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Spectral Analysis of Matrix Scaling and Operator Scaling

Tsz Chiu Kwok∗, Lap Chi Lau†, Akshay Ramachandran‡

Abstract

We present a spectral analysis for matrix scaling and operator scaling. We prove that if the
input matrix or operator has a spectral gap, then a natural gradient flow has linear convergence.
This implies that a simple gradient descent algorithm also has linear convergence under the same
assumption. The spectral gap condition for operator scaling is closely related to the notion of
quantum expander studied in quantum information theory.

The spectral analysis also provides bounds on some important quantities of the scaling
problems, such as the condition number of the scaling solution and the capacity of the matrix and
operator. These bounds can be used in various applications of scaling problems, including matrix
scaling on expander graphs, permanent lower bounds on random matrices, the Paulsen problem
on random frames, and Brascamp-Lieb constants on random operators. In some applications,
the inputs of interest satisfy the spectral condition and we prove significantly stronger bounds
than the worst case bounds.
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1 Introduction

In the matrix scaling problem, we are given a non-negative matrix B ∈ R
n×n, and the goal is to

find a left diagonal scaling matrix L ∈ R
n×n and a right diagonal scaling matrix R ∈ R

n×n such
that LBR is doubly stochastic (every row sum and every column sum is one), or report that such
scaling matrices do not exist. This problem has been extensively studied in different communities;
see [39] for a detailed survey.

The operator scaling problem is a significant generalization of the matrix scaling problem. Given
a tuple of m× n real matrices A = (A1, . . . , Ak) where Ai ∈ R

m×n for 1 ≤ i ≤ k, a linear operator
ΦA : Rn×n → R

m×m is defined as

ΦA(X) =

k∑

i=1

AiXA∗
i ,

where A∗
i denotes the conjugate transpose of Ai which is just the transpose when Ai is real. We

will simply refer to A as an operator. The size of an operator A is defined as s(A) :=∑k
i=1 ‖Ai‖2F ,

where ‖·‖F denotes the Frobenius norm of a matrix. An operator A is called ǫ-nearly doubly
balanced if

(1− ǫ)
s(A)
m

Im �
k∑

i=1

AiA
∗
i � (1 + ǫ)

s(A)
m

Im and (1− ǫ)
s(A)
n

In �
k∑

i=1

A∗
iAi � (1 + ǫ)

s(A)
n

In,

and is called doubly balanced when ǫ = 0. The operator scaling problem is defined by Gurvits [29].
The objective is to scale the input operator so that it becomes doubly balanced with size one.

Definition 1.1 (Operator Scaling Problem).

Input: An operator A = (A1, . . . , Ak) where Ai ∈ R
m×n for 1 ≤ i ≤ k.

Output: A left scaling matrix L ∈ R
m×m and a right scaling matrix R ∈ R

n×n such that

k∑

i=1

(LAiR)(LAiR)∗ =
Im
m

and

k∑

i=1

(LAiR)∗(LAiR) =
In
n
,

or report that such scaling matrices L,R do not exist.

There is a simple reduction from the matrix scaling problem to the operator scaling problem, by
having one matrix Aij ∈ R

n×n for each entry Bij with the (i, j)-entry of Aij being
√

Bij and all
other entries zero; see Section 4.1 for details.

The operator scaling problem generalizes matrix scaling and frame scaling and has many applica-
tions; see Section 1.4 and Section 4. Much work has been done in analyzing algorithms for these
scaling problems and in understanding the scaling solutions and related quantities.



1.1 Previous Algorithms

For matrix scaling, the most well-known algorithm is Sinkhorn’s algorithm [54], which is a simple
iterative algorithm that alternatively rescale the rows and rescale the columns. This algorithm is
analyzed in [18] and it is shown that the alternating algorithm finds an η-nearly doubly stochastic
scaling in time polynomial in n and 1/η.

The alternating scaling algorithm is generalized in [29] for the operator scaling problem. In this
algorithm, we alternately find a left scaling matrix L = (

∑
iAiA

∗
i )

−1/2 and set Ai ← LAi so that
the first condition of doubly balanced is satisfied, and a right scaling matrix R = (

∑
i A

∗
iAi)

−1/2

and set Ai ← AiR so that the second condition of doubly balanced is satisfied, and repeat. This
alternating algorithm is partially analyzed in [29] and is fully analyzed in [20, 19].

Theorem 1.2 ([54, 18, 20, 19]). The alternating scaling algorithm returns an η-nearly doubly
balanced scaling in O(poly(n,m, k, 1/η)) iterations if such a scaling exists.

This theorem is used in [20, 19] to give the first polynomial time algorithm for computing the
non-commutative rank of a symbolic matrix, as it is sufficient to set η to be inverse polynomial in n
to solve that problem exactly. For some applications, however, faster convergence of η is required.

For matrix scaling, there are several algorithms with dependency on η being log(1/η), including
the ellipsoid method in [40], the interior point method in [51], and a strongly polynomial time
combinatorial algorithm in [47]. The dependency on n in these algorithms is at least Ω(n7/2) even
for sparse matrices. Recently, two independent groups [13, 2] developed a fast second order method
for matrix scaling, and this method is extended to geodesic convex optimization in [1] for the
operator scaling problem.

Theorem 1.3 ([13, 2, 1]). There is a second order method to return an η-nearly doubly balanced
scaling in time O(poly(n,m, k, log(1/η))) for operator scaling, and in time O(‖B‖0 log κ log2(1/η))
for matrix scaling where ‖B‖0 denotes the number of nonzero entries in B and κ denotes the
condition number of the scaling solution.

For matrix scaling, this theorem can be used to obtain a fast deterministic e−n approximation
algorithm for the permanent of a matrix [47]. For operator scaling, this theorem is used to obtain
a polynomial time algorithm for an orbit intersection problem in invariant theory [1].

1.2 Gradient Flow

An important quantity in [29, 20, 1] to measure the progress of the algorithms is the ℓ2-error of the
current solution. Given an operator A = (A1, . . . , Ak) where Ai ∈ R

m×n for 1 ≤ i ≤ k, define

∆(A) = 1

m

∥∥∥∥∥s(A) · Im −m

k∑

i=1

AiA
∗
i

∥∥∥∥∥

2

F

+
1

n

∥∥∥∥∥s(A) · In − n

k∑

i=1

A∗
iAi

∥∥∥∥∥

2

F

.

Note that ∆(A) = 0 if and only if A is doubly balanced. In the matrix scaling problem for general
m × n matrix where the objective is to scale the input matrix B such that every row sum is the
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same and every column sum is the same, this definition simplifies to

∆(B) =
1

m

m∑

i=1

(s −mri)
2 +

1

n

n∑

j=1

(s − ncj)
2,

where ri and cj are the i-th row sum and the j-th column sum of the matrix B, and s =∑m
i=1

∑n
j=1Bij is the size of the matrix B.

A continuous version of the alternating algorithm for operator scaling is studied in [45], where both
operations are done simultaneously and continuously. The following differential equation describes
how A changes over time:

d

dt
Ai :=


s(A) · Im −m

k∑

j=1

AjA
∗
j


Ai +Ai


s(A) · In − n

k∑

j=1

A∗
jAj


 for 1 ≤ i ≤ k.

In the matrix case, this continuous scaling algorithm simplifies to

d

dt
Bij = 2

(
(s−mri) + (s− ncj)

)
· Bij.

The continuous operator scaling algorithm is developed to bound the “total movement” of the
operator in order to solve the Paulsen problem in [45]. Its convergence rate is shown to be similar
to that of the alternating scaling algorithm, with dependency on η being 1/η.

The continuous operator scaling algorithm can be understood as a natural first order method for
the operator scaling problem. As we will show in Lemma A.1 in Appendix A, the dynamical system
in continuous operator scaling is equivalent to the gradient flow (or continuous gradient descent)
that always moves in the direction of minimizing ∆(A) at each time. This shows a close connection
between gradient descent and the alternating algorithm.

This gradient flow was studied in much greater generality in symplectic geometry and algebraic
geometry (see [41, 27]). After a long line of work [3, 25, 26, 43, 42], Kirwan proved that the image
of the moment map of a Hamiltonian group action on a symplectic manifold is a convex polytope.
To prove this, Kirwan uses the norm-square of the moment map (which in our setting is exactly
∆(A)), and studies critical points of this function in order to understand the image of the moment
map (where a point is critical for ∆(A) exactly when it is a fixed point of the gradient flow). The
current result as well as the result in [45] can be seen as quantitative convergence analyses in the
neighborhoods of fixed points of this natural gradient flow in the operator scaling setting. It is an
interesting direction to extend our result to the above general setting.

1.3 Contributions

In this paper, we analyze this gradient flow for the operator scaling problem. We identify a natural
spectral condition under which the gradient flow converges in time t = O(log(1/η)) (corresponding
to the number of iterations in the alternating algorithm) where η is the output accuracy. The
spectral condition is closely related to the notion of “quantum expander” and is satisfied in many
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random instances. A key feature of our approach is that it also provides bounds on some important
mathematical quantities such as the condition number of the scaling solution and the capacity of
the matrix and operator. These bounds can be used in various applications of the operator scaling
problem to show significantly stronger results for inputs that satisfy the spectral condition such
as random matrices and random frames. We remark that the new results in various applications
cannot be obtained through previous work (e.g. the fast algorithm for operator scaling in [1]), as
the analyses of previous algorithms do not provide mathematical bounds for the condition number
of the scaling solution and the operator capacity.

Spectral Condition

We first state the spectral condition in the general operator setting.

Definition 1.4 (Spectral Gap Condition). Given an operator A = (A1, . . . , Ak) where Ai ∈ R
m×n

for 1 ≤ i ≤ k, define the m2 × n2 matrix

MA :=

k∑

i=1

Ai ⊗Ai,

where ⊗ denotes the tensor product. The operator A is said to have a λ-spectral gap if

σ2(MA) ≤ (1− λ)
s(A)√
mn

,

where σ2(MA) is the second largest singular value of MA.

Note that the spectral condition can be checked in polynomial time through standard eigenvalue
computation.

The matrixMA associated withA is studied in the quantum information theory literature (e.g. [61]),
as the natural matrix representation of the completely positive map Φ(X) :=

∑
iAiXA∗

i defined
by A. It can be shown that the largest singular value of MA satisfies

s(A)√
mn
≤ σ1(MA) ≤ (1 + ǫ)

s(A)√
mn

,

when A is ǫ-nearly doubly balanced (Lemma 3.6). The spectral gap condition is also studied under
the name of “quantum expander” in [7, 35]. We will discuss more about this spectral gap condition
in Section 2.1 after some background on quantum information theory is reviewed.

For matrix scaling, given the input matrix B ∈ R
m×n, the spectral gap condition is simply

σ2(B) ≤ (1− λ)
s(B)√
mn

.

If we interpret the input matrix B as a weighted undirected bipartite graph, then the spectral gap
condition is closely related to the expansion/conductance of the graph. We will explain more about
these in Section 1.4.1 and in Section 4.1.
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Linear Convergence

We prove that the gradient flow has linear convergence when the input satisfies the spectral gap
condition.

Theorem 1.5 (Linear Convergence). Given an operator A = (A1, . . . , Ak) where each Ai ∈ R
m×n

with m ≤ n, if A is ǫ-nearly doubly balanced and A satisfies the λ-spectral gap condition in Defini-
tion 1.4 with λ2 ≥ Cǫ logm for a sufficiently large constant C, then in the gradient flow,

∆(t) ≤ ∆(0)e−λs(0)t for any t ≥ 0.

In particular, the gradient flow converges to a η-nearly doubly balanced scaling in time t = O
(

1
λ log(mη )

)
,

and such a scaling always exists under our assumptions.

By discretizing the gradient flow with step size Θ((m + n)−2), it follows that a natural gradient
descent algorithm returns an η-nearly doubly stochastic scaling in polynomial time in the input
size and logarithmic in 1/η, when the input satisfies the spectral gap condition.

Corollary 1.6 (Gradient Descent). Under the assumptions in Theorem 1.5, there is a gradient

descent algorithm to return an η-nearly doubly balanced scaling in O
(
(n+m)2

λ log(m+n
η )

)
iterations.

It is an interesting open question whether the alternating algorithm also has the same convergence
rate as the gradient flow under the same assumptions. We believe that the answer is positive but
we could not prove it yet.

Condition Number

The condition number of the scaling solutions L,R are defined as κ(L) := σmax(L)/σmin(L) where
σmax(L) and σmin(L) denote the largest and smallest singular values of L respectively. For matrix
scaling, κ(L) is simply the ratio between the largest entry and the smallest entry in the diagonal
matrix L.

In general, the condition numbers could be exponential in the input size. It is of interest to
identify instances with small condition numbers as these are closely related to the performance of
matrix/operator scaling algorithms (e.g. Theorem 1.3), but not much is known even in the simpler
matrix scaling setting. Kalantari and Khachiyan [40] proved a bound for strictly positive matrices
in terms of the ratio of the sum of the entries and the minimum entry. We show that the condition
numbers are bounded by a small constant when the input satisfies the spectral gap condition (not
necessarily strictly positive).

Theorem 1.7 (Condition Number). Under the assumptions in Theorem 1.5, the condition number
of the scaling solutions L ∈ R

m×m and R ∈ R
n×n satisfy

κ(L) ≤ 1 +O

(
ǫ logm

λ

)
and κ(R) ≤ 1 +O

(
ǫ logm

λ

)
.
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The condition number of the scaling solutions is used in bounding the time complexity of the
scaling algorithms using the second order method [1, 13], in analyzing an approximation algorithm
for permanent [53], and in bounding the optimal transport cost [14, 52]. We will discuss the
implications of Theorem 1.7 to these applications in Section 4.

Operator Capacity

The capacity of an operator A is defined by Gurvits [29] as

cap(A) := inf
X≻0

m det
(∑k

i=1 AiXA∗
i

)1/m

det(X)1/n
.

The capacity of a matrix B ∈ R
m×n has a simpler form (Section 4.1.6) where

cap(B) := inf
x∈Rn:x>0

m
(∏m

i=1(Bx)i

)1/m

(∏n
j=1 xj

)1/n .

Optimization problems of this form are also studied in functional analysis [5] and in approximation
algorithms [50].

In general, when A is ǫ-nearly doubly balanced [29, 20, 45], it is proved that

s(A) ≥ cap(A) ≥ (1−mnǫ)s(A).

Using a connection between the convergence rate of the gradient flow and the operator capacity
developed in [45], we show a much stronger bound for operators that also satisfy the spectral gap
condition.

Theorem 1.8 (Capacity). Under the assumptions in Theorem 1.5,

s(A) ≥ cap(A) ≥
(
1− 4ǫ2

λ

)
s(A).

The capacity of an operator is used in bounding the permanent of a matrix [47], the Brascamp-Lieb
constant of an operator [21], and the total movement to a nearby doubly balanced operator [45].
We will discuss the implications of Theorem 1.8 to these applications in Section 1.4.

1.4 Applications of Matrix Scaling and Operator Scaling

The matrix scaling and the operator scaling problem has many applications and we will discuss
some implications of our results in this section.
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1.4.1 Matrix Scaling

In the matrix scaling problem, we are given a non-negative matrix B ∈ R
m×n, and the goal is to

find a left diagonal scaling matrix L ∈ R
m×m and a right diagonal scaling matrix R ∈ R

n×n such
that LBR is doubly balanced (i.e. every row sum is the same and every column sum is the same;
see Section 4.1 for definition), or report that such scaling matrices do not exist.

The matrix scaling problem is a special case of the operator scaling problem (Section 4.1.1) and
so the spectral analysis also applies. In the case of matrix scaling, the spectral condition in Def-
inition 1.4 is simply σ2(B) ≤ (1 − λ)s(B)/

√
mn (Section 4.1.2). Using Cheeger’s inequality, we

show that this spectral gap condition is closely related to the conductance of the weighted bipartite
graph associated to B (Section 4.1.3). These imply that many random matrices will satisfy the
condition in Theorem 1.5 (Section 4.1.4).

Our results has implications for the matrix scaling problem, e.g. to obtain stronger results for
random matrices. For bipartite matching, we show that the gradient flow converges quickly to a
fractional perfect matching in an almost regular bipartite expander graph (Section 4.1.5).

Corollary 1.9. Suppose G = (X,Y ;E) is a bipartite graph with |X| = |Y | where each vertex v
satisfies (1 − ǫ)|E|/|X| ≤ deg(v) ≤ (1 + ǫ)|E|/|X| for some ǫ. If the graph conductance φ(G)
satisfies φ(G)4 ≥ Cǫ log |X| for some sufficiently large constant C, then the gradient flow converges

to an η-nearly perfect fractional matching in time t = O
(

1
φ2(G)

log
(
|X|
η

))
.

For permanent, the Van der Waerden’s conjecture states that the permanent of a doubly stochastic
n × n matrix is at least n!/nn ≥ e−n, which is proven in [15, 16, 28]. The capacity lower bound
in Theorem 1.8 can be used to prove a Van der Waerden’s type lower bound on the permanent of
matrices satisfying the spectral gap condition (not necessarily doubly stochastic).

Corollary 1.10. If a non-negative matrix B ∈ R
n×n is ǫ-nearly doubly balanced with s(B) = n,

and σ2(B) ≤ 1− λ with λ2 ≥ Cǫ log n for some sufficiently large constant C, then

per(B) ≥ exp

(
−n
(
1 + Θ

(
ǫ2

λ

)))
.

For example, consider a random matrix A with each entry an independent random variable Aij = g2ij
where gij is sampled from the Gaussian distribution N(0, 1

n). The corollary implies that per(A) ≥
e−n/poly(n) with high probability. This implies a sub-exponential approximation of the permanent
for this class of matrices [6]. See Section 4.1.6 for details.

For optimal transportation distance, we can use the condition number result in Theorem 4.1.7 to
bound the Sinkhorn distance [14, 52], which is receiving increasing attention in computer vision
and machine learning (Section 4.1.7).

The condition number result in Theorem 4.1.7 can also be used to show that the second-order
method for matrix scaling [13, 2] as stated in Theorem 1.3 is near linear time in the instances
satisfying the spectral gap assumption.
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1.4.2 Frame Scaling

In the frame scaling problem, we are given n vectors u1, . . . , un ∈ R
d, and the goal is to find a matrix

(a linear transformation) M ∈ R
d×d such that if we set vi = Mui/ ‖Mui‖2 then

∑n
i=1 viv

∗
i = Id.

This problem was studied in communication complexity [17], machine learning [33], and in frame
theory [45, 32].

The frame scaling problem is a special case of the operator scaling problem (Section 4.2.1) and so the
spectral analysis also applies. In the case of frame scaling, the spectral condition in Definition 1.4
has a nice form (Section 4.2.2): Let G ∈ R

n×n be the squared Gram matrix where Gij = 〈ui, uj〉2.
Then the spectral condition is equivalent to λ2(G) ≤ (1 − λ)2s2/(dn) where λ2(G) is the second
largest eigenvalue of G and s is the size of the frame defined as

∑n
i=1 ‖ui‖

2. We will prove in
Section 5 that this condition is satisfied for random frames with high probability.

Theorem 1.11. If we generate n random unit vectors u1, . . . , un ∈ R
d with n = Ω(d4/3), then the

resulting frame is ǫ-nearly doubly balanced for ǫ ≪ 1/ log d and satisfies the spectral gap condition
with constant λ with probability at least 0.99.

For intuition, suppose each ui is a random unit vector, then the expected value of Gij = 〈ui, uj〉2
for i 6= j is 1/d and so the expected matrix G is Jn/d+ (d− 1)In/d where Jn is the n-by-n all-one
matrix. The matrix Jn has the largest spectral gap, and we expect that a random frame will have
its squared Gram matrix G close to Jn/d+ (d− 1)In/d and thus a large spectral gap. The proof is
by a low moment analysis of the trace method commonly used in random matrix theory (Section 5).

One significant implication of our result is the Paulsen problem on random frames. Given a frame
U = (u1, . . . , un) where each ui ∈ R

d satisfying

(1− ǫ)Id �
n∑

i=1

uiu
∗
i � (1 + ǫ)Id and (1− ǫ)

d

n
≤ ‖ui‖22 ≤ (1 + ǫ)

d

n
for 1 ≤ i ≤ n,

the Paulsen problem asks whether there always exists a frame V = (v1, . . . , vn) where each vi ∈ R
d

satisfying
∑n

i=1 viv
∗
i = Id, ‖vi‖22 = d/n for 1 ≤ i ≤ n, and dist2(U, V ) :=

∑n
i=1 ‖ui − vi‖22 small. It

was an open problem whether dist2(U, V ) can be bounded by a function independent of the number
of vectors n. Recently, this question was answered positively in [45], showing that dist2(U, V ) ≤
O(d13/2ǫ). This bound is improved to O(d2ǫ) by Hamilton and Moitra [32] with a much simpler
proof. There are examples showing that dist2(U, V ) ≥ Ω(dǫ), so the upper bound and the lower
bound almost match in the worst case.

The Paulsen problem was asked [36] because it is difficult to generate V that satisfies the conditions
exactly but easier to generate U that almost satisfies the conditions. But actually not many ways
are known to generate U that almost satisfies the conditions with small ǫ, and almost all known
constructions are random frames [36, 59]. Even for the few constructions that are deterministic
(such as equiangular lines), it is likely that they satisfy the spectral gap assumption. So, for the
Paulsen problem, the inputs of interest satisfy the spectral gap assumption, and we can prove a
much stronger bound O(dǫ2) that goes beyond the worst case lower bound.
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Theorem 1.12. Let U = (u1, . . . , un) be a random frame with n = Ω(d4/3), where each ui ∈ R
d

is an independent random vector with ‖ui‖22 = d/n. Suppose (1 − ǫ)Id �
∑n

i=1 uiu
∗
i � (1 + ǫ)Id.

Then, with probability at least 0.99, there exists a frame V = (v1, . . . , vn) with
∑n

i=1 viv
∗
i = Id,

‖vi‖22 = d/n for 1 ≤ i ≤ n, and dist2(U, V ) ≤ O(dǫ2).

We also demonstrate how the results in spectral analysis can be used to construct V with the
additional property that |〈vi, vj〉| is small for 1 ≤ i 6= j ≤ n, which is an original motivation for the
Paulsen problem (Section 4.2.4).

Theorem 1.13. For n = d2, there exists a doubly balanced frame V = (v1, . . . , vn) where each
vi ∈ R

d with ‖vi‖ = 1 and

max
i 6=j
〈vi, vj〉2 ≤ O

(
log3 d

d

)
.

1.4.3 Operator Scaling

The operator scaling problem was used to compute the Brascamp-Lieb constant [21]. A Brascamp-
Lieb datum is specified by an m-tuple B = {Bj : R

n → R
nj | 1 ≤ j ≤ m} of linear transformations

and an m-tuple of exponents p = {p1, . . . , pm}. The Brascamp-Lieb constant BL(B,p) of this
datum is defined as the smallest C such that for every m-tuple {fj : Rnj → R≥0 | 1 ≤ j ≤ m} of
non-negative functions which are integrable, we have

∫

x∈Rn

m∏

j=1

(
fj(Bjx)

)pj
dx ≤ C

m∏

j=1

(∫

xj∈R
nj

fj(xj)dxj

)pj

.

This is a common generalization of many useful inequalities; see [8, 21]. It turns out that the
functions fi for which the inequality is tight are density functions of Gaussians [46], and this
implies the Brascamp-Lieb constant can be written in a form very similar to the capacity of an
operator (see Section 4.3.1). This is used in [21] to compute the Brascamp-Lieb constant through
operator scaling.

Using this connection, we can derive upper bounds on the Brascamp-Lieb constant using the ca-
pacity lower bound in Theorem 1.8.

Corollary 1.14. Given a datum (B,p) with Bj : R
n → R

nj for 1 ≤ j ≤ m and
∑m

j=1 pjnj = n, if

(B,p) is ǫ-nearly geometric and satisfies the λ-spectral gap condition with λ2 ≥ Cǫ log n for some
sufficiently large constant C and

∑m
j=1 pj ‖Bj‖2F = n, then

1 ≤ BL(B,p) ≤
(
1− 4ǫ2

λ

)−n/2

≤ exp

(
Θ

(
nǫ2

λ

))
.

An interesting special case of the Brascamp-Lieb inequality is the rank one case Bj = u∗j where

uj ∈ R
d and nj = 1 and pj = d/m for 1 ≤ j ≤ m which was studied in [5]. In this case, the capacity
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of the operator A from the reduction (Section 4.3.1) is

cap(A) = sup
x∈Rn:x>0

d
(
det
(∑m

j=1 xjuju
∗
j

))1/d

(∏m
j=1 xj

)1/m ,

which is a form that is also studied in approximation algorithms [50]. Using the results in Section 5
and the above corollary, we can show that if each ui is an independent random unit vector and
m ≥ Ω(d4/3), then m ≥ cap(A) ≥ m (1− 4d log d/m) and 1 ≤ BL(B,p) ≤ dΘ(d); see Example 4.27.
Note that this is independent of the number of vectors.

The operator scaling algorithm is used in [20, 19] to compute the non-commutative rank of a
symbolic matrix. We show in Section 4.3.2 that an operator satisfying the spectral gap condition
has full non-commutative rank.

In solving the orbit intersection problem [1], the result of a generalization of the Paulsen problem
to the operator setting in [45] was used. As in Theorem 1.12, we prove a much stronger bound in
Section 4.3.3 on the squared distance when the operator satisfies the spectral gap condition.

1.5 Techniques

We are not aware of previous work on spectral analysis of matrix scaling and operator scaling. To
our knowledge, the results are new even in the well-studied special case of matrix scaling. The
closest work in this direction that we are aware of is a recent work by Rudelson, Samorodnitsky
and Zeitouni [53], who analyze the condition number of the matrix scaling solution when the matrix
satisfies some strong (vertex) expansion property using a combinatorial argument.

In the following, we discuss the previous techniques used in analyzing the continuous operator
scaling algorithm, and then discuss the techniques used in this paper.

1.5.1 Comparisons with Previous Techniques

The operator capacity defined by Gurvits [29] was used crucially as a potential function to ana-
lyze the discrete operator scaling algorithms in [29, 20] as well as the continuous operator scaling
algorithm in [45].

A smoothed analysis of matrix scaling was presented in [45] for solving the Paulsen problem. It was
shown that if most of the entries of an m×n matrix with m ≤ n is at least σ2 for a large enough σ,
then the continuous matrix scaling algorithm has linear convergence with rate at least σ2n. This
combinatorial assumption is restrictive and only applies in the matrix scaling setting. Note that
the combinatorial assumption implies the spectral gap assumption in Definition 1.4 with λ ≥ Ω(σ2)
but not vice versa. Through a reduction from operator capacity to matrix capacity, the smoothed
analysis can be extended to the frame setting but the proof was complicated, and it was not known
whether the smoothed analysis can be extended to the general operator setting. The main difficulty
is that there is no analogous combinatorial condition in the frame setting and in the operator setting
to guarantee the linear convergence. This is an illustration of the difference between the matrix
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case and the noncommutative operator case, in which there is no natural basis to consider. In this
paper, we have found a natural spectral condition to guarantee linear convergence directly in the
general operator setting. As a consequence, we do not need to go through the operator capacity
to analyze the convergence rate of the operator scaling algorithm, which is different from previous
analyses. Nonetheless, we can use the linear convergence to prove a lower bound on the operator
capacity as was done in [45].

1.5.2 Outline of Spectral Analysis

We illustrate the main ideas of the spectral analysis in the simpler matrix scaling setting and
mention how these ideas can be generalized to the operator setting. For gradient descent, a common
approach to prove linear convergence is to show that the Hessian matrix has small condition number.
Instead, our approach is to directly analyze the change of ∆. In the matrix scaling setting, it follow
from Lemma 4.2.9 in [45] that

−1

4

d

dt
∆ =

m∑

i=1

(s−mri)
2ri +

n∑

j=1

(s− ncj)
2cj + 2

m∑

i=1

n∑

j=1

(s−mri)(s− ncj)Bij ,

where B ∈ R
m×n is the current non-negative matrix, and s, ri, cj are the size, the i-th row sum

and the j-th column sum of B respectively. We call the first two terms in the right hand side the
quadratic terms and the last term the cross term. Our goal is to lower bound their sum by λs∆.
To do so, we will prove a lower bound on the sum of the quadratic terms, and an upper bound on
the absolute value of the cross term.

First, we prove a structural result that the maximum violation of a row and a column will not
increase much throughout the continuous matrix scaling algorithm, and then we use this to show
that the sum of the quadratic terms is at least (1 − ǫ)s∆ for an ǫ-nearly doubly balanced matrix
B. Then, we write the cross term as a quadratic form of the matrix B as ~rB~c, where ~r ∈ R

m is the
vector with the i-th entry being s−mri and ~c ∈ R

n is the vector with the j-th entry being s−ncj.
The observation is that ~r ⊥ ~1m and ~c ⊥ ~1n while ~1m, ~1n are close to the first singular vectors of B,
so the cross term would be small if there is a spectral gap of the matrix B. By a spectral argument,
we can show that the absolute value of the cross term is at most (1 + ǫ− λ)s∆. Combining these
two bounds, we can lower bound the convergence rate to be at least 4(λ− 4ǫ)s∆ initially.

To prove that the convergence rate is at least λs∆ for all time, we need to prove that the spectral
gap condition is maintained throughout the continuous matrix scaling algorithm. To do so, we
argue through the condition number of the scaling solutions. We use the structural result and the
linear convergence to show that the condition number of the scaling solution is small, and then we
show that the singular values of the matrix would not change much if we scale the matrix B by
diagonal matrices of small condition numbers. Finally, we use an inductive argument to prove that
the linear convergence is maintained for all time. The results for condition numbers and capacity
follow from the arguments developed and the linear convergence.

The proof for the general operator setting has the same structure, with more involved technical
details in some steps. To prove the structural result that the operator norm of the error matrices
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would not increase much throughout the continuous operator scaling algorithm, we need to use
the envelope theorem to bound the maximum eigenvalue and the minimum eigenvalue. To bound
the condition number of the scaling solutions, we need to use results from the theory of product
integration to analyze the scaling solutions. For readers who are more interested in matrix scaling
and/or who would like to understand the spectral analysis in a simpler setting first, we include
a self-contained proof for the matrix scaling case in Appendix B even though the matrix scaling
result is completely generalized by the operator scaling result.

1.6 Organization

We first review some background about completely positive linear operators and the continuous
operator scaling algorithm in Section 2. We then prove the main technical results in Section 3
and show various applications in Section 4. We provide a proof in Section 5 that a random frame
satisfies the spectral condition with high probability. In Appendix B, we provide a self-contained
proof of Theorem 1.5 in the special case of matrix scaling.

2 Preliminaries

We first review in Section 2.1 some background in quantum information theory about completely
positive maps and discuss the spectral gap condition stated in Definition 1.4. Then, we review the
known results about the continuous operator scaling algorithm in Section 2.2

2.1 Positive Linear Maps, Matrix Representations, Quantum Expanders

First, we define completely positive linear maps and their natural matrix representation in Sec-
tion 2.1.1. Then, in Section 2.1.2, we present the spectral gap condition in Definition 1.4 using
this language, and compare to the notion of quantum expanders studied in the literature. Finally,
we introduce the Choi matrix in Section 2.1.3 and state some facts about tensors and completely
positive maps that we will use in our proof.

2.1.1 Completely Positive Linear Map

Given A = (A1, . . . , Ak) where Ai ∈ R
m×n for 1 ≤ i ≤ k, it can be used to define a linear map

Φ : Rn×n → R
m×m as

ΦA(Y ) =

k∑

i=1

AiY A∗
i and Φ∗

A(X) =

k∑

i=1

A∗
iXAi, (2.1)

where Φ∗ : Rm×m → R
n×n is the adjoint map so that 〈X,Φ(Y )〉 = 〈Φ∗(X), Y 〉 for any X ∈ R

m×m

and Y ∈ R
n×n, where 〈P,Q〉 := tr(P ∗Q) =

∑
i,j P

∗
ijQij is the Hilbert-Schmidt inner product.
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Definition 2.1 (Completely Positive Map). A linear map Φ is positive if Φ(Y ) � 0 for every
Y � 0, where Y � 0 denotes that Y is a positive semidefinite matrix. A linear map Φ is completely
positive if Φ⊗ Il is positive for every natural number l ≥ 1 (see [61] for more details).

Theorem 2.2 (Choi [12]). A linear map Φ is completely positive if and only if it can be written as
the form described in (2.1).

The matrices A1, . . . , Ak are called the Kraus operators of Φ. Note that the Kraus operators are
not uniquely defined for a linear map Φ.

Definition 2.3 (Doubly Balanced Map). A linear map Φ is called unital if Φ(In) = Im. A linear
map Φ is called trace preserving if Φ∗(Im) = In (which implies that tr(Φ(Y )) = tr(Y ) for any
Y ∈ R

n×n). A linear map Φ is called doubly balanced if there exists c > 0 such that c
√
nΦ is unital

and c
√
mΦ is trace preserving.

Using this terminology, the operator scaling problem can be rephrased as given the Kraus operators
(A1, . . . , Ak) of a completely positive map, find a left scaling matrix L and a right scaling matrix R
so that the completely positive map defined by the Kraus operators (LA1R, . . . , LAkR) is non-zero
doubly balanced.

For each completely positive linear map Φ, we can associate a matrix representation describing the
same linear transformation.

Definition 2.4 (Natural Matrix Representation of Linear Map). Given a linear map Φ : Rn×n →
R
m×m, we can interpret it as a matrix MΦ : R

n2 → R
m2

by vectorizing the input and output
matrices such that

MA · vec(Y ) = vec(Φ(Y )),

where vec : Rn×n → R
n2

is the linear map satisfying vec(Ei,j) = ei ⊗ ej for all 1 ≤ i, j ≤ n, where
Ei,j is the n× n matrix with one in the (i, j)-th entry and zero otherwise and ei ∈ R

n is the vector
with one in the i-th entry and zero otherwise.

There is a one-to-one correspondence between the matrix representations and the linear maps. Given
a matrix M : Rn2 → R

m2
, we can also interpret it as a map ΦM : Rn×n → R

m×m by matrixizing
the input and output vectors such that

ΦM(mat(y)) = mat(MA · y),

where mat : Rn2 → R
n×n is the linear map satisfying mat(ei ⊗ ej) = Ei,j.

The matrix representation of a completely positive map has a nice form in terms of its Kraus
operators.

Fact 2.5 (Proposition 2.20 in [61]). Given a completely positive map ΦA with Kraus operators A,
the matrix representation MA can be written in the form described in Definition 1.4 such that

MA =

k∑

i=1

Ai ⊗Ai.
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2.1.2 Spectral Gap Condition and Quantum Expanders

Given the correspondence between the completely positive linear map ΦA and the natural matrix
representation MA, the spectral gap condition in Definition 1.4 can be presented as follows.

Definition 2.6 (Spectral Gap Condition of Φ). Given an operator A = (A1, . . . , Ak) where Ai ∈
R
m×n for 1 ≤ i ≤ k, let

σ1(ΦA) := max
Y ∈Rn×n

‖Φ(Y )‖F
‖Y ‖F

= max
y∈Rn2

‖MA · y‖2
‖y‖2

= σ1(MA),

and Y1, y1 as maximizers to the optimization problems with y1 = vec(Y1). Let

σ2(ΦA) := max
Y ∈Rn×n, 〈Y,Y1〉=0

‖Φ(Y )‖F
‖Y ‖F

= max
y∈Rn2 , y⊥y1

‖MA · y‖2
‖y‖2

= σ2(MA).

The spectral gap condition in Definition 1.4 is equivalent to σ2(ΦA) ≤ (1− λ)s(A)/√mn.

The concept of quantum expander was studied by Hastings [35] and Ben-Aroya, Schwartz, and
Ta-Shma [7], which was stated using the above language with m = n.

Definition 2.7 (Quantum Expander [35, 7]). An operator A = (A1, . . . , Ak) where each Ai ∈ R
n×n

is called a (1− λ)-quantum expander if

1. The largest singular value is s(A)/n and the identity matrix In is the largest left and right
singular vector, i.e.

σ1(ΦA) =
‖Φ(In)‖F
‖In‖F

=
s(A)
n

.

2. For any Y orthogonal to In, it holds that

σ2(ΦA) = max
Y :〈Y,In〉=0

‖Φ(Y )‖F
‖Y ‖F

≤ (1− λ)
‖Φ(In)‖F
‖In‖F

=
(1− λ)s(A)

n
.

In [7, 35], the map Φ is defined as 1
k

∑k
i=1 UiY U∗

i , where Ui ∈ R
n×n is a unitary matrix. Then,

the size of this operator is equal to n, and the largest singular value is 1 achieved at the identity
matrix.

When the operator A is ǫ-nearly doubly balanced, we will show in Lemma 3.6 that σ1(ΦA) ≤
(1 + ǫ)s(A)/√mn and In is an approximate optimizer. Therefore, in the case m = n, the spectral
gap condition in Definition 1.4 is a more relaxed version of the quantum expander definition in [7],
where we do not require In to be the optimizer (but only an approximate optimizer).

From random matrix theory [58], almost all random non-negative matrices (from reasonable dis-
tributions) have a constant spectral gap, i.e. λ is a constant. For random operators, Hastings [35]
proved that the operator A has an almost Ramanujan spectral gap with λ = 1 − 2

√
k − 1/k if

each Ai is a random unitary matrix. This result has been extended recently by Gonźalez-Guilén,
Junge and Nechita to more general distributions [24]. It is reasonable to expect that most random
operators have a constant spectral gap. There are also deterministic constructions of quantum
expanders [7]. See [7, 35] for some applications of quantum expanders.
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2.1.3 Choi Matrix and Useful Facts

There is another matrix representation that is useful in studying completely positive linear maps.

Definition 2.8 (Choi Matrix). Given a completely positive linear map ΦA : Rn×n → R
m×m, the

Choi matrix QA ∈ R
mn×mn is defined as

QA :=

n∑

i=1

n∑

j=1

ΦA(Ei,j)⊗ Ei,j .

Using the Choi matrix, we can rephrase the operator scaling problem as finding left scaling matrix
L ∈ R

m×m and right scaling matrix R ∈ R
n×n so that the scaled Choi matrix P := (L⊗R)Q(L⊗R)∗

satisfies
trn(P ) =

s

m
Im and trm(P ) =

s

n
In,

where the partial trace operations trn and trm are linear functions that satisfy trn(X ⊗ Y ) :=
tr(Y ) ·X and trm(X⊗Y ) = tr(X) ·Y for X ∈ R

m×m and Y ∈ R
n×n. This phrasing of the operator

scaling problem is in line with the more general quantum marginal problem [11].

The following facts will be useful in our proofs. All but (4) are relatively straightforward.

Fact 2.9. In the following, ΦA is the completely positive map with Kraus operators A = (A1, . . . , Ak)
where each Ai ∈ R

m×n.

1. For any matrices A,X ∈ R
m×m and B,Y ∈ R

n×n,

(A⊗B)(X ⊗ Y ) = AX ⊗BY and 〈A⊗B,X ⊗ Y 〉 = 〈A,X〉〈B,Y 〉.

2. ΦA(Y ) � 0 for any Y � 0.

3. For any X ∈ R
m×m and Y ∈ R

n×n,

〈QA,X ⊗ Y 〉 = 〈X,ΦA(Y )〉 = 〈Φ∗
A(X), Y 〉.

4. Let L ∈ R
m×m and R ∈ R

n×n and define the scaled operator LAR := {LA1R, . . . , LAkR}.
Then,

ΦLAR(In) = L · ΦA(RR∗) · L∗ and Φ∗
LAR(Im) = R∗ · Φ∗

A (L∗L) · R.

2.2 Continuous Operator Scaling

The continuous operator scaling algorithm was studied in [45]. We collect the definitions and the
results that we will use in this subsection. We start with some definitions about operator scaling
that we have already stated in the introduction.
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2.2.1 Operator Scaling

Definition 2.10 (Operator). An operator A is defined by a tuple of m×n matrices A = (A1, . . . , Ak)
where Ai ∈ R

m×n for 1 ≤ i ≤ k.

Definition 2.11 (Size of an Operator). The size of an operator A is defined as

s(A) =
k∑

i=1

‖Ai‖2F =
k∑

i=1

tr(AiA
∗
i ) = tr(ΦA(In)).

Definition 2.12 (ǫ-nearly Doubly Balanced Operator). An operator A is called ǫ-nearly doubly
balanced if

(1−ǫ) s
m

Im �
k∑

i=1

AiA
∗
i = ΦA(In) � (1+ǫ)

s

m
Im and (1−ǫ) s

n
In �

k∑

i=1

A∗
iAi = Φ∗

A(Im) � (1+ǫ)
s

n
In.

A is called doubly balanced when ǫ = 0.

Definition 2.13 (ℓ2-error). Given an operator A, define

∆(A) =
1

m

∥∥∥∥∥sIm −m
k∑

i=1

AiA
∗
i

∥∥∥∥∥

2

F

+
1

n

∥∥∥∥∥sIn − n
k∑

i=1

A∗
iAi

∥∥∥∥∥

2

F

=
1

m
tr

(
sIm −m

k∑

i=1

AiA
∗
i

)2

+
1

n
tr

(
sIn − n

k∑

i=1

A∗
iAi

)2

.

Definition 2.14 (Error Matrices). We define the error matrices as

E := sIm −m

k∑

i=1

AiA
∗
i and F := sIn − n

k∑

i=1

A∗
iAi.

Note that tr(E) = tr(F ) = 0, as

tr(E) = tr

(
sIm −m

k∑

i=1

AiA
∗
i

)
= sm−m

k∑

i=1

tr(AiA
∗
i ) = 0,

where the last equality is by Definition 2.11. Also, we write

∆E :=
1

m
‖E‖2F =

1

m
tr(E2) and ∆F :=

1

n
‖F‖2F =

1

n
tr(F 2)

so that ∆ = ∆E +∆F .

The ℓ2-error is bounded for an ǫ-nearly doubly balanced operator.

Lemma 2.15 (Lemma 3.6.1 in [45]). For an ǫ-nearly doubly balanced operator A,

∆(A) ≤ 2ǫ2s(A)2.
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2.2.2 Dynamical System

Definition 2.16 (Dynamical System). The following dynamical system describes how A changes
over time in the continuous operator scaling algorithm:

d

dt
Ai :=


sIm −m

k∑

j=1

AjA
∗
j


Ai +Ai


sIn − n

k∑

j=1

A∗
jAj


 = EAi +AiF for 1 ≤ i ≤ k.

We show in Lemma A.1 in Appendix A that the dynamical system is equivalent to the gradient
flow with potential function ∆(A).
It is shown in [45] that the dynamical system will converge to a solution A(∞) with ∆(A(∞)) = 0.
The following lemmas describe how the different quantities evolve in the dynamical system. We
use the superscript (t) to represent the quantity of interest at time t in the dynamical system, and
omit it when the time t is clear from context.

Lemma 2.17 (Lemma 3.4.2 in [45]). The change of the size of the operator A(t) at time t is

d

dt
s(t) = −2∆(t).

The following lemma was proved directly in [45]. It can also be seen as a consequence that the
dynamical system is the gradient flow on ∆.

Lemma 2.18 (Lemma 3.4.3 in [45]). The change of ∆(t) at time t is

d

dt
∆(t) = −4

(
k∑

i=1

∥∥∥∥
d

dt
A

(t)
i

∥∥∥∥
2

F

)
.

The following result was used in [45] for the smoothed analysis when the dynamical system has
linear convergence.

Lemma 2.19 (Proposition 4.3.1 in [45]). Suppose there exists µ > 0 such that for all 0 ≤ t ≤ T ,

− d

dt
∆(t) ≥ µ∆(t).

Then

∆(T ) ≤ ∆(0)e−µT and s(0) − s(T ) ≤ 2∆(0)

µ
.

2.2.3 Operator Capacity

Definition 2.20 (Capacity). The capacity of an operator A is defined as

cap(A) := inf
X≻0

m det
(∑k

i=1 AiXA∗
i

)1/m

det(X)1/n
.
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It was shown in [45] that the convergence rate of ∆ can be used to derive a lower bound on operator
capacity.

Proposition 2.21 (Proposition 4.3.1 in [45]). Suppose there exists µ > 0 such that for all t ≥ 0,
it holds that

− d

dt
∆(t) ≥ µ∆(t).

Then, it follows that

cap(0) ≥ s(0) − 2∆(0)

µ
.

3 Spectral Analysis of Operator Scaling

We prove the main technical results in this section.

3.1 Overview

The main goal is to show that the dynamical system in Definition 2.16 has linear convergence.
Let A be an ǫ-nearly doubly balanced operator with λ-spectral gap. Assuming λ2 ≥ Cǫ lnm for a
sufficiently large constant C, we will prove that for all time t ≥ 0,

− d

dt
∆(t) ≥ λs(0)∆(t).

We start by looking more closely at the expression for the change of ∆.

Lemma 3.1. The change of ∆ is

−1

4

d

dt
∆ = 〈E2,Φ(In)〉+ 〈F 2,Φ∗(Im)〉+ 2〈Q,E ⊗ F 〉.

Proof. By Lemma 2.18 and Definition 2.16,

−1

4

d

dt
∆ =

k∑

i=1

∥∥∥∥
d

dt
Ai

∥∥∥∥
2

F

=
k∑

i=1

〈
EAi +AiF,EAi +AiF

〉

=
〈
E2,

k∑

i=1

AiA
∗
i

〉
+
〈 k∑

i=1

A∗
iAi, F

2
〉
+ 2
〈
E,

k∑

i=1

AiFA∗
i

〉

= 〈E2,Φ(In)〉+ 〈F 2,Φ∗(Im)〉+ 2〈E,Φ(F )〉,

and the lemma follows from Fact 2.9(3) that 〈E,Φ(F )〉 = 〈Q,E ⊗ F 〉.

We call the terms 〈E2,Φ(Im)〉 and 〈F 2,Φ∗(In)〉 the quadratic terms as they are always non-negative,
and we call the term 2〈Q,E ⊗ F 〉 the cross term. The proof outline is the following:
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1. In Section 3.2, we prove a structural result that bounds the operator norms of E(t) and F (t)

throughout the dynamical system using the envelope theorem. This implies a bound on the
operator norm of Φ(t)(In) and Φ(t)∗(Im), which is used to show that the sum of the quadratic
terms is at least (1− ǫ)s∆.

2. In Section 3.3, we bound the largest singular value of the matrix MA and show that I is an
approximate largest singular vector, and then we use a spectral argument to upper bound
the absolute value of the cross term to be at most (1 + ǫ− λ)s∆.

3. These two parts combine to show that −∆′ ≥ λs∆ when the spectral gap condition holds.
To prove the linear convergence for all time t ≥ 0, we need to prove that the spectral gap
condition is maintained throughout the dynamical system. To do this, we bound the condition
number of the scaling solutions in Section 3.5, and use it to conclude that the spectral gap
condition and the linear convergence hold throughout in Section 3.6.

In Section 3.7 and Section 3.8, we use the results to prove Theorem 1.7 and Theorem 1.8 about
condition number and operator capacity respectively.

Finally, in Section 3.9, we explain how to discretize the gradient flow to obtain a discrete algorithm
with linear convergence under the spectral assumption.

3.2 Lower Bounding the Quadratic Terms

First, we prove a structural result bounding the operator norm of the error matrices E(t) and F (t)

for all t ≥ 0 in Proposition 3.2, which will also be useful in bounding the condition number of the
scaling solution in Section 3.5. Then we will use this proposition to lower bound the quadratic
terms.

Proposition 3.2. If A(0) is ǫ-nearly doubly balanced, then for any t ≥ 0,

‖E(t)‖op ≤ (1 + ǫ)s(0) − s(t) and ‖F (t)‖op ≤ (1 + ǫ)s(0) − s(t).

Proof. The main idea is to show that the change of the quadratic form d
dtu

∗E(t)u in the direction

u achieving
∥∥E(t)

∥∥
op

is at most 2∆(t), and then to use it to conclude that
∥∥E(t)

∥∥
op
≤
∥∥E(0)

∥∥
op

+
∫ t
0 2∆

(τ)dτ to complete the proof using Lemma 2.17. Note that the direction u achieving
∥∥E(t)

∥∥
op

varies over time t. To turn this idea into a formal proof, we use the generalized envelope theorem
proven by Milgrom and Segal [49].

Theorem 3.3 (Corollary 4 in Milgrom and Segal [49]). Suppose that X is a nonempty compact
space, f(x, t) is continuous in x and ft(x, t) =

∂
∂tf(x, t) is continuous in (x, t). Then the function

g(t) = maxx∈X f(x, t) is differentiable almost everywhere and satisfies

g(t) = g(0) +

∫ t

0
ft(x

∗(τ), τ)dτ,

where x∗(τ) is any optimizer at time τ satisfying g(τ) = f(x∗(τ), τ).
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To apply the theorem, we define the space X to be {0, 1} × {0, 1} × S
m−1 × S

n−1, which is clearly
nonempty and compact. The first coordinate indicates whether we are considering the error ma-
trix E or F . The second coordinate indicates whether we are considering the largest or smallest
eigenvalue of the error matrix. The third and fourth coordinates indicate the unit test vectors we
are applying to E and F . The function f is defined as follows:

f(0, 0, u, v, t) = u∗E(t)u,

f(0, 1, u, v, t) = −u∗E(t)u,

f(1, 0, u, v, t) = v∗F (t)v,

f(1, 1, u, v, t) = −v∗F (t)v.

It is clear that f(x, t) is continuous in x ∈ X and ∂
∂tf(x, t) is continuous in (x, t). Hence, by

Theorem 3.3, the function g(t) = maxx∈X f(x, t) satisfies

g(t) = g(0) +

∫ t

0
ft(x

∗(τ), τ)dτ.

Since E(t) and F (t) are Hermitian matrices,

g(t) = max{λmax(E
(t)),−λmin(E

(t)), λmax(F
(t)),−λmin(F

(t))} = max{‖E(t)‖op, ‖F (t)‖op},

and so g(0) ≤ ǫs(0) by the assumption that A(0) is ǫ-nearly doubly balanced. To compute the
partial derivative, we consider the four cases of the optimizer x∗(t) at time t one by one.

1. x∗(t) = (0, 0, u, v). As E(t) and F (t) are Hermitian matrices, the optimizer u of
∥∥E(t)

∥∥
op

is a

maximum eigenvector of E(t) satisfying E(t)u = g(t) · u, and F (t) � −g(t) · In as
∥∥E(t)

∥∥
op
≥

∥∥F (t)
∥∥
op

in this case. Then, by the definition of d
dtA

(t)
i in Definition 2.16 and d

dts
(t) = −2∆(t)

from Lemma 2.17, it follows that

∂

∂t
f(x∗(t), t) = u∗

d

dt

(
sIm −m

k∑

i=1

AiA
∗
i

)
u

= −2∆− 2m
k∑

i=1

u∗(EAi +AiF )A∗
i u

= −2∆− 2mu∗E

(
k∑

i=1

AiA
∗
i

)
u− 2mu∗

(
k∑

i=1

AiFA∗
i

)
u

≤ −2∆− 2mg(t)u∗

(
k∑

i=1

AiA
∗
i

)
u+ 2mg(t)u∗

(
k∑

i=1

AiA
∗
i

)
u

= −2∆,

where the inequality follows from
∑k

i=1AiFA∗
i = ΦA(F ) � ΦA(−g(t)·In) = −g(t)

∑k
i=1AiA

∗
i

by Fact 2.9(2).
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2. x∗(t) = (0, 1, u, v). In this case, E(t)u = −g(t) · u, F (t) � g(t) · In and by similar calculations
of the first case, we have

∂

∂t
f(x∗(t), t) = −u∗ d

dt

(
sIm −m

k∑

i=1

AiA
∗
i

)
u ≤ 2∆.

3. x∗(t) = (1, 0, u, v). By symmetry of E(t) and F (t), we get the same bound as the first case:

∂

∂t
f(x∗(t), t) ≤ −2∆.

4. x∗(t) = (1, 1, u, v). By symmetry of E(t) and F (t), we get the same bound as the second case:

∂

∂t
f(x∗(t), t) ≤ 2∆.

Therefore, in any case we have ft(x
∗(t), t) ≤ 2∆(t), and we conclude that

g(t) ≤ ǫs(0) +

∫ t

0
2∆(τ)dτ = ǫs(0) −

∫ t

0

d

dτ
s(τ)dτ = ǫs(0) + s(0) − s(t),

where the first equality is by Lemma 2.17 that d
dts

(t) = −2∆(t).

We have the following corollary by rewriting the conclusions of Proposition 3.2 using the definitions
that E(t) = sIm −mΦ(t)(In) and F (t) = sIn − nΦ(t)∗(Im).

Proposition 3.4. If A(0) is ǫ-nearly doubly balanced, then for any t ≥ 0,

2s(t) − (1 + ǫ)s(0)

m
Im � Φ(t)(In) �

(1 + ǫ)s(0)

m
Im

and
2s(t) − (1 + ǫ)s(0)

n
In � Φ(t)∗(Im) � (1 + ǫ)s(0)

n
In.

We can use Proposition 3.4 to lower bound the quadratic terms in Lemma 3.1.

Lemma 3.5. If A(0) is ǫ-nearly doubly balanced, then for any t ≥ 0,

〈(E(t))2,Φ(t)(In)〉+ 〈(F (t))2,Φ(t)∗(Im)〉 ≥
(
2s(t) − (1 + ǫ)s(0)

)
∆(t)

Proof. By Proposition 3.4 and the fact that 〈X,Y 〉 ≥ 0 for positive semidefinite matrices X,Y ,

〈E2,Φ(In)〉+ 〈F 2,Φ∗(Im)〉 ≥ 2s(t) − (1 + ǫ)s(0)

m
〈E2, Im〉+

2s(t) − (1 + ǫ)s(0)

n
〈F 2, In〉

=
(
2s(t) − (1 + ǫ)s(0)

)[ 1

m
‖E‖2F +

1

n
‖F‖2F

]

=
(
2s(t) − (1 + ǫ)s(0)

)
∆.
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3.3 Upper Bounding the Cross Term

We will first bound the largest singular value of the matrix MA for any ǫ-nearly doubly balanced
operator A. Then, we will use a spectral argument to upper bound the absolute value of the cross
term in Lemma 3.1.

Given a non-negative matrix, it is known that the square of the largest singular value is bounded
by the product of the maximum row sum and the maximum column sum (see [38]). The proof of
this bound is generalized to prove the following lemma.

John Watrous provided a different proof of Lemma 3.6 by generalizing the proof of Theorem 4.27
in his book [61]. We include his proof in Lemma A.2 in Appendix A.

Lemma 3.6. If A is an ǫ-nearly doubly balanced operator, then the largest singular value of its
matrix representation MA in Definition 1.4 is

σ1(MA) ≤ (1 + ǫ)
s(A)√
mn

.

Proof. Given a vector norm ‖·‖, we can define an induced matrix norm |||M ||| := supx ‖Mx‖ / ‖x‖.
To prove the lemma, we define the vector norm for vectors in R

n2
for any n and its induced matrix

norm for matrices in R
m2×n2

for any m as

‖x‖op := ‖mat(x)‖op and |||M |||op := sup
x

‖Mx‖op
‖x‖op

,

where mat(·) is the matrixizing operation in Definition 2.4 and ‖x‖op is the standard operator norm
of a matrix.

For a positive semidefinite matrix H ∈ R
m2×m2

for some m, we can bound its largest eigenvalue by
this matrix norm, i.e. λ1(H) ≤ |||H|||op. To see this, let v ∈ R

m2
be an eigenvector with Hv = λ1v,

then
λ1 ‖v‖op = ‖λ1v‖op = ‖Hv‖op ≤ |||H|||op ‖v‖op =⇒ λ1 ≤ |||H|||op.

We apply this inequality to bound the largest singular value of MA, by considering the square
matrix MAM

∗
A and its largest eigenvalue:

σ1(MA)
2 = λ1(MAM

∗
A) ≤ |||MAM

∗
A|||op ≤ |||MA|||op|||M∗

A|||op.

As MA ∈ R
m2×n2

is the natural matrix representation of the completely positive map ΦA defined
by the operator A,

|||MA|||op = sup
y∈Rn2

‖MA · y‖op
‖y‖op

= sup
Y ∈Rn×n

‖ΦA(Y )‖op
‖Y ‖op

= ‖ΦA(In)‖op ,

where the second equality is from Definition 2.4 and the last equality is by the theorem [9] that

sup
Y ∈Rn×n

‖ΦA(Y )‖op
‖Y ‖op

= ‖ΦA(In)‖op and sup
X∈Rm×m

‖Φ∗
A(X)‖op
‖X‖op

= ‖Φ∗
A(Im)‖op .
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By a similar argument, |||M∗
A|||op = ‖Φ∗

A(Im)‖op. Therefore,

σ1(MA)
2 ≤ |||MA|||op|||M∗

A|||op = ‖ΦA(In)‖op ‖Φ∗
A(Im)‖op ≤ (1 + ǫ)

s(A)
m
· (1 + ǫ)

s(A)
n

,

where the last inequality follows from the assumption that A is ǫ-nearly doubly balanced in Defi-
nition 2.12. Taking the square root on both sides gives the lemma.

Lemma 3.6 implies that vec(In) is an “approximate” first singular vector of MA. By the spectral
gap condition in Definition 1.4, it will follow that any vector perpendicular to vec(In) has a “small”
quadratic form of MA, and this can be used to bound the cross term in Lemma 3.1. The following
lemma summarizes the spectral argument, which will be used to bound the cross term in the next
lemma.

Lemma 3.7. Let A ∈ R
m×n. Let p ∈ R

m and q ∈ R
n be unit vectors. Suppose the following

assumptions hold:

σ1(A)
2 ≤ 1 + δ1 and σ2(A)

2 ≤ 1− δ2 and p∗Aq = 1.

Then, for any unit vectors x ⊥ p and y ⊥ q, it holds that |x∗Ay| ≤ 1 + δ1 − δ2.

Proof. First, we show that p and q are highly correlated with the first singular vectors of A. Let
A =

∑
i σiuiv

∗
i be its singular value decomposition with σ1 ≥ σ2 ≥ · · · ≥ 0 and {ui} and {vi} are

orthonormal bases. Write p and q as linear combinations of singular vectors as p =
∑

i ciui and
q =

∑
i divi. We will show that c1 and d1 are large. Observe that, since Im � pp∗,

‖Aq‖22 = q∗A∗ImAq ≥ q∗A∗pp∗Aq = 1,

and similarly ‖A∗p‖22 ≥ 1. So we have

1 ≤ ‖A∗p‖22 =
∥∥∥∥∥
∑

i

σicivi

∥∥∥∥∥

2

2

=
∑

i

σ2
i c

2
i ≤ σ2

1c
2
1 + σ2

2(1− c21),

where the last inequality is because
∑

i c
2
i = ‖p‖22 = 1 and σ2

2 ≥ σ2
j for j ≥ 2. Using our assumptions

about σ1 and σ2, it follows that

1 ≤ (1 + δ1)c
2
1 + (1− δ2)(1− c21) = 1 + δ1c

2
1 − δ2(1− c21),

which implies that

δ2(1− c21) ≤ δ1c
2
1 =⇒ δ2 ≤ (δ1 + δ2)c

2
1 =⇒ c21 ≥

δ2
δ1 + δ2

.

By the same calculation, we have d21 ≥ δ2/(δ1 + δ2).
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Next, we show that x ⊥ p and y ⊥ q are not highly correlated with the first singular vectors. Write
x =

∑
i αiui and y =

∑
i βivi with

∑
i α

2
i = ‖x‖22 = 1 and

∑
i β

2
i = ‖y‖22 = 1. We will show that α1

and β1 are small. Since 〈x, p〉 = 0 by our assumption,

∑

i

αici = 0 =⇒ |α1c1| =
∣∣∣∣
∑

i≥2

αici

∣∣∣∣ ≤
√∑

i≥2

α2
i

√∑

i≥2

c2i

=⇒ α2
1c

2
1 ≤ (1− α2

1)(1− c21) = 1− α2
1 − c21 + α2

1c
2
1

=⇒ α2
1 ≤ 1− c21 ≤ 1− δ2

δ1 + δ2
=

δ1
δ1 + δ2

.

By the same calculation, we have β2
1 ≤ δ1/(δ1 + δ2).

Finally, we bound the absoluate value of the quadratic form

|x∗Ay| =
∣∣∣(
∑

i

αiui)A(
∑

j

βjvj)
∣∣∣ =

∣∣∣(
∑

i

αiui)(
∑

j

βjσjuj)
∣∣∣ =

∣∣∣
∑

i

αiβiσi

∣∣∣ ≤ |α1β1σ1|+σ2
∑

i≥2

|αiβi|.

Using our assumptions on σ1 and σ2 and Cauchy-Schwarz inequality,

|x∗Ay| ≤ (1 + δ1)|α1β1|+ (1− δ2)

√∑

i≥2

α2
i

√∑

i≥2

β2
i = (1 + δ1)|α1β1|+ (1− δ2)

√
1− α2

1

√
1− β2

1 .

Putting in the upper bounds on α2
1 and β2

1 derived above, we conclude

|x∗Ay| ≤ (1 + δ1)
δ1

δ1 + δ2
+ (1− δ2)

δ2
δ1 + δ2

= 1 +
δ21 − δ22
δ1 + δ2

= 1 + δ1 − δ2.

We use Lemma 3.7 to bound the cross term in Lemma 3.1.

Lemma 3.8. If A satisfies the spectral gap condition in Definition 1.4 with the additional assump-
tion that σ1(MA) ≤ (1 + δ)s(A)/√mn for δ ≤ 1, then

2|〈QA, E ⊗ F 〉| ≤ (1 + 3δ − λ)s∆.

Proof. Note that the cross term

〈QA, E ⊗ F 〉 = 〈E,ΦA(F )〉 = vec(E) ·MA · vec(F ),

where the first equality is by Fact 2.9(3) and the second equality is by the definition of matrix
representation in Definition 2.4.

To prove the lemma, we apply Lemma 3.7 with

A :=

√
mn

s
MA ∈ R

m2×n2
, p :=

1√
m
vec(Im) ∈ R

m2
, q :=

1√
n
vec(In) ∈ R

n2
,
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and

x :=
1√

m∆E
vec(E) ∈ R

m2
y :=

1√
n∆F

vec(F ) ∈ R
n2
.

Clearly, p, q are unit vectors, and x, y are also unit vectors as ‖x‖2 = ‖E‖F /
√
m∆E = 1 by

Definition 2.14 and similarly ‖y‖2 = 1. Note that x ⊥ p as 〈x, p〉 = 〈E, Im〉/(m
√
∆E) and 〈E, Im〉 =

tr(E) = 0 from Definition 2.14, and similarly y ⊥ q.

We check the assumptions of Lemma 3.7. By the additional assumption,

σ1(A)
2 = σ1(MA)

2 · mn

s2
≤ (1 + δ)2 · s2

mn
· mn

s
= 1 + 2δ + δ2,

and so we can set δ1 := 2δ + δ2. By the spectral gap condition in Definition 1.4,

σ2(A)
2 = σ2(MA)

2 · mn

s2
≤ (1− λ)2 · s2

mn
· mn

s
= 1− 2λ+ λ2,

and so we can set δ2 := 2λ− λ2. Also, we check that

p∗Aq =
1

s
vec(Im) ·MA · vec(In) =

1

s
tr(ΦA(In)) = 1,

where the second equality is from Definition 2.4 and the last equality is from Definition 2.11.

Therefore, we can conclude from Lemma 3.7 that

1 + 2δ + δ2 − 2λ+ λ2 ≥ |x∗Ay| = 1

s
√
∆E∆F

|〈vec(E),MA · vec(F )〉| = 1

s
√
∆E∆F

|〈QA, E ⊗ F 〉|.

Finally, we complete the proof using the inequality
√
∆E∆F ≤ (∆E +∆F )/2 = ∆/2, and δ ≤ 1 by

our assumption, and λ ≤ 1 by definition.

3.4 Lower Bounding the Convergence Rate

Putting the bounds in Lemma 3.5 and Lemma 3.8 into Lemma 3.1, we obtain the following lower
bound on the convergence rate of ∆ at any time t.

Proposition 3.9. If A(0) is ǫ-nearly doubly balanced and the matrix representation MA(t) of A(t)

satisfies the spectral conditions that

σ1(MA(t)) ≤ (1 + δ(t))
s(t)√
mn

and σ2(MA(t)) ≤ (1− λ(t))
s(t)√
mn

,

then

−1

4

d

dt
∆(t) ≥

(
(1− 3δ(t) + λ(t))s(t) − (1 + ǫ)s(0)

)
∆(t).
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Note that Proposition 3.9 implies that the dynamical system has linear convergence at time t = 0.
To see this, note that δ(0) ≤ ǫ by Lemma 3.6, and λ(0) = λ from Definition 1.4, and therefore

− d

dt
∆(0) ≥ 4(λ− 4ǫ)s(0)∆(0).

Under our assumption that λ≫ ǫ, the dynamical system has linear convergence at time t = 0 with
rate λs(0).

To prove that the dynamical system has linear convergence with rate λs(0) for all time t ≥ 0, we
will prove that the quantities in Proposition 3.9 do not change much when we move from A(0) to
A(t), i.e. s(t) ≈ s(0), δ(t) ≈ δ(0), and λ(t) ≈ λ.

To bound the change of the singular values of MA(t) , we will bound the condition number of the
scaling solutions in the dynamical system in Section 3.5, and then use these bounds to argue about
the change of the singular values and establish Theorem 1.5 in Section 3.6.

3.5 Scaling Solutions and Condition Numbers

We first present the results in product integration in Slavik’s book [55] in Section 3.5.1, and then
use these results to bound the condition number of the scaling solutions in Section 3.5.2.

3.5.1 Scaling Solutions

The dynamical system in Definition 2.16 describes the change of A by a differential equation. The
solution to the differential equation can be analyzed using the theory of product integration in [55].

Definition 3.10. Let A : [a, b] → R
n×n be a matrix valued function. A partition t of the interval

[a, b] is a sequence of numbers a = t0 < t1 < t2 < · · · < tm = b. Let ∆ti = ti − ti−1 for i = 1, · · · , n
and ∆t = maxi=1,···n∆ti. When the limits over all partitions with ∆t → 0 exist, the left product
integral is defined as

b∏

a

(I +A(x)dx) := lim
∆t→0

(I +A(tm−1)∆tm) · · · (I +A(t1)∆t2)(I +A(t0)∆t1),

and the right product integral is defined as

(I +A(x)dx)
b∏

a

:= lim
∆t→0

(I +A(t0)∆t1)(I +A(t1)∆t2) · · · (I +A(tm−1)∆tm).

Theorem 3.11 (Theorem 2.5.1 in [55]). If P,Q : [a, b] → R
n×n are continuous matrix functions,

then the product integrals

Y (x) =
x∏

a

(I + P (t)dt) and Z(x) = (I +Q(t)dt)
x∏

a
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exist and satisfy the equations

d

dx
Y (x) = P (x)Y (x) and

d

dx
Z(x) = Z(x)Q(x)

for every x ∈ [a, b].

Applying Theorem 3.11 with P (t) = E(t), Q(t) = F (t), Y (x) = L(T ) and Z(x) = R(T ), we can
explicitly describe the scaling matrices of the dynamical system.

Corollary 3.12. The solution to the dynamical system in Definition 2.16 is A
(T )
i = L(T )A

(0)
i R(T )

where

L(T ) :=
T∏

t=0

(I + E(t)dt) and R(T ) := (I + F (t)dt)
T∏

t=0

.

We are interested in bounding the condition number of L(T ) and R(T ).

Definition 3.13 (Condition Number). The condition number of a matrix A is defined as

κ(A) :=
σmax(A)

σmin(A)
,

where σmax(A) and σmin(A) are the maximum singular value and the minimum singular value of A
respectively.

The following theorem in Slavik [55] will be used to bound κ(L(T )) and κ(R(T )).

Theorem 3.14 (Corollary 3.4.3 in [55]). If P,Q : [a, b]→ R
n×n are Riemann integrable functions,

then
∥∥∥∥∥(I +Q(x)dx)

b∏

a

−(I + P (x)dx)
b∏

a

∥∥∥∥∥
op

≤ exp

(∫ b

a
‖P (x)‖op dx

)(
exp

(∫ b

a
‖Q(x)− P (x)‖op dx

)
− 1

)
.

Applying Theorem 3.14 with Q(x) = E(t) and P (x) = 0, we have the following bound of the
maximum and minimum eigenvalues of L(T ).

Corollary 3.15. For any T ≥ 0,

∥∥∥L(T ) − I
∥∥∥
op

=

∥∥∥∥∥

T∏

t=0

(I + E(t)dt)− I

∥∥∥∥∥
op

≤ exp

(∫ T

0
‖E(t)‖op dt

)
− 1.

This corollary will be used to bound the condition number of L(T ) in Lemma 3.16, which will then
be used to bound the condition number of R(T ) in Lemma 3.18.
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3.5.2 Bounding the Condition Number

To bound the condition number, we use Corollary 3.15 and bound the integral in the exponent. To
bound the integral, we divide the time into two phases. In the first phase, we use Proposition 3.2
to argue that

∥∥E(t)
∥∥
op
≈
∥∥E(0)

∥∥
op
. In the second phase, we use that ∆(t) is converging linearly to

argue that
∥∥E(t)

∥∥
op
≤
∥∥E(t)

∥∥
F
≤
√
m∆(t) is converging linearly. In the following lemma, we should

think of g as the spectral gap parameter in Definition 1.4.

Lemma 3.16. Suppose there exists g > 0 such that for all 0 ≤ t ≤ T , it holds that

− d

dt
∆(t) ≥ gs(0)∆(t).

If A(0) is ǫ-nearly doubly balanced for ǫ ≤ g, then

∥∥∥L(T ) − I
∥∥∥
op
≤ exp

(
O

(
ǫ lnm

g

))
− 1.

Proof. To bound the condition number, we use Corollary 3.15 and bound the integral

∫ T

0
‖E(t)‖op =

∫ τ

0
‖E(t)‖op +

∫ T

τ
‖E(t)‖op.

We split the integral into two terms. For the first term, we use Proposition 3.2 to bound
∫ τ

0
‖E(t)‖op dt ≤

∫ τ

0

(
(1 + ǫ)s(0) − s(t)

)
dt ≤ τ(s(0) − s(T ) + ǫs(0)),

where the second inequality is by the fact that s(t) is non-increasing from Lemma 2.17. Applying
Lemma 2.19 with our assumption that µ = gs(0), it follows that

∫ τ

0
‖E(t)‖op dt ≤ τ

(
2∆(0)

gs(0)
+ ǫs(0)

)
≤ τ

(
4ǫ2s(0)

g
+ ǫs(0)

)
≤ 5τǫs(0),

where the second inequality is by Lemma 2.15, and the last inequality is by our assumption that
g ≥ ǫ.

For the second term,

∫ T

τ
‖E(t)‖op dt ≤

∫ T

τ
‖E(t)‖F dt ≤

∫ T

τ

√
m∆(t)dt ≤

√
m∆(τ)

∫ T

τ
e−gs(0)(t−τ)/2dt ≤ 2

√
m∆(τ)

gs(0)
,

where the second inequality is from the inequality that ‖E(t)‖2F ≤ m∆(t) from Definition 2.14, and
the third inequality follows from Lemma 2.19 using the assumption that ∆ is converging linearly
with µ = gs(0).

We choose

τ =
lnm

gs(0)
=⇒ e−gs(0)τ ≤ 1

m
.

28



This implies that

∆(τ) ≤ ∆(0)e−gs(0)τ ≤ ∆(0)

m
≤ 2ǫ2(s(0))2

m
=⇒ 2

√
m∆(τ)

gs(0)
≤ 3ǫ

g
,

and so the second term is at most 3ǫ/g. The first term is at most 5τǫs(0) ≤ 5ǫ lnm/g, and so
Corollary 3.15 implies that

‖L(T ) − I‖op ≤ exp

(∫ T

0
‖E(t)‖op dt

)
− 1 ≤ exp

(
8ǫ lnm

g

)
− 1.

Remark 3.17. We have some examples indicating that the logm term in the condition number is
necessary, but we do not have a formal proof for this lower bound at the time of writing.

We cannot use the same argument to bound
∥∥R(T ) − I

∥∥
op
, as it will only give us a bound with

dependency on n (where we assumed m ≤ n). Instead, we use the bound on
∥∥L(T ) − I

∥∥
op

to derive

a similar bound on
∥∥R(T ) − I

∥∥
op
.

Lemma 3.18. Suppose there exists g > 0 such that for all 0 ≤ t ≤ T , it holds that

− d

dt
∆(t) ≥ gs(0)∆(t).

If A(0) is ǫ-nearly doubly balanced for ǫ ≤ g, and also ǫ, ℓ ≤ 1/2, then

∥∥∥L(T ) − I
∥∥∥
op
≤ ℓ =⇒

∥∥∥R(T ) − I
∥∥∥
op
≤ O(ℓ+ ǫ).

Proof. We would like to bound

rmax := max
‖u‖2≤1

∥∥∥R(T )u
∥∥∥
2

and rmin := min
‖u‖2≤1

∥∥∥R(T )u
∥∥∥
2
.

First, we bound rmax. Let u ∈ R
n be a maximizer such that

∥∥R(T )u
∥∥
2
= rmax and ‖u‖2 = 1.

Consider 〈Φ(T )∗(Im), uu∗〉. On one hand, we use Proposition 3.4 to upper bound

〈
Φ(T )∗(Im), uu∗

〉
≤
〈(1 + ǫ)s(0)

n
In, uu

∗
〉
=

(1 + ǫ)s(0)

n
.

On the other hand, by Fact 2.9(4),

〈
Φ(T )∗(Im), uu∗

〉
=

〈
R(T )∗ · Φ(0)∗

(
L(T )∗L(T )

)
· R(T ), uu∗

〉

=
〈
Φ(0)∗

(
L(T )∗L(T )

)
, (R(T )u)(R(T )u)∗

〉
.
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Since
∥∥L(T ) − Im

∥∥
op
≤ ℓ, all singular values of L(T ) are at least 1 − ℓ, and thus all eigenvalues

of L(T )L(T )∗ are at least (1 − ℓ)2, i.e. L(T )L(T )∗ � (1 − ℓ)2Im. It follows from Fact 2.9(2) that

Φ(0)∗
(
L(T )∗L(T )

)
� Φ(0)∗

(
(1− ℓ)2Im

)
, and using it in the above equation gives

〈
Φ(T )∗(Im), uu∗

〉
≥

〈
Φ(0)∗

(
(1− ℓ)2Im

)
, (R(T )u)(R(T )u)∗

〉

≥
〈
(1− ℓ)2(1− ǫ)

s(0)

n
In, (R(T )u)(R(T )u)∗

〉

= r2max(1− ℓ)2(1− ǫ)
s(0)

n
,

where the second inequality uses that A(0) is ǫ-nearly doubly balanced. Combining the upper bound
and lower bound gives

r2max ≤
1 + ǫ

(1− ǫ)(1− ℓ)2
≤ 1 +O(ǫ+ ℓ) =⇒ rmax ≤ 1 +O(ǫ+ ℓ).

where we use the assumptions that ǫ, ℓ ≤ 1/2.

Next, we bound rmin using a similar argument. Let v ∈ R
n be a minimizer such that

∥∥R(T )v
∥∥
2
=

rmin and ‖v‖2 = 1. Consider 〈Φ(T )∗(Im), vv∗〉. On one hand, we use Proposition 3.4 to lower bound

〈
Φ(T )∗(Im), vv∗

〉
≥
〈2s(T ) − (1 + ǫ)s(0)

n
In, vv∗

〉
=

2s(T ) − (1 + ǫ)s(0)

n
≥ (1− 9ǫ)s(0)

n
,

where the second inequality uses the assumption that ∆(t) is converging linearly for 0 ≤ t ≤ T to
apply Lemma 2.19 with µ = gs(0) to obtain

s(0) − s(T ) ≤ 2∆(0)

gs(0)
≤ 4ǫ2s(0)

g
≤ 4ǫs(0) =⇒ s(T ) ≥ (1− 4ǫ) · s(0),

where the second inequality is by Lemma 2.15 and the last inequality is from the assumption that
ǫ ≤ g.

On the other hand, by a similar calculation as above with L(T )L(T )∗ ≤ (1 + ℓ)2Im, we obtain

〈
Φ(T )∗(Im), vv∗

〉
≤ r2min(1 + ℓ)2(1 + ǫ)

s(0)

n
.

Combining the upper bound and lower bound gives

r2min ≥
(1− 9ǫ)

(1 + ℓ)2(1 + ǫ)
≥ 1−O(ǫ+ ℓ) =⇒ rmin ≥ 1−O(ǫ+ ℓ),

where we used the assumptions that ǫ and ℓ are sufficiently small. Therefore, we conclude that
∥∥∥R(T ) − I

∥∥∥
op

= max{rmax − 1, 1− rmin} ≤ O(ǫ+ ℓ).
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3.6 Invariance of Linear Convergence

We will first use Lemma 3.16 and Lemma 3.18 to bound the change of the singular values of MA(t) .
Then, we will combine the previous results to prove Theorem 1.5 that ∆(t) is converging linearly
for all t ≥ 0.

To bound the change of the singular values, we use the following inequality.

Lemma 3.19 (Theorem 3.3.16 in [37]). Let A and B be two m× n matrices. For any 1 ≤ k ≤ m,

|σk(A)− σk(B)| ≤ σ1(A−B) = ‖A−B‖op .

The following lemma bounds the change of the singular values after scaling the operator.

Lemma 3.20. For any t ≥ 0, suppose
∥∥L(t) − Im

∥∥
op
≤ ζ and

∥∥R(t) − In
∥∥
op
≤ ζ for some ζ ≤ 1,

then
|σk(MA(t))− σk(MA(0))| ≤ O(ζ) · ‖MA(0)‖op .

Proof. The operator at time t is A(t) =
(
L(t)A

(0)
1 R(t), . . . L(t)A

(0)
k R(t)

)
. By Fact 2.5, the matrix

representation of the operator at time t is

MA(t) =
k∑

i=1

(L(t)A
(0)
i R(t))⊗ (L(t)A

(0)
i R(t))

= (L(t) ⊗ L(t))
( k∑

i=1

A
(0)
i ⊗A

(0)
i

)
(R(t) ⊗R(t))

= (L(t) ⊗ L(t)) ·MA(0) · (R(t) ⊗R(t)),

where the second equality is by Fact 2.9(1). By Lemma 3.19,

|σk(MA(t))− σk(MA(0))| ≤ ‖MA(t) −MA(0)‖op =
∥∥∥(L(t) ⊗ L(t)) ·MA(0) · (R(t) ⊗R(t))−MA(0)

∥∥∥
op

.

To bound the right hand side, we expand L⊗L as (L−I)⊗(L−I)+(L−I)⊗I +I⊗(L−I)+I⊗I
and expand R⊗R similarly. Then (L(t) ⊗L(t)) ·MA(0) · (R(t) ⊗R(t))−MA(0) can be written as the
sum of fifteen terms, with MA(0) cancelled with (I ⊗ I)MA(0)(I ⊗ I). To bound the operator norm,
we use the triangle inequality and bound the sum of the fifteen operator norms. For each term,
we use the facts that ‖A⊗B‖op ≤ ‖A‖op ‖B‖op and ‖ABC‖op ≤ ‖A‖op ‖B‖op ‖C‖op to bound its
norm. For example,

∥∥∥
(
(L(t) − Im)⊗ (L(t) − Im)

)
·MA(0) ·

(
(R(t) − In)⊗ In

)∥∥∥
op

≤
∥∥∥(L(t) − Im)⊗ (L(t) − Im)

∥∥∥
op
‖MA(0)‖op

∥∥∥(R(t) − In)⊗ In

∥∥∥
op

≤
∥∥∥(L(t) − Im)

∥∥∥
2

op

∥∥∥(R(t) − In)
∥∥∥
op
‖MA(0)‖op .

Since we assumed that
∥∥L(t) − Im

∥∥
op
≤ ζ and

∥∥R(t) − In
∥∥
op
≤ ζ for some ζ ≤ 1, each of these term

is at most ζ ‖MA(0)‖op and thus we conclude that ‖MA(t) −MA(0)‖op ≤ 15ζ · ‖MA(0)‖op.
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We are ready to put together the results to prove the following theorem which implies Theorem 1.5.

Theorem 3.21. If A(0) is ǫ-nearly doubly balanced and A(0) satisfies the λ-spectral gap condition
in Definition 1.4 with λ2 ≥ Cǫ lnm for a sufficiently large constant C, then for all t ≥ 0 it holds
that

− d

dt
∆(t) = λs(0)∆(t).

Proof. Recall from Proposition 3.9 the definitions of δ(t) and λ(t), and δ(0) ≤ ǫ by Lemma 3.6
and λ(0) = λ from Definition 1.4. Let T be the supremum such that s(t) ≥ (1 − ǫ)s(0) and
λ(t) − 3δ(t) ≥ 1

2 (λ
(0) − 3δ(0)). Our goal is to prove that ∆(t) is converging linearly for 0 ≤ t ≤ T

and T is unbounded.

First, we show that ∆(t) is converging linearly for 0 ≤ t ≤ T . By Proposition 3.9,

− d

dt
∆(t) ≥ 4

(
(1 + λ(t) − 3δ(t))s(t) − (1 + ǫ)s(0)

)
∆(t)

≥ 4

(
(1− ǫ)

(
1 +

1

2
(λ(0) − 3δ(0))

)
− (1 + ǫ)

)
s(0)∆(t)

=
(
2(1 − ǫ)(λ(0) − 3δ(0))− 8ǫ

)
s(0)∆(t),

where in the second inequality we used that s(t) ≥ (1 − ǫ)s(0) and λ(t) − 3δ(t) ≥ 1
2 (λ

(0) − 3δ(0)) for

0 ≤ t ≤ T . Note that our assumption implies that λ(0) = λ ≥ Cǫ for a sufficiently large constant C
as λ ≤ 1. Since δ(0) ≤ ǫ from Lemma 3.6, it follows that for any 0 ≤ t ≤ T ,

− d

dt
∆(t) ≥ λs(0)∆(t).

Next, we argue that the size condition and the spectral gap condition will still be maintained
beyond time T . For the size change, by Lemma 2.19 with µ = λs(0),

s(0) − s(T ) ≤ 2∆(0)

λs(0)
≤ 4ǫ2s(0)

λ
≪ ǫs(0),

where the second inequality is by Lemma 2.15 and the last inequality is by λ ≥ Cǫ for a sufficiently
large constant C.

For the change of the second largest singular value, by definition,

σ2(MA(T ))− σ2(MA(0)) =
(1− λ(T ))s(T )

√
mn

− (1− λ(0))s(0)√
mn

≥ (1− λ(T ))(1 − ǫ)s(0)√
mn

− (1− λ(0))s(0)√
mn

=
s(0)√
mn

(λ(0) − (1− ǫ)λ(T ) − ǫ).
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On the other hand, we can upper bound σ2(MA(T )) − σ2(MA(0)) using condition numbers. Using
Lemma 3.16 with g = λ,

∥∥L(T ) − I
∥∥
op
≤ exp (O(ǫ lnm/λ)) − 1. Note that our assumption implies

that

O

(
ǫ lnm

λ

)
≤ O

(
λ

C

)
≪ 1 =⇒

∥∥∥L(T ) − I
∥∥∥
op
≤ O

(
λ

C

)
≪ 1,

where the implication is by the inequality ex− 1 ≤ O(x) for x close to zero. Then, by Lemma 3.18,
we also have

∥∥R(T ) − I
∥∥
op
≤ O (λ/C). Putting these bounds into ζ of Lemma 3.20, we obtain

σ2(MA(t))− σ2(MA(0)) ≤ O

(
λ

C

)
· ‖MA(0)‖op ≤ O

(
λ

C

)
(1 + δ

(0)
1 )s(0)√
mn

.

Combining the upper bound and lower bound and using δ
(0)
1 ≤ ǫ from Lemma 3.6, it follows that

λ(T ) ≥ λ− ǫ− (1 + ǫ) ·O (λ/C)

1− ǫ
≥ λ−O

(
λ

C

)
,

where the last inequality is by the assumption that λ ≥ Cǫ.

For the change of the largest singular value, by Proposition 3.4,

(1− 3ǫ)s(T )

m
Im �

2s(T ) − (1 + ǫ)s(0)

m
Im � Φ(T )(In) �

(1 + ǫ)s(0)

m
Im �

(1 + 3ǫ)s(T )

m
Im,

where the first and last inequalities use that s(T ) ≥ (1 − ǫ)s(0). The same holds for Φ(T )∗ and
these imply that A(T ) is 3ǫ-nearly doubly balanced. By Lemma 3.6, this implies that δ(T ) ≤ 3ǫ.
Therefore,

λ(T ) − 3δ(T ) ≥ λ−O

(
λ

C

)
− 9ǫ ≥ λ−O

(
λ

C

)
≫ 1

2
λ ≥ 1

2
(λ− 3δ(0)),

where the second last inequality uses that C is a sufficiently large constant.

Since our dynamical system is continuous, we still have both conditions satisfied at time T + η for
some η > 0, which contradicts that T is the supremum that both conditions are satisifed. Therefore,
T is unbounded and the linear convergence of ∆ is maintained throughout the execution of the
dynamical system.

3.7 Condition Number

With the invariance of the linear convergence, we can apply Lemma 3.16 and Lemma 3.18 to bound
the condition number of the scaling solutions and prove Theorem 1.7

Theorem 3.22. If A(0) is ǫ-nearly doubly balanced and A(0) satisfies the λ-spectral gap condition
in Definition 1.4 with λ2 ≥ Cǫ logm for a sufficiently large constant C, then for any t ≥ 0,

κ
(
L(t)

)
≤ 1 +O

(
ǫ logm

λ

)
and κ

(
R(t)

)
≤ 1 +O

(
ǫ logm

λ

)
.

In particular, these bounds hold for the final scaling solutions L(∞) and R(∞).
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Proof. By Theorem 3.21, ∆(t) is linearly converging for all time t with rate at least λs(0). By
Lemma 3.16, this implies that

∥∥∥L(t) − Im

∥∥∥
op
≤ exp

(
O

(
ǫ lnm

λ

))
− 1 ≤ O

(
ǫ logm

λ

)
≪ 1,

where we used the assumption that λ2 ≥ Cǫ lnm and ex − 1 ≤ O(x) for x close to zero. By
Lemma 3.18, this implies the same bound on

∥∥∥R(T ) − I
∥∥∥
op
≤ O

(
ǫ logm

λ

)
.

Therefore, λmin(L
(t)) ≥ 1−O(ǫ logm/λ) and λmax(L

(t)) ≤ 1 +O(ǫ logm/λ), and hence

κ(L(t)) ≤ λmax(L
(t))

λmin(L(t))
≤ 1 +O(ǫ logm/λ)

1−O(ǫ logm/λ)
≤ 1 +O

(
ǫ logm

λ

)
.

where we used that ǫ logm/λ ≪ 1. The same argument applies to give the same bound for
κ(R(t)).

3.8 Operator Capacity

Theorem 1.8 follows easily from Theorem 3.21.

Theorem 3.23. If A(0) is ǫ-nearly doubly balanced and A(0) satisfies the λ-spectral gap condition
in Definition 1.4 with λ2 ≥ Cǫ lnm for a sufficiently large constant C, then

cap(0) ≥
(
1− 4ǫ2

λ

)
s(0).

Proof. By Theorem 3.21, ∆(t) is linearly converging for all time t with rate λs(0). Apply Proposi-
tion 2.21 with µ = λs(0),

cap(0) ≥ s(0) − 2∆(0)

λs(0)
≥ s(0) − 4ǫ2s(0)

λ
=

(
1− 4ǫ2

λ

)
s(0),

where the second inequality is by Lemma 2.15.

3.9 Discrete Gradient Flow

The gradient flow can be discretized to give a polynomial time algorithm with linear convergence
when the input has a spectral gap. The analysis follows closely the continuous case, so we will just
provide a sketch.

Recall that the gradient flow is defined as

d

dt
Ai := EAi +AiF,
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where E and F are the error matrices (Definition 2.14) of the current operator A.
In the discrete case, a natural update step is

Ãi ← Ai + α(EAi +AiF )

for some small step size α, but the problem of this update step is that Ã may not be a scaling of
A. So we modified the discrete algorithm slightly as follows. In each step, we update

Ãi ← (Im + αE)Ai(In + αF ),

where α is the step size. This update is to maintain that the current operator is a scaling of the
original operator.

We assume that s = 1 and ∆ ≤ 1 initially. We will set the step size to be α = O((m + n)−2) for
the same analysis in the continuous case to go through. With this choice of the step size, we can
show that

s(A)− s(Ã) ≤ 4α∆(A),
by expanding the change of the size s and use the small step size α to argue that the higher order
terms are negligible. By a similar but more tedious calculation (since the degree is higher), we can
also show that ∣∣∣∣∆(Ã)−

(
∆(A)− α

d

dt
∆

)∣∣∣∣ ≤ O(αs2∆(A)),

where d
dt∆ is the change of ∆ in the continuous case. This is also the step that we need α =

O((m+ n)−2) to hold. Since we know − d
dt∆ ≥ λs∆, this implies that

∆(Ã) ≤ (1− 1

2
αλs)∆(A),

that ∆ is decreasing geometrically with rate λs, when the current operator A satisfies the spectral
condition.

As in the continuous case, we use an inductive argument to prove that the spectral gap condi-
tion is maintained to establish that the convergence rate λs is maintained throughout the algo-
rithm. Again, we go through the condition number of the error matrices, and use the arguments
in Lemma 3.20 to show that the change of the singular value is

|σk(MÃ
)− σk(MA)| ≤ O(αǫs),

and it follows that the λ-spectral gap condition holds throughout as

|λ(∞) − λ(0)| ≤ O

(
ǫ log(m+ n)

λ(0)

)

which is negligible when the spectral assumption (λ(0))2 ≫ ǫ log(m+ n) holds initially.

In the discrete algorithm, we will set the step size to be α = Θ((m + n)−2). If the continuous
algorithm converges to an η-approximate solution in time T , the discrete algorithm will converge
to an η-approximate solution in T ·Θ((m+ n)2) number of iterations, and the dependency on η is
log(1/η) by Theorem 1.5.
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Remark 3.24. The step size α = O((m+n)−2) is chosen for the same analysis as in the continuous
to hold. It is an interesting open question whether the analysis can be extended to constant step
size, in particular whether Sinkhorn’s alternating algorithm has the same convergence rate as in the
gradient flow.

4 Applications of Matrix Scaling and Operator Scaling

In this section, we show some implications of our results in various applications of the operator
scaling problem.

4.1 Matrix Scaling

Given a non-negative matrix B ∈ R
m×n, let s(B) :=

∑m
i=1

∑n
j=1Bi,j be the size of the matrix,

ri(B) :=
∑n

j=1Bi,j be the i-th row sum of B, and cj(B) :=
∑m

i=1 Bi,j be the j-th column sum of
B. A non-negative matrix is called ǫ-nearly doubly balanced if for every 1 ≤ i ≤ m and for every
1 ≤ j ≤ n,

(1− ǫ)
s(B)

m
≤ ri(B) ≤ (1 + ǫ)

s(B)

m
and (1− ǫ)

s(B)

n
≤ cj(B) ≤ (1 + ǫ)

s(B)

n
,

and is called doubly balanced when ǫ = 0. A common setting is when B is an n × n matrix when
the average row sum is equal to one, in which case s(B) = n and the matrix is called “doubly
stochastic” when every row sum and every column sum are equal to one.

Definition 4.1 (Matrix Scaling Problem). We are given a non-negative matrix B ∈ R
m×n, and

the goal is to find a left diagonal scaling matrix L ∈ R
m×m and a right diagonal scaling matrix

R ∈ R
n×n such that LBR is doubly balanced, or report that such scaling matrices do not exist.

Outline: In the following, we will show that the matrix scaling problem can be reduced to the
operator scaling problem in Section 4.1.1. Then, we will see that the spectral condition has a
simple form in Section 4.1.2, and there is a natural combinatorial condition that implies the spectral
condition in Section 4.1.3. We then argue that many random matrices will satisfy our condition
in Section 4.1.4. Finally, we see the implications of our results in several applications of matrix
scaling, including bipartite matching in Section 4.1.5, permanent lower bound in Section 4.1.6, and
optimal transportation in Section 4.1.7.

4.1.1 Reduction to Operator Scaling

The matrix scaling problem is a special case of the operator scaling problem.

Lemma 4.2. Given a non-negative matrix B ∈ R
m×n, let A = (A11, . . . , Amn) be the operator

where each Aij ∈ R
m×n for 1 ≤ i ≤ m and 1 ≤ j ≤ n is the matrix with the (i, j)-th entry equal

to
√

Bi,j and all other entries equal to zero. Then, B is ǫ-nearly doubly balanced if and only if A
is ǫ-nearly doubly balanced. Furthermore, there is a solution to the matrix scaling problem for B if
and only if there is a solution to the operator scaling problem for A.
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Proof. By construction, AijA
∗
ij is the m ×m matrix with Bij in the (i, i)-th entry and zero oth-

erwise, and A∗
ijAij is the n × n matrix with Bij in the (j, j)-th entry and zero otherwise. So,∑m

i=1

∑n
j=1AijA

∗
ij is the m×m diagonal matrix where the i-th diagonal entry is the i-th row sum

of B, and
∑m

i=1

∑n
j=1A

∗
ijAij is the n×n diagonal matrix where the j-th diagonal entry is the j-th

column sum of B. Therefore, A is ǫ-nearly doubly balanced if and only if B is ǫ-nearly doubly
balanced. It should be clear that the square root of a scaling solution L,R to B is also a (diagonal)
scaling solution to A.
Because of the special structure that each Aij has only one non-zero entry, there is always a
scaling solution with L,R being diagonal matrices if a scaling solution exists. To see this, let
L,R be a scaling solution to A with

∑
i,j LAijRR∗A∗

ijL
∗ =

∑
i,j LAijRR∗A∗

ijL
∗ = sIm/m and∑

i,j(LAijR)∗(LAijR) =
∑

i,j R
∗A∗

ijL
∗LAijR = sIn/n. Define DL = (L∗L)1/2. We claim that

DL, R is also a scaling solution to A andDL is a diagonal matrix. First,
∑

i,j(DLAijR)∗(DLAijR) =∑
i,j R

∗A∗
ijD

∗
LDLAijR =

∑
i, jR∗A∗

ijL
∗LAijR = sIn/n. Next, it follows from

∑
i,j LAijRR∗AijL

∗ =

sIm/m that (s/m)(L∗L)−1 =
∑

i,j AijRR∗Aij , and this implies that L∗L is a diagonal matrix as∑
i,j AijRR∗Aij is a diagonal matrix because each Aij has only one non-zero entry. Finally, we

check that∑
i,j(DLAijR)(DLAijR)∗ = DL(

∑
i,j AijRR∗A∗

ij)D
∗
L = sDL(L

∗L)−1D∗
L/m = sIm/m. By the same

argument, we can define DR = (RR∗)1/2 so that DL,DR is also a scaling solution to A and both
DL and DR are diagonal matrices. Therefore, we conclude that the matrix scaling problem can be
reduced to the operator scaling problem.

4.1.2 Spectral Condition

The spectral condition for operator scaling has a simple form for matrix scaling.

Lemma 4.3. Using the reduction from Lemma 4.2, the spectral condition for operator scaling in
Definition 1.4 becomes

σ2(B) ≤ (1− λ)
s(B)√
mn

.

Proof. Note that each Al ⊗ Al ∈ R
m2×n2

has only one non-zero entry Bij, and MA =
∑

l Al ⊗ Al

in Definition 1.4 has only an m× n submatrix with nonzero entries and this submatrix is exactly
B. So, the condition that σ2(MA) ≤ (1− λ)s(B)/

√
mn becomes σ2(B) ≤ (1− λ)s(B)/

√
mn.

4.1.3 Combinatorial Condition

To better understand the spectral gap condition in the matrix case, we present a natural combina-
torial condition that implies the spectral condition.

Definition 4.4 (Edge-Weighted Bipartite Graph and Conductance). Given a non-negative matrix
B ∈ R

m×n, we define its edge-weighted bipartite graph GB as follows. In GB, there is one vertex
ui for each row i, one vertex vj for each column j, and an edge ij with weight wij = Bij between
ui and vj .
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The conductance of an edge-weighted graph G = (V,E) with w : E → R≥0 is defined as

φ(G) := min
S⊆V :vol(S)≤vol(V )/2

φ(S), where φ(S) :=

∑
i∈S

∑
j /∈S wij

vol(S)
and vol(S) :=

∑

i∈S

∑

j∈V

wij .

Using Cheeger’s inequality from spectral graph theory, we can show that B satisfies the spectral
gap condition if its edge-weighted bipartite graph has large conductance.

Lemma 4.5. If B ∈ R
m×n is ǫ-nearly doubly balanced for ǫ ≤ 1/2, then

σ2(B) ≤ (1− 1

2
φ2(GB) + 3ǫ) · s(B)√

mn
.

where GB is the edge-weighted bipartite graph of B.

Proof. The adjacency matrix AG of the edge-weighted bipartite graph GB is

[
0 B
B∗ 0

]
. Note that if

∑
i σixiy

∗
i is the singular value decomposition of B, then AG has eigenvalues {±σi} and eigenvectors

{(xi,±yi)}. Therefore, σ2(B) = λ2(AG) where λ2(AG) is the second largest eigenvalue of AG.

To relate σ2(B) to the conductance φ(GB), we will consider the normalized adjacency matrix of
AG and apply Cheeger’s inequality. The normalized adjacency matrix A of a matrix A is defined
as A := D−1/2AD−1/2 where D is the diagonal degree matrix with Di,i :=

∑
j Ai,j. For AG, note

that DG :=

[
R 0
0 C

]
, where R ∈ R

m×m is the diagonal matrix with the (i, i)-th entry being the i-th

row sum ri(B) of B and C ∈ R
n×n is the diagonal matrix with the (j, j)-th entry being the j-th

column sum cj(B) of B. Then,

AG =

[
R−1/2 0

0 C−1/2

] [
0 B
B∗ 0

] [
R−1/2 0

0 C−1/2

]
=

[
0 R−1/2BC−1/2

C−1/2B∗R−1/2 0

]
.

Let B = R−1/2BC−1/2. Note that σ2(B) = λ2(AG) by the argument in the first paragraph. Each
entry of B is

(1−2ǫ)
√
mn

s
Bij ≤

√
m

s(1 + ǫ)

√
n

s(1 + ǫ)
Bij ≤ r

−1/2
i Bijc

−1/2
j ≤

√
m

s(1− ǫ)

√
n

s(1− ǫ)
Bij ≤ (1+2ǫ)

√
mn

s
Bij,

where we used the assumptions that B is ǫ-nearly doubly balanced and ǫ ≤ 1/2. Hence, we can
write B = (

√
mn/s)B + E , where E is the “error” matrix with |Eij | ≤ 2ǫ

√
mnBij/s for all i, j. By

Lemma 3.19, (
√
mn/s) · σ2(B) ≤ σ2(B)+ ‖E‖op. By the fact that the square of the largest singular

value is at most the maximum row sum times the maximum column sum,

‖E‖op ≤
√

max
i

∑

j

|Eij | ·
√

max
j

∑

i

|Eij | ≤
2ǫ
√
mn

s

√
max

j

∑

i

Bij

√
max

i

∑

j

Bij ≤ 2ǫ(1 + ǫ),

38



where the last inequality uses that ri(B) ≤ (1 + ǫ)s/m for 1 ≤ i ≤ m and cj(B) ≤ (1 + ǫ)s/n
for 1 ≤ j ≤ n. Finally, Cheeger’s inequality states that φ(G) ≤

√
2(1− λ2(AG)). Therefore, we

conclude that
√
mn

s
· σ2(B) ≤ σ2(B) + ‖E‖op ≤ λ2(AG) + 2ǫ(1 + ǫ) ≤ 1− 1

2
φ2(GB) + 2ǫ(1 + ǫ).

4.1.4 Random Matrices

One source of matrices satisfying the spectral condition is random matrices. If we generate B ∈
R
m×n
≥0 as a random bipartite graph (e.g. each entry is one with probability p independently), then

the resulting graph has φ(GB) = Ω(1) with high probability by standard probabilistic method.
Also, B is ǫ-nearly doubly balanced for small ǫ by standard concentration inequality (e.g. ǫ =
O(
√

logm/(pm)) in the above example). So, by Lemma 4.5, the λ in Lemma 4.3 is Ω(1), which
implies that the assumption λ2 ≥ Cǫ lnm in Theorem 1.5 is satisfied with high probability. We can
then apply our results to conclude that for those matrices:

1. The continuous operator scaling algorithm converges to a η-nearly doubly balanced solution
in time t = O(log(m/η)).

2. The condition number of the scaling solution is O(1) from Theorem 1.7.

3. The capacity of the matrix is close to s from Theorem 1.8.

Indeed, the assumption λ2 ≥ Cǫ lnm in Theorem 1.5 should hold for a large class of random non-
negative matrices where each entry is an independent random variable with reasonable distribution
such as the chi-squared distribution [58], and even for some limited dependent random matrices
such as k-wise independent random graphs. One can either verify the assumption by using the
combinatorial condition in Lemma 4.5, or to bound the second largest singular value directly using
the trace method as in Section 5.

4.1.5 Bipartite Matching

It is known that a matrix B ∈ R
n×n can be scaled to arbitrarily close to doubly stochastic if and

only if the underlying bipartite graph has a perfect matching [47], and so the decision version of the
bipartite perfect matching problem can be reduced to the matrix scaling problem. Moreover, the
doubly stochastic scaling solution provides a fractional solution to the perfect matching problem,
which can be converted to an integral solution to the perfect matching problem very efficiently
using the random walks technique in [23] (see also [48]).

Our results imply that the continuous operator scaling algorithm can be used to find a fractional
perfect matching in an almost regular bipartite expander graph.
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Corollary 4.6. Suppose G = (X,Y ;E) is a bipartite graph with |X| = |Y | where each vertex
v satisfies (1 − ǫ)|E|/|X| ≤ deg(v) ≤ (1 + ǫ)|E|/|X| for some ǫ. If φ(G)4 ≥ Cǫ ln |X| for some
sufficiently large constant C, then the gradient flow converges to an η-nearly doubly balanced scaling
(i.e. η-nearly perfect fractional matching) in time t = O(log |X| log(1/η)/φ2(G)).

We remark that our results also imply that the second-order methods for matrix scaling in [13, 2]
are near linear time algorithms for the instances in Corollary 4.6. This is because the condition
number κ of the scaling solution for those instances is a constant by Theorem 1.7 and the algorithms
in [13, 2] have time complexity Õ(|E| log κ). We also note that classical combinatorial algorithms
can also achieve a similar running time in the instances in Corollary 4.6.

4.1.6 Permanent Lower Bound

Given a matrix A ∈ R
n×n, the permanent is defined as

per(A) =
∑

π∈Sn

n∏

i=1

ai,π(i)

where Sn is the set of all permutations of n elements. Linial, Samorodnitsky, and Wigderson [47]
used the matrix scaling algorithm to design a deterministic en-approximation algorithm for com-
puting the permanent of a non-negative n × n matrix. The algorithm works by scaling the input
matrix to a doubly stochastic matrix and keeping track of the change of the permanent, and then
use the results in Van der Waerden’s conjecture that any doubly stochastic matrix has permanent
at least n!/nn and at most one to conclude the en-approximation.

For matrices satisfying the spectral gap condition in Lemma 4.3 (e.g. random matrices in Sec-
tion 4.1.4), we can use the capacity lower bound in Theorem 1.7 to argue that the continuous
operator scaling algorithm doesn’t do much, and thus to establish a permanent lower bound for
those matrices similar to that of Van der Waerden’s.

To see the proof, we first define the capacity of a matrix.

Definition 4.7 (Matrix Capacity). Given a matrix B ∈ R
m×n, define

cap(B) := inf
x∈Rn,x>0

m
(∏m

i=1

(
Bx
)
i

)1/m
(∏n

j=1 xj
)1/n

The following lemma is probably known but it was not stated in the literature.

Lemma 4.8. Following the reduction in Lemma 4.2 from matrix scaling of B to operator scaling
of A, we have that cap(B) in Definition 4.7 is equivalent to cap(A) in Definition 2.20.

Proof. Recall that the capacity of an operator A is defined as

cap(A) := inf
X≻0

m det
(∑k

i=1 AiXA∗
i

)1/m

det(X)1/n
.
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Using the reduction from Lemma 4.2, given a non-negative matrix B ∈ R
m×n, we define A =

(A11, . . . , Amn) where each Aij is the matrix with the (i, j)-th entry equal to
√

Bi,j and all other
entries zero. Then,

∑m
i=1

∑n
j=1AijXAij is the m×m diagonal matrix with the (i, i)-th entry equal

to
∑n

j=1Bi,jXj,j. If we let x ∈ R
n be the vector of the diagonal entries of X, then the (i, i)-th entry

of
∑m

i=1

∑n
j=1AijXAij is simply (Bx)i. Then, the determinant of

∑m
i=1

∑n
j=1AijXAij is simply∏m

i=1(Bx)i. Finally, by Hadamard’s inequality, det(X) ≤∏n
j=1Xj,j for any positive definite matrix

X, and so we can assume the optimizer to cap(A) is a diagonal matrix, and thus cap(A) simplifies
to cap(B) in Definition 4.7.

We are ready to prove the main result in this subsubsection.

Corollary 4.9. If a non-negative matrix B ∈ R
n×n is ǫ-nearly doubly balanced with s(B) = n and

it satisfies the λ-spectral gap condition in Definition B.1 with λ2 ≥ Cǫ log n for some sufficiently
large constant C, then

1 ≥ per(B) ≥ exp

(
−n
(
1 + Θ

(
ǫ2

λ

)))
.

Proof. Let B ∈ Rn×n be the input non-negative matrix with s(B) = n. Find the scaling solution
L,R such that LBR is doubly stochastic (i.e. every row sum and every column sum equal to one),
which is guaranteed to exist under our assumptions. Gurvits [31, 29] defined the (unnormalized)
capacity of B ∈ R

n×n as

cap(B) = inf
x∈Rn,x>0

∏n
i=1(Bx)i∏n
j=1 xj

.

Note that cap(LBR) = det(L) · det(R) · cap(B) and also per(LBR) = det(L) · det(R) · per(B).
Using the fact that cap(A) = 1 for a doubly stochastic matrix A [29, 20],

cap(B) =
cap(B)

cap(LBR)
=

per(B)

per(LBR)
.

Note that cap(B) = (cap(B)/n)n, and so the results on Van der Waerden’s conjecture imply that

per(B) =

(
cap(B)

n

)n

· per(LBR) ≥
(
cap(B)

n

)n

· e−n

If B is ǫ-nearly doubly balanced with s(B) = n and B satisfies the spectral gap condition in
Definition B.1, then Theorem 1.8 and Lemma 4.8 imply that

cap(B) = cap(A) ≥
(
1− 4ǫ2

λ

)
s(A) =

(
1− 4ǫ2

λ

)
s(B) =

(
1− 4ǫ2

λ

)
n,

where A is the operator in the reduction from Lemma 4.2. Therefore, we conclude that

per(B) ≥
(
1− 4ǫ2

λ

)n

· e−n = exp

(
−n
(
1 + Θ

(
ǫ2

λ

)))
.
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Example 4.10. If B is a random matrix where each entry Bij is an independent random variable
g2ij , where gij is sampled from the normal distribution N(0, 1/n), then λ = Ω(1) and ǫ =

√
log n/n

with high probability. Hence, the conditions in Corollary 4.9 are satisfied and it follows that

per(B) ≥ exp(−n−O(log n)) = e−n/poly(n).

So, the permanent of a random matrix from this distribution has a Van der Waerden’s type lower
bound even though it is not doubly stochastic.

Barvinok and Samorodnitsky [6] proved an upper bound of the permanent of these matrices, and
this implies a subexponential approximation of the permanent for these matrices.

4.1.7 Optimal Transport Distance

Given two probability distributions and a cost function C, the optimal transport distance is the
earth mover distance to move from one distribution to another distribution under the cost function.
When the two probability distributions are discrete, the cost function can be represented as a cost
matrix C, and the problem of computing the optimal transport distance can be formulated as the
assignment problem (i.e. a generalization of the minimum cost perfect matching). So the problem
can be solved in polynomial time and there is a linear programming formulation for the problem.
In large scale data analysis, however, the polynomial time algorithms are not fast enough.

Using the maximum entropy principle, Cuturi [14] proposed to add an entropic regularizer to the
linear program, and showed that the optimal solution is the matrix scaling solution to a matrix K
associated to C (more precisely Ki,j = exp(−Ci,j/β) where β is a parameter in the regularizer).
Cuturi showed that the Sinkhorn’s algorithm for matrix scaling is very efficient in computing the
optimal solution to the regularized linear program, and he even mentioned that Sinkhorn’s algorithm
exhibits linear convergence in practice [14]. Since then the “Sinkhorn distance” becomes a popular
alternative/approximation to the earth mover distance and is used in computer vision and machine
learning research; see the book [52] and the references therein. Theorem 1.5 provides a condition to
establish the linear convergence observed, which is satisfied in many random matrices as discussed
in Section 4.1.4.

Also, it is of interest to bound the Sinkhorn distance, which is shown in [14, 52] to be at most

〈ef∗/β, (K ◦ C) · eg∗/β〉,
where f∗ and g∗ are the scaling solutions to K and β is the regularizer parameter. This result states
that the distance is small if the condition number of the scaling solution is small. Theorem 1.7
provides a condition to bound the condition number to bound the Sinkhorn distance.

4.2 Frame Scaling

A frame is a collection of vectors U = (u1, . . . , un) where each ui ∈ R
d for 1 ≤ i ≤ n. The size of a

frame U is defined as s(U) :=
∑n

i=1 ‖ui‖22. A frame U is called ǫ-nearly doubly balanced if

(1−ǫ)s(U)

d
Id �

n∑

i=1

uiu
∗
i � (1+ǫ)

s(U)

d
Id and (1−ǫ)s(U)

n
In � diag

({
‖ui‖22

}n

i=1

)
� (1+ǫ)

s(U)

n
In,
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and is called doubly balanced when ǫ = 0.

Definition 4.11 (Frame Scaling Problem). Given a frame U = (u1, . . . , un) where each ui ∈ R
d,

the goal is to find a matrix M ∈ R
d×d such that vi = Mui/ ‖Mui‖ satisfies

∑n
i=1 viv

∗
i = Id.

Outline: In the following, we will show that the frame scaling problem can be reduced to the
operator scaling problem in Section 4.2.1. Then, we will see that the spectral condition has a nice
form in Section 4.2.2, and explain that random frames will satisfy our condition in Section 4.2.3.
Finally, we show a significant implication of our results to the Paulsen problem in Section 4.2.4 and
a construction of doubly stochastic frame with small inner products in Section 4.2.5.

4.2.1 Reduction to Operator Scaling

The frame scaling problem is a special case of the operator scaling problem.

Lemma 4.12. Given a frame U = (u1, . . . , un) where each ui ∈ R
d, let A = (A1, . . . , An) where

each Ai ∈ R
d×n for 1 ≤ i ≤ n is the matrix with the i-th column being ui and all other columns

equal to zero. Then, U is ǫ-nearly doubly stochastic if and only if A is ǫ-nearly doubly stochastic.
Furthermore, there is a solution to the frame scaling problem for U if and only if there is a solution
to the operator scaling problem for A.

Proof. By construction,
∑n

i=1AiA
∗
i =

∑n
i=1 uiu

∗
i ∈ R

d×d and
∑n

i=1A
∗
iAi = diag({‖ui‖22}ni=1) ∈

R
n×n, and so U is ǫ-nearly doubly stochastic if and only if A is ǫ-nearly doubly stochastic. If

M ∈ R
d×d is a solution to the frame scaling problem for U , then we can set L := M and R :=

diag({‖Mui‖−1
2 }ni=1) and see that it is a solution to the operator scaling problem for A.

If L and R is a solution to the operator scaling problem for A, then we can use a similar argument
as in Lemma 4.2 to show that L and (RR∗)1/2 is also a solution and (RR∗)1/2 is a diagonal matrix
as A has the special structure that each Ai has only one non-zero column. This is also proved in
Lemma 3.7.4 in [45] so we omit the details. Since R is diagonal, the (i, i)-th entry must necessarily
be ‖Lui‖−1

2 for the doubly stochastic conditions to be satisfied, and so M := L is a solution to the
frame scaling problem for U .

4.2.2 Spectral Condition

The spectral condition for operator scaling is related to the following Hermitian matrix.

Definition 4.13 (Entrywise Squared Gram Matrix). Given a frame U = (u1, . . . , un) where each
ui ∈ R

d, the squared Gram matrix G ∈ R
n×n is defined as Gi,j = 〈ui, uj〉2 for 1 ≤ i, j ≤ n.

Note that G is a positive semidefinite matrix. To see this, let V be the d× n matrix with the i-th
column being ui. Then, we can write G = (V ∗V )◦(V ∗V ) where ◦ denotes the Hadamard (or entry-
wise) product of two matrices. As V ∗V is a positive semidefinite matrix, G is a positive semidefinite
matrix by the Schur product theorem. The spectral condition in Definition 1.4 translates to the
following spectral condition for the squared Gram matrix in the frame scaling case.
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Lemma 4.14. Using the reduction from Lemma 4.12, the spectral condition for operator scaling
for A in Definition 1.4 becomes

λ2(G) ≤ (1− λ)2 · s(U)2

dn
,

where λ2(G) is the second largest eigenvalue of G.

Proof. Since each Ai has only one non-zero column, each Ai⊗Ai has only one non-zero column which
is ui⊗ui ∈ R

d. The matrix MA ∈ R
d2×n2

has only n non-zero columns (u1⊗u1, . . . , un⊗un). Hence,
M∗

AMA has only a n×n non-zero submatrix, where the (i, j)-th entry is 〈ui⊗ui, uj⊗uj〉 = 〈ui, uj〉2.
So, the n× n non-zero submatrix of MA is exactly G. Therefore, λ2(G) = λ2(M

∗
AMA) = σ2(MA)

2

and the spectral condition σ2(MA) ≤ (1−λ)s(A)/√mn is equivalent to λ2(G) ≤ (1−λ)2s(U)2/(dn)
as s(A) = s(U) and m = d in the reduction from Lemma 4.12.

4.2.3 Random Frames

In Section 5, we will prove that if we generate Ω(d4/3) random unit vectors, then the resulting
frame is ǫ-nearly doubly balanced for ǫ = O(1/poly(d)) and the λ in Lemma 4.14 satisfies λ = Ω(1)
with high probability. Hence, a random frame generated in this way will satisfy the condition
λ2 ≥ Cǫ ln d and our results apply to these random frames. The proof is by a trace method. We
believe that the trace method can be improved to prove that generating Ω(dpolylog d) random unit
vectors will satisfy our condition.

4.2.4 The Paulsen Problem in Random Frames

Given an ǫ-nearly doubly balanced frame U = (u1, . . . , un) with size s(U) = d where each ui ∈
R
d, the Paulsen problem asks to find a doubly balanced frame V = (v1, . . . , vn) that is “close”

to U . Given two frames U, V , the squared distance between them is defined as dist2(U, V ) =∑n
i=1 ‖ui − vi‖22. It was an open question whether for every ǫ-nearly doubly balanced frame U with

s(U) = d, there is always a doubly balanced frame V with dist2(U, V ) bounded by a function only
dependent on d and ǫ but independent of n. Recently, this question was answered affirmatively
in [45], showing that for any ǫ-nearly doubly balanced frame U with s(U) = d, there is always a
doubly balanced frame V with dist2(U, V ) = O(d13/2ǫ). Very recently, Hamilton and Moitra [32]
proved a stronger bound O(d2ǫ) with a much simpler proof. On the other hand, there are examples
showing that the best bound is at least Ω(dǫ), so the upper bound and the lower bound are within
a factor of d.

The Paulsen problem was asked because it is difficult to generate doubly balanced frames and easier
to generate nearly doubly balanced frames, but actually not many ways are known to even generate
ǫ-nearly doubly balanced frames for small ǫ. Most nearly doubly balanced frames that we know
are random frames (e.g. random Gaussian vectors, random unit vectors), which can be shown to
be ǫ-nearly doubly balanced for small ǫ by matrix concentration inequalities (see Section 5.1). So,
for the Paulsen problem, the inputs of interest are random frames.
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We will prove that for a random frame U with s(U) = d that is ǫ-nearly doubly balanced, there is
a doubly balanced frame V with dist2(U, V ) = O(dǫ2) with high probability, which is much smaller
than the worst case Ω(dǫ) bound. We will also show how this result can be used to generate a
frame in which every pair of vectors has small inner product in the next subsubsection.

The proof has two steps. The first step is to show that if we generate n = Ω(d4/3) random unit
vectors, then the resulting frame U is ǫ-nearly doubly balanced for ǫ ≤ O(1/poly(d)) and also
satisfies the spectral gap condition in Lemma 4.14 with λ = Ω(1). Therefore, the assumption in
Theorem 1.5 is satisfied and the continuous operator scaling algorithm has linear convergence. The
second step is to show that if the continuous operator scaling algorithm has linear convergence,
then the “total movement” to a doubly balanced frame is O(dǫ2).

The first step will be proved in Section 5. We will prove the second step here. The following lemma
states the result in [45] that we will use.

Lemma 4.15 (Theorem 3.3.5, Lemma 3.3.1, Lemma 3.4.3 in [45]). The dynamical system in
Definition 2.16 will move the input operator A(0) to a doubly balanced operator A(∞). For any time
T ≥ 0,

dist2(A(T ),A(0)) ≤



∫ T

0

√√√√
k∑

i=1

∥∥∥∥
d

dt
A

(t)
i

∥∥∥∥
2

F

dt




2

=
1

4

(∫ T

0

√
− d

dt
∆(t)dt

)2

The second step actually holds in the more general operator setting, not just in the frame setting.

Lemma 4.16. Given an operator A = (A1, . . . , Ak) where Ai ∈ R
m×n with m ≤ n for 1 ≤ i ≤ k,

if A is ǫ-nearly doubly balanced and A satisfies the λ-spectral gap condition in Definition 1.4 with
λ2 ≥ Cǫ lnm for a sufficiently large constant C, then

dist2(A(0),A(∞)) ≤ s(0)ǫ2

λ
.

Proof. Given the assumptions, Theorem 3.21 implies that

− d

dt
∆(t) ≥ λs(0)∆(t) =⇒ − d

dt∆
(t)

√
λs(0)∆(t)

≥
√
− d

dt
∆(t) =⇒ − 2√

λs(0)

d

dt

√
∆(t) ≥

√
− d

dt
∆(t).

By Lemma 4.15 and the above inequality, for any T ≥ 0,

dist2
(
A(T ),A(0)

)
≤ 1

4

(∫ T

0

√
− d

dt
∆(t)dt

)2

≤ 1

λs(0)

(∫ T

0

d

dt

√
∆(t)dt

)2

≤ ∆(0)

λs(0)
≤ s(0)ǫ2

λ
,

where the last inequality is by Lemma 2.15.

Combining the two steps gives the following theorem.

Theorem 4.17. Let U = (u1, . . . , un) be a random frame with n = Ω(d4/3), where each ui ∈ R
d

is an independent random vector with ‖ui‖22 = d/n. Then, with probability at least 0.99, there is a
doubly balanced frame V with dist2(U, V ) ≤ O(dǫ2) if U is ǫ-nearly doubly balanced.
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Proof. By Theorem 5.1, the random frame U satisfies the spectral gap condition in Lemma 4.14
with constant λ and ǫ ≪ 1/ ln d with probability at least 0.99. Note that Theorem 5.1 is stated
when each ‖ui‖22 = 1 but it is easy to see that the nearly doubly balanced condition and the
spectral gap condition are unchanged upon scaling the vectors to ‖ui‖22 = d/n for 1 ≤ i ≤ n.
By the reduction in Lemma 4.12 and the spectral gap condition in Lemma 4.14, this implies that
the condition λ2 ≥ Cǫ ln d for operator scaling is satisfied and also s(U) = d. Therefore, by
Lemma 4.16, the continuous operator scaling algorithm will move U to a doubly balanced frame V
with dist2(U, V ) ≤ O(dǫ2).

4.2.5 Constructing Frames with Small Inner Products

The original motivation for the Paulsen problem was to construct doubly balanced frames with
some additional structure.

Definition 4.18. A frame V = {v1, . . . , vn} is equiangular if 〈vi, vj〉2 is the same for all i 6= j.

For n = Θ(d2), finding a doubly balanced frame that is also equiangular will have implications for
certain informationally complete quantum measurement operators. It is a major open problem in
frame theory for which pairs (n, d) such frames exist [57]. The known examples are sporadic and
based on group/number-theoretic constructions. We consider a related but more relaxed problem.

Definition 4.19. A doubly balanced frame is Grassmannian if its angle

θ(V ) := max
i 6=j
〈vi, vj〉2

is minimized over all possible doubly balanced frames.

Doubly balanced frames with small angle are useful in constructing erasure codes [36, 56]. The
original motivation of the Paulsen problem was to begin with some ǫ-nearly doubly balanced frame
U that has small θ(U), and see if it could be “rounded” to a nearby doubly balanced frame V still
having small θ(V ). Bounding dist2(U, V ) is one way to achieve this goal.

In this section, we use the results in the spectral analysis to construct a doubly balanced frame
with small angle. The idea is to start with a random frame U which is ǫ-nearly doubly balanced
for small ǫ and has small θ(U) with high probability, and then use the results in spectral analysis
to show that we can scale U to a doubly balanced frame V with θ(V ) ≈ θ(U).

Theorem 4.20. For any n ≥ Ω(d4/3), there exists a doubly balanced frame V = (v1, . . . , vn) where
each vi ∈ R

d with ‖vi‖ = 1 and

θ(V ) ≤ O

(
log n

d
+

d log3 d

n

)
.

Proof. First, we generate a random frame U = (u1, . . . , un) where each ui ∈ R
d is an independent

random unit vector with ‖ui‖ = 1. By Lemma 5.3 and Theorem 5.1, U is ǫ-nearly doubly balanced
for ǫ ≤ O(

√
d log d/n) and satisfies the λ-spectral gap condition with λ = Ω(1) with probability at

least 0.99. Next, we bound θ(U) using the following fact.
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Fact 4.21 ([34]). Let x ∈ Sd−1 be a fixed unit vector. For a random unit vector u ∼ Sd−1,

P[〈u, x〉2 ≥ t2] ≤ 2
√
2 exp(−t2d/4).

Choosing a large enough upper bound and applying union bound, it follows from the above fact
and rotational invariance that

P

[
〈ui, uj〉2 ≥

12 log n

d

]
≤ O

(
exp

(
−12d log n

4d

))
≤ O

(
n−3

)
=⇒ P

[
θ(U) ≥ 12 log n

d

]
≤ O(n−1).

By Theorem 3.21 and the reduction in Lemma 4.12, there is a left scaling matrix L ∈ R
d×d

and a right diagonal scaling matrix R ∈ R
n×n such that if we set vi = LuiRii, then the frame

V = (v1, . . . , vn) is doubly balanced. By Theorem 3.22, the scaling solutions L,R satisfy

‖L− I‖op ≤ ζ and ‖R− I‖op ≤ ζ for ζ ≤ O

(
ǫ log d

λ

)
≤ O



√

d log3 d

n


 .

Using the arguments as in Lemma 3.20 (or Lemma B.17), we have

|〈vi, vj〉 − 〈ui, uj〉| = |〈LuiRii, LujRjj〉 − 〈ui, uj〉| ≤ O (ζ) · ‖ui‖2 ‖uj‖2 = O(ζ).

Therefore, we conclude that

θ(V ) ≤ 2θ(U) +O(ζ2) ≤ O

(
log n

d
+

d log3 d

n

)
.

For examples, when n = Θ(d2) the above theorem gives θ(V ) ≤ O(log3 d/d), and when n =
Θ(d2 log2 d) then the above theorem gives θ(V ) ≤ O(log d/d).

4.3 Operator Scaling

The operator scaling problem was used to the Brascamp-Lieb constant [21] and to compute the
non-commutative rank of a symbolic matrix [20]. It is also used in [1] to solve the orbit intersection
problem for the left-right group action.

4.3.1 Brascamp-Lieb Constants

A Brascamp-Lieb datum is specified by an m-tuple B = {Bj : Rn → R
nj | 1 ≤ j ≤ m} of linear

transformations and an m-tuple of exponents p = {p1, . . . , pm}. The Brascamp-Lieb constant
BL(B,p) of this datum is defined as the smallest C such that for every m-tuple {fj : Rnj → R≥0 |
1 ≤ j ≤ m} of non-negative integrable functions, we have

∫

x∈Rn

m∏

j=1

(
fj(Bjx)

)pj
dx ≤ C

m∏

j=1

(∫

xj∈R
nj

fj(xj)dxj

)pj

.
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For this inequality to be scale invariant in {f1, . . . , fm}, we must have
∑

j pjnj = n. This is a
common generalization of many useful inequalities; see [8, 21].

The important point we need is that the optimizers of any non-degenerate Brascamp-Lieb datum
(i.e. the functions f1, . . . , fm for which the inequality is tight) is achieved by density functions of
appropriately centered Gaussians [46], and this implies that the Brascamp-Lieb constant BL(B,p)
can be written as the following optimization problem:

BL(B,p) =


 sup
Xj≻0

∏m
j=1

(
det(Xj)

)pj

det
(∑m

j=1 pjB
∗
jXjBj

)



1/2

,

which is closely related to the capacity of an operator.

An BL-datum is called geometric if we have:

m∑

j=1

pjB
∗
jBj = In and BjB

∗
j = Inj

for 1 ≤ j ≤ m.

It is proved in [4, 5] that the BL-constant is one when the BL-datum is geometric. We will show that
the BL-constant is small when the BL-datum is nearly geometric and satisfies a spectral condition,
using the reduction in [21] from BL-constant to operator capacity and our capacity lower bound in
Theorem 1.8.

Reduction: We describe the reduction in [21] from computing the BL-constant of a datum to
computing the capacity of an operator. Let pj = cj/d be rational numbers where cj and d are
integers. Given a BL-datum (B,p), a completely positive map ΦA : Rnd×nd → R

n×n is constructed
as follows. For intuition, think of the “intended” input matrix X to ΦA as a block diagonal matrix,
with cj blocks of Xj ∈ R

nj×nj for 1 ≤ j ≤ m, so that X is a square matrix with dimension∑m
j=1 cjnj = d

∑m
j=1 pjnj = dn. For each Bj ∈ R

nj×n in B, we create cj matrices {Aj1, . . . , Ajcj}
in A, where each Aji ∈ R

n×dn has a copy of Bj/
√
d that acts only on the (j, i)-th principle block

of X (i.e. the i-th copy of Xj in X) and all other entries of Aji are zero. The operator A is defined
by the Kraus operators ∪mj=1 ∪

cj
i=1 {Aji}, with the completely positive map

ΦA(X) =
m∑

j=1

cj∑

i=1

A∗
jiXAji =

1

d

m∑

j=1

cj∑

i=1

B∗
jXjiBj and Φ∗

A(Y ) =
m⊕

j=1

cj⊕

i=1

1

d
BjY B∗

j ,

where Xji is the (j, i)-th principle block of X as described above, and the notation ⊕ denotes the
direct sum of the matrices (i.e. putting each matrix in a diagonal block).

Theorem 4.22 ([21]). It follows from the reduction that

(
cap(A)

n

)n

=

(
1

BL(B,p)

)2

Using this connection, it is shown in [21] that the Brascamp-Lieb constant BL(B,p) can be com-
puted by an operator scaling algorithm for A.
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Bounding BL-constants: Using Theorem 4.22, we would like to derive upper bounds on BL-
constants using the capacity lower bound in Theorem 1.8, and show that for some random instances
the BL-constant is small. To apply Theorem 1.8, we translate the definitions of ǫ-nearly doubly
balanced operator and the λ-spectral gap conditions to the Brascamp-Lieb setting. Following the
reduction from B,p to A, we have the following definitions from the corresponding definitions of
the operator A.

Definition 4.23 (Size of a Datum). The size of a BL-datum (B,p) is

s(B,p) := pj

m∑

j=1

‖Bj‖2F .

The datum (B,p) is ǫ-nearly geometric if and only if the corresponding operator A is ǫ-nearly
doubly balanced.

Definition 4.24 (Nearly Geometric Datum). A datum BL(B,p) is ǫ-nearly geometric if

(1− ǫ)
s

n
In �

m∑

j=1

pjB
∗
jBj � (1 + ǫ)

s

n
In and (1− ǫ)

s

n
Inj
� BjB

∗
j � (1 + ǫ)

s

n
Inj

for 1 ≤ j ≤ m.

The datum (B,p) satisfies the λ-spectral gap condition if and only if the corresponding operator
A satisfies the λ-spectral gap condition.

Definition 4.25 (Spectral Gap of Datum). Let n̄ =
∑m

j=1 nj and B̄∗ ∈ R
n×n̄ be the matrix

B̄∗ := [B∗
1 , B

∗
2 , . . . , B

∗
m].

Let B̄j ∈ R
n̄×n be B̄ with all but the j-th block zeroed out, i.e. B̄∗

j := [0, . . . , 0, B∗
j , 0, . . . , 0]. The

natural matrix representation MB,p ∈ R
n̄2×n2

of the datum (B,p) is defined as

MB,p :=
m∑

j=1

√
pj · B̄j ⊗ B̄j.

The datum (B,p) is said to have a λ-spectral gap if

σ2(MB,p) ≤ (1− λ)
s(B,p)

n
.

With these definitions, we can state the Brascamp-Lieb constant upper bound that follows from
the capacity lower bound in Theorem 1.8.

Corollary 4.26. Given a datum (B,p) with Bj : R
n → R

nj for 1 ≤ j ≤ n and
∑m

j=1 pjnj = n, if

(B,p) is ǫ-nearly geometric and satisfies the λ-spectral gap condition with λ2 ≥ Cǫ log n for some
sufficiently large constant C, then

( s
n

)−n/2
≤ BL(B,p) ≤

(( s
n

)(
1− 4ǫ2

λ

))−n/2

.
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Let’s consider a concrete example to demonstrate the corollary.

Example 4.27. An interesting special case of the Brascamp-Lieb inequality is the rank one case
Bj = u∗j where uj ∈ R

d and nj = 1 and pj = d/m for 1 ≤ j ≤ m which was studied in [5].
Consider a random rank-one datum where each ui is an independent random unit vector of ‖ui‖ = 1.
Following the reduction,

cap(A) = sup
x∈Rn:x>0

d
(
det
(∑m

j=1 xjuju
∗
j

))1/d

(∏m
j=1 xj

)1/m ,

which is a form that is also studied in approximation algorithms [50]. Note that this is exactly
the capacity of a frame U = (u1, . . . , um) through the reduction in 4.12. By Theorem 5.1, if
m ≥ Ω(d4/3), then U is ǫ-nearly doubly balanced for ǫ ≤ O(

√
d log d/m) and satisfies the λ-spectral

gap condition with λ = Ω(1) with high probability. Therefore, we can apply Theorem 1.8 to conclude
that

cap(A) ≥
(
1− 4ǫ2

λ

)
s(U) ≥

(
1− 4d log d

m

)
m,

and from Corollary 4.26 the BL-constant for this datum is

1 ≤ BL(B,p) ≤
(
1− 4d log d

m

)−m/2

= exp(Θ(d log d)) = dΘ(d).

This is independent on the number of vectors m and is much smaller than the worst case bound.

As another example, Hastings’ result [35] implies that a random operator where each Ai is a random
unitary has small Brascamp-Lieb constant with high probability.

4.3.2 Rank Non-Decreasing Operator

In [20, 19, 29], a polynomial time algorithm for computing the non-commutative rank of a symbolic
matrix is designed using operator scaling. Given A = (A1, . . . , Ak) where each Ai ∈ R

n×n, let
ZA =

∑k
i=1 xiAi be the symbolic matrix defined by A over non-commutative variables x1, . . . , xk,

the non-commutative rank nc-rank(Z) of Z is defined as the smallest r such that Z = KM where
K is of dimension n × r and M is of dimension r × n with entries in the “free skew field” of x
(see [20, 19] for definitions). The algorithm in [20, 19, 29] is based on the following equivalent
characterizations.

Theorem 4.28 ([20, 19, 29]). Given A = (A1, . . . , Ak) where each Ai ∈ R
n×n, the following

conditions are equivalent.

1. The symbolic matrix ZA is singular, i.e. nc-rank(Z) < n.

2. A has a shrunk subspace, i.e. there exists subspaces U,W with dim(W ) < dim(U) such that
AiU ⊆W for all 1 ≤ i ≤ k.
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3. The completely positive linear map ΦA is rank decreasing, i.e. there exists P ≻ 0 and
rank(ΦA(P )) < rank(P ).

The alternating scaling algorithm for operator scaling is used to check whether ΦA is rank non-
decreasing. It is shown in [20, 19, 29] that ΦA is rank non-decreasing if and only if A can be scaled
to ǫ-nearly balanced for ǫ ≤ 1/poly(n), and so a polynomial time algorithm for operator scaling
can be used to compute the non-commutative rank of a symbolic matrix over the reals.

The shrunk subspace condition is closely related to the concept of Hall-blocker in matching theory.
In the matrix case, it is shown in Lemma 4.5 that a matrix B satisfying the spectral condition is
an almost regular bipartite expander graph, so there is no Hall-blocker and it always has a perfect
matching as shown in Lemma 4.6. In the operator case, intuitively, the spectral condition is closely
related to the notion of quantum expander (Section 2.1), and so there should be no Hall-blocker as
well. Theorem 1.5 implies that it is the case.

Corollary 4.29. Given an operator A satisfying the conditions of Theorem 1.5, ΦA is rank-
nondecreasing and the corresponding symbolic matrix ZA is non-singular over reals.

This is a new sufficient condition for an operator to be rank non-decreasing. We remark that the
assumption can be weakened to λ ≥ 6ǫ to get the same conclusion, but we omit the proof here.

4.3.3 The Operator Paulsen Problem

Given an ǫ-nearly doubly stochastic operator A = (A1, . . . , Ak) where each Ai ∈ R
m×n, the operator

Paulsen problem asks to find a doubly stochastic operator B = (B1, . . . , Bk) where each Bj ∈ R
m×n

with dist2(A,B) :=
∑k

i=1 ‖Ai −Bi‖2F . In [45], it was proved that dist2(A,B) ≤ O(mnsǫ), and
this result was used in [1] for the orbit intersection problem. For an operator A that satisfies
the spectral gap condition with constant λ, Lemma 4.16 implies a much stronger bound that
dist2(A,B) ≤ O(sǫ2).

5 Spectral Gap of Random Frames

In this section, we prove that a random frame is ǫ-nearly doubly stochastic for ǫ ≪ 1/ ln d and
satisfies the spectral gap condition for constant λ with high probability.

Theorem 5.1. If we generate n random unit vectors v1, . . . , vn in R
d with n = Ω(d4/3), then the

resulting frame is ǫ-nearly doubly stochastic for ǫ≪ 1/ ln d and satisfies the spectral gap condition
in Definition 4.14 with constant λ with probability at least 0.99.

To generate a random unit vector v ∈ R
d, we set each coordinate of v to be an independent random

Gaussian variable N(0, 1d) for 1 ≤ i ≤ d, and then we scale the vector to have norm one. The size

of the frame is s =
∑n

i=1 ‖vi‖
2
2 = n. By construction, the frame V := (v1, . . . , vn) satisfies the equal

norm condition.
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In Section 5.1, we will prove that V is ǫ-nearly doubly stochastic with high probability by using
a standard matrix concentration bound. Then, in Section 5.2, we will prove that the squared
Gram matrix G in Definition 4.13 satisfies the spectral gap condition in Definition 4.14 with high
probability by using the trace method.

5.1 Nearly Doubly Balanced Condition by Matrix Concentration

By construction, each vector vi has ‖vi‖2 = 1 and s =
∑n

i=1 ‖vi‖
2
2 = n. So, for the nearly doubly

stochastic condition, it remains to prove that V = (v1, . . . , vn) is ǫ-nearly Parseval for ǫ≪ 1/ log d
with high probability when n = Ω(d4/3), i.e.

(1− ǫ)
n

d
Id = (1− ǫ)

s

d
Id �

n∑

i=1

viv
∗
i � (1 + ǫ)

s

d
Id = (1 + ǫ)

n

d
Id.

We establish this by using the following matrix Bernstein bound.

Theorem 5.2 (Matrix Bernstein [60]). Let X1, . . . ,Xn be independent random matrices in R
d×d.

Assume that, for 1 ≤ i ≤ n,
EXi = 0 and ‖Xi‖op ≤ L,

and

ν := max





∥∥∥∥∥

n∑

i=1

E(XiX
∗
i )

∥∥∥∥∥
op

,

∥∥∥∥∥

n∑

i=1

E(X∗
i Xi)

∥∥∥∥∥
op



 .

Then, for all ℓ ≥ 0,

P



∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
op

≥ ℓ


 ≤ 2d exp

( −ℓ2/2
ν + Lℓ/3

)
.

Lemma 5.3. If we generate n random unit vectors v1, . . . , vn in R
d with n = O(d log d/ǫ2), then

(1− ǫ)
n

d
Id �

n∑

i=1

viv
∗
i � (1 + ǫ)

n

d
Id

with probability at least 1−O(1/poly(d)).

Proof. To apply the matrix Bernstein bound, we consider the random matrix Xi := viv
∗
i − 1

dId for
1 ≤ i ≤ n. We check the assumptions in Theorem 5.2. First, as the covariance matrix of a Gaussian
vector is a scaled identity matrix and we scale it so that tr(viv

∗
i ) = 1, we have

E[Xi] = E[viv
∗
i −

1

d
Id] =

1

d
Id −

1

d
Id = 0.

Second, as each viv
∗
i is of rank one, the operator norm of Xi is achieved at vi and

‖Xi‖op =

∥∥∥∥viv
∗
i −

1

d
Id

∥∥∥∥
op

=

∥∥∥∥
(
viv

∗
i −

1

d
Id

)
vi

∥∥∥∥
2

=

∥∥∥∥vi −
1

d
vi

∥∥∥∥
2

= 1− 1

d
.
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Finally, as each Xi is Hermitian,

E[XiX
∗
i ] = E[X2

i ] = E

[(
viv

∗
i −

1

d
Id

)2]
= E[viv

∗
i ]−

2

d
E[viv

∗
i ] +

1

d2
Id =

1

d
(1− 1

d
)Id,

and thus

ν =

∥∥∥∥∥

n∑

i=1

E[XiX
∗
i ]

∥∥∥∥∥
op

=
n

d
(1− 1

d
).

Therefore, we can bound the probability that the ǫ-Parseval condition is not satisfied by Theorem 5.2
with ℓ = ǫn/d and L = 1− 1/d, which gives

P



∥∥∥∥∥

n∑

i=1

viv
∗
i −

n

d
Id

∥∥∥∥∥
op

≥ ǫn

d


 = P



∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥
op

≥ ǫn

d


 ≤ 2d exp

( −nǫ2
2(d − 1)(1 + ǫ/3)

)
.

Therefore, for ǫ ≤ 1, by setting n ≥ Ω(d log d/ǫ2), this failure probability is at most inverse
polynomial in d.

For our condition λ2 ≫ ǫ log d to be satisfied, it is sufficient for λ = Ω(1) that we will show and
ǫ≪ 1/ log d, and Lemma 5.3 gives the following bound for the latter condition.

Corollary 5.4. If we generate n random unit vectors v1, . . . , vn in R
d with n = O(d log3 d), then

(1− ǫ)
s

d
Id �

n∑

i=1

viv
∗
i � (1 + ǫ)

s

d
Id

for ǫ≪ 1/ log d with probability at least 1−O(1/poly(d)).

5.2 Spectral Gap Condition by Trace Method

Our goal is to prove that

λ2(G) ≤ (1− λ)2 · s
2

dn
= (1− λ)2 · n

d
,

when we generate n = Ω(d4/3) independent random unit vectors v1, . . . , vn.

5.2.1 Trace Method

As in most results from random matrix theory, we use the trace method to bound λ2(G).

Lemma 5.5. For any natural number k,

P

[
λ2(G) ≤ (1− λ)2 · n

d

]
≤
(
E[tr(Gk)]−

(n
d

)k (
1 +

d− 1

n

)k
)/(

(1− λ)2k
(n
d

)k)
.
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Proof. Recall that G is positive semidefinite from Section 4.2.2. Since all the eigenvalues of G
are non-negative, for any natural number k, λ2(G)k ≤ tr(Gk) − λ1(G)k and thus E[λ2(G)k] ≤
E[tr(Gk)] − E[λ1(G)k]. We bound the failure probabiliy by applying Markov’s inequality on the
k-th moment of λ2 so that

P

[
λ2(G) ≤ (1− λ)2 · n

d

]
≤ E[λ2(G)k]

(1− λ)2k
(
n
d

)k ≤
E[tr(Gk)]− E[λ1(G)k]

(1− λ)2k
(
n
d

)k .

We lower bound the term E[λ1(G)k] by using the test vector ~1/
√
n so that

E[λ1(G)k] ≥ E

[〈 ~1√
n
,G

~1√
n

〉k
]
=

1

nk
· E
[
〈~1, G~1〉k

]
≥ 1

nk

(
E

[
〈~1, G~1〉

])k
=

1

nk
〈~1,E[G]~1〉k,

where the second inequality is by Jensen’s inequality on the convex function f(x) = xk for integer
k ≥ 1. Note that

〈~1,E[G]~1〉 =
∑

1≤i,j≤n

E〈vi, vj〉2 =
∑

1≤i≤n

E〈vi, vi〉2 +
∑

1≤i 6=j≤n

E〈vi, vj〉2 = n+ n(n− 1)
1

d
,

where the last equality follows from the independence of vi and vj for i 6= j so that

E〈vi, vj〉2 = E〈viv∗i , vjv∗j 〉 =
〈1
d
Id,

1

d
Id

〉
=

1

d
.

Putting the value of 〈~1,E[G]~1〉 gives E[λ1(G)k] ≥ (1 + (n− 1)/d)k, and thus

P

[
λ2(G) ≤ (1− λ)2 · n

d

]
≤
(
E[tr(Gk)]−

(
1 +

n− 1

d

)k
)/(

(1− λ)2k
(n
d

)k)
.

5.2.2 Expanding the Trace

To use the bound in Lemma 5.5, we need to compute E(tr(Gk)). We expand the trace of Gk as

tr(Gk) =
∑

1≤i1,...,ik≤n

k∏

s=1

Gis,is+1 =
∑

1≤i1,...,ik≤n

k∏

s=1

〈vis , vis+1〉2, (5.1)

where the sum runs over all possible length k words with letters in {1, . . . , n} with ik+1 := i1. We
interpret each term in the summation as a length k closed walk in the complete graph of n vertices,
where (i1, . . . , ik, i1) are the vertices in the closed walk.

Let {e1, . . . , ed} be an arbitrary orthonormal basis of Rd. To analyze the trace, we write vis =∑d
a=1〈vis , ea〉ea as a linear combination of the basis vectors, and

〈vis , vis+1〉2 =
(

d∑

a=1

〈vis , ea〉〈vis+1 , ea〉
)2

=
d∑

a=1

d∑

b=1

〈vis , ea〉〈vis+1 , ea〉〈vis , eb〉〈vis+1 , eb〉.
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Expanding each term in the product
∏k

s=1〈vis , vis+1〉2 this way and and further expand the product,
we can write

tr(Gk) =
∑

1≤i1,...,ik≤n

k∏

s=1

(
d∑

a=1

d∑

b=1

〈vis , ea〉〈vis+1 , ea〉〈vis , eb〉〈vis+1 , eb〉
)

=
∑

1≤i1,...,ik≤n

∑

1≤a1,...,ak≤d

∑

1≤b1,...,bk≤d

k∏

s=1

〈vis , eas〉〈vis+1 , eas〉〈vis , ebs〉〈vis+1 , ebs〉. (5.2)

We interpret each as and bs as a color on the edge (is, is+1) for 1 ≤ s ≤ k. So, in this interpretation,
the trace is summing over all possible closed k walks on the complete graph of n vertices, and all
pairs of edge d-coloring a, b : [k] → [d] on the edges (i1, i2), . . . , (ik−1, ik), (ik, i1) in the closed k
walk.

To calculate the expected value of the product terms in (5.2), we group the terms based on the
vertices involved and use the following basic building block. The proof of the following lemma uses
the normalization technique in the proof that vol(Sd−1) = 2πd/2/Γ(d/2) in Ball’s survey [4], where
Sd−1 denotes the unit sphere in R

d.

Lemma 5.6. Let ~q = (q1, . . . , qd) ∈ Z
d
≥0 with q :=

∑d
i=1 qi. Then

ξ(~q) := Eu∈Sd−1

d∏

i=1

〈u, ei〉2qi =
∏d

i=1(2qi − 1)!!
∏q−1

j=0(d+ 2j)
,

where ℓ!! = ℓ(ℓ− 2) · · · (3)(1) for an odd number ℓ.

Proof. Let g ∈ R
d be a random Gaussian vector where each coordinate is an independent Gaussian

variable gi ∼ N(0, 1). We will compute Eg
∏d

i=1〈g, ei〉2qi in two ways to prove the lemma. On one
hand,

Eg

d∏

i=1

〈g, ei〉2qi =
d∏

i=1

Egg
2qi
i =

d∏

i=1

(2qi − 1)!!,

where the second equality follows from the formula for the even moments of a standard Gaussian
variable (e.g. from wikipedia). On the other hand, we can compute the same quantity by a change
of variables to the polar coordinates. Using that the density function of g is (2π)−d/2 exp(−‖g‖22 /2),

Eg

d∏

i=1

〈g, ei〉2qi = (2π)−
d
2

∫

Rd

d∏

i=1

〈g, ei〉2qi · exp
(
−1

2
‖g‖22

)
dg

= (2π)−
d
2

∫ ∞

r=0

∫

v∈Sd−1

d∏

i=1

〈rv, ei〉2qi e−
1
2
r2rd−1dvdr

= (2π)−
d
2

(∫ ∞

0
r2q+d−1e−

1
2
r2dr

)(∫

v∈Sd−1

d∏

i=1

〈v, ei〉2qidv
)

= (2π)−
d
2

(
2q+

d
2
−1 · Γ

(d
2
+ q
))(

vol(Sd−1) · Ev∈Sd−1

d∏

i=1

〈v, ei〉2qi
)
.
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where the factor rd−1 appears in the second equality because the sphere of radius r has area rd−1

times that of Sd−1, and the last equality follows by a change of variable u = 1
2r

2 and du = rdr so
that ∫ ∞

0
r2q+d−1e−

1
2
r2dr =

∫ ∞

0
(2u)

2q+d−2
2 e−udu = 2q+

d
2
−1 · Γ

(d
2
+ q
)

where the last equality follows from the definition of the Gamma function that Γ(l) :=
∫∞
0 ul−1e−udu.

By combining the two equalities for Eg
∏d

i=1〈g, ei〉2qi and using the fact that vol(Sd−1) = 2πd/2/Γ(d/2)
(e.g. from wikipedia), we have

d∏

i=1

(2qi − 1)!! = (2π)−
d
2

(
2q+

d
2
−1 · Γ

(d
2
+ q
))( 2π

d
2

Γ
(
d
2

) · Ev∈Sd−1

d∏

i=1

〈v, ei〉2qi
)

=⇒ ξ(~q) := Ev∈Sd−1

d∏

i=1

〈v, ei〉2qi =
1

2q
· Γ

(
d
2

)

Γ
(
d
2 + q

) ·
d∏

i=1

(2qi − 1)!!.

Using the fact that Γ(l) = l · Γ(l − 1) and thus Γ(d2 + q) = Γ(d2 ) · (d2 + q − 1) · (d2 + q − 2) · · · (d2 ), it
implies that

2q · Γ(d2 + q)

Γ(d2)
= (d+ 2(q − 1)) · (d+ 2(q − 2)) · · · (d) =

q−1∏

j=0

(d+ 2j),

and the lemma follows.

By taking the expectation of (5.1),

E[tr(Gk)] =
∑

1≤i1,...,ik≤n

Evi1 ,...,vid∈S
d−1

k∏

s=1

〈vis , vis+1〉2, (5.3)

For each closed k-walk i1, . . . , ik, i1, we need to compute the expectation of the product term. For
some specific closed k walks, it is easier to compute the expectation of the product term. In the
next two subsubsections, we show how to compute the product terms when the closed k-walk forms
a tree or a cycle.

5.2.3 Tree Walk

The first simplification is that if there is any self-loop (i.e. is = is+1), then we can just remove the
term 〈vis , vis+1〉2 from the product as ‖vis‖2 = 1 by our construction.

The next simplification is that if the closed k-walk looks like a tree, i.e. the edges (i1, i2), . . . , (ik−1, ik), (ik, i1)
formed a tree when self-loops are removed and parallel edges are identified to a single edge, then the
terms correspond to each edge in the tree can be computed independently using Lemma 5.6. This
is because all non-neighbors in the tree are conditionally independent, and so we can iteratively fix
all non-leaf vertices and compute the leaves independently.
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Lemma 5.7. Let H = (V,E) be the graph formed by the edges (i1, i2), . . . , (ik−1, ik), (ik, i1) in a
closed k-walk. Suppose H is a tree T = (V, F ) when self-loops are removed and parallel edges are
identified to a single edge. For each edge f = (i, j) ∈ F , let qf be the number of parallel edges of f
in H. Then,

EV

∏

ij=f∈E

〈vi, vj〉2 = EV

∏

ij=f∈F

〈vi, vj〉2qf =
∏

f∈F

ξ(qfχ1),

where ξ(qfχ1) denotes ξ((qf , 0, . . . , 0)) in Lemma 5.6.

Proof. We prove this by induction on |V |. When |V | = 2, the statement follows from the rotational
invariance of the distribution, so that EuEv〈u, v〉q = Eu〈u, e1〉q = ξ(q) where e1 is the first vector
in the orthonormal basis (e1, . . . , ed).

For the inductive step, let L be the set of the leaves of the tree T and δ(L) be the set of leaf edges
in T . By conditional expectation and independence of vi,

EV

∏

ij=f∈E

〈vi, vj〉2 = ELEV \L

∏

ij=f∈E

〈vi, vj〉2

= EL




∏

ij=f∈δ(L)

〈vi, vj〉2
∣∣∣∣∣ {vi}i/∈L


 · EV \L




∏

ij=f /∈δ(L)

〈vi, vj〉2

 .

Since |V \L| < |V |, we can apply the induction hypothesis to obtain that the second term is equal
to
∏

f /∈δ(L) ξ(2qf ). For the first term, note that each non-leaf vertex is fixed in the conditional
expectation, and so by rotational invariance of the distribution and independence of vi,

EL




∏

ij=f∈δ(L)

〈vi, vj〉2
∣∣∣∣∣ {vi}i/∈L


 =

∏

ij=f∈δ(L)

EL

[
〈vi, vj〉2

∣∣∣ {vi}i/∈L
]

=
∏

ij=f∈δ(L)

EL

[
〈e1, vj〉2

∣∣∣ {vi}i/∈L
]
=

∏

f∈δ(L)

ξ(qfχ1),

where χ1 ∈ R
d is the vector with the first entry one and other entries zero. The lemma follows by

combining the two terms.

5.2.4 Cycle Walk

We can also compute the expectation of a product term in (5.3) when the closed k-walk is a simple
cycle, i.e. the edges (i1, i2), . . . , (ik−1, ik), (ik, ii) form a cycle and the vertices i1, . . . , ik are distinct.

Lemma 5.8. Suppose the edges (i1, i2), . . . , (ik−1, ik), (ik, ii) form a simple cycle. Then

Evi1 ,...,vid∈S
d−1

k∏

s=1

〈vis , vis+1〉2 =
1

dk
+

d2 − 1

2

(
2

d(d+ 2)

)k

.
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Proof. We use the expansion in (5.2) that

E

[
k∏

s=1

〈vis , vis+1〉2
]
=

∑

1≤a1,...,ak≤d

∑

1≤b1,...,bk≤d

E

[
k∏

s=1

〈vis , eas〉〈vis+1 , eas〉〈vis , ebs〉〈vis+1 , ebs〉
]
,

where (e1, . . . , ed) is an orthonormal basis in R
d.

Since Sd−1 is symmetric across and half space, if any term 〈v, ej〉 appears in a product term on the
right hand side with odd degree, then that product term is equal to zero. So, we only focus on those
product terms where each 〈v, ej〉 has even degree. Since the edges (i1, i2), . . . , (ik−1, ik), (ik, ii) form
a simple cycle, each vertex is is involved in exactly four terms 〈vis , eas〉, 〈vis , ebs〉, 〈vis , eas−1〉, 〈vis , ebs−1〉.
We consider two cases of the d-edge-colorings a1, . . . , ak and b1, . . . , bk.

The first case is when a1 6= b1. Then, for 〈vi2 , ea1〉 and 〈vi2 , eb1〉 to have even degree, we must
have {a2, b2} = {a1, b1}. The same argument applies to every vertex, and thus we must have
{ai, bi} = {aj , bj} for i 6= j, i.e. the same two colors appear in every edge in the simple cycle. There
are two possibilities for each edge, either ai = aj , bi = bj or ai = bj , aj = bi. So, for each two colors,
there are exactly 2k such product terms. For each such product term, there are two colors that
appear twice on each vertex, and so each such product term is exactly ξ(χ1,2)

k, where χ1,2 ∈ R
d is

the vector with the first two entries one and other entries zero. Therefore, the total contribution
of these product terms is (

d

2

)
2kξ(χ1,2)

k =

(
d

2

)
2k
(

1

d(d+ 2)

)k

.

The second case is when a1 = b1. Then, for the terms in i2 to have even degree, we must have
a2 = b2, which could be the same color as a1 = b1 or a different color. The same argument applies
to every vertex, and thus we must have ai = bi for 1 ≤ i ≤ k, and so we can think of every edge in
the cycle receives one color from d colors. For each coloring, let l be the number of vertices with
two different colors of degree two (and so k − l is the number of vertices with one color of degree
four), then its contribution to the sum is

(
ξ(χ1,2)

)l(
ξ(2χ1)

)k−l
=

(
1

d(d+ 2)

)l( 3

d(d+ 2)

)k−l

=
3k−l

dk(d+ 2)k
.

To count the number of such colorings, we use the following fact.

Fact 5.9. The number of proper d-colorings of an l-cycle is (d− 1)l +(−1)l(d− 1), where adjacent
vertices receive different colors in a proper coloring. Since the line graph of an l-cycle is also an
l-cycle, the number of proper d-edge-colorings of an l-cycle is also (d− 1)l + (−1)l(d− 1).

We would like to count the d-edge-colorings of a k-cycle with l vertices with different colors on
its two edges and k − l vertices with the same color on its two edges. Notice that once we fix
the location of the l vertices with different colors, then the edges between any two such vertices
must have the same color, and so we can think of the k-cycle as an l-cycle and each such coloring
corresponds to a proper d-edge-colorings of an l-cycle. By enumerating the location of the l vertices
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and using Fact 5.9, the number of such d-edge-colorings is
(k
l

)
·
(
(d− 1)l + (−1)l(d− 1)

)
. Therefore,

the total contribution of the second case is equal to

k∑

l=0

(
k

l

)
·
(
(d− 1)l + (−1)l(d− 1)

)
· 3k−l

dk(d+ 2)k

=
1

dk(d+ 2)k

(
k∑

l=0

(
k

l

)
(d− 1)l3k−l + (d− 1)

k∑

l=0

(
k

l

)
(−1)l3k−l

)

=
1

dk(d+ 2)k

(
(d+ 2)k + (d− 1)2k

)
,

where the last equality is by the binomial theorem. Combining the two cases,

E

[
k∏

s=1

〈vis , vis+1〉2
]
=

(d
2

)
2k + (d+ 2)k + (d− 1)2k

dk(d+ 2)k
=

1

dk
+

d2 − 1

2

(
2

d(d+ 2)

)k

.

5.2.5 Fourth Moment Analysis

We can use Lemma 5.7 and Lemma 5.8 to compute tr(G4).

Lemma 5.10.

E tr(G4) ≤ n4

d4

(
1 +

d4

n3
+

18d2

n2
+

105

n2
+

4d

n
+

34

n
+

8

d2

)
.

Proof. To compute E tr(G4), we only need to consider closed 4-walks (i1, i2, i3, i4, i1). We do a case
analysis on the possible configurations of closed 4-walks.

1. There are four self loops, i.e. i1 = i2 = i3 = i4, in which case the contribution is simply one as
the vectors are of length one by construction. There are total n possibilities for the location
of the self-loops, and so the total contribution in this case is (L4) := n.

2. There are two self loops and a single edge traversed two times. By Lemma 5.7, this graph
contributes ξ(2χ1) = 3/d(d + 2). There are

(4
2

)
places to add two self-loops to a single edge

and n(n − 1) possibilities for the two vertices of the edge, so the total contribution in this
case is

(L2E) :=
18n(n− 1)

d(d + 2)
≤ 18n2

d2
.

3. The only other case with two distinct vertices is that an edge is traversed four times, and its
contribution is ξ(4χ1) by Lemma 5.7. There are n(n− 1) for the location of the two vertices,
and the total contribution in this case is

(E2) := n(n− 1) · ξ(4χ1) =
3 · 5 · 7 · n(n− 1)

d(d + 2)(d+ 4)(d + 6)
≤ 105n2

d4
.
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4. There is one self loop and a 3-cycle. This graph contributes the same as a 3-cycle which is
given by Lemma 5.8. There are 4 places to add the self-loop and n(n− 1)(n− 2) possibilities
for the three vertices of the triangle, so the total contribution in this case is

(LC3) := 4n(n − 1)(n − 2)

(
1

d3
+

d2 − 1

2

(
2

d(d+ 2)

)3
)
≤ 4n3

d3
+

16n3

d4
.

5. The only other case with three distinct vertices is two different edges sharing a single common
vertex. By Lemma 5.7, this graph contributes (ξ(2χ1))

2. Note that there are two ways to
combine, as the two edges could share the starting vertex or the middle vertex. There are
n(n− 1)(n − 2) for the locations of the three vertices, and so the total contribution is

(P2) := 2n(n− 1)(n − 2)(ξ(2χ1))
2 = 2n(n− 1)(n − 2)

(
3

d(d+ 2)

)2

≤ 18n3

d4
.

6. Finally, the only case with four distinct vertices is a 4-cycle. There are n(n− 1)(n− 2)(n− 3)
possibilities for the locations of the four vertices, and by Lemma 5.8 the total contribution is

(C4) := n(n− 1)(n − 2)(n − 3)

(
1

d4
+

23(d2 − 1)

d4(d+ 2)4

)
≤ n4

d4
+

8n4

d6
.

Combining all the cases,

tr(G4) = (L4) + (L2E) + (E2) + (LC3) + (P2) + (C4)

≤ n+
18n2

d2
+

105n2

d4
+

4n3

d3
+

16n3

d4
+

18n3

d4
+

n4

d4
+

8n4

d6
.

Taking the factor n4/d4 out proves the lemma.

5.2.6 Proof of Theorem 5.1

We wrap up the fourth moment analysis to prove Theorem 5.1. Using Lemma 5.10 in Lemma 5.5,
we have

P

[
λ2(G) ≤ (1− λ)2 · n

d

]
≤

(
E[tr(G4)]−

(n
d

)4(
1 +

d− 1

n

)4
)/(

(1− λ)8
(n
d

)4)
.

≤ 1

(1− λ)8

(
1 +

d4

n3
+

18d2

n2
+

105

n2
+

4d

n
+

34

n
+

8

d2
−
(
1 +

d− 1

n

)4
)

≤ 1

(1− λ)8

(
d4

n3
+

18d2

n2
+

105

n2
+

4d

n
+

34

n
+

8

d2
− d− 1

n

)
,

where we used (1 + (d− 1)/n)4 ≥ 1 + (d− 1)/n.

For any constant λ, by generating n ≫ d4/3 random unit vectors, the probability that λ2(G) >
(1− λ)2n/d is at most 1/1000 where the dominating term is d4/n3.
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Also, by Corollary 5.4, by generating n = d log3 d random unit vectors, the resulting frame is
ǫ-nearly doubly stochastic with failure probability at most inverse polynomial in d.

Therefore, by generating n≫ d4/3 random unit vectors, with probability at least 0.99, the resulting
frame is ǫ-nearly doubly stochastic for ǫ ≪ 1/ log d and λ2(G) ≤ (1 − λ)2 · n/d for any constant
0 ≤ λ < 1. This proves Theorem 5.1.

Remark 5.11. We believe that the trace method can be improved to prove the same conclusion
with only O(dpolylog d) random unit vectors.
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A Operator Scaling

The following is a proof that the continuous operator scaling algorithm is equivalent to the gradient
flow that always moves in the direction of minimizing ∆.

Lemma A.1. Given an operator A = (A1, . . . , Ak) where Ai ∈ R
m×n for 1 ≤ i ≤ k, the direction

defined by

d

dt
Ai :=


s(A) · Im −m

k∑

j=1

AjA
∗
j


Ai +Ai


s(A) · In − n

k∑

j=1

A∗
jAj


 for 1 ≤ i ≤ k

minimizes the function

∆(A) = 1

m

∥∥∥∥∥s(A) · Im −m
k∑

i=1

AiA
∗
i

∥∥∥∥∥

2

F

+
1

n

∥∥∥∥∥s(A) · In − n
k∑

i=1

A∗
iAi

∥∥∥∥∥

2

F

.

Proof. As in Definition 2.14, we write

E(A) = s(A) · Im −m
k∑

i=1

AiA
∗
i and F (A) = s(A) · In − n

k∑

i=1

A∗
iAi.

Then

∆(A) = 1

m
tr(E(A)2) + 1

n
tr(F (A)2) and

d

dt
Ai = E(A) ·Ai +Ai · F (A).

Consider the directional derivative of ∆(A) at the direction of H = (H1, . . . ,Hk) where each
Hi ∈ R

m×n. For ease of notation, we write E = E(A), F = F (A) and s = s(A) in the following,
with the understanding that these are dependent on A and we are moving A in the direction H.

∇H∆(A) = 1

m
tr
(
2E · ∇HE

)
+

1

n
tr
(
2F · ∇HF

)

=
2

m
tr

(
E · ∇Hs · Im −m

k∑

i=1

2E · ∇HAi ·A∗
i

)
+

2

n
tr

(
F · ∇Hs · In − n

k∑

i=1

2FA∗
i · ∇HAi

)

=
2

m
tr

(
−m

k∑

i=1

2EHiA
∗
i

)
+

2

n
tr

(
−n

k∑

i=1

2FA∗
iHi

)

= −4 tr
(
EHiA

∗
i + FA∗

iHi

)

= −4
〈
EAi +AiF,Hi

〉
,

where the third inequality uses the fact that tr(E) = 0 and tr(F ) = 0 as stated in Definition 2.14.
It follows that the direction Hi := EAi +AiF minimizes ∆(A).

The following is an alternative proof of Lemma 3.6 provided by John Watrous.
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Lemma A.2 (Watrous, personal communication). If A is an ǫ-nearly doubly balanced operator,
then the largest singular value of its matrix representation MA in Definition 1.4 is

σ1(MA) ≤ (1 + ǫ)
s(A)√
mn

.

Proof. The proof is a generalization of the proof of Theorem 4.27 in [61]. As stated in Definition 2.6,

σ1(MA) = max
Y ∈Rn×n

‖Φ(Y )‖F
‖Y ‖F

≤ max
Y ∈Cn×n

‖Φ(Y )‖F
‖Y ‖F

,

where Φ(Y ) is as defined in (2.1).

First, we bound the maximum for Hermitian matrix Y . Let Y =
∑n

i=k λkyky
∗
k be an eigenvalue

decomposition of H. Let

ρk := Φ(yky
∗
k) so that Φ(Y ) =

n∑

k=1

Φ(λkyky
∗
k) =

n∑

k=1

λkρk and Φ(In) =

n∑

k=1

Φ(yky
∗
k) =

n∑

k=1

ρk.

Then, by Cauchy-Schwarz inequality and Hölder’s inequality for Schatten norms for matrices,

‖Φ(Y )‖2F = ‖
n∑

k=1

λkρk‖2F =

n∑

k=1

n∑

j=1

λkλj〈ρk, ρj〉 ≤

√√√√
n∑

k=1

n∑

j=1

λ2
k〈ρk, ρj〉

√√√√
n∑

k=1

n∑

j=1

λ2
j 〈ρk, ρj〉

=
n∑

k=1

n∑

j=1

λ2
k〈ρk, ρj〉 =

n∑

k=1

λ2
k〈ρk,Φ(In)〉 ≤

n∑

k=1

λ2
k ‖ρk‖1 ‖Φ(In)‖op .

Since Φ is a positive map, ρk = Φ(yky
∗
k) � 0 by Fact 2.9(2). It follows that the trace norm of ρk is

simply the trace of ρk, and so

‖ρk‖1 = 〈Im, ρk〉 = 〈Im,Φ(yky
∗
k)〉 = 〈Φ∗(Im), yky

∗
k〉 ≤ ‖Φ∗(Im)‖op ≤ (1 + ǫ)

s

n
,

where the third equality is by Fact 2.9(3) and the last inequality follows from the assumption that
A is ǫ-nearly doubly balanced. Therefore,

‖Φ(Y )‖2F ≤
n∑

k=1

λ2
i ‖ρk‖1 ‖Φ(In)‖op ≤ (1 + ǫ)

s

n
· (1 + ǫ)

s

m
·

n∑

k=1

λ2
k =

(1 + ǫ)2s2

mn
‖Y ‖2F ,

where the second inequality is from the assumption that A is ǫ-nearly doubly balanced.

For the non-Hermitian case, we use a standard reduction and write Y = H + iK where H =
(Y + Y ∗)/2 and K = (Y − Y ∗)/2i are Hermitian matrices. Note that ‖Y ‖2F = ‖H‖2F + ‖K‖2F . As
Φ is neccessarily Hermitian perserving, we also have ‖Φ(Y )‖2F = ‖Φ(H) + iΦ(K)‖2F = ‖Φ(H)‖2F +
‖Φ(K)‖2F . Therefore, as H and K are Hermitian,

‖Φ(Y )‖2F = ‖Φ(H)‖2F + ‖Φ(K)‖2F ≤
(1 + ǫ)2s2

mn
(‖H‖2F + ‖K‖2F ) =

(1 + ǫ)2s2

mn
‖Y ‖2F .
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B Matrix Scaling

The aim of this section is to provide a self-contained proof of the linear convergence result in the
simpler setting of matrix scaling. It can be read as an exposition of the main ideas in Section 3.

In the matrix scaling problem, we are given a non-negative matrix B ∈ R
m×n, and the goal is to

find a left diagonal scaling matrix L ∈ R
m×m and a right diagonal scaling matrix R ∈ R

n×n such
that LBR is doubly balanced, or report that such scaling matrices do not exist.

B.1 Definitions

In the following, we state the important definitions for the matrix scaling problem. Given a matrix
B ∈ R

m×n, we define

s(B) :=

m∑

i=1

n∑

j=1

Bij and ri(B) :=

n∑

j=1

Bij and cj(B) :=

m∑

i=1

Bij (B.1)

as the size, the i-th row sum, and the j-th column sum of the matrix B.

A matrix B is ǫ-nearly doubly balanced if

(1− ǫ)
s(B)

m
≤ ri(B) ≤ (1 + ǫ)

s(B)

m
and (1− ǫ)

s(B)

n
≤ cj(B) ≤ (1 + ǫ)

s(B)

n
(B.2)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and B is doubly balanced when ǫ = 0.

The ℓ2-error of B is defined as

∆(B) := ∆r(B) + ∆c(B) where ∆r(B) :=
1

m

m∑

i=1

(s−mri)
2 and ∆c(B) :=

1

n

n∑

j=1

(s − ncj)
2.

(B.3)

The spectral condition is the same as defined in Lemma 4.3.

Definition B.1 (Spectral Gap Condition for Matrix). A matrix B ∈ Rm×n satisfies the λ-spectral
gap condition if

σ2(B) ≤ (1− λ)
s(B)√
mn

.

B.2 Continuous Matrix Scaling

The matrix scaling problem is a special case of the operator scaling problem. Following the reduction
in Section 4.1, given a non-negative matrix B ∈ Rm×n, we consider the matrix A ∈ Rm×n where
the (i, j)-th entry of A is

aij :=
√

Bij. (B.4)

64



The continuous matrix scaling algorithm works on A and is defined by the following differential
equation:

d

dt
aij = (s(B)−mri(B) + s(B)− ncj(B)) · aij. (B.5)

Many quantities change over time in the dynamical system. We use the superscript (t) to denote the
quantity of interest at time t. Given a non-negative matrix B ∈ R

m×n as the input of the matrix
scaling problem, the matrix A in (B.4) is the input of the continuous operator scaling algorithm
at time t = 0, i.e. A(0) := A and B(0) := B. Then A(t) changes over time following (B.5) and

B(t) is defined as the matrix with B
(t)
ij = (a

(t)
ij )

2. The dynamical system stops when B(t) is doubly

balanced. It is proved in [45] that ∆(∞) = 0.

We state some known results about the continuous matrix scaling algorithm for the analysis. First,
the matrix A at any time is a scaling of the original matrix in the following form.

Lemma B.2 (Lemma 4.2.10 in [45]). At time T ≥ 0, define L(T ) ∈ R
m×m and R(T ) ∈ R

n×n as

L(T ) := diag

(
exp

( ∫ T

0

(
s(t) −mr

(t)
i

)
dt
))

and R(T ) := diag

(
exp

( ∫ T

0

(
s(t) − nc

(t)
j

)
dt
))

.

Then A(T ) = L(T )A(0)R(T ).

In particular, if ∆(t) = 0, then (L(t))2 · B · (R(t))2 is doubly balanced, and (L(t))2 and (R(t))2 is
a solution to the matrix scaling problem. This is how the continuous operator scaling algorithm
finds a scaling solution.

From now on, the matrix of interest is B(t) and it evolves over time as A(t) changes in the dynamical
system. For ease of notation, we will omit the matrix B(t) and sometimes also the superscript (t)

on other quantities when they are clear from the context.

Lemma B.3 (Lemma 3.6.1 in [45]). For an ǫ-nearly doubly balanced matrix B,

∆ ≤ 2ǫ2s2.

Lemma B.4 (Lemma 4.2.8 in [45]). For any time t ≥ 0,

d

dt
s = −2∆.

Lemma B.5 (Lemma 4.2.9 in [45]). For any time t ≥ 0,

d

dt
∆ = −4

m∑

i=1

n∑

j=1

(2s −mri − ncj)
2 · a2ij .

Lemma B.6 (Proposition 4.3.1 in [45]). Suppose there exists µ > 0 such that for all 0 ≤ t ≤ T ,

− d

dt
∆(t) ≥ µ∆(t).

Then

∆(T ) ≤ ∆(0)e−µT and s(0) − s(T ) ≤ 2∆(0)

µ
.
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B.3 Overview

The proof overview is stated in Section 1.5.2 in the matrix scaling setting, so we won’t repeat here.
It is easy to see from Lemma B.5 that

− 1

4

d

dt
∆ =

m∑

i=1

(s −mri)
2ri +

n∑

j=1

(s− ncj)
2cj + 2

m∑

i=1

n∑

j=1

(s−mri)(s− ncj)a
2
ij , (B.6)

The structure is the same as in Section 3 for the general operator setting. Our goal is to prove the
following theorem.

Theorem B.7 (Linear Convergence). Given a non-negative matrix B ∈ R
m×n with m ≤ n, if

B is ǫ-nearly doubly balanced and B satisfies the λ-spectral gap condition in Definition B.1 with
λ2 ≥ Cǫ lnm for a sufficiently large constant C, then in the gradient flow,

∆(t) ≤ ∆(0)e−λs(0)t for any t ≥ 0.

In particular, the gradient flow converges to a η-nearly doubly balanced scaling in time t = O
(

1
λ log(mη )

)
,

and such a scaling always exists under our assumptions.

B.4 Lower Bounding the Quadratic Terms

First, we prove a structural result bounding the maximum error of the rows and columns, which
will also be useful in bounding the condition number of the scaling solution later. Then, we will
use this structural result to lower bound the quadratic terms of −∆′.

Proposition B.8. If B(0) is ǫ-nearly doubly balanced, then for any t ≥ 0,
∣∣∣s(t) −mr

(t)
i

∣∣∣ ≤ (1 + ǫ)s(0) − s(t) and
∣∣∣s(t) − nc

(t)
j

∣∣∣ ≤ (1 + ǫ)s(0) − s(t)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Proof. We present a slightly informal proof, which can be made formal by using the envelope
theorem stated in Theorem 3.3 as done in Proposition 3.2.

Let

g(t) = max

{
max
1≤i≤m

{∣∣∣s(t) −mr
(t)
i

∣∣∣
}
, max
1≤j≤n

{∣∣∣s(t) − nc
(t)
j

∣∣∣
}}

be the maximum violation of a row and a column at time t. Note that g(0) ≤ ǫs(0) as B(0) is
ǫ-nearly doubly balanced. We would like to show that for almost every time τ ≥ 0,

d

dτ
g(τ) ≤ 2∆(τ).

This would imply the proposition as

g(t) = g(0) +

∫ t

0

d

dτ
g(τ)dτ ≤ ǫs(0) +

∫ t

0
2∆(τ)dτ = ǫs(0) −

∫ t

0

d

dτ
s(τ)dτ = (1 + ǫ)s(0) − s(t),
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where the second last equality is by Lemma B.4.

To bound d
dtg(t), we consider different cases of how the maximum of g(t) is achieved. Suppose the

maximum of g(t) is achieved by column j and s(t) −nc
(t)
j is negative such that g(t) = −s(t) +nc

(t)
j .

The change of the j-th column sum is

d

dt
c
(t)
j =

d

dt

m∑

i=1

(
a
(t)
ij

)2
= 2

m∑

i=1

a
(t)
ij ·

d

dt
a
(t)
ij = 2

m∑

i=1

(
a
(t)
ij

)2 (
s(t) −mr

(t)
i + s(t) − nc

(t)
j

)
≤ 0,

where the last equality is by the definition of the dynamical system in (B.5), and the inequality is

by our assumption that the maximum of g(t) is achieved by column j so that s(t) − nc
(t)
j = −g(t)

and s(t) −mr
(t)
i ≤ g(t) for all 1 ≤ i ≤ m. It follows that

d

dt

(
−s(t) + nc

(t)
j

)
= 2∆(t) +

d

dt
nc

(t)
j ≤ 2∆(t),

where the first equality is by Lemma B.4.

Similarly, suppose the maximum of g(t) is achieved by column j and s(t) −nc
(t)
j is positive, we can

show that
d

dt

(
s(t) − nc

(t)
j

)
= −2∆(t) − d

dt
nc

(t)
j ≤ −2∆(t).

By symmetry of rows and columns, we can prove the same bounds for the change of the violation
of the i-th row sum. Therefore, in all four cases, the change of the maximum violation is at most
2∆(t). Note that g can be written as the maximum of m + n functions, one for each row and one
for each column. We can then use the envelope theorem in Theorem 3.3 as done in Proposition 3.2
to prove formally that g(t) = g(0) +

∫ t
0

d
dτ g(τ)dτ to complete the proof.

(It is possible to prove the proposition for the matrix case without using the envelope theorem as g
is only the maximum of a finite number of functions, but in the operator case g(t) is the maximum
quadratic form of infinitely many unit vectors and we don’t know of a proof without using the
envelope theorem.)

We have the following corollary about the row sums and the column sums by rewriting the conclu-
sions of Proposition B.8.

Proposition B.9. If B(0) is ǫ-nearly doubly balanced, then for any t ≥ 0, for 1 ≤ i ≤ m and
1 ≤ j ≤ n,

2s(t) − (1 + ǫ)s(0)

m
≤ r

(t)
i ≤

(1 + ǫ)s(0)

m
and

2s(t) − (1 + ǫ)s(0)

n
≤ c

(t)
j ≤

(1 + ǫ)s(0)

n
.

We can use Proposition B.9 to lower bound the quadratic terms in (B.6).

Lemma B.10. If B(0) is ǫ-nearly doubly balanced, then for any t ≥ 0,

m∑

i=1

(
s(t) −mr

(t)
i

)2
· r(t)i +

n∑

j=1

(
s(t) − nc

(t)
j

)2
· c(t)j ≥

(
2s(t) − (1 + ǫ)s(0)

)
∆(t).
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Proof. Using Proposition B.9, the first term in (B.6) is

m∑

i=1

(
s(t) −mr

(t)
i

)2
· r(t)i ≥

2s(t) − (1 + ǫ)s(0)

m

m∑

i=1

(
s(t) −mr

(t)
i

)2
=
(
2s(t) − (1 + ǫ)s(0)

)
∆(t)

r .

Similarly, the second term in (B.6) is

n∑

j=1

(
s(t) − nc

(t)
j

)2
· c(t)j ≥

2s(t) − (1 + ǫ)s(0)

n

n∑

j=1

(
s(t) − nc

(t)
j

)2
=
(
2s(t) − (1 + ǫ)s(0)

)
∆(t)

c .

The lemma follows from ∆r +∆c = ∆ in (B.3).

B.5 Upper Bounding the Cross Term

We will first bound the largest singular value of the matrix B for any ǫ-nearly doubly balanced
matrix B. Then, we will use a spectral argument to upper bound the absolute value of the cross
term in (B.6).

Lemma B.11. If B ∈ R
m×n is ǫ-nearly doubly balanced, then

σ1(B) ≤ (1 + ǫ)
s(B)√
mn

.

Proof. We use the fact that the square of the largest singular value of a non-negative matrix is at
most the maximum column sum times the maximum row sum (see e.g. page 223 of [38]). So,

σ2
1(B) ≤ max

1≤i≤m
ri(B) · max

1≤j≤n
cj(B) ≤ (1 + ǫ)s(B)

m
· (1 + ǫ)s(B)

n
=

(1 + ǫ)2s(B)2

mn
,

where the second inequality follows from the assumption that B is ǫ-nearly doubly balanced.

Lemma B.11 implies that ~1n is an “approximate” first singular vector of B. By the spectral
gap condition in Definition B.1, it will follow that any vector perpendicular to ~1n has a “small”
quadratic form, and this can be used to bound the cross term in Lemma B.6. The following lemma
summarizes the spectral argument, which is the same as Lemma 3.7. Since Lemma 3.7 has no
operators involved, we refer to the proof in Section 3.2 and just restate the statement here for ease
of reference.

Lemma B.12. Let M ∈ R
m×n. Let p ∈ R

m and q ∈ R
n be unit vectors. Suppose the following

assumptions hold:

σ1(M)2 ≤ 1 + δ1 and σ2(M)2 ≤ 1− δ2 and p∗Mq = 1.

Then, for any unit vectors x ⊥ p and y ⊥ q, it holds that |x∗My| ≤ 1 + δ1 − δ2.

We can use Lemma B.12 to bound the cross term in Lemma B.6.
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Lemma B.13. If B satisfies the spectral condition in Definition B.1 with the additional assumption
that σ1(B) ≤ (1 + δ)s/

√
mn for δ ≤ 1, then

2

∣∣∣∣∣∣

m∑

i=1

n∑

j=1

(s−mri)(s − ncj)a
2
ij

∣∣∣∣∣∣
≤ (1 + 3δ − λ)s∆.

Proof. We apply Lemma B.12 with M ∈ R
m×n, p, x ∈ R

m and q, y ∈ R
n where

M =

√
mn

s
· B, p =

1√
m
·~1m, q =

1√
n
·~1n, xi =

s−mri√
m∆r

, yj =
s− ncj√

n∆c
.

Clearly, p, q, x, y are unit vectors, and x ⊥ p and y ⊥ q. We check the assumptions of Lemma B.12.
By the additional assumption,

σ1(M)2 =
mn

s2
· σ1(B)2 ≤ (1 + δ)2 = 1 + 2δ + δ2,

and so we can set δ1 := 2δ + δ2. Similarly, by the spectral gap condition in Definition B.1,

σ2(M)2 =
mn

s2
· σ2(B)2 ≤ (1− λ)2 = 1− 2λ+ λ2,

and so we can set δ2 := 2λ− λ2. Also, we check that

p∗Mq =
~1∗mB~1n

s
=

1

s

m∑

i=1

n∑

j=1

a2ij = 1.

Therefore, we can conclude from Lemma B.1 that

1 + δ1 − δ2 ≥ |x∗My| =

∣∣∣∣∣∣

m∑

i=1

n∑

j=1

s−mri√
m∆r

·
√
mn

s
a2ij ·

s− ncj√
n∆c

∣∣∣∣∣∣
=

∣∣∣∣∣∣

m∑

i=1

n∑

j=1

(s −mri)(s − ncj)a
2
ij

s
√
∆r∆c

∣∣∣∣∣∣
,

which implies that

∣∣∣∣∣∣

m∑

i=1

n∑

j=1

(s−mri)(s− ncj)a
2
ij

∣∣∣∣∣∣
≤ (1 + 2δ + δ2 − 2λ+ λ2)s

√
∆r∆c ≤

1

2
(1 + 3δ − λ)s

√
∆,

where the last inequality follows from
√
∆r∆c ≤ (∆r +∆c)/2 = ∆/2 and δ ≤ 1 and λ ≤ 1.

B.6 Lower Bounding the Convergence Rate

Putting the bounds in Lemma B.10 and Lemma B.13 into (B.6), we obtain the following lower
bound on the convergence rate of ∆ at any time t.
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Proposition B.14. If B(0) is ǫ-nearly doubly balanced and B(t) satisfies the spectral conditions
that

σ1

(
B(t)

)
≤ (1 + δ(t))

s(t)√
mn

and σ2

(
B(t)

)
≤ (1− λ(t))

s(t)√
mn

for δ(t) ≤ 1, then

−1

4

d

dt
∆(t) ≥

(
(1 + λ(t) − 3δ(t))s(t) − (1 + ǫ)s(0)

)
∆(t).

Note that Proposition B.14 implies that the dynamical system has linear convergence at time t = 0.
To see this, note that δ(0) ≤ ǫ by Lemma B.11, and λ(0) = λ from Definition B.1, and therefore

− d

dt
∆(0) ≥ 4(λ− 4ǫ)s(0)∆(0).

Under our assumption that λ≫ ǫ, the dynamical system has linear convergence at time t = 0 with
rate at least λs(0).

To prove that the dynamical system has linear convergence with rate λs(0) for all time t ≥ 0, we
will prove that the quantities in Proposition B.14 do not change much when we move from A(0) to
A(t), i.e. s(t) ≈ s(0), δ(t) ≈ δ(0), and λ(t) ≈ λ.

To bound the change of the singular values of B(t), we will bound the condition number of the
scaling solutions in the dynamical system in the next subsection, and then use these bounds to
argue about the change of the singular values and establish Theorem B.7.

B.7 Condition Number

Recall from Lemma B.2 that A(T ) = L(T )A(0)R(T ) where

L(T ) = diag

(
exp

(∫ T

0

(
s(t) −mr

(t)
i

)
dt
))

and R(T ) = diag

(
exp

( ∫ T

0

(
s(t) − nc

(t)
j

)
dt
))

.

To bound the condition number of L(T ) and R(T ), we bound the integrals in the exponent. To
bound the integral, we divide the time into two phases. In the first phase, we use Proposition B.8

to argue that |s(t) − mr
(t)
i | ≈ |s(0) − mr

(0)
i |. In the second phase, we use that ∆(t) is converging

linearly to argue that |s(t) −mr
(t)
i | ≤

√
m∆(t) is converging linearly. In the following lemma, we

should think of g as the spectral gap parameter λ in Definition 1.4. The proof of the following
lemma is almost identical to that in Lemma 3.16.

Lemma B.15. Suppose there exists g > 0 such that for all 0 ≤ t ≤ T , it holds that

− d

dt
∆(t) ≥ gs(0)∆(t).

If B(0) is ǫ-nearly doubly balanced for ǫ ≤ g, then

max
i
{L(T )

ii } ≤ exp

(
O

(
ǫ lnm

g

))
and min

i
{L(T )

ii } ≥ exp

(
O

(
−ǫ lnm

g

))
.
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Proof. To bound the condition number, we just need to bound L
(T )
ii for each 1 ≤ i ≤ m as L(T ) is

a diagonal matrix. Using the form of L(T ) described in Lemma B.2, we bound the absolute value
of the integral

∣∣∣∣
∫ T

0
(s(t) −mr

(t)
i )dt

∣∣∣∣ ≤
∫ τ

0

∣∣∣s(t) −mr
(t)
i

∣∣∣ dt+
∫ T

τ

∣∣∣s(t) −mr
(t)
i

∣∣∣ dt.

We split the integral into two terms. For the first term, we use Proposition B.8 to bound
∫ τ

0

∣∣∣s(t) −mr
(t)
i

∣∣∣ dt ≤
∫ τ

0

(
(1 + ǫ)s(0) − s(t)

)
dt ≤ τ(s(0) − s(T ) + ǫs(0)),

where the second inequality is by the fact that s(t) is non-increasing from Lemma B.4. Applying
Lemma B.6 with our assumption that µ = gs(0), it follows that

∫ τ

0

∣∣∣s(t) −mr
(t)
i

∣∣∣ dt ≤ τ

(
2∆(0)

gs(0)
+ ǫs(0)

)
≤ τ

(
4ǫ2s(0)

g
+ ǫs(0)

)
≤ 5τǫs(0),

where the second inequality is by Lemma B.3, and the last inequality is by our assumption that
g ≥ ǫ.

For the second term,

∫ T

τ

∣∣∣s(t) −mr
(t)
i

∣∣∣ dt ≤
∫ T

τ

√
m∆(t)dt ≤

√
m∆(τ)

∫ T

τ
e−gs(0)(t−τ)/2dt ≤ 2

√
m∆(τ)

gs(0)
,

where the second inequality is from the inequality that |s(t) − mr
(t)
i | ≤

√
m∆(t) from (B.3), and

the third inequality follows from the assumption that ∆ is converging linearly with µ = gs(0); see
Lemma B.6.

We choose

τ =
lnm

gs(0)
=⇒ e−gs(0)τ ≤ 1

m
.

This implies that

∆(τ) ≤ ∆(0)e−gs(0)τ ≤ ∆(0)

m
≤ 2ǫ2(s(0))2

m
=⇒ 2

√
m∆(τ)

gs(0)
≤ 3ǫ

g
,

and so the second term is at most 3ǫ/g. The first term is at most 5τǫs(0) ≤ 5ǫ lnm/g. Therefore,
we conclude that

exp

(
−8ǫ lnm

g

)
≤ exp

(
−
∫ T

0

∣∣∣s(t) −mr
(t)
i

∣∣∣ dt
)
≤ L

(T )
i,i ≤ exp

(∫ T

0

∣∣∣s(t) −mr
(t)
i

∣∣∣ dt
)
≤ exp

(
8ǫ lnm

g

)
.

We cannot use the same argument to bound κ(R(T )), as it will only give us a bound with dependency
on n (where we assumed m ≤ n). Instead, we use the bound on κ(L(T )) to derive a similar bound
on κ(L(T )). The proof of the following lemma is simpler than that of Lemma 3.18 in the operator
case.
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Lemma B.16. Suppose there exists g > 0 such that for all 0 ≤ t ≤ T , it holds that

− d

dt
∆(t) ≥ gs(0)∆(t).

If B(0) is ǫ-nearly doubly balanced for ǫ ≤ g ≤ 1, then maxi{L(T )
ii } ≤ eℓ and mini{L(T )

ii } ≥ e−ℓ

implies that

max
j
{R(T )

jj } ≤ eℓ · (1 +O(ǫ)) and min
j
{R(T )

jj } ≥ e−ℓ · (1−O(ǫ))

Proof. By Lemma B.15,

(
a
(T )
ij

)2
=
(
L
(T )
i,i

)2 (
a
(0)
ij

)2 (
R

(T )
j,j

)2
≥ e−2ℓ

(
a
(0)
ij

)2 (
R

(T )
j,j

)2
.

To upper bound
(
R

(T )
j,j

)2
, we consider the column sum by summing the above inequality over i to

get

c
(T )
j ≥ e−2ℓc

(0)
j

(
R

(T )
j,j

)2
.

This implies that

(
R

(T )
j,j

)2
≤ e2ℓc

(T )
j /c

(0)
j ≤ e2ℓ · (1 + ǫ)s(0)

n
· n

(1− ǫ)s(0)
≤ e2ℓ(1 +O(ǫ)),

where the second inequality is by Proposition B.9 and that B(0) is ǫ-nearly doubly balanced.

Similarly, we can lower bound

(
R

(T )
j,j

)2
≥ e−2ℓc

(T )
j /c

(0)
j ≥ e−2ℓ · 2s

(T ) − (1 + ǫ)s(0)

n
· n

(1 + ǫ)s(0)
≥ e−2ℓ(1−O(ǫ)),

where the last inequality uses the assumption that ∆(t) is converging linearly to apply Lemma B.6
with µ = gs(0) to obtain

s(0) − s(T ) ≤ 2∆(0)

gs(0)
≤ 4ǫ2s(0)

g
≤ 4ǫs(0) =⇒ s(T ) ≥ (1− 4ǫ) · s(0),

where we used Lemma B.3 and the assumption that ǫ ≤ g.

B.8 Invariance of Linear Convergence

We will first use Lemma B.15 and Lemma B.16 to bound the change of the singular values of B(t).
Then, we will combine the previous results to prove Theorem B.7 that ∆(t) is converging linearly
for all t ≥ 0.
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Lemma B.17. For any t ≥ 0, suppose the diagonal matrices L(t) ∈ R
m×m and R(t) ∈ R

n×n satisfy∥∥L(t) − Im
∥∥
op
≤ ζ and

∥∥R(t) − In
∥∥
op
≤ ζ for some ζ ≤ 1, then

∣∣∣σk
(
B(t)

)
− σk

(
B(0)

)∣∣∣ ≤ O(ζ) ·
∥∥∥B(0)

∥∥∥
op

.

Proof. We use Lemma 3.19 to bound the singular value change by the operator norm of the matrix
change:

∣∣∣σk
(
B(t)

)
− σk

(
B(0)

)∣∣∣ =
∣∣∣∣σk
((

L(t)
)2

B(0)
(
R(t)

)2)
− σk

(
B(0)

)∣∣∣∣ ≤
∥∥∥∥
(
L(t)

)2
B(0)

(
R(t)

)2
−B(0)

∥∥∥∥
op

.

We write L(t) = I + L̃ and R(t) = I + R̃ and B = B(0), so that
∥∥∥R̃
∥∥∥
op
≤ ζ and

∥∥∥C̃
∥∥∥
op
≤ ζ by our

assumptions. Then,

∥∥B − L2BR2
∥∥
op

=
∥∥∥B − (I + L̃)2B(I + R̃)2

∥∥∥
op

=
∥∥∥2L̃B + 2BR̃+ L̃2B +BR̃2 + 2L̃2BR̃+ 2L̃BR̃2 + 4L̃BR̃+ L̃2BR̃2

∥∥∥
op

≤ O(ζ) ‖B‖op ,

where we used the triangle inequality and bound the sum of the eight operator norms, and
used the fact that ‖XBY ‖op ≤ ‖X‖op ‖Y ‖op ‖B‖op for each term, and used the assumption that∥∥∥L̃
∥∥∥
op

,
∥∥∥R̃
∥∥∥
op
≤ ζ ≤ 1 so that each term is at most O(ζ) ‖B‖op.

We are ready to put together the results to prove the following theorem which implies Theorem B.7.
The proof is almost the same as that of Theorem 3.21.

Theorem B.18. If B(0) is ǫ-nearly doubly balanced and B(0) satisfies the λ-spectral gap condition
in Definition B.1 with λ2 ≥ Cǫ lnm for a sufficiently large constant C, then for all t ≥ 0 it holds
that

− d

dt
∆(t) = λs(0)∆(t).

Proof. Recall from Proposition B.14 the definitions of δ(t) and λ(t), and δ(0) ≤ ǫ by Lemma B.11
and λ(0) = λ from Definition B.1. Let T be the supremum such that s(t) ≥ (1 − ǫ)s(0) and
λ(t) − 3δ(t) ≥ 1

2 (λ
(0) − 3δ(0)). Our goal is to prove that ∆(t) is converging linearly for 0 ≤ t ≤ T

and T is unbounded.

First, we show that ∆(t) is converging linearly for 0 ≤ t ≤ T . By Proposition B.14,

− d

dt
∆(t) ≥ 4

(
(1 + λ(t) − 3δ(t))s(t) − (1 + ǫ)s(0)

)
∆(t)

≥ 4

(
(1− ǫ)

(
1 +

1

2
(λ(0) − 3δ(0))

)
− (1 + ǫ)

)
s(0)∆(t)

=
(
2(1 − ǫ)(λ(0) − 3δ(0))− 8ǫ

)
s(0)∆(t),
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where in the second inequality we used that s(t) ≥ (1 − ǫ)s(0) and λ(t) − 3δ(t) ≥ 1
2 (λ

(0) − 3δ(0)) for

0 ≤ t ≤ T . Note that our assumption implies that λ(0) = λ ≥ Cǫ for a sufficiently large constant C
as λ ≤ 1. Since δ(0) ≤ ǫ from Lemma B.11, it follows that for any 0 ≤ t ≤ T ,

− d

dt
∆(t) ≥ λs(0)∆(t).

Next, we argue that the size condition and the spectral gap condition will still be maintained
beyond time T . For the size change, by Lemma B.6 with µ = λs(0),

s(0) − s(T ) ≤ 2∆(0)

λs(0)
≤ 4ǫ2s(0)

λ
≪ ǫs(0),

where the second inequality is by Lemma B.3 and the last inequality is by λ ≥ Cǫ for a sufficiently
large constant C.

For the change of the second largest singular value, by definition,

σ2(B
(T ))− σ2(B

(0)) =
(1− λ(T ))s(T )

√
mn

− (1 − λ(0))s(0)√
mn

≥ (1− λ(T ))(1− ǫ)s(0)√
mn

− (1− λ(0))s(0)√
mn

=
s(0)√
mn

(λ(0) − (1− ǫ)λ(T ) − ǫ).

On the other hand, we can upper bound σ2(B
(T )) − σ2(B

(0)) using condition numbers. Using

Lemma B.15 with g = λ, maxi{L(T )
ii } ≤ exp (O(ǫ lnm/λ)) and mini{L(T )

ii } ≥ exp (−O(ǫ lnm/λ)).
Note that our assumption implies that

O

(
ǫ lnm

λ

)
≤ O

(
λ

C

)
≪ 1 =⇒

∥∥∥L(T ) − I
∥∥∥
op
≤ O

(
λ

C

)
≪ 1,

where the implication is by the inequality ex−1 ≤ O(x) for x close to zero. Then, by Lemma B.16,
we also have

∥∥R(T ) − I
∥∥
op
≤ O (λ/C). Putting these bounds into ζ of Lemma B.17, we obtain

σ2(B
(t))− σ2(B

(0)) ≤ O

(
λ

C

)
·
∥∥∥B(0)

∥∥∥
op
≤ O

(
λ

C

)
(1 + δ

(0)
1 )s(0)√
mn

.

Combining the upper bound and lower bound and using δ
(0)
1 ≤ ǫ from Lemma B.11, it follows that

λ(T ) ≥ λ− ǫ− (1 + ǫ) ·O (λ/C)

1− ǫ
≥ λ−O

(
λ

C

)
,

where the last inequality is by the assumption that λ ≥ Cǫ.

For the change of the largest singular value, by Proposition B.9,

(1− 3ǫ)s(T )

m
Im �

2s(T ) − (1 + ǫ)s(0)

m
Im � diag

({
r
(T )
i

}m

i=1

)
� (1 + ǫ)s(0)

m
Im �

(1 + 3ǫ)s(T )

m
Im,
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where the first and last inequalities use that s(T ) ≥ (1− ǫ)s(0). The same holds for diag({c(T )
j }nj=1)

and these imply thatA(T ) is 3ǫ-nearly doubly balanced. By Lemma B.11, this implies that δ(T ) ≤ 3ǫ.
Therefore,

λ(T ) − 3δ(T ) ≥ λ−O

(
λ

C

)
− 9ǫ ≥ λ−O

(
λ

C

)
≫ 1

2
λ ≥ 1

2
(λ− 3δ(0)),

where the second last inequality uses that C is a sufficiently large constant.

Since our dynamical system is continuous, we still have both conditions satisfied at time T + η for
some η > 0, which contradicts that T is the supremum that both conditions are satisifed. Therefore,
T is unbounded and the linear convergence of ∆ is maintained throughout the execution of the
dynamical system.
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