1, (6.2)

respectively. In terms of structure, (6.2) is smooth and strongly convex, or equivalently, its Lagrangian
is strongly convex-strongly concave. For this problem class, [6] showed linear convergence for the method
SPDHG-µ, which is a modified version of SPDHG using strong convexity and strong concavity constants for
step sizes. In addition, SVRG and accelerated SVRG have linear convergence for this problem [2, 48, 53].
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Figure 2: Ridge regression, first row: w8a, n = 49, 749, d = 300; second row: sector, n = 6, 412, d = 55, 197;
third row: YearPredictionMSD, n = 463, 715, d = 90.

We use regression datasets from libsvm [9], perform row normalization, and use three different regularization
parameters for each case. We compile the results in Section 6.2 along with information on datasets and
regularization parameters.

The aim in this experiment is not to argue that SPDHG gets the best performance in all cases since this
is a very specific instance where most algorithms can get linear convergence. Our goal is rather to show that
even though our linear convergence results apply to a broad class of problems and SPDHG can apply to more
general problems, it can still be competitive when compared to methods which are designed to exploit the
structure of this specific setting.
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When n ≥ d, in Section 6.2, we see that for large regularization parameters, or equivalently, large strong
convexity constants, SPDHG-µ is faster than SPDHG. This is expected since SPDHG-µ is designed to use
strong convexity as good as possible, whereas our result holds generically without any modifications on the
algorithm. Next, when strong convexity constant is small, SPDHG gets a faster linear rate than SPDHG-µ,
which suggests robustness of SPDHG over SPDHG-µ in this regime. SPDHG also shows a more favorable
performance than SVRG and accelerated SVRG.

When n ≤ d, in Section 6.2, we see that SPDHG-µ shows faster convergence with small µ. This seems
intuitive, since in this case the strong convexity purely comes from the regularization term. In this case,
SPDHG-µ directly exploits this knowledge and shows a better performance.

We then solve Lasso (6.2), for which SPDHG-µ does not apply and accelerated SVRG cannot get linear
rates in general. We compare with SVRG for varying regularization parameters, datasets with n ≤ d and
n ≥ d, and compile the results in Section 6.2. We observe that SPDHG converges linearly for this problem
and exhibits a better practical performance than SVRG.
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Figure 3: Lasso, top: mnist scale, n = 60, 000, d = 780; bottom: rcv1.binary, n = 20, 242, d = 47, 236

7 Conclusions and open questions

In this section, we focus on the theory-practice gap mentioned in Section 4.2, before Theorem 4.6. In
particular, the main aim of Section 4.2 was to show that SPDHG obtains linear rate of convergence under
general assumptions that hold for a large body of problems, with an agnostic step size selection. A natural
question is: How does this rate translate to practice? For this purpose, we perform a controlled experiment
on a simple problem

min
x∈Rd

µ

2
‖x‖2 : Ax = b,

with d = n = 10. After writing the KKT conditions, we obtain F =

[
µI A>

A 0

]
and metric subregularity

constant η is the smallest eigenvalue of F in absolute value.
For simplicity, we run PDHG, which is a specific case of SPDHG, and plot the predicted rate and the

empirical rate in Section 7. The resulting empirical rate is significantly faster than the worst case rate
predicted by theory. We point out several possible explanations for this:

• Metric subregularity is too general to capture structures observed in practice.
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Figure 4: left: empirical and theoretical linear rates, right: empirical rates with different µ.

• Our step size choice is independent of metric subregularity constant, preventing optimizing the theoretical
rate with respect to these quantities.

In fact, this phenomenon is not specific to our analysis and seems to be a common drawback of the
existing analyses utilizing metric subregularity [29]. On this front, we observe that in our example, as µ
increases, metric subregularity constant η degrades. However, as we see in the plot, the practical performance
degrades when µ is either too big or too small (see Section 7). This observation suggests that there might
exist better regularity measures beyond metric subregularity that would help us derive better rates. We
believe that this is a promising future direction.
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8 Appendix

8.1 Proof of Theorem 4.3

Proof. On (4.3), we pick (x, y) = (x?, y?) and by convexity, Dg(x
k; z?) ≥ 0, Df∗(ŷk+1; z?) ≥ 0. Next, by

using ∆k = Vk+1(xk − x?, yk+1 − y?), we write (4.3)

Ek
[
∆k
]
≤ ∆k−1 − V (zk − zk−1). (8.1)

We denote qk = (1⊗ xk, 1⊗ yk). By taking total expectation, summing (8.1), and using Theorem 4.2, we
have

∑∞
k=1 E

[
‖T (qk−1)− qk−1‖2

S̄P̄

]
< +∞. We use Fubini-Tonelli theorem to exchange the infinite sum

and the expectation to obtain E
[∑∞

k=0 ‖T (qk−1)− qk−1‖2
S̄P̄

]
<∞. Here, since

∑∞
k=0 ‖T (qk−1)− qk−1‖2

S̄P̄

is nonnegative, we conclude that
∑∞
k=0 ‖T (qk−1)− qk−1‖2

S̄P̄
is finite almost everywhere, which implies that

‖T (qk−1) − qk−1‖2
S̄P̄

converges to 0 almost surely. Thus we established: ∃ΩT with P(ΩT ) = 1 such that

∀ω ∈ ΩT , we have T (qk(ω))− qk(ω)→ 0.
We apply Robbins-Siegmund lemma [43, Theorem 1] on (8.1) to get that a.s., ∆k converges to a finite

valued random variable and V (zk − zk−1)→ 0. Consequently, by (4.4), ‖yk − yk−1‖ converges to 0 a.s. Since
a.s., ∆k converges and ‖yk − yk−1‖ converges to 0, we have that ‖zk − z?‖ converges a.s.

In particular, we have shown that

P
(
ω ∈ Ω: lim

k→∞
‖zk(ω)− z?‖ exists.

)
= 1. (8.2)

The probability 1 set from which we select the trajectories is defined via z?. Let us denote the set

Ωz? =
{
ω ∈ Ω: lim

k→∞
‖zk(ω)− z?‖ exists.

}
(8.3)
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Thus our statement is actually: for each z? ∈ Z?, there exists a set Ωz? with probability 1, such that ∀ω ∈ Ωz? ,
limk→∞ ‖zk(ω)− z?‖ exists.

We now follow the arguments in [11, Proposition 2.3], [5, Proposition 9], [24, Theorem 2], [19, Theorem 1]
to strengthen this result.

Let us pick a set C which is a countable subset of ri(Z?) that is dense in Z?. Let us denote the elements
of C as vi for i ∈ N.

We just proved that for all vi ∈ Z?, ∃Ωvi with P(Ωvi) = 1, such that ∀ω ∈ Ωvi , limk→∞ ‖zk(ω) − vi‖
exists. Let us denote ΩC = ∩i∈NΩvi . As ΩC is the intersection of a countable number of sets of probability 1,
P(ΩC) = 1.

Next, we set z̃ ∈ Z?. As C is dense in ri(Z?), there exists a subsequence vϕ(i), where ϕ : N → N is an
increasing function, such that vϕ(i) → z̃.

We now pick ω ∈ ΩC and study the existence of limk→∞ ‖zk(ω)− z̃‖. By triangle inequality, ∀i ∈ N,

‖zk(ω)− vϕ(i)‖ − ‖vϕ(i) − z̃‖ ≤ ‖zk(ω)− z̃‖ ≤ ‖zk(ω)− vϕ(i)‖+ ‖vϕ(i) − z̃‖.

Rearranging gives
−‖vϕ(i) − z̃‖ ≤ ‖zk(ω)− z̃‖ − ‖zk(ω)− vϕ(i)‖ ≤ ‖vϕ(i) − z̃‖.

As ω is chosen from ΩC , and any element of ΩC is also an element of Ωvi , we know that limk→∞ ‖zk(ω)−vϕ(i)‖
exists. Moreover, recall that vϕ(i) → z̃.

We take limit as k →∞,

−‖vϕ(i) − z̃‖ ≤ lim inf
k→∞

‖zk(ω)− z̃‖ − lim
k→∞

‖zk(ω)− vϕ(i)‖

≤ lim sup
k→∞

‖zk(ω)− z̃‖ − lim
k→∞

‖zk(ω)− vϕ(i)‖

≤ ‖vϕ(i) − z̃‖.

As we take the limit along the subsequence defined by ϕ(i), we have limi→∞ ‖vϕ(i) − z̃‖ = 0, which gives the
equality of lim inf and lim sup.

Thus, ∀ω ∈ ΩC with P(ΩC) = 1 and ∀z̃ ∈ Z?, we have that limk→∞ ‖zk(ω)− z̃‖ exists.
We now pick ω ∈ ΩC ∩ ΩT and then as we have that (zk(ω))k is bounded, we denote by z̃ = (x̃, ỹ) one of

its cluster points. Then, we denote q̃ = (1⊗ x̃, 1⊗ ỹ) and say that q̃ is a cluster point of (qk(ω))k.
As T (qk(ω))− qk(ω)→ 0, by continuity of T we have T (q̃)− q̃ → 0, therefore q̃ is a fixed point of T . We

now use Theorem 4.2 to argue that fixed points of T which we denote as (xf (j), yf (j))j={1,...,n} are such that
(xf (j), yf (j)) ∈ Z?,∀j ∈ {1, . . . , n}. Since q̃ is a fixed point of T , we conclude that z̃ ∈ Z?.

To sum up, we have shown that at least on some subsequence zk(ω) converges to z̃ ∈ Z?. Then, the result
follows due to existence of the limit, proven earlier.

8.2 Proof of Theorem 4.8

Proof. As in [6], we use (4.2) to denote full dimensional updates. By the definition of the proximal
operator (2.1) along with convexity of f∗i and g, we get, ∀x ∈ X , ∀y ∈ Y and ∀i = {1, . . . , n}

g(x) ≥ g(xk) + 〈xk − x,A>ȳk〉+
1

2
‖xk − xk−1‖2τ−1 +

1

2
‖xk − x‖2τ−1

− 1

2
‖x− xk−1‖2τ−1 ,

f∗i (yi) ≥ f∗(ŷk+1
i )− 〈ŷk+1

i − yi, Aixk〉+
1

2
‖ŷk+1
i − yki ‖2σ−1

i

+
1

2
‖ŷk+1
i − yi‖2σ−1

i

− 1

2
‖yi − yki ‖2σ−1

i

.
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We sum the second inequality from i = 1 to n and add to the first inequality to obtain

0 ≥ g(xk)− g(x) + 〈xk − x,A>ȳk〉+ f∗(ŷk+1)− f∗(y)− 〈ŷk+1 − y,Axk〉

+
1

2

(
−‖xk−1 − x‖2τ−1 + ‖xk − x‖2τ−1 + ‖xk − xk−1‖2τ−1

)
+

1

2

(
− ‖yk − y‖2σ−1 + ‖ŷk+1 − y‖2σ−1 + ‖ŷk+1 − yk‖2σ−1

)
. (8.4)

We next note

H(xk, ŷk+1;x, y) = g(xk) + 〈Axk, y〉 − f∗(y)− g(x)− 〈Ax, ŷk+1〉+ f∗(ŷk+1),

∆1 =
1

2

(
− ‖xk−1 − x‖2τ−1 + ‖xk − x‖2τ−1 + ‖xk − xk−1‖2τ−1

)
,

∆2 =
1

2

(
− ‖yk − y‖2σ−1 + ‖ŷk+1 − y‖2σ−1 + ‖ŷk+1 − yk‖2σ−1

)
.

Then, we can write (8.4) as

0 ≥ H(xk, ŷk+1;x, y) + 〈A(x− xk), ŷk+1 − ȳk〉+ ∆1 + ∆2. (8.5)

We estimate by simple manipulations

H(xk,ŷk+1;x, y) = H(xk, yk+1;x, y) + 〈Ax, yk+1 − ŷk+1〉+ f∗(ŷk+1)− f∗(yk+1)

−
(
f∗P−1−I(y

k+1)− f∗P−1−I(y
k)
)

+
(
f∗P−1−I(y

k+1)− f∗P−1−I(y
k)
)

+ 〈Ax, (P−1 − I)(yk+1 − yk)〉 − 〈Ax, (P−1 − I)(yk+1 − yk)〉
= H(xk, yk+1;x, y) + f∗(ŷk+1)− f∗(yk)− (f∗P−1(yk+1)− f∗P−1(yk))

+ 〈Ax, yk − ŷk+1 − P−1(yk − yk+1)〉
+
(
f∗P−1−I(y

k+1)− f∗P−1−I(y
k)
)
− 〈Ax, (P−1 − I)(yk+1 − yk)〉

= H(xk, yk+1;x, y) + f∗(ŷk+1)− f∗(yk)− (f∗P−1(yk+1)− f∗P−1(yk))

+ 〈Ax, yk − ŷk+1 − P−1(yk − yk+1)〉+DP−1−I
f∗ (yk+1; y)−DP−1−I

f∗ (yk; y). (8.6)

By the definition of ȳk in SPDHG, we have for the bilinear term in (8.5) that

〈A(x− xk), ŷk+1 − ȳk〉 = 〈A(x− xk), ŷk+1 − yk − P−1(yk − yk−1)〉
= 〈A(x− xk), ŷk+1 − yk〉 − 〈A(x− xk−1), P−1(yk − yk−1)〉
− 〈A(xk−1 − xk), P−1(yk − yk−1)〉
= 〈A(x− xk), P−1(yk+1 − yk)〉 − 〈A(x− xk−1), P−1(yk − yk−1)〉
− 〈A(xk−1 − xk), P−1(yk − yk−1)〉
+ 〈A(x− xk), ŷk+1 − yk − P−1(yk+1 − yk)〉. (8.7)

On ∆2, we add and subtract ‖yk − y‖2σ−1P−1 − ‖yk+1 − y‖2σ−1P−1 to get

−∆2 = −1

2
‖yk+1 − y‖2σ−1P−1 +

1

2
‖yk − y‖2σ−1P−1 − 1

2
‖ŷk+1 − yk‖2σ−1 + εk, (8.8)

where

εk =
1

2

[
‖yk − y‖2σ−1 − ‖ŷk+1 − y‖2σ−1 −

(
‖yk − y‖2σ−1P−1 − ‖yk+1 − y‖2σ−1P−1

)]
=

1

2

[
‖yk‖2σ−1 − ‖ŷk+1‖2σ−1 −

(
‖yk‖2σ−1P−1 − ‖yk+1‖2σ−1P−1

)
− 2〈y, yk − ŷk+1 − P−1(yk − yk+1)〉σ−1

]
. (8.9)

23



We use eqs. (8.6) to (8.8) in (8.5), add and subtract 1
2‖yk − yk−1‖2σ−1P−1 and use the definition vk+1 =

yk − ŷk+1 − P−1(yk − yk+1) from Theorem 4.7 to obtain

H(xk,yk+1;x, y) ≤ −1

2
‖xk − x‖2τ−1 +

1

2
‖xk−1 − x‖2τ−1

− 〈A(x− xk), P−1(yk+1 − yk)〉+ 〈A(x− xk−1), P−1(yk − yk−1)〉

− 1

2
‖xk − xk−1‖2τ−1 − 1

2
‖yk − yk−1‖2σ−1P−1

− 〈A(xk − xk−1), P−1(yk − yk−1)〉 − 1

2
‖yk+1 − y‖2σ−1P−1

+
1

2
‖yk − y‖2σ−1P−1 − 1

2
‖ŷk+1 − yk‖2σ−1 +

1

2
‖yk − yk−1‖2σ−1P−1

+
1

2

[
‖yk‖2σ−1 − ‖ŷk+1‖2σ−1 −

(
‖yk‖2σ−1P−1 − ‖yk+1‖2σ−1P−1

)]
+ f∗(yk)− f∗(ŷk+1)− (f∗P−1(yk)− f∗P−1(yk+1))− 〈y, vk+1〉σ−1

− 〈Axk, yk − ŷk+1 − P−1(yk − yk+1)〉+DP−1−I
f∗ (yk; z)−DP−1−I

f∗ (yk+1; z). (8.10)

The first result follows by the definitions of Vk and V from (4.1), and definition of Ek from (4.27).
On Ek, we use Ek

[
P−1(yk − yk+1)

]
= yk − ŷk+1, Ek

[
f∗P−1(yk)− f∗P−1(yk+1)

]
= f∗(yk)− f∗(ŷk+1) and

Ek
[
‖yk+1 − yk‖2σ−1P−1

]
= ‖ŷk+1 − yk‖2σ−1

Ek
[
Ek
]

= −1

2
‖ŷk+1 − yk‖2σ−1 +

1

2
Ek
[
‖yk+1 − yk‖2σ−1P−1

]
+

1

2

(
‖yk‖2σ−1 − ‖ŷk+1‖2σ−1

)
− 1

2
Ek
[
‖yk‖2σ−1P−1 − ‖yk+1‖2σ−1P−1

]
+ f∗(yk)− f∗(ŷk+1)− Ek

[
f∗P−1(yk)− f∗P−1(yk+1)

]
− 〈Axk, yk − ŷk+1 − Ek

[
P−1

(
yk − yk+1

)]
〉 = 0.

8.3 Proof of Theorem 4.1

Proof. At step k of SPDHG in Algorithm 1, we select an index ik ∈ {1, . . . , n} randomly with probability pik
and perform the following step on the dual variable

yk+1
ik

= ŷk+1
ik

, and yk+1
i = yki ,∀i 6= ik. (8.11)

For any Y ∈ Y that is measurable with respect to Fk, (8.11) immediately gives

Ek[yk+1] = P ŷk+1 + (I − P ) yk, (8.12)

Ek
[
‖yk+1 − Y ‖2σ−1

]
= ‖ŷk+1 − Y ‖2σ−1P + ‖yk − Y ‖2σ−1(I−P ). (8.13)

A simple manipulation of (8.12) and plugging in Y = y and Y = yk in (8.13) gives

ŷk+1 = P−1Ek[yk+1]− (P−1 − I)yk (8.14)

‖ŷk+1 − y‖2σ−1 = Ek
[
‖yk+1 − y‖2σ−1P−1

]
− ‖yk − y‖2σ−1(P−1−I) (8.15)

‖ŷk+1 − yk‖2σ−1 = Ek
[
‖yk+1 − yk‖2σ−1P−1

]
. (8.16)

The first result follows by taking expectation of the result of Theorem 4.8, after using tower property and the
above estimations. On deriving the conclusion, we also use Dg(xk; z) +Df∗(ŷk+1; z) = H(xk, ŷk+1;x, y) and
(8.6).
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It is straightforward to prove (4.4) and (4.5). Since ykj = yk−1
j ,∀j 6= ik−1,

|〈Ax,P−1(yk − yk−1)〉| = |〈Aik−1
x, p−1

ik−1
(ykik−1

− yk−1
ik−1

)〉|
≤ ‖Aik−1

x‖p−1
ik−1
‖ykik−1

− yk−1
ik−1
‖

=
(
τ1/2σ

1/2
ik−1

p
−1/2
ik−1
‖Aik−1

‖
)
τ−1/2‖x‖p−1/2

ik−1
σ
−1/2
ik−1
‖ykik−1

− yk−1
ik−1
‖

≤ γ
(
τ−1/2‖x‖p−1/2

ik−1
σ
−1/2
ik−1
‖ykik−1

− yk−1
ik−1
‖
)

≤ γ

2

(
‖x‖2τ−1 + ‖ykik−1

− yk−1
ik−1
‖2
p−1
ik−1

σ−1
ik−1

)
=
γ

2

(
‖x‖2τ−1 + ‖yk − yk−1‖2σ−1P−1

)
, (8.17)

where the last step is due to ykj = yk−1
j ,∀j 6= ik−1. Plugging in (8.17) into the definitions of V (zk − zk−1)

and Vk(z) is sufficient to prove (4.4) and (4.5).
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