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Abstract. This paper investigates Gaussian process modeling with input location error, where the inputs are
corrupted by noise. Here, the best linear unbiased predictor for two cases is considered, according to
whether there is noise at the target location or not. We show that the mean squared prediction error
converges to a non-zero constant if there is noise at the target location, and provide an upper bound
of the mean squared prediction error if there is no noise at the target location. We investigate the
use of stochastic Kriging in the prediction of Gaussian processes with input location error, and show
that stochastic Kriging is a good approximation when the sample size is large. Several numerical
examples are given to illustrate the results, and a case study on the assembly of composite parts is
presented. Technical proofs are provided in the Appendix.
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1. Introduction. Gaussian process (GP) modeling is widely used to recover underlying
functions from scattered evaluations, possibly corrupted by noise. This method has been
utilized in spatial statistics for several decades [7, 22]. Later, GP modeling has been applied
in computer experiments to build emulators of their outputs [27]. In order to capture the
randomness of real systems, it is natural to use stochastic simulation in computer experiments.
For GP modeling, the output associated with each input can be decomposed as the sum of
a mean GP output and a random error that is independent of the GP output. In stochastic
simulation of computer experiments, the random error is typically i.i.d. on each input location
[1]. We call the error added to the mean GP output as output noise. The output noise is usually
from uncertainties associated with responses, such as measurement errors, computational
errors, and other unquantified errors. The corresponding GP modeling with output noise is
called stochastic Kriging (SK) [1].
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Besides output noise, in some cases, the input variables are also corrupted by noise. Noisy
or uncertain inputs are quite common in spatial statistics, because geostatistical data are
often indexed by imprecise locations. Detailed examples can be found in [2, 32]. We call
the random error of input variables as input location noise. The input location noise comes
from the natural uncertainties inherent to the complex systems, such as actuating uncertainty,
controller fluctuation, and internal measurement error. In contrast to the output noise that
is related to the response, input location noise is associated with input variables. If the input
variables are corrupted by noise in a GP, it is known as a GP with input location error, and
the corresponding best linear unbiased predictor is called Kriging adjusting for location error
(KALE) [8]. Also see [4, 9, 15, 23] for more discussions. KALE has been applied in many
areas, including robotics [10], wireless networks [24], and Wi-Fi fingerprinting [18].

KALE predicts the mean GP output at point x ∈ Ω without input location noise. In many
applications, however, the prediction of the mean GP output at point x ∈ Ω with input
location noise is desired. A motivating example is the composite aircraft fuselage assembly
process. In this process, a model is needed to predict the dimensional deviations under noisy
actuators’ forces. Further, when new actuator forces are implemented in practice, there is
an inevitable input location noise, i.e., uncertainty in the actually delivered actuator forces.
Therefore, the output at point x ∈ Ω has input location noise. Under this scenario, we consider
Kriging adjusting for location error and noise (KALEN), which is the best linear unbiased
predictor of the mean GP output at point x ∈ Ω with input location noise. For another
example, in the electric stability control system of vehicles, a model is developed to link the
inputs (i.e., braking pressure and engine torque) and the outputs (i.e., stability control loss).
Input location noise inevitably exists in this system due to the uncertainties in wheel pressure
modulators, pressure reservoir, and electric pump. Other than the two examples mentioned
above, KALEN fits many applications better than KALE due to the ubiquity of actuating
errors in engineering systems.

In this paper, we discuss three predictors, KALE, KALEN, and SK, applied in prediction and
uncertainty quantification of GP modeling with input location error. We show that unlike
GP modeling without location error, the mean squared prediction error (MSPE) does not
converge to zero as the sample size goes to infinity. Furthermore, we show that the limiting
MSPE of KALEN and SK are equal if point x ∈ Ω has input location noise. We obtain an
asymptotic upper bound on the MSPE of KALE and SK if there is no noise at point x ∈ Ω.
This upper bound is small if the input location noise at observed points is slight. Numerical
results indicate that if the sample size is relatively small and noise is rather large, KALE or
KALEN have a much smaller MSPE, and thus are desirable, compared with SK. If the sample
size is large or the noise is quite small, then the performance of all three approaches is similar.
We also compare the performance of KALEN and SK in the modeling of a composite parts
assembly process problem. We find that the KALEN and SK are comparable across a range
of small input location noise levels, corresponding to a range of actuator tolerances, which is
consistent with the theoretical analysis.

The remainder of this article is structured as follows. In Section 2, we formally state the
problem, introduce KALE and KALEN, and show some asymptotic properties of the MSPE
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of KALE and KALEN. Section 3 presents some theoretical results when using SK in the
prediction of GPs with input location error. Parameter estimation methods are discussed in
Section 4. Numerical results are presented in Section 5. A case study of the composite parts
assembly process is considered in Section 6. Technical details are given in the Appendix.

2. GPs with Input Location Error. In this section, we introduce two predictors of GPs
with input location error, KALE and KALEN. We also give several asymptotic properties of
KALE and KALEN.

2.1. Two Predictors of GPs with Input Location Error. Suppose f is an underlying
function defined on Rd, and the values of f on a convex and compact set Ω are of interest.
Suppose we observe the responses f(x1), . . . , f(xn) on X = {x1, . . . , xn} ⊂ Ω. Following the
terminology in design of experiments [38], we call X = {x1, . . . , xn} design points. A standard
tool to build emulators based on observed data is GP modeling (see [13] and [28], for example).
In GP modeling, the underlying function f is assumed to be a GP. We suppose f is stationary,
which means that the covariance of f(x) and f(x′) depends only on the difference x − x′

between the two input variables x and x′. We further assume Cov(f(x), f(x′)) = σ2Ψ(x−x′),
where σ2 is the variance, and Ψ is the correlation function. Then Ψ must be positive definite
and satisfy Ψ(0) = 1. Since f is defined on Rd, Ψ should also be defined on Rd. In GP
modeling, one can assume that the mean of f is zero, a constant, or a linear combination
of known functions. The corresponding methods are referred to as simple Kriging, ordinary
Kriging, and universal Kriging, respectively. Ordinary Kriging and universal Kriging are more
flexible and may improve the prediction performance, but the estimation of the mean function
introduces more uncertainties. Moreover, Theorem 3 of [34] suggests that the estimation of the
mean function can be inconsistent. These uncertainties and inconsistency make the theoretical
analysis more cumbersome, and dilute the focus of the overall analysis. Therefore, for the ease
of mathematical treatment, we assume the mean of f is zero in theoretical developments in
Sections 2-4, which is equivalent to removing the mean surface. Nevertheless, we use a non-
zero mean function in numerical and case studies to improve the prediction performance by
introducing more degrees of freedom.

For a GP with input location error, the inputs are corrupted by noise. In this paper, we mainly
focus on the input location error and assume the responses are not influenced by the output
noise. It is worth noting that this assumption can be relaxed, and the GP with both input
location error and output noise can be analyzed in a similar manner, as stated in Remark
2.1. Specifically, suppose the responses are perturbed by the input location error, that is, we
observe yj = f(xj + ϵj) for xj ∈ X, where the ϵj ’s are i.i.d. random vectors with mean 0, and
have a probability density function p(·). Therefore, although xj is known, the actual location
xj + ϵj is unknown and we observe the response f(xj + ϵj) on this unknown location. It is
possible to have replicates on some design points, i.e., for some j ̸= k, xj = xk for xj , xk ∈ X
but ϵj ̸= ϵk. We assume p(·) is continuous and each element of ϵj has finite variance (note
that ϵj is a vector).

Following the approach in [8], the best linear unbiased predictor of f(x) on a point x is given
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by

Q(Y ;x) = αT
1 Y + α2,(1)

where α1 ∈ Rn, α2 ∈ R are the solution to the optimization problem

min
(α1,α2)

E(f(x)−Q(Y ;x))2 = min
(α1,α2)

E(f(x)− αT
1 Y − α2)

2,(2)

and the responses on the design points are Y = (y1, . . . , yn)
T . By minimizing (2) with

respect to (α1, α2), we obtain the solution to (2) is α1 = R−1r(x) and α2 = 0, where
r(x) = (r(x, x1), . . . , r(x, xn))

T denotes the covariance vector between f(x) and Y with

r(x, xj) = E(f(x)yj) = σ2

∫
Rd

Ψ(x− (xj + ϵj))p(ϵj)dϵj ,(3)

and R = (Rjk)jk denotes the covariance matrix with

Rjk = E(yjyk) =
{

σ2Ψ(xj − xj) = σ2, j = k,
σ2
∫
Rd

∫
Rd Ψ(xj + ϵj − (xk + ϵk))p(ϵj)p(ϵk)dϵjdϵk, j ̸= k.

(4)

Plugging α1 = R−1r(x) and α2 = 0 into (1), we find the best linear unbiased predictor of f(x)
is

f̂(x) = r(x)TR−1Y.(5)

Remark 2.1. If the observations also have i.i.d. distributed output noise with mean zero and
finite variance σ2

δ , we only need to replace E(yjyj) = σ2 by E(yjyj) = σ2 + σ2
δ , and the rest of

the theoretical analysis remains similar. Our theoretical analysis can also be generalized to the
case that ϵi’s are independent but not identically distributed. Although these generalizations
do not influence the theoretical development a lot, they could dilute the main focus of this
paper. Therefore, we focus on the GPs with only i.i.d. input location noise.

In [8] equation (5) is referred to as Kriging adjusting for location error (KALE). If the predic-
tion of y(x) = f(x + ϵ) on a point x with input location noise is of interest, it can be shown
that we only need to replace r(x) in (5) by rN (x) = (rN (x, x1), . . . , rN (x, xn))

T , where

rN (x, xj) = σ2

∫
Rd

∫
Rd

Ψ(x+ ϵ− (xj + ϵj))p(ϵj)p(ϵ)dϵjdϵ.(6)

We refer to the corresponding best linear unbiased predictor ŷ(x) = rN (x)TR−1Y as Kriging
adjusting for location error and noise (KALEN). One direct relation between KALE and
KALEN is ŷ(x) =

∫
Rd f̂(x+ ϵ)p(ϵ)dϵ.

In some cases, there exist closed forms of the integrals in (3)–(6). For example, if the cor-
relation function Ψ(s − t) = exp(−θ∥s − t∥22), and the noise ϵ ∼ N(0, σ2

ϵ Id), where θ > 0 is
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the correlation parameter, and N(0, σ2
ϵ Id) is a mean zero normal distribution with covariance

matrix σ2
ϵ Id, then (3)–(6) can be calculated respectively as [6]

Rjk =

 σ2 j = k,

σ2

(1+4σ2
ϵ θ)

d/2 e
−θ∥xj−xk∥22

1+4σ2
ϵ θ j ̸= k,

r(x, xj) =
σ2

(1 + 2σ2
ϵ θ)

d/2
e

−θ∥x−xj∥
2
2

1+2σ2
ϵ θ ,

rN (x, xj) =
σ2

(1 + 4σ2
ϵ θ)

d/2
e

−θ∥x−xj∥
2
2

1+4σ2
ϵ θ .(7)

We also include the calculation of (7) in Appendix C for readers’ reference.

Unfortunately, in general, equations (3)–(6) are intractable and are typically estimated via
Monte Carlo integration by sampling ϵj ’s from p(·), which can be computationally expensive.
For example, if we choose the Matérn correlation function, then (5) does not have a closed
form. In this case, the calculation of (5) will require much time, as we will see in Section 5.

With equations (3)–(6), the MSPE of KALE can be calculated by

E(f(x)− f̂(x))2 = E(f(x)− r(x)TR−1Y )2

= E(f(x)2)− 2r(x)TR−1E(f(x)Y ) + r(x)TR−1E(Y Y T )R−1r(x)

= σ2 − r(x)TR−1r(x),(8)

where f̂ is as in (5), and r and R are as defined in (3) and (4), respectively. The last equality
is true because of (3) and (4), and E(f(x)2) = Ψ(0) = 1. Similarly, one can check the MSPE
of KALEN is

E(y(x)− ŷ(x))2 = σ2 − rN (x)TR−1rN (x),(9)

where rN is as defined in (6).

2.2. Asymptotic behaviors of KALEN. In this subsection, we consider asymptotic be-
haviors of KALEN. Define

ΨS(s− t) =

∫
Rd

∫
Rd

Ψ(s+ ϵ1 − (t+ ϵ2))p(ϵ1)p(ϵ2)dϵ1dϵ2.(10)

Notice that the MSPE of KALEN can be expressed as

E(y(x)− ŷ(x))2 = σ2 − rN (x)R−1rN (x)

= σ2(1−ΨS(0)) + σ2ΨS(0)− rN (x)R−1rN (x)

= σ2(1−ΨS(0))︸ ︷︷ ︸
a constant

+σ2ΨS(0)− rN (x)(RS + σ2(1−ΨS(0))In)
−1rN (x)︸ ︷︷ ︸

“MSPE of SK”

,(11)
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where RS = σ2(ΨS(xj − xk))jk and In is an identity matrix. Intuitively, if the second term is
indeed an MSPE of SK, then it converges to zero, and the MSPE of KALEN converges to a
constant. However, the second term is an MSPE of SK unless ΨS is a valid correlation function
(thus RS is positive definite) and that is why we add quote marks in (11). In Proposition 3.1
of [6], it is shown that if a function c(s, t) = ΨS(s− t) for s ̸= t and c(s, s) = 1, then c(·, ·) is
a valid correlation function. Therefore, the covariance matrix R is positive definite. In order
to show RS in (11) is also positive definite, we assume the correlation function Ψ satisfies the
following assumption, which is also assumed to be true in the rest of Section 2 and Section 3.

Assumption 2.2. The correlation function Ψ is a radial basis function, i.e., Ψ(s− t) = ϕ(∥s−
t∥2) for s, t ∈ Rd. Furthermore, ϕ(r) > 0 is a strictly decreasing function of r ∈ R+, with
ϕ(0) = 1. The reproducing kernel Hilbert space generated by Ψ can be embedded into a Sobolev
space Hη(Ω) with η > d/2.

Remark 2.3. For a brief introduction to the reproducing kernel Hilbert space, see Appendix
A.

Many widely used correlation functions, including isotropic Gaussian correlation functions and
isotropic Matérn correlation functions, satisfy this assumption. See Appendix A for details.
For an anisotropic correlation function that has form Ψ(s − t) = ϕ(∥A(s − t)∥2) with A a
diagonal positive definite matrix and s, t ∈ Rd, we can stretch the space Ω to Ω′ such that
Ψ1(s

′ − t′) := Ψ(s− t) = ϕ(∥s′ − t′∥2) for s′, t′ ∈ Ω′. Assumption 2.2 implies ΨS(0) < 1. With
Assumption 2.2, we can show that ΨS is a positive definite function, which is stated in the
following lemma whose proof is given in Appendix D.

Lemma 2.4. Suppose Assumption 2.2 holds. Then ΨS is a positive definite function.

Next, we consider the asymptotic properties of the MSPE of KALEN defined in (9) as the fill
distance goes to zero, where the fill distance hX of the design points X is defined by

(12) hX := sup
x∈Ω

min
xj∈X

∥x− xj∥2.

Specifically, we consider a sequence of designs Xm, m = 1, 2, . . . and we assume the following.

Assumption 2.5. The sequence of design points Xm = {x1, . . . , xnm} satisfies that there exists
a constant C > 0 such that hXm ≤ CqXm for all m, where

qXm = min
xj ̸=xk,xj ,xk∈Xm

∥xj − xk∥2/2,

and hXm is the fill distance of Xm defined by (12).

Remark 2.6. Assumption 2.5 implies that the distinct design points are quasi-uniform [37].

It is not hard to find designs that satisfy this assumption. For example, grid designs satisfy
Assumption 2.5. In the rest of the paper, we suppress the dependence of X on m for notational
simplicity. It can be shown that if a GP has no input location noise, then the MSPE of the
corresponding best linear unbiased predictor converges to zero as the fill distance goes to zero
(see Lemma B.1 in Appendix B). Unlike a GP without input location error, we show that the
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limit of the MSPE of KALEN is usually not zero. In fact, (11) and Lemma 2.4 imply that
the MSPE of KALEN is the MSPE of SK plus a non-zero constant. These results are stated
in Theorem 2.7, whose proof is provided in Appendix E.

Theorem 2.7. Suppose Assumptions 2.2 and 2.5 hold. The MSPE of KALEN (9) converges
to σ2(1 − ΨS(0)) as the fill distance of the design points hX converges to zero, where ΨS is
defined in (10).

In Theorem 2.7, we present a limit of the MSPE of KALEN. The limit σ2(1 − ΨS(0)) is
usually not zero. This is expected for KALEN since there is a random error at point x.
The MSPE limit depends on two parts. One is the variance σ2 and the other is the difference
1−ΨS(0). The variance σ

2 depends on the underlying process, while the difference depends on
the probability density function of the noise p(·). Roughly speaking, the difference 1−ΨS(0)
will be larger if the density p(·) is more spread out.

3. Comparison Between KALE/KALEN and SK. It is argued in [8] and [29] that using
a nugget term is one way to counteract the influence of noise within the inputs. Therefore, it
is natural to ask whether SK (or Kriging with a nugget term, see Remark 3.2 for discussion
of the use of terminologies) is a good approximation method to predict the value at a point
x ∈ Ω, since it is not the best linear unbiased predictor under the settings of GP with input
location error. In this paper, we show that the MSPE of SK has the same limit as the MSPE
of KALEN, and provide an upper bound on the MSPE of SK if the target point x has no
noise, as stated in Theorem 3.1. The proof can be found in Appendix F.

Theorem 3.1. Suppose Assumptions 2.2 and 2.5 hold. Let µ > 0 be any fixed constant. A SK
predictor of a GP with input location error is defined as

f̂S(x) = rΨ(x)(RΨ + µIn)
−1Y,(13)

where rΨ(x) = (Ψ(x− x1), . . . ,Ψ(x− xn))
T and RΨ = (Ψ(xj − xk))jk.

(i) Suppose there is noise at a point x ∈ Ω and y(x) is to be predicted. The MSPE of the
predictor (13), E(y(x)− f̂S(x))

2, has the same limit as KALEN, which is σ2(1−ΨS(0)), where
ΨS is as defined in (10), when the fill distance of X goes to zero.

(ii) Suppose there is no noise at a point x ∈ Ω and f(x) is to be predicted. An asymptotic
upper bound on the MSPE of the predictor (13), E(f(x)− f̂S(x))

2, is

1.04σ2

(2π)d/2

∫
Rd

∣∣1− |b(t)|
∣∣2F(Ψ)(t)dt,(14)

where F(Ψ) is the Fourier transform of Ψ and b(t) = E(eiϵT t) is the characteristic function
of p(·).
Remark 3.2. The form of the SK predictor is quite similar to that of the simple Kriging with an
additional term µIn. Following the terminology in computer experiments [16, 25], we call µIn a
“nugget” term. Despite a similar form, there are some distinct rationales for including a nugget
term. In spatial statistics, the nugget term can accommodate discontinuities in the covariance
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function (such variation is called the nugget effect) [26, 29], and the corresponding predictor is
still an interpolator if there is no noise [26]. In deterministic computer experiments, the nugget
term can be used to stabilize computation of the matrix inverse [16, 25]. The nugget term can
also be used to counteract the influence of output noise in stochastic computer simulations
and spatial statistics [1, 29]. In the latter two scenarios, the corresponding predictor is no
longer an interpolator.

Remark 3.3. We say b is an asymptotic upper bound on a sequence an, if there exists a
sequence bn such that an ≤ bn for all n = 1, 2, . . ., and limn→∞ bn = b.

Remark 3.4. The constant 1.04 in (14) is not essential. It can be changed to any constant
greater than one, but a smaller constant leads to a “slower” convergence speed.

Remark 3.5. Note that KALE is the best linear unbiased predictor when a point x ∈ Ω has
no noise. Therefore, the upper bound of MSPE for SK is also an upper bound of MSPE for
KALE. For an illustration of the upper bound and lower bound of the MSPE of KALE, see
Example 3.7.

Theorem 3.1 shows that the predictor (13) is as good as KALEN asymptotically. The fol-
lowing proposition states that if the noise is small, then (14) can be controlled. The proof of
Proposition 3.6 can be found in Appendix G.

Proposition 3.6. Suppose Assumption 2.2 holds, and {ϵn} is a sequence of independent random
vectors that converges to 0 in distribution. Let

an =
σ2

(2π)d/2

∫
Rd

∣∣1− |bn(t)|
∣∣2F(Ψ)(t)dt,(15)

where bn(t) = E(eiϵTn t). Then an converges to zero.

Example 3.7. Consider a GP f with mean zero and covariance function σ2Ψ. Suppose the
correlation function Ψ(s − t) = exp(−θ∥s − t∥22) with θ > 0, and the input location noise
ϵj ∼ N(0, σ2

ϵ Id) are i.i.d., where N(0, σ2
ϵ Id) is a mean zero normal distribution with covariance

matrix σ2
ϵ Id. By Theorem 3.1, the limit of the MSPE of KALEN E(y(x) − ŷ(x))2 and SK

E(y(x)− f̂S(x))
2 is σ2(1−ΨS(0)), which can be computed by

σ2(1−ΨS(0)) =σ2

(
1−

∫
Rd

∫
Rd

Ψ(x+ ϵ1 − (x+ ϵ2))p(ϵ1)p(ϵ2)dϵ1dϵ2

)
=σ2 − rN (x, x) = σ2 − rN (xj , xj) = σ2

(
(1 + 4σ2

ϵ θ)
d/2 − 1

(1 + 4σ2
ϵ θ)

d/2

)
,(16)

where rN (xj , xj) is as in (7) with x = xj .

If there is no noise at point x, Theorem 3.1 states that an asymptotic upper bound of MSPE
E(f(x)− f̂S(x))

2 for SK is

1.04σ2

(2π)d/2

∫
Rd

∣∣1− |b(t)|
∣∣2F(Ψ)(t)dt.
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Note that the characteristic function ofN(0, σ2
ϵ Id) is b(t) = E(eiϵT t) = e−

1
2
σ2
ϵ t

T t, and F(Ψ)(t) =

θ−d/2e−
tT t
4θ . Thus, the upper bound can be computed by

1.04σ2

(2π)d/2

∫
Rd

∣∣1− |b(t)|
∣∣2F(Ψ)(t)dt =

1.04σ2

(2πθ)d/2

∫
Rd

(1− e−σ2
ϵ t

T t/2)2e−
tT t
4θ dt

= 1.04σ2

(
1 +

1

(1 + 4σ2
ϵ θ)

d/2
− 2

(1 + 2σ2
ϵ θ)

d/2

)
.(17)

Figure 1 shows the plot of limit (16) and the asymptotic upper bound (17) with θ = 1 and
σ2 = 1. It can be seen that as the variance of noise increases, both (16) and (17) increase, and
(17) is larger than (16). From Panel 1 and Panel 2 of Figure 1, the error is more prominent if
the dimension of the space is larger. This indicates that GP with input location error is also
influenced by the dimension as in many statistic problems.
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Figure 1. The limit (16) and the asymptotic upper bound (17) with θ = 1 and σ2 = 1. Panel 1: d = 2.
Panel 2: d = 6.

One advantage of SK is that we can simplify the calculation since we do not need to calculate
the integrals in (3), (4), and (6). If the noise is small and the fill distance is small, Theorem
3.1 and Proposition 3.6 state that the MSPE of the SK predictor (13) can be comparable with
the best linear unbiased predictor.

It is argued in [6] that since the integrated covariance function in (4) is not the same as the
covariance function in the original GP without location error, a nugget term alone cannot
capture the effect of location error. While it is true that the MSPE of KALE or KALEN
is the smallest among all the linear unbiased predictors, our results also show that with any
fixed constant nugget term, the predictor (13) is as good as KALEN asymptotically (i.e.,
has the same limit as that of KALEN). The results indicate that there is little absolute
difference between KALE and the predictor (13) if the variance of the input location noise
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and the fill distance are small, because the same asymptotic upper bound for both MSPEs
E(f(x)− f̂(x))2 and E(f(x)− f̂S(x))

2 is small. If the sample size n is large, the computational
cost of KALE/KALEN and SK will be high, because the computation of a dense matrix
inverse is O(n3). Note that the dense matrix inverse also appears in ordinary GP modeling.
If the sample size is small and the variance of the input location noise is large, as suggested
by numerical studies, the difference between the MSPE of KALE or KALEN and SK is large.
Thus SK with a single nugget term may not lead to a good predictor in this case.

4. Parameter Estimation. Let Ψθ(1) be a class of correlation functions and pθ(2)(·) be a
class of probability density functions indexed by (θ(1), θ(2)) ∈ Θ, respectively, where θ(j) ∈
Θj ⊂ Rqj for j = 1, 2. Thus, Θ = Θ1 × Θ2. Suppose Θ is a compact subregion of Rq1+q2 .
An intuitive approach to estimate the parameters is maximum likelihood estimation. Up to a
multiplicative constant, the likelihood function is

ℓ(σ2, θ(1), θ(2);X,Y ) ∝
∫
Rd

. . .

∫
Rd

det(Σ1)
−1/2e−

1
2
Y TΣ−1

1 Y pθ(2)(ϵ1) . . . pθ(2)(ϵn)dϵ1 . . . dϵn,

(18)

where Σ1 = (σ2Ψθ(1)(xj + ϵj − (xk + ϵk)))jk, and det(A) is the determinant of a matrix
A. Unfortunately, the integral in (18) is difficult to calculate, because the dimension of
the integral increases as the sample size increases. In this work, we use a pseudo-likelihood
approach proposed by [8]. Define

ℓg(σ
2, θ(1), θ(2);X,Y ) = (2π)−n/2det(R(θ(1),θ(2)))

−1/2 exp

(
− 1

2
Y TR−1

(θ(1),θ(2))
Y

)
,(19)

where σ2, θ(1), θ(2) are parameters we want to estimate, and R(θ(1),θ(2)) is defined in (4) by
replacing Ψ and p(·) with Ψθ(1) and pθ(2)(·), respectively. The maximum pseudo-likelihood
estimator can be defined as

(σ̂2
1, θ̂

(1)
1 , θ̂

(2)
1 ) = argsup

(σ2,θ(1),θ(2))

ℓg(σ
2, θ(1), θ(2);X,Y ).(20)

If (20) has multiple solutions, we choose any one from them. Because of non-identifiability,
parameters inside the GP (σ2, θ(1)) and parameters inside the probability density function of
input variable noise θ(2) cannot be estimated simultaneously [6].

The properties of the pseudo-likelihood approach are discussed in [6]. Here we list a few of
them. First, the pseudo-score provides an unbiased estimation equation, i.e.,

E(S(σ2, θ(1), θ(2);X,Y )) = E(∇ log(ℓg(σ
2, θ(1), θ(2);X,Y ))) = 0.

Second, the covariance matrix of the pseudo-score E(S(σ2, θ(1), θ(2);X,Y )S(σ2, θ(1), θ(2);X,Y )T )

and the expected negative Hessian of the log pseudo-likelihood E
(

∂2

∂ϑj∂ϑk
log(ℓg(σ

2, θ(1), θ(2);X,Y ))
)

can be calculated, where ϑj and ϑk are elements in (σ2, θ(1), θ(2)), i.e., (σ2, θ(1), θ(2)) =
(ϑ1, ϑ2, ..., ϑ1+q1+q2). However, the consistency of parameters estimated by pseudo-likelihood
in the case of GP has not been theoretically justified to the best of our knowledge.
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If we use SK, the corresponding (misspecified) log likelihood function is, up to an additive
constant,

ℓnug(σ
2, θ(1), µ;X,Y ) = −1

2
log(det(Rθ(1) + µIn))−

1

2
Y T (Rθ(1) + µIn)

−1Y,(21)

where Rθ(1) = (Ψθ(1)(xj −xk))jk. The maximum likelihood estimator of (σ2, θ(1), µ) is defined
by

(σ̂2
2, θ̂

(1)
2 , µ̂) = argsup

(σ2,θ(1),µ)

ℓnug(σ
2, θ(1), µ;X,Y ).(22)

Note that (21) is the log likelihood function for a GP with only output noise. Thus it is
misspecified, and the estimated parameters may also be misspecified. However, it has been
shown by the well-known works [40] and [42] that the GP model parameters in the covariance
functions may not have consistent estimators. Therefore, using GP models for prediction may
be more meaningful than for parameter estimation. The following theorem indicates that the
change of parameters do not significantly influence our theoretical results on the MSPE of
KALE, KALEN and SK. The proof is presented in Appendix H.

Theorem 4.1. Suppose for some constant C > 0, 1/C ≤ µ̃ ≤ C holds for all n, and parame-

ters σ̃2, θ̃
(1)
1 , θ̃

(2)
1 , θ̃

(1)
2 are deterministic (but possibly depending on n). Let Ψ̃1 and Ψ̃2 be the

correlation functions with parameters θ̃
(1)
1 , θ̃

(1)
2 ∈ Θ1, respectively. Let p̃(·) be the probability

density function with parameters θ̃
(2)
1 ∈ Θ2. Let Ψ̃S be as in (10) with parameters θ̃

(1)
1 and θ̃

(2)
1 .

Potential dependency of µ̃, Ψ̃1, Ψ̃2, p̃(·), and Ψ̃S on n is suppressed for notational simplicity.
Assume the following.

(1) There exists a constant A1 such that for all n

max

{∥∥∥∥ F(Ψ)

F(Ψ̃S)

∥∥∥∥
L∞

,

∥∥∥∥ F(Ψ)

F(Ψ̃1)

∥∥∥∥
L∞

,

∥∥∥∥ F(Ψ)

F(Ψ̃2)

∥∥∥∥
L∞

}
≤ A1.(23)

(2) There exists a Sobolev space Hm(Ω) such that Assumption 2.2 holds for all Ψ̃1 and Ψ̃2,
and the embedding constants have a uniform upper bound for all n, i.e., there exists a constant
C such that ∥f∥Hm(Ω) ≤ C∥f∥NΨ̃1

(Ω) and ∥f∥Hm(Ω) ≤ C∥f∥NΨ̃2
(Ω) holds for all Ψ̃1 and Ψ̃2.

(3) Assumption 2.5 holds for the sequence of designs X.

(4) All probability density functions p̃(·) are continuous, have mean zero and second moment.
The second moments of all p̃(·) have a uniform positive lower bound and upper bound for all
n.

Then the following statements are true.

(i) Suppose there is noise at point x. Then the MSPE of KALEN E(y(x) − ŷ(x))2 and the
MSPE of SK E(y(x)− f̂S(x))

2 have the limit σ2(1−ΨS(0)) when the fill distance of X goes
to zero, where ΨS is defined in (10).
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(ii) Suppose there is no noise at point x. An asymptotic upper bound on the MSPE of SK
E(f(x)− f̂S(x))

2 is

1.04σ2

(2π)d/2

∫
Rd

|1− |b(t)|2|F(Ψ)(t)dt,

where b(t) = E(eiϵT t) is the characteristic function of p(·). Furthermore, if p̃(·) = p(·) and∥∥∥F(Ψ̃1)
F(Ψ)

∥∥∥
L∞

≤ A2, an asymptotic upper bound on the MSPE of KALE E(f(x)− f̂(x))2 is

1.04A1A2σ
2

(2π)d/2

∫
Rd

|1− |b(t)|2|F(Ψ)(t)dt.

Theorem 4.1 states if we have a reasonable sequence of parameters, then we have the following:
(i) If point x has noise (i.e., predicting f(x + ϵ)), the limit of the MSPE of KALEN and SK
remains the same; and (ii) If point x has no noise (i.e., predicting f(x)), the upper bounds on
the MSPE of KALE and SK can be obtained. The limit and upper bounds are small if the
noise is small. The upper bound for the MSPE of SK is the same as the bound in Theorem
3.1. However, the upper bound for the MSPE of KALE is inflated by A1A2. We believe this
inflation is not necessary and can be improved.

Remark 4.2. Note that the parameters in Theorem 4.1 are deterministic. Therefore, there is
still a gap between Theorem 4.1 and the convergence results of KALE/KALEN/SK with es-
timated parameters. The authors cannot confirm if the results hold for estimated parameters
which depend on the random observations Y . Nevertheless, given the parameters have suffi-
cient flexibility, we believe that Theorem 4.1 can still provide some insights on the influence
of the parameter estimation. We thank one reviewer for pointing out the incorrectness in the
previous version of Theorem 4.1.

The computation complexity of (22) is about the same as that of (20), if (4) can be calculated
analytically. Unfortunately, (4) usually does not have a closed form, which substantially
increases the computation time of solving (20).

5. Numerical Results. In this section, we report some simulation studies to investigate the
numerical performance of KALE, KALEN and SK. In Example 1, we use Gaussian correlation
functions to fit a 1-d function, where the predictor (5) has analytic form. In Example 2, we
use Matérn correlation functions to fit a 2-d function, where the integrals in (3) and (4) are
typically estimated by Monte Carlo sampling [8].

5.1. Example 1. Suppose the underlying function is f(x) = sin(2πx/10)+0.2 sin(2πx/2.5),
x ∈ [0, 8] [19]. The design points are selected to be 161 evenly spaced points on [0, 8]. The
input location noise is chosen to be mean zero normally distributed with the variances 0.05k,
for k = 1, 2, 3, 4. We use a Gaussian covariance function Ψ(s−t) = σ2 exp(−θ∥s−t∥22) to make
predictions, and use the pseudo-likelihood approach presented in Section 4 to estimate the
unknown parameters σ2, θ and the variance of noise σ2

ϵ . For each variance of input location
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noise, we approximate the squared L2 error ∥f− f̂∥22 by 8
n

∑n
i=1(f(xi)− f̂(xi))

2, where the xi’s
are 8001 evenly spaced points on [0, 8]. Then we run 100 simulations and take the average of
8
n

∑n
i=1(f(xi)− f̂(xi))

2 to estimate E∥f − f̂∥22. We estimate E∥y− ŷ∥22 by a similar approach,
i.e., estimate E∥y − ŷ∥22 by the average of 8

n

∑n
i=1(y(xi) − ŷ(xi))

2 of 100 simulations, where

y(xi) = f(xi + ϵi) and ϵi’s are input location noise. Recall that E∥f − f̂∥22 and E∥y − ŷ∥22 are
related to KALE and KALEN, respectively. With abuse of terminology, we still call E∥f− f̂∥22
and E∥y − ŷ∥22 MSPE.

The RMSPEs, which are the square roots of MSPEs, for KALE/KALEN and SK, are shown
in Table 1/Table 2, respectively.

σ2
ϵ RMSPE (SD) of KALE RMSPE (SD) of stochastic Difference

Kriging

0.05 0.1147(0.0287) 0.1209(0.0288) 0.0062
0.10 0.1528(0.0372) 0.1764(0.0387) 0.0236
0.15 0.1917(0.0475) 0.2364(0.0418) 0.0448
0.20 0.2380(0.0597) 0.3149(0.0773) 0.0769

Table 1
Comparison of the RMSPE for KALE and SK: 1-d function with Gaussian covariance function. SD

stands for standard deviation of RMPSE. In the fourth column, difference = 3rd column − 2nd column, i.e.,
the RMSPE of SK − the RMSPE of KALE.

σ2
ϵ RMSPE (SD) of KALEN RMSPE (SD) of stochastic Difference

Kriging

0.05 0.3627(0.0076) 0.3619(0.0073) −0.0014
0.10 0.4940(0.0095) 0.4931(0.0092) −0.0009
0.15 0.5884(0.0107) 0.5885(0.0108) 0.0001
0.20 0.6651(0.0127) 0.6704(0.0164) 0.0053

Table 2
Comparison of the RMSPE for KALEN and SK: 1-d function with Gaussian covariance function. SD

stands for standard deviation of RMPSE. In fourth column, difference = 3rd column − 2nd column, i.e., the
RMSPE of SK − the RMSPE of KALEN.

It can be seen from Tables 1 and 2 that the RMSPE (standard deviations) of KALE/KALEN
and SK decreases as the variance of the input location noise drops. This corroborates the re-
sults in Theorem 3.1 and Proposition 3.6. The difference of RMSPE between KALE/KALEN
and SK also decreases when the variance of the input location noise decreases. Comparing
Table 2 with Table 1, it can be seen that the RMSPE of KALEN is larger than that of KALE.
This is reasonable because KALEN predicts y(x), which includes an error term while f(x)
does not. The computation of KALE/KALEN has the same complexity as the SK in this
example, because a Gaussian covariance function is used, and the integrals in (4) and (6) can
be calculated analytically.

In order to further understand the performance of KALE/KALEN and SK, two realizations
among the 100 simulations for Table 1 and Table 2 are illustrated in Panel 1 and Panel 2 of
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Figure 2, respectively, where the variance of the input location noise is chosen to be 0.05. In
Panel 1 of Figure 2, the circles are the collected data points. The true function, the prediction
curves of KALE and SK are denoted by the solid line, the dashed line and the dotted line,
respectively. It can be seen from the figure that both KALE and SK approximate the true
function well. In Panel 2 of Figure 2, the dots are the samples of y(x) on 8001 testing points.
It can be seen that the samples are around the predictions of KALEN and SK, but with much
more fluctuations. This shows that the RMSPE in Table 2 is larger than those in Table 1.
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Figure 2. Panel 1: An illustration of KALE and SK. The true function, the prediction curves of KALE
and SK are denoted by solid line, dashed line and dotted line, respectively. The circles are the observed data
points. Panel 2: An illustration of KALEN and SK. The dots are the samples of y(x) on testing points.
The true function, prediction curves of KALEN and SK are denoted by solid line, dashed line and dotted line,
respectively.

We also include the confidence interval results in this subsection. It is known [6] that there
is no nontrivial structure for ϵ (that is, ϵ is not identical to zero) such that f(x + ϵ) is a
GP on Ω. Since there is no closed form for the distribution of KALE f̂(x) (or KALEN
ŷ(x)), we use Gaussian approximation. Specifically, we treat f(x) (or y(x)) as normally
distributed and compute the pointwise conditional variance σ̂f (x)

2 (or σ̂y(x)
2). Then we

compute the pointwise confidence interval of GP, defined by [f̂(x)− qβσ̂f (x), f̂(x) + qβσ̂f (x)]
(or [ŷ(x)− qβσ̂y(x), ŷ(x) + qβσ̂y(x)]) with confidence level (1− β)100%, where qβ denote the
(1−β/2)th quantile of standard normal distribution. We select β = 0.05 and use coverage rate
to quantify the quality of the confidence interval, where the coverage rate is the proportion
of the time that the interval contains the true value. However, the length of the confidence
interval of SK for GP with only output error converges to zero, which does not reflect the
fact that the actual MSPE of SK does not converge to zero. Because of this, we adjust the
estimated conditional variance of the SK by adding the limit value σ2(1−ΨS(0)). The results
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are reported in Table 3.

σ2
ϵ KALE SK1 Adjusted SK1 KALEN SK2 Adjusted SK2

0.05 0.9179 0.8547 0.9630 0.9292 0.4903 0.6328
0.10 0.9268 0.7906 0.9754 0.9296 0.4432 0.6490
0.15 0.9202 0.6987 0.9670 0.9345 0.4033 0.6677
0.20 0.9163 0.5834 0.9213 0.9358 0.3494 0.6545

Table 3
Coverage rate of pointwise confidence interval of KALE and SK (when there is no noise on target point),

and KALEN and SK (when there is noise on target point). The following notation is used: (Adjusted) SK1

= (Adjusted) SK without noise at the target point; (Adjusted) SK2 = (Adjusted) SK with noise at the target
point. The nominal level is selected to be 95%.

From Table 3, it can be seen that the (misspecified) pointwise confidence interval does not
achieve the nominal level. It is expected that the SK has poor coverage because the model
is misspecified. KALE and KALEN, on the other hand, can provide more reliable confidence
intervals. In fact, even for GP without error, it is often observed that GP models have poor
coverage of their confidence intervals [16, 20, 39]. Therefore, a better uncertainty quantification
methodology for GP with input location error is needed.

5.2. Example 2. In this example, we compare the calculation time of SK and KALE,
where the predictor (5) of KALE does not have an analytic form. Suppose the underlying
function is f(x) = [(30+ 5x1 sin(5x1))(4+ exp(−5x2))− 100]/6 for x1, x2 ∈ [0, 1] [21]. We use
Matérn correlation functions [29]

ΨM (x; ν, ϕ) =
1

Γ(ν)2ν−1
(2
√
νϕ∥x∥2)νKν(2

√
νϕ∥x∥2)(24)

to make predictions, where Kν is the modified Bessel function of the second kind, and ν, ϕ >
0 are model parameters. The Matérn correlation function can control the smoothness of
the predictor by ν and thus is more robust than a Gaussian correlation function [34]. The
covariance function is chosen to be Ψ(x − y) = ΨM (x − y; ν, ϕ). The input location noise is
chosen to be mean zero normally distributed with the variances 0.01k, for k = 2, 3, 4, 5. We
use maximin Latin hypercube design with 20 points to estimate parameters, and choose the
first 100 points in the Halton sequence [17] as testing points. The smoothness parameter ν is
chosen to be 3, which can provide a robust estimator of f . In order to improve the prediction
performance, we use ordinary Kriging, where the mean in GP model is assumed to be an
unknown constant instead of zero, i.e., f is a realization of GP with unknown mean β and
covariance function σ2ΨM .

If we use a Matérn correlation function, the integrals in (3) and (4) do not have analytic forms
and are calculated by Monte-Carlo sampling. We randomly choose 30 points to approximate
the integral in (3), and 900 points to approximate the integral in (4). Preliminary results show
that, if we use Monte-Carlo sampling with different points every time in the evaluation of the
integrals in (3) and (4), it is not possible to use maximum pseudo-likelihood estimation to
estimate the unknown parameters, consisting of ϕ in (24), σ2, the variance of noise σ2

ϵ and the
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mean β. The reason is that at each step of the optimization in maximum pseudo-likelihood
estimation, we need to calculate the integral, whose computational cost is high. Therefore,
we generate 900 points and 30 points randomly at one time and use these 900 points and 30
points for evaluations of (4) and (3), respectively. Then we use maximum pseudo-likelihood
estimation to estimate the unknown parameters. We run 20 simulations to obtain different
realizations of input location noise. In each simulation, we compute the processing time and
the approximated MSPE 1

100

∑100
i=1(f(xi)−f̂(xi))

2, where f̂ is the KALE predictor, and xi’s are
testing points. Then we compute the average processing time and the average approximated
MSPE.

For SK, we use (misspecified) maximum likelihood estimation to estimate the unknown pa-
rameters, which are ϕ in (24), σ2, the nugget term µ and the mean β. We run 100 sim-
ulations and compute the average processing time and the average approximated MSPE
1

100

∑100
i=1(f(xi)− f̂(xi))

2, where f̂ is the SK predictor, and xi’s are the same testing points as
in KALE. The RMSPE, which is the square root of MSPE, and the processing time of KALE
and SK are shown in Table 4.

σ2
ϵ RMSPE PT RMSPE of PT Difference

of KALE of KALE SK of SK

0.02 1.5292 648.86 1.9852 0.6261 0.4559
0.03 1.7899 633.55 2.2346 0.5947 0.4446
0.04 1.9734 695.27 2.5226 0.5848 0.5492
0.05 2.4501 748.33 3.3415 0.5803 0.8915

Table 4
The RMSPE of KALE and SK: 2-d function with Matérn correlation function. The processing time is in

seconds. In sixth column, difference = 4th column − 2nd column, i.e., the RMSPE of SK − the RMSPE of
KALE. We use PT = Processing time.

It can be seen that KALE has some improvement on prediction accuracy over SK. However,
KALE takes too much computation time, even though the numbers of design points and
testing points are relatively small. The comparison would get worse as the number of points
became larger. Therefore, if the integrals in (3) and (4) do not have analytic forms, SK is
preferred, especially when the sample size is large and the variance of input location noise is
small.

6. Case Study: Application to Composite Parts Assembly Process. To illustrate the
performance of KALEN and SK, we apply them to a real case study, the composite parts
assembly process. As shown in Figure 3 (a) and Figure 3 (b), ten adjustable actuators are
installed at the edge of a composite part [36, 41]. These actuators can provide push or pull
forces to adjust the shape of the composite part to the target dimensions. The locations of
these actuators can be optimized by sparse learning method [12]. The dimensional shape
adjustment of composite parts is one of the most important steps in the aircraft assembly
process. It reduces the gap between the composite parts and decreases the assembly time with
improved dimensional quality. Detailed descriptions about the shape adjustment of composite
parts can be found in [36]. Modeling of composite parts is the key for shape adjustment. The
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objective is to build a model that has the capability to predict the dimensional deviations
accurately under specific actuators’ forces. In this model, the input variables are ten actuators’
forces. The responses are the dimensional deviations of multiple critical points along the edge
plane near the actuators, shown in Figure 3 (c). We consider responses at 91 critical points
around the composite edge in the case study.

Figure 3. Schematic diagram for composite part shape adjustment: (a) composite part shape adjustment
[36], (b) layout of ten actuators, (c) multiple critical points.

In the shape control of composite parts, input location noise commonly exists in the actuators’
forces [41]. When a force is implemented by an actuator, the actual force may not be exactly
the same as the target force. The magnitudes of forces may have uncertainties naturally due to
the device tolerances of the hydraulic or electromechanical system of actuators. Uncertainties
in the directions and application points of forces come from the deviations of contact geometry
of actuators and their installations. For the modeling of composite parts, there are two steps:
(i) training the parameters using experimental data; (ii) predicting dimensional deviations for
new actuators’ forces. In the training step, we need to consider input error in the experimental
data. Additionally, when new actuator forces are implemented in practice, the uncertainty in
the actual delivered forces inevitably exists. This suggests that KALEN is suitable for this
application scenario. We will show the performance of KALEN and compare it with SK as
follows.

The model we use in this case study is Y (j) = F Tβ(j) + Z(j)(F ) for j = 1, . . . , 91, where
Y (j) is the dimensional deviation vector of the composite part at the critical point j, F =
(F(1), . . . , F(10))

T ∈ R10 is the vector of actuators’ forces, and Z(j)(·) is a mean zero GP,

with input variables in R10. The covariance of Z(j)(F1) and Z(j)(F2) for any forces F1 =
(F1,(1), . . . , F1,(10))

T and F2 = (F2,(1), . . . , F2,(10))
T is assumed to be σ2

j exp(−
∑10

k=1 θjk(F1,(k)−
F2,(k))

2), where σj , θjk > 0 are parameters. We assume the input location noise ϵ ∼ N(0, σ2
ϵ I10),

where N(0, σ2
ϵ I10) is a mean zero normal distribution with covariance matrix σ2

ϵ I10. The pa-
rameters β(j), θjk, σ

2
ϵ , and σ2

j are estimated by maximum (pseudo-)likelihood estimation as

described in Section 4. The mean function F Tβ(j) we use in this model is to represent the
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linear component in dimensional shape control of composite fuselage, which follows the ap-
proach in [41]. Specifically, according to the mechanics of composite material and classical
lamination theory, there is a linear relationship between dimensional deviations and actuators’
forces within the elastic zone. The term F Tβ(j) describes how the actuators’ forces impact
the part deviations linearly, and Z(j)(·) represents the nonlinear components so as to obtain
accurate predictions.

For the computer experiments, we generated 50 training samples and 30 testing samples based
on a maximin Latin hypercube design. The designed experiments are conducted in the finite
element simulation platform developed by [36]. This platform was developed based on the
ANSYS Composite PrepPost workbench. It has been calibrated and validated via a sensible
variable identification approach [35]. It is worth mentioning that the computer simulation
here is not a deterministic simulation because we add the input location noise at the input
points in simulation to simulate the randomness in the real process. Therefore, repeated runs
with the same input points will have different outputs. The input location noise is added
to the actuators’ forces to mimic real actuators. The standard deviations (SD) of actuators’
forces are chosen to be 0.005, 0.01, 0.02, 0.03, and 0.04 lbf (lbf is a unit of pound-force), which
is determined by the tolerance of different kinds of actuators according to engineering domain
knowledge. The maximum actuators’ force is set to 600 lbf. After we have the computer
experiment data, we can estimate the parameters of KALEN by solving the pseudo-likelihood
equation (20), and the parameters of SK by solving the maximum likelihood equation (22).
Then, we can use the model to predict dimensional deviations at the target points in the
testing dataset.

The performance of KALEN and SK are compared in terms of mean absolute error (MAE).
This is an index that has been commonly used in the composite parts assembly domain to
evaluate the modeling performance. We also compare RMSPE of KALEN and SK, and the
processing time of generating each output. The RMSPE is the square root of MSPE, which
is approximated by the average of 1

30

∑30
i=1(Y

(j)(Fi)− Ŷ (j)(Fi))
2 on the 91 points, where Fi’s

are the inputs of testing samples, Y (j)(Fi) is the observed testing data, and Ŷ (j)(Fi) is the
KALEN predictor. The MAE is approximated by 1

30

∑30
i=1 |Y (j)(Fi) − Ŷ (j)(Fi)| on the 91

points.

SD of MAE (RMSPE) MAE (RMSPE) Difference PT of PT of
AF of KALEN of SK KALEN SK

0.005 0.0059 (0.0081) 0.0059 (0.0081) 7.1× 10−7 (1.9× 10−6) 0.1500 0.3415
0.01 0.0117 (0.0147) 0.0119 (0.0151) 1.7× 10−4 (3.7× 10−4) 0.4691 0.3938
0.02 0.0216 (0.0265) 0.0217 (0.0264) 9.5× 10−5 (−8.7× 10−5) 0.5048 0.3964
0.03 0.0286 (0.0335) 0.0304 (0.0376) 1.7× 10−3 (4.1× 10−3) 0.6746 0.4115
0.04 0.0389 (0.0478) 0.0486 (0.0610) 9.7× 10−3 (1.3× 10−2) 0.6529 0.4302

Table 5
The MAE (RMSPE) of KALEN and SK in the composite part modeling. In 4th column, difference = 3rd

column − 2nd column. The processing time is in seconds. The following abbreviation is used: AF = actuators’
forces, PT = Processing time for each output.



GAUSSIAN PROCESSES WITH INPUT LOCATION ERROR 19

The MAE and RMSPE of KALEN and SK are summarized in Table 5. As the SD of actuators’
forces changes from 0.04 lbf to 0.005 lbf, the MAE and RMSPE of KALEN and SK also
decrease. This result is consistent with the conclusions in Theorem 3.1 and Proposition 3.6.
The MAE and RMSPE of KALEN are slightly smaller than the MAE and RMSPE of SK.
Generally speaking, their performances are comparable, especially when the SD of actuators’
forces is small. The main reason is that, when the uncertainty in the input variables is
small, SK can approximate the best linear unbiased predictor KALEN very well. Since a
Gaussian correlation function is used, the computational complexity of KALEN and SK are
the same. The computation time of KALEN is smaller than that of the SK in this example. We
conjecture this is because of the different computation time of maximum (pseudo-) likelihood
estimation. In summary, if high-quality actuators are used and the input location noise in
the actuators is therefore small, then both KALEN and SK can realize very good prediction
performance. When the input location noise in the actuators’ forces becomes larger, KALEN
outperforms SK.

7. Conclusions and Discussion. We first summarize our contributions in this work. We
have investigated three predictors, KALE, KALEN and SK, as applied to GPs with input
location error. When predicting the mean GP output at a point with input location noise,
we prove that the limits of MSPE of KALEN and SK are the same as the fill distance of the
design points goes to zero. If there is no noise at point x ∈ Ω, we provide an upper bound
on the MSPE of KALE and SK. The upper bound is close to zero if the noise is small, which
implies the MSPE of KALE and SK are close. We also provide an asymptotic upper bound on
the MSPE of KALE/KALEN and SK with estimated parameters. These results indicate that
if the number of data points is large or the variance of the input location noise is small, then
there is not much difference between KALE/KALEN and SK in terms of prediction accuracy.
The numerical results corroborate our theory. A case study is presented to illustrate the
performance of KALEN and SK for modeling in the composite parts assembly process.

The calculation of the predictor (5) is not computationally efficient if the integrals in (3) and
(4) do not have an analytic form, where Monte-Carlo integration is typically to be used. If
the sample size is large, then using pseudo maximum likelihood to estimate the unknown
parameters is challenging, especially when the integrals in (3) and (4) do not have analytic
forms. In this case, using SK as an alternative would be more desirable.

There are several problems that remain to be solved. In this paper, the MSPE of KALE,
KALEN, and SK are primarily considered asymptotically, i.e., the number of design points
goes to infinity. The theory does not cover the results under non-asymptotic cases, i.e., the
number of design points is fixed. It can be expected that the difference between the MSPE
of KALE/KALEN and SK will decrease as the fill distance decreases. If there is no noise on
point x ∈ Ω, only upper bounds are obtained for KALE and SK. The asymptotic performance
of KALE and SK when target point has no noise will be pursued in the future work.

Acknowledgements. The authors are grateful to the AE and all the reviewers for their
very helpful comments and suggestions.
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Appendix A. Reproducing kernel Hilbert space, Sobolev space and kernel ridge regression.
Suppose Ω ⊂ Rd is convex and compact. Assume that K : Ω×Ω → R is a symmetric positive
definite kernel function. Define the linear space

FK(Ω) =

{
n∑

k=1

βkK(·, xk) : βk ∈ R, xk ∈ Ω, n ∈ N

}
,(25)

and equip this space with the bilinear form〈
n∑

k=1

βkK(·, xk),
m∑
j=1

γjK(·, x′j)

〉
K

:=
n∑

k=1

m∑
j=1

βkγjK(xk, x
′
j).

Then the reproducing kernel Hilbert space NK(Ω) generated by the kernel function K is
defined as the closure of FK(Ω) under the inner product ⟨·, ·⟩K , and the norm of NK(Ω)

is ∥f∥NK(Ω) =
√
⟨f, f⟩NK(Ω), where ⟨·, ·⟩NK(Ω) is induced by ⟨·, ·⟩K . The following theorem

gives another characterization of the reproducing kernel Hilbert space when K is defined by
a stationary kernel function Ψ, via the Fourier transform. Note that a kernel function Ψ is
said to be stationary if the value Ψ(x, x′) only depends on the difference x−x′. Thus, we can
write Ψ(x− x′) := Ψ(x, x′).

Theorem A.1 (Theorem 10.12 of [37]). Let Ψ be a positive definite kernel function which is
stationary, continuous and integrable in Rd. Define

G := {f ∈ L2(Rd) ∩ C(Rd) : F(f)/
√
F(Ψ) ∈ L2(Rd)},

with the inner product

⟨f, g⟩NΨ(Rd) = (2π)−d/2

∫
Rd

F(f)(ω)F(g)(ω)

F(Ψ)(ω)
dω.

Then G = NΨ(Rd), and both inner products coincide.

By Bochner’s theorem (Page 208 of [14]; Theorem 6.6 of [37]) and Theorem 6.11 of [37], if Ψ
is a correlation function (thus positive definite), there exists a function fΨ such that

Ψ(x) =

∫
Rd

eiω
T xfΨ(ω)dω

for any x ∈ Rd. The function fΨ is known as the spectral density of Ψ.

Condition A.2. There exist constants c2 ≥ c1 > 0 and η > d/2 such that, for all ω ∈ Rd,

c1(1 + ∥ω∥22)−η ≤ fΨ(ω) ≤ c2(1 + ∥ω∥22)−η.

We say a Hilbert function space G1 can be (continuously) embedded into another Hilbert
function space G2, if there exists a constant C such that

∥g1∥G2 ≤ C∥g1∥G1 , ∀g1 ∈ G1,
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where ∥·∥G1 and ∥·∥G2 are the norms of the function spaces G1 and G2, respectively. Therefore,
it can be seen from Theorem A.1 that if, for two positive definite functions Φ1 and Φ2, the
spectral densities fΦ1 and fΦ2 satisfy fΦ1 ≤ CfΦ2 , then the reproducing kernel Hilbert space
NΦ1(Rd) can be embedded into NΦ2(Rd).

For a positive number η > d/2, the Sobolev space on Rd with smoothness η can be defined as

Hη(Rd) = {f ∈ L2(Rd) : |F(f)(·)|(1 + ∥ · ∥22)m/2 ∈ L2(Rd)},

equipped with an inner product

⟨f, g⟩Hη(Rd) = (2π)−d/2

∫
Rd

F(f)(ω)F(g)(ω)(1 + ∥ω∥22)ηdω.

It can be shown that Hη(Rd) coincides with the reproducing kernel Hilbert space NΨ(Rd), if
Ψ satisfies Condition A.2 ([37], Corollary 10.13).

Remark A.3. In this work, we are only interested in Sobolev spaces with η > d/2 because
these spaces contain only continuous function according to the Sobolev embedding theorem.

The isotropic Matérn correlation function (24) has the spectral density [30]

fΨM
(ω; ν, ϕ) = π−d/2Γ(ν + d/2)

Γ(ν)
(4νϕ2)ν(4νϕ2 + ∥ω∥22)−(ν+d/2).

We can see ΨM satisfies Condition A.2. Thus, the reproducing kernel Hilbert space generated
by ΨM coincides with the Sobolev space Hν+d/2, which implies ΨM fulfills Assumption 2.2.

The isotropic Gaussian correlation function ΨG(x) = e−θ∥x∥2 has the spectral density (Theo-
rem 5.20 of [37])

fΨG
(ω) = (4πθ)−d/2e−∥ω∥22/(4θ).

Since for any fixed ν, fΨG
(ω) ≤ C(1 + ∥ω∥22)−ν−d/2 for some constant C not depending on ω,

the reproducing kernel Hilbert space generated by ΨG can be embedded the Sobolev space
Hν+d/2(Rd). This implies ΨG fulfills Assumption 2.2.

A reproducing kernel Hilbert space can also be defined on a suitable subset (for example,
convex and compact) Ω ⊂ Rd, denoted by NΨ(Ω), with norm

∥f∥NΨ(Ω) = inf{∥fE∥NΨ(Rd) : fE ∈ NΨ(Rd), fE |Ω = f},

where fE |Ω denotes the restriction of fE to Ω. A Sobolev space on Ω can be defined in a
similar way. By the extension theorem [11], the reproducing kernel Hilbert space defined on
space Ω generated by ΨM and ΨG can be embedded into the Sobolev space Hν+d/2(Ω).

In the rest of the Appendix, we use C,Cj , j ≥ 0 to denote generic positive constants, whose
value can change from line to line.

Appendix B. A Lemma about MSPE of stochastic Kriging.
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Lemma B.1. Let Φ be a radial basis function, positive definite, and stationary. Suppose the
reproducing kernel Hilbert space generated by Φ can be embedded into a Sobolev space Hη(Ω)
with η > d/2. Assume Assumption 2.5 is true for a sequence of designs X = {x1, . . . , xn}.
Then for any fixed constant µ > 0, Φ(0)− rΦ(x)

T (RΦ + µIn)
−1rΦ(x) converges to zero point-

wisely as the fill distance of X goes to zero, where rΦ(x) = (Φ(x − x1), . . . ,Φ(x − xn))
T and

RΦ = (Φ(xj − xk))jk.

Proof. Let X̄ = {x̄1, ..., x̄n′} be the distinct design points corresponding to X. At each design
point x̄j ∈ X̄, suppose there are aj replicates, thus,

X =
{
x̄
(1)
1 , . . . , x̄

(a1)
1︸ ︷︷ ︸

a1 replications

, x̄
(1)
2 , . . . , x̄

(a2)
2︸ ︷︷ ︸

a2 replications

, . . . , x̄
(1)
n′ , . . . , x̄

(an′ )
n′︸ ︷︷ ︸

an′ replications

}
.

It can be shown that Φ(0)− rΦ(x)
T (RΦ + µIn)

−1rΦ(x) = Φ(0)− r̄Φ(x)
T (R̄Φ +ΛIn′)−1r̄Φ(x),

where r̄Φ(x) = (Φ(x − x1), . . . ,Φ(x − x̄n′))T , R̄Φ = (Φ(x̄j − x̄k))jk, and Λ = diag(λ1, ..., λm)
with λj = µ/aj (See Lemma 3.1 of [3] and the proof of Proposition 3.1 of [33]). Let a = minj aj
and fix a point x. We have

Φ(0)− rΦ(x)
T (RΦ + µIn)

−1rΦ(x)

=Φ(0)− r̄Φ(x)
T (R̄Φ + ΛIn′)−1r̄Φ(x)

≤Φ(0)− r̄Φ(x)
T (R̄Φ + µ/aIn′)−1r̄Φ(x)

≤∥gx∥L∞(Ω),

where the first inequality is because (R̄Φ+ΛIn′)−1 ⪰ (R̄Φ+µ/aIn′)−1, and gx(t) = Φ(t−x)−
r̄Φ(t)

T (R̄Φ + µ/aIn′)−1r̄Φ(x). Here A ⪰ B denotes that for any vector b, bT (A−B)b ≥ 0.

Since NΦ(Ω) can be embedded into a Sobolev space Hη(Ω), we have gx ∈ Hη(Ω), where Hη(Ω)
is the Sobolev space with smoothness η. By the interpolation inequality [5], ∥gx∥L∞(Ω) ≤

C1∥gx∥
1− d

2η

L2(Ω)∥gx∥
d
2η

Hη(Ω). By Corollary 10.25 in [37] and the fact that R̄−1
Φ ⪰ (R̄Φ + µ/aIn′)−1,

it can be shown that

∥gx∥2Hη(Ω) ≤ C2∥gx∥2NΦ(Ω)

≤C2(1− 2r̄Φ(x)
T (R̄Φ + µ/aIn′)−1r̄Φ(x)

+ r̄Φ(x)
T (R̄Φ + µ/aIn′)−1R̄Φ(R̄Φ + µ/aIn′)−1r̄Φ(x))

≤C2(1− r̄Φ(x)(R̄Φ + µ/aIn′)−1r̄Φ(x)
T ) ≤ C2,

where ∥gx∥NΦ(Ω) is the norm of g in the reproducing kernel Hilbert space NΦ(Ω). Thus,
the result follows if we can show ∥gx∥L2(Ω) converges to zero. By the representer theorem,

ĝ1(t) := r̄Φ(t)
T (R̄Φ + µ/aIn′)−1r̄Φ(x) is the solution to the optimization problem

min
g1∈NΦ(Ω)

1

n

n∑
j=1

(g1(x̄j)− Φ(x− x̄j))
2 +

µ

an
∥g1∥2NΦ(Ω).(26)
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Note gx(t) = Φ(t−x)− ĝ1(t). Under Assumption 2.5, by Lemma 3.4 of [31], the result follows
from

∥gx∥2L2
≤C3

(
1

n

n∑
j=1

(ĝ1(x̄j)− Φ(x− x̄j))
2 + h2η

X̄
∥gx∥2Hη(Ω)

)

≤C3

(
1

n

n∑
j=1

(ĝ1(x̄j)− Φ(x− x̄j))
2 +

µ

an
∥ĝ1∥2NΦ(Ω) + h2η

X̄
∥gx∥2Hη(Ω)

)

≤C3

(
1

n

n∑
j=1

(Φ(x− x̄j)− Φ(x− x̄j))
2 +

µ

an
∥Φ(x− ·)∥2NΦ(Ω) + h2η

X̄
∥gx∥2Hη(Ω)

)
→ 0,

where the last inequality is true because ĝ1 is the solution to (26).

Appendix C. Calculation of (7). In this section, we show that if the correlation function
is Ψ(s − t) = exp(−θ∥s − t∥22), and the noise ϵ ∼ N(0, σ2

ϵ Id), where θ > 0 is the correlation
parameter, and N(0, σ2

ϵ Id) is the mean zero normal distribution with covariance matrix σ2
ϵ Id,

then (3)–(6) can be calculated respectively as in (7). Let pN (t) be the probability density
function of normal distribution N(0, σ2

ϵ Id), i.e.,

pN (t) =
1√

(2πσ2
ϵ )

d
exp

(
− tT t

2σ2
ϵ

)
.

The idea of calculating (3)–(6) is to utilize∫
Rd

1

(2πa2)d/2
exp

(
− ∥s− b∥22

2a2

)
ds = 1,

for a > 0 multiple times. By direct calculation, we have

rN (x, xj) =σ2

∫
Rd

∫
Rd

Ψ(x+ ϵ− (xj + ϵj))p(ϵj)p(ϵ)dϵjdϵ

=σ2

∫
Rd

∫
Rd

exp(−θ∥x+ ϵ− (xj + ϵj)∥22)
1√

(2πσ2
ϵ )

d
exp

(
−
ϵTj ϵj

2σ2
ϵ

)
1√

(2πσ2
ϵ )

d
exp

(
− ϵT ϵ

2σ2
ϵ

)
dϵjdϵ

=σ2 exp(−θ∥x− xj∥22)
(2πσ2

ϵ )
d

∫
Rd

∫
Rd

exp

(
−
(
θ +

1

2σ2
ϵ

)
ϵT ϵ− 2θ(x− xj − ϵj)

T ϵ

)
dϵ

× exp

(
−
(
θ +

1

2σ2
ϵ

)
ϵTj ϵj + 2θ(x− xj)

T ϵj

)
dϵj .

(27)

We first compute∫
Rd

exp

(
−
(
θ +

1

2σ2
ϵ

)
ϵT ϵ− 2θ(x− xj − ϵj)

T ϵ

)
dϵ
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=

∫
Rd

exp

(
−
(
θ +

1

2σ2
ϵ

)∥∥∥∥∥ϵ+ θ(x− xj − ϵj)

θ + 1
2σ2

ϵ

∥∥∥∥∥
2

2

+
θ2(

θ + 1
2σ2

ϵ

)∥x− xj − ϵj∥22
)
dϵ

=exp

(
2σ2

ϵ θ
2

1 + 2σ2
ϵ θ

∥x− xj − ϵj∥22
)√(

2π
σ2
ϵ

1 + 2θσ2
ϵ

)d

.(28)

Plugging (28) into (27) yields

rN (x, xj) =σ2 exp(−θ∥x− xj∥22)
(2πσ2

ϵ )
d

√(
2π

σ2
ϵ

1 + 2θσ2
ϵ

)d ∫
Rd

exp

(
2σ2

ϵ θ
2

1 + 2σ2
ϵ θ

∥x− xj − ϵj∥22
)

× exp

(
−
(
θ +

1

2σ2
ϵ

)
ϵTj ϵj + 2θ(x− xj)

T ϵj

)
dϵj .(29)

We next compute∫
Rd

exp

(
2σ2

ϵ θ
2

1 + 2σ2
ϵ θ

∥x− xj − ϵj∥22
)
exp

(
−
(
θ +

1

2σ2
ϵ

)
ϵTj ϵj + 2θ(x− xj)

T ϵj

)
dϵj

=exp

(
2σ2

ϵ θ
2

1 + 2σ2
ϵ θ

∥x− xj∥22
)∫

Rd

exp

(
−
(
θ +

1

2σ2
ϵ

− 2σ2
ϵ θ

2

1 + 2σ2
ϵ θ

)
ϵTj ϵj + 2

(
θ − 2σ2

ϵ θ
2

1 + 2σ2
ϵ θ

)
(x− xj)

T ϵj

)
dϵj

=exp

(
2σ2

ϵ θ
2

1 + 2σ2
ϵ θ

∥x− xj∥22
)∫

Rd

exp

(
−
(

1 + 4σ2
ϵ θ

(1 + 2σ2
ϵ θ)σ

2
ϵ

)
ϵTj ϵj +

2θ

1 + 2σ2
ϵ θ

(x− xj)
T ϵj

)
dϵj

=exp

(
2σ2

ϵ θ
2

1 + 2σ2
ϵ θ

∥x− xj∥22
)√(

2π
(1 + 2σ2

ϵ θ)σ
2
ϵ

1 + 4σ2
ϵ θ

)d

exp

(
(1 + 2σ2

ϵ θ)σ
2
ϵ

1 + 4σ2
ϵ θ

θ2

(1 + 2σ2
ϵ θ)

2
∥x− xj∥22

)
.

(30)

By plugging (30) into (29), we obtain

rN (x, xj) =σ2 exp(−θ∥x− xj∥22)
(2πσ2

ϵ )
d

√(
2π

σ2
ϵ

1 + 2θσ2
ϵ

)d

× exp

(
2σ2

ϵ θ
2

1 + 2σ2
ϵ θ

∥x− xj∥22
)√(

2π
(1 + 2σ2

ϵ θ)σ
2
ϵ

1 + 4σ2
ϵ θ

)d

exp

(
2(1 + 2σ2

ϵ θ)σ
2
ϵ

1 + 4σ2
ϵ θ

θ2

(1 + 2σ2
ϵ θ)

2
∥x− xj∥22

)

=
σ2

(1 + 4σ2
ϵ θ)

d/2
exp

(
−θ∥x− xj∥22
1 + 4σ2

ϵ θ

)
,

(31)

which is desired. The term r(x, xj) can be computed by

r(x, xj) =σ2

∫
Rd

Ψ(x− (xj + ϵj))p(ϵj)dϵj

=σ2

∫
Rd

exp(−θ∥x− (xj + ϵj)∥22)
1√

(2πσ2
ϵ )

d
exp

(
−
ϵTj ϵj

2σ2
ϵ

)
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=σ2 exp(−θ∥x− xj∥22)√
(2πσ2

ϵ )
d

∫
Rd

exp

(
−
(
θ +

1

2σ2
ϵ

)
ϵTj ϵj + 2θ(x− xj)

T ϵj

)
dϵj

=σ2 exp(−θ∥x− xj∥22)√
(2πσ2

ϵ )
d

exp

(
2σ2

ϵ θ
2

1 + 2σ2
ϵ θ

∥x− xj∥22
)√(

2π
σ2
ϵ

1 + 2θσ2
ϵ

)d

=
σ2

(1 + 2σ2
ϵ θ)

d/2
exp

(
−θ∥x− xj∥22
1 + 2σ2

ϵ θ

)
.(32)

Note Kjk = rN (xj , xk) if j ̸= k. Together with (31) and (32), we obtain (7).

Appendix D. Proof of Lemma 2.4. By Fourier transform [37], we have

Ψ(xj − xk) =
1

(2π)d/2

∫
Rd

ei⟨xj−xk,t⟩F(Ψ)(t)dt,(33)

where ⟨s, t⟩ = sT t is the inner product in Rd. Therefore, by Fubini’s theorem, direct calculation
leads to

ΨS(xj − xk) =

∫
Rd

∫
Rd

1

(2π)d/2

∫
Rd

ei⟨xj+ϵ1−(xk+ϵ2),t⟩F(Ψ)(t)p(ϵ1)p(ϵ2)dtdϵ1dϵ2

=
1

(2π)d/2

∫
Rd

(∫
Rd

∫
Rd

ei⟨xj+ϵ1−(xk+ϵ2),t⟩p(ϵ1)p(ϵ2)dϵ1dϵ2

)
F(Ψ)(t)dt

=
1

(2π)d/2

∫
Rd

ei⟨xj−xk,t⟩
(∫

Rd

ei⟨ϵ1,t⟩
∫
Rd

ei⟨−ϵ2,t⟩p(ϵ1)p(ϵ2)dϵ1dϵ2

)
F(Ψ)(t)dt

=
1

(2π)d/2

∫
Rd

ei⟨xj−xk,t⟩
(∫

Rd

ei⟨ϵ1,t⟩p(ϵ1)dϵ1

)(∫
Rd

ei⟨−ϵ2,t⟩p(ϵ2)dϵ2

)
F(Ψ)(t)dt.(34)

For any w = (w1, . . . , wn)
T , by (34), we have

n∑
j,k=1

wjw̄kΨS(xj − xk)

=

n∑
j,k=1

wjw̄k
1

(2π)d/2

∫
Rd

ei⟨xj−xk,t⟩
(∫

Rd

ei⟨ϵ1,t⟩p(ϵ1)dϵ1

)(∫
Rd

ei⟨−ϵ2,t⟩p(ϵ2)dϵ2

)
F(Ψ)(t)dt

=
1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

wje
i⟨xj ,t⟩

∣∣∣∣2(∫
Rd

ei⟨ϵ1,t⟩p(ϵ1)dϵ1

)(∫
Rd

ei⟨−ϵ2,t⟩p(ϵ2)dϵ2

)
F(Ψ)(t)dt.

(35)

Let

c(t) =

(∫
Rd

ei⟨ϵ1,t⟩p(ϵ1)dϵ1

)(∫
Rd

ei⟨−ϵ2,t⟩p(ϵ2)dϵ2

)
.

Thus, c(t) ∈ R and c(t) > 0. Therefore,
∑n

j,k=1wjw̄kΨS(xj − xk) ≥ 0, and equal to zero if
and only if w = 0, which finishes the proof.
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Appendix E. Proof of Theorem 2.7.

Consider the following GP with output error,

yS(x) = MS(x) + δ(x),(36)

where MS is a mean zero GP with covariance function σ2ΨS , and δ(x) is an independent noise
process with mean zero and variance µ. The best linear unbiased predictor of (36) is

f̂S(x) = rN (x)T (RS + µIn)
−1Y,(37)

and the MSPE is

MSPES = σ2ΨS(0)− rN (x)T (RS + µIn)
−1rN (x).(38)

By Lemma B.1, (38) goes to zero as the fill distance of design points X goes to zero.

Take µ = σ2(1−ΨS(0)). It can be seen that (38) is equal to σ2ΨS(0)− rN (x)R−1rN (x). By
(9), E(y(x)− ŷ(x))2 = MSPES + σ2(1−ΨS(0)), which converges to σ2(1−ΨS(0)) as the fill
distance of the design points goes to zero. This completes the proof.

Appendix F. Proof of Theorem 3.1. Without loss of generality, assume σ = 1. First, we
consider there is noise at point x. For any u = (u1, . . . , un)

T , it can be shown that the MSPE
of predictor uTY is

E
∥∥∥∥Ψ(· − (x+ ϵ))−

n∑
j=1

uiΨ(· − (xj + ϵj))

∥∥∥∥2
NΨ(Ω)

=E

1− 2
n∑

j=1

uiΨ((xj + ϵj)− (x+ ϵ)) +
n∑

j,k=1

ujukΨ((xj + ϵj)− (xk + ϵk))


=1− 2

n∑
j=1

ujΨS(x− xj) +

n∑
j,k=1

ujukΨS(xj − xk) + a∥u∥22,(39)

where ∥·∥NΨ(Ω) is the norm of the reproducing kernel Hilbert space NΨ(Ω) and a = 1−ΨS(0),
and the last equality follows from (10). Notice that

ΨS(xj − xk) =
1

(2π)d/2

∫
Rd

ei⟨xj−xk,t⟩c(t)F(Ψ)(t)dt,

where

c(t) =

(∫
Rd

ei⟨ϵj ,t⟩p(ϵj)dϵj

)(∫
Rd

ei⟨−ϵk,t⟩p(ϵk)dϵk

)
.

Since |ei⟨−ϵj ,t⟩| ≤ 1, c(t) ≤ 1. Therefore, (39) can be bounded by

1− 2

n∑
j=1

ujΨS(x− xj) +

n∑
j,k=1

ujukΨS(xj − xk) + a∥u∥22
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=uTRSu− 2uT rS(x) + ΨS(x− x) + a∥u∥22 + a

=
1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩ − ei⟨x,t⟩

∣∣∣∣2c(t)F(Ψ)(t)dt+ a∥u∥22 + a

≤ 1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩ − ei⟨x,t⟩

∣∣∣∣2F(Ψ)(t)dt+ a∥u∥22 + a

=uTRΨu− 2uT rΨ(x) + 1 + a∥u∥22 + a

≤max{1, a/µ}(uTRΨu− 2uT rΨ(x) + 1 + µ∥u∥22) + a,(40)

where rS(x) = (Ψ(x−x1), ...,Ψ(x−xn))
T and the second equality follows from (35). Plugging

u = (RΨ + µIn)
−1rΨ(x),

into (39) and (40), we have the MSPE of predictor (13) upper bounded by

max{1, a/µ}(1− rΨ(x)
T (RΨ + µIn)

−1rΨ(x)) + a.

By Lemma B.1, 1 − rΨ(x)
T (RΨ + µIn)

−1rΨ(x) converges to zero as the fill distance goes to
zero since µ is a constant, which completes the proof in this case.

Next, we consider the case that there is no noise at point x. For any u = (u1, . . . , un)
T , it can

be shown that the MSPE of predictor uTY in this case is

E
∥∥∥∥Ψ(· − x)−

n∑
j=1

ujΨ(· − (xj + ϵ))

∥∥∥∥2
NΨ

=uTRSu− 2uT r(x) + Ψ(x− x) + a∥u∥22.(41)

Let b(t) =
∫
Rd e

i⟨ϵi,t⟩h(ϵi)dϵi. Thus, for any u = (u1, . . . , un)
T , we have

uTRSu− 2uT r(x) + Ψ(x− x) + a∥u∥22

=
1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩b(t)− ei⟨x,t⟩

∣∣∣∣2F(Ψ)(t)dt+ a∥u∥22

≤ 1 + C2

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩ − ei⟨x,t⟩

∣∣∣∣2|b(t)|2F(Ψ)(t)dt+
1 + C−2

(2π)d/2

∫
Rd

|1− |b(t)||2F(Ψ)(t)dt+ a∥u∥22

≤(1 + C2)(uTRΨu− 2uT rΨ(x) + 1) + a∥u∥22 + (1 + C−2)
1

(2π)d/2

∫
Rd

|1− |b(t)||2F(Ψ)(t)dt

≤max{(1 + C2), a/µ}(uTRΨu− 2uT rΨ(x) + 1 + µ∥u∥22) +
1 + C−2

(2π)d/2

∫
Rd

|1− |b(t)||2F(Ψ)(t)dt,

(42)

where we use 2⟨a, b⟩ ≤ C2|a|2 + C−2|b|2 in the first inequality, with C a fixed constant.
Plugging

u = (RΨ + µIn)
−1rΨ(x),
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into (41) and (42), we have the MSPE of predictor (13) upper bounded by

max{(1 + C2), a/µ}(1− rΨ(x)
T (RΨ + µIn)

−1rΨ(x)) +
1 + C−2

(2π)d/2

∫
Rd

|1− |b(t)||2F(Ψ)(t)dt.

By Lemma B.1, 1 − rΨ(x)
T (RΨ + µIn)

−1rΨ(x) converges to zero as the fill distance goes to
zero since µ is a constant. The constant C influences the number of design points needed such
that max{(1 + C2), a/µ}(1− rΨ(x)

T (RΨ + µIn)
−1rΨ(x)) is close to zero. For a fixed number

of design points, the larger C is, the larger max{(1+C2), a/µ}(1−rΨ(x)
T (RΨ+µIn)

−1rΨ(x))
is. To derive an explicit bound, we let C2 = 25, which yields an asymptotic upper bound

1.04

(2π)d/2

∫
Rd

|1− |b(t)||2F(Ψ)(t)dt.

This finishes the proof.

Appendix G. Proof of Proposition 3.6. Notice that E(eiϵTn t) converges to 1 since ϵn converges

to 0 in distribution and eiϵ
T
n t is bounded, and b(t) is bounded for all t ∈ Rd. By dominated

convergence theorem, the result holds.

Appendix H. Proof of Theorem 4.1. We first present a lemma, which is a generalization of
Lemma B.1.

Lemma H.1. Suppose the conditions of Theorem 4.1 hold. Then we have 1 − r̃Ψ(x)
T (R̃Ψ +

µ̃I)−1r̃Ψ(x) converges to zero as the fill distance of X converges to zero, where Ψ̃ = Ψ̃1 or Ψ̃2.

Proof. The proof of Lemma H.1 is similar to the proof of Lemma B.1. The only difference is
that if we define g̃(t) = Ψ̃(t − x) − r̃Ψ(t)

T (R̃Ψ + µ̃I)−1r̃Ψ(x), then ∥g̃∥Hη(Ω) ≤ C2 for all g̃.
Thus, the result follows from the proof of Lemma B.1.

Now we are ready to show the proof of Theorem 4.1. Let ỹ(x) be the SK predictor with
parameters (θ̃2, µ̃). Thus,

ỹ(x) = r̃2(x)
T (R̃2 + µ̃In)

−1Y,(43)

where r̃2(x) = (Ψ̃2(x, x1), . . . , Ψ̃2(x, xn))
T and R̃2 = (Ψ̃2(xj − xk))jk.

Proof of Statement (i):

Direct calculation shows that the MSPE can be expressed as

E(y(x)− ỹ(x))2 =σ2(1− 2r̃2(x)
T (R̃2 + µ̃In)

−1rN (x)

+ r̃2(x)
T (R̃2 + µ̃In)

−1R(R̃2 + µ̃I)−1r̃2(x)),(44)

where R and rN are as in (4) and (6), respectively. Similar to (40), we have for any u =
(u1, . . . , un)

T ,

1− 2
n∑

j=1

ujΨS(x− xj) +
n∑

j,k=1

ujukΨS(xj − xk) + a∥u∥22
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=uTRSu− 2uT rS(x) + ΨS(x− x) + a∥u∥22 + a

=
1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩ − ei⟨x,t⟩

∣∣∣∣2c(t)F(Ψ)(t)dt+ a∥u∥22 + a

≤ 1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩ − ei⟨x,t⟩

∣∣∣∣2F(Ψ)(t)dt+ a∥u∥22 + a

≤ A1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩ − ei⟨x,t⟩

∣∣∣∣2F(Ψ̃2)(t)dt+ a∥u∥22 + a

=A1(u
T R̃2u− 2uT r̃2(x) + Ψ̃2(x− x)) + a∥u∥22 + a

≤max{A1, a/µ̃}(uT R̃2u− 2uT r̃2(x) + Ψ̃2(0) + µ̃∥u∥22) + a,(45)

where

c(t) =

(∫
Rd

ei⟨ϵj ,t⟩p(ϵj)dϵj

)(∫
Rd

ei⟨−ϵk,t⟩p(ϵk)dϵk

)
,

and a = 1−ΨS(0). Plugging

u = (R̃2 + µ̃In)
−1r̃2(x),

into (44) and (45), we have the MSPE of predictor (44) is upper bounded by

max{A1, a/µ̃}(Ψ̃2(0)− r̃2(x)
T (R̃2 + µ̃In)

−1r̃2(x) + a

≤max{A1, aC}(Ψ̃2(0)− r̃2(x)
T (R̃2 + CIn)

−1r̃2(x) + a

By Lemma H.1, Ψ̃2(0) − r̃2(x)
T (R̃2 + CIn)

−1r̃2(x) converges to zero as the fill distance goes
to zero, which indicates that σ2a is an asymptotic upper bound on the MSPE of SK with
parameters. Note that σ2a is also the limit of KALEN with the true parameters, which is the
best linear unbiased predictor. Therefore, σ2a is the limit of SK with parameters.

Note that KALEN is

ŷ(x) = r̃N (x)T (R̃S + ãIn)
−1Y,(46)

where R̃S = (Ψ̃S(xj − xk))jk, r̃N (x) = (Ψ̃S(x− x1), ..., Ψ̃S(x− xn)),

Ψ̃S(s− t) =

∫
Rd

∫
Rd

Ψ̃1(s+ ϵ1 − (t+ ϵ2))p̃(ϵ1)p̃(ϵ2)dϵ1dϵ2,

and ã = Ψ̃1(0) − Ψ̃S(0). Condition (4) in Theorem 4.1 implies that ã is bounded away from
zero. Thus, repeating the argument in the proof of SK completes the proof of Statement (i).

Proof of Statement (ii):

By direct calculation, it can be shown that

E(y(x)− ỹ(x))2 =σ2(1− 2r̃2(x)
T (R̃2 + µ̃In)

−1r(x)
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+ r̃2(x)
T (R̃2 + µ̃In)

−1R(R̃2 + µ̃I)−1r̃2(x),(47)

where r(x) is as in (3). Let b(t) =
∫
Rd e

i⟨ϵj ,t⟩p(ϵj)dϵj . For any u = (u1, . . . , un)
T , we have

uTRSu− 2uT r(x) + 1 + a∥u∥22

=
1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩b(t)− ei⟨x,t⟩

∣∣∣∣2F(Ψ)(t)dt+ a∥u∥22

≤(1 + C2
1 )

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩ − ei⟨x,t⟩

∣∣∣∣2|b(t)|2F(Ψ)(t)dt+
(1 + C−2

1 )

(2π)d/2

∫
Rd

|1− |b(t)||2F(Ψ)(t)dt+ a∥u∥22

≤(1 + C2
1 )A1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩ − ei⟨x,t⟩

∣∣∣∣2|b(t)|2F(Ψ̃2)(t)dt+
(1 + C−2

1 )

(2π)d/2

∫
Rd

|1− |b(t)||2F(Ψ)(t)dt+ a∥u∥22

≤(1 + C2
1 )A1(u

T R̃2u− 2uT r̃2(x) + Ψ̃2(x− x)) + a∥u∥22 +
(1 + C−2

1 )

(2π)d/2

∫
Rd

|1− |b(t)|2|F(Ψ)(t)dt

≤max{(1 + C2
1 )A1, a/µ̃}(uT R̃2u− 2uT r̃2(x) + Ψ̃2(0) + µ̃∥u∥22)

+
(1 + C−2

1 )

(2π)d/2

∫
Rd

|1− |b(t)|2|F(Ψ)(t)dt.

(48)

Plugging u = (R̃2 + µ̃I)−1r̃2(x), into (47) and (48), we find the MSPE of predictor (13) is
upper bounded by

max{(1 + C2
1 )A1, a/µ̃}(Ψ̃2(0)− r̃2(x)

T (R̃2 + µ̃In)
−1r̃2(x)

+
(1 + C−2

1 )

(2π)d/2

∫
Rd

|1− |b(t)|2|F(Ψ)(t)dt

≤max{(1 + C2
1 )A1, aC}(Ψ̃2(0)− r̃2(x)

T (R̃2 + CIn)
−1r̃2(x)

+
(1 + C−2

1 )

(2π)d/2

∫
Rd

|1− |b(t)|2|F(Ψ)(t)dt.

We take C2
1 = 25. By Lemma H.1, Ψ̃2(0)− r̃2(x)

T (R̃2 +CIn)
−1r̃2(x) converges to zero as the

fill distance goes to zero since C is a constant, which finishes the proof for SK.

Note that the KALE is

f̂(x) = r̃(x)T (R̃S + ãI)−1Y,

where r̃(x) is as in (3) with parameters θ̃
(1)
1 , and R̃S and ã are as in (46). Because Ψ̃1 is a

correlation function and p̃(·) = p(·), we have Ψ̃1(0) = 1 and Ψ̃S(0) = ΨS(0), which imply
ã = 1̃− Ψ̃S(0) = 1−ΨS(0) = a. Then for any u = (u1, . . . , un)

T , we have

uTRSu− 2uT r(x) + 1 + a∥u∥22
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=
1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩b(t)− ei⟨x,t⟩

∣∣∣∣2F(Ψ)(t)dt+ a∥u∥22

≤ A1

(2π)d/2

∫
Rd

∣∣∣∣ n∑
j=1

uje
i⟨xj ,t⟩b(t)− ei⟨x,t⟩

∣∣∣∣2F(Ψ̃1)(t)dt+ a∥u∥22

=A1(u
T R̃Su− 2uT r̃(x) + Ψ̃1(x− x)) + a∥u∥22.(49)

Note that f̂(x) minimizes (49). Then repeating the proof of Theorem 3.1 gives an upper
bound

1.04A1σ
2

(2π)d/2

∫
Rd

|1− |b(t)|2|F(Ψ̃1)(t)dt.

Together with F(Ψ̃1)(t) ≤ A2F(Ψ)(t) for any t, we finish the proof.
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