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Abstract. Waves and oscillations are commonly observed in the dynamics of self-driven agents such as pedes-
trians or vehicles. Interestingly, many factors may perturb the stability of space homogeneous
streaming, leading to the spontaneous formation of collective oscillations of the agents related to
stop-and-go waves, jamiton, or phantom jam in the literature. In this article, we demonstrate
that even a minimal additive stochastic noise in stable first-order dynamics can initiate stop-and-
go phenomena. The noise is not a classic white one, but a colored noise described by a Gaussian
Ornstein-Uhlenbeck process. It turns out that the joint dynamics of particles and noises forms
again a (Gaussian) Ornstein-Uhlenbeck process whose characteristics can be explicitly expressed in
terms of parameters of the model. We analyze its stability and characterize the presence of waves
through oscillation patterns in the correlation and autocorrelation of the distance spacing between
the particles. We determine exact solutions for the correlation functions for the finite system with
periodic boundaries and in the continuum limit when the system size is infinite. Finally, we compare
experimental trajectories of single-file pedestrian motions to simulation results.

Key words. Self-driven particle system, stop-and-go wave, stability analysis, autocorrelation, interacting par-
ticle system, Markovian process
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1. Introduction. The emergence of collective motion behaviors is frequently observed in
the dynamics of agents interacting locally. Examples are swarming and the formation of pat-
terns and structures in bacterial colonies, animal aggregations, or traffic flow and pedestrian
dynamics [13, 11, 47, 24, 23]. Spontaneous formation of stop-and-go waves in uni-directional
road traffic or pedestrian streams is a typical example of self-organization. Stop-and-go phe-
nomena, also related to accordion-like traffic, phantom jam, jamiton, or self-sustained waves
in the literature [28, 38, 18], currently occur in vehicle, pedestrian or again bicycle flows
[32, 12]. The flows in congested states tend to stream jerky with acceleration and deceleration
phases instead of streaming uniformly. Stop-and-go waves even emerge in single-file experi-
ments where neither the infrastructure nor the initial configuration can explain their presence
[41, 48, 40]. Beside scientific interests, stop-and-go waves impact the safety and the comfort
of the users, and also the environment. Indeed, they generate more fuel consumption and
pollutant emission than space homogeneous streaming [1, 39].

Road traffic and pedestrian flow models are microscopic, mesoscopic or macroscopic. Mi-
croscopic approaches describe individual trajectories with following models and agent-based
approaches. Mesoscopic models are gas-kinetic frameworks describing probability density
functions for the speeds and agent positions, while macroscopic models are partial differential
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equations for aggregated performances (see [15, 9, 45] for reviews). The well-known Lighthill-
Whitham-Richards macroscopic model [36, 29] describes for Riemann problems shock and
rarefaction waves propagating at speeds given by the Rankine-Hugoniot formula. Yet, the
model is first-order and it fails to explain the auto-organisation in waves of perturbed sys-
tems. Generally speaking, the spontaneous formation of stop-and-go waves requires inertial
second order frameworks and the use of delayed processes, see, the references [6, 7, 27, 17]
for microscopic models, [26, 10] for mesoscopic models, or [16, 20, 38] for macroscopic ones.
The emergence of stop-and-go waves is explained through instability of space homogeneous
solutions, the stability breaking down when delay or relaxation times (i.e. inertia) exceed crit-
ical thresholds [33, 32]. In the unstable case, the solutions can be periodic, quasi-periodic,
limit cycle or even chaotic dynamics with stop-and-go waves [42]. Derivations in macroscopic
hyperbolic continuum are Korteweg-de Vries, modified Korteweg-de Vries or time-dependent
Ginzburg-Landau soliton equations [30, 31, 8, 4].

In this article, we demonstrate that stop-and-go waves even emerge from stochastic noise
effects without requiring instability phenomena. Generally speaking, the introduction of white
noises tends to increase disorder and prevent self-organization [46, 22], while coloured noises
can generate complex structures and patterns [3, 14]. In most of self-driven agent models,
the noises added to the dynamics are white [25, 42, 13, 22]. We show in this article that the
introduction of a particular colored noise in stable first-order dynamics can initiate collective
oscillations in the system and spontaneous formation of stop-and-go waves. The noise is
generated by a Gaussian Ornstein-Uhlenbeck process. The choice of such a colored noise is
motivated by statistical evidence showing linear shapes of the spectral density of pedestrian
speed in square inverse frequency domain [44]. The waves are characterised by analysing
the correlation and autocorrelation functions of the particle spacing describing characteristic
oscillating patterns [5]. In contrast to classical inertial deterministic approaches, neither
instability nor phase transition phenomena are observed. This makes the stochastic approach
more convenient to analyse. Indeed, the system is Gaussian and ergodic, i.e. admitting a
unique invariant measure for any initial condition.

The stochastic model has been introduced to describe by simulation stop-and-go waves in
pedestrian dynamics [43]. We propose in this article to rigorously demonstrate the presence
of waves by analysing the structure of the correlation and autocorrelation functions and their
periodic characteristics. We carry out the analysis for a finite system with periodic boundary
conditions and at the limit of an infinite system. The article is organised as following. The
stochastic model is defined in the next section. We solve the model in Sec. 3 and analyse its
stability in Sec. 4. The covariance functions are determined for a finite system with periodic
boundaries in Sec. 5, and at the limit of an infinite system in Sec. 6. Finally, we compare
simulation results to experimental data of pedestrian single-file motions in Sec. 7.

2. Stochastic following model. We consider N particles on a system of length L with
periodic boundary conditions. We denote in the following as (xn(t))n=1,...,N ∈ RN the cumu-
lative curvilinear positions of the particles n = 1, . . . , N at time t ≥ 0 (see Fig. 1) and suppose
that the particles are initially ordered by their index, i.e.

x1(0) ≤ x2(0) ≤ ... ≤ xN (0) ≤ L+ x1(0).
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ẋn ẋn+1

xn+1 − xn

Ring of length L N agents
Agent n Agent n+ 1

Figure 1. Scheme of the system with periodic boundary conditions. xn is the curvilinear position while
∆xn = xn+1 − xn is the spacing and ẋn the speed of the particle with number n.

In the following model, the speed of a particle is a deterministic equilibrium speed function
V : s 7→ V (s) depending on the spacing s coupled to an additive stochastic noise. The speed
function is related to as optimal velocity in the traffic literature [6], We consider in the rest of
the paper congested traffic states and the affine optimal velocity function

V (s) = λ(s− `),

with λ > 0 the inverse of the equilibrium time gap between the particles and ` ≥ 0 their
length. The time evolution of the particle with number n = 1, . . . , N is supposed to follow
the stochastic ordinary differential equation

(1) ẋn(t) = λ(∆xn(t)− `) + ξn(t), t ≥ 0,

where (ξn(t))t≥0 denotes the noise, ẋn(t) denotes the tangential velocity, and the spacing
between the particles are

(2)

{
∆xn(t) = xn+1(t)− xn(t), n = 1, . . . , N − 1,

∆xN (t) = L+ x1(t)− xN (t).

Due to the system periodicity, the spacing sum
∑N

n=1 ∆n(t) = L is conserved for all t ≥ 0. We
could expect L ≥ N` to obtain a positive average speed of the particles. Such a condition is
however mathematically not necessary to be well-defined. We suppose that the noise is given
by independent Ornstein-Uhlenbeck processes, i.e.

(3) dξn(t) = −βξn(t) dt+ σ dWn(t),

where Wn(t), n = 1, . . . , N , are independent Wiener processes, β > 0 denotes the relaxation
rate and σ ∈ R the noise volatility, respectively. Applying the Itô formula to Cn(t) = eβtξn(t)
one finds that each ξn(t) is given by

(4) ξn(t) = e−βtξn(0) + σ

∫ t

0
eβ(s−t) dWn(s).

Note that due to the noise introduced to initiate stop-and-go dynamics, the model does not
ensure hard-core exclusion between the particles. Indeed, the noise being independent and
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unbounded, the probability that two particles overlap is not to exclude, especially at high den-
sity levels. More realistic features can be obtained by making the noise volatility proportional
to the spacing [43].

Instead of (1), we analyse the spacing difference of xn(t) to the space homogeneous solution
xHn (t), i.e.

(5) yn(t) = ∆xn(t)−∆xHn (t)

where the space homogeneous solution is the deterministic equilibrium configuration for which
the vehicles are equispaced and have a constant speed at any time:

(6)

{
xHn (t) = xHn (0) + tλ(L/N − `),
∆xHn (0) = L/N

with (xHn (t))n=1,...,N the cumulative curvilinear positions of a homogeneous system. Repre-
sentation (5) has the advantage that it allows us to study the effects of noise around the
equilibrium space homogeneous solution such as oscillating patterns and stop-and-go waves.
We have for all n = 1, . . . , N

ẏn(t) = λ
(
yn+1(t)− yn(t)

)
+ ξn+1(t)− ξn(t).

This equation can be expressed by the system of stochastic ordinary differential equations

(7) Ẏ (t) = λAY (t) +AΞ(t),

where Y (t) =
[
y1(t), y2(t), . . . , yN (t)

]> ∈ RN , Ξ(t) =
[
ξ1(t), ξ2(t), . . . , ξN (t)

]> ∈ RN and

A =

−1 1
. . .. . . 1

1 −1

 ∈ MN×N .

Let us stress that the processes [x1(t), . . . , xn(t)]> obtained from (1) as well as Y (t) obtained
from (7) both take values in RN , i.e. they are measured on an infinite lane using the cumulative
arc length covered by each particle and by assuming, as given in (2), that the spacing of the
vehicle N is ∆xN (t) = L+ x1(t)− xN (t).

3. Solving the model. Rewriting (7) into the differential form

(8) dY (t) =
(
λAY (t) +AΞ(t)

)
dt

shows that the noise Ξ(t) enters in the definition of Y (t) as an additional random drift pa-
rameter. Hence Y (t) cannot be a Markov process in its own. To overcome this difficulty we
enlarge the state space from RN to RN ×RN by also taking the evolution of the noise Ξ into
account. In this way Z := (Y,Ξ) becomes a Markov process with state space RN ×RN .

Indeed, using (3) combined with (8) we find that Z(t) = (Y (t),Ξ(t)) solves the system of
stochastic differential equations

(9) dZ(t) = BZ(t) dt+GdW (t), Z(0) = (Y (0),Ξ(0)),
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where W (t) = (Wn(t))n=1,...,2N is a family of independent Wiener processes and the N × N
matrices B,G are given by

B =

(
λA A
0 −β1N

)
, G =

(
0 0
0 σ1N

)
,

where 1N denotes the identity matrix acting on RN .
The particular form of (9) shows that Z is a 2N -dimensional Ornstein-Uhlenbeck process

and hence is given by

(10) Z(t) = etBZ(0) +

∫ t

0
e(t−s)BGdW (s).

Following the general theory of Ornstein-Uhlenbeck processes (see, e.g., [37, 2]) we find that
Z is a Feller process. Moreover, it is a Gaussian process whose characteristic function is, for
z, p ∈ R2N , given by

E[ei〈p,Z(t)〉 | Z(0) = z] = exp

(
i〈z, etB>p〉 − 1

2

∫ t

0
〈esB>p,GG>esB>p〉 ds

)
= exp

(
i〈µz(t), p〉 −

1

2
〈p,Σ(t)p〉

)
(11)

where its expectation µz(t) and covariance operator Σ(t) are given by

µz(t) = etBz, Σ(t) =

∫ t

0
esBGG>esB

>
ds.

More generally one can also compute its covariance structure at different times.

Lemma 1. For t, s ≥ 0 it holds

cov(Z(t), Z(s)) = etB
∫ min{t,s}

0
e−uBGG>e−uB

>
duesB

>
.

The proof of Lemma 1 belongs to the classical literature of Ornstein-Uhlenbeck processes. See
[35] for a general review. As Z is a Gaussian process, it is completely characterized by its
expectation and covariance structure. Based on the formulas of this section we can express
all desired (statistical) quantities in terms of the characteristic function and hence its mean
and covariance structure.

4. Stability analysis. In this section we investigate the long-time behaviour of the mean
E[Z(t)], the limiting distribution of Z(∞), and finally invariant measures for the Markovian
dynamics. The results show that the process converges to a unique invariant measure which
is on average a space homogeneous solution. However at the second order, the structure of
the correlation functions and the presence of oscillating patterns allow to explain the presence
of traffic waves. Such analysis crucially relies on the spectra of A and B which are, therefore,
investigated first.
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Proposition 2. The matrix A is diagonalizable with eigenvalues

ωk = γk − 1, γk = e2πi k
N , k = 0, . . . , N − 1,

and corresponding eigenvectors

(12) uk =
[
γ0
k γ1

k . . . γN−1
k

]>
, k = 0, . . . N − 1.

The coefficients of the matrix exponential eAt are given by

eAt(n,m) =
1

N

N−1∑
k=0

γn−mk eωkt, 1 ≤ n,m ≤ N(13)

and it holds for each y ∈ RN∥∥∥∥∥∥∥eAty −
(

1

N

N∑
k=1

yk

)1
...
1


∥∥∥∥∥∥∥
N

≤
√
N‖y‖Ne−2 sin( πN )

2
t, t ≥ 0,(14)

where ‖y‖2N =
∑N

n=1 |yn|2 denotes the euclidean norm on RN .

The proof of proposition 2 is a consequence of the circulant property of the matrix A, see [21]
for details. Note that the coefficients of the exponential matrix eAt in Eq. (13) are real-valued,
even if expressed in the complex plane. Indeed, the imaginary parts vanish through the sum
due to the oddness of the sine function. The complex parts come from the diagonalisation of
A. Yet the solution can be expressed in the real plan as well.

Lemma 3. The coefficients of the exponential of the matrix A in the real plan are

(15) eAt(n,m) = e−t
∞∑
l=0

tk(n,m,N)+lN(
k(n,m,N) + lN

)
!
, with k(n,m,N) = n−m mod N.

for all 1 ≤ n,m ≤ N .

Proof. We can write A = −I + D, D being a sparse matrix with an upper diagonal of
ones (including the coefficient bottom left). The matrix Dk is simply a shift of the diagonal
k step(s) to the left. Then, remarking that

∑N
k=1D

k+lN is a matrix with one everywhere for
all l ∈ N and using eA = e−1eD = e−1

∑
kD

k/k! we obtain the expression above.

The above expression Eq. (15) in the real plan is an infinite sum while the expression in
the complex plane Eq. (13) solely requires finite computations. For numerical purpose, we
prefer in the following using the finite sum Eq. (13) even if it implies using artificially complex
numbers.

Next we continue with the analysis of the spectrum for B.

Proposition 4. The matrix B has eigenvalues

(λω0, . . . , λωN−1,−β, . . . ,−β)(16)
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and corresponding eigenvectors([
u0

0

]
, . . .

[
uN−1

0

]
,

[
−(β1N + λA)−1Ae1

e1

]
, . . . ,

[
−(β1N + λA)−1AeN

eN

])
,(17)

where e1, . . . , eN ∈ RN denote the canonical basis vectors in RN . In particular B is diagonal-
isable and for each z ∈ R2N

∥∥∥∥∥eBtz −
(

1

N

N∑
n=1

zn

)[
u0

0

]∥∥∥∥∥
2N

≤
√

2N‖z‖2Ne−δt, t ≥ 0,(18)

where δ = min{β, 2 sin (π/N)2} > 0 and u0 =
[
1 . . . 1

]> ∈ RN .

Proof. The characteristic equation for B is

0 = det

([
w1N 0

0 w1N

]
−
[
λA A
0 −β1N

])
= det(w1N − λA)det(w1N + β1N ),

whose solutions in w ∈ C are exactly (16). Let
[
y ξ

]> ∈ R2N be an eigenvector for the
eigenvalue λωk, then

λωk

[
y
ξ

]
=

[
λA A
0 −β1N

] [
y
ξ

]
=

[
λAy +Aξ
−βξ

]
.

Hence ξ = 0 and y = uk. Similarly, let
[
y ξ

]> ∈ R2N be an eigenvector for the eigenvalue
−β, then

−β
[
y
ξ

]
=

[
λAy +Aξ
−βξ

]
.

Hence ξ is arbitrary while y satisfies (β + λA)y = −Aξ. Choosing ξ ∈ {e1, . . . , eN} shows
that the eigenvectors are given by (17) and that the corresponding eigenspaces span R2N , i.e.
B is diagonalisable. Concerning assertion (18) we proceed similarly to (14). Let v1, . . . ,v2N

be an orthonormal basis of eigenvectors of B with v1 = N−1/2
[
u0 0

]>
, and denote by

%1, . . . %2N the corresponding eigenvalues with %n = λωn−1, n = 1, . . . , N , while %n = −β for
n = N + 1, . . . , 2N . For

z =

2N∑
n=1

〈z,vn〉vn,

we obtain

eBtz =

2N∑
n=1

〈z,vn〉e%ntvn
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and hence

∥∥eBtz − 〈z,v1〉v1

∥∥
2N
≤

2N∑
n=2

|〈z,vn〉|e<(%n)t

≤ e−δt
√

2N

(
2N∑
n=2

|〈z,vn〉|2
)1/2

≤
√

2N‖z‖2Ne−δt,

where we have used the Cauchy-Schwartz inequality and

<(%n) ≤ −δ, n = 2, . . . , 2N.

Since 〈z, v1〉v1 =
(

1
N

∑N
n=1 zn

) [
u0 0

]>
, the assertion is proved.

Next we study the asymptotic behaviour of Z(t) as t→∞.

Theorem 5. It holds Z(t)→t→∞ Z(∞) in law, where Z(∞) is a Gaussian random variable
on R2N with mean zero and covariance matrix

Σ(∞) =

∫ ∞
0

etBGG>etB
>
dt.

Proof. Using the characterization of convergence in law by characteristic functions (that
is Lévy’s continuity Theorem, see e.g. [19]), it suffices to show that Σ(∞) is well-defined and
that

lim
t→∞

E[ei〈p,Z(t)〉] = exp

(
−1

2
〈p,Σ(∞)p〉

)
, ∀p ∈ R2N .(19)

Note that Σ(∞) is well-defined, if∫ ∞
0

∣∣∣〈p, eBtGG>eB>tq〉∣∣∣ dt <∞, ∀p, q ∈ R2N .(20)

Estimating first the scalar product and then the integral by Cauchy-Schwartz we arrive at∫ ∞
0

∣∣∣〈p, eBtGG>eB>tq〉∣∣∣ dt ≤ ∫ ∞
0
‖G>eB>tp‖2N‖G>eB

>tq‖2N dt

≤
(∫ ∞

0
‖G>eB>tp‖22N dt

)1/2(∫ ∞
0
‖G>eB>tq‖22N dt

)1/2

.

In order to show that these integrals are finite we first estimate eBtG in the Frobenius norm

‖ · ‖F of a 2N × 2N matrix. Indeed, for each p =
[
p1 p2

]> ∈ R2N we find Gp =
[
0 σp2

]>
and hence from (18) applied to z = Gp

‖eBtGp‖2N ≤
√

2N‖Gp‖2Ne−δt ≤
√

2N‖G‖F‖p‖2Ne−δt,
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i.e. ‖eBtG‖F ≤
√

2N‖G‖Fe−δt. From this we obtain

‖G>eB>tp‖2N ≤ ‖G>eB
>t‖F‖p‖2N = ‖eBtG‖F‖p‖2N ≤

√
2N‖G‖Fe−δt‖p‖2N ,

which shows that (20) is satisfied.
We proceed to prove (19). Using regular conditional distributions combined with (11) we

find that

E[ei〈p,Z(t)〉] =

∫
R2N

E[ei〈p,Z(t)〉 | Z(0) = z]P[Z(0) ∈ dz]

= e−
1
2
〈p,Σ(t)p〉

∫
R2N

ei〈e
Btz,p〉P[Z(0) ∈ dz].

Using (20) we conclude that Σ(t)→ Σ(∞) as t→∞. Using (18) we find

eBtz −→

(
1

N

N∑
n=1

zn

)〈
p,

[
u0

0

]〉
= 0

for z ∈ Q = {w ∈ R2N |
∑N

n=1wn = 0}. Then observing that

N∑
n=1

Zn(0) =

N∑
n=1

yn(0)

=

N∑
n=1

(
∆xn(0)−∆xHn (0)

)
= L+ x1(0)− xN (0) +

N−1∑
n=1

(
xn+1(0)− xn(0)

)
−

N∑
n=1

∆xHn (0)

= L− L = 0

we find that Z(0) belongs to Q a.s. and hence∫
R2N

ei〈e
Btz,p〉P[Z(0) ∈ dz] =

∫
Q
ei〈e

Btz,p〉P[Z(0) ∈ dz] −→ 1, t→∞.

This proves (19) and hence the assertion.

This result shows that E[Z(t)] −→ 0 as t→∞, i.e. the whole dynamics tends asymptotically
(in the mean) to the space homogeneous solution Eq. (6). This means that the homogeneous
solution is at the first order unconditionally stable for the stochastic model. This makes a
clear difference with the classical deterministic approaches that describe stop-and-go waves
by means of instability phenomena and phase transition [6, 32]. In the stochastic approach,
it is the structure of the correlation functions at the second order that allows explaining for
the presence of traffic waves. Indeed, since Σ(∞) 6= 0 the limiting law of Z(∞) is non-trivial
and describes Gaussian fluctuations around the space homogeneous solution. Note that this
law is also the unique invariant distribution for the process (at least when restricted to the
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physically interesting configurations satisfying
∑N

n=1 zn = 0). As a consequence of previous
result we find for the first component Y

E[Y (t)] −→ 0 and Y (t)
d−−→ Y (∞), as t→∞,

where Y (∞) is a Gaussian random variable RN with covariance structure

〈k,ΣY (∞)p〉 =

∫ ∞
0

〈
G>eB

>s

[
k
0

]
, G>eB

>s

[
p
0

]〉
ds.

We close this section with a precise formula for E[Y (t)], while the values for ΣY (∞) will be
computed in the next section.

Theorem 6. Let Y be the solution of Eq. (8). One has

E[Y (t)] = eλAtE[Y (0)] + (β1N + λA)−1
(
e−β1N t − eλAt

)
AE[Ξ(0)].

Proof. To simplify notation we let Y (t) = E[Y (t)] and similarly Ξ(t) = E[Ξ(t)]. Taking
expectations in (7) gives

Y (t) = λAY (t)−AΞ(t).

Using (4) so that Ξ(t) = e−βtΞ(0) gives

Y (t) = eλAtY (0) +

∫ t

0
eλA(t−s)e−βsAΞ(s) ds

= eλAtY (0) + eλAt
∫ t

0
e−(β+λA)sAΞ(0) ds

= eλAtY (0) + eλAt(β1N + λA)−1(e−(β+λA)t − 1N )AΞ(0)

= eλAtY (0) + (β1N + λA)−1(e−βt − eλAt)AΞ(0),

which proves the assertion. Note that here β1N + λA is invertible since [β1N + λA]X = 0
implies X = (0, . . . , 0)> for all λ, β > 0.

5. Covariance and autocovariance. In the stochastic model, oscillation patterns in the
correlation and autocorrelation of the particle spacing explain for the presence of collective
stop-and-go waves in the system. The Gaussian framework of the model allows to obtain an
explicit solution in stationary state for the correlation functions. Writing

Y (t) = eλAtC(t),

with C(t) a vector of size N , we obtain using Eq. (7) C ′(t) = e−λAtAΞ(t). One gets by
integrating on [0, t]

C(t) = C0 +
∫ t

0 e
−λAuAΞ(u) du.

Here C0 = C(0) = Y (0) and we obtain

(21) Y (t) = eλAtC(t) = eλAtY (0) +

∫ t

0
eλA(t−u)AΞ(u) du,
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or again, using the explicit solution ξn(t) = e−βtξn(0) + σ
∫ t

0 e
β(u−t) dWn(u) for the Ornstein-

Uhlenbeck processes,
Y (t) = eλAtY (0) +R0(t) + σR(t),

with

R0(t) =

∫ t

0
eλA(t−u)Ae−βu du Ξ(0),

and

R(t) =

∫ t

0
eλA(t−u)A

∫ u

0
eβ(s−u) dW (s) du,

W (t) = (W1(t), . . . ,WN (t))> being a vector of independent Wiener processes.
We have

R0(t) =
∫ t

0 e
−(β+λA)u du eλAtAΞ(0)

= [λA+ β1N ]−1
(
1N − e−βte−λAt

)
eλAtAΞ(0)

= [λA+ β1N ]−1
(
eλAtAΞ(0)− e−βtΞ(0)

)
→ (0, . . . , 0) as t→∞,

since eλAtA and e−βtΞ(0) tends to 0 as t→∞, while [λA+ β]X = 0 implies X = (0, . . . , 0)>

for all λ, β > 0.
We denote respectively in the following covj(0) and cov0(τ) the asymptotic covariance and

autocovariance of the spacing difference of the particles

cov(yn(t), yn+j(t)) →
t→∞

covj(0),

and
cov(yn(t), yn(t+ τ)) →

t→∞
cov0(τ).

Theorem 7. The asymptotic covariance of the spacing difference to the spacing difference
of the particle n+ j ahead is for any particle n = 1, . . . , N ,

(22) covj(0) =
σ2

2βN

N−1∑
k=1

γjk
λ− β − λγk

(
(1− γk)2

λ− (λ+ β)γk
− 2β

λ(λ+ β − λγk)

)
,

while the asymptotic autocovariance at time τ ≥ 0 is

(23) cov0(τ) =
σ2

2βN

N−1∑
k=1

1

λ− β − λγk

(
e−βτ (1− γk)2

λ− (λ+ β)γk
− 2βe−λ(1−γk)τ

λ(λ+ β − λγk)

)
,

with γk = e2πi k
N the N -roots of unity.

Proof. The autocovariance of the one-dimensional Ornstein-Uhlenbeck is

(24) cov(ξn(t), ξn(s)) =
σ2

2β
e−β(t+s)

(
e2βmin{t,s} − 1

)
,
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Using Eq. (21) by assuming Y (0) = Ξ(0) = (0, . . . , 0)> in order to simplify the calculation
and by remarking that A+A> = −AA>, the covariance of the process is

(25)

cov(Y (t), Y (s)) = AeλAt
∫ t

0

∫ s
0 e
−λAue−λA

>vcov(Ξ(u),Ξ(v)) dv du eλA
>sA>

= σ2
[
AeλAt︸ ︷︷ ︸
→ 0

−Ae−βt︸ ︷︷ ︸
→ 0

]
[β1N + λA]−1

[
λ2
(
A>
)2 − β21N

]−1
eλA

>sA>︸ ︷︷ ︸
→ 0

+
σ2

λ

[
eλAA

>t︸ ︷︷ ︸
→(1/N)N2

−1N
]
eλA

>(s−t)
[
λ2
(
A>
)2 − β21N

]−1

− σ2

2β

[[
e−βsAeλAt︸ ︷︷ ︸

→ 0

−e−β(s−t)A
]

[λA− β1N ]−1

−
[
e−βsAeλAt︸ ︷︷ ︸

→ 0

− e−β(t+s)A︸ ︷︷ ︸
→ 0

]
[λA+ β1N ]−1

] [
λA> + β1N

]−1
A>.

The calculation details are provided in Appendix 1. We obtain asymptotically if s = t + τ
with τ ≥ 0,

lim
t→∞

cov(Y (t), Y (t+ τ)) =
σ2

λ

[
(1/N)N2 − 1N

]
eλA

>τ
[
λ2
(
A>
)2 − β21N

]−1

+
σ2

2β
e−βτA [λA− β1N ]−1

[
λA> + β1N

]−1
A>,

with (1/N)N2 the N × N matrix with coefficients 1/N everywhere. Developing the matrix,
one gets for any particle n = 1, . . . , N , the asymptotic covariance of the spacing difference to
the spacing difference of the particle n+ j ahead

covj(0) =
σ2

2βN

N−1∑
k=1

γjk
λ− β − λγk

(
(1− γk)2

λ− (λ+ β)γk
− 2β

λ(λ+ β − λγk)

)
,

while the asymptotic autocovariance at time τ ≥ 0 is

cov0(τ) =
σ2

2βN

N−1∑
k=1

1

λ− β − λγk

(
e−βτ (1− γk)2

λ− (λ+ β)γk
− 2βe−λ(1−γk)τ

λ(λ+ β − λγk)

)
,

with γk = e2πi k
N .

Note that the covariance and autocovariance Eqs. (22) and (23) are real-valued, even if ex-
pressed in the complex plane. Indeed, as for the exponential of the matrix A Eq. (13), the
imaginary parts vanish through the sum due to the oddness of the sine function. The merit
of the complex expression, inherent to the diagonalisation of the matrix A, lies in obtaining
exact numerical solutions. Explicit real-valued expressions are possible using series.
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Corollary 8. The correlation and autocorrelation

corj(τ) =
covj(τ)

cov0(0)

do not depend on the parameter σ.

The correlation with the neighbors and the autocorrelation in time of the spacing differ-
ence are presented Fig. 2 for N = 50 particles, λ = 1 s and β = 0.1 s. Both theoretical
solutions Eqs. (22) and (23) and empirical value obtained by simulation are plotted. The
simulation results are computed using a Euler-Maruyama scheme with time step δt = 0.01 s.
1e3 observations are averaged after 1e5 units of simulation time. The correlation with the
neighbors described a U-shape (see Fig. 2, left panel). This is characteristic of propagation of
a single wave in the system. In adequacy with the LWR theory and the Rankine–Hugoniot
formula [36, 29], the waves propagate backward in the system at the speed vw = −λ` while
the particles travel in average at the speed v = λ(L/N − `). Therefore, the wave period is
P = L/(v − vw) = N/λ = 50 s (see Fig. 2, right panel).
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Figure 2. Empirical and exact correlation and autocorrelation (see Eqs. (22) and (23)) for a system
with N = 50 particles in stationary state. λ = 1 and β = 0.1. The simulation results are computed
using a Euler-Maruyama scheme with time step δt = 0.01 s. 1e3 observations are measured after 1e5
units of simulation time.

6. Covariance and autocovariance for the infinite system. In this section, we determine
the covariance and autocovariance functions at the limit N →∞ of an infinite system. Such a
limit allows to withdraw finite size effects and effects due to the periodic boundary conditions.

The covariance and autocovariance Eqs. (22) and (23) at the limit N → ∞ with L/N
constant are the Riemann integrals

(26) cov∞j (τ) =
σ2

2β

∫ 1

0
F (e2πit) dt =

σ2

2β

1

2πi

∫
|z|=1

F (z)

z
dz

with

F (z) =
1

λ− β − λz

(
zje−βτ (1− z)2

λ− (λ+ β)z
− zjeλ(z−1)τ2β

λ(λ+ β − λz)

)
.
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Theorem 9. The asymptotic correlation and autocorrelation of the spacing difference in
stationary state are respectively at the limit N→∞ with L/N constant

(27) cor∞j (0) =
1

2

(
λ

λ+ β

)j
, j > 0,

and

(28) cor∞0 (τ) =
λe−βτ − βe−λτ

λ− β
, τ ≥ 0.

Proof. We decompose the function F (z)/z in simple elements to calculate the asymptotic
autocovariance Eq. (26)

F (z)

z
=
zje−βτ

λ

 1

(λ− β)z
− 1

(λ− β)
(
z − λ−β

λ

) +
1

(λ+ β)
(
z − λ

λ+β

)


− zjeλ(z−1)τ

λ

 2β

(λ2 − β2)z
− 1

(λ− β)
(
z − λ−β

λ

) +
1

(λ+ β)
(
z − λ+β

λ

)
 .

Using the Cauchy formula

1

2πi

∫
|z|=1

zj

z − φ
dz =

{
φj , |φ| < 1

0, |φ| > 1,

we obtain after calculations detailed in Appendix 2

cov∞j (0) =


σ2

λβ(λ+ β)
, j = 0,

σ2λj−1

2β(λ+ β)j+1
, j > 0,

Proceeding in the same way we find for the autocovariance Eq. (23) at the limit N,L→∞

cov∞0 (τ) =
σ2

λβ(λ2 − β2)

(
λe−βτ − βe−λτ

)
.

The asymptotic variance of the distance spacing is cov∞0 (0) = σ2

λβ(λ+β) , while the asymptotic

correlation and autocorrelation are respectively (see Fig. 3)

cor∞j (0) =
1

2

(
λ

λ+ β

)j
, j > 0,

and

cor∞0 (τ) =
λe−βτ − βe−λτ

λ− β
, τ ≥ 0.
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The correlation in space and autocorrelation in time are both exponentially decreasing. The
roles of the relaxation rate parameters λ and β in the correlation in space Eq. (26) are
antagonist while they are symmetric for the autocorrelation in time (see Eq. (28)).

In Fig. (3), the correlation and autocorrelation functions for the spacing difference in
stationary state are plotted for N = 50, N = 100, N = 200 and at the limit N→∞ with L/N
constant for λ = 1 and β = 0.1. The correlation with the predecessors describes a U-shape
due to the boundary condition, the correlation being one for j = 1 and j = N (Fig. (3), left
panel). The correlation tends to increase in absolute value as the system size increases. The
rescaled behaviors slightly differ according to N , tending to smooth U for small N to step
functions as N increases. The wave period of the autocorrelation in time is P = N/λ = 50
for N = 50, while it is P = 100 and P = 200 for N = 100 and N = 200 and is infinite at the
limit N→∞ (Fig. (3), right panel).
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Figure 3. Correlation and autocorrelation in stationary state for systems with N = 50, 100, 200
and at the limit N →∞ with L/N constant (see Eqs. (27) and (28)) . λ = 1 and β = 0.1.

7. Simulation results. Some simulation results are qualitatively compared to real single-
file experiments obtained in laboratory conditions. The data come from experiments done on
a quasi-circular geometry of length 27 m with soldiers in 2007 in Germany (see the schemes
Fig. 4 and [34, 43] for details on the data). The stochastic pedestrian model is based on
four parameters: the time gap inverse λ, the pedestrian length `, the noise relaxation rate β
and the noise volatility σ. The estimates of the parameters are λ̃ = 0.98 s−1, ˜̀ = 0.34 m,
β̃ = 0.23 s−1 and σ̃ = 0.09 ms3/2 [43]. The trajectories for the experiments done with 28, 45
and 62 participants (corresponding to a density level of 1 ped/m, 1.7 ped/m and 2.3 ped/m)
are plotted in Fig. 5, top panels, while the simulated trajectories obtained with the stochastic
model are shown bottom panels. The simulation results are obtained using a Euler-Maruyama
scheme with time step δt = 0.01 s. The initial conditions are homogeneous. We rapidly observe
spontaneous formation of stop-and-go waves for intermediate and high density levels in both
experiments and simulations.
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Figure 4. Schemes for the single-motion experiment and the collection of the trajectory data.
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Figure 5. Trajectories of single-file pedestrian motions with density levels 1 ped/m (left panels),
1.7 ped/m (central panels) and 2.3 ped/m (right panel). Top panels: Real experimental data. Bottom
panels: Simulation of the calibrated stochastic pedestrian model. We observe stop-and-go waves for
medium and high density levels in both real data and simulation.
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Appendix 1. The covariance of the spacing difference to the space homogeneous solution
Eq. (6) is, by using Eq. (25),

(A1)

2β

σ2

[
AeλAt

]−1
cov(y(t),y(s))

[
A>eλA

>s
]−1

=

∫ t

0

∫ s

0
e−(λA+β1N )ue−(λA>+β1N )v

(
e2βmin{u,v} − 1

)
dv du

=

∫ t

0

∫ u

0
e−(λA+β1N )ue−(λA>+β1N )v

(
e2βv − 1

)
dv du

+

∫ t

0

∫ s

u
e−(λA+β1N )ue−(λA>+β1N )v

(
e2βu − 1

)
dv du

Finally,

(A2)

cov(y(t),y(s)) =
σ2

2β
AeλAt

∫ t

0

[
e−(λA+β1N )u − e−λ(A+A>)u

]
du[[

λA> − β1N

]−1
−
[
λA> + β1N

]−1
]
eλA

>sA>

− σ2

2β
e−βsAeλAt

∫ t

0

[
e−(λA−β1N )u − e−(λA+β1N )u

]
du
[
λA> + β1N

]−1
A>

and we obtain Eq. (25) remarking thatA+A> = −AA> and
[
λA> − β1N

]−1−
[
λA> + β1N

]−1
=

2β
[
λ2
(
A>
)2 − β21N

]−1
.

Appendix 2. The covariance and autocovariance of the spacing difference at the limit
N →∞ with L/N constant are the Riemann integrals

cov∞j (τ) =
σ2

2β

1

2πi

∫
|z|=1

F (z)

z
dz,

with

F (z)

z
=
zje−βτ

λ

 1

(λ− β)z
− 1

(λ− β)
(
z − λ−β

λ

) +
1

(λ+ β)
(
z − λ

λ+β

)


− zjeλ(z−1)τ

λ

 2β

(λ2 − β2)z
− 1

(λ− β)
(
z − λ−β

λ

) +
1

(λ+ β)
(
z − λ+β

λ

)
 .

In the following, the covariances and autocovariances are determined by using the Cauchy
formula. We obtain the variance if j = 0 and τ = 0

(A3) cov∞0 (0) =
σ2

2λβ

[
1

λ− β
+

1

λ+ β
− 2β

λ2 − β2

]
=

σ2

λβ(λ+ β)
.
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For j > 0 and τ = 0, the covariance is

(A4) cov∞j (0) =
σ2

2λβ

(
λ

λ+β

)j
λ+ β

=
σ2λj−1

2β(λ+ β)j+1
,

and cor∞j (0) = 1
2

[
λ/(λ+ β)

]j
. For j = 0 and τ ≥ 0, the autocovariance is if

∣∣∣λ−βλ ∣∣∣ ≤ 1, i.e. if

β ≤ 2λ,

(A5)

cov∞0 (τ) =
σ2

2λβ

[
e−βτ

λ+ β
− 2βe−λτ

λ2 − β2
+
eλ
(
λ−β
λ
−1
)
τ

λ− β

]

=
σ2

2λβ

[ e−βτ
λ+ β

− 2βe−λτ

λ2 − β2
+
e−βττ

λ− β

]
=

σ2
[
λe−βτ − βe−λτ

]
λβ[λ2 − β2]

.

Similarly, we get if β > 2λ

cov∞0 (τ) =
σ2

2λβ

[ e−βτ
λ− β

+
e−βτ

λ+ β
− 2βe−λτ

λ2 − β2

]
=
σ2
[
λe−βτ − βe−λτ

]
λβ[λ2 − β2]

,

and cor∞0 (τ) = [λe−βτ − βe−λτ ]/[λ − β]. Note that by taking λ = β + ε and by calculating
the autocovariance at the limit ε→ 0 we obtain

cov∞0 (τ) =
σ2e−λτ

2λ3
[1 + λτ ]

while cor∞0 (τ) = e−λτ [1 + λτ ] if β = λ.
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[1] V. Aguiléra and A. Tordeux, A new kind of fundamental diagram with an application to road traffic
emission modeling, Journal of Advanced Transportation, 48 (2014), pp. 165–184.

[2] D. Applebaum, Infinite dimensional Ornstein-Uhlenbeck processes driven by Lévy processes, Probab.
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