
STRUCTURED RANDOM SKETCHING FOR PDE INVERSE PROBLEMS

KE CHEN, QIN LI, KIT NEWTON, AND STEPHEN J. WRIGHT

Abstract. For an overdetermined system Ax ≈ b with A and b given, the least-square (LS) formulation

minx ‖Ax− b‖2 is often used to find an acceptable solution x. The cost of solving this problem depends on the

dimensions of A, which are large in many practical instances. This cost can be reduced by the use of random
sketching, in which we choose a matrix S with many fewer rows than A and b, and solve the sketched LS problem

minx ‖S(Ax − b)‖2 to obtain an approximate solution to the original LS problem. Significant theoretical and

practical progress has been made in the last decade in designing the appropriate structure and distribution
for the sketching matrix S. When A and b arise from discretizations of a PDE-based inverse problem, tensor

structure is often present in A and b. For reasons of practical efficiency, S should be designed to have a structure

consistent with that of A. Can we claim similar approximation properties for the solution of the sketched LS
problem with structured S as for fully-random S? We give estimates that relate the quality of the solution of the

sketched LS problem to the size of the structured sketching matrices, for two different structures. Our results
are among the first known for random sketching matrices whose structure is suitable for use in PDE inverse

problems.

1. Introduction

In overdetermined linear systems (in which the number of linear conditions exceeds the number of unknowns),
the least-squares (LS) solution is often used as an approximation to the true solution when the data contains
noise. Given the system Ax = b where A ∈ Rn×p with n � p, the least-squares solution x∗ is obtained by
minimizing the l2-norm discrepancy between the Ax and b, that is,

min
x
‖Ax− b‖2 , =⇒ x∗ = A†b, where A†

def
= (A>A)−1A>. (1)

The matrix A† is often called the pseudoinverse (more specifically the Moore-Penrose pseudoinverse) of A.
The LS method is ubiquitous in statistics and engineering, but large problems can be expensive to solve.

Aside from the cost of preparing A, the cost of solving for x∗ is O(np2) flops for general (dense) A is prohibitive
in large dimensions.

We can replace the LS problem with a smaller approximate LS problem by using sketching. Each row of
the sketched system is a linear combination of the rows of A, together with the same linear combination of the
elements of b. This scheme amounts to defining a sketching matrix S ∈ Rr×n with r � n, and replacing the
original LS problem by

min
x
‖SAx− Sb‖2 , =⇒ x∗s = (SA)†Sb . (2)

For appropriate choices of S, the solutions of (1) and (2) are related in the sense that

‖b− Ax∗‖ is not too much smaller than ‖b− Ax∗s‖. (3)

Usually one does not design S directly, but rather draws its entries from a certain distribution. In such a setup,
we can ask whether (3) holds with high probability.

The literature on random sketching is rich. During the past decade, many theoretical and numerical studies
have appeared [2, 9, 11, 13, 14, 16, 18, 19, 24–26, 31, 33, 35, 40], with applications in such subjects as stochastic
optimization [18], lp regression [10, 11, 24, 29, 31, 34, 39], and tensor decomposition [3, 4, 8, 21, 30]. The technical
support for these results comes mostly from the Johnson-Lindenstrauss lemma [17], random matrix theory [36,
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37], and compressed sensing [15]. Two important perspectives have been utilized. One approach starts with
the least squares problem and proposes two conditions for the random matrix such that an accurate solution
can be attained with high confidence. It is then shown that certain choices of random matrices indeed satisfy
these two conditions. Instances of this approach can be found in [14,31,33] and the reviews [20,23]. The second
perspective focuses on the structure of the space spanned by A. It is argued that this space can be approximated
by a finite number of vectors (the so-called γ-net), which can further be “embedded” using random matrices,
with high accuracy; see [10,34,39] and a review [40]. We use this second perspective in this paper.

There are many variations of the original sketching problem. With some statistical assumptions on the
perturbation in the right hand side, results could be further enhanced [29], and the sketching problem is also
investigated when other constraints (such as l1 constraints) are present; see for example [27]. In [9, 14, 28] the
authors also directly quantify ‖x∗s − x∗‖ instead of the residual, as in (3).

In most previous studies, the design of S varies according to the priorities of the application. For good
accuracy with small r, random projections with sub-Gaussian variables are typically used. When the priority is
to reduce the cost of computing the product SA, either sparse or Hadamard type matrices have been proposed,
leading to “random-sampling” or FFT-type reduction in cost of the matrix-matrix multiplication. To cure
“bias” in the selection process, leverage scores have been introduced; these trace their origin back to classical
methods in experimental design.

In this paper, with practical inverse problems in mind, we consider the case in which A and b have certain
tensor-type structures. For the sketched system to be formed and solved efficiently, the random sketching matrix
S must have a corresponding tensor structure. For these tensor-structured sketching matrices S, we ask: What
are the requirements on r to achieve a certain accuracy in the solution x∗s of the sketched system?

We consider A with the following structure:

A = F ∗ G , (4)

where ∗ denotes the (column-wise) Khatri-Rao product of the matrices F and G. Assuming i1 ∈ I1 and i2 ∈ I2,
with cardinalities n1 = |I1| and n2 = |I2|, respectively, the dimensions of these matrices are

F ∈ Rn1×p , G ∈ Rn2×p , A ∈ Rn×p , (5)

where n = |I1 ⊗ I2| = n1n2.
By defining fj = F:,j ∈ Rn1 and gj = G:,j ∈ Rn2 , we can define A alternatively as

aj
def
= A:,j = fj ⊗ gj , (6)

where aj ∈ Rn denotes the jth column of A, for j = 1, 2, . . . , p. For vector b, we assume that it admits the same
tensor structure, that is,

b = fb ⊗ gb , for some fixed fb ∈ Rn1 and gb ∈ Rn2 . (7)

This type of structure comes from the fact that to formulate inverse problems, one typically needs to prepare
both the forward and adjoint solutions. Denoting by σ(x) the unknown function to be reconstructed in the
inverse PDE problem, a very typical formulation is written as a Fredholm integral of the first type:∫

fi1(x)gi2(x)σ(x)dx = datai1,i2 , (8)

where fi1 and gi2 solve the forward and adjoint equations respectively, equipped with boundary/initial conditions
indexed by i1 and i2. Each term on the right-hand side of (8) is typically data measured at i2 with input source
index i1. To reconstruct σ, one loops over the entire list of conditions for fi1 (i1 ∈ I1) and gi2 (i2 ∈ I2). The
LS formulation min ‖Ax− b‖2 is the discrete version of the Fredholm integral (8).

This structure imposes requirements on the sketching matrix S. Since I1 and I2 contain conditions for
different sets of equations, sketching needs to be performed within I1 and I2 separately. This condition is
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reflected by choosing the sketching matrix S to be the row-wise Khatri-Rao product of P and Q, that is,

Si,: = p>i ⊗ q>i ,

where pi ∈ Rn1 and qi ∈ Rn2 , i = 1, . . . , p. The product SA then has the special form:

(SA)i,: = (p>i F) ◦ (q>i G) , or equivalently (SA)i,j = (p>i fj)(q
>
i gj). (9)

Thus, to formulate the i row in the reduced (sketched) system, we perform a linear combination of parameters
in I1 according to pi to feed in the forward solver, and a linear combination of parameters in I2 according to
qi to feed in the adjoint solver, then assemble the results in the Fredholm integral (8).

With the structural requirements for S in mind, we consider the following two approaches for choosing S.

Case 1: Generate two random matrices P and Q, of size r1 × n1 and r2 × n2, respectively, and define S to be
their tensor product:

S = P⊗ Q ∈ Rr1r2×n1n2 . (10)

Case 2: Generate two sets of r random vectors {pi , i = 1, 2, . . . , , r} and {qi , i = 1, 2, . . . , r}, with pi ∈ Rn1 and
qi ∈ Rn2 for each i, and define row i of S to be the tensor product of the vectors pi and qi:

S =
1√
r

p
>
1 ⊗ q>1

...
p>r ⊗ q>r

 ∈ Rr×n1n2 . (11)

Case 2 gives greater randomness, in a sense, because the rows of P and Q are not “re-used” as in the first option.
We are not interested in designing sketching matrices of Hadamard type. In practice, A is often semi-infinite:

F and G contain all possible forward and adjoint solutions, a set of infinite cardinality that cannot be prepared
in advance. In practice, one can only obtain the “realizations” p>F or q>G obtained by solving the forward and
adjoint equations with the parameters contained in p and q. Because we use this technique to find SA, rather
than computing the matrix-matrix product explicitly, there is no advantage to defining S in terms of Hadamard
type random matrices.

There have been discussions in the sketching literature on problems that share our setups, including sketching
of matrices A with Khatri-Rao product structure. The paper [4] presents a tensor interpolative decomposition
problem which discusses Khatri-Rao product form, but there is not a focus on sketching. The paper [35]
proposes a so-called tensor random projection (TRP), similar to our Case 2 presented below. However, they
mainly obtain sketching of one arbitrarily given vector in the space, while we need to sketch the entire space.
Directly employing their argument in our setting would lead to r = O(p8/ε2), whereas our argument suggests
that having r = O(p6/ε) is sufficient. This point will be discussed further in Theorem 4.

In [16, 22] the authors considered the fast Johnson-Lindenstrauss Transform (JLT) random matrices and
showed that the Kronecker product of fast JLT is also a JLT. This structure allows embedding of an arbitrarily
given vector. For embedding vectors that have tensor structure, [12,13] developed TensorSketch or CountSketch,
and discussed the efficiency of these algorithms in terms of the number of nonzero entries in A. All these results
are highly related to ours, but they all have dependences on the ambient space dimension n, making them
poorly suited to our setting, where we consider the possibility of n→∞.

The rest of the paper is organized as follows. In Section 2, we give two examples from PDE-based inverse
problem that give rise to a linear system with tensor structure. Section 3 presents classical results on sketching
for general linear regression, and states our main results on sketching of inverse problem associated with a tensor
structure. Sections 4 and 5 study the two different sketching strategies outline above. Computational testing
described in Section 6 validates our results.

We denote the range space (column space) of a matrix X by Range(X).
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2. Overdetermined systems with tensor structure arising from PDE inverse problems

Most PDE-based inverse problems, upon linearization, reduce to a tensor structured Fredholm integral (8),
which can be discretized to formulate a sketching problem.

One particularly famous example is Electrical Impedance Tomography (EIT), in which we apply voltage
strength and measure current density at the boundary of some bio-tissues to infer for conductivity inside the
body. The underlying PDE is a standard second order elliptic equation

∇x · (σ(x)∇xρ(x)) = 0 , x ∈ Ω ,

ρ(x) = φ(x) , x ∈ ∂Ω ,
(12)

where φ(x) is the voltage strength applied on the surface of some bio-tissue, while ρ(x), the solution to the
PDE, is the voltage generated throughout the body. The unknown conductivity σ(x) will be inferred. The
measurements are taken on the boundary too. In particular, one measures the current density on the surface
of Ω tested on a testing function ψ, as follows:

dataφ,ψ =

∫
∂Ω

σ(x)
∂ρ(x)

∂n
ψ(x)dx . (13)

Here, ∂
∂n is the normal derivative, with n being the normal direction pointing out of domain Ω. The data

has two subscripts: φ(x) is the voltage applied to the surface and ψ(x) is a testing function that encodes the
way measurements are taken. When the detector is extremely precise, one can set ψ(x) = δ(x − x0) for some
x0 ∈ ∂Ω, making dataφ,ψ the current at point x0 when voltage φ is applied. With infinite pairs of φ and ψ in
the experimental setup, EIT seeks to reconstruct σ(x). EIT further reduces to the famous Calderón problem
when the span of φ and ψ covers the entire H1/2. In practice, however, one typically has a rough estimate of the
media σ(x), termed the background media σ∗(x). (For example, most human lungs have the same structure.)

In such situations, one can linearize and reconstruct the perturbation σ(x)
def
= σ(x) − σ∗(x) � 1. Specifically,

suppose that ρ1 solves the following background forward equation:

∇x · (σ∗(x)∇xρ1(x)) = 0 , x ∈ Ω

ρ1(x) = φ(x) , x ∈ ∂Ω
(14)

with the same boundary condition φ and the given known background media σ∗. Since both these quantities
are known, ρ1(x) can be solved ahead of time for any φ. We can also define the adjoint equation:{

∇x · (σ∗(x)∇xρ2(x)) = 0 , x ∈ Ω

ρ2(x) = ψ(x) , x ∈ ∂Ω .
(15)

To obtain the Fredholm integral, we take the difference of (14) and (12) and drop higher order terms in σ(x)
to obtain

∇x · (σ∗(x)∇xρ(x)) = −∇x · (σ(x)∇xρ1(x)) , x ∈ Ω

ρ(x) = 0 , x ∈ ∂Ω
(16)

where ρ(x)
def
= ρ(x) − ρ1(x). With this equation multiplied with ρ2 and the adjoint (15) multiplied with ρ, we

integrate over Ω and integrating by parts. The left hand sides cancel and the right hand side of (16) will be
balancing the boundary terms:∫

∇xρ1(x) · ∇xρ2(x)σ(x)dx =

∫
∂Ω

σ∗
∂ρ

∂n
ψdx+

∫
∂Ω

σ
∂ρ1

∂n
ψdx . (17)

While the left hand side of this equation is Fredholm integral testing on σ (the conductivity to be reconstructed)
with test function ∇xρ1(x) ·∇xρ2(x), the right hand side is the data that we obtain from measurement dataφ,ψ.



STRUCTURED RANDOM SKETCHING FOR PDE INVERSE PROBLEMS 5

Indeed, since ρ = ρ+ ρ1 and σ = σ + σ∗, with ρ � 1 and σ � 1, the right hand side can be approximated by
dropping the higher order term

∫
∂Ω
σ ∂ρ∂nψdx, as follows:∫

∂Ω

σ∗
∂ρ

∂n
ψdx+

∫
∂Ω

σ
∂ρ1

∂n
ψdx

=

∫
∂Ω

σ(x)
∂ρ

∂n
ψdx−

∫
∂Ω

σ∗(x)
∂ρ1

∂n
ψdx−

∫
∂Ω

σ
∂ρ

∂n
dx

≈
∫
∂Ω

σ(x)
∂ρ

∂n
ψdx−

∫
∂Ω

σ∗(x)
∂ρ1

∂n
ψdx ,

This expression differs from dataφ,ψ defined in (13) by
∫
∂Ω
σ∗ ∂ρ1∂n ψdx, a pre-computed term, and thus the entire

term is known. We finally have ∫
∇xρ1(x) · ∇xρ2(x)σ(x)dx = dataφ,ψ . (18)

We emphasize that the φ dependence comes in through ρ1 while the ψ dependence comes in through ρ2. These
functions represent applied voltage source and measuring setup, respectively. If one can provide point source
and point measurement, φ and ψ can be as sharp as Dirac-delta functions.

By varying φ and ψ, one finds infinitely many pairs {ρ1(·;φ) , ρ2(·;ψ)}, each pair providing one data point
corresponding to one experiment setup. These experimental setup altogether give rise to an overdetermined
Fredholm integral. More details can be found in [5, 7].

A similar problem arises in optical tomography [1]. Here we inject light into bio-tissue and take measurements
of light intensity on the surface, to reconstruct the optical properties of the bio-tissue. The formulation is∫

ρ1(x, v)ρ2(x, v)σ(x, v)dxdv = dataφ,ψ , (19)

where (x, v) ∈ Ω⊗ S (where Ω is the spatial domain and S is the velocity domain), and ρi are solutions to the
forward background radiative transfer equation and the adjoint equation:{

v · ∇xρ1(x, v) = σ∗(x, v)Lρ1(x, v) , (x, v) ∈ Ω⊗ S
ρ1(x, v) = 0 , (x, v) ∈ Γ−

,

and {
−v · ∇xρ2(x, v) = σ∗(x, v)Lρ2(x, v) , (x, v) ∈ Ω⊗ S
ρ2(x, v) = ψ(x, v) , (x, v) ∈ Γ+

.

In these equations, L is a known integral linear operator on v, and Γ− and Γ+ are the set collecting incoming
and outgoing boundary coordinates, namely Γ± = {(x, v) : x ∈ ∂Ω ,±v · n(x) > 0} with n(x) being an outer-
normal direction at x ∈ ∂Ω. By varying the boundary conditions φ and ψ, one can find infinitely many solution
pairs of {ρ1(·, φ), ρ2(·, ψ)}, and collect the corresponding data in (19). The inverse Fredholm integral (19) can
then be solved for σ. We refer to [1, 6] for details of the linearization procedure.

When σ is discretized on p grid points, the reconstruction problem has the semi-infinite form Ax ≈ b, where
x ∈ Rp is the discrete version of σ and A and b have infinitely many rows, corresponding to the infinitely many
instances of ρ1 and ρ2. A fully discrete version can be obtained by considering n1 values of ρ1 and n2 values
of ρ2, and setting n = n1n2 to obtain a problem of the form (1). In the remainder of the paper, we study the
sketched form of this system (2), for various choices of the sketching matrix S.
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3. Sketching with tensor structures

We preface our results with a definition of (ε, δ)-l2 embedding.

Definition 1 ((ε, δ)-l2 embedding). Given matrix Ā and ε > 0, let S be a random matrix drawn from a matrix
distribution (Ω,F ,Π). If with probability at least 1− δ, we have∣∣‖Sy‖2 − ‖y‖2∣∣ ≤ ε‖y‖2, for all y ∈ Range(Ā) , (20)

then we say that S is an (ε, δ)-l2 embedding of Ā.

Note that (20) depends only on the space Range(Ā) rather than the matrix itself, so we sometimes say instead
that the random matrix S is an (ε, δ)-l2 embedding of the linear vector space Range(Ā). (We use the two terms
interchangeably in discussions below.)

The (ε, δ)-l2 embedding property is essentially the only property needed to bound the error resulting from

sketching. It can be shown that if S is an (ε, δ)-l2 embedding for the augmented matrix Ā
def
= [A, b], then the two

least-squares problems (1) and (2) are similar in the sense of (3), as the following result suggests.

Theorem 1. For ε, δ ∈ (0, 1/2), suppose that S is an (ε, δ)-l2 embedding of the augmented matrix Ā
def
= [A, b] ∈

Rn×(p+1). Then with probability at least 1− δ, we have

‖Ax∗s − b‖2 ≤ (1 + 4ε)‖Ax∗ − b‖2 ,
where x∗ and x∗s are defined in (1) and (2), respectively.

The proof of the theorem is rather standard. We simply use the definition of the (ε, δ)-l2 embedding and the
fact that:

(1− ε)‖Ax∗s − b‖2 ≤ ‖S(Ax∗s − b)‖2 ≤ ‖S(Ax∗ − b)‖2 ≤ (1 + ε)‖Ax∗ − b‖2 .
For 0 ≤ ε ≤ 1/2, this leads to

‖Ax∗s − b‖2 ≤ 1 + ε

1− ε
‖Ax∗ − b‖2 ≤ (1 + 4ε)‖Ax∗ − b‖2 .

Given this result, we focus henceforth on whether the various sampling strategies form an (ε, δ)-l2 embedding
of the augmented matrix Ā = [A, b].

Another theorem that is crucial to our analysis, proved in [40], states that Gaussian matrices are (ε, δ)-l2

embeddings if the number of rows is sufficiently large. This result does not consider tensor structure of A.

Theorem 2 (Theorem 2.3 from [40]). Let R ∈ Rr×n be a Gaussian matrix, meaning that each entry Rij is
drawn i.i.d. from a normal distribution N (0, 1), and define S ∈ Rr×n to be the scaled Gaussian matrix defined
by

S =
1√
r
R .

For any fixed matrix A ∈ Rn×p and ε, δ ∈ (0, 1/2), this choice of S is an (ε, δ)-l2 embedding of A provided that

r ≥ C

ε2
(| log δ|+ p) ,

where C > 0 is a constant independent of ε, δ, n, and p.

The lower bound of r is almost optimal for the sketched regression problem: the bound is independent of the
number of equations n, and grows only linearly in the number of unknowns p. That is, the numbers of equations
and unknowns in the sketched problem (2) are of the same order. The theorem is proved by constructing a
γ-net for the unit sphere in Range(A) and applying the Johnson-Lindenstrauss lemma.

Building on the concept of (ε, δ)-l2 embedding and the relationship between (ε, δ)-l2 embedding and sketching
(Theorem 1), we will study the lower bound for r (the number of rows needed in the sketching) when the tensor
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structure of Case 1 or Case 2 is imposed. Our basic strategy is to decompose the tensor structure into smaller
components to which Theorem 2 can be applied.

We state the results below and present proofs in Sections 4 and 5 for the two different cases.
Recall the notation that we defined in Section 1. The matrices F, G are defined in (5) and A is defined

in (6). Both F and G are assumed to have full column rank p. We need to design the sketching matrix S to

(ε, δ)-l2 embed Range(Ā), the space spanned by {fb ⊗ gb} ∪ {aj
def
= fj ⊗ gj , j = 1, . . . , p}. In Theorem 3 and 4,

we construct the (ε, δ)-l2 embedding matrix of the Kronecker product F ⊗ G, which automatically becomes a
(ε, δ)-l2 embedding of its column submatrix A. Moreover, we show in Corollaries 1 and 2 that these results can
be extended to construct (ε, δ)-l2 embeddings of the augmented matrix Ā by constructing (ε, δ)-l2 embeddings
of the Kronecker product of the augmented matrices F̄⊗ Ḡ, where

F̄ = [F, fb] , Ḡ = [G, gb] . (21)

For Case 1, we have the following result.

Theorem 3. Consider S = P⊗Q ∈ Rr1r2×n1n2 where P ∈ Rr1×n1 ,Q ∈ Rr2×n2 are independent scaled Gaussian
matrices defined by

P
def
=

1
√
r1

R and Q
def
=

1
√
r2

R′ , where Rij ,R
′
ij are i.i.d. normal for all i, j .

For any given full rank matrices F ∈ Rn1×p, G ∈ Rn2×p, and A ∈ Rn×p as in (5) and (6), and ε, δ ∈ (0, 1/2),
the random matrix S is an (ε, δ)-l2 embedding of F⊗ G and A provided that

ri ≥
C

ε2
(| log δ|+ p) , i = 1, 2 , (22)

where the constant C > 0 is independent of ε, δ, n1, n2, and p.

Corollary 1. Consider the matrices S, F, G, and A from Theorem 3, and assume that the vector b has the
form (7). Then for given ε, δ ∈ (0, 1/2), the random matrix S is an (ε, δ)-l2 embedding of the augmented matrix

Ā
def
= [A, b], provided that

ri ≥
C

ε2
(| log δ|+ p+ 1) , i = 1, 2 , (23)

where the constant C > 0 is independent of ε, δ, n1, n2, and p.

Proof. Define the augmented matrices F̄ and Ḡ as in (21). We have that

Range(F̄⊗ Ḡ) = Span{F⊗ G, f1 ⊗ gb, . . . , fp ⊗ gb, fb ⊗ g1 . . . , fb ⊗ gp, b} .

Supposing that F̄ and Ḡ have full rank, the linear subspace Range(Ā) is a subspace of Range(F̄⊗Ḡ). By applying
Theorem 3 to the augmented matrices F̄ and Ḡ and using (23), we have that S is an (ε, δ)-l2 embedding of
Range(F̄ ⊗ Ḡ) as well as its subspace Range(Ā). Supposing that F̄ is not of full rank but Ḡ is of full rank, the
subspace Range(F̄⊗ Ḡ) is a subspace of Range(F⊗ Ḡ), so similar results can be obtained by applying Theorem 3
to F and Ḡ. Other cases regarding the rank of F̄ and Ḡ can be dealt with in the same way. �

The result for Case 2 is as follows.

Theorem 4. Let pi ∈ Rn1 , qi ∈ Rn2 , i = 1, 2, . . . , r be independent random Gaussian vectors, and define the
sketching matrix S to have the form:

S =
1√
r

p
>
1 ⊗ q>1

...
p>r ⊗ q>r

 ∈ Rr×n1n2 . (24)
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Suppose that p ≥ 6, and that F ∈ Rn1×p,G ∈ Rn2×p, and A ∈ Rn×p are full-rank matrices defined as in (5) and
(6). Let ε, δ ∈ (0, 1/2). Then the random matrix S is an (ε, δ)-l2 embedding of F⊗ G and A provided that

r ≥ C max

{
1

ε

(
|log δ|+ p2

)3
,

1

ε5/2

}
, (25)

where C > 0 is a constant independent of ε, δ, n1, n2, and p.

Corollary 2. Consider the same matrices S, F, G, and A as in Theorem 4, with p ≥ 6, and assume that
vector b is of the form (7). Then for given ε, δ ∈ (0, 1/2), the random matrix S is an (ε, δ)-l2 embedding of the

augmented matrix Ā
def
= [A, b] provided that

r ≥ C max

{
1

ε

(
|log δ|+ (p+ 1)2

)3
,

1

ε5/2

}
, (26)

where the constant C > 0 is independent of ε, δ, n1, n2, and p.

We omit the proof since it is similar to that of Corollary 1.
Theorems 1 and 2 yield the fundamental results that, with high probability, for any fixed overdetermined

linear problem, the sketched problem in which S is a Gaussian matrix can achieve optimal residual up to a small
multiplicative error. In particular, as will be clear in the proof later, the Case-1 tensor-structured sketching
matrix S = P⊗ Q not only (ε, δ)-l2 embeds A = F⊗ G, but the number of rows in P and Q each depends only
linearly on p (see (22)), so that the number of rows in S scales like p2. If the Case-2 sketching matrix is used,
the dependence of r on p and ε is more complex. Whether this bound is greater than or less than the bound
for Case 1 depends on the relative sizes of ε−1 and p.

We stress that both bounds show that the number of rows in S is independent of the dimension n
def
= n1n2

of the ambient space. This allows n to be potentially infinity. We also stress that the dependence on ε and p
may not be optimal, and the bound may not be tight. As will be seen in the later sections, we have limited
understanding of quartic powers of Gaussian random variables, and this confines us obtaining a tighter bound.

4. Case 1: Proof of Theorem 3

In this section we present the proof of Theorem 3. We start with technical results.

Lemma 1. Consider natural numbers r2, n1, and n2, and assume that a random matrix Q ∈ Rr2×n2 is an
(ε, δ)-l2 embedding of Rn2 , meaning that with probability at least 1 − δ, Q preserves l2 norm with ε accuracy,
that is, ∣∣‖Qx‖2 − ‖x‖2∣∣ ≤ ε‖x‖2 , for all x ∈ Rn2 .

Then the Kronecker product Idn1
⊗Q is an (ε, δ)-l2 embedding of Rn1n2 . Similarly, if Q ∈ Rr1×n1 is an (ε, δ)-l2

embedding of Rn1 , then Q⊗ Idn2
is an (ε, δ)-l2 embedding of Rn1n2 .

Proof. The proof for the two statements are rather similar, so we prove only the first claim.
Any x ∈ Rn1n2 can be written in the following form

x =

 x1

...
xn1

 , where xi ∈ Rn2 , i = 1, 2, . . . , n1.

Then

(Idn1
⊗ Q)x =

Q . . .

Q


 x1

...
xn1

 =

 Qx1

...
Qxn1

 .
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Thus, we have

‖(Idn1
⊗ Q)x‖2 =

n∑
i=1

‖Qxi‖2 , ‖x‖2 =

n∑
i=1

‖xi‖2 . (27)

Since Q is an (ε, δ)-l2 embedding of Rn2 , then with probability at least 1− δ, for all xi ∈ Rn2 , we have∣∣‖Qxi‖2 − ‖xi‖2∣∣ ≤ ε‖xi‖2 , for all i = 1, 2, . . . , n1. (28)

By using this bound in (27), with probability at least 1− δ, we have for all x ∈ Rn1n2 that∣∣‖(Idn1 ⊗ Q)x‖2 − ‖x‖2
∣∣ ≤ n∑

i=1

∣∣‖Qxi‖2 − ‖xi‖2∣∣ ≤ ε n∑
i=1

‖xi‖2 = ε‖x‖2 ,

so that (Idn1
⊗ Q) is an (ε, δ)-l2 embedding of Rn1n2 , as claimed. �

The following corollary extends the previous result and discusses the embedding property of P⊗ Q.

Corollary 3. Assume two random matrices P ∈ Rr1×n1 and Q ∈ Rr2×n2 are (ε, δ)-l2 embeddings of Rn1 and
Rn2 , respectively. Then the Kronecker product P⊗ Q ∈ Rr1r2×n1n2 is an (ε(2 + ε), 2δ)-l2 embedding of Rn1n2 .

Proof. Noting that (see (68) in Appendix A),

P⊗ Q = (P⊗ Idr2)(Idn1
⊗ Q) ,

we have

‖(P⊗ Q)x‖2 = ‖(P⊗ Idr2)(Idn1
⊗ Q)x‖2 = ‖(P⊗ Idr2)y‖2 ,

where y
def
= (Idn1 ⊗ Q)x.

Denote by (Ω1,F1,Π1) and (Ω2,F2,Π2) the probability triplets for P and Q, respectively. Since P is an
(ε, δ)-l2 embedding of Rn1 , we have with probability at least 1− δ in Π1 that∣∣‖(P⊗ Idr2)y‖2 − ‖y‖2

∣∣ ≤ ε‖y‖2 .
Similarly, with probability at least 1− δ for the choice of Q in Π2, we have∣∣‖(Idn1

⊗ Q)x‖2 − ‖x‖2
∣∣ ≤ ε‖x‖2 , for all x ∈ Rn1n2 .

Combining the two inequalities, we have with probability at least 1 − 2δ in the joint probability space of Π1

and Π2 that the following is true for all x ∈ Rn1n2 :∣∣‖(P⊗ Q)x‖2 − ‖x‖2
∣∣ ≤ ∣∣‖(P⊗ Idr2)y‖2 − ‖y‖2

∣∣+
∣∣‖(Idn1

⊗ Q)x‖2 − ‖x‖2
∣∣

≤ ε‖y‖2 + ε‖x‖2

= ε‖(Idn1
⊗ Q)x‖2 + ε‖x‖2

≤ ε(2 + ε)‖x‖2 .

This concludes the proof. �

Now we are ready to show the proof of Theorem 3, obtained by applying Theorem 2 to Corollary 3.

Proof of Theorem 3. For any vector y in the span of F⊗ G, we can write

y = (UF ⊗ UG)x , for some x ∈ Rp
2

,

where UF ∈ Rn1×p and UG ∈ Rn2×p collect the left singular vectors of matrices F and G, respectively. By
applying (68) from Appendix A, we have

(UF ⊗ UG) = (UF ⊗ Idn2
)(Idp ⊗ UG).
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It is easy to see that the matrix Idp⊗UG has orthonormal columns, so it is an isometry. The matrices UF⊗ Idn2

and UF ⊗ UG are isometries for the same reason. As a consequence, we have ‖y‖2 = ‖x‖2. From (68) in

Appendix A, we have by defining P̃
def
= PUF ∈ Rr1×p and Q̃

def
= QUG ∈ Rr2×p that

Sy = (P⊗ Q)(UF ⊗ UG)x = (PUF)⊗ (QUG)x = (P̃⊗ Q̃)x . (29)

Due to the orthogonality of UF and UG, the random matrices P̃ and Q̃ are also independent Gaussian matrices
with i.i.d. entries. According to Theorem 2, for any pair ε̃, δ̃ ∈ (0, 1/2), by choosing ri to satisfy

ri ≥
C

ε̃2
(| log δ̃|+ p) , i = 1, 2 , (30)

we have that P̃ and Q̃ are both (ε̃, δ̃)-l2 embeddings of Rp. Thus, from Corollary 3, the tensor product (P̃⊗ Q̃)

is an
(
ε̃(2 + ε̃), 2δ̃

)
-l2 embedding of Rp2 , meaning that with probability at least 1− 2δ̃, we have∣∣∣‖(P̃⊗ Q̃)x‖2 − ‖x‖2

∣∣∣ ≤ ε̃(2 + ε̃)‖x‖2 , for all x ∈ Rp
2

.

Recalling ‖x‖2 = ‖y‖2 and (29), we have that∣∣‖Sy‖2 − ‖y‖2∣∣ ≤ ε̃(2 + ε̃)‖y‖2 , for all y ∈ Span{F⊗ G} .

By defining ε = ε̃(2 + ε̃) and δ = 2δ̃, we have

ε̃ =
ε√

1 + ε+ 1
, and δ̃ =

δ

2
.

Note that if ε and δ are in (0, 1/2), then ε̃ and δ̃ are also in this interval, so (30) applies. By substituting
into (30) we obtain

ri ≥
C

ε2
(| log δ|+ p) , i = 1, 2 .

The constant C here is different from the value in (30) but can still be chosen independently of ε, δ, n1, n2, and
p. We conclude that S = P⊗Q is an (ε, δ)-l2 embedding of F⊗G and thus also an (ε, δ)-l2 embedding of A. �

5. Case 2: Proof of Theorem 4

In this section we investigate Case-2 sketching matrices, which have the form (24).
We prove Theorem 4 in two major steps. First, in Section 5.1, we investigate the accuracy and probability

of embedding any given vector y ∈ Span{F⊗ G}. Second, in Section 5.2, we extend this study to deal with the
whole space Span{F⊗ G}. To do so, we first build a γ-net over the unit sphere in Span{F⊗ G} so that we can
“approximate” the space using a finite set of vectors. By adjusting ε and δ, one not only preserves the norm,
but also the angles between the vectors on the net. We then map the net back to the space to show that S
preserves the norm of the vectors in the whole space. This standard technique is used in [40] to prove their
Theorem 2.

5.1. Embedding a given vector. We establish the following result, whose proof appears at the end of the
subsection.

Proposition 1. Given two full rank matrices F and G as in (5) and ε ∈ (0, 1/2), let S ∈ Rr×n1n2 have the
form of (24), with pi and qi, i = 1, 2, . . . , r being i.i.d. Gaussian vectors. Then for any fixed y ∈ Span{F⊗ G},
we have that

Pr
(∣∣‖Sy‖2 − ‖y‖2∣∣ > ε‖y‖2

)
≤ 5r exp

(
3

4
p1/2

)
exp

(
−1

2
r1/3ε1/3

)
,

provided that

r ≥ 8 · 33/2 ·max{ε−5/2, p3/2ε−1} .
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Essentially, this proposition says that S is an (ε, 5r exp
(
(3/4)p1/2

)
exp

(
−(1/2)r1/3ε1/3

)
)-l2 embedding of any

fixed y ∈ Span{F⊗ G}. The contribution from the factor exp
(
−(1/2)r1/3ε1/3

)
is small when r is large.

We start with several technical lemmas. Lemma 2 identifies
∣∣‖Sy‖2 − ‖y‖2∣∣ /‖y‖ with a particular type of

random variable; we discuss the tail bound for this random variable in Lemma 4. Lemma 3 contains some
crucial estimates to be used in Lemma 4.

Lemma 2. Given two full rank matrices F and G as in (5), consider S defined as in (24). Then there exists
a diagonal positive semi-definite matrix Σ with Tr(Σ2) = 1 so that for any y ∈ Span{F ⊗ G} with ‖y‖ = 1, we
have

‖Sy‖2 d∼ 1

r

r∑
i=1

ζ2
i , where ζi

def
= ξ>i Σηi ,

where
d∼ denotes equal in distribution and ξi, ηi ∈ Rp are independent Gaussian vectors drawn from N (0, Idp).

Proof. From (24) we have

Sy =
1√
r

(p>1 ⊗ q>1 )y
...

(p>r ⊗ q>r )y

 =⇒ ‖Sy‖2 =
1

r

r∑
i=1

ζ2
i ,

where ζi
def
= (p>i ⊗q>i )y. Since pi and qi are independent Gaussian vectors, all random variables ζi, i = 1, 2, . . . , r,

are drawn i.i.d. from the same distribution.
We consider now the behavior of ζ

def
= (p> ⊗ q>)y for Gaussian vectors p and q. Notice that for any y ∈

Rn1n2 ∈ Span{F⊗ G}, there exists x ∈ Rp2 such that

y = (UF ⊗ UG)x , with ‖x‖ = 1 ,

where UF and UG collect the left singular vectors of F and G, respectively. We thus obtain from (68) that

ζ = (p> ⊗ q>)y = (p> ⊗ q>)(UF ⊗ UG)x =
(
(p>UF)⊗ (q>UG)

)
x = (p̃> ⊗ q̃>)x ,

where p̃
def
= U>F p ∈ Rp and q̃

def
= U>G q ∈ Rp are i.i.d. Gaussian vectors as well. By applying (69) and (70), we

obtain
ζ = (p̃> ⊗ q̃>)x = q̃>Mat(x)p̃ , (31)

where Mat(x) ∈ Rp×p is the matricization of x, discussed in Appendix A. By using the singular value decom-
position Mat(x) = UΣV>, we obtain

Tr(Σ2) = ‖Mat(x)‖2F = ‖x‖2 = 1 ,

where ‖ · ‖F denotes the Frobenius norm of a matrix. By substituting into (31), we obtain

ζ = (U>q̃)>ΣV>p̃ = ξ>Ση ,

where
ξ

def
= U>q̃ ∈ Rp and η

def
= V>p̃ ∈ Rp

are again i.i.d. Gaussian vectors in Rp. This completes the proof. �

Lemma 3. For any fixed diagonal semi-positive definite matrix Σ
def
= diag{σ1, . . . , σp} such that Tr(Σ2) = 1,

define the random variable ζ to be ζ
def
= ξ>Ση , with ξ and η being i.i.d. random Gaussian vectors with p

components. Then ζ satisfies the following properties:

1.

Pr (|ζ| > t) ≤

2 exp
(
− (t−√p)2

4
√
p

)
if
√
p ≤ t ≤ 2

√
p

2 exp
(
− (2t−3

√
p)

4

)
if t ≥ 2

√
p

, (32)
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2.
E
[
ζ2
]

= 1 and E
[
ζ4
]
≤ 9 , (33)

3.

E
[(
|ζ|2 − E

[
ζ2
])2] ≤ 8 . (34)

Proof. For any s > 0 and t ≥ 0, we apply Markov’s inequality to derive

Pr (ζ > t) = Pr
(
esζ > est

)
≤ e−stE

[
exp

(
sξ>Ση

)]
. (35)

Noting that 2ξ>Ση ≤ ‖Σ1/2ξ‖2 + ‖Σ1/2η‖2, we use the independence of ξ and η to deduce that

E
[
exp

(
sξ>Ση

)]
≤ E

[
exp

(
(s/2)(‖Σ1/2ξ‖2 + ‖Σ1/2η‖2)

)]
= E

[
e(s/2)‖Σ1/2ξ‖2

]
E
[
e(s/2)‖Σ1/2η‖2

]
. (36)

For the first term on the right-hand side of (36), using independence of the ξi and the concave Jensen’s inequality,
we have that

E
[
e(s/2)‖Σ1/2ξ‖2

]
= E

[
exp

(
s

2

p∑
i=1

σiξ
2
i

)]
=

p∏
i=1

E
[
esξ

2
i σi/2

]
≤

p∏
i=1

(
E
[
esξ

2
i /2
])σi

,

where we used 0 ≤ σi ≤ 1, i = 1, 2, . . . , r to apply the concave Jensen’s inequality, and ξi ∼ N (0, 1). According
to Proposition 2 (see Appendix A.2), ξ2

i − 1 is a sub-exponential random variable with parameters (2, 4). Thus
from (71), with λ = 2, b = 4, and s replaced by s/2, we have

E
[
e(s/2)‖Σ1/2ξ‖2

]
≤

p∏
i=1

(
Eξ
[
esξ

2/2
])σi

=
(
Eξ
[
esξ

2/2
])Tr(Σ)

=
(
es/2Eξ

[
es(ξ

2−1)/2
])Tr(Σ)

≤ e(s2+s)Tr(Σ)/2 , for 0 < s < 1/2.

Since, by Hölder’s inequality, we have

Tr(Σ) =

p∑
i=1

σi ≤

(
p∑
i=1

σ2
i

)1/2
√
p =
√
p ,

it follows that

E
[
e(s/2)‖Σ1/2ξ‖2

]
≤ e(s2+s)

√
p/2 , for s ∈ (0, 1/2).

The same bound holds for second term on the right-hand side of (36). When we substitute these bounds into
(35) and (36), we obtain

Pr (ζ > t) ≤ exp
(√
ps2 − (t−√p)s

)
.

By minimizing the right-hand side over s ∈ [0, 1/2], we obtain

Pr (ζ > t) ≤

e−
(t−√p)2

4
√

p if
√
p ≤ t ≤ 2

√
p

e−
(2t−3

√
p)

4 if t ≥ 2
√
p

.

Due to symmetry, we have the same bound for Pr (ζ < −t), so (32) follows.
To show the second statement, we notice that

E
[(
ζ2 − E

[
ζ2
])2]

= E
[
ζ4
]
−
(
E
[
ζ2
])2

. (37)

By considering ζ =
∑p
i=1 σiξiηi, the second moment can be calculated directly:

E
[
ζ2
]

= E

 p∑
i,j=1

σiσjξiξjηiηj

 = E

[
p∑
i=1

σ2
i ξ

2
i η

2
i

]
=

p∑
i=1

σ2
i = 1 , (38)
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where we used the independence of ξi and ηi, the fact that Eξi = Eηi = 0 and Eξ2
i = Eη2

i = 1.
To control the fourth moment, we notice that

E
[
ζ4
]

= E

∑
i,j,k,l

σiσjσkσlξiξjξkξlηiηjηkηl

 .
Due to the independence and the fact that all odd moments vanish for Gaussian random variables, the only
terms in the summation that survive either have all indices equal (i = j = l = k) or two indices equal to one
value while the other two indices equal a different value, for example i = j and k = l but i 6= k. Altogether, we
obtain

E
[
ζ4
]

= 3E

∑
i 6=k

σ2
i σ

2
kξ

2
i ξ

2
kη

2
i η

2
k

+ E

[∑
i

σ4
i ξ

4
i η

4
i

]
,

where the coefficient in front of the first term comes from
(

4
2

)
/
(

2
1

)
= 3. Considering Eξ2 = 1 and Eξ4 = 3, we

have

E
[
ζ4
]

= 3
∑
i 6=k

σ2
i σ

2
k + 9

∑
i

σ4
i = 3

p∑
i,k=1

σ2
i σ

2
k + 6

∑
i

σ4
i

≤ 3

p∑
i,k=1

σ2
i σ

2
k + 6

∑
i

σ2
i = 3

(
p∑
i=1

σ2
i

)(
p∑
k=1

σ2
k

)
+ 6

p∑
i=1

σ2
i = 9 ,

(39)

where we used σ4
i ≤ σ2

i . By substituting (38) and (39) into (37), we have

E
[(
|ζ|2 − E

[
ζ2
])2]

= E
[
ζ4
]
−
(
E
[
ζ2
])2 ≤ 9− 12 = 8 ,

which concludes the proof. �

Remark 1. We note that this lemma is not new; its proof can be made more compact if one uses Hanson-
Wright inequality and [37, Lemma 6.2.2]. The latter result shows that there exist absolute positive constants c
and C such that

E
[
exp(sξ>Ση)

]
≤ exp

(
Cs2

)
for |s| ≤ c

σ1
. By substituting into (35), we have

Pr(ζ > t) ≤ exp(Cs2 − st), for all |s| ≤ c
σ1

,

assuming that the singular value σi on the diagonal of Σ are ordered in a descending manner. Minimizing the
right-hand side in terms of s, we have

Pr(ζ > t) ≤

exp
(
− t2

4C

)
, if 0 ≤ t ≤ 2cC

σ1

exp
(
− ct
σ1

+ c2C
σ2
1

)
if t ≥ 2cC

σ1

, (40)

which, because of symmetry, leads to

Pr(|ζ| > t) ≤

2 exp
(
− t2

4C

)
, if 0 ≤ t ≤ 2cC

σ1

2 exp
(
− ct
σ1

+ c2C
σ2
1

)
if t ≥ 2cC

σ1

. (41)

This result is rather similar to ours except that the Hanson-Wright inequality comes with two generic constants
c and C. These constants are extremely involved, as shown in the original proof [32]. We need to make all
constants precise, and thus maintain our full proof with elementary calculations.
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Lemma 4. Let ζi, i = 1, 2, . . . , r be i.i.d. copies of the random variable ζ defined in Lemma 3. Then if

r ≥ 8 · 33/2 ·max{t−5/2 , p3/2t−1} , (42)

we have

Pr

(∣∣∣∣∣1r
r∑
i=1

(
ζ2
i − E

[
ζ2
i

])∣∣∣∣∣ > t

)
≤ 5r exp

(
3

4
p1/2

)
exp

(
−1

2
r1/3t1/3

)
, for t ∈ [0, 1]. (43)

Remark 2. This lemma essentially deals with the tail bound of a random variable that is of quartic form of a
Gaussian. According to the definition, ζ is a quadratic form of Gaussians, and thus is a sub-exponential, but
this lemma considers ζ2. Quadratic form of sub-exponential vectors are studied in [38]. If we directly employ
their results (especially their Corollary 1.6) by setting their A = 1

r Idr ∈ Rr×r, we obtain, for sufficiently large r
(made precise in the corollary) that

Pr

(∣∣∣∣∣1r
r∑
i=1

(
ζ2
i − E

[
ζ2
i

])∣∣∣∣∣ > t

)
≤ C exp

(
−C ′min

{(
r1/2t√
log r

)2/3

, (rt)
1/3

})
where C and C ′ depend on p. We obtain the same power for r and t as this result, and we make the dependence
of the constants on p explicit.

Proof. Let Et be the event defined as follows:

Et
def
=

{
1

r

r∑
i=1

(ζ2
i − E

[
ζ2
i

]
) > t

}
.

Due to the symmetry of
∑r
i=1 ζ

2
i − E

[
ζ2
i

]
, the probability in (43) is 2 Pr(Et). We now estimate Pr(Et). For

any fixed large number M , we define the following event, for i = 1, 2, . . . , r:

EMi
def
= {ζ2

i ≤M} = {ζ2
i − 1 ≤M − 1} .

Clearly, we have

Pr
(
Et
)

= Pr
(
Et ∩

(
∩ri=1E

M
i

))
+ Pr

(
Et ∩

(
∩ri=1E

M
i

)c)
. (44)

We now estimate the two terms.

1. For the first term in (44), we note that

Pr
(
Et ∩

(
∩ri=1E

M
i

))
= Pr

(
Et |

(
∩ri=1E

M
i

))
· Pr

((
∩ri=1E

M
i

))
≤ Pr

(
Et |

(
∩ri=1E

M
i

))
. (45)

Denoting Xi
def
= ζ2

i − E
[
ζ2
i

]
, and realizing that E

[
ζ2
i

]
= 1 according to (33) of Lemma 3, then EMi =

{Xi ≤M − 1}. Estimating (45) now amounts to controlling the probability of
∑r
i=1Xi > rt assuming

that Xi ≤M − 1 for all i = 1, 2, . . . , r. By applying Bernstein’s inequality (72), we have

Pr
(
Et |

(
∩ri=1E

M
i

))
= Pr

(
r∑
i=1

Xi > rt | Xi ≤M − 1, i = 1, 2, . . . , r

)

≤ exp

(
− r2t2/2∑r

i=1 E [X2
i ] + (M − 1)rt/3

)
.

From (34) in Lemma 3, we have E
[
X2
i

]
≤ 8, so that

Pr
(
Et |

(
∩ri=1E

M
i

))
≤ exp

(
− 3rt2

48 + 2(M − 1)t

)
, (46)

which gives the upper bound of the first term in (44).
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2. For the second term in (44), we note that

Pr
(
Et ∩

(
∩ri=1E

M
i

)c) ≤ Pr
((
∩ri=1E

M
i

)c)
= Pr

(
∪ri=1(EMi )c

)
≤ rPr

(
(EMi )c

)
.

By applying (32) from Lemma 3, with t =
√
M , we have

Pr((EMi )c) = Pr
(
ζ2
i > M

)
= Pr

(
|ζi| >

√
M
)
≤

2e
− (
√

M−√p)2

4
√

p if p ≤M ≤ 4p

2e−
(2
√

M−3
√

p)

4 if M ≥ 4p
,

and thus

Pr(Et ∩
(
∩ri=1E

M
i

)c
) ≤

2re
− (
√

M−√p)2

4
√

p if p ≤M ≤ 4p

2re−
(2
√

M−3
√

p)

4 if M ≥ 4p
. (47)

By combining (46) and (47) in (44), we have

Pr(Et) ≤ exp

(
− 3rt2

48 + 2(M − 1)t

)
+

2re
− (
√

M−√p)2

4
√

p if p ≤M ≤ 4p

2re−
(2
√

M−3
√

p)

4 if M ≥ 4p
. (48)

To find a sharp bound of Pr(Et), we choose a suitable value of M . We set

M = r2/3t2/3, (49)

where r satisfies the lower bound (42). Since r ≥ 8 · 33/2 · p3/2t−1, we have r2/3 ≥ 12pt−2/3, so that

M = r2/3t2/3 ≥ 12p > 4p, (50)

so the second case applies in (48). Since r ≥ 33/2 · 23 · t−5/2, we have r2/3 ≥ 12t−5/3, so that

Mt = r2/3t5/3 ≥ 12,

so that, for the denominator of the first term in (48), we have

48 + 2(M − 1)t = 6Mt+ 48− 2t− 4Mt ≤ 6Mt. (51)

By using these observations in (48), we have for the value (49) that

Pr(Et) ≤ exp

(
−1

2

rt

M

)
+ 2r exp

(
3

4
p1/2

)
exp

(
−1

2
M1/2

)
. (52)

With M defined as in (49), we see that the two exponential terms involving M in this expression are both equal
to exp(−r1/3t1/3/2). Additionally, since p ≥ 1 and r ≥ 1, we have 2r exp(3p1/2/4) > 4. Thus, from (52), we
obtain

Pr(Et) ≤ (5/2)r exp

(
3

4
p1/2

)
exp

(
−1

2
r1/3t1/3

)
. (53)

We obtain the result by multiplying the right-hand side by 2, as discussed at the start of the proof. �

Proposition 1 is a direct consequence of Lemmas 2 and 4.

Proof of Proposition 1. For any y ∈ Span{F⊗ G}, denote ŷ = y
‖y‖ , so that ‖ŷ‖ = 1. From Lemma 2, we have

‖Sŷ‖2 d∼ 1

r

r∑
i=1

ζ2
i , where ζi

def
= ξ>i Σηi ,

where ξi, ηi ∈ Rp are independent Gaussian vectors drawn from N (0, Idp). We have

‖Sy‖2 − ‖y‖2

‖y‖2
=
‖Sŷ‖2 − ‖ŷ‖2

‖ŷ‖2
=

1

r

r∑
i=1

ζ2
i − 1 .
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By setting t = ε in (43) from Lemma 4, we have

Pr

(∣∣∣∣‖Sy‖2 − ‖y‖2‖y‖2

∣∣∣∣ > ε

)
= Pr

(∣∣∣∣∣1r
r∑
i=1

(ζ2
i − 1)

∣∣∣∣∣ > ε

)
≤ 5r exp

(
3

4
p1/2

)
exp

(
−1

2
r1/3ε1/3

)
,

conditioned on r ≥ 8 · 33/2 ·max{ε−5/2, p3/2ε−1}, as required. �

5.2. Proof of Theorem 4. Proposition 1 shows the probability of the sketching matrix S of the form (24)
preserving the norm of a fixed given vector in the range space Range(F⊗G). To show the preservation of norm
holds true over the entire column space, we follow the construction of [40]. We construct a γ-net over the unit
sphere in Range(F ⊗ G) and show that for r sufficiently large, with high probability, the angles between any
vectors in the net will be preserved with high accuracy. Preservation of angles on the γ-net can be translated
to the norm preservation over the entire space.

We show in Lemma 5 that angles can be preserved with the sampling matrix S of the form (24). In Lemma 7,
we calculate the cardinality of the γ-net. The fact that preservation of angle leads to the preservation of norms
on the space is justified in Lemma 6. The three results can be combined into a proof for Theorem 4, which we
complete at the end of the section.

Lemma 5. Let V be a collection of vectors in Rn with cardinality |V | = f and let

Ṽ
def
= {u± v : u, v ∈ V } .

Suppose that a random matrix S preserved norm on V , in the sense that for each ṽ ∈ Ṽ , with probability at least
1− δ, we have ∣∣‖Sṽ‖2 − ‖ṽ‖2∣∣ < ε‖ṽ‖2 .

Then S preserves the angle between all elements in V with probability at least 1− 4f2δ, that is,

Pr (|〈Su,Sv〉 − 〈u, v〉| ≤ ε‖u‖‖v‖) > 1− 4f2δ , for all u, v ∈ V .

Proof. Without loss of generality, we assume all vectors in V are unit vectors. Because of the assumptions on
S, we have

Pr
(∣∣‖Sṽ‖2 − ‖ṽ‖2∣∣ < ε‖ṽ‖2 for all ṽ ∈ Ṽ

)
≤ 1− f2δ. (54)

Considering u, v ∈ V , we denote s
def
= u + v ∈ Ṽ and t

def
= u− v ∈ Ṽ and use the parallelogram equality:

〈u, v〉 =
1

4

(
‖s‖2 − ‖t‖2

)
, 〈Su,Sv〉 =

1

4

(
‖Ss‖2 − ‖St‖2

)
,

so that

〈Su,Sv〉 − 〈u, v〉 =
1

4

(
‖Ss‖2 − ‖s‖2 − (‖St‖2 − ‖t‖2)

)
.

From (54), we have, with probability at least 1− f2δ, for all u, v ∈ V

|〈Su,Sv〉 − 〈u, v〉| ≤ 1

4

(∣∣‖Ss‖2 − ‖s‖2∣∣+
∣∣‖St‖2 − ‖t‖2∣∣)

≤ ε

4
(‖s‖2 + ‖t‖2) =

ε

4
(‖u + v‖2 + ‖u− v‖2) =

ε

4
(2‖u‖2 + 2‖v‖2) = ε ,

which completes the proof. �

We now define the γ-net, and show that preservation of angles on this net leads to preservation of norms.
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Definition 2. Denote the unit sphere in space Range(F⊗ G) by S, that is,

S def
=
{
y ∈ Rn1n2 : y = (F⊗ G)x for some x ∈ Rp

2

and ‖y‖ = 1
}
. (55)

For fixed γ ∈ (0, 1), we call G a γ-net of S if G is a finite subset of S such that for any y ∈ S, there exists w ∈ G
such that ‖w − y‖ ≤ γ.

The following lemma was presented in [40, Section 2.1].

Lemma 6. Let S and G be as in Definition 2, for some γ ∈ (0, 1). Then preservation of angle on G leads to
the preservation of norm in S. That is, if

|〈Sw,Sw′〉 − 〈w,w′〉| ≤ ε , for all w, w ∈ G, (56)

then ∣∣‖Sy‖2 − ‖y‖2∣∣ ≤ ε

(1− γ)2
, for all y ∈ S.

The size of the γ-net can also be controlled, as we now show.

Lemma 7. Let S the the unit sphere of F⊗ G, defined in (55). Then for any γ ∈ (0, 1), there exists a γ-net G
of S such that

|G| ≤
(

1 +
2

γ

)p2
.

Proof. Notice that S is isometric to the unit Euclidean sphere Sp2−1, the result follows directly by applying
Corollary 4.2.13 of [37]. �

Finally, we state the proof of Theorem 4, which is obtained from the lemmas in this section together with
Proposition 1.

Proof of Theorem 4. Without loss of generality, it suffices to show S preserves norm with high accuracy and
high probability over the unit sphere in Range(F⊗ G), defined by

S def
= {y ∈ Rn1n2 : y = (F⊗ G)x for some x ∈ Rp

2

and ‖y‖ = 1} .

Note from Lemma 7 that for given γ ∈ (0, 1), one can construct a γ-net G of S of size f = (1 + 2
γ )p

2

. Given

ε1 ∈ (0, 1/2), then on this G, according to Proposition 1 and Lemma 5, if we assume

r ≥ 8 · 33/2 ·max{ε−5/2
1 , p3/2ε−1

1 } (57)

then with probability at least 1− δ2 with

δ2 ≤ 20rf2 exp

(
3

4
p1/2

)
exp

(
−1

2
r1/3ε

1/3
1

)
= 20r

(
1 +

2

γ

)2p2

exp

(
3

4
p1/2

)
exp

(
−1

2
r1/3ε

1/3
1

)
, (58)

we have that S preserves angles, that is,

|〈Sw,Sw′〉 − 〈w,w′〉| ≤ ε1 , for all w,w′ ∈ G ,
According to Lemma 6, S embeds S, that is,∣∣‖Sy‖2 − ‖y‖2∣∣ ≤ ε , for all y ∈ S, where ε

def
=

ε1

(1− γ)2
.

First, we need to convert the condition (57) into one involving ε. We obtain

r ≥ 8 · 33/2 ·max{ε−5/2(1− γ)−5, p3/2ε−1(1− γ)−2}. (59)
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Second, we must alter the lower bound on r to ensure that the right-hand side of (58) is smaller than the given
value of δ, that is,

δ ≥ 20r

(
1 +

2

γ

)2p2

exp

(
3

4
p1/2

)
exp

(
−1

2
r1/3ε1/3(1− γ)2/3

)
, (60)

or equivalently,

log δ ≥ log 20 + log r + 2p2 log(1 + 2/γ) +
3

4
p1/2 − 1

2
r1/3ε1/3(1− γ)2/3. (61)

Note that for p ≥ 6 and γ ∈ (0, 1), we have log 20 < 3 < .1p2 log(1 + 2/γ) and .75p1/2 < .1p2 log(1 + 2/γ). Thus
a sufficient condition for (61) is

log δ ≥ log r + 2.2p2 log(1 + 2/γ)− 1

2
r1/3ε1/3(1− γ)2/3. (62)

Denoting

α
def
= ε1/3(1− γ)2/3 and β

def
=

1

3

(
2.2p2 log(1 + 2/γ) + |log δ|

)
,

we have α ∈ (0, 1) for any ε, γ ∈ (0, 1). By using these definitions, we see that (62) is equivalent to

α

6
r1/3 − log r1/3 ≥ β, (63)

for which the combination of the following two conditions is sufficient:

α

12
r1/3 − log r1/3 ≥ 0 , (64a)

α

12
r1/3 ≥ β . (64b)

Condition (64b) can be rewritten to

r ≥ 123β3

α3
=

43

ε(1− γ)2

(
2.2p2 log(1 + 2/γ) + |log δ|

)3
,

for which a sufficient condition is

r ≥ 8.83

ε(1− γ)2
log3(1 + 2/γ)

(
p2 + |log δ|

)3
. (65)

The condition (64a) requires h(r1/3) ≥ 0, where h(x)
def
= α

12x− log x. Since

h′(x) =
α

12
− 1

x
≥ 0 ,

we see that h is an increasing function for x > 12/α. By noting that

h

(
12

α5/2

)
= α−3/2 − log(12) +

5

2
logα ≥ 0, for α ∈ (0, 0.33) ,

and
12

α5/2
>

12

α
, α ∈ (0, 1) ,

we have for α ∈ (0, 0.33) that

h(r1/3) ≥ 0 , if r1/3 ≥ 12

α5/2
,

which leads to

r ≥ 123

ε5/2(1− γ)5
. (66)
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We are free to choose γ ∈ (0, 1) in a way that ensures that α ∈ (0, .33). In fact, by setting γ = 3/4, we have

α = ε1/3(1/4)2/3 < 0.33 , for all ε ∈ (0, 0.5).

By combining the conditions (66) and (65), and setting γ = 3/4, we have

r ≥ max

{
C̄1

ε5/2
,
C̄2

ε

(
p2 + |log δ|

)3}
,

with C̄2 = 8.83 · 42 log3(11/3) ≈ 2.4e4, and C̄1 = 123 · 45. �

We could change the weight in the separation of (63) into (64a) and (64b), one could arrive at different
(possibly better) constants C̄1 and C̄2 in the final expression. However, our priority is to show dependence of r
on ε, δ, and p (and not n), and optimization of the constants is less important.

6. Numerical Tests

This section presents some numerical evidence of the effectiveness of our sketching strategies. We test them on
general matrices with the tensor structure and a problem directly from EIT (18). We are mostly concerned of the
dependence of accuracy on n, r, and p. The computational complexity is rather straightforward and is omitted
from discussion. In both tests, the numerical solutions outperform the theoretical predictions, indicating that
there is room for improvement in our bounds for r.

6.1. General matrices with tensor structure. To set up the experiment, we generate two matrices F =
[f1, . . . , fp] ∈ Rn1×p and G = [g1, . . . , gp] ∈ Rn2×p using:

F = UFΣFV
>
F and G = UGΣGVG ,

where UF ∈ Rn1×p, UG ∈ Rn2×p, VF ∈ Rp×p, and VG ∈ Rp×p are generated by taking the QR-decomposition
of random matrices with i.i.d Gaussian entries. The diagonal entries of ΣF and ΣG are independently drawn
from N (1, 0.04). Matrix A ∈ Rn×p is then defined by setting aj = fj ⊗ gj , with n = n1n2. We further generate
the reference solution xref ∈ Rp whose entries are drawn from N (1, 0.25). The right-hand-side vector b ∈ Rn
encodes a small amount of noise; we set

b = Axref + 10−6ξ .

where each entry of ξ is drawn from N (0, 1). We compute x∗ using (1).
Three sketching strategies will be considered, the first two cases from (10) and (11), and a third standard

strategy that does not take account of the tensor structure in A.

Case 1: Set S = P⊗Q (normalized), as defined in (10) with entries in P ∈ Rr1×n1 and Q ∈ Rr2×n2 drawn i.i.d.
from N (0, 1). Notice here that r = r1r2.

Case 2: Set Si,: = p>i ⊗ q>i (normalized), as defined in (11), with entries in vectors {pi} and {qi} drawn i.i.d.
from N (0, 1) for all i = 1, . . . , r.

Random Gaussian: S = R ∈ Rr×n (normalized), with entries in R drawn i.i.d. from N (0, 1).

The random Gaussian choice is not practical in this context, but we include it here as a reference.
For these three choices of S, we compute the solution x∗s of the sketched LS problem (2), and compare the

sketching solution with the standard least-squares solution. In particular, we evaluate the following relative
error

Error =
f(x∗s)− f(x∗)

f(x∗)
, with f(x) = ‖Ax− b‖22 . (67)

For each strategy, we draw 10 independent samples of S and compute the median relative error. We discuss
how this quantity depends on r and n.
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Dependence on r. We set ε = 0.5, δ = 10−3, p = 10, and n1 = n2 = 102, and choose the following values for
r: 256, 1024, 4096, 16384 and 65536. As shown in Figure 1, the relative error for all three strategies decreases
as r increases; all are of the order of r−1. The result suggests Case-2 sketching and the Gaussian reference
sketching share almost the same accuracy, while Case 1 is slightly worse.
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Figure 1. Dependence of relative error on r for the three sketching strategies.

Dependence on n. Theorems 3 and 4 suggest essentially no dependence on n. To test this claim empirically,
we fix ε = 0.5, δ = 10−3, and r = 2209, and set n1 = n2 to be 50, 100, 150, 200, 250. The error, plotted in
Figure 2, shows no dependence on n.

Dependence on p. In this experiment, we study the dependence of relative error on p. We fix ε = 0.5,
δ = 10−3, and r = 4096 and let p take the values 3, 6, 9, 12, 15. The results are plotted in Figure 3. The plot
seems to indicate linear dependence on p, better than the higher powers of p predicted by our bounds. We leave
the discussion to future research.

6.2. Electrical Impedance Tomography. In this section, we study the EIT inverse problem on a unit square
[0, 1]2. As presented in Section 2, the goal is to reconstruct the conductivity function σ(x) in (18). We assume
the ground truth σ(x) is an indicator function supported at the two yellow squares at the top left and bottom
right corners; see Figure 4. The background media σ∗(x) (cf. (14)) is set to be a constant function with value
10. We use finite element method to calculate ρ1(x) and ρ2(x) on a uniform mesh with ∆x = 1/20. The
associated boundary conditions φ and ψ are constructed as Dirac-delta functions at all boundary grid points.
Under this setup, the matrix A has dimensions 104 × 400. The right-hand side b is generated by multiplying A
with the ground truth σ(x) and adding white noise. The EIT inverse problem is highly ill-posed, and thus we
set the standard deviation of the mean zero Gaussian noise to be small: 10−8. All three strategies are tested
with different number of rows. We record the relative error (67) by taking 10 independent trials.

In Figure 4, we plot the ground truth media σ(x) and the reconstructed media using all three different
strategies, with r = 742 = 5476. All of them can roughly reconstruct the unknown function with some
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Figure 2. Dependence of relative error on ambient dimension n for the three sketching strategies.
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Figure 3. Dependence of relative error on number of unknowns p for the three sketching strategies.

oscillatory errors in the center of the domain. In Figure 5, we plot the relative error in terms of the number of
rows r in the sketching matrix S (r is set to be 262, 382, 502, 622, and 742). We see that the Case-2 strategy
performs as well as the unstructured Gaussian reference, and they both outperform Case 1.



22 KE CHEN, QIN LI, KIT NEWTON, AND STEPHEN J. WRIGHT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 -1

-0.5

0

0.5

1

(a) Ground Truth

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 -1

-0.5

0

0.5

1

(b) Case 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 -1

-0.5

0

0.5

1

(c) Case 2
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Figure 4. The ground truth media and the reconstructed media via all three sketching strategies.

7. Concluding remarks

Most PDE-based inverse problems, upon linearization, become Fredholm integral equations, with the testing
functions being the product of two functions that are solutions to the forward and the adjoint PDEs. A Khatri-
Rao matrix structure arises in the discretization. We study the sketching problem for matrices of this type,
where a corresponding structure is enforced in the sketching matrix, for efficiency of computation. We construct
the problem under the (ε, δ)-l2 embedding framework, and investigate the number of rows of the sketching matrix
that are needed to reconstruct the least-squares solution with ε accuracy and δ confidence. The lower bounds
differ for the two different sketching strategies that we propose, but both are independent of the size of the
ambient space.
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Figure 5. For all three strategies, the relative error decreases as the number of rows in S
increases. In particular, the Case-2 sketching strategy performs as well as the unstructured
Gaussian strategy.
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Appendix A. Key Identities and Inequalities

Some identities and inequalities used repeatedly in the text are collected here.

A.1. Identities of the Kronecker product. Let A = (aij) ∈ Rr1×n1 , B = (bij) ∈ Rr1×n2 . Then the
Kronecker product of A and B forms a matrix of size r1r2 × n1n2 defined by:

A⊗ B =


a11B a12B · · · a1n1B
a21B · · · · · · a2n1

B

. . .
. . .

. . . . . .
ar11B ar12B · · · ar1n1

B

 .
The following properties hold.

(1) Let A ∈ Rr1×n1 , B ∈ Rr2×n2 , C ∈ Rn1×p1 and D ∈ Rn2×p2 , then we have the mixed-product property:

(A⊗ B)(C⊗ D) = (AC)⊗ (BD) . (68)

(2) Let A ∈ Rr1×n1 , B ∈ Rr2×n2 , and X ∈ Rn1×n2 . Further denote by vec(X) the vectorization of X formed
by stacking the columns of X into a single column vector, then

(B⊗ A)vec(X) = vec(AXB>) . (69)

http://arxiv.org/abs/nsf-tripods/1740707
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Equivalently, given the same A,B and x ∈ Rn1n2 , denote Mat(x) ∈ Rn1×n2 the matricization of the
vector x by aligning subvectors of x that are of length n1 into a matrix with n2 columns, then

(B⊗ A)x = vec
(
AMat(x)B>

)
. (70)

A.2. Sub-exponential random variables and Bernstein inequality. Properties of sub-exponential ran-
dom variables used in the proofs are defined here.

Definition 3. Sub-Exponential random variable A random variable X ∈ R is said to be sub-exponential
with parameters (λ, b) (denoted as X ∼ subE(λ, b)) if EX = 0 and its moment generating function satisfies

EesX ≤ exp

(
s2λ2

2

)
, for all |s| ≤ 1

b
. (71)

We have the following.

Proposition 2. Let Z ∼ N (0, 1), then X
def
= Z2 − 1 is sub-exponential with parameters (2, 4).

We conclude with the well known Bernstein inequality.

Proposition 3 (Bernstein inequality). Let X1, . . . , Xn be i.i.d. mean zero random variables. Suppose that
|Xi| ≤M for all i = 1, . . . , n, then for any t > 0,

Pr

(
n∑
i=1

Xi ≥ t

)
≤ exp

(
− t2/2∑n

i=1 E [X2
i ] +Mt/3

)
. (72)
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