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Abstract

We establish a sharp estimate for a minimal number of binary digits (bits) needed to
represent all bounded total generalized variation functions taking values in a general totally
bounded metric space (E, p) up to an accuracy of € > 0 with respect to the L' distance.
Such an estimate is explicitly computed in terms of doubling and packing dimensions of
(E, p). The obtained result is applied to provide an upper bound on the metric entropy for
a set, of entropy admissible weak solutions to scalar conservation laws in one-dimensional
space with weakly genuinely nonlinear fluxes.
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1 Introduction

The metric entropy (or e-entropy) has been studied extensively in a variety of literature
and disciplines. It plays a central role in various areas of information theory and statistics,
including nonparametric function estimation, density information, empirical processes and
machine learning (see e.g in [11, 24, 38]). It provides a tool for characterizing the rate of mixing
of sets of small measure. The notion of metric entropy (or e-entropy) has been introduced by
Kolmogorov and Tikhomirov [27] in 1959 as follows:

Definition 1.1. Let (E,p) be a metric space and K be a totally bounded subset of E. For
e >0, let NE(K|E) be the minimal number of sets in an e-covering of K, i.e., a covering of
K by balls in E with radius no greater than €. Then the e-entropy of K is defined as

H.(K|E) = logy Na(K|E).
A classical topic in the field of probability is to investigate the metric covering numbers for

general classes F of real-valued functions defined on E under the family of L'(dP) where P
is a probability distribution on F. Upper and lower bounds on the e-entropy of F in terms


http://arxiv.org/abs/1912.00219v3

of Vapnik-Chervonenkis, pseudo-dimension and the scale-sensitive dimension of the function
class were established in [20, 24, 25, 29, 38] and in [29, 33].

Thanks to the Helly’s theorem, a set of uniformly bounded variation functions is compact
in L'-space. Consequently, attempts were made to quantify the degree of compactness of
such sets by using the e-entropy. In [29], the authors showed that the e-entropy of any set of

1
uniformly bounded total variation real-valued functions in L' is of the order — in the scalar
€
case. Later on, this result was also extended to multi-dimensional cases in [21]. Some related
works have been done in the context of density estimation where attention has been given
to the problem of finding covering numbers for the classes of densities that are unimodal or
non-decreasing in [11, 22]. In the multi-dimensional cases, the covering numbers of convex and

uniformly bounded functions were studied in [23]. It was shown that the e-entropy of a class

of convex functions with uniform bound in L! is of the order — where d is the dimension of

the state variable. The result was previously studied for scalai7 2state variables in [19] and for
convex functions that are uniformly bounded and uniformly Lipschitz with a known Lipschitz
constant in [14]. These results have direct implications in the study of rates of convergence
of empirical minimization procedures (see in [12, 40]) as well as optimal convergence rates in
the numerous convexity constrained function estimation problems (see in [10, 15, 41]).

From a different aspect, the e-entropy has been used to measure the set of solutions of nonlinear
partial differential equations. In this setting, it could provide a measure of the order of
“resolution” and the “complexity” of a numerical scheme, as suggested in [30]. The first
results on this topic were obtained in [3, 18] for the scalar conservation law with uniformly
convex flux f (i.e. f”(u) > ¢ > 0), in one-dimensional space

ug(t,z) + f(u(t,z)), = 0. (1.1)

It was shown that the number of functions needed to represent an entropy admissible weak
solution u at any time ¢ > 0 with an accuracy of € with respect to the Ll-distance is of

the order —. A similar estimate was also obtained for the system of hyperbolic conservation

laws in [5,%] and for Hamilton-Jacobi equations with uniformly convex Hamiltonian in [1, 2].
All these proofs strongly relied on the BV regularity properties of solutions. Thereafter, the
results in [3, 18] were extended to scalar conservation laws with a smooth flux function f that
is either strictly (but not necessarily uniformly) convex or has a single inflection point with
a polynomial degeneracy [4] where entropy admissible weak solutions may have unbounded
total variation. In this case, the sharp estimate on the e-entropy for sets of entropy admissible
weak solutions was provided by exploiting the BV bound of the characteristic speed f’(u) at
any positive time [16]. On the other hand, it was shown in [9, Example 7.2]) that for fluxes
having one inflection point where all derivatives vanish, the composition of the derivative of
the flux with the solution of (1.1) fails in general to belong to the BV space and the analysis
in [4] cannot be applied here. However, for weakly genuinely nonlinear fluxes, that is to say for
fluxes with no affine parts, equibounded sets of entropy solutions of (1.1) at positive time are
still relatively compact in L! (see [39, Theorem 26]). Therefore, for fluxes of such classes that
do not fulfill the assumptions in [4], it remains an open problem to provide a sharp estimate
on the e-entropy for the solution set of (1.1). A different approach from [4] must be pursued
to study the e-entropy for (1.1) with weakly genuinely nonlinear fluxes, perhaps exploiting



the uniform bound on total generalized variation of entropy admissible weak solutions studied
in [34, Theorem 1].

From the above viewpoints, the present paper aims to study the e-entropy of classes of uni-
formly bounded total generalized variation functions taking values in a general totally bounded
metric space (E,p). More precisely, for a given convex function ¥ : [0,400) — [0, +00) with
U(0) =0 and ¥(s) > 0 for all s > 0, let ]:[\Ii,\/] be a set of functions g : [0, L] — E such that

the W-total variation of g over the interval [0, L] is bounded by V| i.e.,

N-1
sup ; > W (p(g(xi), g(zit1))) < V.

NeN,O=zp<z1<...<TN= =0

We establish upper and lower bounds on H,. (f[\IL’ V]‘Ll([O,L],E)>, the e-entropy of .F[‘Ii V]

with respect to the L!-distance. For deriving sharp estimates explicitly, our idea is to use the
notions of doubling and packing dimensions of (E, p), denoted by d(E) and p(FE) respectively,

which were first introduced by Assouad in [7]. In Theorem 3.1, we prove that for every £ > 0

sufficiently small, the sharp bounds on H, (f[‘li V] ‘Ll([O, L, E )) can be approximated in terms

of p(E), d(F) and V. In particular, if ¥(s) = s7 for some v > 1 and the metric space (E, p)
is generated by a finite dimensional normed space (R%,| -||) then the e-entropy of ]:[‘Ii y) in

d
L! ([O,L],Rd) is of the order —, i.e.,
&Y

H. <}"§,V]‘L1 ([O,L],]Rd)) ~ g .

The result is applied to provide an upper estimate on the e-entropy of a set of entropy admis-
sible weak solutions to scalar conservation laws (1.1) with general weakly genuinely nonlinear
fluxes in Theorem 3.7, which partially extends the recent one in [4]. The estimate is sharp
in the case of fluxes having finite inflection points with a polynomial degeneracy. However,
a natural question regarding sharp estimates of the e-entropy for such solution sets to (1.1)
with general weakly genuinely nonlinear fluxes is still open.

This paper is organised as follows. In Section 2, we present some preliminary results on
covering and packing numbers of a totally bounded metric space and also include necessary
concepts related to functions of bounded total generalized variation. In Section 3, the first
subsection focuses on finding the upper and lower estimates of the e-entropy for a set of
bounded total generalized variation functions, while the second subsection is an application
of these estimates to scalar conservation laws with weakly genuinely nonlinear fluxes.

2 Notations and preliminaries

Let E be a metric space with distance p and I be an interval in R. Throughout the paper we
shall denote by:

e B,(z,r), the open ball of radius r and center z, with respect to the metric p on £, i.e.,

By(z,7) = {y€ E|p(z,y) <r};



diam(F) = sup, ,cp p(z,y), the diameter of the set F' in (E, p);

L'(I,E), the Lebesgue metric space of all (equivalence classes of) summable functions
f: I — E, equipped with the usual L!-metric distance, i.e.,

puilfog) = /1 p(F(t),g()dt < +oc

for every f,g € L(I,E);

L!(R), the Lebesgue space of all (equivalence classes of) summable functions on R,
equipped with the usual norm || - ||f,1;

L*°(R), the space of all essentially bounded functions on R, equipped with the usual
norm || - ||pee;

Supp(u), the essential support of a function u € L*°(R);

Bri(r,p)(p,7), the open ball of radius r and center ¢ in L'(I,E), with respect to the
metric pr; on LY(1, E), i.e.,

Brigp(e,r) = {ge LML E) | pri(e,g9) <7};

B(I,[0,+00)), a set of bounded functions from I to [0, +00);
C>*(R,R), space of smooth functions having derivatives of all orders;
TV (g, 1), total variation of g over the interval I;

TVY¥(g,I), U-total variation of g over the interval I;

TV%(g, I), ~-total variation of g over the interval I, i.e., U-total variation of g with W
defined by ¥(s) = |s|";

1 if xel
xr(z) = the characteristic function of I;
0 if x € RMI

Card(S), the number of elements in any finite set S;

|z] :=max{z € Z | z < x}, the integer part of z;

1, N, the set of natural numbers from 1 to IV;

(v

objects.

n! . . .
= ——— number of ways in which k£ objects can be chosen from among n

kl(n — k)’

N———



2.1 Covering, packing and metric dimension

Let us first recall the concepts of covering number and packing number in a totally bounded
metric space (E, p). For any K C E and « > 0, we say that

o the set A = {ai,a2,...,a,} C E is an a-covering of K if K C |J;_, By(a;,a), or
equivalently, for every x € K, there exists i € 1,n such that p(z,a;) < «; Card(A) is
called the size of this a-covering;

e theset B = {b1,b2,...,b,} C K is an a-packing of K if p(b;, b;) > afor alli # j € 1,m,
or equivalently, {B,(b;,a/2)}~, is a finite set of disjoint balls; Card(B) is called the size
of this a-packing.

Definition 2.1. The a-covering and a-packing numbers of K in (E,p) are defined by
No(K|E) = min{n € N | 3 a—covering of K having size n}

and
My (K|E) = max{m € N | 3 a—packing of K having size m},

respectively.

Since E is totally bounded, N, (K|E) is finite for every o > 0. Moreover, the maps «
No(K|E) and a — My (K|FE) are non-increasing. The relation between N, (K|E) and
M (K|E) is described by the following simple double inequality:

Lemma 2.2. For any o > 0, one has

Moo(K|E) < No(K|E) < Ma(K|E).

Proof. For the proof see e.g in [27]. 0

Let us now introduce a commonly used notion of dimension for a metric space (E,p), as
proposed in [7, §4].

Definition 2.3. The doubling and packing dimensions of (E,p) are respectively defined by

e d(FE) is the minimum natural number n such that for every x € E and o > 0, the ball
By(x,2a) can be covered by 2" balls of radius o;

e p(E) is the maximum natural number m such that for every x € E and o > 0, the ball
B,(x,2a) contains an a-packing of size Mo (B,(x,2a)|E) which satisfies the inequality

2™ < My (By(z,20)|E) < 2™t

We conclude this subsection with the following result relating a-covering and a-packing.



Lemma 2.4. Given R > 2a > 0, let k and m be natural numbers such that

2.7k < B ooogm
«@
The following hold
A (BP(Z,R) ‘ E) < gmd(B) (2.1)
and
M, <Bp(z,R) \ E) > 2(+De(®) (2.2)
forall z € E.

Proof. 1. For every n > 0, we first show that
Na (Bp(z,2"a) ‘ E) < ond(B) for all z € E. (2.3)
Assume that (2.3) holds for n =i > 0. For any given 29 € E, from Definition 2.3, one has

Noig (Bp(zo,2i+1a) ( E) < 2d(B),

Equivalently, there exist x1,x2,...,Z9a®) € I such that
od(E)
Bp(zo,2i+1a) C U Bp(xj,2ia)
j=1
and

N, (Bp(z0,2"+1a) ( E) < Qdf)/\/a (Bp(xj,gia) ( E) < 9d(B) gid(B) _ ol+1)d(E)
j=1

Thus, (2.3) holds for n = i + 1 and the method of induction yields (2.3) for all n > 0. In
particular, the non-decreasing property of the map r — N, <Bp(z, T) ‘ E> implies that

N,y (BP(Z,R) ( E) < N, (Bp(z,2ma) ‘ E) < gmd(E),

2. To achieve the inequality in (2.2), we prove that
Ma (By(2,2-7") ‘ E) > 2B forall z € B, (2.4)

It is clear from Definition 2.3 that (2.4) holds for n = 0. Assume that (2.4) holds forn =7 > 1.
For any given zg € F, from Definition 2.3, one has

M ria (Bp(zo,u-?ia) ( E) > 9P(E),
Equivalently, there exist x1, 22, ..., Ty € B,(20,12 - 7'a) such that

p(zjy,x5,) > 6-Ta > 4-Ta+2a  forall j; # jo € {1,2,...,2P0F)},



In particular, for every j; # jo € {1,2,...,2P(F)} it holds

p(z1,22) > 2« for all z; € B,(z;,,2 - 7'a), 2y € By(xj,,2 - 7).

Since B,(z;,2 - T'a) C B,(z0,2 - 7"*1a) for all j € {1,2,...,2P)} one then has

Mo (Bylz0,2- 7% a) ( E) > QPE(? Mo (By(z;,2- ) ( B) > 2P gi+0p(0
j=1

9(i+2)p(B)

Thus, by the method of induction, (2.4) holds for all n > 0. In particular, the non-decreasing
property of the map r — M, (Bp(z, T) ‘ E> implies that

M, (Bp(z,R) ( E) > Mg <Bp(z,2-7koz) ( E) > 9Ur+Dp(E),

O
As a consequence of Lemma 2.2 and Lemma 2.4, one has that
R log(2)-p(E) 2R d(E)
(@ < Na(ByzR) | E) < <;> (2.5)
and log+(2)-p(E) a(p)
R °87P 4R
<%> < Mo (B R) | B) < <;> | (2.6)

2.2 Functions of bounded total generalized variation

In this subsection, we now introduce the concept of total generalized variation of the function
g : [a,b] — E which was well-studied in [35] for the case £ = R. Consider a convex function
VU : [0, 4+00) — [0,400) such that

U0) =0 and U(s) > 0 for all s > 0. (2.7)

Definition 2.5. The V-total variation of g over [a,b] is defined as

n—1
VY (g.[a,0)) = L Sup bz Y (p(g(zi), 9(it1))) - (2.8)
nelN,a=zo<z1<...<Tn=0 ,_

If the supremum is finite then we say that g has bounded W-total variation and denote it by
g € BV¥([a,b], E). In the case of ¥(x) = |z|” for some v > 1, we shall denote by

BV ([a,b], E) := BVY([a,0]),  TV7 (g,]a,b]) = TV (g,[a,b])

the fractional BV space on |a,b] and the vy-total variation of g, respectively.



For any function g € BV¥([a,b], E), it is easy to show by a contradiction argument that g is
a regulated function, i.e., the left and right hand side limits of g at z¢ € [a,b] always exist,
denoted by

g(xo—) == lim g(x) and  g(zo+) = lim g(x).

T—T0— T—x0+

Moreover, the set of discontinuities of g
Dy = {x€[a,b] | g(z+) = g(x) = g(z—) does not hold}

is at most countable. In particular, one has the following:

Lemma 2.6. For any function g € BVY([a,b], E), the following function

gb) = g),  glx) = glz+)  for allx € a,b)
is a continuous function from the right on the interval [a,b) and belongs to BVY ([a,b], E) with

pi(g:9) = 0 and TV (g, [a,b]) < TVY (g,a,b]). (2.9)
Proof. Since D, is at most countable, it holds that

pri(d,g) = /[ o, PO @) = 0.

On the other hand, for any partition {a = 2o < 21 < -+ < x,, = b} of [a, b],

n—1 n—2

Y U(p(a(@ie), §(22)) = L(p(g(b), g(wn—1H))+D_ U(p(g(zin1+),9(zit))) < TV (g,[a,b])
i=0 1=0

and this yields the second inequality in (2.9). 0

The following remark is used in the proof of the upper estimate in Theorem 3.1.

Remark 2.7. Under the assumption (2.7), the function ¥ is strictly increasing on [0, +00)
and
U(s) < ;-\I/(t) forall0<s<t. (2.10)

\11—1(3) 18

Moreover, its inverse U™ is also strictly increasing, concave and the map s —>
s

strictly decreasing on [0, 400).

Proof. By the convexity of ¥ and (2.7),

U(s) < tzs.m(ow?qf@) = 2w < v

for all 0 < s < t. Thus, ¥ is strictly increasing and convex in [0, +0c) and this implies that
its inverse U1 exists, is strictly increasing and concave. In particular,
Ui(s) _ wTN(s) —0TN0) . vT(r)

= > forall0<s<r
s s r

i) .

and this yields the decreasing property of the map s —



3 The c-entropy for a class of BVY functions

3.1 Main results

Throughout this subsection, the metric space (E,p) is assumed to be totally bounded. For
convenience, we use the notation

H, = logy; N, and K, = log;M

where N, := N, (E|E) and M,, := M, (E|FE) are the a-covering and the a-packing numbers
of F in (E,p) and

d := d(F) the doubling dimension of F,

p = p(F) the packing dimension of E.
Given two constants L,V > 0, we shall establish both upper and lower estimates on the

e-entropy of a class of uniformly bounded W-total variation functions defined on [0, L] and
taking values in (E, p),

Fiov = {feBVY(0,L,E) | TVY(f,[0,L]) <V}, (3.1)
in L1([0, L], E).

Theorem 3.1. Assume that the function ¥ : [0,4+00) — [0,400) is convex and satisfies the
condition (2.7). Then, for every 0 < ¢ < 2LW~1 (%), it holds

pV v 1 v
2log,(7) - W (B) +K20T85 < H. <-F[L,V]‘L ([O,L]aE)) < [3d + logy(5e)] T () +H- .
(3.2)

As a consequence, the minimal number of functions needed to represent a function in ]:[‘Ii V]

1
up to an accuracy ¢ with respect to L!-distance is of the order W Indeed, from (2.5)
and (2.6), it holds that
2
H, < d-log, <diam(E) . E)
for all @ > 0,

Ko, > p-(log;2)-logy (diam(E) : %)

and (3.2) implies

pV
2logy(7) - W (255'3

R <diam(E).£> < H (v ( L'([0,Z], E))

< [3d + logy(5e)] v ) +d - log, <diam(E) : %) . (3.3)

2
U (57
On the other hand, one also obtains a sharp estimate on the e-entropy for a class of uniformly

bounded 7-total variation functions, i.e. W(z) = |z|7, for all v > 1. More precisely, let us
denote by

Fv = {feBVi0.015) | TVA(£.l0.L) <V}, (3.0



it follows directly from Theorem 3.1 that

—2
Corollary 3.2. For every 0 < e < 277LV%,

L
516z

P Lv
287+l logy(7) &7

+p - log; (diam(E) > < H. <‘FE/L,V} | L(]o, L], E))

Vv 8L
< 27+ [3d + logy(5e)] —~ +d - log <diam(E) : ?> - (3:5)

In particular, as € tends to 0+, one derives that

p o g7 1
I S - . g E
287+ og,y(7) — hgtl)gf [va 7'[*3( [L,V] | L[, Z], ))]

. g7 1 +1
< limsup [WH (P \L([&LLE))} < 2771 [3d + log, (5¢)] .

Thus, the e-entropy of F;/

Ly N L([0, L], E) is of the order 7.

Finally, in order to apply our result to study the e-entropy for entropy admissible weak solution
sets to scalar conservation laws in one-dimensional space with weakly genuinely nonlinear
fluxes, we consider the case where the metric space (E, p) is generated by a finite dimensional
normed space (R%, || - ||), i.e.,

E = R¢ and plz,y) = ||z -yl for all z,y € R%.

Given an additional constant M > 0, the following provides upper and lower estimates for
the e-entropy of a class of uniformly bounded W-total variation functions taking values in the
open ball B4(0, M) C RY,

Fl oy = {reBv? (o0, BY0,0) | TVY(f[0,L) <V}, (3.6)
in the normed space L!(R9).

Corollary 3.3. Under the same assumptions in Theorem 3.1, it holds

Vd
2log,(7) - W (25

LM
258

+d - log, ( > < H. <]:[%M,V} ‘ Ll([O,L],Rd))

LM

U (57
for every 0 < e < 2LW1 (%)
Proof. It is well-known (see e.g in [27]) that
T d d 2r
. ) < < d- =
d-log, (a) < Ha <B (O,r)‘R ) < d-log, <a + 1>
for any o > 0 and open ball B4(0,7) C R% In particular, recalling that

H, = log, N, (Bd(o, M)(Rd> and Ko = logy Mq (Bd(o, M)‘]R{d> :

10



we have

v

2M
H, §d-log2<7+1>, K,

and from Definition 2.3, it holds that

M
H, > d-log, <E> ,

d < p(RY) < d(RY) < d-log,5.

Using the above estimates in (3.2), one obtains (3.7). O

In the next two subsections, we will present the proof of Theorem 3.1.

3.1.1 TUpper estimate

Towards the proof of the upper bound on H, (]—"[‘Ii V] ‘ L([o, L], E)) in Theorem 3.1, let us

extend a result on the e-entropy for a class of bounded total variation real-valued functions in
the scalar case [8] or in [21, Lemma 2.3]. In order to obtain a sharp upper bound, one needs
to utilize the doubling dimension of the metric space F¥ and go beyond the particular cases in
[8, 21] to estimate the e-entropy for a more general case in E. More precisely, considering a
set of bounded total variation functions taking values in F, which we denote by

Fuv = {reBv(o.L).E) | TV(£.10,L) <V}, (3.8)
the following holds.
. LV _ .
Proposition 3.1. For every 0 < e < - sufficiently small, it holds that

2LV
He (f[L,V} ‘ Ll([O,L],E)> < [3d + 10g2(5e)] . ? +He-.

2L

Proof. The proof is divided into four steps:

1. Given two constants Ny € Z* and hy > 0, let us

L
e divide [0, L] into Ny small intervals I; with length hy := A such that Iy, 1 = [(N1 — 1)hq, L]
1

and
I = [ihy,(i+1)hy) forallie0,Ny —2;
e pick an optimal ho-covering A = {al,ag, e ,aNhQ} of F, i.e.
Ny,
E < | Bylai,ha)
i=1

where Ny, is the ho-covering number of E (see Definition 2.1).

11



A function f € Fz ) can be approximated by a piecewise constant function f* : £.00,L] - A
defined as follows:
fﬁ(S) = af; forallsel;, i€ 0,Ny — 1

2i+1

for some ay; € A such that f(t;) € By(ays,, he) with ¢; hi. Notice that as; is not

a unique choice. With this construction, the Ll—dlstance between f and f* can be bounded
above by

N1—-1 Ni—1
o (f. ) < Z/ $), £ ())ds = Z/ ), ag)d
Ni—1 Ni—1
< X /1 e e+t agos < X / ) + ho ds
N~ A
< (3 Bl v i) + TV 6, G DD 4 Lo
=0
= B TV(L0.L) + T < o+ L

and the total variation of f* over [0, L] can be estimated by

Ni1—2
v (FL0.L) = Y slagiagia)
oo
< Y [plagern F(t)) + pUF () aps) +p (F(tir) S (1))
oo
< [th +p(f (tiv1), f (tz‘))] < 2(Ni—1)-ha+ V.
i=0

Consider the following set of piecewise constant functions

fEiNl ha = {90 :[0,L] - A ‘ o(s) = ¢(t;) forall se€ ;i e€0,Ng —1

and TV(g,[0,L]) < 2(Ny —1) - ho + V}.

The set Fyp, vy is covered by a finite collection of closed balls centered at ¢ € f[ﬁNl ho] of radius
L+ Lhy in LY([0, L), B), ie.,

— LV
FlLyv) € U Bri(o,1),E) (% N, + Lh2>
SDE].—PNLhz]
and the Definition 1.1 yields
1
Mgt sin) (Fiew) | LM(0.2, ) < logy Cand (Fy, 1) - (3.9)

12



2. In order to provide an upper bound on Card (f[ﬁNl hz})’ we introduce a discrete metric

pf i A x A — N associated to p as follows:

0 if T =y,

pHz,y) = (3.10)

qg+1 if p(Z’y) € (¢.q+1] for some ¢ € N,
2

for every x, y € A. Since A is an optimal ho-covering of F, one has
Card (Ame(a,r)> < N, (Bpla, 7+ ho)|E)  forallae A;r >0

and the second inequality in (2.5) yields

Card(AﬂBp(a,r)) < <2.<hi2+1>>d.

Hence, for every £ > 1 and = € A, it holds

Card (B(z,£ — 1)) = Card ({y €Al pHx,y) < - 1})
— Card (Aﬂ B, (z, (L — 1)h2)> < (204, (3.11)

For any given ff e F [ N1 ha]’ the following increasing step function ¢ : [0, L] — N defined by

0 forall s € Iy

Sﬁfﬁ(s) = i—1 (3.12)

S o (fﬁ(tz),fﬁ(tw)) ti—1 forallsel;,icT, Ny —1
/=0

measures the total of jumps of f# up to time ¢;. From (3.10), one has

Np—2
g rf i
sup |pp(t)] < PP fF(te), fP(tegr) ) + Ny —2
te[OL}| f | ; ( - >
& (ol te (tz D) TV (%[0, L))
< < + +1>+N1—2§%+2N1—3
ha
=0
1 %4
§h—-(2(N1—1)-h2+V)+2N1—3 = 4N1—5-|—h—. (313)
2 2

Vv
In particular, upon setting 'y, p,) == 4N1 — 4 + {h—J, a constant depending on N7 and ho,
2
the function p in (3.12) satisfies

pr(s) = op(ti) € {0,1,2,. LNy o) — 1} forallsel;, i€0,N; —1.
Thus, if we consider the map T : ]:[N ha) B([0, L], [0,400)) such that
T(f% = © s for all f* e F [N ha]
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then
T(‘F[ﬁNhhz]) = {gpfu ‘f e F [N1 h2]} - I[Nl,hQ].

Here, Ty, p,) is the set of increasing step functions ¢ : [0, L] — {0, L2, Uiy hg) — 1} such
that
#(0) = 0 and ¢(s) = ¢(t;) forallicO,Ny —1, s€ ;.

Since the cardinality of Zy, 3, is equal to < Nl’h2]>, one has

r
4 _ Ni,h
Card (T (‘F[Nl,hg}» < Card(Zjy, py)) = <]\[[1 v 21}> . (3.14)

3. To complete the proof, we need to establish an upper estimate on the cardinality of
T (p f¢), the set of functions in f[ﬁNl ho] that have the same total length of jumps as that of

ff at any time t;. In order to do so, for any given f* e f[tiNl hy]» W Set

kf = pf (fﬁ(ti),fﬁ(ti_i_l)) foralli € 0,N; — 2.

As in (3.13), we have

N1—-2 Ny—2 v
YR = Y0 (fﬁ( ti), At H—l)) < 3N 1)+ o
=0 i=0

and

T_l(‘Pfﬁ) = { ‘F[Nl ho o (g(tisr),9(t;) = /<;jj for all i € 0, Ny — 2}

{ ]:[Nl ha]

N

g(ti1) € B (g(ti), kg) for all i € 0, Ny — 2} .

Observe from (3.11) that if g(¢;) is already chosen then there are at most (21@?)‘1 choices for
g(ti11). Since we have Ny, choices of the starting point g(0), the cardinality of T71(¢ £¢) can
be estimated as follows

Ni—2 o1 f (N1-1)
> 2k;
Card (T (pg)) < N, -TV22KD)T < Ny, - <7 1\701k>
N =

2(3(Ny —1)+ = 9 v\ di-1)
< Np, - ( N 2 :Nh2-<6—|—N1_1-h—2> . (3.15)

Recalling (3.14)-(3.15) and the classical Stirling’s approximation

]\71 - 1>N1—1

(Nl—l)! Z 27T(N1—1)'< o

14



we estimate

d(N1—1)
J < : 2 v (Five he]
Card <]:[N17h2]> < Ne, (6 * Ny —1 h2> <N1 -1
S Ni—1 hy (N, — 1)

Nh2 . <6 + 2 V )d(Nl_l) . <F[N17h2]>N1_1 . eN1—1

< “tha - .
= V/2r(Ny - 1) Ni—1 ho Ny —1

d(N1—1) (N1—-1)
§Nh2-<6+ 2 V) -<46+Z- ¢ > .

Ni—1 hy
Thus, (3.9) yields

Vv 2
M k] (Firwy | LY (0. L)B)) < d-(Ni = 1) log, <6+h—2‘ N1—1>

2Ny
(V1) logy (de+ - —C )+ H,, . (3.16)
1 089 € h2 ]\71 —1 ha - .
LV .
4. For every 0 < ¢ < < by choosing N7 € Z* and ho > 0 such that
3LV 3LV 2LV Vv
o N -1 = |2 o< 22 hy = ——
SRR {%J—F - e’ ? Ny —1"
we have
LV LV LV 3LV €
—— + Lhy < < hy > — .
on, TEe S oty DT Saw o S wmd = gp
Thus, (3.16) implies that
2LV
He (Fiow | L0, B)) < [d+logy(5e)) - = +H
and this completes the proof. ]

Using Proposition 3.1, we now proceed to provide a proof for the upper estimate of the e-
entropy for the set .F[‘IL’ y] in Li([0, L], E).

Proof of the upper estimate in Theorem 3.1. From Lemma 2.6, one has
He (Fay | LM0.20,B)) = #He (74 | L0, L), B)) (3.17)

with ]}[\Ii,\/} = {f € ]-"[‘Ii’v} ‘ f is continuous from the right on the interval [0, L)} Thus, it is

sufficient to prove the second inequality in (3.2) for ]}[‘Ii V] instead of ]:[‘% v

1. For a fixed constant h > 0 and f € f[\lﬁ,v’p let Apjp = {xo,xl,xg, ...,fo,h} be a partition
of [0, L] which is defined by induction as follows:

xzg = 0, Ti+1 = Sup {95 € (z;, L) ‘ p(f(y), f(z:)) € 0,h] forallye (331'795]} (3.18)
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for all 4 € 0, Ny, — 1. Since f is continuous from the right on [0, L), it holds
p(f(x;), f(xig1)) > h for all 7 € 0, Ny, — 2.

Thus, the increasing property of ¥ implies that

Nf’h—2
V> TVY(£0.L) > > U(p(f(xi), f(zit1) = (Npw—1)- (h),
=0
and this yields
TVY(f,0, L)) 4

A TR 1()

< 4o00. (3.19)

Introduce a piecewise constant function fy : [0, L] — E such that

£ () for all x € [z, 2i41) , 1 € W
fn(@) =

f (:ENf’h_l) for all z € [:ENf’h_l,L] .

From (3.18), the L!-distance between f; and f is bounded by

Ny¢p—

pus (s f) = /[OL}p(fh(:v),f(w))d:v > / 0, (@)da

Nyp—1
1=0

On the other hand, by the convexity of ¥ we have

Ngp—2 Nynp—2
Vo> U (p(f(@), f(win)) = (Npp—1)- @ (th —1 Yo olf wz+1)))
=0 =
e o{

and the strictly increasing property of ¥ ! implies

VU D.0) < (=0 ().

From Remark 2.7 and (3.19), it holds that

B 1% Npp—1 - 1 h
@1<Nf,h—1>' v S VWG = am
and this yields )
(fn,[0,L]) < 0] Vo=V,



From (3.20) and (3.8), the set ]}[‘% V] is covered by a collection of closed balls centered at
g € Fir,v,) of radius Lh in L'([0, L], E), i.e.,

j—[\lﬁ,\/} c U Bryo,1),5)(g, Lh).

9EFL, V]

In particular, for every e > 0, choosing h = 57 we have

eV 5 - €
Vg = wma(g M i s U Pupns (+3)
2L geF
s
2L
and this implies
= 1 1
He (FL ‘ LI([0.L], B)) < H; (f[ws] ( L ([O,L],E)). (3.21)
" ar
a1 (V
If0<e<2LY 1 then
U S v L,
= Y T2 9 g(8) 2
vu(gg) 7o (y)
In this case, one can apply Proposition 3.1 to get
. 4LV%
He (J:[LvVQEL] ‘ L ([0,L],E)> < [3d + logy(5e)] - — +H-
2V
= [3d + logy(5e)] - +H-
Vi) T

and thereafter, we use (3.17), (3.21) to obtain the second inequality in (3.2). O

3.1.2 Lower estimate

To prove the first inequality in Theorem 3.1, let us provide a lower estimate on the e-entropy
in L'([0, L], E) to

Gl Vel = {g :[0,L] = B,(x,h) | TV¥(g,]0, L)) < V}, (3.22)

a class of bounded U-total variation functions over [0, L] taking values in the ball centered at
a point z € E of radius h > 0.

Lemma 3.4. Assume that p > 1. For every e > 0, it holds

(2(4f;//f>).2_6)

Me (8 yausarmr s oy | L0, LLE)) 2 27 CT (3.23)
where p = log;(2) - p.
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Proof. The proof is divided into two steps:

1. We first recall from (2.6) that

h P 5
M2*(2+2/ﬁ).h(Bp($7 h)|E) > <m> = 9P+2 forall h >0 .

Given two constants h > 0 and Ny € Z™, let us

L
e divide [0, L] into N small mutually disjoint intervals I; with length h; = N & in
1
Proposition 3.1;

e take a (2_(2+2/f’) 'h) —packing Ay, = {a1,as,...,a95+2} of By(z,h), ie.,

for all a; # aj € Ay, .

Consider the set of indices
Apn, = {5 = (0i)icfo,1, -, N1 —1} ‘ 0 € Ah}
and define a class of piecewise constant functions on [0, L] as follows:
Ni—1
GhN, = {95 = > di-x ‘ o€ Ah,Nl}-
i=0
For any 6 € Ay n,, the U-total variation of g5 is bounded by
TV (gs.[0,L]) < (N1 — 1) W(2h).
Hence, under the following condition on A and V'
(Ny —1)-w(@2h) <V, (3.24)
the definition of g&vv,hvx] in (3.22) implies that g5 € g[‘%’uh’x} for every 6 € Ap, N, and thus
Gn,ny C g[\III/,V,h,x] .

In particular, we get

M. (g[‘liy,hvx] | Ll([o,L],E)) > M, (gh,Nl | Ll([o,L],E)) foralle>0.  (3.25)

2. Let us provide a lower bound on the e-packing number M, (g,h N ! Li([o, L], E)) For any
given 8,6 € Ap. N, and € > 0, we define

18(26) = {5 S AhJ\fl

prags,g5) <2¢}, 0(6.6) = Card ({i DN =18 £5}).

18



The L!-distance between gs and g5 is bounded below by

Ni—1 Ni—1 _
pra(gs 95) = Z/Ip(ga(t)vgg(t))dt = > p(6i,0:) - |1l
i=0 i =0
Ni—1
L . oeass Lh -
= N > pl6i,6:) > 2 (2+2/p)'ﬁ1'77(575)
i=0

and this implies the inclusion

n(6,0) <

(3.26)

23+2/1~)N g
IS(QE) - {5€Ah,N1 Tl .

On the other hand, for every r € 0, Ny — 1, we compute

n(6,6) = r}) — (‘7\?) . <2f)+2 B 1)r‘

Card ({9 € An,

Thus, (3.26) implies that

Card (Z5(2¢)) < Card <{5 € Ap N,

- 23+2/13ng
- - <

In particular, for every 0 < e < 2_(4+2/ﬁ)Lh, we have

S ETN
1 P " P = 1
~ < . (9P+2 _ < p+2 _ .
Card (Z5(2¢)) < > <r> (272 -1) < (2P2-1) ;) <T>
< 2B oM gM@HB/)  (3.97)
Recalling Definition 2.1, we then obtain that

d Ni(p+2) -

M. (gh7N1 ‘ Ll([O,L],E)) Card (Gn,n,) > 2 — 9oMb/2

~ Card (Z3(2¢)) — 2M@+p/2)

Finally, by choosing h = 2(4+2/P) . % and Ny = {\11(2(44;;13) : 2_LE)J + 1 such that (3.24) holds,
we derive ~
PV
442/P) . 2¢e
M, <g2(4+2/5),%7N1 ‘ Ll([O,L],E)> > g2 (21H2/P) )
and thereafter, (3.25) yields (3.23). O

To complete this section, we prove the first inequality in (3.2).
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Proof of the lower bound in Theorem 3.1. For any 0 < 2h < hg, let {1, z2, ... ,$Mh2} C
E be an hg-packing of E with size My, i.e.,

ha ha e
B, <xi, 7) ﬂBp <x]~, 7) =0 foralli#jel,My, .
Recalling the definition of g[‘li Vihya] D (3.22), we have
pri(fis i) = /[OL} [P(xhxj) — plws, fi(s)) — P(l’ﬁfj(s))} ds = L-(hy —2h) =: Ly p,
for any f; € Q[‘Ii Vihoi] and f; € g[% Vi) with ¢ # j € 1, M}, . Thus, Lemma 2.2 implies that

Ny (Fifvy | L O LLE)) = M, (FLy | LH(0.2),B)
M,

My | U Ghvieg | 10,21 B)
=1

My,

= Z ML}L,hQ (g[\li,V,h,ri}
=1

v

L'(0, L] E)) .

Two cases are considered:

4
e If p = 0 then by choosing h = % and hy = fg such that Ly, , = 2¢, we have

N, <}'[‘I£7V} ‘ LY([0, I, E)) > M
and this particularly implies the first inequality in (3.2).
e Otherwise if p > 1, then for any € > 0, choosing h = 2(6+2/P) % and ho = (2 + 2(6+2/f’)) %
with p = log;(2) - p such that Ly, 5, = 2¢, we can apply (3.23) to g[“i,wh,wi] for every i € 1, M,
to obtain

M5 1a64+2/8)). 5

Ne (]"-[\ILI/’V} ‘ Ll([O,L],E)) > Z M2€ <gﬁ,‘/v2(4+2/f’>'2f7xi] ‘ Ll([O,L]vE))
i=1

I -1 \%

'22\11(2(6”/;,)'%) > M 2sse -22\11( SLSE)

- L

o

o

> M(2+2(6+2/f>)).

£
L

and this yields the first inequality in (3.2). U

3.2 An application to scalar conservation laws with weakly nonlinear fluxes

In this subsection, we use Theorem 3.1 and [34, Theorem 1] to establish an upper bound on
the e-entropy of a set of entropy admissible weak solutions for a scalar conservation law in
one-dimensional space

ur(t, ) + f(u(t,z)), =0  for all (t,z) € (0,400) x R (3.28)
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with weakly genuinely nonlinear flux f € C?(R), i.e., which is not affine on any open interval
such that the set
{ueR | f’(u) # 0} is dense in R. (3.29)

We recall that the equation (3.28) does not possess classical solutions since discontinuities arise
in finite time even if the initial data are smooth. Hence, it is natural to consider weak solutions
in the sense of distributions that, for the sake of uniqueness, satisfy an entropy admissibility
criterion [17, 28] equivalent to the celebrated Oleinik E-condition [37] which generalizes the
classical stability conditions introduced by Lax [32]:

Oleinik E-condition. A shock discontinuity located at x and connecting a left state u” :=
u(t,z—) with a right state uf* .= u(t,z+) is entropy admissible if and only if there holds

)~ fw) _ Ff) — fw)

ul —u - ul —u

for every u between u” and u®?, where u(t,x+) denote the one-sided limits of u(t,-) at x.

It is well-known that the equation (3.28) generates an L'-contractive semigroup of solutions
(St)i>0 that associates, to every given initial data ug € L'(R) N L*(R), the unique entropy
admissible weak solution Syug := u(t,-) of the corresponding Cauchy problem (cfr. [17, 28]).
For any given T, L, M > 0, we provide an upper bound for H, (ST(U[LM})‘Ll(]R)) with

Urm = {uo € L™ (R) ‘ Supp (ug) C [-L, L] , HUOHLm(R) < M},
the set of bounded, compactly supported initial data.

By the monotonicity of the solution operator S; and recalling that Syug can be obtained as a
limit of piecewise constant front tracking approximations [13, Chapter 6], one can show that

Lemma 3.5. For every L, M, T >0 and ug € Uz, p, it holds
HSTUOHLoo(R) < M  and Supp(Sruo) € [= )y Cnmr)

where

bovr = L+T- fy and o= |vs|liIJ\)4 | (v)] -

Proof. For the proof see [4, Lemma 2.2]. O

Let us introduce the function  : [0, +00) — [0, +00) such that

o(h) = min inf — ©(laa
0 = omin (ot 1 = gl oarn

with Ajg 444 being the set of affine functions defined on [a,a + h]. The convex envelop ® of
0 is defined by

® = supp with G := {¢:[0,400) = [0,400) | ¢ is convex, ¢(0) =0, ¢ <0}.
peG

The following function
U(z):=®(x/2) -z  forall xz €0+ o)
is convex and satisfies the condition (2.7). As a consequence of [34, Theorem 1], the following

holds:

21



Lemma 3.6. For any ug € Uy, zp), the function Stug has bounded V-total variation on R and

1
TVY (Stug,R) < Yira1] = V£, <1 + T)

where y|p, vy 48 a constant depending only on L, M and f.
. L[V
Recalling Corollary 3.3 for d = 1 that for every 0 < ¢ < 2LW¥ 1

Vv SLM
He (‘F&IMM,V} ‘ Ll([()?L]aR)) < [3 lOgZ 5+ 10g2(5€)] ’ 7) + 10g2 <T + 1) ) (330)

v (51

we prove the following:

Theorem 3.7. Assume that f € C3(R) satisfies (3.29). Then, for any constants L, M, T > 0,
the following holds

He (Sr@uuan['®) < tog, (<P

1+ 7
+ 2[3logy 5 + logy(5e)] - w

v (4L+4€T- fj’w>
for every e > 0 sufficiently small.

Proof. Let us define the following set

ST(U[L,M]) = {v: [0, 2€[L7M,T]] — [-M, M] ‘ Jup € Uyp, py such that
v(z) = Stug (a; — E[L,Mﬂ) for all z € [O, 2€[L,M7Tﬂ }

From Lemma 3.5 and Lemma 3.6, it holds that

He <5T(U[L,M]) ‘ LI(R)> = He (ST(Z/[[L,M]) ‘ L' ([0,20, pmy] s R)) (3.31)
and
& v
ST(U[L’M}) < f[2Z[L,M,T]7M7'Y[L,M,T]] ’
where
f[\gé[L,M,T]va'Y[L,M,T]] = {9 € BV\I]( 10,2611 nimy] S [ M, M]) ‘ TV (g, 10, 201, 1)) < V[L,M,T]}

is defined as in Corollary 3.3. By (3.30) and (3.31), we obtain

He <ST(U[L,M]) ‘ LI(R)) =H. <5T(U[L,M]) ‘ L* ([0, 2612 pr.7] ’R))
< H. (7 IR (CEIREIRS)

(2012, 00,77 ML 0,1

2 16M7
< [3logy 5 + logy(5e)] - _Nemay + log, <w + 1> .
13
v <4Z[L,M,T])

This completes the proof. Ul

22



Remark 3.8. In general, the upper estimate of H. <ST(L{[L,M]) ‘ Ll(R)> in Theorem 3.7 is
not optimal.

We complete this subsection by considering (3.28) with a smooth flux f having polynomial
degeneracy, i.e., the set Iy = {u € R | f”(u) = 0} is finite and for each w € Iy, there exists a
natural number p > 2 such that

fOw) =0 forallje2,p and  fP(w) £ 0.

For every w € Iy, let p,, be the minimal p > 2 such that f@*+D(w) # 0. The polynomial
degeneracy of f is defined by
P mape

1
Recalling [34, Theorem 3], we have that Spug € BV?/ (R,R) and

1 B 1 B
TV ?f (STUO,R) < YL, M)] <1+ T) = VL,M,T)

for a constant |z, 1y depending only on L, M and f. This yields

SrUpa) S FiL

= T 2w MAL M)

where the set

1 1
Dy _ s o7 ~
f[QZ[L,M,T]7M7'~Y[L,M,T]] B {g € BV ([0’ %[L’M’T]] ' [_M’ M]) ‘ vy (g, [0’ L]) = W[L’Mﬂ}

is defined as in (3.4). Using (3.30) one directly obtains an extended result on the upper
estimate of the e-entropy of solutions in [4, Theorem 1.5] for general fluxes having polynomial
degeneracy.

Proposition 3.2. Assume that f is smooth, having polynomial degeneracy py. Then, given
the constants L, M, T > 0, for every e > 0 sufficiently small, it holds that

16(L + Tf!, )M
(PR ),

NGNS
He (ST(U[L,M]) ‘ Ll(R)> < % + logy

where

- 1
F[T,L,M,f] = 22pf+1 [3 log2 5 + log2(5e)] ’Y[L,M] (L + T- fjlw)pf <1 + T) .

Remark 3.9. The above estimate is sharp in this special case. Indeed, we may exactly follow
the same argument as in the proof of [4, Theorem 1.5] to show that

1
He (ST(U[L,M]) ‘ LI(R)> > AT,L,M,f‘ETf ,
where A, ¢ > 0 is a constant depending on L, M, T and f. Hence, H. (ST(U[L,M]) ‘ Ll(]R)>

is of the order a%f

Acknowledgments. This research by K. T. Nguyen was partially supported by a grant
from the Simons Foundation/SFARI (521811, NTK). The authors would like to warmly thank
the anonymous referees for carefully reading the manuscript and for their suggestions, which
greatly helped in improving the paper overall.

23



References

1]

2]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

F. Ancona, P. Cannarsa and Khai T. Nguyen, Quantitative compactness estimates for
Hamilton-Jacobi equations, Arch. Rat. Mech. Anal., 219, no. 2, 793-828, 2016.

F. Ancona, P. Cannarsa and Khai T. Nguyen, The compactness estimates for Hamilton
Jacobi Equations depending on space, Bulletin of the Institute of Mathematics, Academia
Sinica 11, no. 1, 63-113, 2016.

F. Ancona, O. Glass and K. T. Nguyen, Lower compactness estimates for scalar balance
laws, Comm. Pure Appl. Math 65, no. 9, 1303-1329, 2012.

F. Ancona, O. Glass and K. T. Nguyen, On Kolmogorov entropy compactness estimates
for scalar conservation laws without uniform convexity, SIAM J. Math. Anal. 51, no. 4,
3020-3051, 2019.

F. Ancona, O. Glass and Khai T. Nguyen, On lower compactness estimates for general
nonlinear hyperbolic systems, Ann. Inst. H. Poincare Anal. Non Lineaire, 32, no. 6,
1229-1257, 2015.

F. Ancona, O. Glass and K. T. Nguyen, On quantitative compactness estimates for hy-
perbolic conservation laws, to appear on Hyperbolic problems: theory, numerics and
applications; proceedings of the 14th International Conference on Hyperbolic Problems
(HYP2012), AIMS, Springfield, MO, 2014.

P. Assouad, Plongements lipschitziens dans R?, Bull. Soc. Math. France, 111, 429-448,
1983.

P. L. Bartlett, S. R. Kulkarni and S.E. Posner, Covering numbers for real-valued function
classes, IEEE Trans. Inform. Theory 43, no. 5, 1721-1724, 1997.

S. Bianchini and E. Marconi, On the structure of L°°- entropy solutions to scalar conser-
vation laws in one space dimension, Arch. Rat. Mech. Anal., 226, 441-493, 2017.

L. Birgé, Approximation dans les espaces metriques et theorie de I'estimation, Zeitschrift
fur Wahrscheinlichkeitstheorie und Verwandte Gebiete 65, 181-237,1983.

L. Birgé, Estimating a density under order restrictions: nonasymptotic minimal risk,
Ann. Stat. 15, 995-1012, 1987.

L. Birgé and P. Marssart, Rates of convergence for minimum contrast estimators, Probab.
Theory Related Fields 97, 113-150, 1993.

A. Bressan, Hyperbolic systems of conservation laws, Oxford Lecture Series in Mathe-
matics and its applications 20, Oxford University Press, Oxford, 2000.

E. M. Bronshtein, e-entropy of convex sets and functions, Siberian Math J. 17, 393-398,
1976.

L. Le. Cam, Convergence of estimates under dimensionality restrictions, Ann. Statist. 1,
38-53, 1973.

K.-S. Cheng, A regularity theorem for a nonconvex scalar conservation law, J. Differential
FEquations 61, no. 1, 79-127, 1986.

24



[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

C. M. Dafermos, Hyperbolic conservation laws in continuum physics, Grundlehren Math.
Wissenschaften Series, Vol. 325. Fourth ed. Berlin: Springer-Verlag, 2016.

C. De Lellis and F. Golse, A quantitative compactness estimate for scalar conservation
laws, Comm. Pure Appl. Math. 58, no. 7, 989-998, 2005.

D. Dryanov, A. N. Kolmogorov entropy for classes of convex functions, Constructive
Approx 30, 137-153, 2009.

R. M. Duley, Central limits theorems for empirical measure, Ann. Probability 6, 899-929,
1978.

P. Dutta and K. T. Nguyen, Covering numbers for bounded variation functions, J. Math.
Anal. Appl. 468, no. 2, 1131-1143, 2018.

P. Groeneboom, Some current developments in density of estimation, CWI Monographs,
North Holland, 1986.

A. Guntuboyina and B. Sen, Covering Numbers for Convex Functions, IEEE Transactions
On Information Theory 59, no. 4, 1957-1965, 2013.

D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other
learning applications, Information and Computation100, 78-150, 1992.

D. Haussler, Sphere packing numbers for subsets of the Boolean n-cube with bounded
Vapnik-Chervonenkis, Journal of Combinatorial Theorem, Series A 69, 1995.

W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc. 58, 13-30, 1963.

A.N. Kolmogorov and V.M Tikhomirov, e-entropy and e-capacity of sets in functional
spaces, Uspekhi Mat. Nauk 14, 3-86, 1959.

S. N. Kruvzkov, First order quasilinear equations with several independent variables,
Mat. Sb. (N.S.) 81 (123) 1970, 228-255. (Russian) English translation in Math. USSR
Sbornik Vol. 10, No. 2, 217-243, 1970.

S.R. Kulkarni, S.K. Mitter, and J.N. Tsitsiklis, Active learning using arbitrary binary-
valued queries, Machine Learning 11, 23-35 1993.

P. D. Lax, Accuracy and resolution in the computation of solutions of linear and nonlinear
equations, in : Recent Advances in Numerical Analysis, Proc. Sympos., Math. Res. Cen-
ter, Univ. Wisconsin, Madison, Wis., 1978), Publ. Math. Res. Center, Univ. Wisconsin,
Academic Press, New York, 107-117, 1978.

P.D. Lax, Course on Hyperbolic Systems of Conservation Laws, XXVII Scuola Estiva di
Fis. Mat., Ravello, 2002.

P. D. Lax, Hyperbolic systems of conservation laws II, Comm. on Pure and Applied
Math., 10, 537-566, 1957.

W. S.Lee, P. L. Bartlett, and R. C. Willamson, On efficient learning of linear combinations
of basic function, Proceedings of the Eight Annual Conference on Computational learning
theory, ACM Press, 369-376, 1995.

25



[34] E. Marconi, Regularity estimates for scalar conservation laws in one space dimension, J.
Hyperbolic Differential Equations, 15, no. 4, 623-691, 2018.

[35] J. Musielak and W. Orlicz, On generalized variations, I. Studia Math., 18,11-41, 1959.

[36] O. A. Oleinik, Discontinuous solutions of non-linear differential equations, Uspehi Mat.
Nauk (N.S.) 12 (1957) no.3 (75), 3-73. (Russian) English translation in Ann. Math. Soc.
Trans. Ser. 2 26, 95-172.

[37] O. A. Oleinik, Uniqueness and stability of the generalized solution of the Cauchy problem
for a quasi-linear equation, Uspehi Mat. Nauk 14, no. 2(86), 165-170 (Russian), 1959.

[38] D. Pollard, Convergence of Stochastic Processes, Springer, New York, 1984.

[39] L. Tartar, Compensated compactness and applications to partial differential equations,
In: Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, volume 39 of
Res. Notes in Math., Pitman, Boston, Mass.-London, 136212, 1979.

[40] S. Van de Geer, Applications of empirical process theory, Cambridge Univ. Press, Cam-
bridge, U.K., 2000.

[41] Y. Yang and A. Barron, Information-theoretic determination of minimax rates of conver-
gence, Ann. Statist. 27, 1564-1599, 1999.

26



