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RATIONAL SPECTRAL FILTERS WITH OPTIMAL
CONVERGENCE RATE\ast 

KONRAD KOLLNIG\dagger , PAOLO BIENTINESI\ddagger , \mathrm{A}\mathrm{N}\mathrm{D} EDOARDO A. DI NAPOLI\S 

Abstract. In recent years, contour-based eigensolvers have emerged as a standard approach for
the solution of large and sparse eigenvalue problems. Building upon recent performance improvements
through nonlinear least-squares optimization of so-called rational filters, we introduce a systematic
method to design these filters by minimizing the worst-case convergence rate and eliminate the
parametric dependence on weight functions. Further, we provide an efficient way to deal with the
box-constraints which play a central role for the use of iterative linear solvers in contour-based
eigensolvers. Indeed, these parameter-free filters consistently minimize the number of iterations
and the number of FLOPs to reach convergence in the eigensolver. As a byproduct, our rational
filters allow for a simple solution to load balancing when the solution of an interior eigenproblem is
approached by the slicing of the sought after spectral interval.

Key words. Hermitian eigenvalue problem, contour-based eigensolver, worst-case convergence
rate, load balancing, nonlinear least squares, BFGS
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1. Introduction. For the Hermitian eigenproblem Ax = \lambda x with \lambda \in [a, b] \subset \BbbR ,
the last decade has seen the emergence of a new class of eigensolvers based on spec-
tral projectors. Such eigensolvers are typically expressed as integrals of the spectral
resolvent (A  - zI) - 1 over a contour in the complex plane that encloses the interval
[a, b] [34, 35, 32, 8, 21]. Numerical quadrature transforms the contour integral into
a matrix-valued rational function with complex coefficients \beta i and poles zi. In this
form, the problem of finding an efficient spectral projector is mapped to that of find-
ing a rational function---often referred to as rational filter---that approximates the
indicator function

(1.1) 1(a,b)(x) =

\Biggl\{ 
1 if x \in [a, b],

0 otherwise.

This is a discontinuous function, often termed the ``ideal filter,"" because it exactly
maps the desired eigenvalues in the interval to 1 and the rest of the spectrum to 0.

The algorithmic structure of eigensolvers based on rational filters has the ad-
vantage of lending itself to parallel implementations with multiple levels of nested
parallelism [7, 5]. On the other hand, several factors make load balancing for these
parallel eigensolvers a potential nightmare [9, 11]. Among them, the design of the
filter is an important element that influences the convergence of the eigensolver with
direct consequences on the load balancing of any parallel implementation based on
slicing [a, b] in subintervals. In this paper, we focus on the design of filters with the
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RATIONAL SPECTRAL FILTERS A2661

aim of resolving this open issue. We build upon the results presented in [40] and
introduce an optimization framework that is versatile and fast, eliminates parameter
dependencies, and ultimately produces highly accurate rational filters with respect to
a metric tightly bound to the quality of the ideal filter. Numerical tests show that an
eigensolver equipped with our spectral projector converges with a rate that is practi-
cally independent of the search space size, the number of poles of the rational filter,
and the number of iterations required.

When A is a Hermitian matrix, the corresponding rational filter is real-valued
and symmetric with respect to the mapping (x  - x0) \updownarrow (x0  - x), where x0 is the
center point of the interval [a, b]. Taking into consideration the complex conjugation
and parity symmetries, Winkelmann and Di Napoli [40] write r as a rational function
of order (4m - 1, 4m),

(1.2) r(x) := r\beta ,z(x) :=

m\sum 
i=1

\beta i

x - zi
+

\beta i

x - zi
 - \beta i

x+ zi
 - \beta i

x+ zi
, x \in \BbbR ,

where m \in \BbbN , \beta = (\beta 1, . . . , \beta m) \in \BbbC m, and z = (z1, . . . , zm) \in (\BbbH +R)m with \BbbH +R

being the right quadrant of the upper half of (\BbbC \setminus \BbbR ) with origin in x0. With this setup,
the problem to be addressed is how to select, for a fixed degree m,1 the coefficients
\beta i and the poles zi such that the corresponding rational function r(x) approximates
the ideal filter 1(a,b) according to a predetermined metric. Our aim is to build an
optimization framework and select an appropriate metric such that the outcome is a
filter r stabilizing the convergence of the eigensolver.

Due to the discontinuity of the indicator function 1(a,b), the problem of deter-
mining the best coefficients and poles for r(x) is tackled using a nonlinear weighted
least-squares approach. For a given interval [a, b], one aims to minimize the objective
function

(1.3) f\omega (\beta , z) :=

\int \infty 

 - \infty 
\omega (x) (1(a,b)(x) - r\beta ,z(x))

2 dx, where \beta \in \BbbC m, z \in (\BbbH +R)m,

over \beta and z for some fixed m \in \BbbN and a weight function \omega (x) : \BbbR \rightarrow [0,\infty ), which
is even with respect to x0 and piecewise constant. This optimization framework,
termed Symmetric nonLinear Optimized Least-Squares (SLiSe) in [40], provides a
comprehensive parameterization of rational filters. The resulting SLiSe filters have
proven to be competitive with previous rational filters, such asGauss--Legendre [32]
and Zolotarev [11].

The SLiSe framework is independent of the specific eigensolver in which the func-
tion r is plugged into and used as a spectral filter. At a glance, a filter optimized
through this framework should perform well independently of the target eigenprob-
lem. In practice, the effectiveness of a filter depends indirectly on the eigenvalue
distribution around the interval [a, b] through the choice of the weight function \omega . In
other words, despite its versatility, the SLiSe framework outputs filters whose quality
is sensitive to the ad hoc choice of weight functions and the piecewise intervals defin-
ing them: small changes in the choice of \omega (x) greatly influence the effectiveness of the
resulting filter.

Contributions. Building on top of the SLiSe framework, this work addresses prob-
lematic aspects of such optimization and ultimately provides a solution to the open

1Strictly speaking the degree of r is 4m. In the rest of the paper we will stick to a more intuitive
notion of degree which refers to the number of poles in \BbbH +R corresponding to the range of the index
i in (1.2).
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A2662 K. KOLLNIG, P. BIENTINESI, AND E. A. DI NAPOLI

issue of how spectral filters influence load balancing. In detail, we identify a num-
ber of main contributions. We improve the performance of the unconstrained mini-
mization process by substituting the Levenberg--Marquardt with the Broyden--
Fletcher--Goldfarb--Shanno (BFGS) algorithm [31, Chapter 6]. Likewise, when
SLiSe is used in combination with box-constraints, it is natural to extend BFGS to
the L-BFGS-B algorithm [2, 42, 25]. Using the BFGS family of algorithms results in
a substantial reduction of the memory footprint and time-to-solution, which in turn
is a necessary requirement to reduce the objective function residual and, at the same
time, increases the accuracy of the SLiSe filters. We increase the accuracy by casting
the problem of selecting \beta is and zis in terms of finding the corresponding rational
function r(x) that minimizes the worst-case convergence rate (WCR).2 The relevance
of this metric resides in the fact that the ideal filter 1(a,b) has the lowest possible
value for WCR, which is 0.

In order to use the WCR metric effectively, we embed the SLiSe framework,
equipped with the BFGS algorithm, within a second minimization process. This
process has the explicit goal of minimizing the WCR metric with respect to the weight
function \omega . We attain this target by using the derivative-free Nelder--Mead algo-
rithm. The byproduct of this process is eliminating the dependence on the arbitrary
choice of \omega in the definition of the objective function f\omega (\beta , z). The net result is a
parameter-free minimization framework with an enhanced usability and productivity.
When used in interior eigensolvers based on subspace iteration, we observe that the
rational filters obtained with the new minimization framework outperform state-of-
the-art filters. The convergence rate of the eigensolver becomes almost independent
of the size of the search subspace and the number of poles used. Consequently, the
eigensolver is more robust in terms of convergence rate and does not require tweaking
of the parameters associated with the spectral projection. In turn, this enhanced
behavior of the eigensolver facilitates the load balancing when executed on parallel
platforms. We termed this enhanced minimization framework, and the corresponding
rational filters it produces, Worst-Case Optimized Least-Squares (WiSe).

Related work. The interpretation of spectral projectors as rational (filter) func-
tions of matrices was discussed in [38] for FEAST and in [13, 12] for Sakurai--Sugiura-
type eigensolvers. Rational filters were also proposed early on for signal processing by
Murakami [30, 29, 26, 28, 27]. In recent years, filters have been treated as a parameter
that can be designed via optimization methods. Van Barel [39] suggested a nonlinear
least-squares approach for non-Hermitian filters to be used in the Sakurai--Sugiura
framework, while Xi and Saad [41] described linear least-squares optimized filters for
the Hermitian FEAST eigensolver. Van Barel's approach is based on the discrete \ell 2
norm, not a functional approximation approach, and does not support constraints
optimization. Xi and Saad presented a linear least-squares minimization method
where only the coefficients of the rational function are optimized. For FEAST, G\"uttel
et al. [11] presented a first approach to minimizing the WCR in (2.7). They derived a
set of generalized Gauss--Legendre filters, parameterized by one variable only, with
respect to which they minimized the WCR functional. The resulting WCR values
were smaller than for unparameterized Gauss--Legendre filters, but not as small
as for Zolotarev filters [32, 11, 1, 10] which offered the best WCR so far. This
observation motivated a more rigorous parameterization of a subset of rational filters,
that is, SLiSe filters [40], so as to benefit from a reduced number of parameters within
WCR minimization.

2This metric is defined in the next section.
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RATIONAL SPECTRAL FILTERS A2663

Organization. The remainder of this paper is organized as follows. In section 2
we introduce the reader to spectral filters and the general mathematical setup. In
section 3, we review the SLiSe framework and introduce efficient imposition of box-
constraints on rational filters through L-BFGS-B. In section 4, we illustrate the min-
imization scheme to reduce the WCR of SLiSe filters, which in turn eliminates the
dependence on weight functions. In section 5, we present a set of numerical experi-
ments comparing our new filters to the state of the art and illustrate their numerical
properties and advantages. The last section summarizes our results and provides
a perspective on their impact on the load balancing of parallel interior eigenvalue
solvers.

2. Methodology. Contour-based eigensolvers were originally conceived for the
solution of the generalized interior eigenvalue problem

(2.1) Av = \lambda Bv, \lambda \in [a, b],

where A,B \in \BbbC n\times n are Hermitian and B is positive definite, v \in \BbbC n \setminus \{ 0 \} , a < b,
and n \in \BbbN . A spectral projector can be defined as the integral of the matrix resolvent
(A - zB) - 1 along a contour \Gamma in the complex plane \BbbC enclosing the interval [a, b] \subset \BbbR .
Without loss of generality, one can linearly map [a, b] to the standard interval [ - 1, 1]
and select an integration contour around it. It is standard practice to compute the
contour integral via numerical quadrature (e.g., Gauss--Legendre):

(2.2) r(A,B) :=
\sum 
i

\beta i(A - Bzi)
 - 1B \approx 1

2\pi i

\oint 
\Gamma 

dz

A - Bz
B

with \beta i, zi \in \BbbC . When used in combination with a subspace iteration scheme, r(A,B)
projects a given set of vectors Y onto an invariant subspace of the spectrum corre-
sponding to the eigenvalues within the interval [ - 1, 1] [18]. In practice, spectral
projection exchanges the direct solution of the eigenproblem for that of many inde-
pendent linear systems, each with multiple right-hand sides:

(2.3) (A - Bzi)V = \beta iBY.

Because each linear system can be solved independently of the others and the interval
[a, b] can be sliced into subintervals, this class of eigensolvers naturally lends itself to
multiple layers of parallelism. Thanks to the natural parallelism of the underlying al-
gorithm, contour-based eigensolvers are especially well suited for today's increasingly
parallel computer architectures. This is demonstrated by the proliferation, in the last
ten years, of parallel implementations in software packages and libraries [36, 17, 22, 33].

As shown in several recent publications, the performance of the eigensolver de-
pends on the effectiveness of the spectral filter r(A,B) [18, 38, 11, 1, 4, 8]. Recently,
the authors of [40] proposed a numerical optimization approach alternative to the
standard quadrature rules. By minimizing the objective function of (1.3), they pro-
pose a new class of rational filters, termed SLiSe, which perform better than the filters
currently in use, on a large number of representative eigenproblems. Despite such an
advance, the SLiSe framework showed a few shortcomings, such as slow convergence
and lack of efficient support for box-constraints. These box-constraints---defined as
upper and lower bounds on the imaginary parts of each zi---can substantially influ-
ence the time-to-solution in iterative linear system solvers. Having a time-to-solution
comparable across all linear systems is a crucial element to load balance a parallel
eigensolver based on spectral projection.
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A2664 K. KOLLNIG, P. BIENTINESI, AND E. A. DI NAPOLI

The SLiSe filters. The SLiSe minimization framework aims to approximate the
indicator function 1( - 1,1) by rational filters r(x) of a fixed degree m. This approxima-
tion is obtained by minimizing the objective function f\omega (\beta , z) from (1.3). In the SLiSe
framework, a new filter is obtained as follows: Given a fixed weight function \omega and an
m \in \BbbN , SLiSe takes an existing rational filter r\=\beta ,\=z, where

\=\beta \in \BbbC m and \=z \in (\BbbH +R)m,

and derives a new rational filter r\^\beta ,\^z such that ( \^\beta , \^z) solves the minimization problem

(2.4) argmin
\beta \in \BbbC m,z\in (\BbbH +R)m

f\omega (\beta , z).

This minimization problem is nonlinear and nonconvex and therefore difficult to solve
due to the nonexistence of closed-form solutions. Yet, the objective function f\omega , as
well as its gradient

(2.5) \nabla f\omega = (\nabla \beta 1
f\omega , . . . ,\nabla \beta m

f\omega ,\nabla z1f\omega , . . . ,\nabla zmf\omega )
\top ,

are differentiable and can be computed through a small number of matrix operations
[40]. In this setup, one can make use of a wide range of existing numerical minimiza-
tion methods. Winkelmann and Di Napoli obtain SLiSe filters by employing two such
minimization methods, gradient descent and Levenberg--Marquardt (LM).

While LM makes for an effective minimization scheme, it may require up to
thousands of iterations to converge to a satisfactory value for the residual level of f\omega .
Executing an efficient minimization becomes a pressing problem in the case of box-
constrained optimization, when the LM algorithm cannot be used and gradient descent
requires up to millions of iterations to converge, which translates to a significantly
larger amount of computing time over the unconstrained case. In addition, and most
importantly, the quality of a resulting filter depends on the choice of weight function \omega ,
which is not automatic and requires an experienced user to follow a set of guidelines. In
the following, we illustrate a minimization scheme that ensures speed of convergence,
supports box-constraints, and eliminates the dependence on the custom choice of
weight functions \omega .

The new minimization scheme. In the rest of the paper, we refer to r as a rational
filter and, without loss of generality, consider only the case r(A,B = I) = r(A). As
seen in the previous section, if A is a Hermitian matrix, the corresponding rational
function r(x) is forced to be real and symmetric and can be expressed with a subset of
poles and coefficients as in (1.2). Since the minimization of the objective function in
(1.3) is completely general, the resulting filter is independent of the specific subspace
iteration eigensolver and can be plugged into any eigensolver of this type. Nonetheless,
for practical purposes, we use the FEAST eigensolver [5] as a reference algorithm.

Given an exact value \lambda j \in [ - 1, 1], FEAST computes an approximate eigenpair (\bfitq j ,
\^\lambda j)

with a residual vector norm equal to \| A\bfitq j  - \^\lambda j\bfitq j\| . Such a residual converges linearly
with a convergence rate given by | \gamma \mathrm{o}\mathrm{u}\mathrm{t}/\gamma \mathrm{i}\mathrm{n}| , where \gamma \mathrm{o}\mathrm{u}\mathrm{t} (\gamma \mathrm{i}\mathrm{n}) is related to the maximum
(minimum) value of the filter outside (inside) a neighborhood enclosing the [ - 1, 1]
interval [38, Theorem 5.2]. Consequently, the convergence rate depends on both the
spectrum of the given matrix A and the spectral filter of choice.

Although the actual convergence rate will vary for different spectra, a filter-
dependent upper bound is given by the WCR. The WCR applies to a variety of
other eigensolvers based on spectral projection such as the block Sakurai--Sugiura--
Rayleigh--Ritz method [35] and its noniterative variant [14]. As defined in [11], the
WCR satisfies the following theorem.
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RATIONAL SPECTRAL FILTERS A2665

Theorem 2.1 ([11, Theorem 2.2]). Given a rational filter r and a fixed gap
parameter G \in (0, 1), the FEAST method converges linearly, with probability one, at
a convergence rate no larger than

(2.6) wG(r) =
maxx\in [ - \infty , - G - 1]\cup [G - 1,\infty ] | r(x)| 

minx\in [ - G,G] | r(x)| 
,

as long as no eigenvalues lie within [ - G - 1, - G]\cup [G,G - 1]. The occurring probability
stems from choosing the initial subspace within the FEAST method at random.

Since Theorem 2.1 implies that | \gamma \mathrm{o}\mathrm{u}\mathrm{t}/\gamma \mathrm{i}\mathrm{n}| \leq wG(r), for an appropriateG, a smaller
WCR value wG(r) implies faster worst-case convergence. As we already mentioned in
the Introduction, minimizing WCR for the SLiSe filters points out which filters best
approximate the ideal filter 1( - 1,1) (that has indeed the optimal bound wG(1( - 1,1)) =
0). Based on the considerations above, we can now define the following optimization
problem.

Definition 2.2. Given G \in (0, 1), m \in \BbbN , and r\beta ,z, a rational filter as defined
in (1.2), an optimal rational filter is one solving the minimization problem

(2.7) argmin
\beta \in \BbbC m,z\in (\BbbH +R)m

wG(r\beta ,z).

In general, the WCR is a nonlinear, derivative-free function. Its formulation
makes it difficult to determine further mathematical properties, such as convexity or
continuity. Conventional methods, like steepest descent, cannot be applied. Addi-
tionally, in derivative-free minimization, the number of wG function evaluations may
become intractable very quickly, even for a modest increase of the rational filter degree
m. These observations cause this minimization problem to be especially challenging.
Instead of solving the problem as formulated in (2.7), we propose a modified mini-
mization problem that combines the existing SLiSe framework, solving for (\beta , z) while
\omega is fixed as in (2.4), with the minimization of the WCR with respect to \omega , seeking a
better \omega while (\beta , z) is fixed. These two minimization problems,\left\{   

\beta , z \leftarrow argmin
\beta ,z

f\omega (\beta , z) for a fixed \omega ,

\omega \leftarrow argmin
\omega 

wG(r\beta ,z(\omega )) for an initial pair (\beta , z),
(2.8)

are clearly not independent. The WCR is minimized solely with respect to the weight
function \omega ---where we have indicated explicitly the dependence of the rational filter
on the weight function in (2.8)---but it is a nonlinear, derivative-free function. As
such, the WCR depends on the whole r which, in turn, depends on the minimization
of the objective function f\omega . In other words, we now have to solve two nonlinearly
dependent minimization problems, which need to be solved self-consistently. We will
see in section 4 how we implement this process in a nested loop fashion, where the
SLiSe process is executed within the WCR minimization and convergence is reached
self-consistently by continuously swapping between the two minimizations. Solving
(2.8) is now a tractable problem, even if it calls for sophisticated algorithms, and
is computationally very intensive, requiring many repeated invocations of the SLiSe
minimization.

In order to increase the performance of the self-consistent minimization, we in-
troduce the BFGS algorithm [31, Chapter 6] within the unconstrained SLiSe min-
imization process. Similarly, for box-constraints, we present an embedding of the
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Fig. 1. FEAST iterations for different filters with gap parameter G = 0.95 to solve 2117
benchmark eigenproblems, for an eigencount multplier of C = 1.1. Our new WiSe filter outperforms
the others, i.e., generalized Gauss--Legendre [32, 11], Zolotarev [11], and \gamma -SLiSe [40]. Details
are discussed in section 5.3.2.

Fig. 2. Logarithmic plot of different 16-pole rational filters, showing the state-of-the-art Gauss--
Legendre and Zolotarev rational filters [11, 32], alongside our new filter candidate, WiSe. A
moderate gap parameter G = 0.95 was chosen for Zolotarev, WiSe, and Gauss--Legendre. Our
new WiSe filter provides the best WCR, which can be seen in offering the sharpest slump for x around
1, and maintaining a constantly close approximation of the indicator function 1( - 1,1) across the
whole domain of real numbers.

L-BFGS-B minimization method [2, 42, 25] into SLiSe. By formulating the WCR
minimization as a nested process, we additionally solve the issue of weight function
selection, which is one of the open issues of SLiSe. The net result is an extension of the
SLiSe framework toward rational filters for faster convergence, without the need to se-
lect the weight functions by hand. Our new rational filters, termed WiSe, outperform
state-of-the-art filters (see Figure 1 for experimental results and Figure 2 for filter
plots). In particular, we prove that Zolotarev filters do not provide best worst-case
convergence, despite their optimality in approximating the indicator function with
respect to the \infty -norm.

3. Efficient computation of WiSe filters. In this section, we introduce the
use of the BFGS algorithm, which yields faster convergence and better box-constrained
rational filters than previous implementations. Moreover, the extended L-BFGS-B
successfully addresses open issues that appear in box-constrained filters [11, 40, 8].
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RATIONAL SPECTRAL FILTERS A2667

3.1. Accelerating SLiSe. When using the BFGS algorithm to solve the mini-
mization problem in (2.4), we end up reducing substantially the number of function
evaluations needed to reach convergence. Seemingly minor, this improvement is ac-
tually essential for an effective embedding of SLiSe into a scheme that is based on
the minimization of the WCR. The BFGS algorithm belongs to the class of quasi-
Newton methods. It approximates a local minimizer iteratively, in a manner similar
to the popular Gauss--Newton algorithm, which is Hessian-based. However, unlike
Gauss--Newton, BFGS does not require the exact Hessian \nabla 2f and uses an ap-
proximation instead. The minimum requirement for the algorithm to work is that the
function f has a quadratic Taylor series expansion about its minimum. Thanks to this
weaker condition, BFGS guarantees convergence also for nonsmooth and non-convex
functions.

The standard implementation of the BFGS variant in Algorithm 3.1 does not
offer support for real-valued objective functions of complex arguments, such as our
f\omega from (1.3). This problem can be overcome by a conversion of f\omega and \nabla f\omega to real
arguments. In the case of a generic function of complex variables g : \BbbC n \rightarrow \BbbR , one
can separate the real from the imaginary parts [37] and instead minimize the function
\~g : \BbbR 2n \rightarrow \BbbR , defined as

(3.1a) \~g

\biggl( \biggl( 
a
b

\biggr) \biggr) 
:= g(a+ ib) for a, b \in \BbbR n,

by computing descent directions from its gradient

(3.1b) \nabla \~g
\biggl( \biggl( 

a
b

\biggr) \biggr) 
=

\biggl( 
Re\nabla g(a+ ib)
Im\nabla g(a+ ib)

\biggr) 
for a, b \in \BbbR n.

The same mapping can be applied to the SLiSe functional f\omega : \BbbC m \times (\BbbH +R)m \rightarrow \BbbR 
because it operates on a subset of \BbbC 2m, where m \in \BbbN is the degree of the rational
filter. In this case, one can think of the complex vectors \beta and z as being part of a
vector v = (\beta z)\top and define \~f : \BbbR 4m \rightarrow \BbbR such that

(3.2) \~f

\left(     
\biggl( 
Re(\beta \top )
Re(z\top )

\biggr) 
\biggl( 
Im(\beta \top )
Im(z\top )

\biggr) 
\right)     := f(Re(\beta ) + i Im(\beta ),Re(z) + i Im(z)).

Starting at an initial point x0 = (Re(\beta ) Re(z) Im(\beta ) Im(z))
\top 
, BFGS computes

iterates xk that converge to a local minimizer of \~f as k \in \BbbN increases, employing the
descent directions

(3.3a) pk :=  - Hk \nabla \~f(xk)

and a line search which guarantees that the secant condition is satisfied (see \ttl \tti \ttn \tte \ttseven of
Algorithm 3.1). Hk is an approximation to the inverse Hessian of \~f and is recursively
defined as

(3.3b) H0 := I4m, Hk+1 :=

\biggl( 
I4m  - 

sky
T
k

yTk sk

\biggr) 
Hk

\biggl( 
I4m  - 

yks
T
k

yTk sk

\biggr) 
+

sks
T
k

yTk sk

with

(3.3c) sk := xk+1  - xk, yk := \nabla \~f(xk+1) - \nabla \~f(xk),
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A2668 K. KOLLNIG, P. BIENTINESI, AND E. A. DI NAPOLI

Algorithm 3.1 (unconstrained SLiSe through BFGS algorithm).

1: procedure SLiSe(\beta , z, \omega )

2: Define x\leftarrow (Re(\beta ),Re(z), Im(\beta ), Im(z))
\top \in \BbbR 4m

3: Compute the objective function \~f(x) and its gradient \nabla \~f(x)
4: H \leftarrow I4m
5: while | | \nabla \~f(x)| | > \varepsilon do  \triangleleft Default value \varepsilon = 10 - 8

6: p\leftarrow  - H \nabla \~f(x)  \triangleleft Obtain descent direction
7: Choose an \alpha \in \BbbR + to minimize \~f(x+ \alpha p) over \alpha  \triangleleft Ensuring s\top y > 0
8: s\leftarrow \alpha p
9: w \leftarrow x+ s

10: y \leftarrow \nabla \~f(w) - \nabla \~f(x)

11: H \leftarrow (I4m  - sy\top 

y\top s
) H (I4m  - ys\top 

y\top s
) + ss\top 

y\top s
 \triangleleft Approximate inverse Hessian

12: x\leftarrow w
13: end while
14: \beta \prime \leftarrow (x1:m + ix2m+1:3m)\top , z\prime \leftarrow (xm+1:2m + ix3m+1:4m)\top 

15: return r\beta \prime ,z\prime 

16: end procedure

where xk, sk, yk, pk \in \BbbR 4m and Hk \in \BbbR 4m\times 4m for some m \in \BbbN . The formulation
through the BFGS algorithm converges faster than the previous minimization algo-
rithms used by the SLiSe framework (see Figure 3 for the box-constrained case that
is discussed in the following subsection). The conversion of the minimization func-
tional to real arguments allows one to use not only the BFGS scheme but also various
other minimization algorithms (such as those in the minimization algorithm collec-
tion NLOpt [15]). Despite such an advantage, most alternatives do not yield any
substantial improvements over BFGS.

3.2. Imposing box-constraints efficiently. As described at the beginning of
section 2, the spectral projection at the base of the FEAST eigensolver leads to the
solution of several independent linear systems with multiple right-hand sides (see
(2.3)). In the case of very large and sparse systems, the use of direct solvers is not
feasible due to memory requirements. In this case, iterative solvers, such as GMRES
or CG, are the natural choice. For these methods, time-to-solution and accuracy
depend substantially on the condition number of the resolvent matrices (A  - ziI).
When A is Hermitian, such a condition number is, up to a constant factor, equal to

(3.4) \kappa (A - ziI) =
max\lambda a\in \sigma (A) | \lambda a  - zi| 
min\lambda b\in \sigma (A) | \lambda b  - zi| 

.

Since the filter is built to approximate the indicator function 1( - 1,1), the numerator of
this equation is bound from above by (max\lambda a\in \sigma (A) | \lambda a| +1), while the denominator is
bound from below by | Im(zi)| . Consequently, if the poles of the rational function r\beta ,z
are close to the real axis, the condition number of some of the resolvent matrices can
be quite high. This consideration motivated the introduction of the box-constraints
| Im(zi)| \geq \ttl \ttb > 0 (i = 1, . . . ,m) to the SLiSe minimization process, where \ttl \ttb is a
positive constant representing the minimum distance of any pole from the real axis.

In SLiSe, the box-constrained minimization was implemented through a simple
projected gradient descent method, where each new step is computed by the simple
gradient projection

xk+1 = \scrP (xk  - t\nabla x
\~f(x)| x=xk

)
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RATIONAL SPECTRAL FILTERS A2669

Fig. 3. Box-constrained minimization of the functional f\omega using projected gradient descent and
L-BFGS-B, respectively. The setup is taken from the original publication [40], using the 16-degree
Zolotarev filter as the starting point and a lower bound of lb = 0.0022 on the absolute value of
the imaginary parts of the poles. The L-BFGS-B method settles at a smaller residual and converges
substantially faster, requiring only a few function evaluations.

with t > 0. In the BFGS algorithm, box-constraints can be included by projecting the
search direction onto the constraints. This is accomplished through the same gradient
projection \scrP , followed by a BFGS update treating the bounded components of x as
equality constraints. In our case, the operator \scrP : \BbbR 4m \rightarrow \BbbR 4m projects only the
imaginary part of the poles Im(zi) and takes consequently the following form when
acting on a vector y \in \BbbR 4m:

(3.5) \scrP (y)j :=

\Biggl\{ 
sign(yj) \cdot \ttl \ttb if | yj | < \ttl \ttb and j \in \{ 3m+ 1, . . . , 4m \} ,
yj otherwise

for j = 1, . . . , 4m.
This approach is encoded in the L-BFGS-B algorithm, which extends projected

gradient descent to the Hessian approximations from BFGS and can be used to
realize box-constrained minimization efficiently in SLiSe, similar to what is done in
Algorithm 3.1. The L-BFGS-B algorithm has shown to converge quickly in our exper-
iments when compared with projected gradient descent. In terms of both speed and
accuracy, the use of L-BFGS-B places the constrained SLiSe method on par with the
unconstrained BFGS algorithm. To illustrate the increase in performance caused by
L-BFGS-B, we compare box-constrained minimization through our L-BFGS-B imple-
mentation against the projected gradient descent implemented in the original SLiSe
framework. Figure 3(a) and (b) show the number of function evaluations carried
out by the projected gradient descent and the L-BFGS-B algorithms, respectively.
L-BFGS-B requires four orders of magnitude fewer evaluations than projected gradi-
ent descent and converges to a smaller residual.

So far, the procedure used to obtain the SLiSe filters depends on the specific
form of a given weight function \omega . For some such weight functions, the computed
filters were shown to outperform state-of-the-art rational filters. Yet, the only crite-
rion known to determine suitable weight functions is comparing hand-crafted weight
functions on a large set of representative interior eigenproblems. While guidelines for
the construction of \omega have been devised [40], the choice of weight functions remains
a complex issue. In the following section, we propose an algorithm to obtain weight
functions which yield SLiSe filters with reduced WCR and overcome the necessity of
selecting weight functions manually.
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4. SLiSe filters with reduced WCR. In this section, we illustrate how to
reduce the WCR of a given SLiSe filter by improving on the choice of weight function
\omega . We achieve this by minimizing a new objective function, closely related to the
WCR of rational filters.

4.1. Parameterization of weight functions. Weight functions are even, non-
negative, piecewise constant functions that are used in the definition of the SLiSe
functional f\omega in (1.3). This means that a weight function can be characterized
in terms of n \in \BbbN intervals [xi, xi+1) \subseteq [0,\infty ] and corresponding function values
\omega (x \in [xi, xi+1)) = \omega i, called weights, where \omega i \in [0,\infty ) for i = 1, 2, . . . , n. In their
original contribution, Winkelmann and Di Napoli obtained weight functions for the
SLiSe framework by following three guiding principles, derived from experience: (i)
gradual decrease in weights outside the search interval [ - 1, 1], (ii) sufficient magnitude
of weights inside [ - 1, 1], and (iii) symmetry in weights about the interval endpoints
of [ - 1, 1]. While SLiSe filters following these guidelines could outperform state-of-
the-art Gauss--Legendre and Zolotarev filters, some manual adjustment based
on experience remained necessary.

An example of a weight function \omega \gamma -\mathrm{S}\mathrm{L}\mathrm{i}\mathrm{S}\mathrm{e}, which yields SLiSe filters outperforming
Gauss--Legendre filters, is given in Table 1. This choice of weights suggests a
natural way of parameterizing weights and interval boundaries so they can be treated
without distinction. For this purpose, we introduce a set Vs of parameter vectors
v = (v1, . . . , v2s - 3), where s \geq 2 equals the number of intervals to the right of 0:

(4.1) Vs = \{ v \in [0,\infty )2s - 3 | G < v1 < 1 < v2 < G - 1 < v3 < \cdot \cdot \cdot < vs - 1 \} 

for some gap parameter G \in (0, 1).
A generic set of vi \in Vs induces weight function values \omega j with j = 1, 2, . . . , s.

Following this parameterization, Table 1 is rewritten as Table 2. The parameters
v1, v2 enclose 1 but do not necessarily match the endpoints of the gap [G,G - 1]. The
parameters v3, v4 reflect some more intervals of the weight function. The remain-
ing parameters v5, . . . , v7 denote nonnegative weights. The weight for the interval
[0, v1) is fixed to 1, as weight functions are invariant under scaling within SLiSe. In
this notation, the \omega \gamma -\mathrm{S}\mathrm{L}\mathrm{i}\mathrm{S}\mathrm{e} weight function from Table 1 translates into the vector
(0.95, 1.05, 1.4, 5, 0.01, 10, 20) \in V5. As we are going to illustrate in the next section,
this parameterization scheme allows for a systematic improvement of weight functions,
alongside a choice of weights and interval endings.

4.2. Minimization of parameterized weight functions. In order to com-
pare the influence of distinct weight function values \omega j \in Vs on the minimization of
WCR, we introduce a new objective function:

Table 1
The \omega \gamma -SLiSe weight function.

| x| \in [0, 0.95) [0.95, 1.05) [1.05, 1.4) [1.4, 5) [5,\infty )

\omega \gamma -SLiSe(x) 1 0.01 10 20 0

Table 2
Parameterized weight function \omega for s = 5.

| x| \in [0, v1) [v1, v2) [v2, v3) [v3, v4) [v4,\infty )

\omega j(x) 1 v5 v6 v7 0

D
ow

nl
oa

de
d 

06
/1

3/
23

 to
 1

37
.1

20
.1

78
.1

84
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Algorithm 4.1 (local WCR minimization).

1: procedure ReduceFilterWCR(v, \beta , z,G)
2: G\leftarrow 

\surd 
G  \triangleleft For shifting of filter

3: n\leftarrow Length(v)
4: w \leftarrow h\beta ,z(v)
5: while Res(h) > 10 - 9 do
6: for i = 1, 2, . . . , n do  \triangleleft Coordinate descent
7: \^v \leftarrow AdaptiveDifferentialEvolution(h\beta ,z(v(vi)))
8: if h\beta ,z(\^v) < w then
9: v \leftarrow \^v, and w \leftarrow h\beta ,z(\^v)

10: end if
11: end for
12: v\prime \leftarrow Nelder--Mead(h\beta ,z(v(v3, . . . , vn)))
13: v\prime \leftarrow (| v\prime 1| , . . . , | v\prime n| ) \in Vs

14: r\beta \prime ,z\prime \leftarrow SLiSe(\beta , z, \omega \prime )  \triangleleft See Algorithm 3.1
15: w\prime \leftarrow h\beta \prime ,z\prime (v\prime )  \triangleleft New WCR value
16: Res(h)\leftarrow | w  - w\prime | /w  \triangleleft Compute WCR residual
17: w \leftarrow w\prime , v \leftarrow v\prime , \beta \leftarrow \beta \prime , z \leftarrow z\prime 

18: end while
19: (\beta , z)\leftarrow (G - 1 \beta ,G - 1 z)  \triangleleft Shifting coefficients and poles
20: return r\beta ,z
21: end procedure

(4.2) h := h\beta ,z(v) := wG(r\beta ,z(v)) for v \in Vs,

where r\beta ,z(v) is computed by the Algorithm 3.1. h\beta ,z(v) is a functional of a given filter
r\beta ,z, and it associates the vector of parameters v with the WCR of the corresponding
filter. As such, h establishes a meaningful metric to quantify the performance of a
weight function \omega . The minimization

(4.3) argmin
v\in Vs

h\beta ,z(v)

facilitates a systematic search for better weight functions and, consequently, rational
filters with smaller worst-case convergence. For a given r\beta ,z, this is a nonlinear,
derivative-free minimization problem, depending on only (2s - 3) variables. However,
for each optimization step involving changes of v, the rational filter r\beta ,z(v) has to be
computed again by executing a call to the Algorithm 3.1. The end result is a nested
optimization problem (2.8) with, possibly, thousands of calls to Algorithm 3.1.

Since the WCR functional cannot be expressed as a continuous function of v,
to solve (4.3), we resort to using the Nelder--Mead algorithm, a prominent local,
derivative-free minimization scheme.3 In our case, Nelder--Mead generates compet-
itive solutions quickly but suffers from stagnation at nonoptimal points [24, 20]. To
overcome stagnation, we follow Carl Kelley's suggestion of restarting Nelder--Mead
at the current iterate with adjusted parameters [16]. An explicit such parameter
choice exists only for the case of smooth functions, introduced as oriented restart.

3Local means that the algorithm starts at an existing point, at best, close to the sought after
minimum.
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Since our functional h is nonsmooth, we obtain a new parameter choice by perturbing
the current iterate carefully through coordinate descent. Coordinate descent is a sim-
ple, local, derivative-free minimization method that performs subsequent line searches
along the coordinate directions, given some starting point v \in Vs. Independently of
having detected stagnation, we use coordinate descent systematically to obtain a new
starting point for each Nelder--Mead call.

The general scheme outlined above is described in Algorithm 4.1 and implemented
using the Julia programming language.4 Given a weight function v \in Vs and a
filter r\beta ,z, the algorithm chooses better weight functions from Vs iteratively. At each
iteration of the while loop, the weights of the current filter are updated to reduce
the WCR, and from these, a new filter is computed. When the residual of the h
function Res(h) (i.e., the relative difference of two subsequent h values) falls below an
established threshold tolerance (see \ttl \tti \ttn \tte \ttfive of Algorithm 4.1), the algorithm returns
the SLiSe filter of the last iteration, which minimizes the WCR among the weight
functions in the search space Vs. Each while loop iteration follows three consecutive
steps: (i) coordinate descent, (ii) Nelder--Mead, (iii) computation of new SLiSe
filter and convergence check.

Coordinate descent. This is performed in \ttl \tti \ttn \tte \tts \ttsix --\ttone \ttone , improving the coordinates
of the parameter vector v \in Vs through a separate minimization problem for each
variable vi and i \leq 2s - 3,

(4.4a) argmin
c\in Ii

h\beta ,z(v(c)), where v(c) := (v1, . . . vi - 1, c , vi+1 . . . , v2s - 3) \in Vs,

while restricting the search space to a neighborhood Ii of vi. For instance, for s \geq 5
the intervals Ii used are

(4.4b) Ii :=

\left\{                     

[G, 1] if i = 1,

[1, G - 1] if i = 2

[G - 1, vi+1] if i = 3,

[vi - 1, vi+1] if 4 \leq i < s - 1,

[ vi - 1, 3 vi] if i = s - 1,

[0.1 vi,10 vi] if s \leq i \leq 2s - 3.

We implement the coordinate descent minimization through the global, derivative-
free minimization scheme AdaptiveDifferentialEvolution from the Julia library
BlackBoxOptim.jl [6]. Global minimization algorithms aim to find the global mini-
mizer within a region Ii instead of converging to a local minimizer starting from
a given point. If the value of WCR has decreased, the solution of the coordinate
descent minimization \^vi is used instead of vi for the successive steps of the while
loop iteration. This step is executed to prevent stagnation in the execution of the
Nelder--Mead minimization.

Nelder--Mead. In \ttl \tti \ttn \tte \ttone \tttwo , Nelder--Mead is applied to a slightly modified ver-
sion of the minimization problem formulated in (4.3): We keep v1, v2 fixed at the
values obtained from the coordinate descent step. This choice is motivated by the
high sensitivity of the functional h to changes in these variables, being close to the
endpoints of the gap [G,G - 1]. In practice, Nelder--Mead is used to solve the
minimization problem

(4.5a) argmin
b1,...,br\in \BbbR 

h\beta ,z(v(b1, . . . , br)),

4The code is freely available at https://github.com/SimLabQuantumMaterials/SLiSeFilters.jl.
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where

(4.5b) v(b1, . . . , br) := (v1, v2, b1, . . . , br) and r = 2s - 5.

Because the classical Nelder--Mead algorithm performs unconstrained minimization
only, we also have to ensure that the minimizer v\prime lies within the admissible intervals
defined by Vs. A straightforward approach would be to use a modified objective
function within Nelder--Mead, defined as

(4.6) \^h(v) :=

\Biggl\{ 
h(v) if v \in Vs,

\infty otherwise

to penalize invalid weight functions v /\in Vs. We verified that this approach works,
but our experiments have shown that it slows down the convergence to the minimum.
Based on our tests, we observed that, in practice, most of the violations v /\in Vs stem
from the selection of slightly negative weights byNelder--Mead. This is likely caused
by rounding errors, which may lead to a slight decrease of the WCR value for very
small but negative \omega j . Every other violation of constraints seems to cause the opposite
of a reduction in WCR value and is thus not chosen by Nelder--Mead. To overcome
this problem, we adopted a very simple solution: We map the resulting minimizer of a

Nelder--Mead into Vs explicitly by taking the absolute values (| v(k+1)
1 | , . . . , | v(k+1)

2s - 3 | )
instead of a possible negative (invalid) iterate v(k+1) (see \ttl \tti \ttn \tte \ttone \ttthree ). While this ap-
proach only avoids violations of constraints caused by the choice of negative weights,
we did not experience other violations of constraints in the minimizers returned by
Nelder--Mead. For the sake of completeness, we have experimented with other
derivative-free minimization algorithms (those from the minimization algorithm col-
lection NLOpt [15], including a constrained version of Nelder--Mead), none of which
led to a more competitive reduction of WCR value in the same standard setups.

SLiSe filter and convergence. As already mentioned, the SLiSe procedure is called
multiple times within both the Nelder--Mead and the AdaptiveDifferential-
Evolution procedures. The last call of SLiSe is executed so as to calculate the
residual of the WCR functional and check for convergence. If convergence is reached,
the algorithm returns values for the WCR, the poles z, and the coefficients \beta . The
latter are rescaled, as explained in the following subsection 4.3, by introducing a linear
scaling transformation to improve the behavior of the resulting filters at the interval
[ - 1, 1] boundaries.

4.3. Scaling the filter. Compared to previous filters such asGauss--Legendre
or Zolotarev, our new SLiSe filters obtained from the minimization problem (4.3)
reduce the WCR by up to multiple orders of magnitude. So far, we assumed to know
the appropriate gap parameter G in advance and minimized our filters accordingly.
This assumption may be too optimistic for some eigenproblems: For a given G, we
assume that no eigenvalues lie within the interval [ - G - 1, - G] \cup [G,G - 1]. Since, in
practice, this assumption may be violated, a rational filter with small function value
within [G, 1] may lead a slower convergence rate than the WCR or no convergence
at all. An illustration of this problem is given in Figure 4, and its caption. Eigen-
values within [1, G - 1] are less problematic because they are not sought after by the
eigensolver (for an in-depth discussion, see section 5.3). While maintaining a compet-
itive WCR value, the issue described above can be overcome by solving the slightly
modified minimization problem
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A2674 K. KOLLNIG, P. BIENTINESI, AND E. A. DI NAPOLI

Fig. 4. Logarithmic plot of 16-pole rational filters for gap parameter G = 0.95. The standard
filter is a solution of the original minimization problem as of (4.3), while the scaled filter solves
the new minimization problem in (4.7). Even though the scaling causes the WCR to increase from
4.95e - 6 to 1.04e - 5 , this is still below the WCR of the Zolotarev filter (2.32e - 4). On the other
hand, near 1, the standard filter attains a function value of about 10 - 3. Hence, an eigenvalue inside
the gap [G, 1] could roughly halve the actual convergence rate for the standard filter. The other two
filters are not affected by this problem.

(4.7) argmin
\beta \in \BbbC m,z\in (\BbbC \setminus \BbbR )m

maxx\in [ - \infty , - G - 1]\cup [G - 1,\infty ] | r\beta ,z(x)| 
minx\in [ - 1,1] | r\beta ,z(x)| 

instead of minimizing wG as in (2.7). For any solution (\beta , z) of this modified problem,
the rational filter r\beta ,z offers a larger function value inside the entire search interval
[ - 1, 1] than outside in [ - \infty , - G - 1] \cup [G - 1,\infty ]. When our filters are used in itera-
tive eigensolvers based on spectral projection, this behavior ensures reliable and fast
convergence.

Instead of modifying the WCR minimization procedure, we solve for the modified
WCR in (4.7) by introducing a linear scaling transformation u(x) :=

\surd 
Gx. We have

argmin
\beta \in \BbbC m,z\in (\BbbH +R)m

w\surd 
G(r\beta ,z) = argmin

\beta \in \BbbC m,z\in (\BbbH +R)m

maxx\in [ - \infty , - G - 1]\cup [G - 1,\infty ] | r\beta ,z(u(x))| 
minx\in [ - 1,1] | r\beta ,z(u(x))| 

.

Since the function composition r\beta ,z \circ u is a rational filter itself, if r\beta ,z solves (4.3), then
r\beta ,z \circ u solves (4.7). Additionally, it follows from the definition of rational filters in
(1.2) that r\beta ,z\circ u = r\surd G - 1 \beta ,

\surd 
G - 1 z which characterizes the parameters of the resulting

filter. This scaling of rational filters through linear transformation is incorporated in
Algorithm 4.1 in \ttl \tti \ttn \tte \tts \tttwo and \ttone \ttnine .

In our implementation of Algorithm 4.1, we used as initial parameters the weight
functions \omega \gamma -\mathrm{S}\mathrm{L}\mathrm{i}\mathrm{S}\mathrm{e} used in [40] opportunely rescaled. For instance, for s = 5, we
selected

v(0) = (
\surd 
G,
\surd 
G - 1, 1.4, 5, .01, 10, 20)

as the initial parameters characterizing the weight function, for some gap parameter
G \in (0, 1). Accordingly, we chose both Zolotarev and Gauss--Legendre filters
as initial conditions for WCR minimization. We obtained a number of new spectral
filters, to which we refer as WiSe. In the following section, we provide a number of
experimental tests illustrating the performance of these WiSe filters.
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RATIONAL SPECTRAL FILTERS A2675

5. Experiments. In this section, we compare the Zolotarev and generalized
Gauss--Legendre filters to the WiSe filters from the previous section in two different
scenarios. First, in order to inspect the worst-case performance, we compute the WCR
values for different gap parameters G and poles per quadrant m. Second, we compare
WiSe filters computed using box-constrained minimization for different lower bounds;
these filters play an important role when iterative linear system solves are used to
compute the spectral resolvent. Third, we use the filters in the FEAST package and
assess their performance on two eigenproblems used in past literature [32, 40, 11].

We provide the Julia library SLiSeFilters.jl to obtain WiSe filters and the gen-
eralized Gauss--Legendre filters. For Zolotarev filters, we use the RKToolbox,
co-developed by Stefan G\"uttel. We will not consider other prominent examples of ra-
tional filters, notably trapezoid or former SLiSe filters, as they are not as competitive.
Trapezoid filters offer a strictly monotonous decay in function value for | x| > 1, which
is not as sharp as for Gauss--Legendre and Zolotarev filters, leading to signifi-
cantly larger WCR values [11]. As for SLiSe filters, Figure 1 provides clear evidence
that WiSe filters are superior when it comes to number of iterations to convergence.

5.1. Comparison of WCR values. In Table 3, we list WCR values forGauss--
Legendre, Zolotarev, and WiSe filters for different gap parameters G and poles
per quadrant m. As m increases, Zolotarev filters feature a reliable, gradual
decrease in WCR; by construction, they do not offer a decay in function value as
| x| \rightarrow \infty , unlike Gauss--Legendre and WiSe. Hence, Gauss--Legendre and WiSe
filters lead to quicker convergence for some FEAST instances, even if their WCR
is larger. Gauss--Legendre filters show the largest WCRs and are not competi-
tive with regards to worst-case performance. WiSe exhibits a significant reduction of
WCR compared to previous filters, especially for the default choice of m = 4 within
the FEAST eigensolver. Yet, the improvement over Zolotarev filters diminishes as
m increases, because the dimension of the underlying minimization increases with m.
Large numbers of poles per quadrant m > 7 correspond to high-degree rational func-
tions and are not taken into consideration. It is important to notice that even when
one has to set G to 0.9998, in the presence of eigenvalues clusters near the interval

Table 3
WCR values for different filters, gap parameters, and numbers of poles (smaller is better; row-

wise minimum in bold).
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boundaries, WiSe still manages to produce satisfactory WCR values at the cost of
higher m.

The numbers in bold in Table 3 show that, for almost all pairs (G,m), WiSe filters
have the lowest WCR value. Based on Theorem 2.1, the best worst-case performance
is offered by the filter with smallest WCR. As we will see in the following sections,
this claim is confirmed by our numerical results.

5.2. Influencing the condition number of the resolvent matrices. In this
section we present numerical evidence of how WiSe filters obtained through box-
constrained minimization can improve the condition number of the resolvent matrices
(A  - ziI). As already mentioned in section 3.2, a large condition number for such
matrices can dramatically deteriorate convergence speed when iterative methods are
used to solve for (2.3). We have also shown how the condition number of a resolvent
matrix is bounded from above, up to a constant factor, by the imaginary part of the
poles zi of the rational filter r\beta ,z. Because of this observation, we define the worst-case
condition number as

(5.1) C(r) := max
zi\in \BbbH +R

1

| Im(zi)| 

and use it to estimate the worst possible condition number of the resolvent matrices.
Strictly speaking, C(r) does not bound from above every \kappa (A  - ziI), but it has the
advantage that it does not depend on the specific matrix A and still provides a useful
picture of how the condition number of the resolvent matrices is influenced by the
placement of the filter's poles. Imposing a lower bound \ttl \ttb \geq 0 on the imaginary parts
of the poles zi, as we have done when using the L-BFGS-B algorithm to compute the
WiSe filters (see section 3.2), limits the value of C(r).

In our numerical test, we have computed C(r) and WCR for two different box-
constrained WiSe filters and several different values of \ttl \ttb . The initial values of \beta ,
z, and G in the minimization process for the two WiSe filters come from the co-
efficients and poles of the standard 16-pole Gauss--Legendre with G = 0.95 and
Zolotarev with G = 0.998 filters, respectively. With these choices, the standard
Gauss--Legendre filter has approximately w0.95(r) = 2.42 \cdot 10 - 2, C(r) = 1.60 \cdot 101,
and mini(Im(zi)) = 0.062. Likewise, the standard Zolotarev filter has w0.998(r) =
1.12 \cdot 10 - 2, C(r) = 4.55 \cdot 102, and mini(Im(zi)) = 0.0022. The minimum values for
the imaginary part of the poles for the corresponding unconstrained WiSe filters are
mini(Im(zi)) = 0.0046 and mini(Im(zi)) = 0.0007, respectively.

In Figure 5, we plot the worst-case condition number C(r) and the wG for both
box-constrained WiSe filters with respect to a range of lower bounds \ttl \ttb defined by
the values of mini(Im(zi)) for the unconstrained WiSe and its corresponding stan-
dard filter (either Gauss--Legendre or Zolotarev). Since we observed that the
minimization process shows some fluctuations in returning the wG value for the box-
constrained WiSe filter, we have repeated all minimizations 20 times for each different
\ttl \ttb value. These fluctuations are likely the result of the nonlinear, randomized min-
imization process, which is highly sensitive to the selected parameters. In practice,
these fluctuations of the WCR values do not represent a problem because the corre-
sponding C(r) values remain quite stable. Moreover, irrespective of the lower bound
\ttl \ttb , all observed WCR values of the box-constrained WiSe filters lie below those of
the corresponding Zolotarev and Gauss--Legendre filters for all 20 repetitions.

On the other hand, the C(r) plots show a clear decrease of the worst-case condition
number up to almost an order of magnitude as the value of \ttl \ttb increases. From the
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RATIONAL SPECTRAL FILTERS A2677

Fig. 5. The effect of different lower bounds lb in WiSe on the worst-case condition number
C and the WCR wG of the resulting filters. Since WiSe is a randomized, nonlinear minimization
method, the means and standard deviations from 20 repetitions are reported.

WCR plots one can also observe that larger lower bounds seem to show less fluctuation,
which indicates a reduced dependence on the minimization parameters. In turn, if the
chosen lower bound \ttl \ttb for the L-BFGS-B minimization is closer to the mini(Im(zi)) of
the starting filter, the nonlinear minimization process might converge more quickly.
Overall, these numerical experiments confirm how WiSe filters outperform existing
ones even in the case of box-constraints optimization and can be efficiently used in
those cases where iterative methods, such as GMRES or CG, have to be used to solve
for the linear systems corresponding to large and sparse resolvent matrices.

5.3. Experiments with FEAST. For our numerical experiments, we used
FEAST in version 3.0, compiled with the Intel Compiler 17.0.0, and run on an Intel
Core i7-6900K. We selected the default FEAST parameters with the exception of dis-
abling5 the repeated factorization of the underlying linear systems. This substantially
reduces runtime but requires sufficient RAM. There are two reasons why we chose to
use a direct method for the solution of the linear systems: first, because of its higher
accuracy when compared to iterative methods, and second to have much more reliable
and reproducible time-to-solution independently of the rational filter used.

5This behavior can be achieved through the FEAST parameter \ttf \ttp \ttm (\ttone \ttzero ) = \ttone . For details, consult
the FEAST documentation [5].
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A required argument of FEAST is an upper bound M0 on the number of ei-
genvalues M in the search interval; M0 indicates the size of the reduced eigenvalue
problem that is solved in every FEAST iteration. As already mentioned in section 2,
the convergence rate of FEAST substantially depends on this subspace size M0. Let
us denote with I \supset [ - 1, 1] the interval centered around 0 that contains M0 > M
eigenvalues; then, FEAST's convergence rate is proportional to

(5.2)
| r(\lambda \mathrm{o}\mathrm{u}\mathrm{t})| 
| r(\lambda \mathrm{i}\mathrm{n})| 

,

where | r(\lambda \mathrm{i}\mathrm{n})| = min\lambda \in [ - 1,1]\cap \sigma (A) | r(\lambda )| and | r(\lambda \mathrm{o}\mathrm{u}\mathrm{t})| = max\lambda /\in I\cap \sigma (A) | r(\lambda )| . A smaller
subspace size M0 yields faster FEAST iterations but decreases the convergence rate
and thus increases the number of iterations. As a compromise, the original FEAST
publication [32] suggested a subspace size of M0 = \lceil C \times M\rceil for C = 1.5. This pro-
vides reliable convergence within FEAST but not necessarily fastest convergence, as
we see in the following. Because only estimates of the actual eigencounts are available
in advance, we assess different scenarios by studying a number of eigencount
multipliers C.

It is important to notice that in all our comparison we change only the rational
filter and maintain all other parts of FEAST unchanged. In particular we let FEAST
use the same default linear system solves to tackle (2.3) and direct eigensolver in the
Rayleigh--Ritz step. Since the level of accuracy of FEAST is for all practical purposes
determined by these two tasks [18, 19], we consider the accuracy of the determined
eigenpairs across distinct filters comparable. In other words, since FEAST reaches
convergence with all filters using the same procedures, the solutions are considered to
be equally accurate.

5.3.1. Experiment I. In Figure 6, we compare the convergence of FEAST for
different eigencount multipliers C > 1 on a specific interval of the carbon nanotube
(CNT) eigenproblem. The matrices, corresponding to this generalized eigenproblem,
represent the discretized Hamiltonian and overlap operators of a physical system
studied in the context of a specific density functional theory method and have been

Fig. 6. Time required to solve the CNT eigenproblem [32, 11] through FEAST for different
eigencount multipliers C, numbers of poles m, and filters. Averages of 10 executions are reported.
All the three filters are computed for a value of G = 0.998 and lead to eigenpairs with the same level
of accuracy.
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RATIONAL SPECTRAL FILTERS A2679

used to analyze the worst-case performance of FEAST in previous publications [32,
11]. These sparse CNT matrices A,B \in \BbbR 12450\times 12450, with 86 808 nonzero entries,
define the interior eigenproblem Ax = \lambda Bx, where one is interested in obtaining
the M = 100 eigenvalues in the interval [ - 65.0, 4.96]. The figure is divided into
three quadrants, each corresponding to one of three increasing eigencount multipliers
C = 1.02, 1.1, 1.5. On the y-axis of each quadrant, the convergence time (in seconds)
of the FEAST eigensolver, equipped with three distinct filters, is plotted against
increasing numbers of poles per quadrant m for each of these filters. The value of the
parameter G is kept fixed for all filters across the entire figure.

The result of this experiment demonstrates that best worst-case convergence of
the FEAST eigensolver correlates strongly with the WCR value of the filter that is
used to project onto the active subspace. On the other hand, the size of the active
subspace M0 also contributes to the convergence time and can be a confounding
factor in interpreting the numerical results. In order to minimize the influence of the
latter on our interpretation of WCR, we consider first the quadrant for C = 1.02.
From Table 3, we expect that best convergence time is achieved by FEAST when
equipped with WiSe filters, followed by Zolotarev and Gauss--Legendre filters,
respectively. This is indeed the case; the performance of the three filters is clearly
separated by a gap, which reflects the differences in WCR between the filters for
all m.

The influence ofm on filter performance is less pronounced. This is not surprising.
For instance, the Zolotarev filter enables FEAST to converge with a very slow
decrease of convergence rate as the number of poles increases, for all considered C.
The only consequence of increasing C is a growth in convergence time; the size of the
subspace increases with C, and more operations with vectors must be performed by
the linear system solver while the rate of convergence remains practically constant.
This behavior is due to the equioscillation of Zolotarev filters: These filters are
optimal in approximating the ideal filter in \infty -norm but do not decay away from the
filtered interval. WiSe filters behave similarly: While they decay (moderately) away
from the interval, their effectiveness is not determined by their value away from it, but
rather their behavior very close to its boundary (see Figure 2). This is reflected by the
very slight decrease in time-to-convergence asm increases, although the corresponding
WCR value decreases substantially as shown in Table 3.

As the size of the active subspace increases, its influence on convergence time
becomes ever more pronounced. This is because the difference between the conver-
gence rate of FEAST in (5.2) may become increasingly larger than the WCR of the
used filter as C \gg 1.02 [11]. In other words, larger active subspaces dilute the cor-
relation between WCR of the filter and convergence rate of the eigensolver. This is
clearly visible if one traverses the quadrants in Figure 6 from left to right and is best
illustrated by the Gauss--Legendre filters. These suffer from slow convergence for
small C but can compensate for their large WCR for large subspace sizes because
they decay rapidly in function value away from the search interval. In other words,
for Gauss--Legendre, the size of the active subspace is much more relevant than the
WCR of the filter.

This simple analysis, based on a very specific interior eigenvalue problem, seems
to suggest that WiSe filters should always be preferred over Zolotarev filters in
those cases in which the WiSe WCR is smaller than Zolotarev (compare Table 3).
When comparing the performance of WiSe and Gauss--Legendre filters, it seems
that the size of the active subspace plays a major role in identifying the point at which
one filter outperforms the other. In order to address this question, we examine the
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Fig. 7. The average numbers of iterations and FLOPs (floating-point operations), required by
FEAST to solve 2117 benchmark problems [40], for different subspace sizes (by multiplying the actual
eigencounts with a fixed scalar C) and filters with G = 0.95.

convergence rate of FEAST in the next section, in terms of both number of FLOPs
and number of subspace iterations, using a large set of representative eigenproblems.

5.3.2. Experiment II. We consider a moderate gap parameter of G = 0.95
and a set of 2117 interior eigenproblems. These eigenproblems were obtained from
Si2, a sparse and symmetric matrix from the University of Florida Sparse Matrix
Collection [3], by selecting 2117 different search intervals [a, b]6 as described in [40,
Appendix B]. Each search interval uniquely identifies an interior eigenproblem with
its unique eigenvalue distribution and eigenvalue count. As such, it is quite general
and statistically relevant, since it reflects the large variations that are possible in
distributing and clustering eigenvalues inside, outside, and in the vicinity of the search
interval ends.

We initially solved for each of the 2117 benchmark problems with a fixed value of
m = 4 poles per quadrant, the default in the FEAST eigensolver. As in the previous
section, we repeated this test for all three filters for increasing values of the eigencount
multiplier C. The results of these tests are graphically reported in Figure 7, which
plots the number of subspace iterations and the total number of FLOPs performed
by FEAST. These results confirm the analysis of section 5.3.1. The Zolotarev
and WiSe filters maintain a linear behavior as a function of increasing dimension of
the active subspace as soon as C \geq 1.1. In other words, the WCR of these filters
influences the convergence of the eigensolver only for active subspaces that closely
match the true number of eigenvalues in the interval [a, b]. As soon as the size of the
active subspace gets larger, the convergence of the eigensolver is dictated by (5.2).
This interpretation is made even clearer when one looks at the linear increase in
FLOPs for FEAST, equipped with these two filters: While the average number of
iterations remains constant, the total number of FLOPs increases due to the linear
increase in the total number of right-hand-side vectors Y for which (2.3) must be
solved.

6The code to obtain such benchmark sets from arbitrary matrices is freely available at https:
//github.com/SimLabQuantumMaterials/SpectrumSlicingTestSuite.jl.
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RATIONAL SPECTRAL FILTERS A2681

Fig. 8. Comparison of average FLOPs, required to solve 2117 benchmark problems [40], using
Gauss--Legendre, Zolotarev, and WiSe filters for different of poles numbers m per quadrant,
while C \in \{ 1.1, 1.5 \} and G = 0.95.

As C grows, the rate of convergence of FEAST, equipped with the Gauss--
Legendre filter, equals the one of WiSe---which is dictated by the WCR at smaller
values of C. For subspace multipliers C > 1.3, the Gauss--Legendre starts compet-
ing, on average, with the WiSe. It must be noted that this comes at a cost: Using
Gauss--Legendre for a relatively large active subspace, such as the default value
of C = 1.5 suggested by FEAST, has on average a higher FLOP count than the
WiSe filters for eigenvalue counts C < 1.3. This observation is fairly independent of
the number of poles per quadrant used, as shown in Figure 8. Gauss--Legendre
filters have a slight advantage with respect to FLOP count for large subspace sizes
(C = 1.5), but they behave worse than the WiSe for any number of poles and small
subspace sizes (C = 1.1). Due to the decay in value of the filter function, the WiSe
filter even outperforms Zolotarev for m = 7, despite its larger WCR. For larger m,
overall FLOP count increases, while the difference in FLOP count across the filters
shrinks.

In conclusion, FEAST, equipped with WiSe filters, offers a competitive advantage
over the use of Gauss--Legendre and Zolotarev filters. WiSe filters are quite
stable with respect to the convergence rate of the eigensolver, irrespective of the
active subspace or the degree of the filter function. Their use seems to almost always
minimize the total FLOP count required by FEAST to reach convergence. In addition,
their effectiveness for small eigencount multipliers suggests that WiSe filters should
be preferred in all those cases where it is necessary to contain the subspace size,
either because the RAM is limited or because the underlying spectrum distribution
is unknown.

6. Conclusions. In this work, we show how we decreased time-to-convergence
of the SLiSe optimization framework by using in it the minimization algorithm L-
BFGS-B. When computing a box-constrained SLiSe filter, only hundreds of function
evaluations are needed instead of millions. We exploit the improved performance by
introducing a second optimization process for the numerical minimization of the WCR
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of the SLiSe rational filters. The byproduct of such a minimization is the elimination of
the dependence of the filter on the weight functions used in the nonlinear least-squares
functional. The new WiSe filters outperform Gauss--Legendre and Zolotarev
filters in terms of execution time, number of subspace iterations, and FLOP count
necessary to reach convergence by the eigensolver.

Increasing the performance of the optimization of rational filters and eliminating
their dependence on a number of adjustable parameters has an additional indirect and
important impact on the eigensolver using the rational filters as spectral projectors.
This class of solvers lend themselves to multiple levels of parallelism: At the highest
level each interval [a, b] can be split into subintervals [aj , bj ], each of which trivially
constitutes a separate eigenproblem; at a mid-level the spectral solver requires the
solution of a linear system for each pole zi; at the lowest level each linear system has
to be solved for multiple right-hand sides. While such a general scheme makes this
class of eigensolver attractive, it complicates substantially the problem of balancing
the computational load. One of the main contributions to the uncertainty of a well-
balanced computation is the ability of the spectral filter to determine the number of
subspace iterations needed to converge the full subspace corresponding to each [aj , bj ].

Our WiSe filters overcome this uncertainty by (1) decoupling the rate of con-
vergence from the size of the active search subspace and (2) drastically reducing the
dependence on the number of poles which can be safely set to a standard value (e.g.,
m = 4 in FEAST). The net result is that the spectral filter has the same effectiveness
for any subinterval selected: For a given linear system solver the number of iterations
required to reach convergence is minimized and independent of the eigenvalues distri-
bution. Load balancing is then achieved by choosing subintervals with approximately
the same eigenvalue count. Since obtaining a good estimate for the eigenvalue count
and the eigenvalue distribution is a solved problem [4, 23], the result presented in this
paper eliminates the influence of the spectral filter on load balancing for all practi-
cal purposes. The remaining challenge is balancing the load when solving for distinct
linear system with multiple right-hand sides. This is the focus of further ongoing work.
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