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Abstract. When solving linear systems arising from PDE discretizations, iterative methods
(such as Conjugate Gradient, GMRES, or MINRES) are often the only practical choice. To converge
in a small number of iterations, however, they have to be coupled with an efficient preconditioner. The
efficiency of the preconditioner depends largely on its accuracy on the eigenvectors corresponding
to small eigenvalues, and unfortunately, black-box methods typically cannot guarantee sufficient
accuracy on these eigenvectors. Thus, constructing the preconditioner becomes a problem-dependent
task. However, for a large class of problems, including many elliptic equations, the eigenvectors
corresponding to small eigenvalues are smooth functions of the PDE grid. In this paper, we describe a
hierarchical approximate factorization approach which focuses on improving accuracy on the smooth
eigenvectors. The improved accuracy is achieved by preserving the action of the factorized matrix
on piecewise polynomial functions of the grid. Based on the factorization, we propose a family of
sparse preconditioners with O(n) or O(n logn) construction complexities. Our methods exhibit near
optimal scalings of solution times in benchmarks run on large elliptic problems, arising for example
in flow or mechanical simulations. In the case of the linear elasticity equation the preconditioners
are exact on the near-kernel rigid body modes.
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1. Introduction. A significant class of problems in engineering lead to large
and sparse symmetric positive definite (SPD) systems:

(1.1) Ax = b

where A ∈ Rn×n is a sparse SPD matrix, b ∈ Rn, and x ∈ Rn is the desired unknown
solution. In particular, we are interested in the discretizations of second-order elliptic
partial differential equations (PDEs) obtained using finite stencil, finite volume, or
finite element methods. Examples include the Laplace, elasticity, or (some cases of)
Maxwell equations. A substantial effort in scientific computing has been devoted to
efficiently solve Eq. (1.1) arising from such PDEs.

1.1. Previous work. The most reliable method for solving Eq. (1.1) is the
(exact) Cholesky factorization. A naive implementation has O(n3) computational
cost but sparsity can be exploited to limit the fill-ins and reduce the cost. Many
methods have been designed to limit the fill-ins based on appropriately ordering the
variables [22, 41]. In the context of PDEs, an efficient method is nested dissection
[21, 37], which can reduce the costs to O(n3/2) in 2D, and O(n2) in 3D, under mild
assumptions. In fact, nested dissection is at the heart of many state-of-the-art direct
solvers [2, 16, 29], which are useful for small to middle-size systems. Still, the O(n2)
complexity becomes impractical for large-scale problems.

Another group of approaches are the iterative methods such as multigrid [27, 10,
54] or the Krylov-space methods. In particular, algebraic multigrid (AMG) [46, 52, 50]
does not require the knowledge of the grid geometry and removes some limitations
of its predecessor, geometric multigrid. AMG can often achieve the optimal O(n)
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solution cost, with good parallel scalability and low memory requirements. To en-
sure convergence, however, one has to properly design the smoothing and coarsening
strategy. As a result, AMG often has to be fine-tuned or extended to be efficient
for specific equations, or problems in question. Krylov-space methods on the other
hand, such as Conjugate Gradient [30], GMRES [48], or MINRES [43], are a general
group of approaches which utilize only sparse matrix-vector products. Convergence
is very sensitive, however, to the conditioning of the given system, and in practice
these methods have to be coupled with preconditioners. A popular class of black-box
preconditioners are the ones based on incomplete factorizations such as incomplete
Cholesky [35, 33, 25], or more generally, incomplete LU (ILU) [47, 19]. However, these
preconditioners have rather limited applicability, not being able to target the whole
spectrum of A, and typically specialized problem-dependent preconditioners have to
be developed. In fact, in the context of elliptic PDEs, the multigrid methods often
prove effective preconditioners.

Another group of preconditioners are hierarchical algorithms which exploit the
fact that in the context of elliptic PDEs, certain off-diagonal blocks of A or A−1 are
numerically low-rank [13, 4, 7, 8]. Hierarchical approaches do not typically make any
other assumptions about the system in question and therefore they can be more robust
than multigrid methods, e.g., in the presence of non-smooth coefficients, or strong
anisotropies. The theoretical framework for hierarchical approaches is provided by
H- and H2-matrices [26, 28] (developed originally for integral equations). They allow
for performing algebraic operations on matrices with low-rank structure of off-diagonal
blocks or well-separated blocks. In particular, the LU factorization (and applying the
inverse) can be performed with linear or quasilinear complexity [24] (typically with
a given accuracy). In practice, however, the constants involved in the asymptotic
scalings may be somewhat large due to the recursive nature of the algorithms which
also require specific data-sparse formats for storing the matrices.

Recently, new hierarchical approaches have been proposed that concentrate on
efficiently factorizing the matrix using the low-rank structure of the off-diagonal blocks
(we further call them hierarchical solvers). Hierarchical Interpolative Factorization
[31] is a sparsified nested dissection multifrontal approach which successively reduces
the sizes of the separating fronts. LoRaSp [45] is a different approach, using extended
sparsification, related to the inverse fast multipole method [18] (a similar method was
also described in [51]). These methods leverage the low-rank properties to factorize the
matrix approximately into products of sparse block triangular factors, obviating the
need for hierarchical data-sparse matrix formats. More robust extensions have been
proposed since [15, 11, 20]. In particular, [11] proposed Sparsified Nested Dissection
that is guaranteed to never break and can be applied to any SPD matrix.

However, hierarchical solvers still lack good convergence guarantees. For example,
one can prove that—on certain elliptic equations—geometric multigrid leads to a pre-
conditioned system with a bounded condition number. The hierarchical approaches,
on the other hand, often cannot guarantee rapid convergence of iterative methods
because the accuracy of the approximation A` ≈ A is controlled in the following
sense:

(1.2) ‖A` −A‖2 ≤ ε‖A‖2

whereas in fact, a stronger criterion is needed:

(1.3) ‖I−A
−1/2
` AA

−1/2
` ‖2 ≤ ε
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In particular, this means that A` needs to be particularly accurate on the eigenvectors
corresponding to small eigenvalues (the near-kernel eigenspace), which is not assured
by Eq. (1.2). However, for many elliptic PDEs, these eigenvectors are smooth and this
property can be taken advantage of, to ensure Eq. (1.3). This would make hierarchical
solvers truly competitive, by guaranteeing a bounded number of Conjugate Gradient
iterations, for instance.

1.2. Contributions. We introduce a hierarchical approach to approximately
factorize sparse symmetric positive definite (SPD) matrices arising from elliptic PDE
discretizations. We call it Sparse Geometric Factorization, or SGF for short. Based
on the factorization, we propose a family of preconditioners with varying accuracies
and sparsity patterns. Depending on the chosen sparsity pattern, the preconditioners
can be computed in O(n) or O(n log n) operations where n is the number of unknowns,
with O(n) memory requirements. The obtained cheaply-invertible operator A` ≈ A
retains the SPD property of A, and the factorization always succeeds, with all pivots
guaranteed to be invertible in exact arithmetic (in this sense, it follows [11, 15]).

SGF shares the general framework with [11, 31, 15], ensuring however that the
obtained operator A` ≈ A is also accurate on the critical near-kernel smooth eigen-
vectors, which addresses the limitation of hierarchical approaches mentioned above.
Our choice of approximating the near-kernel subspace are the piecewise polynomial
functions of the grid (e.g., piecewise constant, or piecewise linear vectors), but the
space approximating the near-kernel subspace can be supplied by the user.

In the context of H-matrix preconditioners for elliptic PDE operators, an im-
proved accuracy on the near-kernel eigenspace can be achieved by preserving the
action of A on piecewise constant vectors when defining the low-rank bases (see e.g.
[5, 6] for details). An attempt to incorporate these ideas into hierarchical solvers was
made in [55], which improved the robustness of LoRaSp [45] by preserving the ac-
tion of A on the globally constant vector throughout computations. In our approach,
sparsifying the off-diagonal blocks in the factorization is driven primarily by requiring
that the action of A on piecewise polynomial functions be preserved.

Compared to previous work [5, 6, 55], we also investigate more options to select
different types of blocks for compressions. In particular, our methods allow sparsifying
matrix blocks that cannot be expected to be low-rank, still resulting in effective
preconditioners. Our family of preconditioners adapts the grid partitioning methods
from [11, 31], unifying them into one framework, and adding new approaches that
allow for better control of the preconditioner sparsity pattern. To keep the paper
focused, the partitionings are defined on cartesian grids and relatively simple stencils.
However, the SGF algorithm is very general and does not assume any particular grid
structure or discretization scheme, and can be applied to any SPD matrix [11].

We benchmark the preconditioners on large systems of different types. The iter-
ation counts of preconditioned Conjugate Gradient grow very slowly with the system
sizes, and the solution times scale roughly as O(n), also on ill-conditioned systems.
We also compare our methods to equivalent approaches using rank-revealing decom-
positions to approximate the off-diagonal blocks, as in other hierarchical algorithms
[11, 31, 15, 51, 45]. Our methods scale significantly better with growing system sizes
on most tested problems. While only briefly mentioned in this paper, we believe that
our preconditioners have very promising parallelization properties (inherited from
[31, 45, 11]). Some possible parallelization strategies have been described in [15, 36].

1.3. Organization of the paper. An overview of the SGF algorithm is de-
scribed in Section 2 along with some useful definitions. In Section 3 we describe our
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method to preserve piecewise polynomial vectors in the factorization. The SGF algo-
rithm is then described in detail in Section 4. The proposed family of preconditioners,
with specific realizations of the generic factorization algorithm, is described in Sec-
tion 5. Some numerical analysis is provided in Section 6. Numerical experiments are
presented in Section 7, followed by conclusions in Section 8.

2. Overview of Sparse Geometric Factorization (SGF). In the PDE ap-
plications, it is often convenient to consider a partition of the set of unknowns
V = {1, 2, . . . , n} into small disjoint subsets (here called nodes) V = B1∪B2∪· · ·∪Bt.
The partition naturally induces a block representation of A. The interaction matrix
ABiBj between Bi and Bj will typically be nonzero only if the stencils of the dis-
cretization grid involving Bi and Bj , are close to each other, resulting in sparse A.

2.1. Algorithm. Given the framework, we perform a sparse approximate fac-
torization of A, proceeding in a hierarchical fashion:

1. (Elimination step) Eliminate selected nodes (called interior nodes) using the
block Cholesky factorization, to obtain A = GA(1/2)G

T .
2. (Compression step) Sparsify selected remaining nodes to obtain A(1/2) ≈

BA(1)B
T , where A(1) is sparser than A(1/2), and B is sparse block-diagonal.

3. Form a new coarser partition. If the new partition is composed of a single
element, factorize A(1) using exact Cholesky factorization.

4. Otherwise recurse on the new partition and the submatrix of A(1) correspond-
ing to the not-yet-eliminated variables.

After all ` = O(log n) iterations have been completed (also referred to as levels), the
obtained approximate operator, which is also SPD, is of the form:

A ≈ A` = G1B1G2B2 · · ·G`−1B`−1G`G
T
` BT

`−1G
T
`−1 · · ·BT

2 GT
2 BT

1 GT
1

The factorization is illustrated in Fig. 2.1. The partitions can be based on nested
dissection [21] which determines the interior nodes eliminated in Step 1 above. Elim-
ination of an interior node introduces fill-in only between its neighboring separators.
Simple domain partitioning may be used as well in which Step 1 is skipped.

The key step of the algorithm is Compression (Step 2). Without it, the factoriza-
tion would become an exact block Cholesky decomposition. The role of compression
is to repeatedly eliminate additional variables from each selected node, to ensure O(n)
complexity of applying the approximate operator A−1

` . This elimination is approxi-
mate, that is, each compression introduces small error; however, the way A acts on
piecewise polynomial functions of the grid, is preserved, thus retaining accuracy on
smooth eigenvectors. Compression is described in Section 3.

2.2. Domain partition and partition graph. We denote the set of row in-
dices of A (called unknowns or variables) by V = {1, 2, . . . , n}.

Definition 2.1. A partition of V = {1, 2, . . . , n} is a finite collection P (V ) =
{B1, B2, . . . , Bt} of disjoint subsets Bi ⊆ V such that V = B1 ∪B2 ∪B3 ∪ · · · ∪Bt.

Definition 2.2. We say that a partition P ′(V ) is a coarsening of partition P (V ),
(or a coarser partition) which we denote by P (V ) ≺ P ′(V ), if for each set D ∈ P ′(V ),
there is a subcollection {C1, C2, . . . , Cs} ⊆ P (Ω) such that D = C1 ∪ C2 ∪ · · · ∪ Cs.

In the sequel, we will distinguish the variables from Bi that have not been elimi-
nated since the eliminated ones no longer play a role in the factorization.
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(a) First partition. (b) Elimination step. (c) Compression step.

(d) Coarser partition. (e) Elimination step. (f) Compression step. (g) Last partition.

(h) Sparsity patterns of the middle (trailing) matrices (A, A(1/2), or A(1)), corresponding to the
algorithm steps shown above.

Fig. 2.1: Illustration of the Sparse Geometric Factorization algorithm. In (a)–(g),
the uneliminated unknowns are denoted by black dots. Also visible is the distinction
between seaparators (gray) and interiors (white). The separators ensure that interiors
do not interact with each other. This is visible in the matrix sparsity patterns shown
in (h) where interiors, if any, precede separators in the index ordering.

Definition 2.3. Let Pk(V ) denote the partition in the level k of the algorithm
outlined in Section 2.1. The active subset of B ∈ Pk(V ), denoted by B, is the subset
of variables in B that are not eliminated at the current stage of the algorithm.

Definition 2.4. Let Pk(V ) = {B1, B2, . . . , Btk} be the partition in the k-th level
of the algorithm outlined in Section 2.1. The associated set of nodes is defined as
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Nk(V ) = {(B1,B1), (B2,B2), . . . , (Btk ,Btk)}, where Bi is the active subset of Bi.

We assume that ABiBj (the interaction matrix between two nodes) can be nonzero
only if grid stencils corresponding to some elements of Bi and Bj , are close to each
other. The number of variables |B| will be referred to as the size of the node.

3. Key idea: polynomial compression. The key difference between our ap-
proach and similar methods performing sparse approximate factorizations ([45, 31,
11, 51, 40, 14]), is the design of compression step. The idea of compression is to drop
interactions of many variables while retaining accuracy on the near-kernel eigenspace.
In the case of second-order elliptic differential operators, it is known that the eigen-
vectors corresponding to smallest eigenvalues are smooth. We will therefore assume
that an eigenvector with small associated eigenvalue can be locally approximated well
by a discretized low-degree polynomial of the grid (see below). More generally, the
subspace approximating the near-kernel eigenspace can be supplied by the user.

3.1. Basis of discretized polynomials. We denote by Π0 the n×1 matrix (a
vector of length n) of ones. If every unknown has a specified location in R3, e.g., the
location of the underlying grid vertex, let (xi, yi, zi) ∈ R3 denote the location of the
i-th unknown, for i ∈ V = {1, 2, 3, . . . , n}. If that be the case, we define:

Π1 :=


1 x1 y1 z1

1 x2 y2 z2

...
...

...
...

1 xn yn zn

 , Π2 :=

Π1

x2
1 y2

1 z2
1 x1y1 y1z1 z1x1

x2
2 y2

1 z2
1 x2y2 y2z2 z2x2

...
...

...
...

...
...

x2
n y2

n z2
n xnyn ynzn znxn


In other words, the columns of the matrix Πj for j = 0, 1, 2, are a basis of the space
of discretized real polynomials of degree j. Once the degree has been chosen, we write
Π := Πj . We denote the number of columns of Π by π. The definition of Π may
need to be modified when more than one variable has the same underlying location,
for example in the case of a vector PDE (see Section 7.1.3).

3.2. Compression step. Given an SPD matrix M ∈ Rn×n and a node (B,B) ∈
N(V ), let N denote the set of variables interacting with B and let W denote the set
of all the remaining variables. We have:

(3.1) M =


MBB MBN

MNB MNN MNW

MWN MWW


Compressing interactions of (B,B) will not modify the interactions of W and so to
keep compact notation, we consider only the upper left 2×2 block. Also, for simplicity,
assume that there are only two nodes having nonzero interactions with (B,B), and
denote them by (N1,N1), and (N2,N2), respectively.

First, we scale the block row and column corresponding to (B,B):

(3.2) M =

(
L

I

)
I M̂BN1

M̂BN2

M̂N1B MN1N1
MN1N2

M̂N2B MN2N1 MN2N2


(

LT

I

)
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where MBB = LLT denotes the Cholesky decomposition, and M̂BN = L−1MBN .
Now, let ΦB = Π(B, :), and likewise for (N1,N1) and (N2,N2). Then

Φ =


ΦB

ΦN1

ΦN2


spans the space of piecewise (discretized) polynomial functions. Consider the |B|×3π
matrix (which we call the filtered interaction matrix ):

(3.3) N =
(
LTΦB M̂BN1

ΦN1
M̂BN2

ΦN2

)
and an orthogonal basis Q1 for its range, e.g., from the column-pivoted QR decom-
position:

(3.4) NP = QR =
(
Q1 Q2

)(R1

)
The matrix N will typically have a small number of columns, and therefore Q1, span-

ning its range, is thin. Notice also that QT
2 M̂BN1

ΦN1
, QT

2 M̂BN2
ΦN2

, and QT
2 LTΦB

are zero matrices because Q2 spans the space orthogonal to the range of N. With

B =

(
LQ

I

)
we therefore have:

MΦ = B


I QTM̂BN1

QTM̂BN2

M̂N1BQ MN1N1 MN1N2

M̂N2BQ MN2N1
MN2N2

BT


ΦB

ΦN1

ΦN2



=B


I QT

1 M̂BN1
QT

1 M̂BN2

I QT
2 M̂BN1

QT
2 M̂BN2

M̂N1BQ1 M̂N1BQ2 MN1N1 MN1N2

M̂N2BQ1 M̂N1BQ2 MN2N1
MN2N2




QT
1 LTΦB

QT
2 LTΦB

ΦN1

ΦN2



=B


QT

1 LTΦB QT
1 M̂BN1

ΦN1
QT

1 M̂BN2
ΦN2

QT
2 LTΦB QT

2 M̂BN1ΦN1 QT
2 M̂BN2ΦN2

M̂N1BQ1Q
T
1 LTΦB + M̂N1BQ2Q

T
2 LTΦB MN1N1ΦN1 MN1N2ΦN2

M̂N2BQ1Q
T
1 LTΦB + M̂N2BQ2Q

T
2 LTΦB MN2N1

ΦN1
MN2N2

ΦN2



=B


I QT

1 M̂BN1
QT

1 M̂BN2

I

M̂N1BQ1 MN1N1 MN1N2

M̂N2BQ1 MN2N1
MN2N2

BTΦ

Based on the equation above, we can drop the blocks QT
2 M̂BN2

and QT
2 M̂BN2

(and
their transposes) when approximating M as they do not affect its action on piecewise
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polynomial vectors. In other words, we approximate:

M ≈ B


I QT

1 M̂BN1
QT

1 M̂BN2

I

M̂N1BQ1 MN1N1 MN1N2

M̂N2BQ1 MN2N1
MN2N2

BT := BM(+)B
T

A number of variables from B get eliminated from the system as they no longer
interact with other variables in M(+), which is strictly sparser than M. The smaller
the rank of Q1, the larger the number of eliminated variables. We then perform a
cheap update:

(3.5) ΦB ← QT
1 LTΦB

and we can recurse on M(+) to sparsify interactions of the subsequent node. After
interactions of (N1,N1) and (N2,N2) have also been compressed, subsets of variables
from each of B, N1, and N2 are eliminated, and we have M ≈ UM(++)U

T where
M(++) is much sparser than M, and U is a sparse block diagonal matrix.

Going back to the general case, assuming that there are g nodes interacting with

(B,B), compressing its interactions would be written as M ≈ M̃, where:
(3.6)

M̃ := B



I QT
1 M̂BN1

QT
1 M̂BN2

· · · QT
1 M̂BNg

I

M̂N1BQ1 MN1N1 MN1N2 · · · MN1Ng MN1W

M̂N2BQ1 MN2N1
MN2N2

· · · MN2Ng MN2W
...

...
...

. . .
...

...

M̂NgBQ1 MNgN1
MNgN2

· · · MNgNg MNgW

MWN1 MWN2 · · · MWNg MWW


BT

The space unaffected by compression is formally described in the following.

Lemma 3.1. For an SPD matrix M, let M̃ be defined as in Eq. (3.6). Then for
any B ∈ P (V ), we have:

(3.7) MΠB = M̃ΠB

where ΠB is the |B| × π matrix defined by:

(3.8) (ΠB)ij =

{
Πij if i ∈ B
0 otherwise.

Moreover, M̃ is also SPD.

Proof. It remains to prove the preservation of the SPD property. But M̃ is SPD

iff M(+) is SPD, where M̃ = BM(+)B
T as above. But M(+), up to a permutation

of variables, is composed of two non-interacting diagonal blocks of which one is the
identity matrix and the other one is, again up to a permutation of variables, a principal
submatrix of B−1MB−T , which is SPD.
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Note a minor technical detail. In Lemma 3.1, we use B instead of B (i.e., the
preserved vectors correspond to all unknowns in B). Initially, one would have B = B,
i.e., when no variables have been eliminated, one puts ΦB = Π(B, :) = Π(B, :).
However, later on, when variables get eliminated, the globally preserved vectors are
still given by Eq. (3.8), as long as the matrices ΦB are properly updated.

Notice also that the scaling by L before compression Eq. (3.2) plays an important

role in the proof of the SPD property of M̃. In particular, the factorization will never
fail (at least in exact precision). Similar observation has been made in [11, 14, 53].

3.3. Using low-rank approximation. We would like to note here that our
methods do not preclude the use of low-rank approximations in compression. Namely,
provided that the matrix MBN is numerically low-rank, the matrix Q1 can be ensured

to also satisfy M̂BN = Q1Y
T
1 + Q2Y

T
2 , where ‖YT

2 ‖2 is small. In that case, the error

‖M − M̃‖2 is controlled more directly. In the absence of geometrical information,
for instance, the constant vector, i.e., Π = Π0 can be used, combined with a rank-
revealing decomposition, to ensure that ‖YT

2 ‖2 above is small.

4. Sparse Geometric Factorization (SGF). Denote by Ak the approxima-
tion to A after k levels of the algorithm outlined in Section 2. Eliminating many
nodes before any compressions occur, can guarantee that (for any k):

(4.1) AkY = AY

where Y is a matrix with Θ(n) orthogonal columns. However, we would particularly
like Eq. (4.1) to also hold for Y whose columns span the eigenspace of A corre-
sponding to Θ(n) smallest eigenvalues. Then we could expect A−1

k to be a very close
approximation of A−1 (see Section 6). However, we do not know the eigenvectors a
priori, and we want A−1

k to be as sparse as possible. This will motivate the algorithm,
which we now describe in detail.

We denote by Pi(V ) the partition at level i of the algorithm, and by Ni(V ) the set
of the corresponding nodes. The nodes need to be divided into two subsets: the set
of interiors, denoted by Ii and the set of separators, denoted by Si. An interior node
can only interact with separator nodes; interior nodes will be eliminated by Gaussian
elimination. However, the interactions of selected separators will also be compressed
(which does not violate their separating properties). With each node (B,B), we
associate a matrix ΦB , where in the first partition we put ΦB ← ΠB(B, :) = Π(B, :).
We denote the total number of levels by `. We also put A(0) := A.

4.1. Eliminating interior nodes. We eliminate the interior nodes, if any, using
the standard block Cholesky algorithm, which at the i-th level we denote by:

(4.2) A(i−1) =

 |Ii|∏
j=1

G(j)

A(i− 1
2 )

 j=1∏
j=|Ii|

GT
(j)

 = GiA(i− 1
2 )G

T
i

4.2. Compressing selected separators. To sparsify A(i− 1
2 ) while preserving

some form of Eq. (4.1), we apply the polynomial compression (Section 3.2) for each
selected node, which we denote by:

(4.3) A(i− 1
2 ) ≈

|Si|∏
j=1

B(i)

A(i)

 1∏
j=|Si|

BT
(i)

 = BiA(i)B
T
i
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We now describe this step and explain its correctness. From Section 3.2 we know that
compressing interactions of a single node (B0,B0) with g interacting nodes, leads to
Eq. (4.1) for k = i, with Y = Φ, which is our space approximating the near-kernel
eigenspace:

(4.4) Φ =


ΦB0

ΦB1

. . .

ΦBg


The filtered interaction matrix from Eq. (3.3) whose QR we need to compute, reads:

(4.5) N =
(
LTΦB0 ÂB0B1ΦB1 ÂB0B2ΦB2 · · · ÂB0BgΦBg

)
This means that compression is practical only if the blocks ΦB have small numbers of
columns. Otherwise no or very few interactions can be compressed. After compressing
interactions of (B0,B0), we need to update (as in Eq. (3.5)):

(4.6) ΦB0
← QT

1 LTΦB0

The update Eq. (4.6) does not change the block structure of Φ, and so compressions
in the given level can continue in the same manner.

Notice, however, that when eliminating interior nodes, it seems we also need to
update Φ, since then:

A(i−1)Φ = GiA(i− 1
2 )G

T
i Φ

The update Φ ← GT
i Φ would ruin the block-diagonal-like structure of Eq. (4.4).

Fortunately, we do not need to perform this update at all because it only changes the
rows of Φ that correspond to variables just eliminated by block Cholesky.

4.3. Constructing the new partition. After compressions in level i have been
completed, we need to define the new partition Pi+1(V ) � Pi(V ) (see Def. 2.2). Every
B ∈ Pi(V ) must have a unique “father” D ∈ Pi+1(V ) such that B ⊆ D.

4.4. Forming the new Φ matrix. With Φ defined as in Eq. (4.4) (with blocks
defined by partition in the first level), when coarser partitions are formed, the numbers
of columns of nonzero sub-blocks of Φ corresponding to the new partition sets will also
grow, and eventually the compression will become impractical. On the other hand,
we can keep modifying Φ so that for each set D in the k-th partition, the matrix YD

spanning the space of discretized polynomials over D (of a pre-chosen degree equal
for each level), satisfies Eq. (4.1). Notice that if this is in fact true for level k, then it
is also true at the beginning of level k+ 1, because of the nature of polynomials, and
the fact that each set D at level k + 1 is a union of sets from level k.

However, we still need to make sure that the appropriate blocks in Eq. (4.4)
correspond to polynomial bases of the sets at the new level. When a set D is formed
by merging the sets B1, B2, . . . , Bc in the algorithm, then its active subset D = B1 ∪
B2 ∪ · · · ∪ Bc, where Bj is the active subset of Bj . Again in light of the nature of
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updates Eq. (4.6), this means that we can simply update:

(4.7) ΦD ←


ΦB1

ΦB2

...

ΦBc


By definition, the number of columns of matrix ΦD, for any set D at any level, is
bounded at all times. This is crucial for achieving O(n) or O(n log n) complexity of
factorization, and O(n) complexity of applying A−1

` (see Section 5). We have:

(4.8) ΦD = Π̃D(D, :)

where Π̃D = BT
i GT

i · · ·BT
2 GT

2 BT
1 GT

1 ΠD, for ΠD as in Eq. (3.8). This means that
ΦD is exactly the matrix needed in the compression at level i + 1 of the algorithm,
that is, it corresponds to the space of discretized polynomials over D.

4.5. Eliminating the last node. If the new partition is all of V , i.e., Pi(V ) =
V , we have reached the top level of the algorithm, i.e., i = `. Eliminating (V,V) ∈
N`(V ) via exact Cholesky decomposition concludes the factorization.

4.6. Pseudocode of the factorization. The hierarchical factorization is sum-
marized in the pseudocode below.

Algorithm 4.1 Sparse Geometric Factorization

Require: P1(V ), I1, S1, Π
for all (B,B) ∈ N1(V ) do {Define the polynomial bases of the nodes}

ΦB ← Π(B, :) (see Section 3.1)
end for
i← 1
while |Pi(V )| > 1 do

for all (B,B) ∈ Ii do {Eliminate interior nodes}
Eliminate (B,B) (Section 4.1)

end for
for all (B,B) ∈ Si do {Compress interactions of selected separators}

Compress interactions of (B,B) (Section 4.2)
end for
Construct coarser partition Pi+1(V ) � Pi(V )
Construct new Φ matrices (Section 4.4)
Choose interiors and separators Ii+1, Si+1

i← i+ 1
end while
`← i
Eliminate (V,V) (Section 4.5)
return A` = G1B1G2B2 · · ·G`−1B`−1G`G

T
` BT

`−1G
T
`−1 · · ·BT

2 GT
2 BT

1 GT
1

4.7. Applying the preconditioner. The approximate inverse operator reads:

A−1 ≈ A−1
` =

G−T1 B−T1 G−T2 B−T3 · · ·G−T`−1B
−T
`−1G

−T
` G−1

` B−1
`−1G

−1
`−1 · · ·B−1

2 G−1
2 B−1

1 G−1
1
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From Eq. (4.2) and Eq. (4.3) it should be clear that A−1
` can be applied by a sequence

of interspersed block triangular solves and multiplications by block-diagonal matrices.

5. Family of preconditioners. In this section, we propose a family of precon-
ditioners composed of four realizations of the SGF algorithm. To illustrate the ideas,
we consider a cartesian grid with a relatively simple discretization scheme. We would
like to stress, however, that our methods are not limited to cartesian grids. There
is no assumption about the grid structure in Section 4; the algorithm only requires
a partition hierarchy and the Π matrix. The appropriate partitions can be defined
geometrically given a general grid, or purely using the matrix graph. In fact, our
methods are being incorporated into spaND [11] which uses METIS [34] to obtain ap-
propriate graph partitionings. To keep focus, however, in this paper we limit ourselves
to cartesian grids where partitions can be explicitly defined

We therefore consider the case in which the discretized domain is of the form
Ω = (0, a1)×(0, a2)×(0, a3) and the grid vertices are located at points (kh1

2 , lh2

2 , mh3

2 )
where h1, h2, h3 > 0 are small and fixed, and k, l,m are natural numbers. We assume
that the discretization is such that the matrix entry Aij can be nonzero only if the
grid vertex corresponding to the j-th unknown is in the 3× 3× 3 subgrid of vertices
around the vertex corresponding to the i-th unknown.

5.1. Preconditioners using nested dissection partitions. We consider the
partitions P1(V ) ≺ P2(V ) ≺ · · · ≺ P`(V ) inspired by nested dissection [21, 49]. We
choose a natural number b > 1. The sets in Pt(V ) are formed when the domain Ω
is cut by the planes: {x = (rd − 1)h1}, {x = rdh1}, {y = (sd − 1)h2}, {y = sdh2},
{z = (ud−1)h3}, {z = udh3} for r, s, u ∈ {1, 2, 3, . . .}, where d = 2t−1 b. Two variables
i, j ∈ V then belong to the same partition set iff their corresponding grid vertices are
in the same set formed by the cutting planes. This is illustrated in Fig. 5.1.

Fig. 5.1: Cutting planes defining partitions P1(V ) ≺ P2(V ) ≺ P3(V ) based on nested
dissection.

Notice that there are three types of sets formed by the cutting planes, which we
call 0-, 1-, and 2-cells. The 0-cell is a cube and contains a single grid vertex (the
0-cells touch the corners of eight large cubes). The 1-cell is typically a longitudinal
parallelpiped containing d−1 grid vertices (1-cells touch the edges of four large cubes).
The 2-cell is typically a flat parallelpiped containing (d− 1)2 grid vertices (the 2-cells
touch the faces of two cubes). Finally, a 3-cell is typically a cube containing (d− 1)3

grid vertices (these are the large cubes in Fig. 5.1). The 0- 1- and 2-cells naturally
create a “buffer” between the 3-cells and the rest of the domain. In a 2D case (for
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example when the domain is (0, 1)2) there would be no 3-cells. In this case the 0- and
1-cells naturally separate the 2-dimensional cells from the rest of the domain. See
Fig. 2.1 for an illustration with active unknowns visible.

The set of 3-cells will form interiors and will be eliminated using the block
Cholesky algorithm (Section 4.1). Compression of the remaining cells then defines
the preconditioner (here, we do not distinguish between a cell and a partition node):

Nest-All-All All interactions of all cells are compressed
Nest-2-All All interactions of 2-cells are compressed but others are not
Nest-2-2 Only the interactions of 2-cells with non-adjacent cells are compressed

Compressing only selected interactions in Nest-2-2 above is achieved by including
in Q1 the span of the off-diagonal blocks connecting the given 2-cell with its adjacent
0- and 1-cells (so that most or all of the compressed interactions are those between
2-cells). Most other hierarchical algorithms similar to Nest-2-2—which compress only
well-separated interactions—cannot guarantee the SPD property, and may break (for
example LoRaSp [45]). In Nest-2-2, the compression ranks (numbers of columns of
Q1) increase with each level (in contrast, for example, to [45, 51] where the ranks can
be bounded) but the SPD property is preserved.

Nest-2-All is analogous to the schemes used in the context of Hierarchical Inter-
polative Factorization and Sparsified Nested Dissection [11, 31] (the latter defines the
partitions based on the locations of unknowns, or purely based on the matrix entries).
These approaches base the compression step, however, on low-rank approximations,
not polynomial compression ([31] being also quite different algebraically).

Nest-All-All, on the other hand, is quite different in that it also compresses inter-
actions of 1-cells (compressing interactions of 0-cells does not make any difference and
can be skipped). The off-diagonal block corresponding to a 1-cell in the matrix should
not be expected to be low-rank. However, polynomial compression does not require
the low-rank property. Intuitively speaking, it replaces each interaction between two
nodes by a coarser one, preserving the action of the matrix on a chosen subspace (as
opposed to exploiting the low-rank structure to represent the interaction accurately).

5.2. Preconditioners using general partitions. The second type of domain
partitions considered does not distinguish interior nodes that could be eliminated
without introducing large fill-ins. Again, such partitions can be obtained by analyzing
just the matrix entries [45], using tools such as SCOTCH [44]. As an example, with
the same setup as before, Pt(V ) could be a partition formed when the domain Ω is
cut into cells containing the same, or roughly the same number of grid vertices:

Drsu = ((rdh1, (r + 1)dh1)× (sdh2, (s+ 1)dh2)× (udh3, (u+ 1)dh3))

This is shown in Fig. 5.2. There are no interior nodes as before. Instead, at every
level, the size of each node is reduced in compression, and then nodes are merged when
forming the new partition for the subsequent level. This means that compression is
the only step that includes Cholesky factorization (the scaling Eq. (3.2)). We obtain:

Gen-All-All All interactions of all cells are compressed

One should not expect approaches that use low-rank approximations in compres-
sion to perform well with Gen-All-All unless the matrix satisfies the strong admissi-
bility criterion [9]. The approaches that do use simple partitioning ([45, 51, 40, 14])
typically distinguish between neighboring and well-separated interactions, the latter
assumed to be low-rank. Only the well-separated interactions are compressed. The
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Fig. 5.2: Cutting planes defining the general partitions P1(V ) ≺ P2(V ) ≺ P3(V ).

methods of this paper can also be used in that context. The advantage of compressing
all interactions of a node, however, is that we can obtain a much sparser operator,
and we ensure that A` is SPD.

5.3. Accuracy comparison. In terms of accuracy of factorization, one can
conceptually write:

Gen-All-All ≺ Nest-All-All ≺ Nest-2-All ≺ Nest-2-2

meaning that Gen-All-All is the least accurate (no interiors eliminated, all interactions
compressed), and Nest-2-2 is the most accurate (interiors eliminated; only interactions
of 2-cells with non-adjacent cells compressed).

5.4. Complexities of factorization and applying the approximate in-
verse. As we describe next, Nest-All-All and Gen-All-All can be expected to have
O(n) complexity. This is an advantage over Nest-2-All or Nest-2-2 used in [11, 31]
which generally have O(n log n) complexity. The partitions used in our methods sat-
isfy the assumptions of the proposition below, with δ = 8. The assumptions common
to both considered cases should be satisfied by any reasonably balanced partitions.
Similar (including more general) complexity analyses are described in [11, 45, 55].

Proposition 5.1. Assume that the polynomial compression is used with a fixed
pre-chosen polynomial degree, and that the node sizes in the first level are bounded.
Also assume that any given node in the algorithm has nonzero interactions with a
bounded number of other nodes, and that a set B ∈ Pk(V ), is a union of a bounded
number of sets from B ∈ Pk−1(V ). For δ > 1, assume that there exists a constant
C0 > 0 such that the partition Pk(V ) is composed of at most C0n/δ

k−1 sets. Then:
1. For a scheme compressing all interactions (such as Nest-All-All and Gen-All-

All) the complexities and memory requirements of computing the factoriza-
tion, as well as applying A−1

` , are all O(n).
2. For any other scheme, if there exists a constant C1 > 0 such that the size of

any node at level k is at most C1δ
(k−1)/3, then the complexity of computing the

factorization is O(n log n). Memory requirements as well as the complexity of
applying A−1

` are O(n). This holds for Nest-2-All and Nest-2-2 with δ = 8.

Proof. Consider first case 1. Since the polynomial compression with fixed polyno-
mial degree is used, and every node has a nonzero interaction with O(1) other nodes,
the ranks of the filtered interaction matrices Eq. (4.5) are likewise O(1), and therefore
the sizes of nodes are also bounded. The O(n) factorization complexity follows from
the fact that

∑∞
k=0

n
δk

= O(n), and similarly for memory requirements.
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Consider now case 2. The cost associated with eliminating or compressing a node

this time is O(δk). Hence we obtain the complexity bound from
∑dlogδ C0ne
k=0

n
δk
δk =

O(n log n). Since we now need O(δ2k/3) memory to store a node and its interac-

tions, we obtain the memory requirement by noticing that
∑dlogδ C0ne
k=0

n
δk
δ2k/3 =∑dlogδ C0ne

k=0 nδ−k/3 = O(n). The same argument applies to show that applying A−1
`

is O(n). To see that case 2 above holds for Nest-2-All and Nest-2-2, notice that the
number of grid vertices inside a 1-cell is O(2k).

6. Approximation error and preconditioner quality. A successful precon-
ditioner for SPD systems must be accurate on the eigenvectors corresponding to the
near-kernel (smallest) eigenvalues. The results in [55] suggest that for the (unit-
length) eigenvector vi corresponding to the given eigenvalue λi > 0, the contribution
of the error ‖(A−A`)vi‖2, to the condition number of the preconditioned system, is
amplified by λ−1

i . Results in [5] show that, to achieve a condition number independent
of the problem size, the accuracy of A` can be relatively crude provided that Eq. (4.1)
holds for Y with columns approximating well the near-kernel eigenspace.

We now describe how preserving piecewise polynomial vectors in our algorithm
leads to a better preconditioner. Let Ai again denote the approximation to A obtained
after completing the i-th level. For i ∈ {1, 2, . . . , `}, define the error term: Ei :=
Ai −Ai−1, where by definition A0 := A. We have:

A` −A = E1 + E2 + · · ·+ E`

The error terms Ei are the results of compression (gaussian elimination does not
introduce errors in exact precision). The effect of applying polynomial compression
is described in the following.

Proposition 6.1. Let k ∈ {1, 2, . . . , `} and B ∈ Pk(V ), where Pk(V ) is the
partition at level k of the algorithm. Also, let Π denote the global polynomial basis
matrix described in Section 3.1. Then, for any 1 ≤ i ≤ k,

EiΠB = 0

where ΠB is the |B| × π matrix defined by:

(6.1) (ΠB)ij =

{
Πij if i ∈ B
0 otherwise.

In particular, the action of A on Π is preserved:

(6.2) A`Π = AΠ

Proof. The proposition is true for k = 1 which follows from Lemma 3.1. Now
suppose that the proposition is true for a given 1 ≤ k ≤ `− 1. Then for B ∈ Pk+1(V )
and 1 ≤ i ≤ k we have EiΠB = 0. This is a consequence of the fact that B is a
union of sets from Pk(V ) (see Eq. (3.8)). To conclude the proof, we need to show that
Ek+1ΠB = 0 but this is a consequence of Eq. (4.8) and the remarks that follow it.

Denoting by uk the piecewise polynomial approximation to u ∈ Rn at the k-th level
of the algorithm, we can expect that ‖u−uk‖2 will be small if u is a smooth function
of the grid. The approximation error on u at the k-th level will also be then small
because Eku = Ek(u−uk). The following corollary, which is a direct consequence of
Proposition 6.1, makes this statement precise.
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Corollary 6.2. For u ∈ Rn and k ∈ {1, 2, . . . , `}, let uk denote the projection
of u onto Υk := span{ΠB}B∈Pk(Ω). We then have:

(A` −A) u = E1 (u− u1) + E2 (u− u2) + · · ·+ E` (u− u`)

Put differently, if Pk denotes the orthogonal projection matrix onto Υ⊥k , then:

A` −A = P1E1P1 + P2E2P2 + · · ·+ P`E`P`

Based on Corollary 6.2, we can write:

A` = A +
∑̀
k=1

Ek = A +
∑̀
k=1

PkEkPk

A−
1
2 A`A

− 1
2 = I +

∑̀
k=1

A−
1
2 PkEkPkA

− 1
2(6.3)

where for the eigenvalue decomposition A = VΛVT we write A
1
2 = VΛ

1
2 VT . We

would like the matrix Eq. (6.3) to be as close to identity as possible. In our case, we
also know that it is SPD (see Lemma 3.1). Notice that:

(6.4) ‖A− 1
2 PkEkPkA

− 1
2 ‖2 ≤ ‖Ek‖2‖PkA

−1Pk‖2
The norm ‖Ek‖2 can be made small using a low-rank approximation as described in
Section 3.3. However, if A is ill-conditioned, then A−1 will have large eigenvalues,
and the norm on the left hand side of Eq. (6.4) may become large even if ‖Ek‖2
is relatively small. Ensuring that the range of Pk approximates well the range of
the eigenvectors of A−1 with small associated eigenvalues, we can therefore directly
target the critical eigenspace of ill-conditioned systems, and make small the norm
‖PkA

−1Pk‖2. In particular (see also [6], Lemma 2.1), if:

(6.5)
∑̀
k=1

‖Ek‖2‖PkA
−1Pk‖2 ≤ µ < 1

then from Weyl’s inequality for eigenvalues we obtain for the condition number:

κ(A
− 1

2

` AA
− 1

2

` ) ≤ 1 + µ

1− µ
This suggests that to obtain a bounded condition number of the preconditioned sys-
tem, one needs the spaces Υk = span{ΠB}B∈Pk(Ω) to approximate well the eigenspace
corresponding to the smalles eigenvalues of A.

7. Numerical results. We apply our methods to problems of importance in
engineering. Our goals in this section are:

1. To test the efficiency of our methods when applied to large systems. Ideally,
we would like to observe the optimal O(n) scalings of solution times.

2. To compare our approach to the one in which compression is based on the
standard low-rank approximation of the off-diagonal blocks.

3. To benchmark the different preconditioners described in Section 5, with vary-
ing orders of polynomial compression (piecewise constant, piecewise linear,
and piecewise quadratic; that is, when j in the definition of Πj from Sec-
tion 3.1, is j = 0, 1, 2, respectively).
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When testing Nest-2-All, Nest-All-All, and Nest-2-2, we use b = 3, i.e., the 3-cell
at level k is typically a cube encompassing (3 ·2k−1−1)3 grid vertices (see Section 5);
we also skip the compression in the first two levels, while the nodes are still small.

When testing Gen-All-All we choose b = 3, b = 4, and b = 5 when using respec-
tively, piecewise constant, piecewise linear, and piecewise quadratic compression. In
other words, the partition sets at level k typically contain variables corresponding to,
respectively, (3 · 2k−1)3, (4 · 2k−1)3, and (5 · 2k−1)3 grid vertices. We use compression
starting from the first level.

In each test, when the number of not-yet-eliminated unknowns during factoriza-
tion is small enough (smaller than the size of the largest node encountered so far),
we factorize the remaining system exactly using block Cholesky decomposition (i.e.,
form the last partition). This does not change the maximal node size.

We solve the equation Ax = b using Conjugate Gradient (CG) with operator
A−1
` used as a preconditioner. Each time we choose a random right hand side b to

ensure that every eigenvector of A contributes to b.
Throughout this section, we use the following notation:

• n is the number of unknowns in the analyzed system;
• itC is the number of iterations of Conjugate Gradient needed to converge to a

relative residual of 2-norm below 10−10;
• tF is the factorization time, i.e., the CPU time taken to compute A−1

` , in seconds;
• tS is the solution time, i.e., the CPU time taken by CG to converge, in seconds;
• mR is the maximum memory usage during the computation, in GB.

Our implementation is sequential and was written in Python 3.6.1., exploiting
NumPy 1.14.3 and SciPy 1.1.0 for numerical computations [42, 32]. The tests were
run on CPUs with Intel(R) Xeon(R) E5-2640v4 (2.4GHz) with up to 1024 GB RAM.
All pivoted QR decompositions were performed by calling LAPACK’s geqp3 [3].

7.1. Descriptions of test cases.

7.1.1. 3D Poisson equation. The first test case is the classical 3D (constant-
coefficient) Poisson equation in a cube:

(7.1) ∆u(x) = f ∀x ∈ Ω ∈ [0, 1]
3
, u|∂Ω = 0

with Dirichlet boundary conditions, discretized using the standard 7-point stencil
method. The largest system has approximately 16 · 106 unknowns.

7.1.2. Incompressible flow in the SPE10 Reservoir. The second test case
is the 3D flow equation (Darcy’s law) of an incompressible single-phase fluid, in an
incompressible porous medium:

(7.2) ∇ · (λ · ∇u(x)) = 0, ∀x ∈ Ω

discretized using the finite volume method (the 2-point flux approximation), with
mixed Dirichlet and Neumann boundary conditions.

To define Ω and the field of coefficients λ (the mobility field), we use the SPE10
Reservoir [17] which is an important benchmark problem in the petroleum engineering
community. The field λ varies smoothly in some layers of the reservoir, and is highly
discontinuous in other layers (see Fig. 7.1). The result is a Poisson-like equation whose
corresponding discretized system is very ill-conditioned.

The smallest test case has approximately 0.4 · 106 variables and is obtained by
considering only the upper layers of the SPE10 Reservoir, where λ changes relatively
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Fig. 7.1: Mobility field in the
SPE10 benchmark reservoir.

Fig. 7.2: The cantilever beam used
in the linear elasticity test.

smoothly. The case with approximately 1.1 · 106 variables is obtained from the full
original SPE10 Reservoir (with grid dimensions 220 × 80 × 65). Larger cases are
obtained by periodically tiling the original reservoir in each direction to obtain cubes
of the desired size (based on idea from [39]). The matrices are obtained by fixing
the pressure value on one outer side of the reservoir, and imposing a constant flow
on the opposite side, with no-flow conditions on other sides, but the resulting system
Ax = b in each case is tested with a random right hand side, as described above.

7.1.3. Linear elasticity. The third test case is a finite-element approximation
to the weak form of the linear elasticity equation:

(7.3) −∇ · σ(u(x)) = 0, ∀x ∈ Ω

where u : Ω→ R3 is the displacement field and σ is the stress tensor satisfying:

σ(u(x)) = λ(∇ · u)I + µ(∇u+∇uT )

with λ and µ denoting the material Lamé constants.
Our test problem is a cantilever beam composed of two segments, as in Fig. 7.2.

The constants corresponding to the left hand side, and the right hand side segments
are dimensionless (λLHS, µLHS) = (1.0, 1.0) and (λRHS, µRHS = 50.0, 50.0), respec-
tively. The boundary conditions are a fixed zero displacement on the left side of the
boundary, i.e., u = 0 there, and a vertical constant pull down force applied on the
other side. The test case (including the discretization using a regular grid with tetra-
hedral elements) is obtained from the MFEM library [1] where the reader may find
all details. We test systems of increasing sizes by uniformly refining the grid in each
dimension; the largest case consists of approximately 6.5 · 106 variables.

This test differs from the previous ones in that each grid vertex v is now associated
with a displacement vector uv = (vx, vy, vz) ∈ R3 (which is a subvector of the global
solution vector u). As mentioned in Section 3.1, the definition of the polynomial basis
has to be modified. Assuming that the variable indices are ordered so that the indices
corresponding to all the vx above (of all grid vertices) come first, then the indices
corresponding to all the vy and then all the vz (in each case retaining the same order
of the underlying grid vertices), we naturally define:

(7.4) Π :=


Πj

Πj

Πj
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where j is the chosen polynomial degree, and Πj is defined as in Section 3.1. Con-
ceptually, the displacement component in each direction is then independent of the
displacement components in other directions.

7.2. Preserving the rigid body modes. The elasticity test Eq. (7.3) is a
loosely constrained body. In such a case, the so called rigid body modes are known
to be in the near-kernel subspace (see for instance [38]). With Π defined as above
(Eq. (7.4)), A` preserves the action of A on the rigid body modes (more precisely,
they are preserved exactly when using at least piecewise linear compression, which
follows from Eq. (6.2) and Eq. (7.4)). When developing preconditioners for the linear
elasticity equation, typically a special care has to be taken to reproduce the action of
A on the rigid body modes. In our case, the preservation of these modes is in fact a
by-product of the design of our methods.

7.3. Factorization times and memory usage. The theoretical scalings pre-
dicted by Proposition 5.1 are confirmed by our tests. In Fig. 7.3 we show examples
of hierarchical factorization timings. In Fig. 7.4 we show example memory usage. All
plots are well within O(n) bounding lines.
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Fig. 7.3: Factorization times for the Poisson equation Eq. (7.1), using Nest-2-2 and
Gen-All-All schemes which had, respectively, highest, and lowest factorization timings
among the tested schemes.
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7.4. Comparison to standard low-rank approximation. For each tested
scheme (Nest-All-All, Nest-2-All, Nest-2-2, Gen-All-All), we compare our results to
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the ones obtained when polynomial compression is replaced by a standard low-rank ap-
proximation (used by other hierarchical solvers, e.g., [45, 11, 14, 51, 20, 31]). Namely,
when computing the factorization with the given elimination and compression strategy
to obtain A`, we record the sizes of all Q1 matrices from Eq. (3.4) used in compres-
sion. We then compute the factorization again with exactly the same set-up, except
this time, to obtain the matrix Q from Eq. (3.4), we find a low-rank approximation
to the off-diagonal blocks using the column-pivoted rank-revealing QR [12, 23]:

(7.5) QR = ÂBNP

However, the split Q =
(
Q1 Q2

)
is such that the number of columns of Q1 is the

same as before. As a result, the sizes of all nonzero matrix blocks when computing
the factorization are the same, except inside the compression step. Denoting the
obtained operator by Â` we have that applying A−1

` or Â−1
` involves exactly the

same cost. We call the obtained preconditioner the standard low-rank equivalent
which is algebraically very close to the recently introduced methods [14, 11]. We note
here that more accurate rank-revealing factorizations, such as SVD, could be used
but are often impractical because of their computationally expensive iterative nature.

E1 = 1
λ1
‖(A−A`)v1‖2 En = 1

λn
‖(A−A`)vn‖2

n Pcw. quad. Low-rank Pcw. quad. Low-rank

4.0M 4.5 · 10−2 4.4 · 10−2 1.2 · 100 4.3 · 102

6.0M 4.5 · 10−2 4.4 · 10−2 1.3 · 100 5.6 · 102

8.0M 4.5 · 10−2 4.4 · 10−2 1.2 · 100 6.8 · 102

12.0M 4.5 · 10−2 4.4 · 10−2 1.1 · 100 8.9 · 102

16.0M 4.7 · 10−2 4.4 · 10−2 1.4 · 100 1.1 · 103

Table 7.1: Accuracy on the unit-length eigenvectors corresponding to the largest eigen-
value (E1), and the smallest eigenvalue (En), for Nest-All-All with polynomial com-
pression, and its standard low-rank equivalent, applied to Poisson equation Eq. (7.1).

7.4.1. Improved accuracy on smooth near-kernel eigenvectors. Since in
the case of the constant-coefficient Poisson equation eigenvectors and eigenvalues are
known exactly, we can compute the relative backward error 1

λi
‖(A−A`)vi‖2 for the

unit-length eigenvectors v1 and vn corresponding to, respectively, the largest, and the
smallest, eigenvalues λ1 and λn, to observe the effect of Corollary 6.2. Example results
for Nest-All-All using polynomial compression, and its standard low-rank equivalent,
are shown in Table 7.1. The error on v1 is small and similar in both cases; on the
other hand, the error on vn is nearly constant when using polynomial compression but
for its standard low-rank equivalent, the error grows with increasing system sizes and
becomes three orders of magnitude larger than when using polynomial compression.

7.4.2. Improved iteration counts. By design, applying our standard low-
rank equivalent of the given preconditioner involves identical computational cost as
applying the original preconditioner. Therefore, looking at the CG iteration counts is
an exact way to compare the two approaches in terms of the quality of the resulting
preconditioning operators. On all test cases, we record the CG iteration counts needed
for convergence. The iteration counts are nearly constant or grow very slowly with
increasing problem sizes when using our approaches, which is often not true for their
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standard low-rank equivalents. The plots of CG iteration counts are shown in Fig. 7.5,
Fig. 7.6, and Fig. 7.7. Combined with the theoretical O(n) complexity of applying
A−1
` , the results mean that we can expect our algorithms to achieve scalings close to

the optimal linear scaling of the total solution time.
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Fig. 7.5: CG iteration counts for the 3D Poisson equation Eq. (7.1). Our methods
exhibit iteration counts almost independent of the grid size which is in general not
true about their low-rank equivalents.

7.4.3. Nearly optimal scalings of solution times. In Fig. 7.8 and Fig. 7.9,
we plot the CPU times needed to solve the two more challenging problems (Eq. (7.2),
Eq. (7.3)). The graphs corresponding to our methods appear parallel to the O(n)
bounding lines which is not true for many of the standard low-rank equivalents.

7.5. Choosing the appropriate preconditioner. Nest-2-2 exhibits lowest
and nearly constant CG iteration counts in all tested cases. Inevitably, it has largest
memory requirements as well as the cost of applying A−1

` . Nest-2-All and Nest-All-All
performed almost identically. Therefore, Nest-All-All is likely preferable of the two,
with O(n) factorization complexity guarantees (instead of O(n log n)). Polynomial
compression allows therefore for bounding the sizes of the nodes appearing in Nest-
All-All, without losing accuracy (see the proof of Proposition 5.1). We expect this to
be of importance for parallel scaling of the algorithm.

In the tests, Gen-All-All performed competitively in terms of solution times de-
spite higher iteration counts. Notice that A−1

` is a product of block diagonal matrices
with one block per each node. This suggests that Gen-All-All also has very promising
properties for massive parallelization. However, higher iteration counts may make
Gen-All-All less practical on very ill-conditioned problems.
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Fig. 7.6: CG iteration counts for the incompressible flow equation Eq. (7.2).
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Fig. 7.7: CG iterations counts for the linear elasticity Eq. (7.3). Computations using
low-rank equivalent that did not converge within the time limit, were not recorded.
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Fig. 7.8: Solution times for the linear elasticity equation Eq. (7.3).
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Fig. 7.9: Total solution times (including factorization and the CG iteration) for the
incompressible flow problem Eq. (7.2).
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8. Conclusions and future work. The numerical results show that Sparse
Geometric Factorization (SGF) gives rise to robust preconditioners, exhibiting opti-
mal or near optimal scalings of solution times. Our methods are based on a special
treatment of the near-kernel smooth eigenvectors, directly targeting the fundamental
limitations of hierarchical matrix approaches. Moreover, the factorization is guar-
anteed to succeed in exact arithmetic, and the preconditioners are SPD operators,
so Conjugate Gradient can always be used. Also, polynomial compression can al-
low avoiding costly rank-revealing decompositions—which have been reported as the
main computational bottleneck of hierarchical solvers [11, 45, 51]. We did not find
polynomial compression to be a bottleneck in our implementation.

Other strategies for designing preconditioners based on SGF than described in this
paper, can be considered. While our examples were discretized on regular cartesian
grids, partitionings on general grids are applicable (see e.g. [11] for details). Also,
combining the polynomial compression with low-rank approximation may result in
more efficient methods. In the absence of geometrical information (e.g., when only the
system matrix is known), piecewise constant vectors would be then used. Moreover,
polynomial compression can be applied almost verbatim in an approach that would
only compress the well-separated interactions in a general domain partitioning (such
approaches include [45, 51]).

Similar to [31, 11] our algorithms have very promising parallel properties. Thanks
to compression, most computations are performed in the initial levels of the algorithm,
contrasting direct solvers such as nested dissection multifrontal, where the exact fac-
torization of the largest block can dominate the computations. We believe that the
bounded sizes of nodes ensured by polynomial compression may be of further im-
portance for parallel scaling of the algorithm. Efficient parallel implementations of
hierarchical approaches such as ours is a topic of active research [16, 36].
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