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Abstract

Cryo-electron microscopy is a state-of-the-art method for determining high-
resolution three-dimensional models of molecules, from their two-dimensional
projection images taken by an electron microscope. A crucial step in this
method is to determine a low-resolution model of the molecule using only the
given projection images, without using any three-dimensional information,
such as an assumed reference model. For molecules without symmetry, this is
often done by exploiting common lines between pairs of images. Common lines
algorithms have been recently devised for molecules with cyclic symmetry, but
no such algorithms exist for molecules with dihedral symmetry.

In this work, we present a common lines algorithm for determining the
structure of molecules withD2 symmetry. The algorithm exploits the common
lines between all pairs of images simultaneously, as well as common lines
within each image. We demonstrate the applicability of our algorithm using
experimental cryo-electron microscopy data.

1 Introduction

Cryo-electron microscopy (cryo-EM) is a technique for acquiring two-dimensional
projection images of biological macromolecules [5]. In this technique, a large num-
ber of copies of the same molecule is rapidly frozen in a thin layer of ice, fixing
each molecule in some random unknown orientation. The frozen specimen is then
imaged by an electron microscope, producing a set of two-dimensional projection im-
ages (defined below). Once the imaging orientations of the frozen molecules which
produced the images are obtained, the three-dimensional structure of the molecule
can be recovered from the projection images by standard tomographic procedures.

Formally, choosing some arbitrary fixed coordinate system of R3, the orientations
of the imaged molecules at the moment of freezing can be described by a set of
rotation matrices

Ri =




| | |

R
(1)
i R

(2)
i R

(3)
i

| | |


 ∈ SO(3), i ∈ [N ], (1.1)
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where we denote by [N ] the set {1, . . . , N}, and SO(3) is the group of 3×3 rotation
matrices. We denote the density function of the molecule by φ(r) : R3 → R, where
r = (x, y, z)T , and by PRi

the image generated by the microscope when imaging a
copy of φ rotated by Ri. The image PRi

is then given by the line integrals of φ(r)

along the lines parallel to R
(3)
i , namely

PRi
(x, y) =

∫ ∞

−∞

φ(Rir)dz =

∫ ∞

−∞

φ(xR
(1)
i + yR

(2)
i + zR

(3)
i )dz. (1.2)

The orthogonal unit vectors R
(1)
i and R

(2)
i , which span the plane perpendicular to

R
(3)
i , form the (x, y) coordinate system for the image PRi

from the point of view of

an observer looking from the direction of the electron beam. We refer to R
(3)
i and

its perpendicular plane as the beaming direction and the projection plane of PRi
,

respectively.
We can now state the “orientation assignment problem” as the task of finding a

set of N matrices {R1, . . . , RN} ∈ SO(3) such that (1.2) is satisfied for all i ∈ [N ],
given only the images PR1 , . . . , PRN

(in particular, φ in (1.2) is unknown). In this
work, we address the task of determining the orientations of a set of projection
images obtained from a molecule with D2 symmetry.

In plain language, a D2-symmetric molecule has three mutually perpendicular
symmetry axes, where after we rotate the molecule by 180◦ about any of these axes,
the molecule looks exactly the same. Formally, let

g2 =




1 0 0
0 −1 0
0 0 −1



 , g3 =




−1 0 0
0 1 0
0 0 −1



 , g4 =




−1 0 0
0 −1 0
0 0 1



 (1.3)

denote the three rotation matrices by 180◦ about the x, y and z axes, respectively.
For notational convenience we also denote the 3×3 identity matrix by g1. Choosing
a coordinate system in which the rotational symmetry axes of the molecule coincide
with the x, y and z axes, the D2 symmetry property implies that

φ(r) = φ(g1r) = φ(g2r) = φ(g3r) = φ(g4r) (1.4)

for any r ∈ R
3. Considering any projection image PRi

(x, y), by (1.4) we have

PRi
(x, y) =

∫ ∞

−∞

φ(Rir)dz =

∫ ∞

−∞

φ(gmRir)dz = PgmRi
(x, y) (1.5)

form = 2, 3, 4. Equation (1.5) shows that aD2-symmetric molecule induces an ambi-
guity in which all orientation assignments of the form {gmi

Ri}Ni=1, gmi
∈ {g1, g2, g3, g4}

are consistent with the same set of images {PRi
}Ni=1.

An additional ambiguity inherent to cryo-EM arises from the well known fact that
the handedness (chirality) of a molecule cannot be established from its projection
images. Denoting by J = diag(1, 1,−1) the reflection matrix through the xy-plane,
we define by ψ(r) = φ(Jr) the mirror image of the molecule φ(r). Since J2 = I, we
also have that φ(r) = ψ(Jr), and thus, by (1.2) we have

PRi
(x, y) =

∫ ∞

−∞

φ(Rir)dz =

∫ ∞

−∞

ψ(JRir)dz =

∫ ∞

−∞

ψ(JRiJJr)dz,
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where r = (x, y, z)T . Noting that Jr = (x, y,−z)T , and changing the variable z to
z′ = −z we have

∫ ∞

−∞

ψ((JRiJ)Jr)dz =

∫ ∞

−∞

ψ(JRiJ



x
y
z′


)dz′ = P̃JRiJ(x, y), (1.6)

which shows that any projection image PRi
of the molecule φ(r) is identical to

the projection P̃JRiJ of its mirror image molecule ψ(r). Thus, both orientation
assignments {Rk}Nk=1 and {JRkJ}Nk=1 are consistent with the same set of projection
images {PR1 , . . . , PRN

}.
The “orientation assignment problem” for a D2-symmetric molecule can now

be stated as the task of finding one of the sets of matrices {Ri}Ni=1 or {JRiJ}Ni=1

satisfying (1.2), where each matrix Ri can be independently replaced by a matrix

R̃i ∈ {gmRi}4m=2.

2 Common lines and their D2 induced geometry

One of the principal approaches to solving the orientation assignment problem,
which we also employ in this work, relies on the well know Fourier slice theorem [7],
which states that the two-dimensional Fourier transform of a projection image PRi

is a central planar slice of the three-dimensional Fourier transform of the molecule
φ(r). Formally, denoting by φ̂ the three-dimensional Fourier transform of φ(r), and
by P̂Ri

the two-dimensional Fourier transform of the image PRi
, we have that

P̂Ri
(ωx, ωy) = φ̂(ωxR

(1)
i + ωyR

(2)
i ) , (ωx, ωy) ∈ R

2. (2.1)

Note that the central slice of φ̂ in (2.1) is spanned by the vectors R
(1)
i and R

(2)
i (the

first two columns of the rotation matrix Ri of (1.1)). Since any two non-coinciding
central planes intersect at a single line through the origin, it follows that any pair
of transformed projection images P̂Ri

and P̂Rj
for which |〈R(3)

i , R
(3)
j 〉| 6= 1 share a

unique pair of identical central lines. Formally, consider the unit vector

qij =
R

(3)
i ×R

(3)
j

‖R(3)
i ×R

(3)
j ‖

. (2.2)

By the definition of the cross product, qij is perpendicular to the normal vectors

of both projection planes of P̂Ri
and P̂Rj

, and thus it gives the direction of their
common line (see [11] for a detailed discussion). We can express qij using its local
coordinates on both projection planes by

qij = cosαijR
(1)
i + sinαijR

(2)
i = cosαjiR

(1)
j + sinαjiR

(2)
j , (2.3)

where αij and αji are the angles between qij and the local x-axes of the planes.
Using this notation, the common line property implies that

P̂Ri
(ξ cosαij, ξ sinαij) = P̂Rj

(ξ cosαji, ξ sinαji) , ξ ∈ R. (2.4)
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Now, let PRi
and PRj

be a pair of images of a D2-symmetric molecule. By (1.5),
the image PRj

(also denoted Pg1Rj
) is identical to the three images Pg2Rj

, Pg3Rj
and

Pg4Rj
. However, each of these four images corresponds to a plane, and by (1.2) the

four planes are different from each other since their rotation matrices are different.
Each of these planes has a unique common line with the projection plane of PRi

,
and thus, we conclude that there are four different pairs of identical central lines
between the images P̂Ri

and P̂Rj
. The directions of all four common lines are given

by the unit vectors

qmij =
R

(3)
i × gmR

(3)
j

‖R(3)
i × gmR

(3)
j ‖

, m = 1, 2, 3, 4, (2.5)

where for convenience we denote q1ij = qij, since g1 is the identity matrix. We write

the local coordinates of the common lines of the pairs of images P̂Ri
and P̂gmRj

, on
the respective projection plane of each image (see (2.3)), as

C(Ri, gmRj) =
(
cosαm

ij , sinα
m
ij

)
=

(
〈R(1)

i , qmij 〉, 〈R
(2)
i , qmij 〉

)
,

C(gmRj , Ri) =
(
cosαm

ji , sinα
m
ji

)
=

(
〈gmR

(1)
j , qmij 〉, 〈gmR

(2)
j , qmij 〉

)
,

(2.6)

for m = 1, 2, 3, 4. Thus, the common line property for D2-symmetric molecules
implies that

P̂Ri
(ξ cosαm

ij , ξ sinα
m
ij ) = P̂Rj

(ξ cosαm
ji , ξ sinα

m
ji), ξ ∈ R, (2.7)

for m = 1, 2, 3, 4. Throughout the following sections, we refer to all four common
lines as the common lines of the images PRi

and PRj
.

An additional feature of symmetric molecules, and in particular of D2-symmetric
molecules, is self common lines. For any i ∈ [N ], the images PRi

, Pg2Ri
, Pg3Ri

and
Pg4Ri

of a D2-symmetric molecule, are identical. However, each image corresponds
to a different projection plane, and thus, the projection plane of PRi

has a unique
common line with each of the planes of Pg2Ri

, Pg3Ri
and Pg4Ri

. The directions of
these common lines are given by

qmii =
R

(3)
i × gmR

(3)
i

‖R(3)
i × gmR

(3)
i ‖

, m = 2, 3, 4. (2.8)

Thus, there are three different pairs of central lines in P̂Ri
, corresponding to the

common lines between the pairs {PRi
, Pg2Ri

}, {PRi
, Pg3Ri

} and {PRi
, Pg4Ri

}, which
satisfy

P̂Ri
(ξ cosα1m

ii , ξ sinα
1m
ii ) = P̂Ri

(ξ cosαm1
ii , ξ sinα

m1
ii ), ξ ∈ R, (2.9)

for m = 2, 3, 4, where

C(Ri, gmRi) =
(
cosα1m

ii , sinα
1m
ii

)
=

(
〈R(1)

i , qmii 〉, 〈R
(2)
i , qmii 〉

)
,

C(gmRi, Ri) =
(
cosαm1

ii , sinα
m1
ii

)
=

(
〈gmR

(1)
i , qmii 〉, 〈gmR

(2)
i , qmii 〉

)
,

(2.10)

for m = 2, 3, 4. We refer to all three common lines in (2.9) as the self common lines
of the image PRi

.
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3 Related work

Many of the current common line methods for orientation assignment are based
on the method of angular reconstitution by Van Heel [13]. The core idea of the
angular reconstitution method is rooted at the observation that the intersection
of any three non-coinciding central planes establishes the orientations of all three,
relative to each other. In particular, Van Heel shows how given a triplet of projec-
tion images {PRi

, PRj
, RRk

}, one can obtain either of the sets of relative rotation
matrices {RT

i Rj, R
T
i Rk, R

T
j Rk} or {JRT

i RjJ, JR
T
i RkJ, JR

T
j RkJ}, by using the com-

mon lines between PRi
, PRj

and PRk
. Both choices of relative rotation matrices are

equally consistent with the images PRi
, PRj

and PRk
, and are just the manifesta-

tion of the handedness ambiguity discussed in the previous section. The angular
reconstitution method then makes the assumption that (without loss of generality)
Ri = I, which immediately establishes Rj and Rk from RT

i Rj and RT
i Rk. The

orientations of the rest of the images PRl
for l 6= i, j, k are obtained by fixing the

pair of images PRi
and PRj

, and applying the same method sequentially to each
triplet of images {PRi

, PRj
, PRl

} to retrieve RT
i Rl, which immediately establishes Rl

by Rl = RT
i Rl. Note that since all relative rotations and subsequently the rotations

themselves were obtained by combining each of the images Rl with the same pair
of images {PRi

, PRj
}, the angular reconstitution method ensures that we obtain a

hand-consistent assignment, i.e. we either obtain {Ri}Ni=1 or {JRiJ}Ni=1. Thus, we
can recover either the original molecule or its mirror image.

The most commonly used procedure for estimating the common line of a pair of
images PRi

and PRj
, is to calculate their Fourier transforms and then find a maxi-

mally correlated pair of central lines between the transformed images, see e.g. [12].
As the images obtained by cryo-EM are contaminated with high levels of noise,
in practice the probability of correctly detecting their common lines, and subse-
quently their rotations using the angular reconstitution method, is low. In [11],
Shkolnisky and Singer describe an algorithm for estimating the rotations which
achieves robustness to noise by employing an approach known as ’synchronization’.
In this approach, the rotations {Ri}Ni=1 are estimated using all the relative rotations
{RT

i Rj}i<j∈[N ] together at once. The authors use the set {R
T
i Rj}i<j∈[N ] to construct

a 3N×3N block matrixM known as a ’synchronization matrix’, whose (i, j)th block
Mij of size 3× 3 is given by RT

i Rj , that is

Mij = RT
i Rj , i, j ∈ [N ]. (3.1)

Defining the matrix U = (R1, . . . , RN), we see that

M = UTU, (3.2)

and thus we can obtain U = (R1, . . . , RN) by factoring M using SVD.
A method for estimating the set of relative rotations {RT

i Rj}i<j∈[N ] in a non-
sequential manner is given in [12], and takes advantage of the following observation:
the relative rotation of PRi

, PRj
can be estimated from the common lines between

these images and any of the N − 2 images PRk
, where k 6= i, j. The authors of [12]

show how to obtain a robust estimate of the relative rotation of each pair PRi
and

PRj
, by taking a majority vote over all these N − 2 estimates. Note that in order

5



to construct the synchronization matrix M , one has to obtain a hand-consistent set
of relative rotations, i.e. either the set {RT

i Rj}i<j∈[N ] or the set {JRT
i RjJ}i<j∈[N ].

However, if the estimates RT
i Rj or JRT

i RjJ are obtained independently for each
pair of images, this cannot be guaranteed. A solution to this issue is given in [8].

A direct application of any of the common lines based methods described above
to a symmetric molecule encounters substantial difficulties stemming from the am-
biguity described by (2.7). Suppose that given a pair of images PRi

and PRj
of a

D2-symmetric molecule, we wish to estimate the relative rotation RT
i Rj by applying

the angular reconstitution method. By (2.7), we can detect four different common
lines between the images, corresponding to four different pairs of projection planes,
and we have no way of knowing which common line corresponds to which pair of
planes. Thus, combining the common line of PRi

, PRj
together with common lines

with PRk
, gives rise to 43 different possible combinations of common line triplets,

many of which do not submit an intersection of three planes. For instance, we can er-
roneously consider a combination of the common lines between the pairs {PRi

, PRj
},

{PRi
, PRk

}, and a third pair {PRj
, Pg2Rk

}, from which we cannot establish the rela-
tive rotations of PRi

, PRj
and PRk

, since we are not considering the correct common
lines triplet between the projection planes of these images.

In [12], the authors derive a simple condition by which one can determine whether
a triplet of common lines can be realized as the intersection of three central planes.
Still, even common line triplets which do satisfy this condition can generate any
of the rotations {RT

i Rj , R
T
i g2Rj, R

T
i g3Rj , R

T
i g4Rj}, between which we cannot dis-

tinguish. Thus, to construct the synchronization matrix M in (3.2), one would

have to devise a way to obtain a set of estimates {R̃T
i R̃j}i<j∈[N ], in which for each

i ∈ [N ] all the relative rotations R̃T
i R̃j for j 6= i collectively ’agree’ on the identity

of R̃i ∈ {Ri, g2Ri, g3Ri, g4Ri}.
A further difficulty stems from the fact that pairs of central lines which are

adjacent to each common line between a pair of images are also highly correlated.
Thus, attempting to estimate 4 common lines between a pair of noisy images P̂Ri

and P̂Rj
by simply trying to detect the 4 best correlated central lines is most likely

to fail (see [9] for a detailed discussion).
In Section 4 we present a different approach for estimating all four common lines

and respective relative rotations of a pair of projection images of a D2-symmetric
molecule, inspired by maximum likelihood methods. In Section 5 we outline an
algorithm for extracting the rotations Ri of (1.2) from the relative rotations esti-
mated by the procedure described in Section 4. This approach encounters 3 major
obstacles which are resolved in Sections 6, 7 and 8. In Section 9 we demonstrate the
applicability of our method to experimental cryo-EM data. Finally, in Section 10
we summarize and discuss future work.

4 Relative rotations estimation

In this section we present a method for estimating the set of relative rotations
{RT

i gmRj}4m=1 for a pair of images PRi
and PRj

of a D2-symmetric molecule. Sim-
ilarly to the maximal correlations approach described in the previous section, we

6



begin by computing the 2D Fourier transform of each image PRi
. By (2.7), in the

noiseless case, each pair of transformed images P̂Ri
and P̂Rj

has exactly four pairs
of perfectly correlated central lines. Thus, in principle, we can detect these common
lines by computing correlations between pairs of central lines in P̂Ri

and P̂Rj
, and

choosing the four maximally correlated pairs. However, as was explained in the
previous section, this approach encounters several substantial difficulties. We now
describe a different approach inspired by maximum likelihood methods.

Consider the set

Dc = {{QT
l gmQr}

4
m=1 |Ql, Qr ∈ SO(3) , |< Q

(3)
l , Q

(3)
r > | 6= 1}, (4.1)

of quadruplets of relative rotations generated from all pairs of rotations Ql, Qr ∈
SO(3) with non-coinciding beaming directions, and let us denote the members of
Dc by Qlr = {QT

l gmQr}4m=1. Given a pair of images PRi
and PRj

, we now show
how one can use the common lines of the images to assign a score πij(Ql, Qr) to
each element Qlr ∈ Dc, which indicates how well it approximates the quadruplet
{RT

i gmRj}4m=1. Since {RT
i gmRj}4m=1 ∈ Dc, it can be detected by searching over Dc

for a candidate Qlr with the best score πij(Ql, Qr). We henceforth refer to Dc as
the relative rotations search space.

First, to relate each candidate Qlr ∈ Dc to the common lines of PRi
and PRj

, let
us compute the vectors

q̃mlr =
Q

(3)
l × gmQ

(3)
r

‖Q(3)
l × gmQ

(3)
r ‖

, m ∈ {1, 2, 3, 4}, (4.2)

analogously to (2.5). If Qlr = {RT
i gmRj}4m=1, then the set {q̃mlr }

4
m=1 corresponds to

the direction vectors of the common lines of PRi
and PRj

. We subsequently refer to
{q̃mlr }

4
m=1 as the set of common lines directions of the quadruplet Qlr (corresponding

to the pair Ql, Qr ∈ SO(3)). Next, for each candidate Qlr, we use the set {q̃mlr }
4
m=1

to compute the coordinate vectors

C(Ql, gmQr) =
(
cos α̃m

lr , sin α̃
m
lr

)
, C(gmQr, Ql) =

(
cos α̃m

rl , sin α̃
m
rl

)
, (4.3)

for m = 1, 2, 3, 4, analogously to (2.6). If Qlr = {RT
i gmRj}4m=1, the coordinates

in (4.3) correspond to the local coordinates of the common lines of PRi
and PRj

on
the respective projection planes of the images. Denote by

νn,θ(ξ) = P̂Rn
(ξ cos θ, ξ sin θ), ξ ∈ (0,∞),

the half line (known as a Fourier ray) in the direction which forms an angle θ with
the x-axis of the transformed image P̂Rn

. We then compute the normalized cross
correlations

ρij(α̃
m
lr , α̃

m
rl ) =

∫∞

0
(νi,α̃m

lr
(ξ))∗νj,α̃m

rl
(ξ)dξ

‖νi,α̃m
lr
(ξ)‖L2‖νj,α̃m

rl
(ξ)‖L2

, m = 1, 2, 3, 4, (4.4)

of each pair of rays given by the direction vectors in (4.3). We use rays instead of
lines, since the correlation ρij(θ, ϕ) between each pair of rays νi,θ(ξ) and νj,ϕ(ξ) is

7



identical to the correlation value ρij(θ+ π, ϕ+ π) of their anti-podal rays. We then
assign to each quadruplet Qlr the score

πij(Ql, Qr) =
4∏

m=1

ρij(α̃
m
lr , α̃

m
rl). (4.5)

By (2.7), if Qlr = {RT
i gmRj}4m=1 for some Ql, Qr ∈ SO(3), then πij(Ql, Qr) = 1.

Thus, the quadruplet Qlr with πij(Ql, Qr) = 1 is declared as {RT
i gmRj}4m=1.

We remark that since in practice we use a discretization of Dc to estimate the
relative rotations of pairs of noisy images (see Section 9.1 for details), πij is never
exactly 1, and so we simply choose a candidate Qlr which maximizes πij(Ql, Qr) as
an approximation for {RT

i gmRj}4m=1.
However, we can obtain more robust estimates to {RT

i gmRj}4m=1 by also com-
bining self common lines into the score (4.5). As was explained in Section 2, each
image PRi

of a D2-symmetric molecule has three self common lines, given by (2.9),
which are the intersections of the projection plane of PRi

with the projection planes
of Pg2Ri

, Pg3Ri
and Pg3Ri

. We now show how to adjust the score πij(Ql, Qr) of each
candidate Qlr ∈ Dc to account for the self common lines of each image in the pair
PRi

and PRj
.

For each candidate Qlr ∈ Dc, we first compute the vectors

q̃mll =
Q

(3)
l × gmQ

(3)
l

‖Q(3)
l × gmQ

(3)
l ‖

, q̃mrr =
Q

(3)
r × gmQ

(3)
r

‖Q(3)
r × gmQ

(3)
r ‖

, m = 2, 3, 4, (4.6)

analogously to (2.8). If Qlr = {RT
i gmRj}4m=1, then the sets {q̃mll }

4
m=2 and {q̃mrr}

4
m=2

correspond to the directions of the self common lines of the images PRi
and PRj

,
respectively (see (2.8)). Next, we use {q̃mll }

4
m=2 and {q̃mrr}

4
m=2 of (4.6) to compute

the coordinates

C(Ql, gmQl) =
(
cos α̃1m

ll , sin α̃
1m
ll

)
, C(gmQl, Ql) =

(
cos α̃m1

ll , sin α̃
m1
ll

)
,

C(Qr, gmQr) =
(
cos α̃1m

rr , sin α̃
1m
rr

)
, C(gmQr, Qr) =

(
cos α̃m1

rr , sin α̃
m1
rr

)
,

(4.7)

for m = 2, 3, 4, analogously to (2.10). If Qlr = {RT
i gmRj}4m=1, then the coordinates

in (4.7) correspond to the local coordinates of the self common lines of PRi
and

PRj
, on their respective projection planes (see (2.10)). We then compute the set of

normalized autocorrelations

ρii(α̃
1m
ll , α̃

m1
ll ) =

∫∞

0
(νi,α̃1m

ll
(ξ))∗νi,α̃m1

ll
(ξ)dξ

‖νi,α̃1m
ll
(ξ)‖L2‖νi,α̃m1

ll
‖L2

,

ρjj(α̃
1m
rr , α̃

m1
rr ) =

∫∞

0
(νj,α̃1m

rr
(ξ))∗νj,α̃m1

rr
(ξ)dξ

‖νj,α̃1m
rr
(ξ)‖L2‖νj,α̃m1

rr
‖L2

,

(4.8)

for m ∈ {2, 3, 4}, and if Qlr = {RT
i gmRj}4m=1 for some Ql, Qr ∈ SO(3), then

by (2.9) we have
∏4

m=2 ρii(α̃
1m
ll , α̃

m1
ll )ρjj(α̃

1m
rr , α̃

m1
rr ) = 1. We therefore redefine the

score πij(Ql, Qr) in (4.5) to be

πij(Ql, Qr) =
4∏

m=1

ρij(α̃
m
lr , α̃

m
rl )

4∏

m=2

ρii(α̃
1m
ll , α̃

m1
ll )ρjj(α̃

1m
rr , α̃

m1
rr ). (4.9)
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For each i < j ∈ [N ], we then set

Qij = argmax
Qlr∈Dc

πij(Ql, Qr). (4.10)

to be {RT
i gmRj}4m=1.

We remark, that as was explained in Section 1 and Section 3 (see (1.6)), the
images P̂Rn

and P̂JRnJ are identical. Thus, the self common lines of each image P̂Rn

are identical to the self common lines of P̂JRnJ , and the common lines between each
pair of images P̂Ri

and P̂Rj
are identical to the common lines between P̂JRiJ and

P̂JRjJ . Hence, for each i < j ∈ [N ], the set {QT
l gmQr}4m=1 ∈ Dc which maximizes

the score πij has the same score as {JQT
l gmQrJ}4m=1 ∈ Dc. Thus, in (4.10), for each

i < j ∈ [N ], we either estimate {RT
i gmRj}4m=1 or {JRT

i gmRjJ}4m=1, independently
from other pairs of i and j.

The procedure for estimating of the sets of relative rotations for each i < j ∈ [N ]
is summarized in Algorithm 1.

Algorithm 1 D2 relative rotations estimation

Input: A set of images P̂R1 , . . . , P̂RN
, and a discretization of SO(3) Q1, . . . , QL ∈

SO(3)
1: for l < r ∈ [L] do ⊲ Compute common lines induced by Dc

2: if | < Q
(3)
l , Q

(3)
r > | 6= 1 then

3: for m = 1 to 4 do

4: Qm
lr = QT

l gmQr

5: q̃mlr =
Q

(3)
l

×gmQ
(3)
r

‖Q
(3)
l

×gmQ
(3)
r ‖

⊲ See (4.2)

6: (cos α̃m
lr , sin α̃

m
lr ) = (< Q

(1)
l , q̃mlr >,< Q

(2)
l , q̃mlr >) ⊲ See (4.3)

7: (cos α̃m
rl , sin α̃

m
rl ) = (< gmQ

(1)
r , q̃mlr >,< gmQ

(2)
r , q̃mlr >)

8: end for

9: end if

10: end for

11: for l = 1 to L do

12: for m = 2 to 4 do

13: q̃mll =
Q

(3)
l

×gmQ
(3)
l

‖Q
(3)
l

×gmQ
(3)
l

‖
⊲ See (4.6)

14: (cos α̃1m
ll , sin α̃

1m
ll ) = (< Q

(1)
l , q̃mll >,< Q

(2)
l , q̃mll >) ⊲ See (4.7)

15: (cos α̃m1
ll , sin α̃

m1
ll ) = (< gmQ

(1)
l , q̃mll >,< gmQ

(2)
l , q̃mll >)

16: end for

17: end for

18: for i < j ∈ [N ] do
19: Qij = argmax

l<r∈[L],|<Q
(3)
l

,Q
(3)
r >|6=1

πij(Ql, Qr) ⊲ See (4.9)

20: end for

Output: Qij , for all i < j ∈ [N ].
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5 Estimating the rotation matrices

In the previous section, we have shown how to estimate for each i < j ∈ [N ]
either {RT

i gmRj}4m=1 or {JRT
i gmRjJ}4m=1. In Section 6 below, we will show how to

resolve the handedness ambiguity. Thus, in this section we will assume w.l.o.g that
we have the sets {RT

i gmRj}4m=1 for all i < j ∈ [N ], and outline how to recover the
rotations Ri in (1.2) from these sets.

To recover the matrices Ri row by row, we use the following observation. For
each m ∈ {1, 2, 3}, denote by Im the 3×3 diagonal matrix

(Im)ij =

{
1 i = j = m,

0 otherwise,
(5.1)

and note that
1

2
(g1 + gl) = Il−1, l = 2, 3, 4, (5.2)

where gl were defined in (1.3). Thus, for any pair of matrices Ri and Rj we have
that

1

2
(RT

i Rj +RT
i gm+1Rj) = RT

i

1

2
(g1 + gm+1)Rj = RT

i ImRj = (vmi )Tvmj , (5.3)

for m = 1, 2, 3, where vmi and vmj are the mth rows of the matrices Ri and Rj ,
respectively. We can also compute the matrices (vmi )Tvmi for m ∈ {1, 2, 3} and
i ∈ [N ], by noting that since vmj are rows of orthogonal matrices we have

(vmi )
Tvmi = (vmi )Tvmj (vmj )

Tvmi , j ∈ [N ] \ {i}.

Since in practice the matrices (vmi )
Tvmj are estimated from noisy images, we get a

more robust estimate for (vmi )Tvmi by using all j, that is, by setting

(vmi )Tvmi =

∑
j∈[N ]\{i}(v

m
i )

Tvmj (vmj )
Tvi

N − 1
,

for m ∈ {1, 2, 3} and i ∈ [N ].
Next, for each m ∈ {1, 2, 3}, we construct the 3N ×3N matrix Hm whose (i, j)th

3× 3 block is given by the rank 1 matrix (vmi )Tvmj , and note that

Hm = vTmvm , vm = (vm1 , . . . , v
m
N ) , m = 1, 2, 3. (5.4)

That is, Hm, m = 1, 2, 3, are rank 1 matrices. We can now factorize each matrix Hm

using SVD, to obtain either the vector vm or −vm, hence retrieving either the set of
rows {vmi }

N
i=1 or {−vmi }Ni=1, for each m ∈ {1, 2, 3}. Then, we can use these sets of

rows to assemble the matrices {ORi}Ni=1 row by row, where O ∈ O(3) is a diagonal
matrix with ±1 on its diagonal. If detO = −1, we simply multiply all ORi by −1,
and thus, we can assume w.l.o.g that O is a rotation. The matrix O is an inherent
degree of freedom, since we can always “rotate the world” by any orthogonal matrix.

Unfortunately, the approach just described is not directly applicable, as we now
explain. Recall from Section 3, that though we can recover the set of relative rotation
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matrices {RT
i gmRj}4m=1 from the common lines of PRi

and PRj
, we have no way of

knowing for each m ∈ {1, 2, 3, 4} which of the recovered matrices in the latter set is
RT

i gmRj . This implies, that for each i < j ∈ [N ], we can only obtain a permutation
(RT

i gτij(m)Rj)
4
m=1 of the 4-tuple (RT

i gmRj)
4
m=1 where τij ∈ S4 is some unknown

permutation of (1, 2, 3, 4). In (5.3), we computed the 3-tuples ((vmi )
Tvmj )

3
m=1 by

summing the first element of the 4-tuple (RT
i gmRj)

4
m=1 with the rest of its elements.

Suppose for example, that we have the 4-tuple (RT
i g2Rj , R

T
i g3Rj , R

T
i g1Rj, R

T
i g4Rj)

for a given a pair of images PRi
and PRj

. One can easily verify by direct calculation
that

1

2
(gm1 + gm2) = −Im3−1, (m1, m2, m3) = σ(2, 3, 4), σ ∈ S3, (5.5)

where S3 is the group of all permutations of a 3-tuple. Now, observe that by (5.2)
and (5.5) we have

(
1

2
(RT

i g2Rj +RT
i g3Rj),

1

2
(RT

i g2Rj +RT
i g1Rj),

1

2
(RT

i g2Rj +RT
i g4Rj))

= (RT
i

1

2
(g2 + g3)Rj, R

T
i

1

2
(g2 + g1)Rj , R

T
i

1

2
(g2 + g4)Rj)

= (−RT
i I3Rj , R

T
i I1Rj,−R

T
i I2Rj) = (−(v3i )

Tv3j , (v
1
i )

Tv1j ,−(v2i )
Tv2j ).

This implies that the summation in (5.3) of a permutation of the 4-tuple (RT
i gmRj)

4
m=1

results in a permutation of the respective 3-tuple ((vmi )
Tvmj )

3
m=1 of rank 1 matrices,

where some of the matrices have a spurious −1 factor. The following proposition, the
proof of which is given Appendix A.1, summarizes the effect of the aforementioned
summation on a general permutation (RT

i gτ(m)Rj)
4
m=1 of a 4-tuple (RT

i gmRj)
4
m=1,

that is, on the order and signs of the respective 3-tuple ((vmi )Tvmj )
3
m=1.

Proposition 5.1. Let (RT
i gτ(m)Rj)

4
m=1 for some τ ∈ S4 be a permutation of the

4-tuple (RT
i gmRj)

4
m=1.

1. If τ(1) = 1, then the corresponding 3-tuple of rank 1 matrices is given by

((vmr

i )Tvmr

j )3r=1, where (m1, m2, m3) = (τ(2)− 1, τ(3)− 1, τ(4)− 1).

2. If τ(m) = 1 for m > 1, then the corresponding 3-tuple of rank 1 matrices is

given by






((v
τ(1)−1
i )Tv

τ(1)−1
j ,−(v

τ(4)−1
i )Tv

τ(4)−1
j ,−(v

τ(3)−1
i )Tv

τ(3)−1
j ) m = 2,

(−(v
τ(4)−1
i )Tv

τ(4)−1
j , (v

τ(1)−1
i )Tv

τ(1)−1
j ,−(v

τ(2)−1
i )Tv

τ(2)−1
j ) m = 3,

(−(v
τ(3)−1
i )Tv

τ(3)−1
j ,−(v

τ(2)−1
i )Tv

τ(2)−1
j , (v

τ(1)−1
i )Tv

τ(1)−1
j ) m = 4.

Proposition 5.1 implies that we can only obtain the ordered triplets

(±(v
σij(m)
i )Tv

σij(m)
j )3m=1, σij ∈ S3, i < j ∈ [N ], (5.6)

where the permutations σij ∈ S3 are unknown, and each of the matrices (v
σij(m)
i )Tv

σij(m)
j

is multiplied by ±1, which is also unknown and depends on τij . Thus, we cannot
construct the matrices Hm in (5.4) using the triplets in (5.6) directly. We will show
how to construct Hm using the triplets (5.6) in Sections 7 and 8.
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The following three sections are organized as follows. In Section 6, we show
a method for handedness synchronization for D2-symmetric molecules, which is
adapted from a method proposed in [8] for non-symmetric molecules. In Sec-
tion 7, we show how to partition the 3-tuples in (5.6) into three sets of the form
{smij (v

m
i )

Tvmj }i<j∈[N ] for m = 1, 2, 3 and some unknown signs sij ∈ {−1, 1}. Then, in
Section 8 we show how to correct the signs smij so that we can construct the 3N×3N
matrices

H̃m = (vm)
Tvm , vm = (sm1 v

m
1 , . . . , s

m
Nv

m
N ) , m = 1, 2, 3, (5.7)

where smi ∈ {−1, 1} for i ∈ [N ] and m ∈ {1, 2, 3}. We can then factor the matrices

H̃m using SVD to obtain the vectors vm (of length 3N), which give us the sets of
rows {smi v

m
i }Ni=1 for m ∈ {1, 2, 3}, and assemble the matrices

R̂i =



−s1i v

1
i−

−s2i v
2
i−

−s3i v
3
i−


 = DiRi, Di = diag(s1i , s

2
i , s

3
i ), i ∈ [N ].

Since for each i ∈ [N ] either Di or −Di is in {gm}4m=1, that is, R̂i = ±gmRi for some
m ∈ {1, 2, 3, 4}, we can compute the matrices

R̃i =

{
R̂i det(R̂i) = 1,

−R̂i det(R̂i) = −1,
i ∈ [N ],

by replacing all matrices R̂i which have det(R̂i) = −1 with −R̂i. The resulting

set of matrices {R̃i}Ni=1 satisfies R̃i ∈ {gmRi}4m=1 for all i ∈ [N ], and are therefore
a solution for the orientation assignment problem which was stated at the end of
Section 1.

6 Handedness synchronization

Following the discussion in the previous section, we now assume we have obtained
a set of 4-tuples

{(JδijRT
i gτij(m)RjJ

δij )4m=1}i<j∈[N ], τij ∈ S4, J = diag(1, 1,−1), (6.1)

for some unknown δij ∈ {0, 1}, by applying Algorithm 1. We now explain how to
extract one of the hand-consistent sets

{(RT
i gτij(m)Rj)

4
m=1}i<j∈[N ] or {(JRT

i gτij(m)RjJ)
4
m=1}i<j∈[N ] (6.2)

from the set in (6.1).
For all i < j ∈ [N ], we denote by

Rij ∈ {(RT
i gτij(m)Rj)

4
m=1, (JR

T
i gτij(m)RjJ)

4
m=1}, τij ∈ S4, (6.3)

a 4-tuple of relative rotations consistent with a pair of images PRi
and PRj

of a
D2-symmetric molecule. We also denote by Rm

ij , the m
th relative rotation in the
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4-tuple Rij for m = 1, 2, 3, 4, and by JRijJ the set {JRm
ijJ}

4
m=1. We now show how

the set in (6.1) can be partitioned into two disjoint sets

C0 = {Rij |Rij = (RT
i gτij(m)Rj)

4
m=1},

C1 = {Rij |Rij = (JRT
i gτij(m)RjJ)

4
m=1}.

(6.4)

Once we have the partition in (6.4), we can compute the set of 4-tuples C̃1 =
{(JRm

ijJ)
4
m=1|Rij ∈ C1}. Then, one of the hand-consistent sets in (6.2) is given by

C0 ∪ C̃1.
The partition in (6.4) is derived by the following procedure. First, we construct

a graph Σ with vertices corresponding to the estimates Rij in (6.3), and with edges
that encode which pairs of estimates Rij and Rkl are in the same set in (6.4), and
which aren’t (as will be explained shortly). Then, we derive the partition in (6.4)
from the eigenvector of the leading eigenvalue of the adjacency matrix of Σ. The
procedure we present is an adaptation of an algorithm that was derived in [8] for
non-symmetric molecules.

We next state a proposition, the proof of which is given in Appendix A.2, which
allows us to determine which estimates Rij, i < j ∈ [N ], belong to the same set
in (6.4). Following the approach in [8], we look at triplets of estimates of the form
Rij, Rjk, Rki for all triplets i < j < k ∈ [N ], and determine which members of each
such triplet are in the same set of (6.4) and which aren’t.

Proposition 6.1. For any i < j < k ∈ [N ] consider the triplet of estimates

Rij = (RT
i gτij(m)Rj)

4
m=1, Rjk = (RT

j gτjk(l)Rk)
4
l=1, Rki = (RT

k gτki(r)Ri)
4
r=1, (6.5)

that is, Rij , Rjk and Rki are all in the same set of (6.4). Then, exactly 16 of the 43

matrix products in the set

{Rm
ijR

r
jkR

l
ki | (m, l, r) ∈ {1, 2, 3, 4}3} (6.6)

satisfy

Rm
ijR

l
jkR

r
ki = I. (6.7)

Now, consider a triplet of estimates

Rij ∈ {(RT
i gτij(m)Rj)

4
m=1, (JR

T
i gτij(m)RjJ)

4
m=1},

Rjk ∈ {(RT
j gτjk(l)Rk)

4
l=1, (JR

T
j gτjk(l)RkJ)

4
l=1},

Rki ∈ {(RT
k gτki(r)Ri)

4
r=1, (JR

T
k gτki(r)RiJ)

4
r=1},

(6.8)

and note that since each estimate is either in the set C0 or in the set C1 of (6.4), it
must be that either all estimates are in the same set, or two estimates are in one set
and the third estimate is in the other. We define the “set configuration” of a triplet
(Rij, Rjk, Rki) by the row vector

dijk =






(0, 0, 0) Rij , Rjk, Rki are in the same set of (6.4),

(1, 0, 0) Rij is in a different set from Rjk and Rki,

(0, 1, 0) Rjk is in a different set from Rij and Rki,

(0, 0, 1) Rki is in a different set from Rij and Rjk,

(6.9)
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and denote

C = {c0 = (0, 0, 0), c1 = (1, 0, 0), c3 = (0, 1, 0), c4 = (0, 0, 1)}. (6.10)

Note that if, for example, Rij is in one set of (6.4) and Rjk and Rki are in another,
then we have that JRijJ,Rjk and Rki are all in the same set. We remark that
we have found experimentally that whenever three estimates Rij ,Rjk and Rki are
not in the same set of (6.4), then all the products in (6.7) are far from I in norm.
Thus, Proposition 6.1 suggests that we can find the set configuration of a triplet of
estimates by the following procedure. First, we compute the four sets of 43 norms

N 0
ijk = {‖Rm

ijR
l
jkR

r
ki − I‖F : (m, l, r) ∈ {1, 2, 3, 4}3},

N 1
ijk = {‖JRm

ijJR
l
jkR

r
ki − I‖F : (m, l, r) ∈ {1, 2, 3, 4}3},

N 2
ijk = {‖Rm

ijJR
l
jkJR

r
ki − I‖F : (m, l, r) ∈ {1, 2, 3, 4}3},

N 3
ijk = {‖Rm

ijR
l
jkJR

r
kiJ − I‖F : (m, l, r) ∈ {1, 2, 3, 4}3},

(6.11)

where ‖·‖F is the Frobenius norm. Next, we sort the norms in each setN 0
ijk,N

1
ijk,N

2
ijk

and N 3
ijk in (6.11) in ascending order, and denote the resulting ascending sequences

by S0
ijk,S

1
ijk,S

2
ijk and S3

ijk, respectively. Finally, we compute the scores

Ŝp
ijk =

16∑

n=1

(Sp
ijk)n, p = 0, 1, 2, 3. (6.12)

By Proposition 6.1, there are exactly 16 norms with value 0 in the set N p
ijk of (6.11)

which corresponds to the correct set configuration dijk of a triplet (Rij, Rjk, Rki)

(see (6.9)). Thus, we set dijk = cp for p ∈ {0, 1, 2, 3} such that Ŝp
ijk is the minimal

score in (6.12).
Once we have computed dijk for all i < j < k ∈ [N ], we construct a graph Σ

whose vertices correspond to the estimates Rij in (6.3), and whose edges are defined
by the

(
N

2

)
×
(
N

2

)
adjacency matrix (which we also denote by Σ)

Σ(i,j)(k,l) =





1 if |{i, j} ∩ {k, l}| = 1 and Rij

and Rkl are in the same set of (6.4),

−1 if |{i, j} ∩ {k, l}| = 1 and Rij

and Rkl are in different sets of (6.4),

0 if |{i, j} ∩ {k, l}| 6= 1.

(6.13)

Finally, we compute the eigenvector us which corresponds to the leading eigen-
value of the matrix Σ. In [8], it is shown that the leading eigenvalue of Σ is simple,

and that us is of the form {−1, 1}(
N

2 ) (up to normalization), where the sign of each
entry encodes the set membership in (6.4) of each estimate Rij . The procedure
for handedness synchronization for D2-symmetric molecules is summarized in Algo-
rithm 2.

14



Algorithm 2 D2 handedness synchronization

Input: A set of
(
N

2

)
4-tuples Rij defined in (6.3)

1: Initialize:
(
N

2

)
×

(
N

2

)
matrix Σ, with all entries set to zero

2: for i < j < k ∈ [N ] do
3: for (m, l, r) ∈ {1, 2, 3, 4}3 do ⊲ See (6.11).
4: N 0

ijk(m, l, r) = ‖Rm
ijR

l
jkR

r
ki − I‖F

5: N 1
ijk(m, l, r) = ‖JRijJ

mRl
jkR

r
ki − I‖F

6: N 2
ijk(m, l, r) = ‖Rm

ijJRjkJ
lRr

ki − I‖F
7: N 3

ijk(m, l, r) = ‖Rm
ijR

l
jkJR

r
kiJ − I‖F

8: end for

9: end for

10: for p = 1 to 4 do

11: Sp
ijk = sort(N p

ijk) ⊲ Sort in ascending order

12: Ŝp
ijk =

∑16
n=1(S

p
ijk)n

13: end for

14: for i < j < k ∈ [N ] do
15: m = argmin

p∈{0,1,2,3}

Ŝp
ijk

16: dijk = cm ⊲ See (6.9), (6.10)
17: Σ(i,j),(j,k) = (−1)max((dijk)1,(dijk)2)

18: Σ(j,k),(k,i) = (−1)max((dijk)1,(dijk)3)

19: Σ(k,i),(i,j) = (−1)max((dijk)2,(dijk)3)

20: end for

21: Σ = Σ + ΣT

22: us = argmax
‖v‖=1

vTΣv ⊲ us is the leading eigenvector of Σ

23: for i < j ∈ [N ] do
24: if (us)ij < 0 then

25: Rij = JRijJ
26: end if

27: end for

Output: Rij, for all i < j ∈ [N ].
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7 Rotations’ rows synchronization

At this point, in light of Sections 5 and 6, we assume that we have obtained one of
the hand-consistent sets of 4-tuples in (6.2). Let us assume without loss of generality
that we have the set {(RT

i gτij(m)Rj)
4
m=1}i<j∈[N ]. As was explained in Section 5, for

each i < j ∈ [N ], we now form a 3-tuple of matrices by summing the first element
of (RT

i gσij(m)Rj)
4
m=1 with each of the rest of its elements. By Proposition 5.1, this

results in a set of triplets

{(±(v
σij(m)
i )Tv

σij(m)
j )3m=1}i<j∈[N ], σij ∈ S3,

which was defined in (5.6), where σij are unknown and the ±1 signs are also un-
known. In this section, we will show how to partition this set of triplets into three
disjoint sets

Cm = {smij (v
m
i )

Tvmj }i<j∈[N ], m ∈ {1, 2, 3}, (7.1)

where smij are the (unknown) signs of (vmi )
Tvmj . That is, for each m ∈ {1, 2, 3}, the

set Cm contains all outer products between the mth rows of the rotation matrices
Ri and Rj for i < j ∈ [N ], up to sign. This partition will be obtained by casting it
as a graph partitioning problem.

In Section 7.1, we show how to encode the partition in (7.1) as a graph in which
each vertex corresponds to one of the matrices in (5.6). In Section 7.2, we construct
the adjacency matrix of the graph, and in Section 7.3, we show how to extract the
partition in (7.1) from the leading eigenvectors of the graphs’ adjacency matrix.

7.1 Graph partitioning formulation

In what follows, we denote the 3× 3 matrices in (7.1) by

vmij = smij (v
m
i )

Tvmj , m ∈ {1, 2, 3}. (7.2)

We now construct a weighted graph Ω = (V,E) from which the partition in (7.1) can
be inferred. Each vertex in V corresponds to one of the matrices in (7.2) (henceforth,
we shall refer to both the matrix smij (v

m
i )

Tvmj and its corresponding vertex in V using
the notation vmij ). Thus, we have that (see (7.2))

V = ∪3
m=1Cm, Cm = {vmij }i<j∈[N ], m = 1, 2, 3. (7.3)

We define the set of weighted edges E of the graph Ω by its 3
(
N

2

)
× 3

(
N

2

)
adjacency

matrix, which we also denote by Ω, as follows

Ω(vmij , v
r
kl) =





1 |{i, j} ∩ {k, l}| = 1 and m = r,

−1 |{i, j} ∩ {k, l}| = 1 and m 6= r,

0 otherwise.

(7.4)

That is, we only connect by an edge vertices which have exactly one index in com-
mon. We give this edge a weight +1 if its incident vertices are in the same set Cm

of (7.3), and weight −1 otherwise (see Fig. 1).
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v1ij

v2jk

v3ki

v3ij

-1

-1

-1

-1

1

(a)

v1ij

v1jk v1ki

1

1

1

(b)

Figure 1: (a) Edges in Ω. The vertices v3ik and v3ij are in the same set of (7.3) and
have the index i in common. The vertices v1ij , v

3
ij which have both indices i and j

in common are disconnected. Vertices from different sets of (7.3) with one index in
common are connected by edges with weight −1. (b) A triangle formed by vertices
in the same set of (7.3).

Note that the weights on the edges E of Ω induce a partition of the vertex set
V into the sets of (7.3), by grouping together vertices which are connected by edges
with a weight of +1. Recovering the partition in (7.3) corresponds to coloring the
vertices V of Ω with 3 colors, say, red, green, and blue, where the vertices of C1 are
colored red, of C2 green and of C3 blue.

In what follows, we show that the partition of V to the sets Cm in (7.3) can be
derived from eigenvectors of the matrix Ω.

Definition 7.1. Let the eigenvalues of an n × n matrix A be λ1 > λ2 > . . . > λr,
with their respective multiplicities given by n1, . . . , nr. We denote the spectrum of
A by Λ(A), and write

Λ(A) =

(
λ1 λ2 · · · λr
n1 n2 · · · nr

)
.

Theorem 7.2. The spectrum of the matrix Ω is given by

(
4(N − 2) 2(N − 4) 2 −4 −(N − 4) −2(N − 2)

2 2(N − 1)
(
N

2

)
−N 2

((
N

2

)
−N

)
N − 1 1

)
. (7.5)

The proof of Theorem 7.2 is given in Appendix A.3.

Definition 7.3. Define α = (2
(
N

2

)
)−

1
2 , β = (6

(
N

2

)
)−

1
2 , and define the pair of vectors

uα, uβ ∈ R
3(N2 ) by

uα(v
m
ij ) =





α m = 1,

0 m = 2,

−α m = 3,

uβ(v
m
ij ) =





β m = 1,

−2β m = 2,

β m = 3,

where for any w ∈ R
3(N2 ) we denote by w(vmij ) the entry of w with the same index

as the row of Ω which corresponds to the vertex vmij .

Throughout Section 7, for any column vector w ∈ R
3(N2 ), we denote

(w)ij = (w(v
σij(1)
ij ), w(v

σij(2)
ij ), w(v

σij(3)
ij ))T , i < j ∈ [N ]. (7.6)
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That is, (w)ij ∈ R
3 is the column vector that corresponds to the entries of the triplet

(v
σij(1)
ij , v

σij(2)
ij , v

σij(3)
ij ) in w.

Proposition 7.4. The vectors uα and uβ in Definition 7.3 are orthogonal eigenvec-

tors of Ω, corresponding to the eigenvalue µc = 4(N − 2).

We prove Proposition 7.4 in Appendix A.4. The immediate consequence of The-
orem 7.2 and Proposition 7.4 is the following corollary.

Corollary 7.5. The eigenspace of µc is spanned by uα and uβ.

Note that uα is a unit vector which exactly encodes the partition in (7.3), where
the entries +α, 0 and −α encode the color of each vertex vmij . The unit vector uβ is
’color blind’ in the sense that it can only distinguish between 2 colors. Obviously,
in any 3-coloring of a graph we can always permute the colors, e.g., switch the color
of all red vertices to green, green vertices to blue, and blue vertices to red. This is
manifested in the following proposition.

Proposition 7.6. Define the ’3-color’ and ’2-color’ vectors by

u3c = (α, 0,−α)T and u2c = (β,−2β, β)T , (7.7)

respectively. For any σ ∈ S3, we define the vectors uσα, u
σ
β ∈ R

3(N2 ) by

uσα(v
m
ij ) =





u3c(σ(1)) m = 1,

u3c(σ(2)) m = 2,

u3c(σ(3)) m = 3,

uσβ(v
m
ij ) =





u2c(σ(1)) m = 1,

u2c(σ(2)) m = 2,

u2c(σ(3)) m = 3,

(7.8)

where uσα(v
m
ij ) and uσβ(v

m
ij ) are the entries of uσα and uσβ with the same index as the

row of Ω which corresponds to the vertex vmij . Then, uσα and uσβ are orthogonal

eigenvectors of Ω of (7.4) in the eigenspace of µc = 4(N − 2).

Proof. Observe that uσα is obtained from uα of Definition 7.3 by replacing all +α
entries with u3c(σ(1)), all 0 entries with u3c(σ(2)), and all −α entries with u3c(σ(3)).
The vector uσβ is obtained from uβ in a similar manner. The proposition then follows
by repeating the method of proof applied in Proposition 7.4 with uσα and uσβ.

Following Corollary 7.5, we recover uα (up to a color permutation, i.e, one of
the vectors uσα of (7.8)) in the following manner. We begin by constructing the
matrix Ω. Then, we compute a pair of orthogonal eigenvectors va and vb spanning the
eigenspace of µc (the leading eigenvalue of Ω). In general, each of these eigenvectors
is an orthogonal linear combination of uα and uβ, and thus, we cannot read the
partition in (7.3) directly from any one of them. In Section 7.3, we show how to
’unmix’ va and vb and retrieve uα. In practice, due to noise, we can only compute
an approximation of uα, and thus, we never get the exact values α, 0 and −α. We
explain how to deal with this issue in Section 7.3. In the following section, we show
how to construct Ω of (7.4) using the set of matrices in (5.6).
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7.2 Constructing Ω

We now derive a procedure for constructing the matrix Ω of (7.4). For any two
pairs of indices i < j ∈ [N ] and k < l ∈ [N ], we denote by

Ω(i,j)(k,l) =



Ω(v

σij (1)
ij , v

σkl(1)
kl ) Ω(v

σij(1)
ij , v

σkl(2)
kl ) Ω(v

σij(1)
ij , v

σkl(3)
kl )

Ω(v
σij (2)
ij , v

σkl(1)
kl ) Ω(v

σij(2)
ij , v

σkl(2)
kl ) Ω(v

σij(2)
ij , v

σkl(3)
kl )

Ω(v
σij (3)
ij , v

σkl(1)
kl ) Ω(v

σij(3)
ij , v

σkl(2)
kl ) Ω(v

σij(3)
ij , v

σkl(3)
kl )


 (7.9)

the 3 × 3 matrix given by the rows of Ω corresponding to the vertices v
σij(1)
ij , v

σij(2)
ij

and v
σij(3)
ij , and columns of Ω corresponding to the vertices v

σkl(1)
kl , v

σkl(2)
kl and v

σkl(3)
kl .

By (7.4) and (7.9), we have

Ω(i,j),(k,l) = 03×3, |{i, j} ∩ {k, l}| 6= 1, (7.10)

where 03×3 is the 3× 3 zero matrix. We will now show how to construct Ω block by
block, by computing the blocks Ω(i,j),(k,l) for which |{i, j} ∩ {k, l}| = 1.

The following lemma, the proof of which is given in Appendix A.5, characterizes
the indices of the non-zero entries in Ω of (7.4).

Lemma 7.7. Define

A = {(i, j)(k, l) | |{i, j} ∩ {k, l}| = 1, i < j ∈ [N ], k < l ∈ [N ]}, (7.11)

and for i < j ∈ [N ] define

A1
ij ={(i, j)(k, j) | k < j, k 6= i}, A2

ij = {(i, j)(j, k) | k > j},

A3
ij ={(i, j)(k, i) | k < i}, A4

ij = {(i, j)(i, k) | k > i, k 6= j}.
(7.12)

Moreover, for i < j < k ∈ [N ], define

Aijk = {(i, j)(j, k) , (i, j)(i, k) , (j, k)(i, k)},

Af
ijk = {(j, k)(i, j) , (i, k)(i, j) , (i, k)(j, k)}.

(7.13)

Then, we have that

A =
⋃

i<j∈[N ]

A1
ij ∪A

2
ij ∪A

3
ij ∪ A

4
ij =

⋃

i<j<k∈[N ]

Aijk ∪A
f
ijk. (7.14)

By (7.10) and the second equality in (7.14) of Lemma 7.7, to construct Ω, we
only need to determine the blocks

Ω(i,j)(j,k), Ω(i,j)(i,k), Ω(j,k)(i,k), Ω(j,k)(i,j), Ω(i,k)(i,j), Ω(i,k)(j,k), i < j < k ∈ [N ],
(7.15)

which we now show how to do.
For each triplet of indices i < j < k ∈ [N ], we consider the vertices of Ω

corresponding to the pairs of indices (i, j), (j, k), and (i, k), written in the rows of
the table

v
σij(1)
ij v

σij(2)
ij v

σij(3)
ij

v
σjk(1)
jk v

σjk(2)
jk v

σjk(3)
jk

v
σik(1)
ik v

σik(2)
ik v

σik(3)
ik

(7.16)
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For each pair of vertices from different rows in (7.16), we need to determine whether
this pair belongs to the same set Cm of (7.3) or to different sets. This corresponds
to choosing between an edge with a weight of +1 or −1 for each of these pairs
in Ω. We therefore show how to determine all edge weights between the vertices
in (7.16) simultaneously. This procedure is then repeated for each triplet of indices
i < j < k ∈ [N ].

First, observe that for any pair of matrices vmij and vrjk, given by (7.2), we have

vmij v
r
jk = ±(vmi )Tvmj (v

r
j )

Tvrk

= ± < vmj , v
r
j > (vmi )

Tvrk =

{
±(vmi )

Tvmk m = r,

0 m 6= r,

(7.17)

since the row vectors vmj and vrj are rows of the orthogonal matrix Rj . This suggests

that for each pair of vertices v
σjk(m)
ij and v

σij(r)
jk with unknown σij , σjk ∈ S3, we can

determine whether they belong to the same set of (7.3), by simply computing the
norm of the product of the matrices which they represent.

Since in practice we work with noisy data, we next show how to get more ro-
bust estimates for the edge weights of Ω, by leveraging the graph structure of Ω in
conjunction with (7.17). Denote by

vmji = (vmij )
T , m = 1, 2, 3, i < j ∈ [N ], (7.18)

the transposed matrices of (7.2). By (7.17) and (7.18), for each triplet of matrices
vmij , v

r
jk and vpki = (vpik)

T , i < j < k ∈ [N ], we have

vmij v
r
jkv

p
ki =

{
±(vmi )Tvmi m = r = p,

0 otherwise,
(7.19)

and by (7.18), we also have that

vmij v
m
ji = (vmi )

Tvmj (vmj )
Tvmi = (vmi )Tvmi , m = 1, 2, 3. (7.20)

Note that a non-zero product of matrices in (7.19) corresponds to a triplet of vertices
in Ω in the same set of (7.3) (see Fig. 1b). We now infer which vertices in (7.16)
belong to the same set of (7.3), by constructing a function that vanishes for all vertex
triplets for which (7.19) and (7.20) hold, namely, for all vertex triplets that belong
to the same set of (7.3). Specifically, for each triplet of indices i < j < k ∈ [N ], we
minimize the function (which will be explained shortly) fijk : S3 ×S3 → R given by

fijk(γ, δ) =
3∑

m=1

‖v
σij(m)
ij v

σjk(γ(m))
jk v

σik(δ(m))
ki ± v

σij(m)
ij v

σij(m)
ji ‖, (7.21)

over all γ = (γ1, γ2, γ3) and δ = (δ1, δ2, δ3) in S3, and all choices of sign ±1 between
the 2 terms in each norm (since by (7.19), the sign of the right term in each norm
is unknown), independently between the norms.

The rationale of minimizing (7.21) can be demonstrated in the following manner.
Writing down the vertices as in (7.16), we seek to rearrange the vertices in the second
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v2ij v3ij v1ij
v3jk v1jk v2jk
v2ik v1ik v3ik

(a)

v2ij v3ij v1ij
v2jk v3jk v1jk
v2ik v3ik v1ik

(b)

Figure 2: (a) Example of unsynchronized rows, where σij = (2, 3, 1), σjk = (3, 1, 2),
and σik = (2, 1, 3). (b) The triplets in (a) after rearrangement of rows 2 and 3
in (7.22), with γ∗ = (3, 1, 2) and δ∗ = (1, 3, 2).

and third rows so that after rearrangement, the vertices in each column are in the
same set of (7.3) (see example in Fig. 2). Whenever we choose a pair of permutations
γ∗, δ∗ ∈ S3 such that the vertices in each column in

v
σij(1)
ij v

σij(2)
ij v

σij(3)
ij

v
σjk(γ

∗(1))
jk v

σjk(γ
∗(2))

jk v
σjk(γ

∗(3))
jk

v
σik(δ

∗(1))
ik v

σik(δ
∗(2))

ik v
σik(δ

∗(3))
ik

(7.22)

are in the same set of (7.3), by (7.19) and (7.20), we have that all the terms in the
sum (7.21) equal zero. Otherwise, if there exists a column in (7.22) in which there is
a pair of vertices in different sets of (7.3), then we have that (7.21) is strictly > 0. For
example, if in each column of (7.22), there is a pair vertices in different classes, then
by (7.19), the left term inside each norm in (7.21) equals zero, while the right term in

each norm equals (v
σij(m)
ij )Tv

σij(m)
ji , and we get that fijk =

∑3
m=1 ‖(v

σij(m)
ij )Tv

σij(m)
ji ‖.

Once we compute for each i < j < k ∈ [N ] a pair of permutations γ∗ and δ∗ min-
imizing fijk in (7.21), the matrix Ω is set block by block by computing all the blocks
of (7.15) in the following manner. We first set the first three blocks of (7.15), that
is, Ω(i,j)(j,k), Ω(i,j)(i,k) and Ω(j,k)(i,k). Consider (7.22), which consists of all the vertices
that are incident to the edges that constitute the aforementioned blocks (see (7.9)).

The triplet of vertices v
σij(m)
ij , v

σjk(γ
∗(m))

jk and v
σjk(δ

∗(m))
jk , which are all in the same

column of (7.22), are in the same set Cσij(m) of (7.3), m = 1, 2, 3. Thus, we assign a
weight +1 to the edges of Ω(i,j)(j,k), Ω(i,j)(i,k), and Ω(j,k)(i,k), which correspond to the

pairs of vertices (v
σij(m)
ij , v

σjk(γ
∗(m))

jk ), (v
σij(m)
ij , v

σik(δ
∗(m))

ik ), and (v
σjk(γ

∗(m))

jk , v
σik(δ

∗(m))
ik ),

for m = 1, 2, 3. All the edges of Ω(i,j)(j,k), Ω(i,j)(i,k), and Ω(j,k)(i,k) which correspond

to pairs of the form (v
σij(m)
ij , v

σjk(γ
∗(r))

jk ), (v
σij(m)
ij , v

σik(δ
∗(r))

ik ), and (v
σjk(γ

∗(m))
jk , v

σik(δ
∗(r))

ik )
where m 6= r, are assigned a weight −1 since they are in a different sets of (7.3).
As for the last three blocks of (7.15), that is, Ω(j,k)(i,j), Ω(i,k)(i,j), and Ω(i,k)(j,k), by
(7.4) we have that Ω(vmij , v

r
kl) = Ω(vrkl, v

m
ij ) for all i < j ∈ [N ], k < l ∈ [N ], and
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m, r ∈ {1, 2, 3}. Thus, by (7.9) we have

Ω(k,l)(i,j) =



Ω(v

σkl(1)
kl , v

σij(1)
ij ) Ω(v

σkl(1)
kl , v

σij(2)
ij ) Ω(v

σkl(1)
kl , v

σij(3)
ij )

Ω(v
σkl(2)
kl , v

σij(1)
ij ) Ω(v

σkl(2)
kl , v

σij(2)
ij ) Ω(v

σkl(2)
kl , v

σij(3)
ij )

Ω(v
σkl(3)
kl , v

σij(1)
ij ) Ω(v

σkl(3)
kl , v

σij(2)
ij ) Ω(v

σkl(3)
kl , v

σij(3)
ij )




=



Ω(v

σij(1)
ij , v

σkl(1)
kl ) Ω(v

σij (2)
ij , v

σkl(1)
kl ) Ω(v

σij(3)
ij , v

σkl(1)
kl )

Ω(v
σij(1)
ij , v

σkl(2)
kl ) Ω(v

σij (2)
ij , v

σkl(2)
kl ) Ω(v

σij(3)
ij , v

σkl(2)
kl )

Ω(v
σij(1)
ij , v

σkl(3)
kl ) Ω(v

σij (2)
ij , v

σkl(3)
kl ) Ω(v

σij(3)
ij , v

σkl(3)
kl )


 = (Ω(i,j)(k,l))

T .

(7.23)

Thus, for every i < j < k ∈ [N ] it holds that

Ω(j,k)(i,j) = (Ω(i,j)(j,k))
T , Ω(i,k)(i,j) = (Ω(i,j)(i,k))

T , Ω(i,k)(j,k) = (Ω(j,k)(i,k))
T , (7.24)

and thus, Ω(j,k)(i,j), Ω(i,k)(i,j) and Ω(i,k)(j,k) can be set according to (7.24) after we
compute Ω(i,j)(j,k),Ω(i,j)(i,k) and Ω(j,k)(i,k).

The procedure for constructing Ω of (7.4) is summarized in Algorithm 3. In the
next section, we turn to the task of unmixing the eigenvectors corresponding to the
maximal eigenvalue of Ω, in order to extract uα of Definition 7.3.

Algorithm 3 Constructing Ω

Input: The set of
(
N

2

)
3-tuples {(v

σij(m)
ij = ±(v

σij(m)
i )Tv

σij(m)
j )3m=1}i<j∈[N ]

1: Initialize: 3
(
N

2

)
× 3

(
N

2

)
matrix Ω, with all entries set to zero

2: for i < j < k ∈ [N ] do
3: (γ∗, δ∗) = argmin

γ,δ∈S3

fijk(γ, δ) ⊲ See (7.21)

4: for m = 1 to 3 do ⊲ Set Ω(i,j)(j,k),Ω(i,j)(i,k) and Ω(j,k)(i,k)

5: Ω(v
σij(m)
ij , v

σjk(γ
∗(m))

jk ) = 1

6: Ω(v
σij(m)
ij , v

σik(δ
∗(m))

ik ) = 1

7: Ω(v
σjk(γ

∗(m))
jk , v

σik(δ
∗(m))

ik ) = 1
8: end for

9: for m 6= r ∈ {1, 2, 3} do

10: Ω(v
σij(m)
ij , v

σjk(γ
∗(r))

jk ) = −1

11: Ω(v
σij(r)
ij , v

σjk(γ
∗(m))

jk ) = −1

12: Ω(v
σij(m)
ij , v

σik(δ
∗(r))

ik ) = −1

13: Ω(v
σij(r)
ij , v

σik(δ
∗(m))

ik ) = −1

14: Ω(v
σjk(γ

∗(r))
jk , v

σik(δ
∗(m))

ik ) = −1

15: Ω(v
σjk(γ

∗(m))

jk , v
σik(δ

∗(r))
ik ) = −1

16: end for

17: Ω(j,k)(i,j) = (Ω(i,j)(j,k))
T ⊲ See (7.24)

18: Ω(i,k)(i,j) = (Ω(i,j)(i,k))
T

19: Ω(i,k)(j,k) = (Ω(j,k)(i,k))
T

20: end for
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7.3 Unmixing the eigenvectors of µc

By Corollary 7.5, the eigenspace of Ω of (7.4) corresponding the eigenvalue µc =
4(N − 2) is spanned by uα and uβ of Definition 7.3. However, any orthogonal linear
combination of uα and uβ is also an eigenvector, and so we can only compute two
orthogonal eigenvectors which are linear combinations of uα and uβ. In this section,
we show how to ’unmix’ these linear combinations to retrieve uα.

Suppose that we have computed a pair of orthogonal unit eigenvectors

va = a1uα + a2uβ, vb = b1uα + b2uβ, (7.25)

spanning the eigenspace of µc. Since va and vb are unit vectors, by Proposition 7.4
we have

1 = ‖va‖
2 =< a1uα + a2uβ, a1uα + a2uβ >= a21 + a22, (7.26)

that is, (a1, a2)
T is also a unit vector. Similarly, we have that ‖(b1, b2)T‖ = 1.

Furthermore, again by Proposition 7.4, we have

0 =< va, vb >=< a1uα + a2uβ, b1uα + b2uβ >

= a1b1 + a2b2 =< (a1, a2)
T , (b1, b2)

T >,
(7.27)

i.e., the coefficients vectors (a1, a2)
T and (b1, b2)

T are unit orthogonal vectors. De-
noting

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, Rref(θ) =

(
− cos θ sin θ
− sin θ cos θ

)
, θ ∈ [0, 2π), (7.28)

by (7.26) and (7.27) there exists an angle ϕ ∈ [0, 2π) such that either

(
a1 b1
a2 b2

)
= R(ϕ) or

(
a1 b1
a2 b2

)
= Rref(ϕ), (7.29)

and by (7.25) and (7.29), we have that

(va vb) = (uα uβ)R(ϕ) or (va vb) = (uα uβ)R
ref(ϕ). (7.30)

However, it can be easily verified that

(uα uβ)R
ref(ϕ) = (−uα uβ)R(ϕ), (7.31)

and thus, (7.30) can be written as

(va vb) = (uα uβ)R(ϕ) or (va vb) = (−uα uβ)R(ϕ). (7.32)

Equation (7.32) suggests that we can if we can recover ϕ, we can unmix va and
vb and recover either uα or −uα. By Definition 7.3, −uα is obtained from uα by
switching places between all +α and −α values in uα, and so both uα and −uα
encode the same partition in (7.3) of the vertices of Ω. We now show how to find ϕ.

For any angle θ ∈ [0, 2π), we write

(vθa v
θ
b ) = (va vb)R(θ). (7.33)
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In addition, using the notation introduced in (7.6), for any vector w ∈ R
3(N2 ) and

for all i < j ∈ [N ], we define

Mij(w) = max{(w)ij}, mij(w) = min{(w)ij}, (7.34)

and we define by dij(w) the value of (w)ij whose magnitude is between Mij and mij .
Then, we define the function fc : [0, 2π) → R by

fc(θ) =
∑

i<j∈[N ]

[(Mij(v
θ
a) +mij(v

θ
a))

2 + dij(v
θ
a)

2]+

[(mij(v
θ
b ) + 2Mij(v

θ
b ))

2 + (mij(v
θ
b ) + 2dij(v

θ
b ))

2

+ (Mij(v
θ
b )− dij(v

θ
b ))

2]. (7.35)

The following proposition, the proof of which is given in Appendix A.6, states
that the minimum of (7.35) over θ ∈ [0, 2π) is obtained at θ for which vθa = ±uα
and vθb = uβ (up to a permutation of the vectors uα and uβ as in (7.8)).

Proposition 7.8. Out of all orthogonal pairs of unit vectors in the eigenspace of

µc, the 12 pairs of vectors {(±uσα, u
σ
β) | σ ∈ S3} are the unique minimizers of fc

in (7.35), up to normalization.

Thus, if we denote by (vθ∗a , v
θ∗
b ) a minimizer of (7.35), then we declare uα to be

vθ
∗

a . The partition in (7.3) is then read from uα. In practice, due to noise in the
input data, vθ

∗

a never exactly equals uα, and so after we compute vθ
∗

a , we threshold
its entries according to

Mij(v
θ∗

a ) = α, dij(v
θ∗

a ) = 0, mij(v
θ∗

a ) = −α, i < j ∈ [N ]. (7.36)

The estimation of uα is summarized in Algorithm 4.

Algorithm 4 Estimation of the eigenvector uα of Ω

Input: The matrix Ω of (7.4)
1: va = argmax

‖v‖=1

vTΩv ⊲ va and vb, are orthogonal eigenvectors

2: vb = argmax
‖v‖=1,v⊥u

vTΩv ⊲ of the largest eigenvalue of Ω

3: (vθ∗a vθ∗b ) = argminθ∈[0,2π) fc(θ) ⊲ See (7.35)
4: for i < j ∈ [N ] do
5: (Mij(v

θ∗
a ), dij(v

θ∗
a ), mij(v

θ∗
a )) = (α, 0,−α) ⊲ see (7.36)

6: end for

Output: vθ
∗

a

8 Signs synchronization

Assuming we have obtained the partition in (7.1) (see also (7.3)), our final task
is to adjust the signs smij in each set Cm of (7.1), so that we can construct the rank 1
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matrices H̃m of (5.7). As was explained in Section 5, the matrices H̃m can then be
decomposed to retrieve all the rows of the matrices Ri in (1.1), which can then be
assembled from their constituent rows. Since all assertions we derive in this section
apply identically and independently to each set Cm in (7.1), throughout this section
we refer to a single set of rank 1 matrices

{sijv
T
i vj}i<j∈[N ], sij ∈ {−1, 1}, (8.1)

by dropping the superscript m that indicates the set Cm in (7.1) to which the
matrices belong. Our goal is therefore to estimate v1, . . . , vN up to an arbitrary
sign. To that end, we will adjust the signs sij in (8.1) so that the matrix H̃ of size
3N × 3N whose (i, j)th block of size 3× 3 is given by (8.1) has rank 1. The leading

eigenvector of H̃ will then give the vectors v1, . . . , vN as required. We next describe
the “signs adjustment” procedure and the construction of H̃.

The task of adjusting the signs sij in (8.1) consists of three steps. The first step
of the signs adjustment procedure is computing the matrices vTi vi for all i ∈ [N ] by
observing that

(sijv
T
i vj)(sijv

T
i vj)

T = (sijv
T
i vj)(sijv

T
j vi) = vTi vi, j ∈ [N ]\{i}, (8.2)

since sij ∈ {−1, 1} and so s2ij = 1. For notational convenience, for all i ∈ [N ] we
write siiv

T
i vi instead vTi vi, since the ‘sign’ sii of v

T
i vi equals 1. In principle, (8.2)

allows to compute siiv
T
i vi for each i ∈ [N ] by using a single matrix sijv

T
i vj for some

arbitrarily chosen j ∈ [N ]\{i}. However, since in practice the input data is noisy,
we obtain more robust estimates for vTi vi by computing the averages

siiv
T
i vi =

∑
j∈[N ]\{i}(sijv

T
i vj)(sijv

T
i vj)

T

N − 1
, i ∈ [N ], (8.3)

followed by computing the best rank 1 approximation of (8.3) using SVD.
While sij in (8.1) are defined only for i < j, for notational convenience we define

sij = sji whenever i > j, and as explained above sii = 1. Thus, sij are defined for all
i, j ∈ [N ]. We next outline steps 2 and 3 of the signs adjustment procedure, before
giving a detailed description of these steps. In step 2 of the procedure, we construct
N rank 1 matrices Hs

1 , . . . , H
s
N , which admit the decompositions

Hs
n = (vsn)

Tvsn , vsn = (sn1v1, . . . , snNvN) , n ∈ [N ], (8.4)

for unknown snj ∈ {−1, 1}, j ∈ [N ]. For each n ∈ [N ], the matrix Hs
n in (8.4) is

constructed block by block from the matrices in (8.1) and (8.3), in such a way that
each Hs

n is a rank 1 matrix which admits the decomposition (8.4). This construction
relies on Proposition 8.1 stated below. Each of the matrices Hs

n in (8.4) can then be
decomposed to recover all the rows v1, . . . , vN up to signs snj . Thus, in theory, we
could construct only one of these matrices, say Hs

1 , and recover {s11v1, . . . , s1NvN},
which is our goal in this section. However, in practice, the estimates sijv

T
i vj of (8.1)

contain errors since they were estimated from noisy images. Moreover, for each
particular n ∈ [N ], the set of estimates {snjvTn vj}j∈[N ]\{n} used to construct the
matrix Hs

n critically depends on the common lines of the single noisy image PRn
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in (1.2) with each of the images PRj
for j ∈ [N ]\{n}, which due to the noise in the

input images, may be highly inaccurate, leading to large errors in (s11v1, . . . , s1NvN)
of (8.4).

Thus, to use all available data in estimating v1, . . . , vN of (8.4), we first decom-
pose all matrices Hs

n in (8.4), which results in N independent estimates {snjvn}Nj=1

for each row vn. We then execute the third step of our signs adjustment proce-
dure in which we use all estimates vsn together (see (8.4)) to obtain a set of signs
s̃ij ∈ {−1, 1}, which allows us to adjust the signs sij of (8.1) by multiplying each

matrix sijv
T
i vj by s̃ij , such that the matrix H̃ of size 3N × 3N whose (i, j)th 3 × 3

block is (s̃ijsij)v
T
i vj has rank 1. This latter procedure exploits all available data at

once, improving the robustness of the estimation of the matrices Ri of (1.2) to noisy

input data. This matrix H̃ admits the decomposition

H̃ = (vs)Tvs, vs = (s1v1, . . . , snvn) (8.5)

for some unknown signs sn ∈ {−1,+1}. Recalling that we dropped the index m ∈

{1, 2, 3} from H̃m of (5.7), and constructed H̃ from the set in (8.1), we see that in

fact we can construct H̃m of (5.7) using {smij v
T
i vj}i<j∈[N ] for each m ∈ {1, 2, 3}, as

required. We can then decompose each H̃m, and recover the rotation matrices Ri

of (1.2), as was explained in Section 5, which is our task in this paper. We now
complete the details of the signs adjustment procedure described above, i.e., the
construction of the matrices of (8.4) and (8.5).

The following proposition, the proof of which is given in Appendix A.7, is the
basis for the construction of the matrices of (8.4).

Proposition 8.1. Let H be a 3N × 3N matrix whose (i, j)th block of size 3 × 3 is

given by sijv
T
i vj of (8.1) if i < j, by its transpose if i > j, and by vTi vi of (8.2) if

i = j. Then, H is rank 1 iff for each n ∈ [N ]

sinsnj = sij , (8.6)

where as noted above, for i > j we define sij = sji. Furthermore, whenever (8.6)
holds, we have

H = (vsn)
Tvsn , vsn = (sn1v1, . . . , snNvN), n ∈ [N ]. (8.7)

Now, suppose we wish to construct Hs
1 of (8.4). Proposition 8.1, and in par-

ticular (8.6), suggest that we can construct Hs
1 using the set in (8.1), by applying

the following sign correction procedure. Recall that vi are rows of 3× 3 orthogonal
matrices, and thus viv

T
i = 1 for all i ∈ [N ]. For each pair 1 < i < j ∈ [N ], we

compute the norm

‖(si1v
T
i v1)(s1jv

T
1 vj)− sijv

T
i vj‖F =

√
|si1s1j − sij| · ‖v

T
i vj‖F , (8.8)

and replace the matrix sijv
T
i vj with −sijvTi vj if (8.8) is greater than zero. Let

{ŝijvTi vj}i<j∈[N ] be the resulting set of rank 1 matrices after this signs correction
procedure. By construction, it holds that

ŝij = si1s1j , 1 < i < j ∈ [N ]. (8.9)
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Now, let Hs
1 be the 3N × 3N matrix whose (i, j)th block of size 3 × 3 is given by

ŝijv
T
i vj . By (8.9) and Proposition 8.1, Hs

1 admits the decomposition

Hs
1 = (vs1)

Tvs1, vs1 = (s11v1, . . . , s1NvN).

The matrices Hs
2 , . . . , H

s
N are obtained in a similar manner. In practice, (8.8) is

never exactly zero due to errors stemming from noise, and thus we also compute
‖(si1vTi v1)(s1jv

T
1 vj) + sijv

T
i vj‖F , and replace sijv

T
i vj with −sijvTj vj , if

‖(si1v
T
i v1)(s1jv

T
1 vj)− sijv

T
i vj‖F > ‖(si1v

T
i v1)(s1jv

T
1 vj) + sijv

T
i vj‖F .

At this point, we can factor each of the matrices {Hs
n}

N
n=1 (e.g., using SVD), and

obtain the set of vectors

v̂sn = sn(sn1v1, . . . , snNvN)
T , n ∈ [N ], (8.10)

of (8.4), where sn ∈ {−1,+1} are unknown. For each i ∈ [N ] we have

(v̂sn)i = snsnivi, n ∈ [N ], (8.11)

that is, we have N estimates {snsnivi}n∈[N ] for the row vi, where each estimate has
an unknown sign snsni. This concludes step 2 of the signs adjustment procedure
outlined above.

For the third and final step of the signs adjustment procedure, we define

s̃ij = sisjsij , i, j ∈ [N ]. (8.12)

Since v1, . . . , vN are unit row vectors, by (8.11) and (8.12), we have

s̃ij s̃jk = sisjsijsjsksjk = sisksijsjk = sisijvj(skskjvj)
T = (v̂si )j(v̂

s
k)

T
j , (8.13)

for all i 6= j 6= k ∈ [N ]. Thus, we can obtain all the products s̃ij s̃jk in (8.13) by
taking dot products of the vectors in (8.11).

Now, suppose we computed the set {s̃ij}i<j∈[N ] from the values s̃ij s̃jk in (8.13)
(as will be explained shortly). Since s̃ij = sisjsij, we have that

s̃ijsij = sisj, i < j ∈ [N ]. (8.14)

Thus, we can multiply each matrix sij(vi)
Tvj in (8.1) by s̃ij, and obtain the set of

matrices {sisjvTi vj}i<j∈[N ], and together with (8.3), we can construct the 3N × 3N

matrix H̃, whose (i, j)th block of size 3× 3 is given by

(H̃)ij = sisjv
T
i vj , i, j ∈ [N ]. (8.15)

Then, H̃ admits the decomposition in (8.5), as required. Thus, it only remains to
show how to extract the set {s̃ij}i<j∈[N ] from the values {s̃ij s̃jk}i 6=j 6=k∈[N ] in (8.13).

Let us define the
(
N

2

)
×

(
N

2

)
matrix

(S)(i,j)(k,l) =

{
s̃ij s̃kl |{i, j} ∩ {k, l}| = 1,

0 otherwise,
(8.16)

where i < j ∈ [N ], k < l ∈ [N ], and the products {s̃ij s̃jk}i 6=j 6=k∈[N ] are computed
using (8.13). The following proposition, the proof of which is given in Appendix A.8,
shows that the signs s̃ij can be extracted from S in (8.16).
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Proposition 8.2. The leading eigenvalue of S in (8.16) is 2(N−2) and it is simple.

Moreover, define us = (s̃ij)i<j∈[N ] to be the vector of length
(
N

2

)
with entries s̃ij.

Then, us is an eigenvector of S corresponding to the eigenvalue 2(N − 2).

By Proposition 8.2, the eigenvector us of S in (8.16) gives the set {s̃ij}i<j∈[N ].

The procedure for the signs adjustment (and the construction of H̃ of (8.5)), is
summarized in Algorithm 5.

9 Numerical experiments

We implemented Algorithms 1–5 in Matlab and tested them on a dataset of raw
projection images of the beta-galactosidase enzyme [4], which has a D2 symmetry.
All tests were executed on a dual Intel Xeon E5-2683 CPU (32 cores in total),
with 768GB of RAM running Linux, and four nVidia GTX TITAN XP GPU’s.
Section 9.1 provides some of the implementation details for Algorithms 1–5, and
Section 9.2 presents the results on the experimental dataset.

9.1 Implementation details

To execute Algorithm 1, we need to discretize the space of rotations SO(3). To
that end, we generated a pseudo-uniform spherical grid of K=1200 points zk on S2,
using the Saaf-Kuijlaars algorithm [10]. Then, for each zk = (ak, bk, ck)

T ∈ S2 on
the spherical grid, we computed the set of rotations

Qkl =




| | |

cos(θl)uk + sin(θl)wk − sin(θl)uk + cos(θl)wk zk
| | |



 , (9.1)

where θl = 2πl/L for l = 0, 1, . . . , L− 1, and the vectors uk and wk are given by

uk =
(−bk, ak, 0)T

‖(−bk, ak, 0)T‖
, wk =

uk × zk
‖uk × uk‖

. (9.2)

It is easily verified that the vectors wk, uk and zk form an orthonormal set, and that
Qkl ∈ SO(3). The third column zk of each rotation Qkl is the beaming direction
corresponding to the rotation Qkl, and the vectors

cos(2πl/L)uk + sin(2πl/L)wk, − sin(2πl/L)uk + cos(2πl/L)wk, (9.3)

are the coordinate systems for the plane perpendicular to zk. Thus, each set of
matrices {Qkl}

L−1
l=0 where k ∈ {1, . . . , K} is a discretization of the set of rotations in

SO(3) with beaming direction zk. We found experimentally that choosing L = 72
(together with K = 1200) is sufficient to obtain accurate results.

As for runtime, for a set of 500 projection images, it took 1512 seconds to com-
pute all sets of relative rotations {RT

i gmRj}4m=1 (Algorithm 1), 720 second to syn-
chronize handedness (Algorithm 2), 5784 seconds to compute the partition in (7.1)
(Algorithms 3 and 4), and 1378 seconds to adjust the signs sij of (7.1) (Algorithm 5).

28



Algorithm 5 Signs adjustment procedure

Input: A set of
(
N

2

)
rank 1 matrices {vij = sijv

T
i vj}i<j∈[N ]

1: Initialize:
(
N

2

)
×
(
N

2

)
matrix S, with all entries set to zero, and N + 1 matrices

2: {Hs
1 , . . . , H

s
N} and H̃ of size 3N × 3N , with all entries set to zero

3: Estimate siiv
T
i vi, i = 1, . . . , N ⊲ See (8.3)

4: for n = 1 to N do

5: for i < j ∈ [N ] do
6: if ‖vinvnj − vij‖F > ‖vinvnj + vij‖F then

7: (Hs
n)ij = −vij

8: else ⊲ (Hs
n)ij denotes the (i, j)th 3× 3 block of Hs

n

9: (Hs
n)ij = vij

10: end if

11: end for

12: Hs
n = Hs

n + (Hs
n)

T

13: for i = 1 to N do

14: (Hs
n)ii = siiv

T
i vi

15: end for

16: v̂sn = argmax
‖v‖=1

vTHs
nv ⊲ See (8.10)

17: end for

18: for n = 1 to N do

19: for i = 1 to N do

20: (v̂sn)i = v̂sn(3i− 2, 3i− 1, 3i) ⊲ See (8.11)
21: end for

22: end for

23: for (i, j)(k, l) ∈ A do ⊲ See (7.11)
24: S(i,j)(k,l) = s̃ij s̃kl ⊲ Using v̂sn, see (8.13) and (8.16)
25: end for

26: us = argmax
‖v‖=1

vTSv

27: for i < j ∈ [N ] do
28: s̃ij = us(vij) ⊲ See Proposition 8.2

29: (H̃)ij = s̃ij · vij ⊲ See (8.14) and (8.15)
30: end for

31: H̃ = H̃ + H̃T

32: for i = 1 to N do

33: (H̃)ii = siiv
T
i vi

34: end for

35: vs = argmax
‖v‖=1

vT H̃v ⊲ See (8.5)

Output: vs
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Figure 3: A sample of 129× 129 class averages of the EMPIAR-10061 dataset [1].

9.2 Beta-galactosidase experimental results

We applied Algorithms 1–5 to the EMPIAR-10061 dataset [1] from the EMPIAR
archive [6]. The dataset consists of 41,123 raw particles images, each of size 768×768
pixels, with pixel size of 0.3185 Å. To generate class averages from this dataset, we
used the ASPIRE software package [2] as follows. First, all images were phase-
flipped (in order to remove the phase-reversals in the CTF), down-sampled to size
129 × 129 pixels (hence with pixel size of 1.9 Å), and normalized so that the noise
in each image has zero mean and unit variance. We then split the images into
two independent sets, each consisting of 20,560 particle images, and all subsequent
processing was applied to each set independently.

We next used the class-averaging procedure in ASPIRE [2] to generate 2000
class averages from each of the two sets of particle images (using the EM-based
class averaging algorithm in ASPIRE). A sample of these class averages is shown
in Fig. 3. The input to our algorithm was 500 out of the 2000 class averages (by
selecting every 4th image).

Next, we used the algorithms described in this paper to estimate the rotation
matrices that correspond to the 500 class averages, and reconstructed the three-
dimensional density map using the class averages and their estimated rotation ma-
trices. The resolution of the reconstructed volume, assessed by comparing the re-
constructions from the two independent sets of class averages is 8.23 Å, using the
Fourier shell correlation (FSC) 0.143-criterion [14] (Fig. 4a). When comparing our
reconstructions to a high resolution reconstruction of the molecule (EMD-7770 [3]),
the resolution estimated using the 0.5-criterion of the FSC is 9.88 Å (Fig. 4b).

10 Summary and future work

In this paper, we presented a procedure for estimating the orientations corre-
sponding to a given set of projection images of a D2-symmetric molecule. We have
shown that the set of relative rotations between all pairs of images admits a special
graph structure, and demonstrated that this structure can be exploited to recover
the rotations. We then demonstrated our method by reconstructing an ab-initio
model from an experimental set of cryo-EM images.

An obvious future work is to extend the proposed method to Dn for n ≥ 3.
Preliminary theoretical analysis suggests that this can be achieved by combining
the method of the current paper with the algorithms derived in [9].
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Figure 4: Fourier shell correlation curves.
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A Appendix

A.1 Proof of Proposition 5.1

Let (RT
i gτ(m)Rj)

4
m=1 be a permutation of the 4-tuple (RT

i gmRj)
4
m=1.

1. This follows immediately from (5.2) and (5.3), by noting that the tuple (τ(2), τ(3), τ(4))
is a permutation of (2, 3, 4) .

2. Suppose that τ(2) = 1. Then, (τ(1), τ(3), τ(4)) is a permutation of (2, 3, 4).
By (5.5) and (5.3), we have

1

2
(RT

i gτ(1)Rj +RT
i gτ(3)Rj) = RT

i

1

2
(gτ(1) + gτ(3))Rj

= −RT
i Iτ(4)−1Rj = −(v

τ(4)−1
i )Tv

τ(4)−1
j ,

1

2
(RT

i gτ(1)Rj +RT
i gτ(4)Rj) = RT

i

1

2
(gτ(1) + gτ(4))Rj

= −RT
i Iτ(3)−1Rj = −(v

τ(3)−1
i )Tv

τ(3)−1
j .

By (5.2) and (5.3), we have

1

2
(RT

i gτ(1)Rj +RT
i gτ(2)Rj) = RT

i

1

2
(gτ(1) + gτ(2))Rj

= RT
i

1

2
(gτ(1) + g1)Rj

= RT
i Iτ(1)−1Rj = (v

τ(1)−1
i )Tv

τ(1)−1
j ,
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as required. The proof for the cases m = 3, 4 is similar.

A.2 Proof of Proposition 6.1

First, we note that the set {g1, g2, g3, g4} of (1.3) forms a multiplicative group of
matrices, known in literature as the Klein four-group. In particular, g1 = I is the
identity element of the group, and we have

g2m = g1, m = 1, 2, 3, 4. (A.1)

Now, since Ri, Rj and Rk are in SO(3), we have

Rm
ijR

l
jkR

r
ki = (RT

i gτij(m)Rj)(R
T
j gτjk(l)Rk)(R

T
k gτki(r)Ri) = I ⇐⇒

RT
i gτij(m)gτjk(l)gτki(r)Ri = I ⇐⇒ gτij(m)gτjk(l)gτki(r) = I.

(A.2)

By (A.1), each member of the group {gm}4m=1 is its own inverse, and so for any
triplet (m, l, r) ∈ {1, 2, 3, 4}3 we have that gτij(m)gτjk(l)gτki(r) = I if and only if

gτij(m)gτjk(l) = gτki(r). (A.3)

Now observe, that since τij , τjk, τki ∈ S4 are permutations, we have

{gτij(m)}
4
m=1 = {gτjk(m)}

4
m=1 = {gτki(m)}

4
m=1 = {gm}

4
m=1, (A.4)

from which it follows that there are 16 possible products gτij(m)gτjk(l) on the left-
hand side of (A.3), corresponding to the 16 products Rm

ijR
l
jk for m, l ∈ {1, 2, 3, 4}.

Thus, there are at most 16 triplets (m, l, r) ∈ {1, 2, 3, 4}3 for which (A.3) is satisfied.
On the other hand, combining the closure property of groups with (A.4) gives us
that there always exists an element gτki(r) of {gτki(m)}

4
m=1 such that (A.3) is satisfied.

We conclude that are exactly 16 triplets (m, l, r) ∈ {1, 2, 3, 4}3 such that (A.3) is
satisfied, from which by (A.2), the proof is concluded.

A.3 Proof of Theorem 7.2

We assume without loss of generality, that the first
(
N

2

)
rows of Ω correspond to

the vertices {v1ij}i<j∈[N ], the following
(
N

2

)
rows correspond to the vertices {v2ij}i<j∈[N ],

and the last
(
N

2

)
rows correspond to {v3ij}i<j∈[N ]. Let Σ+ be the

(
N

2

)
×

(
N

2

)
matrix

given by

(Σ+)(i,j)(k,l) =

{
1 |{i, j} ∩ {k, l}| = 1,

0 otherwise.
(A.5)

In [8], it was shown that the spectrum of Σ+ is given by

(
2(N − 2) N − 4 −2

1 N − 1
(
N

2

)
−N

)
. (A.6)
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We now show how to relate the spectrum of Ω to that of Σ+.
Let Brp for r, p = 1, 2, 3, be an

(
N

2

)
×

(
N

2

)
matrix which consists of rows ((r −

1)
(
N

2

)
+ 1), . . . , r

(
N

2

)
and columns ((p− 1)

(
N

2

)
+ 1), . . . , p

(
N

2

)
of the matrix Ω. That

is, we partition Ω into 9 block matrices of equal dimensions. By assumption, for any
r ∈ {1, 2, 3}, both the rows and columns of the matrix Brr correspond to vertices of
the same set Cr in (7.3). Thus, by (7.4) we have that for r ∈ {1, 2, 3},

(Brr)(i,j)(k,l) =

{
1 |{i, j} ∩ {k, l}| = 1,

0 otherwise,
(A.7)

which by (A.5) gives that Brr = Σ+ for all r ∈ {1, 2, 3}. Now, consider any matrix
Brp for r 6= p ∈ {1, 2, 3}, and note that its rows correspond to the vertices of
the set Cr = {vrij}i<j∈[N ], whereas its columns correspond the vertices of the set
Cp = {vpij}i<j∈[N ]. Again, by (7.4), we have that for r 6= p ∈ {1, 2, 3},

(Brp)(i,j)(k,l) =

{
−1 |{i, j} ∩ {k, l}| = 1,

0 otherwise.
(A.8)

Thus, by (A.5), we have that Brp = −Σ+ for all r 6= p ∈ {1, 2, 3}, and we conclude
that

Ω =




Σ+ −Σ+ −Σ+

−Σ+ Σ+ −Σ+

−Σ+ −Σ+ Σ+


 . (A.9)

Now, let u ∈ R
(N2 ) be any eigenvector of Σ+ corresponding to an eigenvalue λ.

Denote z = (0, . . . , 0)T ∈ R
(N2 ), and consider the column vectors of length 3

(
N

2

)

u1 =



u
u
u


 , u2 =



u
z
−u


 , u3 =




u
−2u
u


 . (A.10)

By (A.9), we have

Ωu1 =




Σ+u− Σ+u− Σ+u
−Σ+u+ Σ+u− Σ+u
−Σ+u− Σ+u+ Σ+u


 =



−λu
−λu
−λu


 = −λ



u
u
u


 = −λu1,

Ωu2 =




Σ+u− Σ+z + Σ+u
−Σ+u+ Σ+z + Σ+u
−Σ+u− Σ+z − Σ+u


 =




2λu
2λz
−2λu


 = 2λ



u
z
−u


 = 2λu2,

Ωu3 =




Σ+u+ 2Σ+u− Σ+u

−Σ+u− 2Σ+u− Σ+u
−Σ+u+ 2Σ+u+ Σ+u



 =




2λu
−4λu
2λu



 = 2λ




u

−2u
u



 = 2λu3.

(A.11)

This shows that if λ is an eigenvalue of Σ+, then −λ and 2λ are eigenvalues of Ω.
Furthermore, if u is an eigenvector of Σ+ with eigenvalue λ, then u1 in (A.10) is an
eigenvector of Ω corresponding to the eigenvalue −λ of Ω, and u2 and u3 in (A.10)
are eigenvectors of Ω corresponding to the eigenvalue 2λ of Ω. Now, note that

〈u2, u3〉 = 〈u, u〉 − 2〈z, u〉 − 〈u, u〉 = 0,
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and thus u2 and u3 in (A.10) are independent for any u ∈ R
(N2 ). Furthermore,

since all eigenvalues of Σ+ are non-zero (see (A.6)), we have that 2λ 6= −λ 6= 0,
and so u1 is in a different eigenspace of Ω than u2 and u3. Thus, all three vec-
tors in (A.10) are independent eigenvectors of Ω. Let us denote the multiplicity
of an eigenvalue λ of the matrix Σ+ by mΣ+(λ), and the multiplicity of an eigen-
value µ of Ω, by mΩ(µ). We also denote the three eigenvalues of Σ+ by λ1, λ2
and λ3. It is simple to verify, that if a pair of vectors u and v are independent,
then so are the pairs of vectors {(u, u, u)T , (v, v, v)T}, {(u, z,−u)T , (v, z,−v)T}, and
{(u,−2u, u)T , (v,−2v, v)T}. Thus, by (A.11), if λ is an eigenvalue of Σ+, then the
eigenvalues 2λ and −λ of Ω satisfy

mΩ(−λ) ≥ mΣ+(λ), mΩ(2λ) ≥ 2mΣ+(λ), (A.12)

which gives us that

3∑

i=1

(mΩ(−λi) +mΩ(2λi)) ≥ 3
3∑

i=1

mΣ+(λi) = 3

(
N

2

)
. (A.13)

On the other hand, since Ω has dimensions 3
(
N

2

)
× 3

(
N

2

)
, we have

3∑

i=1

mΩ(−λi) +mΩ(2λi) ≤ 3

(
N

2

)
, (A.14)

by which we have that

mΩ(2λi) = 2mΣ+(λi), mΩ(−λi) = mΣ+(λi), i = 1, 2, 3, (A.15)

for otherwise, by (A.12) we would have a strong inequality in (A.13), which is a
contradiction to (A.14).

We conclude that the set of eigenvalues of Ω is given by {2λi,−λi}3i=1. Finally,
the multiplicities of the eigenvalues of Ω in (7.5) are computed by combining (A.6)
with (A.15).

A.4 Proof of Proposition 7.4

We begin by introducing some notation and definitions which we use in the
current and subsequent proofs. Let Pσ denote the 3 × 3 permutation matrix of
σ ∈ S3, i.e., Pσ satisfies Pσv = (v(σ(1)), v(σ(2)), v(σ(3))T for any v ∈ R

3. Thus,
using the notation introduced in (7.6) we can write

(uα)ij = Pσij
u3c, (uβ)ij = Pσij

u2c, (A.16)

where uα and uβ are given in Definition 7.3, and u3c and u2c are defined in (7.7).
Now, using the notation of (7.9), consider the block Ω(i,j)(j,k) of Ω for some

i < j < k ∈ [N ]. If it were the case that σij and σjk are the identity permutations,
then by (7.9) and (7.4), we would have that

Ω(i,j)(j,k) =




1 −1 −1
−1 1 −1
−1 −1 1


 . (A.17)
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However, in general, Ω(i,j)(j,k) is the 3 × 3 block of Ω which we get by taking the

entries of Ω in the rows corresponding to the triplet of vertices (v
σij(1)
ij , v

σij(2)
ij , v

σij(3)
ij ),

and columns corresponding to the triplet of vertices (v
σjk(1)

jk , v
σjk(2)

jk , v
σkl(3)
jk ). In other

words, Ω(i,j)(j,k) is obtained from the matrix in (A.17) by permuting its rows by σij
and its columns by σjk, that is

Ω(i,j)(j,k) = Pσij




1 −1 −1
−1 1 −1
−1 −1 1


P T

σjk
.

By the same argument applied to Ω(i,j)(k,l) whenever |{i, j} ∩ {k, l}| = 1, we have
that

Ω(i,j)(k,l) = Pσij




1 −1 −1
−1 1 −1
−1 −1 1


P T

σkl
. (A.18)

The reason that Pσkl
in (A.18) is transposed, is that in order to permute the columns

of a matrix by σkl, one has to multiply it on the right by P T
σkl

. We now prove
Proposition 7.4

Proof of Proposition 7.4. Let us compute the Rayleigh quotient for uα. By the
second equality in (7.14), we have

uTαΩuα =
∑

i<j<k∈[N ]

[(uα)
T
ijΩ(i,j)(j,k)(uα)jk + (uα)

T
jkΩ(j,k)(i,j)(uα)ij

+ (uα)
T
ijΩ(i,j)(i,k)(uα)ik + (uα)

T
ikΩ(i,k)(i,j)(uα)ij

+ (uα)
T
jkΩ(j,k)(i,k)(uα)ik + (uα)

T
ikΩ(i,k)(j,k)(uα)jk].

(A.19)
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By (A.16) and (A.18), and since permutation matrices are orthogonal, we have

uTαΩuα =
∑

i<j<k∈[N ]

(Pσij
u3c)

TPσij




1 −1 −1

−1 1 −1
−1 −1 1



P T
σjk
Pσjk

u3c

+ (Pσjk
u3c)

TPσjk




1 −1 −1
−1 1 −1
−1 −1 1


P T

σij
Pσij

u3c

+ (Pσij
u3c)

TPσij




1 −1 −1
−1 1 −1
−1 −1 1


P T

σik
Pσik

u3c

+ (Pσik
u3c)

TPσik




1 −1 −1

−1 1 −1
−1 −1 1



P T
σij
Pσij

u3c

+ (Pσjk
u3c)

TPσjk




1 −1 −1
−1 1 −1
−1 −1 1


P T

σik
Pσik

u3c

+ (Pσik
u3c)

TPσik




1 −1 −1
−1 1 −1
−1 −1 1


P T

σjk
Pσjk

u3c

=
∑

i<j<k∈[N ]

6 · (u3c)
T




1 −1 −1

−1 1 −1
−1 −1 1



 u3c

(A.20)

It is straightforward to check that each term in the sum (A.20) equals exactly 24α2.

By Definition 7.3, α = (2
(
N

2

)
)−

1
2 , and since there are

(
N

3

)
triplets i < j < k ∈ [N ],

the sum in (A.20) amounts to

uTαΩuα =

(
N

3

)
· 24α2 =

24
(
N

3

)

2
(
N

2

) = 4(N − 2).

By Theorem 7.2, µc = 4(N−2) is the leading eigenvalue of Ω, and thus, uα maximizes
the Rayleigh quotient of Ω, by which we have that uα is in the eigenspace of µc.
A similar calculation for uβ shows that it is also in the same eigenspace. Finally,
observe that since Pσij

are orthogonal for all i < j ∈ [N ], we have

< uα, uβ > =
∑

i<j∈[N ]

< (uα)ij , (uβ)ij >=
∑

i<j∈[N ]

< Pσij
u3c, Pσij

u2c >

=
∑

i<j∈[N ]

< u3c, u2c >=
∑

i<j∈[N ]

α · β + 0 · (−2β) + α · (−β) = 0.
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A.5 Proof of Lemma 7.7

We begin by showing the first equality in (7.14). Fix some i < j ∈ [N ], and
observe that for any k < l ∈ [N ] such that |{i, j} ∩ {k, l}| = 1, we have that

(i, j)(k, l) =






(i, j)(k, j) j = l and (k < i < j or i < k < j),

(i, j)(j, l) j = k and i < j < l,

(i, j)(k, i) i = l and k < i < j,

(i, j)(i, l) i = k and i < l < j or i < j < l,

(A.21)

where in the first case of (A.21) it cannot be that i = k since then we would have
that |{i, j} ∩ {k, l}| > 1 (and similarly for the other cases). From (A.21) and (7.12)
we get that

(i, j)(k, l) ∈






A1
ij j = l and (k < i < j or i < k < j),

A2
ij j = k and i < j < l,

A3
ij i = l and k < i < j,

A4
ij i = k and i < l < j or i < j < l.

This shows that for fixed i < j it holds that

{(i, j)(k, l) | k < l, |{i, j} ∩ {k, l}| = 1} ⊆ A1
ij ∪A

2
ij ∪ A

3
ij ∪A

4
ij ,

and so by taking a union over all i < j ∈ [N ], we get from (7.11) that

A =
⋃

i<j∈[N ]

{(i, j)(k, l) | k < l, |{i, j} ∩ {k, l}| = 1}

⊆
⋃

i<j∈[N ]

A1
ij ∪A

2
ij ∪ A

3
ij ∪ A

4
ij .

(A.22)

Conversely, suppose that (i, j)(k, j) ∈ A1
ij for some i < j ∈ [N ] and k < j, k 6= i.

Then, we have that (i, j)(k, j) = (i, j)(k, l) for l = j, |{i, j} ∩ {k, l}| = 1 and
k < l. Thus, by (7.11), for any k ∈ [N ] such that k < j and k 6= i we have that
(i, j)(k, j) ∈ A, from which we have that A1

ij ⊆ A. Applying a similar argument to
A2

ij, A
3
ij and A

4
ij , we get that A

2
ij , A

3
ij, A

4
ij ⊆ A for all i < j ∈ [N ], from which we get

that
A1

ij ∪ A
2
ij ∪ A

3
ij ∪A

4
ij ⊆ A, i < j ∈ [N ].

Taking a union over all i < j ∈ [N ] we have

A ⊇
⋃

i<j∈[N ]

A1
ij ∪A

2
ij ∪ A

3
ij ∪A

4
ij , (A.23)

which together with (A.22) proves the first equality in (7.14).
Let us now show the second equality in (7.14). Suppose that i < j < k ∈ [N ].

Then, from (7.12) we have that

(i, j)(j, k) ∈ A2
ij , (i, j)(i, k)∈ A4

ij , (j, k)(i, k) ∈ A1
jk,

(j, k)(i, j) ∈ A3
jk, (i, k)(i, j)∈ A4

ik, (i, k)(j, k) ∈ A1
ik.

(A.24)
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By (A.24) and the definition of Aijk and Af
ijk in (7.13), we have

Aijk ⊆ A2
ij ∪A

4
ij ∪ A

1
jk, Af

ijk ⊆ A3
jk ∪A

4
ik ∪ A

1
ik.

Thus, taking the union over all i < j < k ∈ [N ] gives us that

⋃

i<j<k∈[N ]

Aijk ∪ A
f
ijk ⊆

⋃

i<j<k∈[N ]

A2
ij ∪ A

4
ij ∪A

1
jk ∪ A

3
jk ∪ A

4
ik ∪A

1
ik. (A.25)

Now, for each i < j < k ∈ [N ] we have

A2
ij ∪A

4
ij ⊆A

1
ij ∪A

2
ij ∪A

3
ij ∪A

4
ij,

A1
jk∪A

3
jk⊆A

1
jk∪A

2
jk∪A

3
jk∪A

4
jk,

A4
ik∪A

1
ik⊆A

1
ik∪A

2
ik∪A

3
ik∪A

4
ik,

by which we have that (renaming the indices to those given in (7.12))

A2
ij ∪A

4
ij ∪ A

1
jk ∪ A

3
jk ∪A

4
ik ∪ A

1
ik ⊆

⋃

i<j∈[N ]

A1
ij ∪A

2
ij ∪ A

3
ij ∪ A

4
ij .

Taking a union over all i < j < k ∈ [N ] we get

⋃

i<j<k∈[N ]

A2
ij ∪ A

4
ij ∪ A

1
jk ∪ A

3
jk ∪ A

4
ik ∪A

1
ik ⊆

⋃

i<j∈[N ]

A1
ij ∪A

2
ij ∪ A

3
ij ∪A

4
ij ,

thus, by (A.25), we have

⋃

i<j<k∈[N ]

Aijk ∪ A
f
ijk ⊆

⋃

i<j∈[N ]

A1
ij ∪ A

2
ij ∪ A

3
ij ∪A

4
ij ⊆ A,

where the last inequality follows from (A.23).
Conversely, take (i, j)(k, l) ∈ A. By the first part of the proof, (i, j)(k, l) belongs

to one of the sets in (7.12). If (i, j)(k, j) ∈ A1
ij , then we have that either k < i < j

or i < k < j, and thus

(i, j)(k, j) ∈

{
{(k, i)(i, j) , (k, i)(k, j) , (i, j)(k, j)} k < i < j,

{(k, j)(i, k) , (i, j)(i, k) , (i, j)(k, j)} i < k < j,

that is, (i, j)(k, j) ∈ Akij or (i, j)(k, j) ∈ Af
ikj. This shows that (renaming the indices

to the order given in (7.13))

(i, j)(k, j) ∈
⋃

i<j<k∈[N ]

Aijk ∪ A
f
ijk,

for either k < i < j ∈ [N ] or i < k < j ∈ [N ], by which we conclude that

A1
ij ⊆

⋃

i<j<k∈[N ]

Aijk ∪ A
f
ijk.
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In the same manner one can show that

A2
ij , A

3
ij, A

4
ij ⊆

⋃

i<j<k∈[N ]

Aijk ∪ A
f
ijk,

for all i < j ∈ [N ]. Thus, we have that

A1
ij ∪ A

2
ij ∪A

3
ij ∪ A

4
ij ⊆

⋃

i<j<k∈[N ]

Aijk ∪ A
f
ijk

for all i < j ∈ [N ]. Taking a union over all i < j ∈ [N ] and using the first equality
in (7.14) gives

A =
⋃

i<j∈[N ]

A1
ij ∪A

2
ij ∪ A

3
ij ∪ A

4
ij ⊆

⋃

i<j<k∈[N ]

Aijk ∪ A
f
ijk,

which concludes the proof of the second equality in (7.14).

A.6 Proof of Proposition 7.8

Define the sets

Γ3c = {Pσu3c | Pσ ∈ S3}, Γ2c = {Pσu2c | Pσ ∈ S3}, (A.26)

where u2c and u3c were defined in (7.7), and Pσ is the permutation matrix of σ ∈ S3.
That is, Γ3c is the set of all permutations of u3c and Γ2c is the set of all permutations
of u2c.

Lemma A.1. Let u, v ∈ R
3 be such that u = Pσu3c and v = Pσu2c for some

Pσ ∈ S3. Suppose, that u′, v′ ∈ R
3 are such that (u′ v′) = (u v)R(θ) for some

θ ∈ [0, 2π), u′ ∈ Γ3c and v′ ∈ Γ2c, where R(θ) was defined in (7.28). Then, there

exists P ′
σ ∈ S3 such that




| |
u v
| |


R(θ) = P ′

σ




| |
±u v
| |


 . (A.27)

Proof. First, since Pσ is orthogonal, then

< u, v >=< Pσu3c, Pσu2c >=< u3c, u2c >= 0. (A.28)

DefineW = {(x, y, z)T | x+y+z = 0}, and note thatW is a linear subspace of R3 that
contains Γ3c and Γ2c. Since (u′ v′) = (u v)R(θ) and R(θ) is an orthogonal matrix,
by (A.28) we have that u′ and v′ are also orthogonal vectors, and by assumption u′

and v′ are in Γ3c and Γ2c, respectively, and so they are in W . Now, since v, v′ ∈ Γ2c

there exists P ′
σ ∈ S3 such that v′ = P ′

σv. Since P
′
σ is an orthogonal matrix, we have

< ±P ′
σu, v

′ >=< ±u, v >= 0.

Finally, since W is of dimension 2, there are exactly two vectors perpendicular to v′

in W . Thus, it must be that u′ = ±P ′
σu, from which we get (A.27).
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We now prove Proposition 7.8.

Proof of Proposition 7.8. The function fc(θ), given in (7.35), satisfies fc(θ) ≥ 0 for
all θ ∈ [0, 2π). Suppose that θ is such that fc(θ) = 0. Such a θ necessarily exists,
since if we choose θ in (7.33) such that (vθa, v

θ
b ) = (±uα, uβ) (which can be done due

to (7.32)), then (7.35) equals zero. In the notation of (7.6), we now show that there
exists σ ∈ S3 such that either

(vθa)ij = (uσα)ij, (vθb )ij = (uσβ)ij , i < j ∈ [N ], (A.29)

or that
(vθa)ij = (−uσα)ij , (vθb )ij = (uσβ)ij , i < j ∈ [N ], (A.30)

from which it follows that (vθa, v
θ
b ) ∈ {±(uσα, u

σ
β) | σ ∈ S3}.

First, we show that

(vθa)ij ∈ Γ3c, (vθb )ij ∈ Γ2c, i < j ∈ [N ]. (A.31)

Indeed, for each pair i < j ∈ [N ], looking at the first square brackets in (7.35), we
have that

(Mij(v
θ
a) +mij(v

θ
a))

2 + dij(v
θ
a)

2 = 0 ⇐⇒

{
Mij(v

θ
a) = −mij(v

θ
a),

dij(v
θ
a) = 0.

This shows that (vθa)ij must be a permutation of u3c in (7.7), that is, (vθa)ij ∈ Γ3c.
Similarly, looking at the second square brackets in (7.35), we have that

[(mij(v
θ
b ) + 2Mij(v

θ
b ))

2 + (mij(v
θ
b ) + 2dij(v

θ
b ))

2 + (Mij(v
θ
b )− dij(v

θ
b ))

2] = 0

⇐⇒





mij(v
θ
b ) = −2Mij(v

θ
b ),

mij(v
θ
b ) = −2dij(v

θ
b ),

dij(v
θ
b ) =Mij(v

θ
b ),

which is possible only if (vθb )ij is a permutation of the vector u2c in (7.7), i.e.,
(vθb )ij ∈ Γ2c, which shows (A.31).

Now, by (7.32) and (7.33), the vectors vθa and vθb are either given by

(vθa vθb ) = (va vb)R(θ) = (uα uβ)R(ϕ)R(θ) = (uα uβ)R(ϕ+ θ), (A.32)

or by

(vθa vθb ) = (va vb)R(θ) = (−uα uβ)R(ϕ)R(θ) = (−uα uβ)R(ϕ+ θ), (A.33)

for some ϕ ∈ [0, 2π), where va and vb is the pair of orthogonal eigenvectors of Ω
defined in (7.25). Let us assume first the case (A.32). In the notation of (7.6), we
define

A+
αβ =




| |

(uα)12 (uβ)12
| |



 , A−
αβ =




| |

(−uα)12 (uβ)12
| |



 .

Also, denoting by
A+

c = (u3c u2c), A−
c = (−u3c u2c), (A.34)
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the 2 × 3 matrices with columns ±u3c and u2c (defined in (7.7)), we get that by
Definition 7.3 and (7.6), for each pair i < j ∈ [N ] we have




| |
(uα)ij (uβ)ij

| |


 = Pσij

A+
c . (A.35)

In particular, for i = 1 and j = 2 we have

A+
αβ =




| |

(uα)12 (uβ)12
| |



 = Pσ12A
+
c . (A.36)

Thus, by (A.35) and (A.36) it follows that for all i < j ∈ [N ] we have



| |
(uα)ij (uβ)ij

| |


 = Pσij

P T
σ12
A+

αβ . (A.37)

Now, by (A.32) and (7.6) we have that



| |
(vθa)12 (vθb )12

| |


 =




| |
(uα)12 (uβ)12

| |


R(θ + ϕ) = A+

αβR(θ + ϕ). (A.38)

By (A.36) we have that (uα)12 = Pσ12u3c and (uβ)12 = Pσ12u2c, and by (A.31), we
have that (vθa)12 ∈ Γ3c and (vθb )12 ∈ Γ2c. Thus, using (A.38), by Lemma A.1 there
exists a permutation matrix Pτ such that either

A+
αβR(θ + ϕ) = PτA

+
αβ or A+

αβR(θ + ϕ) = PτA
−
αβ. (A.39)

First, assume that the case on the left of (A.39) holds. It then follows from (7.6),
(A.32), (A.37) and (A.36) that




| |

(vθa)ij (vθb )ij
| |



 =




| |

(uα)ij (uβ)ij
| |



R(θ + ϕ) = Pσij
P T
σ12
A+

αβR(θ + ϕ)

= Pσij
P T
σ12
PτA

+
αβ = Pσij

(P T
σ12
PτPσ12)A

+
c .

Writing Pσ = P T
σ12
PτPσ12 , we get by (A.34) that for all i < j ∈ [N ]




| |
(vθa)ij (vθb )ij
| |


 = Pσij

PσA
+
c = Pσij



u3c(σ(1)) u2c(σ(1))
u3c(σ(2)) u2c(σ(2))
u3c(σ(3)) u2c(σ(3))


 . (A.40)

By (7.8) and (7.6), we have that

Pσij



u3c(σ(1)) u2c(σ(1))
u3c(σ(2)) u2c(σ(2))
u3c(σ(3)) u2c(σ(3))


 = Pσij



uσα(v

1
ij) uσβ(v

1
ij)

uσα(v
2
ij) uσβ(v

2
ij)

uσα(v
3
ij) uσβ(v

3
ij)




=



uσα(v

σij(1)
ij ) uσβ(v

σij(1)
ij )

uσα(v
σij(2)
ij ) uσβ(v

σij(2)
ij )

uσα(v
σij(3)
ij ) uσβ(v

σij(3)
ij )


 =




| |
(uσα)ij (uσβ)ij

| |




(A.41)
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for all i < j ∈ [N ]. The last two equations show that (A.29) holds, which proves
the proposition for the case (A.32), when the identity on the left of (A.39) holds.

If (A.32) holds as well as the case on the right of (A.39), where A+
αβR(θ + ϕ) =

PτA
−
αβ, then by repeating the latter calculation with A+

αβ and A+
c replaced by A−

αβ

and A−
c , we get that




| |
(vθa)ij (vθb )ij
| |


 = Pσij

PσA
−
c

= Pσij



−u3c(σ(1)) u2c(σ(1))
−u3c(σ(2)) u2c(σ(2))
−u3c(σ(3)) u2c(σ(3))


 =




| |
(−uσα)ij (uσβ)ij

| |


 ,

(A.42)

for all i < j ∈ [N ], i.e., that (A.30) holds, which proves the proposition for the case
(A.32) when the identity on the right of (A.39) holds. This concludes the proof for
the case (A.32).

In the case where (A.33) holds, we get by the same method of proof that either
(A.30) or (A.29) hold, which proves the proposition for this case.

To conclude, we have shown that given θ which minimizes (7.35), the vectors vθa
and vθb defined in (7.33), must satisfy either (vθa, v

θ
b ) = (uσα, u

σ
β) or (v

θ
a, v

θ
b ) = (−uσα, u

σ
β)

for some σ ∈ S3.

A.7 Proof of Proposition 8.1

Suppose that (8.6) holds, and fix an arbitrary n ∈ [N ]. Then, the (i, j)th 3 × 3
block of H is given by sijv

T
i vj = sinsnjv

T
i vj . Thus, since snj = sjn for all j ∈ [N ],

we have
H = (vsn)

Tvsn, vsn = (sn1v1, . . . , snNvN), (A.43)

which gives (8.7) and shows that H indeed has rank 1.
Now suppose that (8.6) does not hold, and assume without loss of generality

that s12s23 = −s13. Denote the mth entry of a row vi by vi(m), i ∈ [N ]. The rank
1 matrix vT1 v2 is non-zero, thus, there exist r, l ∈ {1, 2, 3} such that v1(r), v2(l) 6= 0,
that is, the rth and lth entries of the vectors v1 and v2, respectively, are non-zero.
By (8.2), we have that s11 = 1, and thus, the first three rows of H are given by the
3× 3N matrix

(vT1 v1, s12v
T
1 v2, s13v

T
1 v3 . . . , s1Nv

T
1 vN ) = vT1 (v1, s12v2, s13v3 . . . , s1NvN ).

Similarly, the next three rows of H are given by the 3× 3N matrix

(s21v
T
2 v1, v

T
2 v2, s23v

T
2 v3, . . . , s2Nv

T
2 vN) = vT2 (s21v1, v2, s23v3 . . . , s2NvN).

Thus, since each vector vi is of length 3, rows number r and 3+ l of H are given by

v1(r)(v1, s12v2, s13v3, . . . , s1NvN), (A.44)

v2(l)(s21v1, v2, s23v3, . . . , s2NvN ). (A.45)
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Multiplying (A.44) by 1
v1(r)

and (A.45) by s12
v2(l)

, by our assumption we get

(v1, s12v2, s13v3, . . . , s1NvN),

(v1, s12v2,−s13v3, . . . , s12s2NvN ).

Since v3 6= 0, the latter two vectors are linearly dependent only if s13 = −s13, which
is impossible. Therefore, rows number r and 3 + l of H given in (A.44) and (A.45)
are linearly independent, which implies that rank(H) ≥ 2.

A.8 Proof of Proposition 8.2

Fix a pair of indices i < j ∈ [N ]. We begin by deriving an expression for (Sus)ij ,
which is the entry of Sus corresponding to the (i, j)th row of S. By (8.16) and the
first equality in (7.14) of Lemma 7.7, we have

(Sus)ij =
∑

k<j∈[N ],k 6=i

(s̃ij s̃kj)s̃kj +
∑

j<k∈[N ]

(s̃ij s̃jk)s̃jk

+
∑

k<i∈[N ]

(s̃ij s̃ki)s̃ki +
∑

i<k∈[N ],k 6=j

(s̃ij s̃ik)s̃ik

=
∑

k<j∈[N ],k 6=i

s̃ij +
∑

j<k∈[N ]

s̃ij +
∑

k<i∈[N ]

s̃ij +
∑

i<k∈[N ],k 6=j

s̃ij

=
∑

k 6=i,j

s̃ij +
∑

k 6=i,j

s̃ij = 2 ·
∑

k 6=i,j

s̃ij ,

(A.46)

where the 4 sums to the right of the first equality in (A.46) correspond to the 4 sets
Am

ij of Lemma 7.7. Since there are exactly N − 2 indices k ∈ [N ] for which k 6= i, j,
we conclude from (A.46) that (Sus)(i,j) = 2(N − 2)s̃ij for all i < j ∈ [N ]. Thus,
us is an eigenvector of S corresponding to the eigenvalue 2(N − 2). Next, we show
that 2(N − 2) is simple. Define a partition of the set {s̃ij}i<j∈[N ] of (8.12) into two
disjoint sets

S− = {s̃ij | s̃ij = −1}, S+ = {s̃ij | s̃ij = 1}, (A.47)

and note that a pair s̃ij and s̃kl are in the same set of (A.47) iff s̃ij s̃kl = 1. Thus,
by (8.16) and (A.47), the matrix S is given by

(S)(i,j)(k,l) =





1 |{i, j} ∩ {k, l}| = 1 and s̃ij and

s̃kl are in the same set of (A.47),

−1 |{i, j} ∩ {k, l}| = 1 and s̃ij and

s̃kl are in different sets of (A.47),

0 otherwise.

(A.48)

In [8], it was shown that the leading eigenvalue of S is simple and is given by 2(N−2),
which concludes the proof.
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