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Abstract. Søderberg electrodes feature prominently in the operation of metallurgical electrical furnaces. The electrode4
material must bake before entering the furnace; failure to bake will lower the efficiency of the process, and may cause physical5
harm to the furnace itself through a soft breakage. As such, ensuring that the baking isotherm remains within the region of the6
electrode outside of the furnace is essential. We propose a mathematical model for a Søderberg electrode taking into account the7
heat, mass, and current transfer mechanisms at play, along with realistic boundary conditions on the outside of the electrode8
that are strongly heterogeneous in height. The resulting model describes a strongly heterogeneous cylindrical “thermistor”9
which moves slowly downward and is acted on by current clamps which provide Joule heating. Although it is often ignored in10
the literature on thermistor problems, we find that the Péclet number resulting from the downward motion strongly influences11
the position of the baking isotherm. Aside from some specific reductions leading to analytical solutions, the general form of12
the model is complicated enough to require numerical simulations. Still, our modeling approach provides us with a qualitative13
understanding of many aspects of the Søderberg electrode baking process, and permits us to identify three parameters of key14
importance to the positioning of the baking isotherm. In particular, our results suggest desired ranges for the the lowering rate15
of the electrode (in terms of a Péclet number), the radius of the electrode, and the strength of the Joule heating due to an16
applied current, which are the three aspects which may be controlled (to varying degrees) in industrial applications.17
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1. Introduction. The Søderberg electrode was invented in 1919 by the company now known as Elkem20

[45] and is the most commonly used continuously consumed electrode system for providing the energy21

necessary for the production of ferroalloys and calcium carbide [3]. The electrodes conduct currents of up to22

150 kA to the centre of a smelting furnace, and operate at temperatures of up to 2000◦C [23]. Although the23

design of Søderberg electrodes has not been significantly changed, product demand has led to an increase24

in the dimensions and current load [20]. The electrode is commonly enclosed in a thin steel casing which is25

lowered at specific times. For simplicity, an approximated continuous rate called the slipping rate is used to26

describe the speed at which the casing is lowered into the furnace, commonly at about 0.5 m per day [3, 35].27

A paste composed of a mixture of pitch tar and binder is the raw material that makes up the electrodes. This28

paste is viscoelastic [11, 47] and has been described as a shear thinning fluid [29]. The paste constituting an29

electrode can take the form of solid cylinders, briquettes, or blocks. Heat transfer in the electrode is due to30

the heat supplied by fans blowing hot air along the walls as well as heat induced by a current supplied by31

copper tubes to the current clamps (also called contact shoes) pressed against the outside of the casing. As32

the temperature increases into the range 400 − 500◦C, the paste softens, flows, and finally bakes [5]. The33

flow of the paste is primarily due to the addition of new electrode material at the top of the domain. The34

location within the electrode where the paste bakes is referred to as the baking isotherm. There are steel35

plates that surround the inside of the casing, referred to as fins. The softened paste fills the space between36

the fins and then becomes attached to the fins as it bakes, at which point the fins support the weight of the37

resulting baked electrode.38

As the paste is baked, it becomes highly conductive and enables the electrode to conduct current to the39

tip where the arcs are formed. The arcs are the primary source of heat that powers the smelting process.40

Note that the electrode is consumed at the bottom as more material is added at the top. The correct melting41

and baking of paste is essential to produce electrodes with the desired mechanical, thermal, and electrical42

properties on which the entire production process depends [23, 29]. Various aspects of Søderberg electrode43

operation have been investigated, both numerically and analytically, over the years. The temperature dis-44

tribution within Søderberg electrodes has been studied numerically by [21] and [37], matching observations45

made by Elkem [23]. More recently, in [35] a Comsol model was used to determine that the steel fins fitted46

in the casing are indispensable for its heating profile, as the heat conduction by the steel fins counteracts the47
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Fig. 1: Detailed schematic of a Søderberg electrode adapted from [15] to include labels and hot air fan.

induction heating and subsequent current clamp cooling mechanism. The fins also keep the baked electrode48

from falling into the furnace too fast, as the softened paste fills the space between the current fins and49

becomes attached to them during the baking process [42]. A detailed schematic of the electrode is shown in50

Figure 1.51

Paste segregation can occur when the paste softening is out of balance. The causes of this phenomenon52

are not well understood, but it is known that the segregation problem began to occur more frequently when53

changes in design led to a decrease in the space between the copper tubes that supply the current to the54

clamps and the electrode casing, resulting in unwanted electrical induction within the cylinder [36]. In55

[3], billets of paste were modelled as a highly viscous two-phase particulate medium. The mechanism of56

segregation was taken to be the separation between the coarse and fine parts of the paste, and segregation57

was assumed to occur near the walls of the electrode casing. It was discovered that segregation occurs58

when the paste at the top of the electrode is so viscous that it does not deform from the incoming billets.59

Although segregation will not be directly investigated in this paper, it is an issue that leads to breakages60

in the electrodes, which are the failure mechanisms addressed in this work. In [12], a briquette model was61

derived taking a two-phase slow flow approach in order to understand how the paste briquettes soften while62

interacting with the air surrounding them. The results of [12] were compared to an experiment conducted63

by Elkem, and it was found that accounting for variations in viscosity is necessary for accurate predictions.64

The electrical problem for the Søderberg electrode has been studied as a thermistor problem, which65

describes the heat produced in a conductor by an electric current. An upper bound on the temperature66

in such problems for simple boundary conditions was obtained in [9]. Additional posedness and blow-up67

results followed in [1]. Thermal runaway as a route to blow-up in the time-dependent form of these problems68

was further elucidated in [25, 26]. A transient surge in temperature (similar to thermal runaway, yet self-69

saturating) was shown in [13] to lead to cracking of thermistors (cracking is observed in real thermistors). A70

geometric reduction like that used in [10] was studied in two space dimensions in terms of a conformal map71

from the thermistor domain onto a rectangle [18].72

There are two types of breakages that can occur in the operation of Søderberg electrodes, and we73

show diagrams of these in Fig. 2. A hard breakage occurs when large parts of baked carbon fall into the74

furnace. These are common during furnace shutdowns and are believed to be caused by an increase in75

thermal stresses which occur during the cooling and heating of an electrode. Stress levels increase with76

longer shutdown times, and have been investigated numerically by [30]. Some control strategies, e.g. shorter77

shutdowns, proper thermal insulation of the electrode surface, and allowing the electrode to slip after turning78

off the power, were suggested as a result of this study. Furthermore, a partially baked Søderberg electrode79

is especially susceptible to breakages caused by thermal shocks as the raw material of the paste will have80

different thermal dimensional behaviours which will impart thermal stress in the electrode [5]. A soft breakage81

occurs when the entire baked part of the electrode (and sometimes the whole electrode) plunges into the82
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Fig. 2: Graphical representation of the problem to be considered. The target situation shows the normal
operating configuration of the electrode provided that the baking isotherm closes appropriately. If the baking
isotherm fails to close, which is the soft breakage case, paste may seep into the furnace, resulting in costly
damage. A hard breakage is also possible, but we do not consider that case in the present work.

furnace. These are considered more serious than hard breakages and are costly to repair. Case studies have83

found that the main causes for soft breakages are a fast slipping rate, a low baking isotherm which fails to84

close above the top of the furnace region, and a high current in the steel casing [38].85

In recent years, Elkem have dedicated resources to research projects aimed at improving their silicon86

production process. With regard to the Søderberg electrode, Elkem are interested in further improving their87

electrode operating strategies with a better understanding of the baking isotherm, in order to prevent the88

problems described above. Most of the aforementioned work on the baking isotherm present in the literature89

has involved CFD-type simulations, yet there has been relatively little mathematical modelling work done.90

While CFD-type simulations can be useful for understanding solutions corresponding to very specific physical91

conditions, mathematical modelling is often useful for determining the role that various physical parameters92

play in modifying or controlling the salient features of a solution. Elkem and the University of Oxford93

have collaborated on a variety of mathematical modelling projects in the past, and the particular project94

resulting in the work described herein originated in response to two Study Groups with Industry which95

took place in 2018. Work leading to the present paper started later in 2018, out of a desire to explore a96

different modelling approach to what was considered in the aforementioned Study Groups with Industry,97

with continuing discussions with Elkem and comparisons with data informing the modelling efforts. The98

mathematical modelling and analytical results obtained in the resulting collaboration point to a few key99

parameter groups which are useful in the control of the electrode baking process. These features are not100

always apparent from block-box or CFD simulations. The results are therefore of great practical importance101

to Elkem, and to anyone else interested in the operation of Søderberg electrodes.102

Motivated by the application of baking a Søderberg electrode which is lowered into a submerged arc103

furnace, we develop a mathematical model for the heat, mass, and current transfer taking place within a104

Søderberg electrode, highlighting work arising out of the Elkem - University of Oxford collaboration discussed105

above. With this modelling work, we aim to bridge the gap between existing simple thermistor and electrode106

models and the more complicated yet realistic operating conditions of relevance to industrial applications107

(which are at present just approximated through CFD simulations), in order to identify the baking isotherm108

location and prevent costly soft breakages. The model is presented in Section 2. The model solutions are then109
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studied analytically and through numerical simulations in Section 3. Despite the complexity of the model,110

we are able to both qualitatively and quantitatively determine the dependence of the baking isotherm on (i)111

the lowering rate of the electrode (through a Péclet number); (ii) the radius of the electrode; and (iii) the112

strength of the Joule heating due to an applied current, which are the three aspects that may be controlled113

in industrial applications. We discuss these qualitative findings in Section 4, highlighting those findings and114

recommendations relevant to furnace operators, and suggesting a variety of extensions of our model for sake115

of greater accuracy or other applications.116

2. Mathematical model. We consider a model for the melting and the solidification of paste in a117

Søderberg electrode under the assumption of cylindrical geometry of fixed radius. Comparing this with the118

graphical representation in Figure 2, we consider a model valid for the left and right cases where the furnace119

is operating properly, and hence the paste cylinder does not sink into the pool of segregated hot paste, shown120

in green, meaning that the cylindrical geometry is a sensible approximation. We treat the entire domain as121

one fluid, with very high viscosity in the “solid” regions.122

We start with the compressible Navier-Stokes, energy, and current equations123

∂ρ̂

∂t̂
+∇ · (ρ̂û) = 0 ,(1)124

ρ̂
∂û

∂t̂
+ ρ̂û · ∇û = ∇ ·

(
µ̂
(
∇û +∇û>

))
− 2

3
∇ (µ̂∇ · û)−∇p̂− ρ̂geẑ ,(2)125

ρ̂cp
∂T̂

∂t̂
+ ρ̂cpû · ∇T̂ = ∇ ·

(
k̂(T̂ )∇T̂

)
+ σ̂(T̂ )

∣∣∣∇φ̂∣∣∣2 + αT̂

(
∂p̂

∂t̂
+ û · ∇p̂

)
(3)126

+

(
∇ ·
(
µ̂
(
∇û +∇û>

))
− 2

3
∇ (µ̂∇ · û)

)
: ∇û ,127

∇ ·
(
σ̂(T̂ )∇φ̂

)
= 0 .(4)128

129

Here û is the velocity field, ρ̂ is the density, µ̂ is the viscosity, p̂ is the pressure, T̂ is the temperature, φ̂ is130

the electric potential, while cp is the heat capacity, α is the coefficient of thermal expansion, and g is the131

acceleration due to gravity. The electrical conductivity, σ̂ viscosity µ̂, thermal conductivity k̂ are in general132

functions of temperature. The fluid system is subject to an equation of state F(p̂, ρ̂, T̂ ) = 0. For a more133

thorough treatment and derivation of these various terms in (2)-(3), see [2, 28]. We provide a list of reference134

parameter values in Table 1. There is Joule heating within the cylinder due to the current clamps, and this135

is responsible for the heat source proportional to the norm of the current density, ∇φ̂, in (3). Although we136

consider a time-dependent problem for the heat and mass transfer, we assume that the electrical problem137

remains static. This is reasonable, as the time-dependent electrical problem equilibrates instantaneously138

relative to the other components of the problem.139

We are most interested in using this model to better understand the placement of the baking isotherm140

within the electrode. If this isotherm fails to close before it reaches what we designate the bottom of the141

electrode, then costly soft breakages may result. The electrode paste begins to melt at between 50 C and142

100 C, while baking is completed at between 400 C and 500 C [5]. Thermomechanical analysis was used to143

measure the dimensional changes that take place in coal tar pitch in the temperature range relevant to the144

determination of the baking isotherm temperature by [41], suggesting that the isotherm for a fully baked145

material lies in the range 400 C - 450 C. The precise range will depend on the components of the paste. For146

instance, a combination of coal tar pitch, granular anthracite, and organic binder is used in some ramming147

paste, and this is usually baked by 400 C [39]. For the material Elkem uses, softening of the paste has been148

known to occur near a temperature of 80 C, and baking is believed to begin to take place at 350 C, based149

on discussions with Elkem. At this temperature, even if not fully baked, the paste is solid enough to prevent150

flow of liquid paste into the furnace below. Furthermore, for the temperature values described above, we do151

not include radiation effects, as these are only significant near the bottom of the electrode where the electric152

arcs are formed and temperatures are much higher (> 2000 C).153

2.1. Boundary conditions in cylindrical coordinates. We restrict our attention to a circular154

cylinder, and consider an axisymmetric cylindrical coordinate frame (r̂, ẑ). The velocity field is then given155

by û = (û, v̂), where û is the velocity component in the er̂ direction and v̂ is the velocity component in the156

4
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Notation Parameter Name Value Reference

Ĥ Height of Electrode 7 m [42]

R̂ Radius of Electrode Casing 1 m [3]

T̂cool Air Temperature 338 K –

T̂melt Melting Temperature ≈ 353 K –

T̂bake Baking Temperature 623 K –
v̂s Slipping Rate (Velocity Scale) 5× 10−6 − 3× 10−3m s−1 [3]
p̂ref Boundary Pressure 1 atm –

µ Reference Viscosity Scale 8.627× 102 kg s−1m−1 –

ρ Reference Density Scale 1.8× 103 kg m−3 [3]

k Reference Thermal Conductivity Scale 5 W m−1K−1 [4, 34]

cp Heat Capacity 900 J kg−1K−1 [12]

h Coefficient of Convective Heat Transfer 15 W m−2K−1 Elkem
I Electric Current from Clamps 80000 A [31]
σ Reference Electrical Conductivity 32000Ω−1m−1 [27, 31]
g Gravity 9.81 m s−2 –

α Coefficient of Thermal Expansion O(10−5)−O(10−6)K−1 [31]

Table 1: Reference values for dimensional parameters. Parameters without references were obtained through
discussions with Elkem.

eẑ direction. Boundary conditions for the fluid problem are157

∂v̂

∂ẑ
= 0 ,

∂û

∂ẑ
+
∂v̂

∂r̂
= 0 , p̂ = p̂ref at ẑ = Ĥ ,(5a)158

û = (0,−v̂s) at ẑ = 0 ,(5b)159

û bounded at r̂ = 0 ,(5c)160

û = (0,−v̂s) at r̂ = R̂ .(5d)161162

The cylinder slips with velocity v̂s as the electrode we model is lowered into the furnace. In real furnace163

operation, v̂s is a function of time, with the electrode periodically stopped and then slipping with a velocity164

of near v̂s = O(10−3)m s−1. In simulations, a slower averaged slip which is constant in time is employed, in165

which case v̂s = O(10−5)m s−1.166

Boundary conditions for the thermal problem read167

T̂ = T̂cool at ẑ = Ĥ ,(6a)168

∂T̂

∂ẑ
= 0 at ẑ = 0 ,(6b)169

T̂ bounded at r̂ = 0 ,(6c)170

k̂(T̂ )
∂T̂

∂r̂
= ĥ(ẑ)

(
T̂ext(ẑ)− T̂

)
at r̂ = R̂ .(6d)171

172

The electrode temperature is the cool ambient temperature at the top. The condition (6d) is just Newton’s173

Law of Cooling at the radial boundary [14]. At the bottom, in practice the electrode reaches a steady174

temperature in equilibrium with the furnace, and we assume that there is no change in temperature at175

ẑ = 0. This is not the same as no-flux, as there will in principle be heat transfer from the electrode into the176

furnace along with current transfer.177

There are current clamps along the boundary of the cylinder (say, within the region ẑ ∈ [Ĥ1, Ĥ2],178

0 ≤ Ĥ1 < Ĥ2 ≤ Ĥ at r̂ = 1) providing a current I, and we assume that the bottom of the electrode is179

effectively grounded. This permits current to flow from the current clamps, through the electrode, and into180

5
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Notation Parameter Group Definition Value

a Aspect Ratio R
H 0.15− 0.25

Stk Stokes Number ρgR̂2

µv̂s
O(103)−O(106)

Re Reynolds Number ρR̂v̂s
µ O(10−6)−O(10−3)

Pe Péclet Number Rv̂s
k/(ρcp)

O(10−1)−O(103)

Nu Nusselt Number h
(k/R̂)

5

Po Pomerantsev Number I2

4π2(Ĥ2−Ĥ1)
2
kσ(T̂bake−T̂cool)

O(1)−O(10)

Pr Prandtl Number
cpµ

k
O(105)

Ec Eckert Number
v̂2s

cp(T̂bake−T̂cool)
O(10−16)−O(10−11)

Br Brinkman Number
µv̂2s

k(T̂bake−T̂cool)
O(10−11)−O(10−6)

Tcool Dimensionless Temperature at z = 0 – 0

Tmelt Dimensionless Melting Temperature T̂melt−T̂cool

T̂bake−T̂cool
5.263× 10−2

Tbake Dimensionless Baking Temperature – 1

Table 2: Reference values for useful dimensionless parameter groups and other dimensionless quantities.

the furnace below. A sensible set of boundary conditions for the electric potential then takes the form181

σ̂(T̂ )
∂φ̂

∂ẑ
= 0 at ẑ = Ĥ ,(7a)182

φ̂ = 0 at ẑ = 0 ,(7b)183

σ̂(T̂ )
∂φ̂

∂r̂
=


I

2πR̂
(
Ĥ2 − Ĥ1

) for ẑ ∈ [Ĥ1, Ĥ2] ,

0 otherwise ,

at r̂ = R̂ ,(7c)184

φ̂ bounded at r̂ = 0 .(7d)185186

For this problem, a current I flows from the clamps, through the electrode, and out the bottom into the187

furnace. In (7c), the current is scaled over the area of the current clamp region, 2πR̂(Ĥ2 − Ĥ1), to obtain a188

current density.189

In practice, soft breakages may occur if the baking isotherm is very close to the bottom of the clamp,190

since there would not be enough mechanical strength to hold the material. We therefore note that, in191

practice, the critical height at which the baking isotherm must close may vary slightly. For our study, we192

take this critical height to be the bottom of the domain, and hence require that the baking isotherm close193

for some ẑ > 0.194

2.2. Scalings and dimensionless groups. Heat transfer mechanisms act at the boundary r̂ = R̂195

and heating effects penetrate inward. As such, it is sensible to nondimensionalise with respect to the radial196

length scale. We introduce the nondimensionalisation and scalings: r̂ = R̂r, ẑ = Ĥz, t̂ = R̂
v̂s
t, û = v̂su,197

v̂ = v̂sv, p̂ = p̂ref + ρgR̂p, ρ̂(T̂ ) = ρρ(T ), µ̂(T̂ ) = µµ(T ), k̂(T̂ ) = kk(T ), ĥ(ẑ) = hh(z), σ̂(T̂ ) = σσ(T ),198

T̂ = T̂cool +
(
T̂bake − T̂cool

)
T , T̂ext = T̂cool +

(
T̂bake − T̂cool

)
Text, φ̂ = I

2πR̂(Ĥ2−Ĥ1)σ
φ.199

These scalings result in multiple dimensionless groups. In Table 2, we list the various dimensionless200

groups along with tabulated reference values or ranges. The aspect ratio is defined by a = R̂
Ĥ

. Data and201

simulations from Elkem suggest a = O(1) or a = O(10−1) for realistic electrode geometries. (A radius of 1m202

and height of 7m appear to be most commonly used.)203

For v̂s of order O(10−6) to O(10−3), we have that Re ranges from O(10−6) to O(10−3). In the case204

where there is a constant lowering of the cylinder, which corresponds to v̂s = O(10−5), the Reynolds number205

is at most O(10−5), and can be neglected. On the other hand, if the cylinder is quickly lowered, and then206
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held still for a much longer duration (as is done in practice), then v̂s = O(10−3), and hence the Reynolds207

number may be as large as O(10−3), in which case there may be some inertial effects. This suggests that we208

should ignore inertial terms for the case where the cylinder is uniformly lowered at a small velocity, yet may209

wish to retain inertial terms when considering a cylinder which is held in place, then more quickly lowered,210

before being held in place again.211

The disparity noted in the range of Pe is also due to the wide range of velocities possible. In the case of212

a periodically lowered electrode, the instantaneous Péclet number can be as large as O(102) or O(103), yet213

this is only for a short duration, after which point the electrode is held fixed in place. As we shall discuss214

later, this corresponds to an effective Péclet number multiple orders of magnitude smaller. If the process is215

instead modelled by a uniform lowering of the electrode over time, then the Péclet number is of size O(10−1)216

or O(1).217

We have scaled the current like φ̂ = I

2πR̂(Ĥ2−Ĥ1)σ
φ. The Joule heating parameter is then given in terms218

of the Pomerantsev number, Po. Standard values of the current I appear to range between 60000A and219

150000A [22, 31]. The current is applied via current clamps around the entire radius of the cylinder, between220

heights H1 = Ĥ1/Ĥ and H2 = Ĥ2/Ĥ. When carrying out numerical simulations, we non-dimensonalise the221

electrical problem recalling that Ĥ1 = 1.5m, Ĥ2 = 2.5m for the configuration Elkem uses, while Ĥ = 7m, so222

the non-dimensional range over which the current clamps are applied is z ∈ [H1, H2] = [0.214, 0.357].223

From available literature, the linear coefficient of thermal expansion, α, for the paste should be of the224

order O(10−5) [23, 34], hence the parameter group αρv̂s
R̂

is of order O(10−7) to O(10−4) for v̂s of order225

O(10−6) to O(10−3). Hence, this is a very small parameter group in all scenarios, and will be neglected.226

The viscous dissipation parameter may be written as the product of Prandtl (Pr) and Eckert (Ec)227

numbers, which is denoted by the Brinkman number, Br, and we shall follow this notation. Note that228

Br = O(10−6) at most, so it may be tempting to neglect the Brinkman number since we have neglected229

the thermal expansion. However, while the thermal expansion parameter is isolated, the Brinkman number230

multiplies the viscosity. We have selected the viscosity scale to be such that µ = O(103), making the minimal231

value of µ(T ) an O(1) quantity. However, the maximal order of µ(T ) will reach values of O(107). Hence,232

the product Brµ(T ) has a possible maximal value which is O(10) in the case where the slip is of maximal233

order, v̂s = O(10−3).234

Under our nondimensionalisation, T̂cool is taken to zero (Tcool = 0), T̂bake is taken to one (Tbake = 1),235

and T̂melt is taken to Tmelt = 0.05263. We shall be interested in the behavior of the isotherms corresponding236

to the melting and baking temperatures, and in particular, we study how the curves representing these237

isotherms change position and structure as various model parameters are changed.238

2.3. Reduction of the flow problem. Using the aforementioned parameter ranges as well as the239

boundary conditions on the flow, the flow problem simplifies greatly. In order to account for the equation240

of state F(p̂, ρ̂, T̂ ) = 0, we remark that discussions with Elkem suggest that the density ρ(T ) changes by at241

most 10% over the full range of temperatures, and we therefore consider the flow to be incompressible. Our242

equation of state then reduces to setting ρ(T ) equal to a constant. We set ρ(T ) = 1, as ρ holds the constant243

value of the dimensional ρ̂(T̂ ).244

The boundary velocity parameter vs should be viewed as an average slip rate. In practice, the electrode245

is held fixed for a time, and then moved downward over a short interval of time, after which it is then held246

fixed again. This process continues periodically. In order to account for the aforementioned time-dependence247

of the velocity boundary conditions, we should include inertial terms in the fluid model, which leads us to248

consider the incompressible Navier-Stokes system249

∇ · u = 0 , Re

(
∂u

∂t
+ u · ∇u

)
= ∇ ·

(
µ
(
∇u +∇u>

))
− Stk (∇p+ eẑ) ,(8a)250

∂v

∂z
= 0 , a

∂u

∂z
+
∂v

∂r
= 0 , p = 0 at z = 1 ,(8b)251

(u, v) = (0,−f(t)) at z = 0 ,(8c)252

(u, v) bounded at r = 0 ,(8d)253

(u, v) = (0,−f(t)) at r = 1 .(8e)254255

Here f(t) is the function which approximates the motion of the casing over time. When the casing is256
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stationary, we have f(t) = 0, while when the casing is moving at its maximal velocity v̂s, we have f(t) = 1.257

The boundary conditions (8b)-(8e) imply a spatially uniform velocity field, and an exact solution to the258

fluid problem is then given by259

(9) u = 0 , v = −f(t) , p =

(
1− Re

Stk
ḟ(t)

)
1− z
a

,260

where ḟ denotes the time derivative of f . Since Re = O(10−3) at most, while Stk = O(103) at a minimum,261

we therefore have that Re
Stk = O(10−6) at most. As such, the inertial term Re

Stk is negligible (even for rapid262

variations in velocity when slipping motion starts or stops), and the same results would have been obtained263

from a quasi-static approximation from the Stokes equations.264

It is common practice to consider a continuously lowered electrode, which is lowered at some averaged265

rate much lower than the periodic slip rate. In this case, f(t) = 1 for all time, and in this regime v̂s is266

small and viewed as the time average of a periodic slip velocity; in practice v̂s = O(10−5) or smaller for this267

regime. In this limit, we have Re = O(10−4), so we set Re = 0 and neglect the inertial terms, with (8a)268

reducing to the Stokes equations. The boundary conditions are the same as those given in (8b)-(8e), with269

f(t) = 1, and we obtain the simpler exact solution270

(10) u = 0 , v = −1 , p =
1− z
a

.271

Furthermore, for µ(T ) ≥ µ0 > 0, a solution to the Stokes equation is unique [7], and hence the exact solution272

(10) is the unique solution. This is useful to note, so that we need not worry about a second steady solution.273

Note that the viscous dissipation term in equation (3) is identically zero for the velocities specified in274

(9) or (10), and we henceforth neglect it, regardless of the particular value of Br. That is to say, we do not275

need to use the fact that Br is small to neglect viscous dissipation; rather, the viscous dissipation term is276

identically zero due to the spatial uniformity of the exact flow solution.277

2.4. Constitutive relations and boundary conditions. The electrical conductivity σ̂(T̂ ) was taken278

as σ̂(T̂ ) = σ
(

1 + exp
(

(1048C− T̂ )/338C
))−1

in [27] with reference value is σ = 32000Ω−1m−1, corre-279

sponding to the value of electrical conductivity at the temperature 2273K [27, 31]. Putting the relation into280

non-dimensional form, we find σ̂(T̂ ) = σσ(T ), with281

(11) σ(T ) =
1

1 + exp (10.923− 4.385T )
.282

Similarly, using reference values given in [4, 34] for the thermal conductivity, we choose k̂(T̂ ) = kk(T ) with283

a reference value k = 5Wm−1K−1 and sigmoid form284

(12) k(T ) =
1 + exp (1.997)

1 + exp (2.936− 0.939T )
.285

Based on operating conditions observed by Elkem at the external boundaries of the domain, we consider286

an external thermal profile of the form T̂ext(ẑ) = 1173K for ẑ ∈ [0m, 1.5m), which models the hot region near287

the bottom of the electrode. The region around the current clamps is cooled, and we have T̂ext(ẑ) = 333K for288

ẑ ∈ [1.5m, 2.5m), whereas the region above the current clamps is warmer, T̂ext(ẑ) = 473K for ẑ ∈ [2.5m, 3.5m).289

Above this, there is a cooling with height, and we have T̂ext(ẑ) = 753K−80 K
m ẑ for ẑ ∈ [3.5m, 5m) and finally290

T̂ext(ẑ) = 353K for the topmost region where ẑ ∈ [5m, 7m]. In dimensionless form, we then have291

(13) Text(z) =



2.930 for z ∈ [0, 0.214) ,

−1.754× 10−2 for z ∈ [0.214, 0.357) ,

4.737× 10−1 for z ∈ [0.357, 0.5) ,

1.458− 1.968z for z ∈ [0.5, 0.714) ,

5.263× 10−2 for z ∈ [0.714, 1] .

292

The spatially varying coefficient of convective heat transfer is estimated from Elkem data, and takes293

the form ĥ(ẑ) = 7 W m−2K−1 for ẑ ∈ [0m, 1.5m), increases strongly in the current clamp region to ĥ(ẑ) =294
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75 W m−2K−1 for ẑ ∈ [1.5m, 2.5m), decreases to ĥ(ẑ) = 15 W m−2K−1 for ẑ ∈ [2.5m, 5m), and finally295

decreases to zero above that. The dimensionless coefficient of convective heat transfer reads296

(14) h(z) =


7
15 for z ∈ [0, 0.214) ,

5 for z ∈ [0.214, 0.357) ,

1 for z ∈ [0.357, 0.714) ,

0 for z ∈ [0.714, 1] .

297

We have taken the dimensional scale factor to be h = 15 W m−2K−1, which we use as the reference value298

for the convective heat transfer in the Nusselt number.299

2.5. Moving thermistor model in cylindrical coordinates. Our domain is that of a circular300

cylinder of height one and radius one. We take an axisymmetric cylindrical coordinate frame (r, z). We have301

302

Pe

(
∂T

∂t
− af(t)

∂T

∂z

)
=

1

r

∂

∂r

(
rk(T )

∂T

∂r

)
+ a2 ∂

∂z

(
k(T )

∂T

∂z

)
+ Po σ(T )

((
∂φ

∂r

)2

+ a2

(
∂φ

∂z

)2
)
,(15a)303

1

r

∂

∂r

(
rσ(T )

∂φ

∂r

)
+ a2 ∂

∂z

(
σ(T )

∂φ

∂z

)
= 0 .(15b)304

305

Dimensionless boundary conditions for the thermal problem are306

T = 0 at z = 1 ,(16a)307

∂T

∂z
= 0 at z = 0 ,(16b)308

T bounded at r = 0 ,(16c)309

k(T )
∂T

∂r
= Nu h(z) (Text(z)− T ) at r = 1 ,(16d)310

311

and the electrical problem,312

σ(T )
∂φ

∂z
= 0 at z = 1 ,(17a)313

φ = 0 at z = 0 ,(17b)314

σ(T )
∂φ

∂r
=

{
1 for z ∈ [H1, H2] ,

0 otherwise ,
at r = 1 ,(17c)315

φ bounded at r = 0 .(17d)316317

In the case where the slip is uniform, we take f(t) = 1 and assume a steady state problem, replacing318

(15a) with319

(18) − a Pe
∂T

∂z
=

1

r

∂

∂r

(
rk(T )

∂T

∂r

)
+ a2 ∂

∂z

(
k(T )

∂T

∂z

)
+ Po σ(T )

((
∂φ

∂r

)2

+ a2

(
∂φ

∂z

)2
)
.320

We will refer to (18), (15a), (16), (17) as the stationary or steady form of the model. Note that although the321

temperature problem (15) is in general time-dependent, the electrical problem is kept static for all cases, as322

we assume that the electrical system equilibrates instantaneously relative to the thermal system even on the323

timescale of the electrode moving. As we are most interested in static or quasi-static dynamics, we do not fix324

the initial data, but comment that in simulations we explored a variety of initial data, all of which appeared325

to be within the basin of attraction for the steady (constant f) or quasi-steady (periodic f(t)) solutions.326

If we consider the case of a static electrode which is not lowered, Pe = 0, we obtain the steady-state327

“thermistor” problem for a finite cylinder. Thermistor problems are well-studied in the literature, and we328

mention several relevant studies. An upper bound on the temperature in such problems (although with329
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simpler boundary conditions than we employ) was obtained in [9]. For specific boundary conditions, systems330

of the form (18) and (15b) have been shown to admit either a unique solution or no solution, depending331

on the functions k(T ) and σ(T ) [10]. Additional posedness and blow-up results followed in [1]. Thermal332

runaway as a route to blow-up in the time-dependent form of these problems was further elucidated in333

[25, 26]. A transient surge in temperature (similar to thermal runaway, yet self-saturating) may lead to334

cracking of thermistors (cracking is observed in real thermistors) [13]. A geometric reduction like that used335

in [10] was studied in two space dimensions in terms of a conformal map from the thermistor domain onto336

a rectangle [18]. Stationary solutions of (18) were further explored in [19] for certain boundary conditions.337

The degenerate case where σ(T ) = 0 for some T was studied by [8]. While mathematically interesting and338

useful for motivating some of our findings, none of these studies considered complicated thermal boundary339

conditions such as (16). Furthermore, the role of thermal advection through a moving thermistor is ignored340

in much of the thermistor literature, yet this will be essential to consider for our study of a lowered electrode.341

It has been remarked that convection will not matter in a qualitative sense for thermistor problems [27].342

Although this is true for a more abstract mathematical formulation where length scales and boundaries do343

not matter, in practical applications the specific rate of lowering of an electrode modelled as a thermistor344

will play a strong role in the rate of heating and hence the position of the baking isotherm. In particular,345

fast rates of lowering may result in soft breakages, while excessively slow rates of lowering will be inefficient.346

As such, there is an interest in determining an optimal lowering rate, where an electrode is fed into a furnace347

at a rate which both prevents soft breakages yet preserves efficiency.348

3. Qualitative and quantitative analysis of the model. In this section, we study the behavior of349

solutions to the model (15), (16), (17) both analytically and through numerical simulations. Our primary350

focus is on locating the baking isotherm, as soft breakages will occur if the baking isotherm goes beneath the351

bottom of the clamp. Regarding the simulations, we simulate the stationary form of these equations using352

the Finite Element solver COMSOL, using a mesh with 111, 202 second-order triangular mesh elements to353

approximate the domain. A non-uniform mesh is employed with a maximal element size of 3 × 10−3 in a354

region of width 0.1 around the clamp, and a maximal element size of 5 × 10−3 elsewhere. Convergence in355

the spatial discretization is checked by refining the mesh and computing norms of solution differences for356

select parameters. In order to determine how transient dynamics evolve into a steady state configuration,357

time-dependent simulations are computed using the same discretization as used in the stationary solver,358

and a relative error tolerance of 10−2, and the default adaptive time-stepping scheme using a generalized359

backward-difference formula of orders 1-5. All of the stationary solutions shown appear to be numerically360

stable when perturbed slightly and simulated forward in time. We find no evidence of multistability in the361

experimentally relevant parameter ranges.362

In all simulations we fix Nu = 5, while varying the parameters Pe, a, and Po within ranges of relevance to363

real furnace operation. In each case we compute the melting (T = Tmelt) and baking (T = 1) isotherms, and364

display these where they appear within the dimensionless geometry. In Figure 3 we plot a sample temperature365

profile, T , as well as the orders of magnitude of the distribution of the Joule heating, ln
(
1 + |∇φ|2

)
. In the366

example shown, the baking isotherm closes, and hence the electrode has successfully baked. Note that the367

observed drop-off in the electrode current density distribution as it penetrates the interior of the electrode368

is akin to observations from more complicated multiphysics simulations and experiments [22].369

We first consider exact solutions for two strong simplifications of the model, in order to gain a qualitative370

understanding of the role played by the boundary conditions and Joule heating. After this, we consider the371

case of periodic slips, where the electrode is periodically lowered in time. We find that the dynamics over372

many such slips are akin to those from a stationary model (for reasonable duration slips), and explore the373

stationary case in more detail, providing parameter sweeps in the relevant dimensionless groups.374

3.1. Exact solutions for two simplifications of the steady problem. We first consider simplifica-375

tion of the model (18), (15a), (16), (17), in order to gain better intuition for, and a qualitative understanding376

of, the steady problem.377

3.1.1. Heat transfer in a lowered electrode in the absence of Joule heating. In order to better378

understand the role played by the combination of convective heating at the boundaries and thermal advection379

due to the slow downward motion of the electrode, we consider the limit Po→ 0. To simplify our analysis, we380

take k(T ) = 1 and h(z) = 1, since their reference values are already scaled out in the non-dimensionalization381
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(a) T (cylindrical geometry) (b) T (c) ln
(
1 + σ(T )|∇φ|2

)
Fig. 3: Numerical simulation of the system (18), (15a), (16), (17). (a) A 3D view of the temperature profile
over a 270◦-arc of the cylinder. (b) Heat map for the temperature in the r − z coordinate frame. (c)
Heat map for the logarithm of the Joule heating distribution given by ln

(
1 + σ(T )|∇φ|2

)
. All panels show

isothermal surfaces corresponding to melting (white) and baking (black) isotherms. Parameter values are
fixed at a = 0.14, Pe = 3, Po = 3.58. This value of Po corresponds to an applied current of 80kA.

presented in Section 2.2. We obtain from (18) the simplified problem382

(19) − a Pe
∂T

∂z
=

1

r

∂

∂r

(
r
∂T

∂r

)
+ a2 ∂

2T

∂z2
, with

∂T

∂r
= Nu (Text(z)− T ) at r = 1 ,383

subject still to the boundary conditions (16a)-(16c). We transform the dependent variable, T = exp
(
−Pe

2a z
)
θ,384

which results in the modified problem for θ:385

1

r

∂

∂r

(
r
∂θ

∂r

)
+ a2 ∂

2θ

∂z2
− Pe2

4
θ = 0 ,(20a)386

∂θ

∂z
− Pe

2a
θ = 0 at z = 0 , θ = 0 at z = 1 ,(20b)387

θ bounded at r = 0 ,
∂θ

∂r
= Nu

(
exp

(
Pe

2a
z

)
Text(z)− θ

)
at r = 1 .(20c)388

389

In order to solve (20), we first separate variables like θ(r, z) = R(r)Z(z), which gives the spectral problem390

391

(21a) a2 d
2Z
dz2
− Pe2

4
Z = −λ2Z, dZ

dz
− Pe

2a
Z = 0 at z = 0, Z = 0 at z = 1,392

393

(21b)
1

r

d

dr

(
r
dR
dr

)
= λ2R , R bounded at r = 0 ,394

for λ > 0. Note that the sign of the spectral term is the only possibility; replacing −λ2 with λ2 or λ = 0395

yields only the trivial solution Z(z) ≡ 0. Solving (21a), we find396

(22) Z`(z) = cos (Λ`z) +
Pe

2aΛ`
sin (Λ`z) , λ` = a

√
Λ2
` +

(
Pe

2a

)2

,397

where the constants Λ`, ` ≥ 1, are the positive roots of Λ cos(Λ)+ Pe
2a sin(Λ) = 0, arranged in ascending order.398

Rearranging, we have 2a
PeΛ = − tan(Λ). Since − tan(Λ) → ∞ as Λ →

[
(2`−1)π

2

]+
and − tan(`π) = 0, each399

root Λ` must satisfy (2`−1)π
2 < Λ` < `π. While there exist negative roots, these take the form Λ−` = −Λ`,400

hence Z−`(z) = Z`(z), and by this symmetry it is sufficient to consider only ` ≥ 1. While there is a root401

Λ0 = 0, this results in only the trivial solution Z0(z) ≡ 0.402
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(a) (b) (c)
Fig. 4: Plots of the solution (23) for fixed aspect ratio a = 0.2 and Nusselt number Nu = 5, given the Péclet
numbers (a) Pe = 2, (b) Pe = 5.3, (c) Pe = 5.5. We plot the level curves corresponding to Tmelt = 0.05 and
Tbake = 1, with white regions corresponding to the solid region T < Tmelt, light red regions corresponding
to the melted region Tmelt < T < Tbake, and dark red regions corresponding to the baked region Tbake < T .

We find from (21b) that R(r) = I0(λ`r), where I0 denotes the relevant modified Bessel function of the403

first kind, is the solution which satisfies the ODE in the radial coordinate which is bounded for r = 0.404

To complete the solution procedure, we write the Fourier series and place it into the remaining convective405

boundary condition. Evaluating this at r = 1, we determine the remaining unknown coefficients by taking406

the Fourier expansion of Text(z) in the basis functions Z`(z) and matching the coefficients. Returning to T407

from θ, we obtain the exact solution in terms of the generalized Fourier series408

(23a) T (r, z) =

∞∑
`=1

A`I0(λ`r)

{
cos (Λ`z) +

Pe

2aΛ`
sin (Λ`z)

}
exp

(
−Pe

2a
z

)
,409

where410

(23b) A` =

∫ 1

0
exp

(
Pe
2a ξ
)
Text(ξ)

{
cos (Λ`ξ) + Pe

2aΛ`
sin (Λ`ξ)

}
dξ(

I0(λ`) + λ`

NuI1(λ`)
) ∫ 1

0

[
cos (Λ`ξ) + Pe

2aΛ`
sin (Λ`ξ)

]2
dξ
.411

In order to better understand the role of the Péclet number and aspect ratio in positioning the baking412

isotherm, we plot the series solution (23) in Figures 4-5. To do so, in Figure 4 we truncate the series at 300413

terms, having verified that there is negligible difference between the 300 term and 1000 term truncation for414

these cases. More accuracy is needed to obtain the results in Figure 5 due to the inclusion of small aspect415

ratios which result in rapidly varying exponentials, and we use a 1000 term truncation of the series for the416

smallest values of a in this case.417

For the parameters given in Figure 4, the baking isotherm fails to close for Pe & 5.3 (see Figure 4(c)),418

and this results in the melted paste region flowing through the center of the bottom boundary (see Figure419

4(c)). This means that excessively rapid lowering of the electrode results in the core region warming too420

slowly, with electrode paste flowing into the furnace below. Lowering the electrode more slowly allows for421

the paste to bake before reaching the furnace at the bottom of the domain.422

The smaller the aspect ratio, the more uniform the baking, with wide cylinders more likely to develop a423

hole in the baking isotherm which permits electrode paste to flow into the furnace. In Figure 5, we plot the424

baking isotherm for multiple values of the aspect ratio, given a fixed value of the Péclet number. We then425

calculate the critical Péclet number, Pe∗, for a given aspect ratio, such that the baking isotherm lies above426

z = 0 for all Pe < Pe∗. To do this, we calculate T (0, 0) for specific a and Pe until T (0, 0) < 0, noting the427

value of Pe for which T (0, 0) ≈ 1. We also verify that the boundary remains above the line z = 0 (to make428

sure that the minimal value is indeed at r = 0). We find that the baking isotherm does not close for any429

a > 0.74, even as we take Pe→ 0+.430
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(a) (b)

Fig. 5: (a) Plots of the baking boundaries corresponding to the T = 1 isotherm from the solution (23) for
fixed Pe = 4 for various values of the aspect ratio, a = 0.15, 0.2, 0.25, 0.3, with each respective isotherm
decreasing in height. Note that the isotherm corresponding to a = 0.3 fails to close. (b) Critical values Pe∗

such that the baking isotherm is closed for all Pe < Pe∗, for a given a. Above this value, the baking isotherm
does not close, resulting in electrode paste flowing into the furnace. Note that the critical value for a = 0.3
is Pe∗ = 3.25, hence why the baking isotherm corresponding to a = 0.3 is not closed for Pe = 4 in panel (a).
We fix Nu = 5 in both panels.

3.1.2. Simplified problem near the current clamps. To gain a better intuition for the current431

problem resulting in Joule heating, we consider a caricature of the region surrounded by the current clamps.432

To this end, consider a cylindrical domain r ∈ [0, 1], z ∈ [H1, H2], with current clamps along the radius433

and current flowing from the radial boundary downward toward a grounded bottom of the cylinder. In our434

caricature, we assume T = Tmin < 1 at z = H2 and ∂T
∂z = 0 at z = H1. We approximate Text(z) = 0435

(which is a good approximation of the value −1.754 × 10−2 given by (13) within this region). Near T ≈ 1,436

we approximate σ(T ) ≈ σ(1). We define the parameter Π = Po σ(1), treating Π as an O(1) parameter.437

We further approximate k(T ) = 1, while we take h(z) = 5 in order to agree with (14) within the region438

H1 < z < H2. Rescaling z = H1 + (H2 −H1)ζ, we note that a/(H2 −H1) = 1. This scales all parameters439

out of the current problem, which reads440

1

r

∂

∂r

(
r
∂φ

∂r

)
+
∂2φ

∂ζ2
= 0 ,(24a)441

∂φ

∂ζ
= 0 at ζ = 1 , φ = 0 at ζ = 0 ,

∂φ

∂r
= 1 at r = 1 , φ bounded at r = 0 .(24b)442

443

Separating variables and constructing a solution in the standard manner, we find444

(25) φ(r, ζ) =
8

π2

∞∑
`=0

1

(2`+ 1)2

I0

(
(2`+1)

2 πr
)

I1

(
(2`+1)

2 π
) sin

(
(2`+ 1)

2
πζ

)
.445

In order to gain a qualitative understanding of the Joule heating term, we calculate |∇φ|2 using a truncated446

200-term series expansion from (25), plotting the result in Figure 6. The strongest Joule heating is located447

very close to the boundary, and is centred near ζ = 0 and r = 0 in the scaled coordinates. While (25)448

results from a number of simplifications, the qualitative finding that Joule heating is highly localized near449

the current clamps, which is in qualitative agreement with the simulation shown in Figure. 3 for the full450

problem.451
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Fig. 6: Plot of the Joule heating term |∇φ|2 calculated using a 200-term series expansion (25). Contours
are taken at 1, 3, 5, 7, respectively, with darker shading denoting stronger Joule heating. Note that the
strongest Joule heating is adjacent to the boundary, beneath the current clamps, although Joule heating
extends across the radius of the domain. Recall that ζ ∈ [0, 1] corresponds to the region between the current
clamps, rather than the entire electrode.

One may use (25) to compute |∇φ|2 in the relevant problem for temperature, which is452

−Pe
∂T

∂ζ
=

1

r

∂

∂r

(
r
∂T

∂r

)
+
∂2T

∂ζ2
+ Π

((
∂φ

∂r

)2

+

(
∂φ

∂ζ

)2
)
,(26a)453

T = Tmin at ζ = 1 ,
∂T

∂ζ
= 0 at ζ = 0 , T bounded at r = 0 ,

∂T

∂r
= −5 Nu T at r = 1 .(26b)454

455

Writing Thom(r, ζ) = R(r)Z(ζ), the relevant spectral problem is given by456

(27)
1

r

d

dr

(
r
dR
dr

)
= γR , R bounded at r = 0 ,

∂R
∂r

= −5 Nu R at r = 1 .457

The solution of problem (27) results in a Dini series, which is a type of Fourier-Bessel series associated with458

Robin boundary conditions. For further details, see Chapter 18 of the classical reference [48]. Note that there459

is no non-trivial solution for γ ≥ 0, so we consider γ = −Γ2, finding that R`(r) = J0(Γ`r), ` = 1, 2, . . . , where460

0 < Γ1 < Γ2 < · · · → ∞ are solutions of the transcendental equation ΓJ1(Γ)−5 Nu J0(Γ) = 0. By symmetry461

we need only consider non-negative values of Γ, and we note that Γ = 0 is never a solution. For the reference462

value of Nu = 5, the first several eigenvalues are Γ1 = 2.310798161, Γ2 = 5.306797248, Γ3 = 8.326170092,463

Γ4 = 11.35750185, Γ5 = 14.39961798. The corresponding solution to the problem Z ′′` + Pe Z ′` = Γ2
`Z`,464

Z ′`(0) = 0 reads465

(28) Z`(ζ) =

cosh

(√
Pe2 + 4Γ2

`

ζ

2

)
+

Pe√
Pe2 + 4Γ2

`

sinh

(√
Pe2 + 4Γ2

`

ζ

2

) exp

(
−Pe

2
ζ

)
.466

We can now write Thom(r, ζ) =
∑∞
`=1 B`J0(Γ`r)Z`(ζ), where the B` are coefficients to be determined467

through the final condition T = Tmin at ζ = 1. In order to find the B`’s, we observe that at ζ = 1 the series468

is a function of r alone, which must be constant. Matching coefficients of
∑∞
`=1 B`J0(Γ`r)Z`(1) with the469

Dini series for the constant Tmin in term of the basis J0(Γ`r), we finally obtain470

(29) Thom(r, ζ) = Tmin

∞∑
`=1

2J1(Γ`)J0(Γ`r)

Γ` (J0(Γ`)2 + J1(Γ`)2)

Z`(ζ)

Z`(1)
.471
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The problem for TJoule will involve a radial basis consisting of {J0(Γ`r)}∞`=1, and hence the spectrum472

will remain the same. The forcing function |∇φ|2 may be calculated from (25), and changing the basis of473

this function, we write474

(30) |∇φ|2 =

∞∑
`=1

J0(Γ`r)Φ`(ζ), Φ`(ζ) =
2
∫ 1

0
rJ0(Γ`r)|∇φ|2dr

Γ` (J0(Γ`)2 + J1(Γ`)2)
.475

Separating variables like TJoule(r, ζ) = R`(r)Y`(ζ) with R`(r) = J0(Γ`r) for ` = 1, 2, . . . , we obtain the476

boundary value problems477

(31)
d2Y`
dζ2

+ Pe
dY`
dζ
− Γ2

`Y` + ΠΦ`(ζ) = 0 , Y` = 0 at ζ = 1 ,
dY`
dζ

= 0 at ζ = 0 , ` = 1, 2, . . . .478

Employing variation of parameters, we find that solutions to (31) take the form479

(32) Y`(ζ) =
Π

Z`(1)

{
Z`(ζ)

∫ 1

0

K`(1, τ)Φ`(τ)dτ −Z`(1)

∫ ζ

0

K`(ζ, τ)Φ`(τ)dτ

}
, ` = 1, 2 . . . ,480

where the kernels are defined by481

(33) K`(ζ, τ) =
2√

Pe2 + 4Γ2
`

sinh

(
1

2

√
Pe2 + 4Γ2

`(ζ − τ)

)
exp

(
−Pe

2
(ζ − τ)

)
, ` = 1, 2, . . . ,482

Summing Thom and TJoule, we obtain the exact solution483

(34)

T (r, ζ) = Tmin

∞∑
`=1

2J1(Γ`)J0(Γ`r)

Γ` (J0(Γ`)2 + J1(Γ`)2)

Z`(ζ)

Z`(1)

+ Π

∞∑
`=1

J0(Γ`r)

Z`(1)

(
Z`(ζ)

∫ 1

0

K`(1, τ)Φ`(τ)dτ −Z`(1)

∫ ζ

0

K`(ζ, τ)Φ`(τ)dτ

)
.

484

The function multiplying the Joule heating parameter Π is non-negative, and takes the greatest value below485

the baking isotherm and near the boundary of the domain. So, the baking isotherm will tend to increase in486

height with Joule heating, with this increase correlated to a strengthening of the Joule heating parameter487

Π. Later simulations will better demonstrate the quantitative strength of this effect.488

3.2. Effective steady thermal problem. We turn our attention to the case where the electrode slip489

is periodic in time. For slips of excessive duration or velocity, the baking isotherm can fall below z = 0,490

which is undesirable. Therefore, in practice a succession of slips of short duration are employed to lower491

the electrode. In such a case, the system starts at a steady state corresponding to no slip (f = 0), there is492

a brief slip or combination of slips which lower the baking isotherm, and then the system evolves back to493

the steady state corresponding to no slip (f = 0), with this process repeating in a periodic manner. In this494

configuration, we assume that f(t) is periodic with period τ , and that
∫ τ

0
|f(t)|dt � 1. We assume that a495

solution to (15a) takes the form496

(35) T (r, z, t) = Tmean(r, z) + Tvar(r, z, t) ,497

where Tmean(r, z) is a mean value of the temperature field over time, while Tvar(r, z, t) accounts for the498

variations around this mean, so that 1
τ

∫ t+τ
t

Tdt = Tmean and
∫ t+τ
t

Tvardt = 0. If such a mean value does not499

exist, then the baking isotherm will transiently drift down or up over each period τ , which is undesirable.500

We shall assume Tvar(r, z, t) and its derivatives are small relative to Tmean(r, z). Using (35) in (15a), we have501

(36) Pe
∂Tvar

∂t
− aPef(t)

∂

∂z
(Tmean + Tvar) = ∇ · (k(Tmean)∇Tmean) + Po σ(Tmean) |∇φ|2 +O (Tvar) ,502

where the O (Tvar(r, z, t)) terms on the right hand side depend on Tvar and its space derivatives multiplied503

by terms involving the time-independent Tmean and its space derivatives. Integrating (36) over a period, and504
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assuming that the terms involving Tvar are small enough to be negligible relative to corresponding terms505

involving the mean Tmean, at leading order we obtain an effective equation506

(37) − a Peeff
∂Tmean

∂z
= ∇ · (k(Tmean)∇Tmean) + Po σ(Tmean) |∇φ|2 ,507

where508

(38) Peeff =
Pe

τ

∫ τ

0

f(t)dt509

is the effective Péclet number. Note that a solution Tmean of (37) is equivalent to a solution T of (18) in510

the case where Pe in (18) is replaced by Peeff. When carrying out simulations, we compare the obtained511

solutions to a corresponding steady state of the stationary effective problem (37)-(38).512

3.3. Simulation of time-dependent slips and comparison with effective model. Here we pro-513

vide numerical simulations of the system (15), (16), (17). We choose reference parameters with guidance514

from our industrial partner, fixing Nu = 5, a = 0.14, Po = 9.39 (corresponding to an applied current of515

130kA), corresponding to real values used for time-dependent electrode slip. The slip often occurs at a516

velocity v̂s = 3× 10−3ms−1, so that Pe = 9.72× 102. While Pe is very large, the slip takes place over a very517

short time interval. We define ∆t to be the duration of a slip, and τ to be the period between when two518

slips are initialized. The duration of a standard slip is 5 seconds, and in dimensionless time this becomes519

∆t = 3
1400 = 2.143× 10−3. Then, we define f(t) to be520

(39) f(t) =

{
1 for t ∈ [0,∆t) ,

0 for t ∈ [∆t, τ) .
521

The interval between slips is on the order of an hour, which is 1.543 in dimensionless time, so the period τ522

is order one. We continue f(t) over the positive real numbers t > 0 by f(t + τ) = f(t); that is to say, f(t)523

is periodic with period τ . One may then modify τ so that there is a slip every hour, every half hour, and so524

on.525

Simulations are carried out for 5τ units of time (that is, for five slips) from an initial condition computed526

with the stationary solver under a constant flow with Pe = Peeff. Given the form of (39), we anticipated527

(and confirmed) that solutions were essentially periodic with maximal isotherms at t = 0, τ, 2τ, . . . , 5τ , and528

minima offset from this by ∆t, i.e., at the end of a slip.529

In consultation with Elkem, we consider two cases of periodic standard slips of 5s duration, as follows.530

Case 1: a slip occurs every 45 minutes (τ = 1.157). Case 2: a slip occurs every 25 minutes (τ = 0.6429).531

We compare the baking and melting isotherms for the averaged cases with those of the corresponding532

stationary problem. For our choice of slip velocity, and using (39) in (38), we find the effective Péclet533

number Peeff = 9.72× 102 ∆t
τ . For each of the cases involving a standard slip, we have Peeff = 1.80 (Case 1),534

Peeff = 3.24 (Case 2). We show the result of these simulations in Figure 7 by plotting the baking isotherms535

only (the melting isotherm behaves similarly).536

We remark that over the period of a single slip, there is very little change in the baking isotherm from537

its maximal to minimal values. Examining a portion of these isotherms closely, we see that they fall a538

distance of O(10−4)−O(10−3) during a slip, and return exactly (within reasonable numerical tolerance) to539

the effective stationary isotherm. This suggests that the problem is indeed effectively periodic, and that the540

effective stationary problem described in Section 3.2 is appropriate for the ranges of parameters relevant to541

industrial furnace operation.542

In addition to making the standard slip more frequent, Elkem is interested in taking longer duration slips543

over a fixed time. Motivated by this, in Figure 8 we consider one slip per hour, but increase the duration of544

the slip from 5 seconds to 2 minutes. The industrially-relevant slip time of 5 seconds is comparable to the545

examples shown in Figure 7, where the effective stationary solution is effectively a maximal isotherm that is546

periodically returned to. The solution corresponding to a 2 minute slip is shown after a period of five slips547

just before a sixth, with the baking isotherm failing to close at the center of the electrode, leading to a soft548

breakage. We remark that the effective stationary model is a good indicator of the feasibility of an electrode549

set-up, as the difference between the stationary isotherms for different parameters (as shown in Section 3.4)550

is orders of magnitude larger than transient differences observed over the duration of a single slip.551
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(a) (b)

Fig. 7: Maximal (blue) and minimal (red) baking isotherms for simulations with time dependent slip of
the electrode according to (39) with slip duration of 5 seconds (∆t = 2.143 × 10−3) every (a) 45 minutes
(τ = 1.157) and (b) 25 minutes (τ = 0.6429). We take a slip rate of v̂s = 3×10−3ms−1 so that Pe = 9.72×102

over the short duration of the slip. The other parameters are fixed at Nu = 5, a = 0.14, Po = 9.39 (130kA).
We also plot the effective isotherms (black) for steady states correspond to solutions of the effective problem
(37)-(38), noting that this is essentially identical to the maximal isotherm in all cases. The insets show a
zoomed in view near r = 0 that that the difference between maximal and minimal extent of the baking
isotherm can be seen.

(a) (b)

Fig. 8: Maximal (blue) and minimal (red) baking isotherms for simulations with time dependent slip of the
electrode according to (39) with one slip every hour (τ = 1.543) yet of varying durations of (a) 5 seconds
(∆t = 2.143× 10−3), and (b) 2 minutes (∆t = 5.143× 10−2). We take a slip rate of v̂s = 3× 10−3ms−1 so
that Pe = 9.72×102 over the short duration of the slip. The other parameters are fixed at Nu = 5, a = 0.14,
Po = 9.39 (130kA). We also plot the effective isotherms (black) for steady states correspond to solutions of
the effective problem (37)-(38).

3.4. Parameter sweeps for uniform slips. Having shown that time periodic slips result in solutions552

akin to those found for an effective uniform slip, we now carry out parameter sweeps using a uniform slip553

rate in order to better understand the influence of the dimensionless groups on the position of the melting554

and baking isotherms. We set f(t) = 1 in (15a). Although the fluid mechanics problem is quite simple, recall555

that the parameter v̂s still enters into Pe, and thus heat is still advected downward with the uniform flow,556

despite the simplifications.557

In Figures 9-11, we plot the melting and baking isotherms for various values of the Péclet number Pe558

(measuring the lowering rate of the electrode), the aspect ratio a (measuring the width of the electrode),559

and the Pomerantsev number Po (measuring the strength of the Joule heating). We find that the general560

qualitative trends seen in the analytical solutions of Section 3.1 for more idealized simpler cases still hold.561
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(a) Pe = 0 (b) Pe = 20 (c) Pe = 35

Fig. 9: Melting (blue) and baking (black) isotherms under a parameter sweep over the Péclet number Pe as
indicated. We fix a = 0.14 and Po = 9.38.

(a) a = 0.1 (b) a = 0.2 (c) a = 0.3

Fig. 10: Melting (blue) and baking (black) isotherms under a parameter sweep over the aspect ratio a as
indicated. We fix Pe = 15 and Po = 9.38.

(a) Po = 0 (b) Po = 3.58 (c) Po = 14.22

Fig. 11: Melting (blue) and baking (black) isotherms under a parameter sweep over the Pomerantsev number
Po as indicated. We fix Pe = 15 and a = 0.14.
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As the Péclet number increases in Figure 9 (due to more rapid lowering of the electrode), the position of562

the baking isotherm falls lower until the point at which it does not close. Meanwhile, as the aspect ratio563

is increased in Figure 10 (so that the electrode becomes wider), the position of the baking isotherm lowers,564

since it is harder to warm progressively wider cylinders in a fixed time. Within the industrially-relevant565

values of the Pomerantsev number Po, there is only a small variation in either isotherm, as seen in Figure 11.566

However for no Joule heating (Po = 0), we note a substantial impact on the qualitative behaviour, with the567

baking isotherm failing to close for smaller values of Pe, and not forming at all for larger Pe. Additionally,568

in the Po = 0 case, we observe the addition of a second melting isotherm near the current clamps, which569

forms due to the cold boundary condition near the current clamps when the current clamps are not in use.570

In practice, the melting region is more diffuse, and this colder region near the clamps may still behave as a571

fluid rather than a solid, and hence this small region does not tend to inhibit the overall flow of the electrode572

material.573

4. Discussion and extensions. We have formulated a fairly general model for the lowering of a574

Søderberg electrode into a furnace, and then studied in some detail two reductions of this model: a case where575

the electrode is lowered continuously yet slowly, and a second case were the electrode is lowered periodically,576

with the motion being more rapid during the lowering. For reasonable parameter values corresponding to577

realistic furnace operation, we find that the effective theory derived from the periodically lowered case gives578

results which are in good agreement with the continuously lowered electrode model. Hence, the process of579

lowering a Søderberg electrode is adequately modelled as a steady-state process, provided that the baking580

isotherm closes.581

We can draw several conclusions regarding optimal furnace operation from our analytical solutions and582

numerical simulations. There is an obvious desire to utilize the maximal amount of material in a given583

time. However, if the electrode is lowered too fast then liquid paste may seep into the furnace, leading to584

soft breakage which results in costly damage. To mitigate this, the operator should choose to lower the585

electrode at a rate which permits the baking isotherm to close properly, and hence the electrode to fully586

bake, before the paste reaches the bottom of the domain, which corresponds to the point where electrode587

material enters the furnace. Our analytical and numerical results suggest that there is a range of permissible588

Péclet numbers, Pe ∈ [0,Pe∗), with Pe∗ the critical value at which the baking isotherm barely closes right589

at the bottom (z = 0) of the domain. The position of the baking isotherm appears to be monotone in the590

Péclet number (fixing all other parameters, of course), and hence so long as the value is below the critical591

value, the furnace will continue to operate normally. If the Péclet number exceeds this value, then costly592

damage may result. The electrode may therefore be lowered up to some critical effective velocity, before593

the process fails. Our findings highlight the key role that the Péclet number plays in realistic thermistor594

problems, and complements the expansive literature on static thermistor problems for which Pe = 0.595

Similarly, the aspect ratio of the cylindrical electrode will influence where the baking isotherm lies. If the596

aspect ratio is small enough, boundary heating due to both the applied current and regions of warm external597

temperature, will result in heat flow through to the center of the cylinder, allowing the baking isotherm to598

close. On the other hand, if the cylinder is too wide, then these transport mechanisms may not adequately599

heat the electrode paste. This is an important consideration if the development of wider configurations is600

considered. Combining the parameter dependences, our results suggest that wider electrodes will be viable601

only if they are lowered more slowly into the furnace. Due to this reduction in rate of lowering, it is not602

clear if a wider electrode would provide more or less material per unit time to the furnace below, and this603

likely merits further study.604

The Pomerantsev number, Po, is a measure of the effectiveness of the Joule heating due to current applied605

to the boundary in a ring around the current clamps. As this dimensionless group increases, the position606

of the baking isotherm likewise increases (in height) in a monotone manner. In real applications, there is a607

practical limit to the current which may be applied at the clamps, due to both the cost of electricity and608

potential damage to the current clamps resulting from excessive current without sufficient heating. Therefore,609

although the Joule heating aids in the baking of the boundary, failure of a baking isotherm to close due to610

an excessively high effective slip velocity cannot always be mitigated by increasing the applied current.611

There are a number of ways in which our results might be extended in future work. In addition to612

preventing soft breakages, there is also the possibility of hard breakages (see Figure 2), with melted paste613

flowing up past the solid electrode, and segregating. One way to reduce such a problem is by focusing on614
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the extreme viscosity variation between the solid electrode and the melted paste, which results in a hybrid615

extensional and lubrication flow model coupled to a temperature model through a highly temperature depen-616

dent viscosity function. Furthermore, in flows with reacting chemicals, the local chemical concentration is617

known to modify the viscosity of the overall flow [33, 46], and viscosity is often modelled through exponential618

dependences on the particular quantities of chemicals present [17, 16]. In some sense this is a more precise619

way to account for phase changes that are modelled in bulk via our non-monotone viscosity - temperature620

relation, and incorporating chemical reactions taking place during baking may lead to a more quantitatively621

accurate model.622

While the assumption of an incompressible flow implied a spatially uniform velocity field for our geometry,623

in real electrodes they may be some degree of non-uniformity due to such density variations. That said,624

consideration of fully compressible Navier-Stokes equations may be excessive. As a compromise, one may625

consider the Boussinesq approximation, assuming density variations are small and linear. While density626

varies with temperature, it does so fairly gradually, with the thermal expansion α = O(10−5), with the627

result being only a roughly 10% change in density over the entire temperature range considered. Generally,628

the Boussinesq approximation is valid when α is small and the temperature variations are sufficiently small.629

For our case, not only is α small, but the observed density variations with pressure are linear or sub-linear630

(depending upon the thermal regime). The resulting buoyancy term will be most useful in the less viscous631

region between the melting and baking boundaries.632

There are a variety of other processes of industrial importance which are similar to that we have consid-633

ered here. These include flows in a slag-cleaning furnace [49], the smelting of nickel matte in a furnace [40],634

the electroslag remelting process [32], the production of ferronickel in electric arc furnaces [24], and electric635

smelting furnaces used in the platinum recovery process [6]. Given appropriate changes in the constitutive636

relations and parameters, the model we developed in equations (15)-(17) could be applied to such problems.637

We have studied part of the process of lowering a Søderberg electrode into a furnace. In the future, our638

model could be coupled to existing models approximating the dynamics within a furnace [44, 43], in order639

to more accurately model the energy transfer from the outside current clamps into the furnace via one or640

more Søderberg electrodes.641
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analysis to characterise söderberg electrode paste raw materials, Minerals Engineering, 46 (2013), pp. 167–176.656
[6] J. J. Bezuidenhout, Computational fluid dynamic modelling of an electric smelting furnace in the platinum recovery657

process, PhD thesis, Stellenbosch: Stellenbosch University, 2008.658
[7] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox, Parallel scalable adjoint-based adaptive solution659

of variable-viscosity stokes flow problems, Computer Methods in Applied Mechanics and Engineering, 198 (2009),660
pp. 1691–1700.661

[8] X. Chen and A. Friedman, The thermistor problem for conductivity which vanishes at large temperature, Quarterly of662
applied mathematics, 51 (1993), pp. 101–115.663

[9] G. Cimatti, A bound for the temperature in the thermistor problem, IMA Journal of Applied Mathematics, 40 (1988),664
pp. 15–22.665

[10] G. Cimatti, Remark on existence and uniqueness for the thermistor problem under mixed boundary conditions, Quarterly666
of Applied Mathematics, 47 (1989), pp. 117–121.667

[11] A. Fitt and J. Aitchison, Determining the effective viscosity of a carbon paste used for continuous electrode smelting,668
Fluid dynamics research, 11 (1993), p. 37.669

[12] A. Fitt and P. Howell, The manufacture of continuous smelting electrodes from carbon-paste briquettes, Journal of670

20

This manuscript is for review purposes only.



Engineering Mathematics, 33 (1998), pp. 353–376.671
[13] A. Fowler, I. Frigaard, and S. Howison, Temperature surges in current-limiting circuit devices, SIAM Journal on672

Applied Mathematics, 52 (1992), pp. 998–1011.673
[14] M. Gockenbach and K. Schmidtke, Newton’s law of heating and the heat equation, Involve, a Journal of Mathematics,674

2 (2009), pp. 419–437.675
[15] T. Hannesson, The Si process Drawings, 2016.676
[16] S. Hejazi and J. Azaiez, Stability of reactive interfaces in saturated porous media under gravity in the presence of677

transverse flows, Journal of Fluid Mechanics, 695 (2012), pp. 439–466.678
[17] S. Hejazi, P. Trevelyan, J. Azaiez, and A. De Wit, Viscous fingering of a miscible reactive a + b → c interface: a679

linear stability analysis, Journal of Fluid Mechanics, 652 (2010), pp. 501–528.680
[18] S. Howison, A note on the thermistor problem in two space dimensions, Quarterly of Applied Mathematics, 47 (1989),681

pp. 509–512.682
[19] S. Howison, J. Rodrigues, and M. Shillor, Stationary solutions to the thermistor problem, Journal of Mathematical683

Analysis and Applications, 174 (1993), pp. 573–588.684
[20] R. Innvaer, The Søderberg electrode system. Recent research and development. New challenges., in International Ferro-685

Alloys Congress, New Orleans, 1989, pp. 216–226.686
[21] R. Innvær, K. Fidje, and T. Sira, 3-dimensional calculations on smelting electrodes, Modeling, Identification and687

Control, 8 (1987), pp. 103–115.688
[22] R. Innvaer, K. Fidje, and R. Ugland, Effect of current variations on material properties and thermal stresses in689
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[45] C. W. Söderberg, Electrode for electric furnaces and process for manufacturing the same, 1923, https://patentimages.733

storage.googleapis.com/87/af/9c/f05dace9cc857a/US1440724.pdf.734
[46] C. Tan and G. Homsy, Stability of miscible displacements in porous media: Rectilinear flow, The Physics of Fluids, 29735

(1986), pp. 3549–3556.736
[47] K. Torklep, Viscometry in paste production, tech. report, 1988.737
[48] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1995.738

21

This manuscript is for review purposes only.

https://patentimages.storage.googleapis.com/87/af/9c/f05dace9cc857a/US1440724.pdf
https://patentimages.storage.googleapis.com/87/af/9c/f05dace9cc857a/US1440724.pdf
https://patentimages.storage.googleapis.com/87/af/9c/f05dace9cc857a/US1440724.pdf


[49] J. Xia and T. Ahokainen, Numerical modelling of slag flows in an electric furnace, Scandinavian Journal of Metallurgy,739
33 (2004), pp. 220–228.740

22

This manuscript is for review purposes only.


	Introduction
	Mathematical model
	Boundary conditions in cylindrical coordinates
	Scalings and dimensionless groups
	Reduction of the flow problem
	Constitutive relations and boundary conditions
	Moving thermistor model in cylindrical coordinates

	Qualitative and quantitative analysis of the model
	Exact solutions for two simplifications of the steady problem
	Heat transfer in a lowered electrode in the absence of Joule heating
	Simplified problem near the current clamps

	Effective steady thermal problem
	Simulation of time-dependent slips and comparison with effective model
	Parameter sweeps for uniform slips

	Discussion and extensions
	References

