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UPPER ENVELOPES OF FAMILIES OF FELLER SEMIGROUPS

AND VISCOSITY SOLUTIONS TO A CLASS OF NONLINEAR

CAUCHY PROBLEMS

MAX NENDEL1and MICHAEL RÖCKNER2

Abstract. In this paper, we consider the (upper) semigroup envelope, i.e. the
least upper bound, of a given family of linear Feller semigroups. We explicitly
construct the semigroup envelope and show that, under suitable assumptions,
it yields viscosity solutions to abstract Hamilton-Jacobi-Bellman-type partial
differential equations related to stochastic optimal control problems arising in
the field of Robust Finance. We further derive conditions for the existence
of a Markov process under a nonlinear expectation related to the semigroup
envelope for the case where the state space is locally compact. The procedure
is then applied to numerous examples, in particular, nonlinear PDEs that arise
from control problems for infinite dimensional Ornstein-Uhlenbeck and Lévy
processes.
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1. Introduction

Assume that we are given a “nice” Feller process and that there are some fea-
tures, for example some parameters (drift, volatility, etc.), of the process that
cannot be determined precisely. In this case, one typically speaks of model un-
certainty or ambiguity. This topic has been studied extensively in the context of
Economics and Mathematical Finance in the last decades. Prominent examples
include a Brownian motion (Bachelier model) with drift uncertainty (cf. Coquet
et al. [7]) or volatility uncertainty (cf. Peng [30],[31]), a Black-Scholes model with
volatility uncertainty (cf. Epstein and Ji [13], Vorbrink [36]), and Lévy processes
with uncertainty in the Lévy triplet (cf. Hu and Peng [18], Neufeld and Nutz
[25], Hollender [17], Kühn [22], Denk et al. [10]). Under this type of uncertainty,
worst case considerations together with dynamic consistency requirements lead
to a stochastic optimal control problem, where, intuitively speaking, “nature”
tries to control the system into the worst possible scenario, and to the consider-
ation of so-called nonlinear expectations. In the case of a Brownian Motion with
uncertain volatility within an interval [σℓ, σh] with 0 < σℓ < σh, this leads, for
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instance, to the control problem

V (t, x; u0) := sup
σ∈Σ

E

[

u0

(

x+

∫ t

0

σs dBs

)]

, (1.1)

where B is a standard Brownian Motion on a suitable filtered probability space
and Σ consists of all progressively measurable stochastic processes σ = (σt)t≥0

with values in [σℓ, σh]. Solving the optimal control problem (1.1) then results in
the HJB equation

∂tu(t, x) = sup
σ∈[σℓ,σh]

σ2

2
∂xxu(t, x) for t ≥ 0 and x ∈ R, u(0) = u0,

which is typically referred to as G-heat equation. We refer to Denis et al. [8]
for a detailed illustration of this relation. Moreover, one can show that the value
function (1.1) admits a representation of the form

V (t, x; u0) = E
(

u0(x+Xt)
)

,

where E is a sublinear expectation, more precisely a G-expectation, and X is a
so-called G-Brownian Motion (cf. Denis et al. [8] and Peng [30],[31]).

Motivated by this example, we choose a semigroup-theoretic approach, formally
separating the space and time variable, in order to prove the existence of viscosity
solutions to abstract Hamilton-Jacobi-Bellman-type equations of the form

∂tu(t) = sup
λ∈Λ

Aλu(t) for t ≥ 0, u(0) = u0, (1.2)

where (Aλ)λ∈Λ is a family of generators of Feller processes indexed by a nonempty
index set Λ. We refer to Engel and Nagel [12] or Pazy [29] for more details on
semigroup theory related to linear PDEs and the idea of formally separating space
and time. Our approach is based on an explicit construction and approximation
of the solution due to Nisio [26], which adds a primal description to the dual rep-
resentation in terms of a stochastic optimal control problem. In a second step, we
discuss how a stochastic process under a sublinear expectation can be obtained
from the nonlinear semigroup which describes the transition of the process, using
a nonlinear version of Kolmogorov’s extension theorem by Denk et al. [9]. Finally,
we link semigroup envelopes to the value functions of abstract versions of Meyer-
type control problems. We thus provide a nonlinear analogue to the classical
relation between Feller processes, partial differential equations and semigroups.
It is worth noting that stochastic optimal control problems and nonlinear PDEs
of the form (1.2) are intimately related to BSDEs (cf. Pardoux and Peng [27],[28],
El Karoui et al. [11], Coquet et al. [7]), 2BSDEs (cf. Cheridito et al. [6], Soner
et al. [32],[33]) and BSDEs with jumps (cf. Kazi-Tani et al. [20],[21]) resulting
in a stochastic representation of solutions to nonlinear Cauchy problems of the
form (1.2). The present paper can be seen as an analytic counter part to these
approaches, which are based on mainly stochastic methods, and the techniques
we use might pave the way for further applications in control theory.
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For two (possibly nonlinear) semigroups S = (S(t))t≥0 and T = (T (t))t≥0 on
a Banach lattice X , we write S ≤ T if S(t)x ≤ T (t)x for all t ≥ 0 and x ∈ X .
For a nonempty index set Λ and a family (Sλ)λ∈Λ of semigroups on X we call
a semigroup T an upper bound of (Sλ)λ∈Λ if T ≥ Sλ for all λ ∈ Λ. We call S

the least upper bound of (Sλ)λ∈Λ if S is an upper bound of (Sλ)λ∈Λ and S ≤ T

for any other upper bound T of (Sλ)λ∈Λ. Then, the question arises under which
conditions the family (Sλ)λ∈Λ has a least upper bound. To the best of our knowl-
edge this question has first been addressed by Nisio [26], in the case every Sλ is a
strongly continuous semigroup on the space of all bounded measurable functions,
which is why we call the least upper bound S of (Sλ)λ∈Λ the Nisio semigroup
or the (upper) semigroup envelope of (Sλ)λ∈Λ. Due to a Theorem of Lotz [24] it
is known that strongly continuous linear semigroups on the space of all bounded
measurable functions always have a bounded generator, which is why the result
of Nisio is not applicable for most semigroups related to partial differential equa-
tions. However, using a similar approach to the one by Nisio on the space of
bounded and uniformly continuous functions, Denk et al. [10] proved the exis-
tence of a least upper bound for transition semigroups of Lévy processes. In the
present paper, we use the idea of Nisio in a more general framework than Denk
et al. [10] in order to go beyond Lévy processes. Main examples will be transition
semigroups of Ornstein-Uhlenbeck processes and Lévy processes on real separa-
ble Hilbert spaces, Geometric Brownian Motions, and Koopman semigroups with
semiflows in real separable Banach spaces.

A fundamental result from semigroup theory is the fact that for a strongly
continuous semigroup S = (S(t))t≥0 of linear operators with generator A the
function u(t) := S(t)u0, for sufficiently regular initial data u0, is a solution to the
abstract Cauchy problem

∂tu(t) = Au(t) for t ≥ 0, u(0) = u0. (1.3)

We refer to Engel and Nagel [12] or Pazy [29] for more details on this relation.
Similar as in the work by Denk et al. [10], we show that the semigroup envelope
yields a viscosity solution to the nonlinear Cauchy problem (1.2) if Aλ is the
generator of Sλ for all λ ∈ Λ. On one side, this is interesting from a structural
point of view, since it establishes a relation between the least upper bound of
a family of semigroups and the least upper bound of their generators. On the
other side, this shows that semigroup envelopes are closely related to solutions to
possibly infinite-dimensional stochastic optimal control problems as well as local
and non-local Hamilton-Jacobi-Bellman equations in Hilbert spaces, cf. Barbu
and Da Prato [1],[2],[3],[4], Fabbri et al. [14], Federico and Gozzi [15], Świe֒ch and
Zabczyk [34],[35]. We point out that, in comparison to the standard literature
on control theory and viscosity theory, our approach covers a different spectrum
of applications. While in the standard theory on viscosity solutions very general
types of HJB equations of the form

ut = F
(

t, x, u(t, x), Dxu(t, x), Dxxu(t, x)
)
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with a suitable function F are considered, our approach uses very much the par-
ticular structure of the equation (1.2). On the other hand, we allow for very
general forms of generators, which are not covered by standard results. However,
as we discuss in Section 6, in most cases that are covered by, both, the standard
approach and our approach, the solution concepts coincide. We thus propose a
different yet consistent solution concept, which allows to cover a different range
of examples, in particular, completely non-standard control problems. In order
to come up with control problems that are somewhat closer to reality, in the
past decades, an increasing interest has been paid to infinite-dimensional con-
trol problems with a particular focus on infinite-dimensional controlled Ornstein-
Uhlenbeck processes. We refer to Fabbri et al. [14] and the references therein for
a detailed discussion on this topic. Considering a family (Aλ)λ∈Λ of generators
of infinite-dimensional Ornstein-Uhlenbeck processes, we cover a certain range of
examples for Ornstein-Uhlenbeck control problems. In the standard theory on
controlled Ornstein-Uhlenbeck processes (cf. Fabbri et al. [14]) the drift term
consists of an expression of the form

(

BXt +m
)

dt with a fixed unbounded gen-
erator B and a controlled vector m. Under certain conditions, the existence of
mild solutions and C1-regularity of the related HJB equation can be obtained
using smoothing properties of the linear semigroup related to B and perturba-
tion results from semigroup theory for semilinear equations. Our approach allows
to consider controlled Ornstein-Uhlenbeck processes with bounded generators in
the drift term with controls in terms of B, m and the covariance operator in the
diffusion part (see Example 6.2). In a forthcoming paper with Ben Goldys and
the authors we show that our approach also extends to unbounded operators B

Throughout, we consider a nonempty index set Λ, a fixed separable metric
space (M, d) and a fixed weight function κ : M → (0,∞), which is assumed to be
continuous and bounded. Let C = C(M) be the space of all continuous functions
M → R. We denote the space of all u ∈ C with norm

‖u‖∞ := sup
x∈M

|u(x)| <∞

by Cb and the space of all u ∈ C with seminorm

‖u‖Lip := inf
{

L ≥ 0 | ∀x, y ∈M : |u(x)− u(y)| ≤ Ld(x, y)
}

<∞
by Lip. Finally, we denote the space of all u ∈ C with norm

‖u‖κ := ‖κu‖∞ <∞
by Cκ and the closure of Lipb := Lip ∩ Cb in the space Cκ by UCκ. If κ is
bounded below by some positive constant, then Cκ = Cb and ‖ · ‖κ is equivalent
to ‖ · ‖∞. In this case, UCκ is the closure of Lipb w.r.t. ‖ · ‖∞, which is the space
UCb of all bounded and uniformly continuous functions M → R. If M has the
Heine-Borel property, i.e if every closed bounded subset of M is compact, and
κ ∈ C0, then UCκ = {u ∈ C | κu ∈ C0}, where C0 is the closure of the space Cc of
all continuous functions with compact support w.r.t. ‖ · ‖∞. We refer to Example
5.3 b) for more details. For a sequence (un)n∈N ⊂ UCκ and u ∈ UCκ, we write
un ր u as n → ∞ if un ≤ un+1 for all n ∈ N and un(x) → u(x) as n → ∞ for
all x ∈ M . Analogously, we write un ց u as n → ∞ if un ≥ un+1 for all n ∈ N
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and un(x) → u(x) as n → ∞ for all x ∈ M . We are now ready to introduce the
central objects of our discussion.

Definition 1.1.

a) We call a family S = (S (t))t≥0 of possibly nonlinear operators a Feller
semigroup if the following conditions are satisfied:
(i) S (t) : UCκ → UCκ is continuous for all t ≥ 0,
(ii) S (0)u = u and S (s+t)u = S (s)S (t)u for all s, t ≥ 0 and u ∈ UCκ,
(iii) S (t) is monotone and continuous from below for all t ≥ 0, i.e. for

any sequence (un)n∈N ⊂ UCκ and u ∈ UCκ with un ր u as n → ∞
it holds S (t)un ր S (t)u as n→ ∞.

b) Let D ⊂ UCκ. We then say that a Feller semigroup S is strongly contin-
uous on D if the map

[0,∞) → UCκ, t 7→ S (t)u

is continuous for all u ∈ D. If D = UCκ, we say that S is strongly
continuous.

Note that our definition of a Feller semigroup is somewhat different from the
standard notion in the literature. First of all, we do not require strong continuity
or linearity of the semigroup a priori, as it is usually the case. Moreover, Feller
semigroups are oftentimes related to functions vanishing at infinity. In order to
treat situations, where the state spaceM is infinite-dimensional, we do not require
any condition related to compact sets but rather a certain growth condition in
terms of the weight function κ.

Throughout this work, we assume the following setup:

(A1) For all λ ∈ Λ let Sλ be a Feller semigroup of linear operators with Sλ(t)1 =
1, where 1 denotes the constant 1-function.

(A2) There exist constants α, β ∈ R such that

‖Sλ(t)u‖κ ≤ eαt‖u‖κ and ‖Sλ(t)u‖Lip ≤ eβt‖u‖Lip
for all u ∈ Lipb, λ ∈ Λ and t ≥ 0.

At this point, we would like to briefly discuss the assumptions (A1) and (A2)
and explain the key differences between the present paper and the paper by Denk
et al. [10]. First, we would like to mention that the assumptions (A1) and (A2)
are satisfied with κ = 1, α = 0 and β = 0 for Markovian convolution semigroups
(semigroups arising from Lévy processes). Different from [10], we do not make
any assumption on strong continuity of the semigroups (Sλ)λ∈Λ or their generators
at this point. Strong continuity was a key ingredient in the proof of the dynamic
programming principle (the semigroup property of the semigroup envelope) in
[10] and also in the paper by Nisio [26]. In this paper, we provide an alterna-
tive proof for the dynamic programming principle, which does not require any
strong continuity assumptions, and covers a more general setup. In particular,
we prove the existence of the semigroup envelope of the family (Sλ)λ∈Λ (Theorem
2.5) solely under the assumptions (A1) and (A2). In Section 3, we then provide
three conditions that imply the strong continuity of the Nisio semigroup, which
in turn implies that the Nisio semigroup is a viscosity solution to a nonlinear
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Cauchy problem (cf. Section 4). The key assumption in order to obtain the
strong continuity in [10] and [26] is a joint density assumption on the domains of
the generators, which, in some infinite-dimensional applications, is not satisfied.
In particular, uncertainty in the covariance operator of infinite-dimensional Brow-
nian Motions leads to major restrictions, see [10, Example 3.3]. The conditions
for strong continuity and the generalised setup, we present in this paper, allow
us to treat, both, finite and infinite-dimensional applications (Koopman semi-
groups, geometric dynamics, Ornstein-Uhlenbeck processes and Lévy processes)
in full generality concerning the uncertainty, and to improve [10, Example 3.3]
in such a way that no Lévy triplet is excluded a priori. The assumption in order
to obtain the strong continuity in [10] is a special case of Proposition 3.5 in the
present paper. Finally, we would like to point out that the setup we choose is
also more flexible regarding the tail behaviour of solutions. More precisely, the
choice of the weight function κ enables us to consider also unbounded initial data
(contingent claims), which was not possible in the setup chosen by Denk et al.

The paper is structured as follows. In Section 2, we show the existence of
the semigroup envelope S of the family (Sλ)λ∈Λ under the assumptions (A1)
and (A2), and provide approximation results for the Nisio semigroup. The main
result of this section is Theorem 2.5. In Section 3, we provide conditions that
guarantee the strong continuity of the semigroup envelope (Propositions 3.4 -
3.6). In Section 4, we discuss the connection between semigroup envelopes and
viscosity solutions to a nonlinear abstract Cauchy problem. The main result of
this section is Theorem 4.5. In Section 5, we give a stochastic representation of
the semigroup envelope via a stochastic process under a sublinear expectation
(cf. Theorem 5.5). Section 6 is devoted to the connection between the results
obtained in the present paper and the field of control theory. In particular, we
explain the link between semigroup envelopes and value functions of abstract
control problems. In Section 7, we apply the results from Sections 2, 3 and 5 to
several non-standard examples.

2. Construction of the semigroup envelope

Let u ∈ UCκ, λ ∈ Λ and h ≥ 0. Then, ‖Sλ(h)u‖κ ≤ eαh‖u‖κ since the map
Sλ(h) : UCκ → UCκ is continuous, which implies that

(

Ehu
)

(x) := sup
λ∈Λ

(

Sλ(h)u
)

(x)

is well-defined for all x ∈M .

Lemma 2.1. Let h ≥ 0.

a) ‖Ehu− Ehv‖κ ≤ eαh‖u− v‖κ for all u, v ∈ UCκ.
b) ‖Ehu‖Lip ≤ eβh‖u‖Lip for all u ∈ Lipb.
c) The map Eh : UCκ → UCκ is well-defined and Lipschitz continuous with

Lipschitz constant eαh.
d) Eh is sublinear, monotone, and continuous from below with Eh1 = 1.

Proof.
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a) Let u, v ∈ UCκ and h ≥ 0. Then, for all λ ∈ Λ,

κ
(

Sλ(h)u− Ehv
)

≤ κ
(

Sλ(h)u− Sλ(h)v
)

= κSλ(h)(u− v)

≤ ‖Sλ(h)(u− v)‖κ ≤ eαh‖u− v‖κ.
Taking the supremum over λ ∈ Λ and a symmetry argument imply that

‖Ehu− Ehv‖κ ≤ eαh‖u− v‖κ.
b) Let u ∈ Lipb and x, y ∈M . Then, for all λ ∈ Λ,

(Sλ(h)u
)

(x)−
(

Ehu
)

(y) ≤ (Sλ(h)u
)

(x)− (Sλ(h)u
)

(y) ≤ eβh‖u‖Lipd(x, y).
Taking the supremum over λ ∈ Λ and a symmetry argument yield that

∣

∣

(

Ehu
)

(x)−
(

Ehu
)

(y)
∣

∣ ≤ eβh‖u‖Lipd(x, y).
c) By part b) and Assumption (A1), we have that Ehu ∈ Lipb for all u ∈ Lipb.

Since Lipb is dense in UCκ, part a) implies that Eh : UCκ → UCκ is well-
defined and Lipschitz continuous with Lipschitz constant eαh.

d) All these properties directly carry over to the supremum.

�

In the sequel, we consider the set P := {π ⊂ [0,∞) : 0 ∈ π, |π| < ∞} of finite
partitions of the positive half line. The set of partitions with end-point t will be
denoted by Pt, i.e. Pt := {π ∈ P : max π = t}. Let u ∈ UCκ and π ∈ P \

{

{0}
}

.
Then, there exist 0 = t0 < t1 < . . . < tm such that π = {t0, t1, . . . , tm} and we set

Eπu := Et1−t0 . . . Etm−tm−1
u.

Moreover, we set E{0}u := u. Note that, by definition, Eh = E{0,h} for h > 0.
Since Eh : UCκ → UCκ is well-defined, the map Eπ : UCκ → UCκ is well-defined,
too.

Lemma 2.2. For all π ∈ P , the operator Eπ is sublinear, monotone and contin-
uous from below with Eπ1 = 1. Moreover, ‖Eπu−Eπv‖κ ≤ eαmaxπ‖u− v‖κ for all
u, v ∈ UCκ and ‖Eπu‖Lip ≤ eβmaxπ‖u‖Lip for all u ∈ Lipb.

Proof. Since Eh is a sublinear, monotone and continuous from below with Eh1 = 1
for all h ≥ 0, the same holds for Eπ as these properties are preserved under com-
positions. The Lipschitz continuity follows from Lemma 2.1 and the behaviour
of Lipschitz constants under composition. �

Let u ∈ UCκ. In the following, we consider the limit of Eπu when the mesh size
of the partition π ∈ P tends to zero. First note that, for h1, h2 ≥ 0 and x ∈M ,

(

Eh1+h2
u
)

(x) = sup
λ∈Λ

(

Sλ(h1 + h2)u
)

(x) = sup
λ∈Λ

(

Sλ(h1)Sλ(h2)u
)

(x)

≤ sup
λ∈Λ

(

Sλ(h1)Eh2
u
)

(x) =
(

Eh1
Eh2

u
)

(x),

which implies the pointwise inequality

Eπ1
u ≤ Eπ2

u for π1, π2 ∈ P with π1 ⊂ π2. (2.1)

In particular, for π1, π2 ∈ P and π := π1 ∪ π2 it follows that π ∈ P with
(

Eπ1
u
)

∨
(

Eπ2
u
)

≤ Eπu. (2.2)
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Recall that we denote the set of all finite partitions with end point t ≥ 0 by Pt.
For t ≥ 0, x ∈M and u ∈ UCκ, we define

(

S (t)u
)

(x) := sup
π∈Pt

(

Eπu
)

(x). (2.3)

The family S = (S (t))t≥0 is called the (upper) semigroup envelope or Nisio
semigroup of the family (Sλ)λ∈Λ. Note that, by definition, S (0)u = u for all
u ∈ UCκ. We observe the following basic facts, which are a direct consequence
of Lemma 2.2.

Lemma 2.3. Let t ≥ 0. Then, the map S (t) : UCκ → UCκ is well-defined and
Lipschitz continuous with Lipschitz constant eαt. Moreover, S (t) is sublinear,
monotone and continuous from below with S (t)1 = 1.

Proof. By Lemma 2.2,

‖S (t)u− S (t)v‖κ ≤ eαt‖u− v‖κ for all u, v ∈ UCκ (2.4)

and ‖S (t)u‖Lip ≤ eβt‖u‖Lip for all u ∈ Lipb. In particular, S (t)u ∈ Lipb for all
u ∈ Lipb. Now, the estimate (2.4) implies that S (t) : UCκ → UCκ is well-defined
and Lipschitz continuous with Lipschitz constant eαt. The remaining properties
follow directly from the observation that, by Lemma 2.2 they are satisfied by Eπ,
for π ∈ Pt, and carry over to the supremum over all π ∈ Pt. �

In the following, we show that the Nisio semigroup S is in fact a semigroup.
We start with the following lemma, which shows that S (t)u can be approximated
by a monotone sequence of partitions depending on u. We would like to point
out that, under additional assumptions, the dependence of the sequence on u can
be dropped (see Proposition 2.7, below).

Lemma 2.4. Let u ∈ UCκ and t > 0. Then, there exists a sequence (πn)n∈N ⊂ Pt

(depending on u) with Eπn
u ր S (t)u as n→ ∞.

Proof. Let (xk)k∈N ⊂ M such that the set {xk | k ∈ N} is dense in M . Then, for
every k ∈ N, there exists a sequence (πk

n)n∈N ⊂ Pt with π
k
n ⊂ πk

n+1 for all n ∈ N

and
(

Eπk
n
u
)

(xk) ր
(

S (t)u
)

(xk) as n→ ∞.

Now, let πn :=
⋃n

k=1 π
k
n for all n ∈ N. Then, πk

n ⊂ πn ⊂ πn+1 for all n ∈ N and
k ∈ {1, . . . , n}. Hence,

Eπk
n
u ≤ Eπn

u ≤ Eπn+1
u for all n ∈ N and k ∈ {1, . . . , n}. (2.5)

Let
(

E∞v
)

(x) := supn∈N

(

Eπn
v
)

(x) for all v ∈ UCκ and x ∈M . Then, by Lemma
2.2, the map E∞ : UCκ → UCκ is well-defined. In particular, E∞u : M → R is
continuous and, by (2.5), Eπn

uր E∞u as n→ ∞. Again, by (2.5),
(

S (t)u
)

(xk) = lim
n→∞

(

Eπk
n
u
)

(xk) ≤ lim
n→∞

(

Eπn
u
)

(xk) =
(

E∞u
)

(xk) ≤
(

S (t)u
)

(xk)

for all k ∈ N. Since, S (t)u and E∞u are both continuous and the set {xk | k ∈ N}
is dense in M , it follows that S (t)u = E∞u, which shows that

Eπn
uր S (t)u as n→ ∞.

�
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We obtain the following main theorem.

Theorem 2.5. The family S is a Feller semigroup of sublinear operators and
the least upper bound of the family (Sλ)λ∈Λ.

Proof. We first show that, for all s, t ≥ 0,

S (s+ t) = S (s)S (t). (2.6)

If s = 0 or t = 0 the statement is trivial. Therefore, let s, t > 0, u ∈ UCκ, π0 ∈
Ps+t, and π := π0 ∪ {s}. Then, π ∈ Ps+t with π0 ⊂ π and, by (2.1), Eπ0

u ≤ Eπu.
Let m ∈ N, 0 = t0 < t1 < . . . tm = s+ t with π = {t0, . . . , tm}, and i ∈ {1, . . . , m}
with ti = s. Then, π1 := {t0, . . . , ti} ∈ Ps and π2 := {ti − s, . . . , tn − s} ∈ Pt with

Eπ1
= Et1−t0 · · · Eti−ti−1

and Eπ2
= Eti+1−ti · · · Etm−tm−1

.

We thus obtain that

Eπ0
u ≤ Eπu = Et1−t0 · · · Etm−tm−1

u =
(

Et1−t0 · · · Eti−ti−1

)(

Eti+1−ti · · · Etm−tm−1
u
)

= Eπ1
Eπ2

u ≤ Eπ1
S (t)u ≤ S (s)S (t)u.

Taking the supremum over all π0 ∈ Ps+t yields that S (s+ t)u ≤ S (s)S (t)u.
Now, let (πn)n∈N ⊂ Pt with Eπn

uր S (t)u as n→ ∞ (see Lemma 2.4) and fix
π0 ∈ Ps. Then, for all n ∈ N,

π′
n := π0 ∪ {s+ τ : τ ∈ πn} ∈ Ps+t with Eπ′

n
= Eπ0

Eπn
.

As Eπ0
is continuous from below, it follows that

Eπ0

(

S (t)u
)

= lim
n→∞

Eπ0
Eπn

u = lim
n→∞

Eπ′

n
u ≤ S (s+ t)u.

Taking the supremum over all π0 ∈ Ps, we get that S (s)S (t)u ≤ S (s + t)u,
and therefore (2.6) follows.

From the definition of S in Equation (2.3) and Lemma 2.3, we now may
conclude that S defines a Feller semigroup of sublinear operators. It remains
to show that S is the least upper bound of the family (Sλ)λ∈Λ. To this end,
let u ∈ UCκ, x ∈ M , and T be an upper bound of the family (Sλ)λ∈Λ, i.e
(

Sλ(t)u
)

(x) ≤
(

T (t)u
)

(x) for all λ ∈ Λ, u ∈ UCκ, t ≥ 0 and x ∈M . Then,
(

Sλ(h)u
)

(x) ≤
(

Ehu
)

(x) ≤
(

T (h)u
)

(x) for all λ ∈ Λ and h ≥ 0.

Since Sλ and T are semigroups, it follows that
(

Sλ(t)u
)

(x) ≤
(

Eπu
)

(x) ≤
(

T (t)u
)

(x) for all λ ∈ Λ, t ≥ 0, and π ∈ Pt.

Taking the supremum over all π ∈ Pt, we obtain that
(

Sλ(t)u
)

(x) ≤
(

S (t)u
)

(x) ≤
(

T (t)u
)

(x) for all λ ∈ Λ and t ≥ 0.

�

The remainder of this section is devoted to show that the approximation result
of Lemma 2.4, where the approximating sequence was dependent on the function
u ∈ UCκ, can be made stronger under the additional assumption that the map

[0,∞) → UCκ, h 7→ Ehu (2.7)
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is continuous for all u ∈ UCκ. More precisely, under this condition every sequence
of partitions with mesh size tending to 0 can be used for the approximation of
the semigroup envelope. Note that (2.7) is, for example, implied by the condition
that

sup
λ∈Λ

‖Sλ(h)u− u‖κ → 0 as h→ 0,

for all u ∈ Lipb, which, in most applications, is satisfied. The following lemma
shows that Eπ depends continuously on the partition π ∈ P .

Lemma 2.6. Assume that the map (2.7) is continuous for all u ∈ UCκ. Let
m ∈ N and π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < . . . < tm. For each n ∈ N let
πn = {tn0 , tn1 , . . . , tnm} ∈ P with 0 = tn0 < tn1 < . . . < tnm and tni → ti as n → ∞ for
all i ∈ {1, . . . , m}. Then, for all u ∈ UCκ we have that

‖Eπu− Eπn
u‖κ → 0, n→ ∞.

Proof. First note that the set of all partitions with cardinality m + 1 can be
identified with the set

Sm :=
{

(s1, . . . , sm) ∈ R
m
∣

∣ 0 < s1 < . . . < sm
}

⊂ R
m.

Therefore, the assertion is equivalent to the continuity of the map

Sm → UCκ, (s1, . . . , sm) → E{0,s1,...,sm}u. (2.8)

Since the mapping [0,∞) → UCκ, h 7→ Ehu is continuous for all u ∈ UCκ, and
‖Ehu− Ehv‖κ ≤ eαh‖u− v‖κ for all h ≥ 0 and u, v ∈ UCκ, it follows that (2.8) is
continuous. �

Let u ∈ UCκ. In the following, we consider the limit of Eπu when the mesh size

|π|∞ := max
j=1,...,m

(tj − tj−1)

of the partition π = {t0, t1, . . . , tm} ∈ P with 0 = t0 < t1 < . . . < tm tends to
zero. For the sake of completeness, we define |{0}|∞ := 0. The following lemma
shows that S (t)u can be obtained by a pointwise monotone approximation with
finite partitions letting the mesh size tend to zero.

Proposition 2.7. Assume that the map (2.7) is continuous for all u ∈ UCκ. Let
t ≥ 0 and (πn)n∈N ⊂ Pt with πn ⊂ πn+1 for all n ∈ N and |πn|∞ ց 0 as n → ∞.
Then, for all u ∈ UCκ,

Eπn
uր S (t)u as n→ ∞.

In particular,

S (t)u = sup
n∈N

En
t

n

u = lim
n→∞

E2n

2−ntu for all u ∈ UCκ,

where the supremum and the limit are to be understood in a pointwise sense.

Proof. For t = 0 the statement is trivial. Therefore, assume that t > 0, and let
(

E∞u
)

(x) := sup
n∈N

(

Eπn
u
)

(x) for u ∈ UCκ and x ∈M.
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As in the proof of Lemma 2.4, the map E∞ : UCκ → UCκ is well-defined. Let
u ∈ UCκ. Since πn ⊂ πn+1 for all n ∈ N, it follows that Eπn

u ր E∞u as n → ∞.
Since (πn)n∈N ⊂ Pt, we obtain that

E∞u ≤ S (t)u.

Let π = {t0, t1, . . . , tm} ∈ Pt with m ∈ N and 0 = t0 < t1 < . . . < tm = t. Since
|πn|∞ ց 0 as n → ∞, we may w.l.o.g. assume that #πn ≥ m + 1 for all n ∈ N.
Let 0 = tn0 < tn1 < . . . < tnm = t for all n ∈ N with π′

n := {tn0 , tn1 , . . . , tnm} ⊂ πn and
tni → ti as n→ ∞ for all i ∈ {1, . . . , m}. Then, by Lemma 2.6,

‖Eπu− Eπ′
n
u‖κ → 0 as n→ ∞.

Therefore,

E∞u− Eπu ≥ Eπn
u− Eπu ≥ Eπ′

n
u− Eπu → 0 as n→ ∞,

showing that E∞u ≥ Eπu. Taking the supremum over all π ∈ Pt, we obtian that
E∞u = S (t)u.

Now, let πn :=
{

kt
2n

∣

∣ k ∈ {0, . . . , 2n}
}

for all n ∈ N. Then,

S (t)u = lim
m→∞

Eπm
u = lim

m→∞
E2m

2−mtu ≤ sup
n∈N

En
t

n

u ≤ S (t)u,

where we used the basic fact that n = 2m ∈ N for all m ∈ N. �

3. Strong continuity

Let S be the Feller semigroup from the previous section, i.e. the semigroup
envelope of the family (Sλ)λ∈Λ. The aim of this section is to give conditions that
ensure the strong continuity of the semigroup envelope S .

Remark 3.1. Let D ⊂ UCκ be the set of all u ∈ UCκ, for which the map

[0,∞) → UCκ, t 7→ S (t)u

is continuous. Then, by the semigroup property (2.6),

[0,∞) → UCκ, s 7→ S (s)S (t)u = S (s+ t)u

is continuous for all u ∈ D. Therefore, the set D is invariant under the semigroup
S , i.e. S (t)u ∈ D for all u ∈ D and all t ≥ 0.

Lemma 3.2. Let u ∈ UCκ. Then, the following statements are equivalent:

(i) limh→0 ‖S (h)u− u‖κ = 0.
(ii) The map [0,∞) → UCκ, t 7→ S (t)u is continuous.

Proof. Clearly, (ii) implies (i). Therefore, assume that limh→0 ‖S (h)u−u‖κ = 0.
Let t ≥ 0 and ε > 0. W.l.o.g. we may assume that in (A2) we have α ≥ 0.
By assumption, there exists some δ > 0 such that ‖S (h)u− u‖κ < e−αtε for all
h ∈ [0, δ). Now, let s ≥ 0 with |t− s| < δ. Then, for τ := s ∧ t,

‖S (t)u− S (s)u‖κ =
∥

∥S (τ)
(

S (|t− s|)u
)

− S (τ)u
∥

∥

κ

≤ eατ
∥

∥S
(

|t− s|
)

u− u
∥

∥

κ
< ε,

where we used the Lipschitz continuity of S (τ) with Lipschitz constant eατ . �
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Remark 3.3. Let D ⊂ UCκ arbitrary, and assume that S is strongly continuous
on D. Then, S is also strongly continuous on the closure D of D. In order to
see this, let u ∈ UCκ and (un)n∈N ⊂ D with ‖un − u‖κ → 0 as n → ∞. W.l.o.g.
we may assume that α ≥ 0. Let ε > 0. Then, there exists some n0 ∈ N such
that ‖un0

− u‖κ ≤ ε
3
e−α. Since un0

∈ D, there exists some δ ∈ (0, 1] such that
‖S (h)un0

− un0
‖κ < ε

3
for all h ∈ [0, δ). Hence, for h ∈ [0, δ), it follows that

‖S (h)u− u‖κ ≤ 2ε

3
+ ‖S (h)un0

− un0
‖κ < ε.

Now, the previous lemma implies that [0,∞) → UCκ, t 7→ S (t)u is continuous.

We start with the first result ensuring the strong continuity of the semigroup
envelope S .

Proposition 3.4. Assume that, for every δ > 0, there exists a family of functions
(ϕx)x∈M ⊂ UCκ satisfying the following:

(i) 0 ≤ ϕx(y) ≤ 1 for all y ∈ M , ϕx(x) = 0, ϕx(y) = 1 for all y ∈ M with
d(x, y) ≥ δ,

(ii) supx∈M κ(x)
[(

S (h)ϕx

)

(x)
]

→ 0 as hց 0.

Then, the semigroup S is strongly continuous.

Proof. Let u ∈ Lipb \ {0} and ε > 0. Then, since κ is bounded, there exists some
δ > 0 such that

κ(y)|u(y)− u(x)| ≤ ε
2eα

for all x, y ∈M with d(x, y) < δ.

By assumption, there exists a family (ϕx)x∈M ⊂ UCκ with 0 ≤ ϕx(y) ≤ 1 for all
y ∈M , ϕx(x) = 0, ϕx(y) = 1 for all y ∈ M with d(x, y) ≥ δ, and some h0 ∈ (0, 1]
such that

sup
x∈M

κ(x)
[(

S (h)ϕx

)

(x)
]

<
ε

4‖u‖∞
for all h ∈ [0, h0).

For all h ∈ (0, 1] and x ∈M ,
∥

∥

∥
S (h)

(

(1− ϕx)|u− u(x)|
)

∥

∥

∥

κ
≤ eα

∥

∥(1− ϕx)|u− u(x)|
∥

∥

κ

≤ eα sup
y∈M

d(x,y)≤δ

κ(y)|u(y)− u(x)| ≤ ε

2
.

Hence, for all h ∈ [0, h0) and x ∈M , since S (h)1 = 1,

κ(x)
∣

∣

(

S (h)u
)

(x)− u(x)
∣

∣ = κ(x)
∣

∣

(

S (h)(u− u(x))
)

(x)
∣

∣

≤ κ(x)
(

S (h)|u− u(x)|
)

(x)

≤
∥

∥

∥
S (h)

(

(1− ϕx)|u− u(x)|
)

∥

∥

∥

κ

+ κ(x)
(

S (h)(ϕx|u− u(x)|)
)

(x)

≤ ε

2
+ 2κ(x)‖u‖∞

(

S (h)ϕx

)

(x) < ε.
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This shows that ‖S (h)u−u
∥

∥

κ
< ε for all h ∈ [0, h0), and therefore S is strongly

continuous on Lipb. Since Lipb is, by definition, dense in UCκ, Remark 3.3 implies
that S is strongly continuous. �

The function ϕx, for x ∈ M , in the previous proposition plays the role of
a cut-off function. Proposition 3.4 is a generalisation of the well-known fact
that transition semigroups of Lévy processes are strongly continuous, where the
strong continuity is intimately related to the convergence in law of the process.
Note that, for transition semigroups of Lévy processes, the translation invariance
together with the convergence in law ensures that the assumptions of Proposition
3.4 are satisfied.

We denote by DΛ ⊂ UCκ the linear space of all u ∈ UCκ for which there exist
Lu ≥ 0 and hu > 0 such that

sup
λ∈Λ

‖Sλ(h)u− u‖κ ≤ Luh for all h ∈ [0, hu).

Proposition 3.5. The semigroup S is strongly continuous on DΛ. In particular,
S is strongly continuous if DΛ is dense in UCκ.

Proof. Let u ∈ DΛ and 0 ≤ h1 < h2 with h2 − h1 < hu. Then,
(

Sλ0
(h1)u

)

(x)−
(

Eh2
u
)

(x) ≤
(

Sλ0
(h1)u

)

(x)−
(

Sλ0
(h2)u

)

(x)

for all x ∈M and λ0 ∈ Λ. Taking the supremum over λ0 ∈ Λ, it follows that
(

Eh1
u
)

(x)−
(

Eh2
u
)

(x) ≤ sup
λ∈Λ

∣

∣

(

Sλ(h1)u
)

(x)−
(

Sλ(h2)u
)

(x)
∣

∣

for all x ∈ M . By a symmetry argument, multiplying by κ(x) and taking the
supremum over all x ∈ M , we obtain that ‖Eh1

u − Eh2
u‖κ ≤ supλ∈Λ ‖Sλ(h1)u −

Sλ(h2)u‖κ. Moreover,

‖Sλ(h1)u− Sλ(h2)u‖κ ≤ eαh1‖Sλ(h2 − h1)u− u‖κ ≤ Lue
αh1(h2 − h1).

Taking the supremum over all λ ∈ Λ, we obtain that

‖Eh1
u− Eh2

u‖κ ≤ Lue
αh1(h2 − h1). (3.1)

Next, we show that

‖Eπu− u‖κ ≤ Lue
αmaxπ max π (3.2)

for all π ∈ P with max π ∈ [0, hu) by an induction on #π ∈ N. First, let π ∈ P

with #π = 1, i.e. π = {0}. Then,

‖Eπu− u‖κ = ‖E{0}u− u‖κ = 0 = Lue
αmaxπ max π.

Now, let m ∈ N, and assume that (3.2) holds for all π ∈ P with max π ∈ [0, hu)
and #π = m. Let π ∈ P with #π = m + 1 and tm := max π ∈ [0, hu). Then,
π′ := π \ {tm} ∈ P with #π′ = m and tm−1 := max π′ ∈ [0, tm). Therefore, by
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induction hypothesis and (3.1), it follows that

‖Eπu− u‖κ ≤ ‖Eπu− Eπ′u‖κ + ‖Eπ′u− u‖κ
= ‖Eπ′Etm−tm−1

u− Eπ′u‖κ + ‖Eπ′u− u‖κ
≤ eαtm−1‖Etm−tm−1

u− u‖κ + ‖Eπ′u− u‖κ
≤ Lue

αtm−1(tm − tm−1) + Lue
αtm−1tm−1

= Lue
αtm−1tm ≤ Lue

αmaxπ max π.

By definition of the semigroup S , we thus obtain that

‖S (h)u− u‖κ ≤ Lue
αhh→ 0 as h→ 0.

�

The following proposition is somewhat similar to Proposition 3.4. Note that
(ii) in Proposition 3.4 is a condition related to the semigroup envelope S , and its
verification is typically nontrivial. The following proposition replaces condition
(ii) in Proposition 3.4 by a smoothness condition on the cut-off functions (ϕx)x∈M ,
where smoothness is given in terms of the family of generators (Aλ)λ∈Λ.

Proposition 3.6. Assume that for every δ > 0 there exists a family of functions
(ϕx)x∈M ⊂ UCκ satisfying the following:

(i) 0 ≤ ϕx(y) ≤ 1 for all y ∈ M , ϕx(x) = 0, and ϕx(y) = 1 for all y ∈ M

with d(x, y) ≥ δ,
(ii’) There exist L ≥ 0 and h0 > 0 such that, for all h ∈ [0, h0) and x ∈M ,

sup
λ∈Λ

‖Sλ(h)ϕx − ϕx‖κ ≤ Lh.

Then, S is strongly continuous.

Proof. By assumption, the family (ϕx)x∈M satisfies condition (i) from Proposition
3.4. We now verify that (ii’) implies condition (ii) from Proposition 3.4. Observe
that

(

Ehϕx

)

(y) ≤ ϕx(y) +
∣

∣

(

Ehϕx

)

(y)− ϕx(y)
∣

∣

for all h ∈ [0, h0) and x, y ∈ M . W.l.o.g. we assume that α ≥ 0 in (A2). Then,
by (3.1), we obtain that

(

EπEhϕx

)

(x) ≤
(

Eπϕx

)

(x) +
(

Eπ
∣

∣Ehϕx − ϕx

∣

∣

)

(x)

≤
(

Eπϕx

)

(x) +
eαh0

κ(x)
‖Ehϕx − ϕx‖κ

≤
(

Eπϕx

)

(x) +
Leαh0h

κ(x)

for all π ∈ P with max π ∈ [0, h0) and h ∈ [0, h0). Inductively, it follows that

(

Eπϕx

)

(x) ≤ ϕx(x) +
Leαh0 max π

κ(x)
=
Leαh0 max π

κ(x)
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for all π ∈ P with max π ∈ [0, h0). Taking the supremum over all π ∈ Ph for
h ∈ [0, h0) yields that

sup
x∈M

κ(x)
[(

S (h)ϕx

)

(x)
]

≤ Leαh0h→ 0 as hց 0.

Therefore, condition (ii) from Proposition 3.4 is satisfied and the strong continuity
of S follows. �

4. Related HJB equation and viscosity solutions

Let λ ∈ Λ. Then, we denote by Dλ ⊂ UCκ the space of all u ∈ UCκ such that
the map [0,∞) → UCκ, t 7→ Sλ(t)u is continuous. Further, let D(Aλ) denote the
space of all u ∈ UCκ for which

Aλu := lim
hց0

Sλ(h)u− u

h
∈ UCκ

exists w.r.t. ‖ · ‖κ. Note that, by definition, D(Aλ) ⊂ Dλ. Let u ∈ ⋂

λ∈ΛD(Aλ)
with Cu := supλ∈Λ ‖Aλu‖κ < ∞. Then, it follows that (see e.g. [12, Lemma
II.1.3])

‖Sλ(h)u− u‖κ ≤
∫ h

0

‖Sλ(s)Aλu‖κ ds ≤ Cue
αhh for all λ ∈ Λ.

This shows that u ∈ DΛ. Moreover, since supλ∈Λ ‖Aλu‖κ <∞, it follows that
(

Au
)

(x) := sup
λ∈Λ

(

Aλu
)

(x)

is well-defined for all x ∈M .

Lemma 4.1. Let u ∈ ⋂

λ∈ΛD(Aλ) with

sup
λ∈Λ

‖Aλu‖κ <∞ and sup
λ∈Λ

‖Sλ(h)Aλu− Aλu‖κ → 0 as h→ 0.

Then, limhց0

∥

∥

Ehu−u
h

−Au
∥

∥

κ
= 0. In particular, Au ∈ UCκ.

Proof. Let ε > 0. Then, by assumption, there exists some h0 > 0 such that

sup
λ∈Λ

‖Sλ(s)Aλu− Aλu‖κ ≤ ε for all s ∈ [0, h0].

Hence, for all h ∈ (0, h0], it follows that
∥

∥

∥

∥

Ehu− u

h
−Au

∥

∥

∥

∥

κ

≤ sup
λ∈Λ

∥

∥

∥

∥

Sλ(h)u− u

h
− Aλu

∥

∥

∥

∥

κ

= sup
λ∈Λ

1

h

∥

∥

∥

∥

∫ h

0

Sλ(s)Aλu− Aλu ds

∥

∥

∥

∥

κ

≤ sup
λ∈Λ

1

h

∫ h

0

‖Sλ(s)Aλu− Aλu‖κ ds ≤ ε.

�
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Proposition 4.2. Let u ∈ ⋂

λ∈ΛD(Aλ) with

sup
λ∈Λ

‖Aλu‖κ <∞ and sup
λ∈Λ

‖Sλ(h)Aλu− Aλu‖κ → 0 as h→ 0.

Then, Au ∈ UCκ and the following statements are equivalent:

(i) The map [0,∞) → UCκ, t 7→ S (t)Au is continuous,

(ii) limhց0

∥

∥

S (h)u−u

h
− Au

∥

∥

κ
= 0, i.e. Au = limhց0

S (h)u−u

h
, where the limit

is w.r.t. ‖ · ‖κ.
Proof. By Lemma 4.1, we already know that Au ∈ UCκ. Let D denote the set
of all v ∈ UCκ, for which the map [0,∞) → UCκ, t 7→ S (t)v is continuous. Our
assumptions imply that u ∈ DΛ. Therefore, by Proposition 3.5, u ∈ D and, by
Remark 3.1, S (h)u ∈ D for all h ≥ 0. Hence, by Remark 3.3, statement (ii)
implies (i). By Lemma 4.1,

Au− S (h)u− u

h
≤ Au− Ehu− u

h
→ 0, as hց 0.

Assuming that the map [0,∞) → UCκ, t 7→ S (t)Au is continuous, it follows
that

∥

∥

∥

∥

1

h

∫ h

0

S (s)Au ds−Au
∥

∥

∥

∥

κ

→ 0, as hց 0.

Hence, it is sufficient to show that

S (t)u− u ≤
∫ t

0

S (s)Au ds for all t ≥ 0. (4.1)

Let t ≥ 0 and h > 0. Then,

Ehu− u = sup
λ∈Λ

∫ h

0

Sλ(s)Aλu ds ≤
∫ h

0

S (s)Au ds =
∫ t+h

t

S (s− t)Au ds. (4.2)

Next, we prove that

Eπu− u ≤
∫ max π

0

S (s)Au ds for all π ∈ P

by an induction on m = #π. If m = 1, i.e. if π = {0}, the statement is trivial.
Hence, assume that

Eπ′u− u ≤
∫ maxπ′

0

S (s)Au ds

for all π′ ∈ P with #π′ = m for some m ∈ N. Let π = {t0, t1, . . . , tm} ∈ P with
0 = t0 < t1 < . . . < tm and π′ := π \ {tm}. Then, it follows from (4.2) that

Eπu− Eπ′u ≤ S (tm−1)
(

Etm−tm−1
u− u

)

≤ S (tm−1)

(
∫ tm

tm−1

S (s− tm−1)Au ds
)

≤
∫ tm

tm−1

S (s)Au ds,
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where the last inequality follows from Jensen’s inequality. By induction hypoth-
esis, we thus obtain that

Eπu− u =
(

Eπu− Eπ′u
)

+
(

Eπ′u− u
)

≤
∫ tm

tm−1

S (s)Au ds+
∫ tm−1

0

S (s)Au ds

=

∫ maxπ

0

S (s)Au ds.

In particular, Eπu − u ≤
∫ t

0
S (s)Au ds for every π ∈ Pt. Taking the supremum

over all π ∈ Pt yields the assertion. �

We now introduce the class of test functions, which will be used for the defini-
tion of a viscosity solution. Let

D :=

{

u ∈
⋂

λ∈Λ

D(Aλ)

∣

∣

∣

∣

sup
λ∈Λ

‖Aλu‖κ <∞ and lim
hց0

∥

∥

∥

∥

S (h)u− u

h
−Au

∥

∥

∥

∥

κ

= 0

}

.

In the sequel, we are interested in viscosity solutions to the differential equation

u′(t) = Au(t), for t > 0, (4.3)

where we use the following notion of a viscosity solution.

Definition 4.3. We say that u : [0,∞) → UCκ is a viscosity subsolution to (4.3)
if u is continuous, and for every t > 0, x ∈ M , and every differentiable function
ψ : (0,∞) → UCκ with ψ(t) ∈ D,

(

ψ(t)
)

(x) =
(

u(t)
)

(x) and ψ(s) ≥ u(s) for all
s > 0,

(

ψ′(t)
)

(x) ≤
(

Aψ(t)
)

(x).

Analogously, u is called a viscosity supersolution to (4.3) if u : [0,∞) → UCκ

is continuous, and for every t > 0, x ∈ M , and every differentiable function
ψ : (0,∞) → UCκ with ψ(t) ∈ D,

(

ψ(t)
)

(x) =
(

u(t)
)

(x) and ψ(s) ≤ u(s) for all
s > 0,

(

ψ′(t)
)

(x) ≥
(

Aψ(t)
)

(x).

We say that u is a viscosity solution to (4.3) if u is a viscosity subsolution and a
viscosity supersolution.

Remark 4.4. In general it is not clear how rich the class of test functions for a
viscosity solution from the previous definition is. However, in the examples in
Section 7, we will see that, in most cases, where M is a Banach space, Lipk

b ⊂ D
with k ∈ {0, 1, 2}, where Lipk

b denotes the set of all k-times (Fréchet) differentiable
functions M → R with bounded and Lipschitz continuous derivatives. For a
function ψ : (0,∞) ×M → R, which is differentiable w.r.t. t and ∂tψ : (0,∞) ×
M → R uniformly w.r.t. x Lipschitz continuous in t with Lipschitz constant
L ≥ 0, it follows that

sup
x∈M

∣

∣

∣

∣

ψ(t + h, x)− ψ(t, x)

h
− ∂tψ(t, x)

∣

∣

∣

∣

≤ Lh→ 0 as hց 0

for all t > 0. Hence, if Lipk
b ⊂ D for some k ∈ N0, every ψ ∈ Lip1,k

b

(

(0,∞)×M
)

is
differentiable as a map (0,∞) → UCκ and satisfies ψ(t) ∈ D for all t > 0. In most

applications, the class Lip1,k
b

(

(0,∞)×M
)

of test functions is sufficiently large in
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order to obtain uniqueness of a viscosity solution. For more details concerning
our notion of a viscosity solution and the uniqueness of solutions, we refer to
Section 6.1.

We conclude this section with the following main theorem.

Theorem 4.5. Assume that the semigroup S is strongly continuous. Then, for
every u0 ∈ UCκ, the function u : [0,∞) → UCκ, t 7→ S (t)u0 is a viscosity
solution to the abstract initial value problem

u′(t) = Au(t), for t > 0,

u(0) = u0.

Proof. Fix t > 0 and x ∈ M . We first show that u is a viscosity subsolution.
Let ψ : (0,∞) → UCκ differentiable with ψ(t) ∈ D,

(

ψ(t)
)

(x) =
(

u(t)
)

(x) and
ψ(s) ≥ u(s) for all s > 0. Then, for every h ∈ (0, t), it follows from Equation
(2.6) that

0 =
S (h)S (t− h)u0 − S (t)u0

h
=

S (h)u(t− h)− u(t)

h

≤ S (h)ψ(t− h)− u(t)

h
≤ S (h)

(

ψ(t− h)− ψ(t)
)

+ S (h)ψ(t)− u(t)

h

= S (h)

(

ψ(t− h)− ψ(t)

h

)

+
S (h)ψ(t)− ψ(t)

h
+
ψ(t)− u(t)

h
.

Moreover,
∥

∥

∥

∥

S (h)

(

ψ(t− h)− ψ(t)

h

)

+ ψ′(t)

∥

∥

∥

∥

κ

→ 0 and

∥

∥

∥

∥

S (h)ψ(t)− ψ(t)

h
−Aψ(t)

∥

∥

∥

∥

κ

→ 0.

as hց 0. Since
(

u(t)
)

(x) =
(

ψ(t)
)

(x), it follows that

0 ≤ −
(

ψ′(t)
)

(x) +
(

Aψ(t)
)

(x).

In order to show that u is a viscosity supersolution, let ψ : (0,∞) → UCκ differ-
entiable with ψ(t) ∈ D,

(

ψ(t)
)

(x) =
(

u(t)
)

(x) and ψ(s) ≤ u(s) for all s > 0. By
Equation (2.6), for all h > 0 with 0 < h < t, we obtain that

0 =
S (t)u0 − S (h)S (t− h)u0

h

=
u(t)− S (h)u(t− h)

h
≤ u(t)− S (h)ψ(t− h)

h

=
u(t)− ψ(t)

h
+
ψ(t)− S (h)ψ(t)

h
+

S (h)ψ(t)− S (h)ψ(t− h)

h

≤ u(t)− ψ(t)

h
+
ψ(t)− S (h)ψ(t)

h
+ S (h)

(

ψ(t)− ψ(t− h)

h

)

.
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Furthermore,
∥

∥

∥

∥

S (h)

(

ψ(t)− ψ(t− h)

h

)

− ψ′(t)

∥

∥

∥

∥

κ

→ 0 and

∥

∥

∥

∥

ψ(t)− S (h)ψ(t)

h
+Aψ(t)

∥

∥

∥

∥

κ

→ 0.

Since
(

u(t)
)

(x) =
(

ψ(t)
)

(x), we obtain that 0 ≤ −
(

Aψ(t)
)

(x) +
(

ψ′(t)
)

(x). �

5. Stochastic representation

In this section, we derive a stochastic representation for the semigroup envelope
S using sublinear expectations. Such stochastic representations are of fundamen-
tal interest in various fields and, in particular, in the field of robust finance. The
prime example for a sublinear expectation arising from a semigroup envelope for
a particular family of semigroups is the G-expectation, cf. Denis et al. [8] and
Peng [30],[31], and the corresponding Markov process, the G-Brownian Motion,
is the analogue of a Brownian Motion in the presence of volatility uncertainty.
More general forms of stochastic processes arising from semigroups are given by
the class of so-called G-Lévy processes, cf. Hu and Peng [18], Neufeld and Nutz
[25], and Denk et al. [10]. In this section, we provide a similar representation
for S under an additional continuity assumption. We point out that our setup
covers the aforementioned existing approaches. We start with a short introduc-
tion to the theory of nonlinear expectations. For a measurable space (Ω,F),
we denote the space of all bounded F -measurable functions (random variables)
Ω → R by L∞(Ω,F). For two bounded random variables X, Y ∈ L∞(Ω,F) we
write X ≤ Y if X(ω) ≤ Y (ω) for all ω ∈ Ω. For a constant α ∈ R, we do not
distinguish between α and the constant function taking the value α.

Definition 5.1. Let (Ω,F) be a measurable space. A functional E : L∞(Ω,F) →
R is called a sublinear expectation if for all X, Y ∈ L∞(Ω,F) and λ > 0

(i) E(X) ≤ E(Y ) if X ≤ Y ,
(ii) E(α) = α for all α ∈ R,
(iii) E(X + Y ) ≤ E(X) + E(Y ) and E(λX) = λE(X).

We say that (Ω,F , E) is a sublinear expectation space if there exists a set of
probability measures P on (Ω,F) such that

E(X) = sup
P∈P

EP(X) for all X ∈ L∞(Ω,F),

where EP(·) denotes the expectation w.r.t. to the probability measure P.

Definition 5.2. Let L ⊂ UCκ be a linear space. We say that S is continuous
from above on L if S (t)un ց 0 for all t ≥ 0 and all (un)n∈N ⊂ L with un ց 0 as
n→ ∞.

Remark 5.3.

a) Assume that M is compact. Then, by Dini’s lemma, S is continuous
from above on UCκ = UCb.
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b) Assume that M satisfies the Heine-Borel property, i.e. every closed and
bounded subset of M is compact, and that κ ∈ C0. Then, UCκ = {u ∈
C | κu ∈ C0}, where C0 denotes the closure of the space Cc of all continuous
functions with compact support w.r.t. ‖ · ‖∞. In fact, let u ∈ UCκ. Then,
there exists a sequence (un)n∈N ⊂ Lipb with ‖u − un‖κ → 0 as n → ∞.
Since κ ∈ C0, it follows that vn := κun ∈ C0 for all n ∈ N. Since C0

endowed with ‖ · ‖∞ is a Banach space and

‖κu− vn‖∞ = ‖u− un‖κ → 0 as n→ ∞,

we find that κu ∈ C0. Now, assume that κu ∈ C0. Then, there exists
a sequence (vn)n∈N ⊂ Cc with ‖κu − vn‖∞ → 0. Defining un := vn

κ
for

n ∈ N, we see that un ∈ C0 ⊂ UCb. Since UCb ⊂ UCκ and

‖u− un‖κ = ‖κu− vn‖∞ → 0,

it follows that u ∈ UCκ. We have therefore established the equality UCκ =
{u ∈ C | κu ∈ C0}. Let (un)n∈N ⊂ UCκ with un ց 0 as n → ∞. Since
vn := κun ∈ C0 for all n ∈ N with vn ց 0 as n → ∞, it follows that
‖un‖κ = ‖vn‖∞ → 0 as n → ∞ by Dini’s lemma. In particular, the
semigroup S and in fact every continuous map UCκ → UCκ is continuous
from above on UCκ.

c) Assume that S is continuous from above on Lipb. the space Lipb is
invariant under S (t) for all t ≥ 0. Note that S (t)u ∈ Lipb for all
u ∈ Lipb and t ≥ 0. Therefore, by [9, Remark 5.4], S (t) uniquely extends
to an operator S (t) : Cb → Cb, which is again continuous from above.
Moreover, for every n ∈ N, v ∈ Cb(M

n+1) the mapping

Mn+1 → R, (x1, . . . , xn, xn+1) 7→
(

S (t)v(x1, . . . , xn, · )
)

(xn+1)

is bounded and continuous.

Continuity from above on Lipb will be crucial for the existence of a stochastic
representation. In Remark 5.3 b), we have seen that, ifM satisfies the Heine-Borel
property and κ ∈ C0, then S is continuous from above on UCκ. The following
proposition, which is a generalisation of [10, Proposition 2.8], gives a sufficient
condition for the continuity from above on Lipb in the case that κ does not vanish
at infinity and M is (only) locally compact. Recall that C0 is the closure of the
space Lipc of all Lipschitz continuous functions with compact support w.r.t. the
supremum norm ‖ · ‖∞, and that C0 ⊂ UCb ⊂ UCκ.

Proposition 5.4. Suppose that for every x ∈ M and every δ > 0 there exists a
function ϕx ∈ C0 satisfying the following:

(i) ϕx(x) = 1 and 0 ≤ ϕx ≤ 1,
(ii) ϕx ∈ ⋂

λ∈ΛD(Aλ) with supλ∈Λ ‖Aλϕx‖κ ≤ δ.

Then, S is continuous from above on Lipb.

Proof. Fix t > 0, x ∈ M and δ > 0. Notice that 1 ∈ D(Aλ) with Aλ1 = 0 since
Sλ(t)1 = 1 for all λ ∈ Λ. Therefore, (1 − ϕx) ∈

⋂

λ∈ΛD(Aλ) with Aλ(1 − ϕx) =
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−Aλϕx. Since ϕx(x) = 1, it follows that

κ(x)
[(

S (t)(1− ϕx)
)

(x)
]

≤ ‖S (t)(1− ϕx)− (1− ϕx)‖κ ≤ teαt sup
λ∈Λ

‖Aλϕx‖κ

≤ δteαt.

Let (un)n∈N ⊂ Lipb with un ց 0 as n → ∞ and ε > 0. Then, there exists some

ϕx ∈ C0 satisfying (i) and (ii) with δ = εκ(x)
2teαtc

, where c := max
{

1, ‖u1‖∞
}

. Then,

‖un‖∞
(

S (t)(1− ϕx)
)

(x) ≤ ε

2
for all n ∈ N.

Moreover, there exists some n ∈ N such that ‖unϕx‖κ < ε
2
since ϕx ∈ C0. Hence,

(

S (t)un
)

(x) ≤ ‖un‖∞
(

S (t)(1− ϕx)
)

(x) +
(

S (t)(unϕx)
)

(x) < ε.

This shows that S (t)un ց 0 as n → ∞. Now, let (un)n∈N ⊂ Lipb and u ∈ Lipb

with un ց u as n→ ∞. Then,

|S (t)un − S (t)u| ≤ S (t)(un − u) ց 0 as n→ ∞.

�

Note that, although not explicitly stated in Proposition 5.4, the existence of
a function ϕx ∈ C0 with ϕx(x) 6= 0 for all x ∈ M implies that M is locally
compact. Thus, Proposition 5.4 is thus only applicable for locally compact M .
The following theorem is a direct consequence of [9, Theorem 5.6].

Theorem 5.5. Assume that M is a Polish space and that S is continuous from
above on Lipb. Then, there exists a quadruple (Ω,F , (Ex)x∈M , (Xt)t≥0) such that

(i) Xt : Ω →M is F-B-measurable for all t ≥ 0,
(ii) (Ω,F , Ex) is a sublinear expectation space with Ex(u(X0)) = u(x) for all

x ∈M and u ∈ Cb,
(iii) For all 0 ≤ s < t, n ∈ N, 0 ≤ t1 < . . . < tn ≤ s and v ∈ Cb(M

n+1),

Ex
(

v(Xt1 , . . . , Xtn , Xt)
)

= Ex
((

S (t− s)v(Xt1 , . . . , Xtn , · )
)

(Xs)
)

. (5.1)

In particular,
(

S (t)u
)

(x) = Ex(u(Xt)). (5.2)

for all t ≥ 0, x ∈M and u ∈ Cb.

Remark 5.6.

a) The quadruple (Ω,F , (Ex)x∈M , (Xt)t≥0) can be seen as a nonlinear version
of a Markov process. As an illustration, we consider the case, where
the semigroup S and thus Ex is linear for all x ∈ M , and choose v =
u(Xt)1B(Y ) with u ∈ UCb and B ∈ Bn, where Bn denotes the product σ-
algebra of the Borel σ-algebra B. Then, Ex = EPx is the expectation w.r.t.
a probability measure P

x on (Ω,F) for all x ∈ M . Using the continuity
from above and Dynkin’s lemma, Equation (5.1) reads as

EPx

(

u(Xt)1B(Xt1 , . . . , Xtn)
)

= EPx

[(

S (t− s)u
)

(Xs)1B(Xt1 , . . . , Xtn)
]

,

which is equivalent to the Markov property

EPx

(

u(Xt)|Fs

)

=
(

S (t− s)u
)

(Xs) P
x-a.s., (5.3)
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where Fs := σ
(

{Xu | 0 ≤ u ≤ s}
)

. On the other hand, if Ex = EPx , the
Markov property (5.3) implies Property (iii) from Theorem 5.5.

b) A natural question, in particular in view of (5.1) is, if the nonlinear ex-
pectation Ex can be extended to unbounded functions satisfying a certain
growth condition. We would like to point out that [9, Theorem 5.6] a
priori only applies to bounded functions. Using the fact that Ex admits a
representation in terms of a nonempty set Px of probability measures on
(Ω,F), i.e.

Ex(Y ) = sup
P∈Px

EP(Y ) for all Y ∈ L∞(Ω,F),

allows to define
Ex(Y ) := sup

P∈Px

EP(Y ) ∈ R

for F -measurable functions Y : Ω → R with supP∈Px EP(|Y |) < ∞. On
the other hand, (5.2) gives rise to a well-defined notion of Ex for functions
of the form u(Xt) with u ∈ UCκ and t ≥ 0. Consider a weight function
w ∈ UCκ with w(x) ≥ 0 for all x ∈M and a measurable function u : M →
R with |u(x)| ≤ w(x) for all x ∈M . Then, (5.2) implies that

Ex
(

|u(Xt)|
)

≤ Ex
(

w(Xt)
)

=
(

S (t)w
)

(x) <∞
for all t ≥ 0 and x ∈M .

6. Connection to control theory

In this section, we discuss our results in light of the standard literature and stan-
dard examples in control theory. In particular, we discuss the relation between
the semigroup envelope and the value function of Meyer-type control problems.
We further go into more detail on our notion of a viscosity solution in view of the
standard one and uniqueness results for the latter.

6.1. The notion of viscosity solution and uniqueness. A priori, our notion
of a viscosity solution is somewhat different from the classical one related to
(standard) parabolic HJB equations. The key difference between both notions is
the class of test functions. While in a standard setting, the class of test functions
typically consists of sufficiently smooth functions defined on the parabolic domain
[0,∞)×M , in our notion, we formally separate the space and time variable and
consider differentiable functions ψ : [0,∞) → UCκ taking values in a function
space. Here, time regularity is given in terms of differentiability in t w.r.t. the
norm ‖ · ‖κ, and the convergence of the difference quotient to the derivative is
thus up to the weight κ uniform in the space variable. Space regularity is given
in terms of the abstract condition ψ(t) ∈ D, where

D :=

{

u ∈
⋂

λ∈Λ

D(Aλ)

∣

∣

∣

∣

sup
λ∈Λ

‖Aλu‖κ <∞ and lim
hց0

∥

∥

∥

∥

S (h)u− u

h
−Au

∥

∥

∥

∥

κ

= 0

}

.

Let us consider as an illustrative example, the case where M = R, κ = 1, and
Aλ = λ2

2
∂xx for λ ∈ Λ := [σℓ, σh] with 0 < σℓ ≤ σh. That is, our control

parameter is the volatility of a Brownian Motion. In this case, D = UC2
b is the
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space of all twice differentiable functions with bounded and uniformly continuous
derivatives. We therefore see that, in the case of partial differential equations, the
set D typically encodes some sort of space regularity in terms of differentiability
in the space variable. This will become also clear in the examples in Section 6.3.

As we point out in Remark 4.4, it is, in general, unclear how rich the class of
test functions for a viscosity solution from Definition 4.3 is. Therefore, uniqueness
is not given a priori and has to be checked on a case by case basis. However, it
is worth noting that, if M is, for example, an open subset of Rd with d ∈ N, the
standard notion of a viscosity solution is very robust in view of the considered
class of test functions, cf. Ishii [19, Remark 1.5 and Example 1.2]. Typically,
one chooses functions that are twice differentiable onM × [0,∞) with continuous
derivatives up to order 2 as test functions. However, the notion of a viscosity so-
lution and, in particular, uniqueness is not affected by replacing C2(M × [0,∞)),
e.g., by C∞

c ([0,∞)×M), i.e. functions that are compactly supported and infin-
itely smooth functions. Roughly speaking this is due to the fact that the notion
of a viscosity solution is a very local solution concept, and therefore only the local
behaviour of test functions matters. We point out that under very mild condi-
tions, e.g., for all δ > 0 and x ∈ M , the existence of a cut-off function ϕ ∈ D
with 0 ≤ ϕ ≤ 1, ϕ(x) = 0, and ϕ(y) = 1 for y ∈ M with d(x, y) ≥ δ, our notion
of a viscosity solution can also be formulated in terms of local extrema instead
of global extrema; thus leading to a local solution concept as well.

We build on Remark 4.4 in the case thatM is an open subset of Rd with d ∈ N.
Assume that C∞

c ⊂ D, where C∞
c denotes the space of all infinitely differentiable

functions M → R with compact support, and let ψ ∈ C∞
c ([0,∞)×M). Since ψ

has a compact support and κ is continuous, it follows that

sup
x∈M

κ(x)

∣

∣

∣

∣

ψ(t+ h, x)− ψ(t, x)

h
− ∂tψ(t, x)

∣

∣

∣

∣

≤ Lh→ 0 as hց 0

for all t > 0. In particular, the function

ψ : [0,∞) → UCκ, t 7→ ψ(t) := ψ(t, · )
is differentiable. Moreover ψ(t) = ψ(t, · ) ∈ C∞

c ⊂ D. Therefore, assuming that
(at least) C∞

c ⊂ D, any ψ ∈ C∞
c ([0,∞) × M) is a test function in the sense

of Definition 4.3. Thus, the notion of a viscosity solution from Definition 4.3
coincides with the usual notion in most cases covered by the standard theory.
As a consequence, uniqueness of viscosity solutions can be obtained from Ishii’s
lemma.

6.2. Semigroup envelopes as value functions to optimal control prob-

lems. In this section, we identify the semigroup envelope as the value function of
a space-time discrete Meyer-type optimal control problem under the additional
assumption that each semigroup Sλ is a family of transition kernels of a stochas-
tic process. In the following, we describe the broad idea behind the approach
using semigroup envelopes. Assume that, Sλ is a semigroup of transition kernels
of a controlled stochastic process (Xx,λ

t )t≥ (for the sake of a simplified notation
defined on the same probability space) with control set Λ and control parameter
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λ ∈ Λ, i.e.
(

Sλ(t)u
)

(x) = E
[

u
(

X
λ,x
t

)]

for x ∈ M , λ ∈ Λ, t ≥ 0, and u ∈ UCκ. Then, for a fixed time-horizon t ≥ 0,
one typically considers a (suitably defined) set of admissible controls Λt

ad and the
value function

V (u, t, x) := sup
λ∈Λt

ad

E
[

u
(

X
λ,x
t

)]

(6.1)

of the related Meyer-type optimal control problem. Note that this is usually only
possible if the controlled dynamics satisfy a certain structure. The idea behind
the semigroup envelope is to transform the dynamic optimization problem given
in terms of the value function (6.1) into a series of static optimization problems
with value functions of the form

sup
λ∈Λ

E
[

u
(

X
λ,x
t

)]

= sup
λ∈Λ

(

Sλ(t)u
)

(x) =:
(

Etu
)

(x), (6.2)

Now, one considers a partition π = {t0, . . . , tm} ∈ Pt with 0 = t0 < . . . < tm = t

of the time-interval [0, t], and one optimizes after each time-step, leading to the
expression

(

Eπu
)

(x)
(

Et1−t0 · · · Etm−tm−1
u
)

(x). (6.3)

Letting the mesh size |π| of the partition π tend to zero or taking the supremum
over all partitions π ∈ Pt leads to a formal approximation of the dynamic opti-
mization problem (6.1) in terms of a series of static control problems on a grid
that becomes finer and finer as the mesh size tends to zero.

In the sequel, we will make this approximation rigorous by choosing the set
of admissible controls as space-time discrete controls. To that end, we consider
static controls of the form

ΛM :=

{

(λi, Bi)i∈N ∈ (Λ× B)N
∣

∣

∣

∣

Bi ∩ Bj = ∅ for i 6= j and
⋃

i∈N

Bi =M

}

One can think of λ = (λi, Bi)i∈N ∈ (Λ×B)N ∈ ΛM as a function taking the value
λi on Bi for each i ∈ N. For λ = (λi, Bi)i∈N ∈ (Λ× B)N ∈ ΛM , we define

(

Sλ(t)u
)

(x) :=
∑

i∈N

1Bi
(x)

(

Sλi(t)u
)

(x) (6.4)

for all x ∈M and u ∈ UCκ. We now add a dynamic component, and define

Λt
ad :=

{

(λk, hk)k=1,...,m ∈
(

ΛM × [0, t]
)m

∣

∣

∣

∣

m ∈ N,

m
∑

k=1

hk = t

}

. (6.5)

Roughly speaking, the set Λt
ad corresponds to the set of all space-time discrete

admissible controls for the control set Λ. For λ = (λk, hk)k=1,...,m ∈ Λt
ad with

m ∈ N and u ∈ UCκ, we define

Jλu := Sλ1
(h1) · · ·Sλm

(hm)u,

where Sλk
(hk) is defined as in (6.4) for k = 1, . . . , m. Then, for all t ≥ 0, u ∈ UCκ,

and x ∈M ,
(

S (t)u
)

(x) = sup
λ∈Λt

ad

(

Jλu
)

(x). (6.6)
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That is, the semigroup envelope is the value function of an abstract analogue of
the optimal control problem (6.1) with Λt

ad given as in (6.5). In fact, by definition
of Λt

ad, it follows that supλ∈Λt

ad
Jλu ≤ S (t)u for all t ≥ 0 and u ∈ UCκ. On the

other hand, let ε > 0 and π = {t0, . . . , tm} ∈ Pt with 0 = t0 < . . . < tm = t, and
define hk := tk − tk−1 for k = 1, . . . , m. By a backward recursion, we may choose
an ε

2m
-optimizer of Ehk

· · · Ehm
u for each x ∈ M and k = m, . . . , 1. Since M is

separable, there exist λ1, . . . , λm ∈ ΛM such that

Eπu = Eh1
· · · Ehm

u ≤ Sλ1
(h1) · · ·Sλm

(hm)u+ ε = Jλu+ ε

where λ := (λk, tk − tk−1)k=1,...,m ∈ Λt
ad. Letting ε→ 0 and taking the supremum

over all π ∈ Pt and λ ∈ Λt
ad, yields S (t)u ≤ supλ∈Λt

ad
Jλu.

Considering standard cases in optimal control, the connection between semi-
group envelopes and the value function of a Meyer-type optimal control problem
can also be established a posteriori, since both lead to a viscosity solution to
the same HJB-equation. In these cases, one thus sees that the optimizing over
space-time discrete admissible controls, which we have discussed in this section,
is equivalent to optimizing over usual admissible controls, which typically possess
a nondiscrete structure.

6.3. Some illustrative examples from control theory. In this section, we
discuss two examples in the context of control theory. For k ∈ N0, let Lipk

b

denote the space of all k-times differentiable functions with bounded and Lipschitz
continuous (Fréchet) derivatives up to order k.

Example 6.1 (Geometric Brownian Motion). Let M = R and Λ be a nonempty
set of tuples (µ, σ) ⊂ R× [0,∞) with

β := sup
(µ,σ)∈Λ

|µ|+ σ2

2
<∞

Let λ = (µ, σ) ∈ Λ, p ≥ 1, and W be a Brownian Motion on a probability space
(Ω,F ,P). Define

Xλ
t := exp

(

t
(

µ− σ2

2

)

+ σWt

)

for t ≥ 0 and x ∈ R. Then,

E(|Xλ
t |p)

1
p = e

(

µ+
(p−1)σ2

2

)

t ≤ epβt.

Moreover,

E
(

|Xλ
t − 1|2

)

= 1− 2E
(

Xλ
t

)

+ E
(

|Xλ
t |2

)

= 1− 2eµt + e(2µ+σ2)t

≤ 1− 2e−βt + e2βt.

Let κ(x) := (1 + |x|)−p for x ∈ R and Sλ be given by
(

Sλ(t)u
)

(x) := E
(

u(xXλ
t )
)

for u ∈ UCκ, t ≥ 0, and x ∈ R. Then, it follows that ‖Sλ(t)u‖κ ≤ epβt‖u‖κ for
t ≥ 0 and u ∈ UCκ. Moreover, for u ∈ Lipb, ‖u‖Lip ≤ eβt‖u‖Lip and

‖Sλ(t)u− u‖κ ≤ ‖u‖LipE
(

|X1
t − 1|

)

≤
√

1− 2e−βt + e2βt → 0 as t→ 0. (6.7)
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Therefore, by Theorem 2.5 and Proposition 3.5, the semigroup envelope S for the
family (Sλ)λ∈Λ exists and is a strongly continuous Feller semigroup. Let u ∈ Lip2

b

with compact support supp(u) and Aλu ∈ Lipb be given by

(

Aλu
)

(x) := µxu′(x) +
σ2x2

2
u′′(x) for x ∈ R.

Since supp(u) is compact,

sup
λ∈Λ

‖Aλu‖∞ <∞ and Cu := sup
λ∈Λ

‖Aλu‖Lip <∞.

By Ito’s formula, it follows that
(

Sλ(h)u
)

(x)− u(x)

h
=

1

h

∫ h

0

(

Sλ(s)Aλu
)

(x) ds

for all h > 0 and x ∈ R, which, together with (6.7), implies that
∥

∥

∥

∥

Sλ(h)u− u

h
− Aλu

∥

∥

∥

∥

κ

≤ Cu

√

1− 2e−βh + e2βh → 0 as hց 0.

It follows that the set of all u ∈ Lip2
b with compact support supp(u) is contained

in D. By Theorem 4.5, we thus obtain that u(t) := S (t)u0, for t ≥ 0, defines a
viscosity solution to the fully nonlinear Cauchy problem

∂tu(t, x) = sup
(µ,σ)∈Λ

(

µx∂xu(t, x) +
σ2x2

2
∂xxu(t, x)

)

, (t, x) ∈ (0,∞)× R,

u(0, x) = u0(x), x ∈ R.

Under the nondegeneracy condition inf(µ,σ)∈Λ |σ| > 0, the above HJB equation
has a unique viscosity solution. By Remark 5.3 b), the semigroup S is contin-
uous from above. The nonlinear Markov process related to S can be seen as a
geometric G-Brownian Motion (cf. Theorem 5.5).

Example 6.2 (Ornstein-Uhlenbeck processes on separable Hilbert spaces). We
consider the case where M = H is a real separable Hilbert space. Let Λ be a set
of triplets (B,m,C), where m ∈ H , B ∈ L(H), and C ∈ L(H) is a self-adjoint
positive semidefinite trace class operator, with

β := sup
(B,m,C)∈Λ

(

‖B‖+ ‖m‖ + ‖C‖tr
)

<∞.

Let λ = (B,m,C) ∈ Λ, TB(t) := etB ∈ L(H), for t ≥ 0, and WC be an H-valued
Brownian Motion with covariance operator C on a probability space (Ω,F ,P).
For t ≥ 0, we define

Xλ
t :=

∫ t

0

TB(s)m ds+

∫ t

0

TB(t− s) dWC
s

and Sλ by
(

Sλ(t)u
)

(x) := E
(

u(TB(t)x+Xλ
t )
)
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for x ∈ H , t ≥ 0, and u ∈ UCκ. Moreover, let κ := (1 + ‖x‖2)−1 for x ∈ H .
Using basic facts from (infinite-dimensional) stochastic calculus and (7.4), below,
for F (x) = B(x) +m,

1 + E(‖TB(t)x+Xλ
t ‖2) ≤ 1 +

∥

∥

∥

∥

TB(t)x+

∫ t

0

TB(s)m ds

∥

∥

∥

∥

2

+

∫ t

0

e2‖B‖s‖C‖tr ds

≤ (1 + ‖x‖2)e2
(

‖B‖+‖m‖
)

t + e2‖B‖t‖C‖trt
≤ (1 + ‖x‖2)e2βt

for all t ≥ 0 and x ∈ H , which implies that ‖Sλ(t)u‖κ ≤ e2βt‖u‖κ for all t ≥ 0
and u ∈ Lipb. By (7.3), below, ‖Sλ(t)u‖Lip ≤ eβt‖u‖Lip for all t ≥ 0 and u ∈ Lipb.
For u ∈ Lip2

b, let

Cu := max{‖Dxu‖, ‖D2
xu‖∞, ‖D2

xu‖Lip},
where Dx and D2

x denote the first and second Fréchet derivative in the space-
variable, and Aλu ∈ Cκ be given by

(

Aλu
)

(x) = Dxu(x)(Bx+m) +
1

2
tr
(

CD2
xu(x)

)

for x ∈ H . Then, for all h ≥ 0 and x ∈ H ,
∣

∣

(

Sλ(h)Aλu
)

(x)−
(

Aλu
)

(x)
∣

∣ ≤ Cuβ(1 + ‖x‖)E
(

‖TB(t)x+Xλ
t − x‖

)

.

We estimate the last term using (7.4), below, and obtain that

E
(

‖TB(t)x+Xλ
t − x‖

)

≤
(

e(‖B‖+‖m‖)t − 1
)(

1 + ‖x‖
)

+
√

‖C‖trt
≤ (1 + ‖x‖)

(

eβt − 1 +
√

βt
)

.

Therefore,

‖Sλ(h)Aλu−Aλu‖κ ≤ Cu

√
2β

(

eβh − 1 +
√

βh
)

.

By Ito’s formula, it follows that
(

Sλ(h)u
)

(x)− u(x)

h
=

1

h

∫ h

0

(

Sλ(s)Au
)

(x) ds

for all h > 0 and x ∈ H , which implies that
∥

∥

∥

∥

Sλ(h)u− u

h
−Aλu

∥

∥

∥

∥

κ

≤ Cu

√
2β

(

eβh − 1 +
√

βh
)

→ 0 as hց 0.

In order to show that Lip2
b ⊂ D, it remains to show that S is strongly continuous.

For this we invoke Proposition 3.6. Note that Lip2
b is not dense in Lipb if H

is infinite-dimensional. Let δ ∈ (0, 1] and ϕ : [0,∞) → [0, 1] infinitely smooth
with ϕ(s) = 1 for x ∈

[

0, δ
2

]

and ϕ(s) = 0 for s ∈ [δ,∞). For x, y ∈ H , let

ϕx(y) := ϕ(‖y − x‖). Then, ϕx ∈ Lip2
b with

‖Dxϕx‖∞ ≤ ‖ϕ′‖∞ and ‖D2
xϕx‖∞ ≤ 3

δ
‖ϕ′‖∞ + ‖ϕ′′‖∞ for all x ∈M.

Hence,

‖Aλϕx‖κ ≤ 5β

2δ
max

(

‖ϕ′‖∞ + ‖ϕ′′‖∞
)

=: L
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for all x ∈ M . Therefore, by Proposition 3.6, the semigroup S is strongly
continuous. Altogether, we have shown that the assumptions (A1) and (A2) are
satisfied, the semigroup envelope S is strongly continuous and Lip2

b ⊂ D. By
Theorem 4.5, we thus obtain that u(t) := S (t)u0, for t ≥ 0, defines a viscosity
solution to the fully nonlinear PDE

∂tu(t, x) = sup
(B,m,C)∈Λ

(

Dxu(t, x)(Bx+m) +
1

2
tr
(

CD2
xu(t, x)

)

)

,

(t, x) ∈ (0,∞)×H,

u(0, x) = u0(x), x ∈ H.

We point out that, by Remark 4.4, the class of test functions in the definition of
a viscosity solution contains the set Lip1,2

b [0,∞)×H). If H = R
d, the semigroup

S is continuous from above by Remark 5.3 b), which implies the existence of
an O-U-process under a nonlinear expectation which represents S (cf. Theorem
5.5).

7. Further examples

For k ∈ N0, let Lipk
b denote the space of all k-times differentiable functions

with bounded and Lipschitz continuous derivatives up to order k.

Example 7.1 (Koopman semigroups on real separable Banach spaces). We con-
sider the case, where the state spaceM = X is a real separable Banach space. We
denote topological dual space of X by X ′ and the operator norm on X ′ by ‖ · ‖X′.
We consider a nonempty set Λ of Lipschitz continuous functions F : X → X with

β := sup
F∈Λ

(

sup
x,y∈M
x 6=y

‖F (x)− F (y)‖
‖x− y‖

)

<∞ and α := β + sup
F∈Λ

‖F (0)‖ <∞.

Let F ∈ Λ, and denote by ΦF : [0,∞)×X → X the continuous semiflow related
to the ODE x′ = F (x), i.e., for x ∈ X , Φ( · , x) is the unique solution to the initial
value problem

∂tΦF (t, x) = F
(

ΦF (t, x)
)

, for t ≥ 0, (7.1)

ΦF (0, x) = x. (7.2)

Then, by Gronwall’s lemma,

‖ΦF (t, x)− ΦF (t, y)‖ ≤ eβt‖x− y‖ (7.3)

for all t ≥ 0 and x, y ∈ X . Moreover,

1 + ‖x‖ + ‖ΦF (t, x)− x‖ ≤ 1 + ‖x‖+ α

∫ t

0

1 + ‖x‖+ ‖ΦF (s, x)− x‖ ds

for all t ≥ 0 and x ∈ X . Again, by Gronwall’s lemma, it follows that

1 + ‖ΦF (t, x)‖ ≤ 1 + ‖x‖+ ‖ΦF (t, x)− x‖ ≤
(

1 + ‖x‖
)

eαt (7.4)

for all t ≥ 0 and x ∈ X . Let p ∈ (0,∞) and κ(x) :=
(

1 + ‖x‖
)−p

for all x ∈ X .
For u ∈ UCκ, t ≥ 0, and x ∈ X , we define

(

SF (t)u
)

(x) := u
(

ΦF (t, x)
)

.
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Then, by (7.4), for u ∈ UCκ, t ≥ 0, and x ∈ X ,
∣

∣

(

SF (t)u
)

(x)
∣

∣ ≤ ‖u‖κ
(

1 + ‖ΦF (t, x)‖
)p ≤ ‖u‖κ

(

1 + ‖x‖
)p
eαpt,

which implies that ‖SF (t)u‖κ ≤ eαpt‖u‖κ. Moreover, Equation (7.3) yields that
‖SF (t)u‖Lip ≤ eβt‖u‖Lip for all u ∈ Lipb. We have therefore shown that the
family of semigroups (SF )F∈Λ satisfies the assumptions (A1) and (A2), so that
the semigroup envelope of the family (SF )F∈Λ exists. We continue by showing
that the semigroup envelope S is strongly continuous. Let θ := min{1, p} and
u ∈ UCb with

Cu,θ := sup
x,y∈M

|u(x)− u(y)|
|x− y|θ <∞.

Again, by (7.4),
∣

∣

(

SF (t)u
)

(x)− u(x)
∣

∣ ≤ Cu,θ‖ΦF (t, x)− x‖θ ≤ Cu,θ

(

1 + C + ‖x‖
)θ(

eαt − 1
)θ
.

Therefore,

‖SF (t)u− u‖κ ≤ Cu,θ

(

eαt − 1
)θ
. (7.5)

Since the set of all Hölder continuous functions of degree θ is dense in UCb w.r.t.
‖ · ‖∞ (and consequently w.r.t. ‖ · ‖κ), and UCb is dense in UCκ w.r.t. ‖ · ‖κ,
Proposition 3.5 implies that the semigroup envelope S is strongly continuous.
Let u ∈ Lip1

b with bounded support supp(u) := {x ∈ X | u(x) 6= 0} ⊂ X , i.e.
supp(u) ⊂ B(0, R) for some R > 0, and let AFu ∈ Lipb be given by

(

AFu
)

(x) := u′(x)F (x) for x ∈ X,

where u′ : X → X ′ denotes the (first) Fréchet derivative of u. Since supp(u) is
bounded,

sup
F∈Λ

‖AFu‖∞ <∞ and Cu := sup
F∈Λ

‖AFu‖Lip <∞.

By the chain rule and the fundamental theorem of infinitesimal calculus, it follows
that

(

SF (h)u
)

(x)− u(x)

h
=

1

h

∫ h

0

(

SF (s)AFu
)

(x) ds

for all h > 0 and x ∈ X , which, together with (7.5), implies that
∥

∥

∥

∥

SF (h)u− u

h
− AFu

∥

∥

∥

∥

κ

≤ Cu

(

eαh − 1
)

→ 0 as hց 0.

Hence, D contains the set of all u ∈ Lip1
b with bounded support supp(u). By

Theorem 4.5, we thus obtain that u(t) := S (t)u0, for t ≥ 0, defines a viscosity
solution to the fully nonlinear PDE

∂tu(t, x) = sup
F∈Λ

Dxu(t, x)F (x), (t, x) ∈ (0,∞)×X,

u(0, x) = u0(x), x ∈ X,

where Dx denotes the (first) Fréchet derivative in the space-variable. If X = R
d,

the semigroup envelope S is continuous from above by Remark 5.3 b). In this
case, Theorem 5.5 implies the existence of a Markov process under a nonlinear
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expectation related to S . This Markov process can be viewed as a nonlinear
drift process.

Example 7.2 (Lévy Processes on abelian groups). Let M = G be an abelian
group with a translation invariant metric d and κ(x) := 1 for all x ∈ M . Let
(S(t))t≥0 be a Markovian convolution semigroup, i.e. a semigroup arising from a
Lévy process. Then, (S(t))t≥0 is a strongly continuous Feller semigroup of linear
contractions (cf. [10]). Moreover, due to the translation invariance, ‖S(t)u‖Lip ≤
‖u‖Lip for all t ≥ 0 and u ∈ Lipb. Now, let (Sλ)λ∈Λ be a family of Markovian
convolution semigroups with generators (Aλ)λ∈Λ. Then, the assumptions (A1) -
(A2) are satisfied. We refer to [10] for examples, where the semigroup envelope
is strongly continuous. In particular, all examples from [10] fall into our theory.
In the case, where G = H is a real separable Hilbert space, we can improve the
result obtained in [10, Example 3.3]. In this case, by the Lévy-Khintchine formula
(see e.g. [23, Theorem 5.7.3]), every generator A of a Markovian convolution
semigroup is characterized by a Lévy triplet (b,Σ, µ), where b ∈ H , Σ ∈ L(H) is
a self-adjoint positive semidefinite trace-class operator and µ is a Lévy measure
on H . For u ∈ Lip2

b(H) and a Lévy triplet (b,Σ, µ), the generator Ab,Σ,µ is given
by

(

Ab,Σ,µu
)

(x) = 〈b,Dxu(x)〉+
1

2
tr
(

ΣD2
xu(x)

)

+

∫

H

u(x+ y)− u(x)− 〈Dxu(x), h(y)〉 dµ(y)

for x ∈ H . Here, Dx and D2
x denote the first and second Fréchet derivative in the

space-variable, respectively, and the function h : H → H is defined by h(y) = y

for ‖y‖ ≤ 1 and h(y) = 0 whenever ‖y‖ > 1. Let Λ be a nonempty set of Lévy
triplets. We assume that

C := sup
(b,Σ,µ)∈Λ

(

‖b‖ + ‖Σ‖tr +
∫

H

1 ∧ ‖y‖2 dµ(y)
)

<∞. (7.6)

Note that (7.6) does not exclude any Lévy triplet a priori. Under (7.6), the
semigroup envelope S is strongly continuous on Lip2

b. In order to show that
Lip2

b ⊂ D, by the computations in [10], it suffices to show that S is strongly
continuous. For this we invoke Proposition 3.4. For δ > 0, we choose the family
(

ϕx)x∈H as in the previous example. Since
(

S (t)v
)

(x) =
(

S (t)v(x + ·)
)

(0) for
all v ∈ UCκ, x ∈ H and t ≥ 0, it follows that

(

S (t)(1− ϕx)
)

(x) =
(

S (t)(1− ϕ0)
)

(0)

for all x ∈ H and t ≥ 0. Defining f(t) :=
(

S (t)(1 − ϕ0)
)

(0) for t ≥ 0, it follows
that f is continuous with f(0) = 0. Therefore, by Proposition 3.4, the semigroup
S is strongly continuous. Altogether, we have shown that under the condition
(7.6), the assumptions (A1) and (A2) are satisfied, the semigroup envelope S

is strongly continuous and Lip2
b ⊂ D. By Theorem 4.5, we thus obtain that

u(t) := S (t)u0, for t ≥ 0, defines a viscosity solution to the fully nonlinear
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Cauchy problem

ut(t, x) = sup
(b,Σ,µ)∈Λ

(

Ab,Σ,µu(t)
)

(x), (t, x) ∈ (0,∞)×H,

u(0, x) = u0(x), x ∈ H.

If H = R
d and the set of Lévy measures within the set of Lévy triplets Λ is

tight, Proposition 5.4 implies that the semigroup envelope S is continuous from
above, leading to the existence of a nonlinear Lévy process related to S . How-
ever, due to the translation invariance of the semigroups, the continuity from
above is actually not necessary in order to obtain the existence of a Lévy process
under a nonlinear expectation. The nonlinear Lévy process can be explicitly con-
structed via space-time discrete stochastic integrals w.r.t. Lévy processes with
Lévy triplet contained in Λ. We refer to [10, Proposition 5.12] for the details of
the construction.

Example 7.3 (α-stable Lévy processes). Consider the setup of the previous
example, with G = R

d for some d ∈ N and let Aα := −(−∆)α be fractional
Laplacian for 0 < α < 1. Then, for any compact subset Λ ⊂ (0, 1), condition
(7.6) is satisfied. Hence, the assumptions (A1) and (A2) are satisfied and the
semigroup envelope S is strongly continuous with Lip2

b ⊂ D. By Theorem 4.5,
we thus obtain that u(t) := S (t)u0, for t ≥ 0, defines a viscosity solution to the
nonlinear Cauchy problem

ut(t, x) = sup
α∈Λ

−(−∆)αu(t, x), (t, x) ∈ (0,∞)× R
d,

u(0, x) = u0(x), x ∈ R
d.

The related nonlinear Lévy process can be interpreted as a Λ-stable Lévy process.

Example 7.4 (Mehler semigroups). Consider the case, where the state space
M = H is a real separable Hilbert space and κ = 1. Let (T, µ) be a tuple
consisting of a C0-semigroup T = (T (t))t≥0 of linear operators onH with ‖T (t)‖ ≤
eαt for all t ≥ 0 and some α ∈ R and a family µ = (µt)t≥0 of probability measures
on H such that

µ0 = δ0 and µt+s = µs ∗ µt ◦ T (s)−1 for all s, t ≥ 0.

We then define the generalized Mehler semigroup S = S(T,µ) by

(

S(t)u
)

(x) :=

∫

H

u(T (t)x+ y) dµt(y)

for u ∈ UCb, t ≥ 0 and x ∈ H , see e.g. [5],[16]. Then, ‖S(t)u‖∞ ≤ ‖u‖∞ for all
u ∈ Cb and ‖S(t)u‖Lip ≤ eαt‖u‖Lip for u ∈ Lipb. Hence, for any nonempty family
Λ of tuples (T, µ) with ‖T (t)‖ ≤ eαt for all t ≥ 0 the assumptions (A1) and (A2)
are satisfied.

Example 7.5 (Bounded generators on ℓ∞). Let M = N and κ(i) = 1 for all
i ∈ N. Let (Aλ)λ∈Λ ⊂ L(ℓ∞) be a family of operators satisfying the positive
maximum principle and

sup
λ∈Λ

‖Aλ‖L(ℓ∞) <∞.
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Here, we say that an operator A ∈ L(ℓ∞) satisfies the positive maximum principle
if Aii < 0 for all i ∈ N and Aij ≥ 0 for all i, j ∈ N with i 6= j. Then, the family
(Aλ)λ∈Λ satisfies the assumptions (A1) and (A2) with D = ℓ∞. In particular, the
semigroup envelope is strongly continuous. If Aλ1 = 0 for all λ ∈ Λ, then the
semigroup envelope admits a stochastic representation. This representation can
be seen as a nonlinear Markov chain with state space N.

Example 7.6 (Multiples of generators of Feller semigroups). Let A be the gen-
erator of a strongly continuous Feller semigroup (S(t))t≥0 of linear operators.
Assume that there exist constants α, β ∈ R such that

‖S(t)u‖κ ≤ eαt‖u‖κ and ‖S(t)u‖Lip ≤ eβt‖u‖Lip
for all u ∈ Lipb and t ≥ 0. For λ ≥ 0 let Aλ := λA for all λ. Then, Aλ generates
the semigroup Sλ given by Sλ(t) := S(λt) for all t ≥ 0 and λ ≥ 0. Then, for any
compact set Λ ⊂ [0,∞) the family (Sλ)λ∈Λ satisfies the assumptions (A1) and
(A2) with D(A) ⊂ D and the semigroup envelope is strongly continuous. Hence,
by Theorem 4.5, we obtain that u(t) := S (t)u0, for t ≥ 0, defines a viscosity
solution to the abstract Cauchy problem

u′(t) = sup
λ∈Λ

λAu(t), for t > 0,

u(0) = u0.
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[17] J. Hollender. Lévy-Type Processes under Uncertainty and Related Nonlocal Equations.
PhD thesis, TU Dresden, 2016.
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In Stochastic analysis and applications, volume 2 of Abel Symp., pages 541–567. Springer,
Berlin, 2007.

[31] S. Peng. Multi-dimensional G-Brownian motion and related stochastic calculus under G-
expectation. Stochastic Process. Appl., 118(12):2223–2253, 2008.

[32] H. M. Soner, N. Touzi, and J. Zhang. Martingale representation theorem for the G-
expectation. Stochastic Process. Appl., 121(2):265–287, 2011.



34 M. NENDEL and M. RÖCKNER
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