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MODELING AND ANALYSIS OF THE COUPLING IN DISCRETE
FRACTURE MATRIX MODELS\ast 

MARTIN J. GANDER\dagger , JULIAN HENNICKER\dagger , AND ROLAND MASSON\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . This paper deals with the derivation and analysis of reduced order elliptic PDE
models on fractured domains. We use a Fourier analysis to obtain coupling conditions between
subdomains when the fracture is represented as a hypersurface embedded in the surrounded rock
matrix. We compare our results to prominent examples from the literature for diffusive models. In a
second step, we present error estimates for the reduced order models in terms of the fracture width.
For the proofs, we rely on a combination of Fourier analysis, asymptotic expansions, and functional
analysis. Finally, we study the behavior of the error of the reduced order solutions on numerical test
cases when the fracture width tends to zero.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Fourier analysis, asymptotic analysis, functional analysis, error estimates, model
order reduction, discrete fracture matrix models

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65N55, 65Z05, 46N20, 76S05

\bfD \bfO \bfI . 10.1137/20M1312125

1. Introduction. There are countless physical processes in real-life applications
that can be modeled by elliptic PDEs. One of the difficulties one often encounters in
the formulation of such models is the presence of heterogeneities in the ambient media
(i.e., spatially discontinuous coefficients in the differential equations). If this is the
case, then one has to think about coupling conditions between regions at the material
interfaces. A further difficulty for the numerical solution of the problem occurs when
the heterogeneity is a thin layer in the sense that its length is much bigger than its
width, which requires anisotropic and/or very small mesh cells inside the layer. This
situation most prominently occurs in subsurface flow applications, where the thin
heterogeneous layers are called fractures, and they are surrounded by the so-called
rock matrix. Being motivated by such applications, we adopt this nomenclature in
what follows.

A model reduction strategy consists in representing the fractures as hypersurfaces
embedded in the matrix domain. This results in a system of PDEs in the full dimen-
sional matrix domain coupled with a system of tangential PDEs in the reduced dimen-
sional fractures. Therefore, these models are called in the literature mixed- or hybrid-
dimensional models or discrete fracture matrix (DFM) models. A common method to
establish such models consists in integrating the fracture equations over the fracture
width and using some ad hoc approximations for the coupling conditions (see [9, 20, 1,
19], where these techniques have been employed on simple geometries, and [4, 6] for ex-
tensions to general fracture networks). For nonlinear DFM models, we refer the reader
to [5, 2, 7]. For an overview and comparison of current discretization methods, see [3].

The convergence of the DFM model solution to the full model solution has been
the objective of several studies. They all carry out the convergence proofs in a classical
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functional analysis setting, but they differ in the asymptotic scaling of the model
parameters, which leads to different DFM models. In [23], the authors use a suitable
modification of the solution inside the fracture in order to control its gradient and to
show convergence for isotropic Darcy flow and a fracture of high resistivity. In [8], the
authors also use a modification of the fracture solution and derive error estimates for
anisotropic Darcy flow. In [21], a rescaling of the fracture normal coordinate is used,
which yields a rescaled model on a geometry independent of the fracture width. The
convergence is then proved by using the compactness of the rescaled solution. This
technique is further applied in [22, 18] to nonlinear problems (Richards equation and
reactive transport). On the other hand, in [7] it has been observed numerically that
the well-established approximation of pressure continuity across highly conductive
fractures for the linear single-phase flow models leads to nonconvergent solutions for
two-phase flow models, which involve highly nonlinear matrix fracture transmission
conditions. Analytical results for these models are still missing.

In the present paper, we use a completely new approach to develop and analyze
reduced order models for general linear elliptic problems. Our focus lies on the deriva-
tion of coupling conditions, which have to be satisfied by the traces of the solutions
for the matrix domain on each side of the matrix-fracture interfaces. We emphasize
that we are not only interested in the derivation of coupling conditions that have to
be satisfied in the limit of vanishing aperture but in particular with the derivation
of coupling conditions that have to hold up to a certain order of the aperture, which
in turn occurs as a model parameter. The idea is to first use a Fourier transform in
the fracture tangential direction, which allows us to eliminate the fracture unknowns
and to derive exact coupling conditions between the matrix subdomains, a technique
which can be regarded as a continuous analogue to a Schur complement of the fracture
unknowns onto the matrix-fracture interfaces and which is frequently used in domain
decomposition to derive coupling conditions for optimal or optimized Schwarz meth-
ods; see [11, 12] and references therein and [13, 14, 15, 16] for a different type of
heterogeneous coupling using such techniques. Reduced order coupling conditions are
then obtained by truncating the asymptotic expansions of the exact conditions at the
desired order.

Our paper is organized as follows. In section 2, we present the model problem
for which we develop coupling conditions. Section 3 is devoted to the derivation of
the reduced order models and section 4 to the study of their well-posedness. The
focus of section 5 is a posteriori approximations of the fracture unknowns by suitable
interpolations of the traces of the matrix solution at the interfaces. A comparison
of our new reduced models to the Darcy flow models proposed in [20] is given in
section 6, where we also recover and extend the convergence results from [23]. In
section 7, we derive error estimates for reduced order models for anisotropic diffusion
problems, which are sharper than the estimates given in [8]. From the exact and
reduced order coupling conditions in Fourier space, we can infer the error of the
traces of the matrix Fourier coefficients at the interfaces. Using trace and expansion
inequalities for functions in fractional Sobolev spaces, we obtain error estimates of
optimal order in the fracture width, namely, cubic order of convergence for the H1-
norm of the matrix solutions and quadratic order of convergence for the H

1
2 -norm of

the fracture solution. In section 8, we present a series of numerical tests, where we
address the convergence of the reduced order solutions w.r.t. the fracture width for
different asymptotic behavior of the model parameters, including cases not covered
by our analysis.
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Fig. 1. Model problem domain, where \Omega 1 = (ax, - \delta )\times \Gamma , \Omega 2 = (\delta , bx)\times \Gamma and \Omega f = ( - \delta , \delta )\times \Gamma ,
with ax, bx \in \BbbR and \Gamma = (ay , by) \subset \BbbR . Note that the Fourier analysis in sections 3 and 7 will be
carried out on unbounded domains by setting \Gamma = \BbbR . The unit normals on \Gamma pointing outside of \Omega j

are denoted by \bfn j .

2. Model problem. We consider as our model problem a fracture between two
matrix domains as illustrated in Figure 1,

 - divqj +
bj

2
\cdot \nabla uj +

\biggl( 
\eta j  - div

bj

2

\biggr) 
uj = hj in \Omega j , j = 1, 2, f,

(2.1)

qj =

\biggl( 
Aj\nabla  - bj

2

\biggr) 
uj in \Omega j , j = 1, 2, f,(2.2)

uj = uf on \partial \Omega j \cap \partial \Omega f , j = 1, 2,(2.3)

qj \cdot nj = qf \cdot nj on \partial \Omega j \cap \partial \Omega f , j = 1, 2,(2.4)

together with some suitable outer boundary conditions. The model coefficients are
\eta j : \Omega j \rightarrow \BbbR \geq 0, bj : \Omega j \rightarrow \BbbR 2, such that \eta j  - divbj \geq 0, and coercive matrices
Aj : \Omega j \rightarrow \BbbR 2\times 2. The model unknowns are qj and uj . For simplicity, we assume
that the fracture source term is trivial, hf \equiv 0. We also assume constant fracture
coefficients throughout this paper.

3. Derivation of the reduced models by Fourier analysis. We now derive
suitable coupling conditions between the matrix domains \Omega 1 and \Omega 2 that complement
the matrix equations

 - divqj +
bj

2
\cdot \nabla uj +

\biggl( 
\eta j  - div

bj

2

\biggr) 
uj = hj in \Omega j , j = 1, 2,

(3.1)

qj =

\biggl( 
Aj\nabla  - bj

2

\biggr) 
uj in \Omega j , j = 1, 2,(3.2)

and allow us to find approximate matrix solutions ured
j , qred

j , j = 1, 2, for small
fracture apertures \delta > 0, without solving the fracture equations. The fracture solution
can then be reconstructed a posteriori from the traces at the interfaces of the matrix
solutions, as discussed in section 5.

In what follows, we will drop the index f for fracture parameters whenever it does
not lead to confusion. Only in section 4, we will have to use it again. Furthermore,
for any i, j \in \{ 1, 2\} , we will denote by aij the ijth entry of A and by bi the ith entry
of b, with respect to the canonical basis \{ ex, ey\} of \BbbR 2.
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We assume now for simplicity that the overall domain is \BbbR 2 to be able to use
Fourier transforms (similar results could also be obtained on bounded domains using
Fourier series). From (2.1) and (2.2) with hf \equiv 0, the Fourier coefficients \^uf (x, k) of
uf (x, y) have to satisfy for all k \in \BbbR the ODE

 - a11\partial xx\^uf +
\Bigl( 
b1  - (a12 + a21)ik

\Bigr) 
\partial x\^uf + (a22k

2 + b2ik + \eta )\^uf = 0 in \Omega f .(3.3)

The roots of the characteristic polynomial associated with (3.3) are \lambda 1,2 = r\pm s, where

r =  - 1

2a11
((a12 + a21)ik  - b1) and s =

\Bigl( 
r2 +

1

a11
(a22k

2 + b2ik + \eta )
\Bigr) 1

2

.

The ansatz for the solution of (3.3),

(3.4) \^uf (x, k) = A(k)e\lambda 1x +B(k)e\lambda 2x,

together with the coupling conditions (2.3) and (2.4), yields for the Fourier coefficients
\^uj(x, k) of uj(x, y) and \^qj(x, k) of qj(x, y), j = 1, 2, on the interfaces,

\^u1( - \delta , k) = A(k)e - \delta \lambda 1 +B(k)e - \delta \lambda 2 ,(3.5)

\^u2(\delta , k) = A(k)e\delta \lambda 1 +B(k)e\delta \lambda 2 ,(3.6)

\^q1( - \delta , k) \cdot n1 = a11\lambda 1A(k)e - \delta \lambda 1 + a11\lambda 2B(k)e - \delta \lambda 2 +

\biggl( 
a12ik  - b1

2

\biggr) 
\^u1( - \delta , k),(3.7)

 - \^q2(\delta , k) \cdot n2 = a11\lambda 1A(k)e\delta \lambda 1 + a11\lambda 2B(k)e\delta \lambda 2 +

\biggl( 
a12ik  - b1

2

\biggr) 
\^u2(\delta , k).(3.8)

Equations (3.5) and (3.6) are now solved for A and B,

A(k) =
\^u2(\delta , k)e

 - \delta \lambda 2  - \^u1( - \delta , k)e\delta \lambda 2

2 sinh(2s\delta )
, B(k) =

\^u1( - \delta , k)e\delta \lambda 1  - \^u2(\delta , k)e
 - \delta \lambda 1

2 sinh(2s\delta )
,

(3.9)

which can then be substituted into the remaining two equations (3.7) and (3.8). After
some calculations, this leads to the exact coupling conditions between \^u1, \^q1 in \Omega 1

and \^u2, \^q2 in \Omega 2 across the fracture, which has been eliminated:

sinh(2s\delta )\^q1( - \delta ) \cdot n1 + (a11s cosh(2s\delta ) + \rho sinh(2s\delta ))\^u1( - \delta )

= a11se
 - 2\delta r\^u2(\delta ),(3.10)

sinh(2s\delta )\^q2(\delta ) \cdot n2 + (a11s cosh(2s\delta ) - \rho sinh(2s\delta ))\^u2(\delta )

= a11se
2\delta r\^u1( - \delta ),(3.11)

where \rho = a21 - a12

2 ik. Now, the necessary and sufficient information on the fracture
solution is contained in (3.10) and (3.11) such that the solution (u1,q1, u2,q2) of
model (3.1), (3.2), (3.10), (3.11) coincides with the solution of the original problem
(2.1)--(2.4) restricted to the matrix domain \Omega 1\cup \Omega 2. In this sense, we call the coupling
conditions (3.10) and (3.11) exact and their derivation a continuous Schur complement
(of the fracture model). For the remaining part of this section, we will drop the
arguments indicating the evaluation at x =  - \delta for the functions living in \Omega 1 and
at x = \delta for those living in \Omega 2. Taking the sum (3.10) + (3.11) yields an expression
related to the normal velocity jump across the fracture, whereas the difference (3.10)--
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(3.11) gives an expression related to the jump of the conserved scalar variable across
the fracture:

 - sinh(2s\delta )(\^q2 \cdot n2 + \^q1 \cdot n1)

= a11s
\Bigl( 
cosh(2s\delta )(\^u1 + \^u2) - (e2\delta r\^u1 + e - 2\delta r\^u2)

\Bigr) 
+ \rho sinh(2s\delta )(\^u1  - \^u2),(3.12)

a11s
\Bigl( 
cosh(2s\delta )(\^u2  - \^u1) + (e - 2\delta r\^u2  - e2\delta r\^u1)

\Bigr) 
= sinh(2s\delta )(\^q1 \cdot n1  - \^q2 \cdot n2) + \rho sinh(2s\delta )(\^u1 + \^u2).(3.13)

We now expand (3.12), (3.13) into a series in \delta and truncate at a given order. We
then obtain the following reduced order coupling conditions at x = \pm \delta :

1. Truncation after the leading-order term (CC0 coupling conditions):

\^qred
2 \cdot n2 + \^qred

1 \cdot n1 = 0 and \^ured
2  - \^ured

1 = 0.

2. Truncation after the next-to-leading-order term (CC1 coupling conditions):

 - (\^qred
2 \cdot n2 + \^qred

1 \cdot n1)

= \delta 
\Bigl( 
a22k

2 + b2ik + \eta 
\Bigr) 
(\^ured

1 + \^ured
2 ) +

\Bigl( 
 - a21ik +

b1
2

\Bigr) 
(\^ured

2  - \^ured
1 ),

\delta (\^qred
1 \cdot n1  - \^qred

2 \cdot n1) = a11(\^u
red
2  - \^ured

1 ) + \delta 
\Bigl( 
a12ik  - b1

2

\Bigr) 
(\^ured

1 + \^ured
2 ).

To get back to the physical unknowns uj and qj , j = 1, 2, we perform an inverse
Fourier transform by formally applying the rules

\^ured
j \mapsto \rightarrow ured

j , \^qred
j \mapsto \rightarrow qred

j , k2 \mapsto \rightarrow  - \partial yy, ik \mapsto \rightarrow \partial y.(3.14)

We therefore obtain as reduced order approximations of the exact coupling conditions
between the matrix domains \Omega 1 and \Omega 2 the following:

1. CC0 coupling conditions:

qred
1 \cdot n1 + qred

2 \cdot n2 = 0 and ured
2  - ured

1 = 0.(3.15)

2. CC1 coupling conditions:

 - (qred
1 \cdot n1 + qred

2 \cdot n2)

(3.16)

= \delta 
\Bigl( 
 - a22\partial yy + b2\partial y + \eta 

\Bigr) 
(ured

1 + ured
2 ) +

\Bigl( 
 - a21\partial y +

b1
2

\Bigr) 
(ured

2  - ured
1 ),

\delta (qred
1 \cdot n1  - qred

2 \cdot n2) = a11(u
red
2  - ured

1 ) + \delta 
\Bigl( 
a12\partial y  - 

b1
2

\Bigr) 
(ured

1 + ured
2 ).

(3.17)

Remark 3.1. Since the CC0 coupling conditions represent the trivial case without
any fracture, we will not consider this model further. We could also derive higher-
order coupling conditions by using higher-order expansions, but such models would
in general not be well posed.
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4. Well-posedness of the reduced models. In this section, we show the well-
posedness of the reduced models on bounded domains. First, we have to introduce
the trace operators

\gamma j : H
1(\Omega j) \rightarrow L2(\Gamma ) and \gamma j,\partial \Omega : H1(\Omega j) \rightarrow L2(\partial \Omega j \setminus (\{ \pm \delta \} \times \Gamma ))

and the normal trace operators

\gamma \bfn j : Hdiv(\Omega j) \rightarrow H - 1
2 (\Gamma )

for j = 1, 2, with n1 = n and n2 =  - n, and the function spaces

Vj := \{ \varphi j \in H1(\Omega j) | \gamma j,\partial \Omega \varphi j = 0\} for j = 1, 2,

V := \{ (\varphi 1, \varphi 2) \in V1 \oplus V2 | \gamma 1\varphi 1 + \gamma 2\varphi 2 \in H1
0 (\Gamma )\} ,

Wj := \{ qj \in Hdiv(\Omega j) | \gamma \bfn jqj \in L2(\Gamma )\} for j = 1, 2,

W := W1 \oplus W2,

which we need for the weak formulation of the reduced models. Let us define for all
(\varphi 1, \varphi 2) \in V

\=\varphi f :=
\gamma 1\varphi 1 + \gamma 2\varphi 2

2
and \delta x \=\varphi f :=

\gamma 2\varphi 2  - \gamma 1\varphi 1

2\delta 

and for all (v1,v2) \in W

\=vf :=
\gamma \bfn 1v1  - \gamma \bfn 2v2

2
and \delta x\=vf :=

 - \gamma \bfn 2v2  - \gamma \bfn 1v1

2\delta 
.

The function space V is complemented by the norm

\| (\varphi 1, \varphi 2)\| V =

\left(  \Biggl( 2\sum 
j=1

\| \nabla \varphi j\| 2L2(\Omega j)

\Biggr) 
+ 2\delta \| \partial y \=\varphi f\| 2L2(\Gamma ) + 2\delta \| \delta x \=\varphi f\| 2L2(\Gamma )

\right)  1
2

.

The \delta -weights in the norm are added in order to derive continuity and coercivity
uniformly in \delta for the bilinear form of the problem.

We can now multiply (3.1) by any \varphi j \in Vj . Subsequent integration over \Omega j ,
summation over j = 1, 2, and integration by parts, taking into account the definition
of qj in (3.2), yields

(4.1) a\delta 

\Bigl( 
(u1, u2), (\varphi 1, \varphi 2)

\Bigr) 
=

2\sum 
j=1

\int 
\Omega j

hj\varphi jdxdy,

with the bilinear form on V \times V :

a\delta 

\Bigl( 
(u1, u2), (\varphi 1, \varphi 2)

\Bigr) 
= 2\delta 

\int 
\Gamma 

( \=\varphi f\delta x\=qf + \=qf\delta x \=\varphi f )dy

+

2\sum 
j=1

\int 
\Omega j

\Bigl( \Bigl( 
Aj\nabla  - bj

2

\Bigr) 
uj \cdot \nabla \varphi j +

\Bigl( bj

2
\cdot \nabla uj

\Bigr) 
\varphi j +

\Bigl( 
\eta j  - div

bj

2

\Bigr) 
uj\varphi j

\Bigr) 
dxdy.

(4.2)
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By means of the coupling conditions (3.16), (3.17), we further obtain for the interfacial
integral\int 

\Gamma 

( \=\varphi f\delta x\=qf + \=qf\delta x \=\varphi f )dy =

\int 
\Gamma 

\biggl[ \bigl( 
\delta x \=\varphi f\partial y \=\varphi f

\bigr) 
Af

\biggl( 
\delta x\=uf

\partial y\=uf

\biggr) 
+ \eta f \=uf \=\varphi f

 - bf1
2
\=uf (\delta x \=\varphi f ) +

bf1
2
(\delta x\=uf ) \=\varphi f + bf2 (\partial y\=uf ) \=\varphi f

\biggr] 
dy.

(4.3)

Therefore, the primal weak formulation of the reduced model with CC1 coupling
conditions amounts to find (u1, u2) \in V such that for all (\varphi 1, \varphi 2) \in V , one has (4.2),
(4.3).

Lemma 4.1. There exists a positive constant CP such that for all (\varphi 1, \varphi 2) \in V ,
we have the inequality

\Bigl( 2\sum 
j=1

(\| \varphi j\| 2L2(\Omega j)
+ 2\delta \| \=\varphi f\| 2L2(\Gamma )

\Bigr) 1
2 \leq CP \| (\varphi 1, \varphi 2)\| V .(4.4)

Proof. Cf. [17], Proposition 1.2.1.

Remark 4.2. From the referenced proof of Lemma 4.1, it follows immediately that
inequality (4.4) holds for all functions in \{ (\varphi 1, \varphi 2) \in H1(\Omega 1)\oplus H1(\Omega 2) | \gamma 1\varphi 1+\gamma 2\varphi 2 \in 
H1(\Gamma )\} with traces vanishing on a subset of the outer boundary of positive surface
measure. The general requirement of the proof is that (\varphi 1, \varphi 2) belongs to a closed

subspace of (H1(\Omega 1) \oplus H1(\Omega 2),
\sum 2

j=1 \| \cdot \| H1(\Omega j)), for which \| \cdot \| V is a well-defined
norm.

Theorem 4.3. The bilinear form a\delta associated with the reduced model (4.2), (4.3)
is continuous and coercive uniformly with respect to \delta .

Proof. Continuity: Let (\varphi 1, \varphi 2) \in V . From (4.3), there exists a positive constant
C independent of \delta such that

2\delta 

\bigm| \bigm| \bigm| \bigm| \int 
\Gamma 

( \=\varphi f\delta x\=qf + \=qf\delta x \=\varphi f )dy

\bigm| \bigm| \bigm| \bigm| 
\leq C

\Bigl( 
2\delta \| \partial y\=uf\| 2L2(\Gamma ) + 2\delta \| \delta x\=uf\| 2L2(\Gamma ) + 2\delta \| \=uf\| 2L2(\Gamma )

\Bigr) 1
2

\cdot 
\Bigl( 
2\delta \| \partial y \=\varphi f\| 2L2(\Gamma ) + 2\delta \| \delta x \=\varphi f\| 2L2(\Gamma ) + 2\delta \| \=\varphi f\| 2L2(\Gamma )

\Bigr) 1
2

.

Furthermore, there exists a positive constant C such that for j = 1, 2,\bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega j

\biggl( \biggl( 
Aj\nabla  - bj

2

\biggr) 
uj \cdot \nabla \varphi j +

\biggl( 
bj

2
\cdot \nabla uj

\biggr) 
\varphi j +

\biggl( 
\eta j  - div

bj

2

\biggr) 
uj\varphi j

\biggr) 
dxdy

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C

2\sum 
j=1

(\| uj\| L2(\Omega j) + \| \nabla uj\| L2(\Omega j))(\| \varphi j\| L2(\Omega j) + \| \nabla \varphi j\| L2(\Omega j)).

Hence, by (4.4) there exists a positive constant C, independent of \delta , such that

| a\delta ((u1, u2), (\varphi 1, \varphi 2))| \leq C\| (u1, u2)\| V \| (\varphi 1, \varphi 2)\| V .
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Coercivity: Let us first note that, from \=\varphi f = \=uf in (4.3), we obtain

2\delta 

\int 
\Gamma 

(\=uf\delta x\=qf + \=qf\delta x\=uf )dy

= 2\delta 

\int 
\Gamma 

\bigl( 
\delta x\=uf \partial y\=uf

\bigr) 
Af

\biggl( 
\delta x\=uf

\partial y\=uf

\biggr) 
dy + 2\delta 

\int 
\Gamma 

\eta f (\=uf )
2dy

\geq \lambda min(Af )2\delta 
\Bigl( 
\| \delta x\=uf\| 2L2(\Gamma ) + \| \partial y\=uf\| 2L2(\Gamma )

\Bigr) 
+ 2\delta \eta f\| \=uf\| 2L2(\Gamma ).

Furthermore, for j = 1, 2,\int 
\Omega j

\biggl( \biggl( 
Aj\nabla  - bj

2

\biggr) 
uj \cdot \nabla uj +

\biggl( 
bj

2
\cdot \nabla uj

\biggr) 
uj +

\biggl( 
\eta j  - div

bj

2

\biggr) 
u2
j

\biggr) 
dxdy

\geq 
2\sum 

j=1

\biggl( \biggl( 
(\eta j  - div

bj

2

\biggr) 
\| uj\| 2L2(\Omega j)

+ \lambda min(Aj)\| \nabla uj\| 2L2(\Omega j)

\biggr) 
.

Inserting (u1, u2) \in V as a test function into the bilinear form of the variational
problem (4.2), (4.3) immediately yields its coercivity, with a constant C independent
of \delta :

a\delta ((u1, u2), (u1, u2)) \geq C\| (u1, u2)\| 2V .

Remark 4.4. The coercivity for the reduced problem with CC0 coupling condition
is immediate. However, the reduced problems with higher than next-to-leading-order
(CC1) coupling conditions are not coercive in general. In the corresponding calcula-
tions for the next-to-next-to-leading-order coupling conditions, a term related to the
normal fracture advection coefficient cannot be controlled.

5. Fracture reconstruction for reduced models. In many applications, the
fracture unknown uf is of interest. Substituting (3.9) into (3.3) yields an expression
for \^uf in terms of \^\gamma 1\^u1 and \^\gamma 1\^u2,

\^uf (x, k) =
(\^\gamma 2\^u2(\delta , k)e

 - \delta \lambda 2  - \^\gamma 1\^u1( - \delta , k)e\delta \lambda 2)e\lambda 1x

2 sinh(2s\delta )
(5.1)

+
(\^\gamma 1\^u1( - \delta , k)e\delta \lambda 1  - \^\gamma 2\^u2(\delta , k)e

 - \delta \lambda 1)e\lambda 2x

2 sinh(2s\delta )
,

which can be used to recover information on uf . We will give now some examples.
Approximation for uf (0, y). We start with

\^uf (0, k) =
\^\gamma 2\^u2e

 - \delta \lambda 2  - \^\gamma 1\^u1e
\delta \lambda 2 + \^\gamma 1\^u1e

\delta \lambda 1  - \^\gamma 2\^u2e
 - \delta \lambda 1

2 sinh(2s\delta )
=

\^\gamma 1\^u1e
\delta r + \^\gamma 2\^u2e

 - \delta r

2 cosh(s\delta )

=
1

2
(\^\gamma 1\^u1 + \^\gamma 2\^u2) - 

\delta 

4a11
((a12 + a21)ik  - b1)(\^\gamma 1\^u1  - \^\gamma 2\^u2)

 - \delta 2

4a11
(a22k

2 + b2ik + \eta )(\^\gamma 1\^u1 + \^\gamma 2\^u2) +\scrO (\delta 3).

(5.2)

Then truncating at a given order and performing an inverse Fourier transform (3.14)
gives rise to the following definitions:
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1. Truncation after the leading-order term:

ured,0
f :=

1

2
(\gamma 1u

red
1 + \gamma 2u

red
2 ).(5.3)

2. Truncation after the next-to-leading-order term:

ured,1
f :=

1

2
(\gamma 1u

red
1 + \gamma 2u

red
2 ) - \delta 

4a11
((a12 + a21)\partial y  - b1)(\gamma 1u

red
1  - \gamma 2u

red
2 ).

(5.4)

3. Truncation after the next-to-next-to-leading-order term:

ured,2
f :=

1

2
(\gamma 1u

red
1 + \gamma 2u

red
2 ) - \delta 

4a11
((a12 + a21)\partial y  - b1)(\gamma 1u

red
1  - \gamma 2u

red
2 )

+
\delta 2

4a11
(a22\partial yy  - b2\partial y  - \eta )(\gamma 1u

red
1 + \gamma 2u

red
2 ).

(5.5)

Approximation for Uf (y) :=
1
2\delta 

\int \delta 

 - \delta 
uf (x, y)dx. Let us first calculate the Fourier

coefficients for Uf (y):

\^Uf (k) =
1

2\delta 

\int \delta 

 - \delta 

\^uf (x, k)dx

=
 - e - 2\delta (r+s)

8\delta (r2  - s2) sinh(\delta s) cosh(\delta s))

\cdot 
\Bigl( 
 - 2e(4r+2s)\delta s\^\gamma 1\^u1 + ((\^\gamma 1\^u1 + \^\gamma 2\^u2)s+ (\^\gamma 1\^u1  - \^\gamma 2\^u2)r)e

2\delta (r+2s)

+ ((\^\gamma 1\^u1 + \^\gamma 2\^u2)s - (\^\gamma 1\^u1  - \^\gamma 2\^u2)r)e
2\delta r  - 2s\^\gamma 2\^u2e

2\delta s
\Bigr) 

=
1

2
(\^\gamma 1\^u1 + \^\gamma 2\^u2) - 

\delta 

6a11
((a12 + a21)ik  - b1)(\^\gamma 1\^u1  - \^\gamma 2\^u2)

 - \delta 2

6a11
(a22k

2 + b2ik + \eta )(\^\gamma 1\^u1 + \^\gamma 2\^u2) +\scrO (\delta 3).

(5.6)

Truncating at a given order and using an inverse Fourier transform gives rise to the
following definitions:

1. Truncation after the leading-order term:

U red,0
f :=

1

2
(\gamma 1u

red
1 + \gamma 2u

red
2 ).(5.7)

2. Truncation after the next-to-leading-order term:

U red,1
f :=

1

2
(\gamma 1u

red
1 + \gamma 2u

red
2 ) - \delta 

6a11
((a12 + a21)\partial y  - b1)(\gamma 1u

red
1  - \gamma 2u

red
2 ).

(5.8)

3. Truncation after the next-to-next-to-leading-order term:

U red,2
f :=

1

2
(\gamma 1u

red
1 + \gamma 2u

red
2 ) - \delta 

6a11
((a12 + a21)\partial y  - b1)(\gamma 1u

red
1  - \gamma 2u

red
2 )

+
\delta 2

6a11
(a22\partial yy  - b2\partial y  - \eta )(\gamma 1u

red
1 + \gamma 2u

red
2 ).

(5.9)
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6. Comparison to the literature. DFM models are a tool for the simulation
of flow through fractured porous media, where the governing equations are mass
conservation and Darcy's law. The approach illustrated above covers more general
problems, and in order to compare our models to existing ones from the literature,
we now let

(6.1) b := 0, \eta := 0, and A :=

\biggl( 
a11 0
0 a22

\biggr) 
.

As outlined in [20], a PDE on the dimensionally reduced fracture \Gamma is derived by
integrating the mass conservation equation over the fracture width,

0 =

\int \delta 

 - \delta 

divqfdx = \gamma \bfn f,2
qf + \gamma \bfn f,1

qf + \partial y

\int \delta 

 - \delta 

qf \cdot \bfittau dx,

with \bfittau being the unit vector tangential to \Gamma . Hence, by means of Darcy's law and
normal flux continuity, we get

 - \gamma \bfn 2
q2  - \gamma \bfn 1

q1 + 2\delta a22\partial 
2
yUf = 0,(6.2)

where Uf := 1
2\delta 

\int \delta 

 - \delta 
ufdx is the fracture unknown. Then one typically derives one

of the reduced order matrix-fracture (mf) coupling conditions by integrating Darcy's
law over the fracture width,\int \delta 

 - \delta 

qf \cdot ndx = a11(\gamma f,2uf  - \gamma f,1uf ) = a11(\gamma 2u2  - \gamma 1u1),

and by using the trapezoidal approximation\int \delta 

 - \delta 

qf \cdot ndx \approx 2\delta 
\gamma \bfn f,2

qf  - \gamma \bfn f,1
qf

2
= \delta (\gamma \bfn 1q1  - \gamma \bfn 2q2),

which yields the mf coupling condition

\delta (\gamma \bfn 1
q1  - \gamma \bfn 2

q2) \approx a11(\gamma 2u2  - \gamma 1u1).(6.3)

In order to provide the second mf coupling condition, the authors propose in [20] a
family of approximations for Uf , parameterized by \xi \in [ 12 , 1]:

Uf \approx \gamma 2u2 + \gamma 1u1

2
+

2\xi  - 1

2

\delta 

a11
(\gamma \bfn 1

q1 + \gamma \bfn 2
q2).(6.4)

The corresponding reduced order model amounts to find u\xi 
j , q\xi 

j , U\xi 
f such that

 - divq\xi 
j +

bj

2
\cdot \nabla u\xi 

j +

\biggl( 
\eta j  - div

bj

2

\biggr) 
u\xi 
j = hj in \Omega j , j = 1, 2,(6.5)

q\xi 
j =

\biggl( 
Aj\nabla  - bj

2

\biggr) 
u\xi 
j in \Omega j , j = 1, 2,(6.6)

2\delta a22\partial 
2
yU

\xi 
f = \gamma \bfn 1q

\xi 
1 + \gamma \bfn 2q

\xi 
2 on \Gamma ,(6.7)

\delta (\gamma \bfn 1q
\xi 
1  - \gamma \bfn 2q

\xi 
2) = a11(\gamma 2u

\xi 
2  - \gamma 1u

\xi 
1) on \Gamma ,(6.8)

\gamma 2u
\xi 
2 + \gamma 1u

\xi 
1

2
+

2\xi  - 1

2

\delta 

a11
(\gamma \bfn 1

q\xi 
1 + \gamma \bfn 2

q\xi 
2) = U\xi 

f on \Gamma .

(6.9)D
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The well-posedness of model (6.5)--(6.9) has been established for parameter values
\xi \in ( 12 ,\infty ) in [20] and extended to \xi \in [ 12 ,\infty ) in [1]. For numerical investigations on
the impact of \xi , we refer the reader to [1, 10].

Theorem 6.1. For \xi = 1
2 , the model (6.5)--(6.9) is equivalent to the model (3.1),

(3.2), (3.16), (3.17), (5.7) for the diffusion equation with diagonal matrix Af inside
the fracture.

Proof. The statement of the theorem follows by substituting (6.9) into (6.7).

Writing (3.12), (3.13) for the diffusion model with diagonal matrix A, we observe
that the asymptotic behavior of the exact coupling conditions depends only on the
asymptotic behavior of the ratio \delta 

a11
and of the product \delta a22. We call these two

characteristic quantities the fracture resistivity and fracture conductivity. In [23], a
rigorous asymptotic analysis for the Laplace equation is performed, with the focus on
the solution in the limit \delta = 0. In this context, coupling conditions (at x = \pm 0) are
derived for the cases \delta 

a11
\rightarrow \alpha \in \BbbR , \delta 

a11
\rightarrow \infty , \delta 

a11
\rightarrow 0, provided a11 \rightarrow 0, which turn

out to correspond to the coupling conditions which we derive by means of truncating
(3.12), (3.13) at order \delta 0 (with \nu := a11 = a22 for isotropic diffusion).

1. Case \delta 
\nu \rightarrow \alpha \in \BbbR (note that this implies \delta \nu \rightarrow 0):

\gamma \bfn 1q1 + \gamma \bfn 2q2 = 0 and \gamma 2u2  - \gamma 1u1 = \alpha (\gamma \bfn 1q1  - \gamma \bfn 2q2).

2. Case \delta 
\nu \rightarrow \infty (note that this implies \delta \nu \rightarrow 0):

\gamma \bfn 1q1 + \gamma \bfn 2q2 = 0 and \gamma \bfn 1q1  - \gamma \bfn 2q2 = 0.

3. Case \delta 
\nu \rightarrow 0 and \delta \nu \rightarrow 0 corresponds to (3.15).

We can now complete this study by considering the cases \delta \nu \rightarrow \alpha \in \BbbR or \delta \nu \rightarrow \infty 
(which both imply \delta 

\nu \rightarrow 0). We obtain the following:
4. Case \delta \nu \rightarrow \alpha \in \BbbR :

\gamma \bfn 1
q1 + \gamma \bfn 2

q2 = \alpha \partial yy(u1 + u2) and \gamma 2u2  - \gamma 1u1 = 0.

5. Case \delta \nu \rightarrow \infty :

\partial yy(\gamma 1u1 + \gamma 2u2) = 0 and \gamma 2u2  - \gamma 1u1 = 0.

7. Error estimates for the reduced models. In this section, we will derive
an error estimate in the H1-norm for the reduced order solution in the bulk (matrix)

domains and error estimates in the H
1
2 -norm for the reduced order reconstructed

fracture solutions. For simplicity, we restrict ourselves to the anisotropic diffusion
equation with diagonal tensor inside the fracture, as in (6.1), and to the isotropic
diffusion equation in the matrix. Furthermore, the underlying geometry is set to
\Omega 1 = ( - L1, - \delta ) \times \Gamma , \Omega f = ( - \delta , \delta ) \times \Gamma , \Omega 1 = (\delta , L2) \times \Gamma , with \delta < L1, L2 < \infty and
\Gamma = \BbbR , in order to allow for the use of Fourier transforms w.r.t. the y-coordinate
(similar results could also be obtained on bounded domains using Fourier series).

In this setting, the model solved on the full domain consists of the Poisson equa-
tion in mixed formulation in the matrix,

 - divqj = hj in \Omega j ,

qj = \nabla uj in \Omega j ,

\gamma \partial \Omega uj = 0 on \partial \Omega j \setminus \Gamma j ,
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j \in \{ 1, 2\} , and an anisotropic diffusion model inside the fracture,

 - divqf = 0 in \Omega f ,

qj = (a11\partial xx + a22\partial yy)uf in \Omega f ,

together with the matrix-fracture coupling conditions

\gamma juj = \gamma f,juf on \Gamma j ,

\gamma \bfn j
qj =  - \gamma \bfn f,j

qf on \Gamma j .

The reduced order model consists of the Poisson equation in mixed formulation in the
matrix,

 - divqred
j = hj in \Omega j ,

qred
j = \nabla ured

j in \Omega j ,

\gamma \partial \Omega u
red
j = 0 on \partial \Omega j \setminus \Gamma j ,

j \in \{ 1, 2\} , together with CC1 coupling conditions (see (3.16), (3.17)):

\gamma \bfn 2
qred
2 + \gamma \bfn 1

qred
1 = \delta a22\partial yy(\gamma 1u

red
1 + \gamma 2u

red
2 ),

 - \gamma \bfn 2
qred
2 + \gamma \bfn 1

qred
1 =

a11
\delta 

(\gamma 2u
red
2  - \gamma 1u

red
1 ).

Theorem 7.1 (matrix error estimate). Let Af be diagonal, A1 = A2 = I,
b1 = b2 = bf = 0, and \eta 1 = \eta 2 = \eta f = 0. Let \{ u1, u2, uf\} be solution to (2.1)--
(2.4) and \{ ured

1 , ured
2 \} be solution to (3.1), (3.2), (3.16), and (3.17).Then there exists

a constant C > 0 independent of \delta such that for j = 1, 2, we have the estimate

\| uj  - ured
j \| H1(\Omega j) \leq C\delta 3

\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| h1\| H3(\Omega 1) + \| h2\| H3(\Omega 2)

\Bigr) 
.

Proof. We want to express the normal traces of the matrix fluxes in terms of the
hj and the traces of uj on \Gamma j , j \in \{ 1, 2\} . To do so, we introduce the Steklov--Poincar\'e
operators

\scrS j : H
1
2 (\Gamma j)  - \rightarrow H - 1

2 (\Gamma j),

gj \mapsto \rightarrow \gamma \bfn j
(\nabla vj),

where vj satisfies the equations

 - \Delta vj = 0 in \Omega j ,

\gamma jvj = gj on \Gamma j ,

\gamma \partial \Omega vj = 0 on \partial \Omega \cap \partial \Omega j .

To account for the source term, we also introduce the operators

\scrR j : L
2(\Omega j)  - \rightarrow H - 1

2 (\Gamma j),

hj \mapsto \rightarrow \gamma \bfn j
(\nabla wj),

where wj satisfies the equations

 - \Delta wj = hj in \Omega j ,

\gamma jwj = 0 on \Gamma j ,

\gamma \partial \Omega wj = 0 on \partial \Omega \cap \partial \Omega j .

(7.1)
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Then, from the superposition principle for linear differential equations, we have

\gamma \bfn j
qj = \scrS j(\gamma juj) +\scrR j(hj),

\gamma \bfn jq
red
j = \scrS j(\gamma ju

red
j ) +\scrR j(hj).

In a first step, we will derive an error estimate for the traces on \Gamma j of the reduced
order solutions in Fourier space. As shown in section 3, the exact problem in Fourier
space, after the elimination of the fracture unknown by means of a continuous Schur
complement, can be written as

(k2  - \partial xx)\^u1 = \^h1 in ( - L1, - \delta ) \forall k \in \BbbR ,

(k2  - \partial xx)\^u2 = \^h2 in (\delta , L2) \forall k \in \BbbR ,

together with the coupling conditions

\^s1\^\gamma 1\^u1 + \^s2\^\gamma 2\^u2 + \widehat \scrR 1(h1) + \widehat \scrR 2(h2) =  - \^f ex(\^\gamma 1\^u1 + \^\gamma 2\^u2),(7.2)

\^s1\^\gamma 1\^u1  - \^s2\^\gamma 2\^u2 + \widehat \scrR 1(h1) - \widehat \scrR 2(h2) = \^gex(\^\gamma 2\^u2  - \^\gamma 1\^u1),(7.3)

where we have introduced the terms

\^f ex := a11

\sqrt{} 
a22
a11

k2 tanh (\delta 

\sqrt{} 
a22
a11

k2), \^gex :=
a11
\sqrt{} 

a22

a11
k2

tanh (\delta 
\sqrt{} 

a22

a11
k2)

and where
\^sj\^\gamma j \^uj := \widehat \scrS j(uj) = | k| coth(| k| (Lj  - \delta ))\^\gamma j \^uj .

The property of the Steklov--Poincar\'e operators to reduce to a scaling factor in Fourier
space will be used in what follows.

The reduced order model in Fourier space can be written in the form

(k2  - \partial xx)\^u
red
j = \^hj in (\pm L,\pm \delta ) \forall k \in \BbbR ,

together with the coupling conditions

\^s1\^\gamma 1\^u
red
1 + \^s2\^\gamma 2\^u

red
2 + \widehat \scrR 1(h1) + \widehat \scrR 2(h2) =  - \^f red(\^\gamma 1\^u

red
1 + \^\gamma 2\^u

red
2 ),(7.4)

\^s1\^\gamma 1\^u
red
1  - \^s2\^\gamma 2\^u

red
2 + \widehat \scrR 1(h1) - \widehat \scrR 2(h2) = \^gred(\^\gamma 2\^u

red
2  - \^\gamma 1\^u

red
1 ),(7.5)

where we have introduced the terms

\^f red := \delta a22k
2, \^gred :=

a11
\delta 

.

Combining (7.2), (7.3), (7.4), and (7.5) yields the expressions for the error of the
traces on \Gamma j in Fourier space:

\^\gamma 1\^e1 := \^\gamma 1\^u1  - \^\gamma 1\^u
red
1

=
 - (\^s2 + \^gred)( \^f ex  - \^f red)(\^\gamma 2\^u2 + \^\gamma 1\^u1) + (\^s2 + \^f red)(\^gex  - \^gred)(\^\gamma 2\^u2  - \^\gamma 1\^u1)

(\^s2 + \^gred)(\^s1 + \^f red) + (\^s1 + \^gred)(\^s2 + \^f red)
,

\^\gamma 2\^e2 := \^\gamma 2\^u2  - \^\gamma 2\^u
red
2

=
 - (\^s1 + \^gred)( \^f ex  - \^f red)(\^\gamma 2\^u2 + \^\gamma 1\^u1) - (\^s1 + \^f red)(\^gex  - \^gred)(\^\gamma 2\^u2  - \^\gamma 1\^u1)

(\^s2 + \^gred)(\^s1 + \^f red) + (\^s1 + \^gred)(\^s2 + \^f red)
.
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We will now give estimates for these errors in the sharpest possible order in \delta . First,
let us estimate the coefficient in front of the sum (\^\gamma 2\^u2 + \^\gamma 1\^u1). We have

| \^f ex  - \^f red| = | k| \surd a11a22

\bigm| \bigm| \bigm| \bigm| tanh\biggl( | k| \delta \sqrt{} a22
a11

\biggr) 
 - | k| \delta 

\sqrt{} 
a22
a11

\bigm| \bigm| \bigm| \bigm| 
\leq | k| \surd a11a22 sup

z\in \BbbR 

\bigm| \bigm| \bigm| tanh z  - z

z3

\bigm| \bigm| \bigm| | k| 3\delta 3\Bigl( a22
a11

\Bigr) 3
2

and, for j \in \{ 1, 2\} , using the notation \{ j+1\} = 2 for j = 1 and \{ j+1\} = 1 for j = 2,

0 <
(\^sj + \^gred)

(\^s2 + \^gred)(\^s1 + \^f red) + (\^s1 + \^gred)(\^s2 + \^f red)
\leq 1

\^s\{ j+1\} + \^f red
\leq 1

\^s\{ j+1\} 
\leq 1

| k| ,

where we have used the positivity of the occurring coefficients and the estimate

(7.6) | k| \leq | k| coth(| k| (L - \delta )) \leq | k| + 1

L - \delta 
.

Now let us estimate the coefficient in front of the difference (\^\gamma 2\^u2  - \^\gamma 1\^u1). We have

| \^gex  - \^gred| = a11
\delta 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
| k| \delta 

\sqrt{} 
a22

a11

tanh(| k| \delta 
\sqrt{} 

a22

a11
)
 - 1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq a11
\delta 

sup
z\in \BbbR 

\bigm| \bigm| \bigm| \bigm| \bigm| 
z

tanh(z)  - 1

z2

\bigm| \bigm| \bigm| \bigm| \bigm| | k| 2\delta 2 a22a11

and, for j \in \{ 1, 2\} ,

0 <
(\^sj + \^f red)

(\^s2 + \^gred)(\^s1 + \^f red) + (\^s1 + \^gred)(\^s2 + \^f red)
\leq 1

\^s\{ j+1\} + \^gred
\leq 1

\^gred
\leq \delta 

a11
,

where we have used the positivity of the occurring coefficients. We see that the
coefficient in front of the sum (\^\gamma 2\^u2+\^\gamma 1\^u1) is of third order in \delta , whereas the coefficient
in front of the difference (\^u2  - \^u1) is only of second order. But we can gain one order
in \delta by using (7.3),

| \^\gamma 1\^u1  - \^\gamma 2\^u2| =
| \^s1\^\gamma 1\^u1  - \^s2\^\gamma 2\^u2 + \widehat \scrR 1(h1) - \widehat \scrR 2(h2)| 

| \^gex| 

\leq \delta 

a11

\Bigl( 
(| k| + 1

L1  - \delta 
)| \^\gamma 1\^u1| + (| k| + 1

L2  - \delta 
)| \^\gamma 2\^u2| + | \widehat \scrR 1(h1) - \widehat \scrR 2(h2)| 

\Bigr) 
,

by means of inequality (7.6). Gathering these inequalities, we obtain for j \in \{ 1, 2\} 

| \^\gamma j\^ej | \leq C\delta 3| k| 2
\Bigl( 
(| k| + 1)(| \^\gamma 1\^u1| + | \^\gamma 2\^u2| ) + | \widehat \scrR 1(h1) - \widehat \scrR 2(h2)| 

\Bigr) 
.(7.7)

For the errors in physical space,

ej =
1\surd 
2\pi 

\int \infty 

 - \infty 
\^eje

ikydk = uj  - ured
j ,
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we have

\| \gamma jej\| 
H

1
2 (\BbbR )

=
\Bigl( \int 

\BbbR 

\sqrt{} 
1 + k2| \^\gamma j\^ej | 2dk

\Bigr) 1
2

\leq C\delta 3

\Biggl[ \Bigl( \int 
\BbbR 

\sqrt{} 
1 + k2(| k| 6 + 1)(| \^\gamma 1\^u1| + | \^\gamma 2\^u2| )2dk

\Bigr) 1
2

+
\Bigl( \int 

\BbbR 

\sqrt{} 
1 + k2| k| 4(| \widehat \scrR 1(h1)| + | \widehat \scrR 2(h2)| )2dk

\Bigr) 1
2

\Biggr] 

\leq C\delta 3

\Biggl[ 
2\sum 

j=1

\Bigl( \int 
\BbbR 
(1 + k2)

7
2 | \^\gamma j \^uj | 2dk

\Bigr) 1
2

+

2\sum 
j=1

\Bigl( \int 
\BbbR 
(1 + k2)

5
2 | \widehat \scrR j(hj)| 2dk

\Bigr) 1
2

\Biggr] 

= C\delta 3
\Bigl( 
\| \gamma 1u1\| 

H
7
2 (\BbbR )

+ \| \gamma 2u2\| 
H

7
2 (\BbbR )

+ \| \scrR 1(h1)\| 
H

5
2 (\BbbR )

+ \| \scrR 2(h2)\| 
H

5
2 (\BbbR )

\Bigr) 
.

Using the (normal) trace and extension inequalities, we then obtain

\| ej\| H1(\Omega j) \leq \| \gamma jej\| 
H

1
2 (\BbbR )

\leq C\delta 3
\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| w1\| H5(\Omega 1) + \| w2\| H5(\Omega 2)

\Bigr) 
,

with wj solutions to problem (7.1), which classically induces

\| wj\| H5(\Omega j) \leq \| hj\| H3(\Omega j).

Thus, we obtain the error estimates

\| ej\| H1(\Omega j) \leq \| \gamma jej\| 
H

1
2 (\Gamma )

\leq C\delta 3
\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| h1\| H3(\Omega 1) + \| h2\| H3(\Omega 2)

\Bigr) 
.(7.8)

We can now also obtain a rigorous error estimate for the coupled problem from
[20].

Theorem 7.2 (matrix error estimate for problem [20]). Let Af be diagonal, A1 =
A2 = I, b1 = b2 = bf = 0, and \eta 1 = \eta 2 = \eta f = 0. Let \{ u1, u2, uf\} be solution to

(2.1)--(2.4). Let \xi \in [ 12 , 1] and \{ u\xi 
1, u

\xi 
2, U

\xi 
f \} be solution to (6.5)--(6.9). Then there

exists a constant C > 0 independent of \delta such that for j = 1, 2, we have the estimate

\| uj  - u\xi 
j\| H1(\Omega j) \leq C\delta 3

\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| h1\| H3(\Omega 1) + \| h2\| H3(\Omega 2)

\Bigr) 
.

Proof. We first eliminate U\xi 
f by substituting (6.9) into (6.7) and obtain the cou-

pling conditions\biggl( 
1 - 2\xi  - 1

2

\delta 

a11
\partial yy

\biggr) 
(\gamma \bfn 1q

\xi 
1 + \gamma \bfn 2q

\xi 
2) = \delta a22\partial yy(\gamma 2u

\xi 
2 + \gamma 1u

\xi 
1),

\delta (\gamma \bfn 1
q\xi 
1  - \gamma \bfn 2

q\xi 
2) = a11(\gamma 2u

\xi 
2  - \gamma 1u

\xi 
1)

or, in Fourier space,

\^s1\^\gamma 1\^u
\xi 
1 + \^s2\^\gamma 2\^u

\xi 
2 +

\widehat \scrR 1(h1) + \widehat \scrR 2(h2) =  - \^f\xi (\^\gamma 1\^u
\xi 
1 + \^\gamma 2\^u

\xi 
2),(7.9)

\^s1\^\gamma 1\^u
\xi 
1  - \^s2\^\gamma 2\^u

\xi 
2 +

\widehat \scrR 1(h1) - \widehat \scrR 2(h2) = \^g\xi (\^\gamma 2\^u
\xi 
2  - \^\gamma 1\^u

\xi 
1),(7.10)
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where

\^f\xi :=
\delta a11a22k

2

a11 + \delta 2a22k2(2\xi  - 1)
, \^g\xi :=

a11
\delta 

.

We have \^gred  - \^g\xi = 0 and

\^f red  - \^f\xi =
\delta 3a222k

4(2\xi  - 1)

a11 + \delta 2a22k2(2\xi  - 1)
.

Further,

| \^f  - \^f\xi | \leq | \^f  - \^f red| + | \^f red  - \^f\xi | \leq | k| 4\delta 3
\Bigl( 
sup
z\in \BbbR 

\bigm| \bigm| \bigm| tanh z  - z

z3

\bigm| \bigm| \bigm| a222
a11

+ (2\xi  - 1)
a222
a11

\Bigr) 
.

The rest of the proof is as in the proof of Theorem 7.1.

Similarly as above, we can now derive estimates for the error in the reconstructed
fracture solutions of the reduced models.

Theorem 7.3 (fracture error estimates). Let Af be diagonal, A1 = A2 = I,
b1 = b2 = bf = 0, and \eta 1 = \eta 2 = \eta f = 0. Let \{ u1, u2, uf\} be solution to (2.1)--(2.4)

and \{ ured
1 , ured

2 \} be solution to (3.1), (3.2), (3.16), (3.17). Let ured,0
f , U red,0

f , ured,2
f ,

U red,2
f be defined according to section 5. Then

1. there exist constants C, c > 0 independent of \delta such that

\| uf | x=0  - ured,0
f \| 

H
1
2 (\BbbR )

\| Uf  - U red,0
f \| 

H
1
2 (\BbbR )

\Biggr\} 
\leq c\delta 2

\Bigl( 
\| u1\| H3(\Omega 1) + \| u2\| H3(\Omega 2)

\Bigr) 
+ C\delta 3

\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| h1\| H3(\Omega 1) + \| h2\| H3(\Omega 2)

\Bigr) 
;

2. there exists a constant C > 0 independent of \delta such that

\| uf | x=0  - ured,2
f \| 

H
1
2 (\BbbR )

\| Uf  - U red,2
f \| 

H
1
2 (\BbbR )

\Biggr\} 
\leq C\delta 3

\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| h1\| H3(\Omega 1) + \| h2\| H3(\Omega 2)

\Bigr) 
.

Proof. Leading-order approximation of uf (0, y): The leading-order reconstructed
fracture solution is

ured,0
f =

ured
1 + ured

2

2
.

Following the calculations in section 5, we obtain for the error of the Fourier coeffi-
cients

| \^uf (0, k) - \^ured,0
f (k)| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \^\gamma 1\^u1 + \^\gamma 2\^u2

2 cosh(\delta 
\sqrt{} 

a22

a11
k2)

 - \^\gamma 1\^u
red
1 + \^\gamma 2\^u

red
2

2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

1 - cosh(\delta 
\sqrt{} 

a22

a11
k2)

2 cosh(\delta 
\sqrt{} 

a22

a11
k2)

| \^\gamma 1\^u1 + \^\gamma 2\^u2| +
| \^\gamma 1\^e1 + \^\gamma 2\^e2| 

2

\leq sup
z\in \BbbR 

\bigm| \bigm| \bigm| 1
cosh z  - 1

z2

\bigm| \bigm| \bigm| \delta 2 a22
a11

k2| \^\gamma 1\^u1 + \^\gamma 2\^u2| +
| \^\gamma 1\^e1 + \^\gamma 2\^e2| 

2
,
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and therefore

\| uf (0, \cdot ) - ured,0
f \| 

H
1
2 (\Gamma )

=
\Bigl( \int 

\BbbR 

\sqrt{} 
1 + k2| \^uf (0, \cdot ) - \^ured,0

f | 2dk
\Bigr) 1

2

\leq c\delta 2
\Bigl( \int 

\BbbR 

\sqrt{} 
1 + k2k4| \^\gamma 1\^u1 + \^\gamma 2\^u2| 2dk

\Bigr) 1
2

+ C\delta 3
\Bigl( \int 

\BbbR 

\sqrt{} 
1 + k2| \^\gamma 1\^e1 + \^\gamma 2\^e2| 2dk

\Bigr) 1
2

\leq c\delta 2\| \gamma 1u1 + \gamma 2u2\| 
H

5
2 (\Gamma )

+ C\| \gamma 1e1 + \gamma 2e2\| 
H

1
2 (\Gamma )

\leq c\delta 2
\Bigl( 
\| u1\| H3(\Omega 1) + \| u2\| H3(\Omega 2)

\Bigr) 
+ C\delta 3

\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| h1\| H3(\Omega 1) + \| h2\| H3(\Omega 2)

\Bigr) 
,

where we have used an extension inequality as well as inequality (7.8).
Next-to-next-to-leading-order approximation of uf (0, y): The next-to-next-to-leading-

order reconstructed fracture solution is

ured,2
f =

\Bigl( 1
2
+

\delta 2a22
4a11

\partial yy

\Bigr) 
(ured

1 + ured
2 ).

Following the calculations in section 5, we obtain for the error of the Fourier coeffi-
cients

| \^uf (0, k) - \^ured,2
f (k)| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \^\gamma 1\^u1 + \^\gamma 2\^u2

2 cosh(\delta 
\sqrt{} 

a11

a22
k2)

 - 
\Bigl( 1
2
 - \delta 2a22k

2

4a11

\Bigr) 
(\^\gamma 1\^u

red
1 + \^\gamma 2\^u

red
2 )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq sup

z\in \BbbR 

\bigm| \bigm| \bigm| 1 - (1 - z2

2 ) cosh z

z4 cosh z

\bigm| \bigm| \bigm| \Bigl( \delta \sqrt{} a11
a22

k2
\Bigr) 4 | \^\gamma 1\^u1 + \^\gamma 2\^u2| 

2

+
\Bigl( 1
2
 - \delta 2a11

4a22
k2
\Bigr) 
(| \^\gamma 1\^e1 + \^\gamma 2\^e2| ).

Hence,

\| uf (0, \cdot ) - ured,2
f \| 

H
1
2 (\Gamma )

\leq 1

2
\| \gamma 1e1 + \gamma 2e2\| 

H
1
2 (\Gamma )

+
\delta 2a22
4a11

\| \gamma 1e1 + \gamma 2e2\| 
H

5
2 (\Gamma )

+ c\delta 4\| \gamma 1u1 + \gamma 2u2\| 
H

7
2 (\Gamma )

\leq C
\Bigl( 
\delta 3 + \delta 5)(\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| h1\| H3(\Omega 1) + \| h2\| H3(\Omega 2)

\Bigr) 
+ c\delta 4

\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2)

\Bigr) 
,

where we have used an extension inequality as well as inequality (7.8). It is worth
noting that, even though the approximation of the fracture solution is formally of
order 4, the error is of order 3, due to the error of the traces at the interfaces of the
reduced order matrix solutions.

Leading-order approximation of Uf : The leading-order reconstructed fracture so-
lution is

U red,0
f =

ured
1 + ured

2

2
.

Let us first remark that from the calculations in section 5, we obtain

\^Uf (k) =
tanh(\delta 

\sqrt{} 
a22

a11
k2)

2\delta 
\sqrt{} 

a22

a11
k2

(\^\gamma 1\^u1 + \^\gamma 2\^u2),
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and therefore

| \^Uf (k) - \^U red,0
f (k)| \leq 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
tanh(\delta 

\sqrt{} 
a22

a11
k2) - \delta 

\sqrt{} 
a22

a11
k2

2\delta 
\sqrt{} 

a22

a11
k2

(\^\gamma 1\^u1 + \^\gamma 2\^u2)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| + | \^\gamma 1\^e1 + \^\gamma 2\^e2| 
2

\leq sup
z\in \BbbR 

\bigm| \bigm| \bigm| tanh(z) - z

z3

\bigm| \bigm| \bigm| \delta 2 a22
a11

k2
| \^\gamma 1\^u1 + \^\gamma 2\^u2| 

2
+

| \^\gamma 1\^e1 + \^\gamma 2\^e2| 
2

.

The conclusion is now in the same manner as above and will not be repeated.
Next-to-next-to-leading-order approximation of Uf : The next-to-next-to-leading-

order reconstructed fracture solution is

U red,2
f =

\Bigl( 1
2
+

\delta 2a22
6a11

\partial yy

\Bigr) 
(ured

1 + ured
2 ).

Following the calculations in section 5, we obtain for the error of the Fourier coeffi-
cients

| \^Uf (k) - \^U red,2
f (k)| =

\bigm| \bigm| \bigm| \bigm| tanh(\delta \sqrt{} a22
a11

k2) - 
\Bigl( 1
2
 - \delta 2a22k

2

6a11

\Bigr) 
(\^\gamma 1\^u

red
1 + \^\gamma 2\^u

red
2 )

\bigm| \bigm| \bigm| \bigm| 
\leq sup

z\in \BbbR 

\bigm| \bigm| \bigm| tanh(z) - z + z3

3

z5

\bigm| \bigm| \bigm| \Bigl( \delta \sqrt{} a11
a22

k2
\Bigr) 4 | \^\gamma 1\^u1 + \^\gamma 2\^u2| 

2

+
\Bigl( 1
2
 - \delta 2a11

6a22
k2
\Bigr) 
| \^\gamma 1\^e1 + \^\gamma 2\^e2| .

The conclusion is now in the same manner as above and will not be repeated.

Theorem 7.4 (fracture error estimates for problem [20]). Let Af be diagonal,
A1 = A2 = I, b1 = b2 = bf = 0, and \eta 1 = \eta 2 = \eta f = 0. Let \{ u1, u2, uf\} be solution

to (2.1)--(2.4). Let \xi \in [ 12 , 1] and \{ u\xi 
1, u

\xi 
2, U

\xi 
f \} be solution to (6.5)--(6.9). Then

1. for any \xi \in [ 12 , 1], there exist constants C, c > 0 independent of \delta such that

\| uf | x=0  - U\xi 
f \| H 1

2 (\Gamma )

\| Uf  - U\xi 
f \| H 1

2 (\Gamma )

\Biggr\} 
\leq c\delta 2

\Bigl( 
\| u1\| H3(\Omega 1) + \| u2\| H3(\Omega 2)

\Bigr) 
+ C\delta 3

\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| h1\| H3(\Omega 1) + \| h2\| H3(\Omega 2)

\Bigr) 
;

2. for \xi = 2
3 , there exists a constant C > 0 independent of \delta such that

\| Uf  - U\xi 
f \| H 1

2 (\Gamma )

\leq C\delta 3
\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| h1\| H3(\Omega 1) + \| h2\| H3(\Omega 2)

\Bigr) 
;

3. for \xi = 3
4 , there exists a constant C > 0 independent of \delta such that

\| uf | x=0  - U\xi 
f \| H 1

2 (\Gamma )

\leq C\delta 3
\Bigl( 
\| u1\| H4(\Omega 1) + \| u2\| H4(\Omega 2) + \| h1\| H3(\Omega 1) + \| h2\| H3(\Omega 2)

\Bigr) 
.
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Proof. The proof of Theorem 7.3 can be adapted in a straightforward manner to
get this result.

Remark 7.5. Theorem 7.4 implies that the model (6.5)--(6.9) yields an optimal

third-order asymptotic approximation U\xi 
f of

1. Uf = 1
2\delta 

\int \delta 

 - \delta 
uf (x, y)dx when choosing \xi = 2

3 and

2. uf (0, y) when choosing \xi = 3
4 .

8. Test cases. We present here a series of test cases in which we study the
convergence, for \delta \rightarrow 0, of solutions derived by the reduced model to solutions of
the equidimensional model. We consider the model solved on the full domain, which
consists of the Laplace equation \Delta uj = 0 in the matrix domains \Omega j , j = 1, 2, and a
general elliptic model inside the fracture,

 - div(A\nabla uf ) + b \cdot \nabla uf + \eta uf in \Omega f ,

together with the coupling conditions

u1( - \delta ) = uf ( - \delta ) and u2(\delta ) = uf (\delta ),

\partial xu1( - \delta ) =
\Bigl( 
a11\partial x + a12\partial y  - 

b1
2

\Bigr) 
uf ( - \delta ) and \partial xu2(\delta ) =

\Bigl( 
a11\partial x + a12\partial y  - 

b1
2

\Bigr) 
uf (\delta )

and compare the solution to those obtained by the reduced models, which consist of
the Laplace equation \Delta ured

j = 0 in \Omega j , j = 1, 2, together with coupling conditions
containing the next-to-leading-order corrections (CC1; see (3.16), (3.17)),

\partial xu
red
1 ( - \delta ) - \partial xu

red
2 (\delta ) = \delta 

\Bigl( 
a22\partial yy  - b2\partial y  - \eta 

\Bigr) \Bigl( 
ured
1 ( - \delta ) + ured

2 (\delta )
\Bigr) 

+
\Bigl( 
a21\partial y  - 

b1
2

\Bigr) \Bigl( 
ured
2 (\delta ) - ured

1 ( - \delta )
\Bigr) 
,

ured
2 (\delta ) - ured

1 ( - \delta ) = \delta a - 1
11

\Bigl( 
\partial xu

red
2 (\delta ) + \partial xu

red
1 ( - \delta )

\Bigr) 
+ \delta 
\Bigl( 
a12\partial y  - 

b1
2

\Bigr) \Bigl( 
ured
1 ( - \delta ) + ured

2 (\delta )
\Bigr) 
,

which have been shown in section 7 to have an error of \scrO (\delta 3) compared to the exact
solution for diffusion problems with diagonal matrix A. We use homogeneous Dirichlet
boundary conditions at y = \pm 10 and nonhomogeneous Dirichlet boundary conditions
with values \pm cos(\pi y/20) at x = \pm 10. In order to not have to repeat parameter
choices every time, we assume that the default setting of the fracture parameters is

(8.1) a11 = 1, a22 = 1, a12 = 0, a21 = 0, b1 = 0, b2 = 0, \eta = 0,

and we indicate which of the parameters we modified only in each test case. The
errors we measure in the matrix and fracture domains are

(8.2) erm =

2\sum 
j=1

\| uj  - ured
j \| H1(\Omega j),

(8.3) erf =

\bigm\| \bigm\| \bigm\| \bigm\| 1

2\delta 

\int \delta 

 - \delta 

ufdx - 1

2
(ured

1 | x= - \delta + ured
2 | x=\delta )

\bigm\| \bigm\| \bigm\| \bigm\| 
L2(\BbbR )

.

D
ow

nl
oa

de
d 

04
/1

1/
23

 to
 1

29
.1

94
.1

.4
6 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



© 2021 Martin J. Gander, Julian Hennicker, and Roland Masson

214 M. J. GANDER, J. HENNICKER, AND R. MASSON

8.1. Analytical solutions. To separate numerical errors from model errors, we
start by considering isotropic diffusion in the fracture, i.e., a11 = a22 \in \BbbR +, and we
are looking for exact solutions of the equidimensional model of the form

uj(x, y) = wj(x)vj(y), j = 1, 2, f.

For simplicity, we choose

v1(y) = v2(y) = vf (y) = cos(\lambda (y  - ay)), \lambda =
2\pi 

| by  - ay| 
,

in \Omega 1 = (ax, - \delta )\times (ay, by), \Gamma = ( - \delta , \delta )\times (ay, by), and \Omega 2 = (\delta , bx)\times (ay, by), respec-
tively, which satisfy homogeneous Neumann boundary conditions at the y-boundary.
Then, since \Delta uj = 0, we have

wj(x) = \alpha j sinh(\lambda x) + \beta j cosh(\lambda x), \alpha j , \beta j \in \BbbR .

From the coupling conditions (2.3), (2.4) and from the (consistent!) Dirichlet bound-
ary conditions at the x-boundary, we obtain the values of the parameters \alpha j , \beta j .

For the reduced model, we similarly derive closed-form solutions

ured
j (x, y) = wred

j (x)vredj (y), j = 1, 2,

in \Omega 1 and \Omega 2, with

vred1 (y) = vred2 (y) = cos(\lambda (y  - ay)), \lambda =
2\pi 

| by  - ay| 
,

and
wred

j (x) = \alpha red
j sinh(\lambda x) + \beta red

j cosh(\lambda x), \alpha red
j , \beta red

j \in \BbbR .
From the coupling conditions (3.16), (3.17) and from the Dirichlet boundary condi-
tions at the x-boundary, we obtain the values of the parameters \alpha red

j , \beta red
j .

Figure 2 shows that for low and mid diffusion in the fracture, optimal convergence
can be observed for moderate values of \delta already, while for high diffusion in the
fracture, this only occurs for very small \delta .

(a) (b) (c)

Fig. 2. Isotropic Darcy flow with one fracture. The plots show the convergence of the reduced
model analytical solutions to the equidimensional model w.r.t. the fracture width for fracture per-
meabilities a11 = a22 \in \{ 10 - 3 (red curve), 10 (green curve), 103 (blue curve)\} and a unit matrix
permeability. (a) Error erm of the matrix solution. (b) Error erf of the leading-order reconstructed
fracture solution. (c) Error of the next-to-next-to-leading-order reconstructed fracture solution. The
reference triangles indicate a cubic slope in (a) and (c) and a quadratic slope in (b).

8.2. Numerical solutions. We present now numerical tests obtained on Carte-
sian grids with a classical second-order finite difference scheme.
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Fig. 3. Matrix and fracture errors erm and erf for anisotropic fracture coefficients a11 = 0.001,
a22 = 1000, b2 = 200 from top to bottom, the other coefficients being as in (8.1).

8.2.1. \bfitdelta -independent parameters. We show in Figure 3 the matrix and frac-
ture errors erm and erf defined in (8.2) and (8.3) for the model coefficients defined
in (8.1) by modifying the values to a11 = 0.001 (top), a22 = 1000 (middle), b2 = 200
(bottom) to obtain anisotropic fracture coefficients.

We observe that the orders of convergence for the reduced order matrix and
fracture solutions correspond to the orders of convergence predicted by Theorems 7.1
and 7.3. Consistent with the analytical solutions in subsection 8.1, for highly diffusive
fractures, the solutions enter the regime of predicted convergence only for very small
fracture apertures \delta . Illustrations of the solutions at \delta = 0.01 are also given in Figure
3.

8.2.2. \bfitdelta -dependent parameters. From the reduced order coupling conditions
(3.16), (3.17), we observe that the fracture aperture, the fracture diffusion coefficients,
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and the fracture tangential advection coefficient never occur isolated but always in
combination either as a fracture resistivity a11

\delta or as fracture conductivities, \delta a22 or
\delta b2. Hence, the asymptotic behavior of the solution is determined by the asymptotic
behavior of the generalized fracture coefficients

a11
\delta 

, \delta a22, \delta b2, a12, a21, b1, \eta .

We test our coupling conditions for three different situations: a barrier test case,
a conduit test case with diffusion-dominant fracture, and a conduit test case with
advection-dominant fracture. Our results below illustrate well the robustness of our
new reduced models.

Barrier test case. In this test case, we set a11

\delta = 0.05, keeping the other parame-
ters as in (8.1). We show in Figure 4 the matrix and fracture errors erm and erf and
also the solution in the limit \delta = 0.
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Fig. 4. Barrier test. Matrix and fracture error plots erm and erf and the solution in the limit
\delta = 0.

From the error plots, we observe an asymptotic linear behavior of the convergence
rate w.r.t. the fracture width for both the matrix and fracture solution.

Conduit test case with diffusion-dominant fracture. In this test case, we set \delta a22 =
10, keeping the other parameters as in (8.1). We show in Figure 5 the matrix and
fracture errors erm and erf and also the solution in the limit \delta = 0.
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Fig. 5. Diffusion-dominant conduit test. Matrix and fracture error plots erm and erf and the
solution in the limit \delta = 0.
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From the error plots, we observe a linear asymptotic behavior of the convergence
rate.

Conduit test case with advection-dominant fracture. In this test case, we set \delta b2 =
2, keeping again the other parameters as in (8.1). We show in Figure 6 the matrix
and fracture errors erm and erf and also the solution in the limit \delta = 0.
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Fig. 6. Advection-dominant conduit test. Matrix and fracture error plots erm and erf and the
solution in the limit \delta = 0.

We again observe a linear asymptotic behavior of the convergence rate.

9. Conclusion. We presented a rigorous derivation of coupling conditions for
DFM models for general linear advection-reaction-diffusion problems. The derivation
of coupling conditions relies on a Fourier transform of the physical unknowns in direc-
tion tangential to the fracture and an elimination of the fracture unknowns in Fourier
space by performing a continuous Schur complement. Reduced order coupling condi-
tions are then obtained by straightforward truncation of an expansion in the fracture
width. For simplicity, our calculations are presented for two-dimensional domains,
but an extension to three dimensions is readily obtained using Fourier transforms
in both directions tangential to the fracture. We compared the coupling conditions
to a commonly used family of (diffusion) models from the literature and obtained
correspondence for the coupling conditions truncated after the next-to-leading-order
terms. We further derived coupling conditions for the fracture resistivity tending to
a constant, to infinity, and to zero and found correspondence to the literature, which
contains results for the special case of the Laplace equation only. For the general
elliptic models, we showed the well-posedness for the reduced models. Furthermore,
from the knowledge of the exact solution in Fourier space, we were able to derive error
estimates for the reduced model solutions in the norm of fractional Sobolev spaces.
Then we used trace and extension inequalities, in order to obtain error estimates in the
H1-norm in the matrix domain and in the H

1
2 -norm in the fracture. In particular, we

obtained cubic, respectively, quadratic convergence in \delta , for diffusion problems with
diagonal matrix A. Our rigorous error analysis is currently restricted to these kinds of
problems. Extensions to more general problems will be presented in future work. Our
estimates for the convergence rate of the reduced model solutions have been verified
in several numerical tests, and we also presented numerical results which go beyond
our analysis, such as for asymptotic solutions in the case of a constant fracture con-
ductivity \delta a22 or resistivity \delta 

a11
. These results illustrate well the robustness of our

new reduced models.
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