
ar
X

iv
:2

00
2.

01
10

8v
2

 [
m

at
h.

N
A

]
 3

 M
ar

 2
02

1

AN ALL-AT-ONCE PRECONDITIONER FOR EVOLUTIONARY
PARTIAL DIFFERENTIAL EQUATIONS∗

XUE-LEI LIN† AND MICHAEL K. NG‡

Abstract. In [McDonald, Pestana and Wathen, SIAM J. Sci. Comput., 40 (2018), pp. A1012–
A1033], a block circulant preconditioner is proposed for all-at-once linear systems arising from evo-
lutionary partial differential equations, in which the preconditioned matrix is proven to be diag-
onalizable and to have identity-plus-low-rank decomposition in the case of the heat equation. In
this paper, we generalize the block circulant preconditioner by introducing a small parameter ǫ > 0
into the top-right block of the block circulant preconditioner. The implementation of the general-
ized preconditioner requires the same computational complexity as that of the block circulant one.
Theoretically, we prove that (i) the generalization preserves the diagonalizability and the identity-
plus-low-rank decomposition; (ii) all eigenvalues of the new preconditioned matrix are clustered at 1
for sufficiently small ǫ; (iii) GMRES method for the preconditioned system has a linear convergence
rate independent of size of the linear system when ǫ is taken to be smaller than or comparable to
square root of time-step size. Numerical results are reported to confirm the efficiency of the pro-
posed preconditioner and to show that the generalization improves the performance of block circulant
preconditioner.

Key words. Evolutionary equations; all-at-once discretization; convergence of GMRES; block
Toeplitz matrices; preconditioning technique

AMS subject classifications. 65F08; 65F10; 15B05; 65M22

1. Introduction. In this paper, we are particularly interested in evolutionary
partial differential equations (PDEs) with first order temporal derivative. Classical
time-stepping method solve evolutionary PDEs one time step after one time step (i.e.,
in a fully sequential manner), which would be time-consuming if the number of time
steps are large. This motivates the development of parallel-in-time (PinT) methods for
evolutionary PDEs during the last two decades. Among these, we mention the parareal
algorithm [20] and a closely related algorithm multigrid-reduction-in-time (MGRiT)
algorithm [9], which attract considerable attention in recent years. Convergence of
parareal algorithm and MGRiT are respectively justified in [13] and [7]. Many efforts
are devoted to improving these two PinT algorithms and in particular the authors
[27] and [28] proposed a novel coarse grid correction, which shows great potential
for increasing the speedup according to the numerical results in [19]. There are also
many another PinT algorithms with completely different mechanism from parareal
algorithm and MGRiT, such as the space-time multigrid algorithms [12, 16, 17] and
the diagonalization-based all-at-once algorithms [11, 14, 21, 22, 26]. For an overview,
we refer the interested reader to [10].

Recently, McDonald, Pestana and Wathen in [22] proposed a block circulant pre-
conditioner to accelerate the convergence of Krylov subspace methods for solving
the all-at-once linear system arising from backward-difference time discretization of
evolutionary PDEs. It is interesting that the preconditioned system in [22] is diag-
onalizable in the case of the heat equation although the original all-at-once system
is not diagonalizable, which would be useful in aspects of theoretical convergence
analysis. Moreover, the preconditioned matrix in [22] has an identity-plus-low-rank

∗This research was supported by research Grants, 12200317, 12300218, 12300519, 17201020 from
HKRGC GRF and 11801479 from NSFC

†Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, P.R. China.,
and Beijing Computational Science Research Center, Beijing 100193, China.

‡Department of Mathematics, The University of Hong Kong

1

http://arxiv.org/abs/2002.01108v2

decomposition, which is usually related to fast convergence of the GMRES method.
However, in [22], the convergence of GMRES for the preconditioned system has not
been proven to be independent of spatial discretization step-size yet.

In this paper, we generalize the block circulant preconditioner proposed in [22]
by introducing a parameter ǫ > 0 into the top-right block of the block circulant
preconditioner. We call the generalized preconditioner by block ǫ-circulant (BEC)
preconditioner (when ǫ = 1, the BEC preconditioner is identical to block circulant
preconditioner). Theoretically, we show that (i) the generalization preserves the diag-
onalizability and the identity-plus-low-rank decomposition; (ii) all eigenvalues of the
preconditioned matrix by BEC preconditioner are clustered at 1 for sufficiently small
ǫ; (iii) GMRES method (restarted or non-restarted) for the preconditioned system
has a linear convergence rate independent of both temporal and spatial step-sizes
when ǫ is taken to be smaller than or comparable to square root of the temporal-step
size. When using Krylov subspace methods to solve the preconditioned linear system,
it requires to compute the inverse of the block ǫ-circulant preconditioner multiplied
with some given vectors. To compute the matrix-vector multiplication efficiently, we
resort to the fact that the block ǫ-circulant preconditioner is diagonalizable by means
of fast Fourier transform (FFT) with each eigen-block having the same size as that
of the spatial discretization matrix. That means, to compute the inverse of BEC pre-
conditioner multiplying a given vector is equivalent to solving a block diagonal linear
system in Fourier domain. If the spatial term is the Laplace operator and the uniform
spatial grid is employed, then the diagonal blocks of the block diagonal linear system
are further diagonalizable by fast sine transform (FST), due to which the computation
of the inverse of the BEC preconditioner times a vector is fast and exact. If the spatial
term consists of some more general differential operators, then we resort to some effi-
cient iterative solvers (e.g., multigrid method) as inner spatial solver. The details of
the implementation of the preconditioned matrix times a vector are given in Section
4, which shows that the total storage of the proposed implementation is proportional
to the number of unknowns and the total computational cost of the proposed imple-
mentation is proportional to the number of unknowns multiplied with its logarithm.
GMRES method is employed to solve the preconditioned linear system. Numerical
results for heat equation and convection-dominated convection diffusion are reported
to show that the BEC preconditioner is efficient and it improves the performance of
block circulant preconditioner.

The outline of this paper is organized as follows. In Section 2, the all-at-once
linear system arising from an evolutionary PDE is presented. In Section 3, the BEC
preconditioner is proposed, the properties of the preconditioned system and conver-
gence of GMRES for the preconditioned system are analyzed. In Section 4, the imple-
mentation of the preconditioned matrix-vector multiplication and the complexity of
GMRES method are discussed. In Section 5, Numerical results are reported. Finally,
concluding remarks are given in Section 6.

2. The All-at-Once System for Evolutionary PDEs. As in [22], we start
with the following heat equation to describe our method clearly:

∂tu(x, t) = ∇(a(x)∇u(x, t)) + f(x, t), (x, t) ∈ Ω× (0, T], Ω ⊂ R
2 or R3, (2.1)

u(x, t) = g(x, t), (x, t) ∈ ∂Ω, (2.2)

u(x, 0) = u0(x), x ∈ Ω̄, (2.3)

where Ω is open, ∂Ω denotes boundary of Ω, f , g and u0 are all given functions, a(x)
is a given positive function.

2

For a positive integer N , denote τ = T
N and tn = nτ for n = 0, 1, ..., N . The back-

ward difference scheme is employed to discretize ∂t, i.e., we adopt the discretization:

∂tu(x, tn) ≈
u(x, tn)− u(x, tn−1)

τ
, n = 1, 2, ..., N (2.4)

Let J be a positive integer. Denote the mass matrix by M ∈ RJ×J and denote
the discretization of −∇(a(x)∇·) by K ∈ R

J×J .
Then, (2.1)–(2.3) is discretized as follows

M

(

un − un−1

τ

)

+Kun = fn, n = 1, 2, ..., N, (2.5)

where fn (n = 1, 2, ..., N) consists of discretization of f and g, u0 is discretization
of u0 on the spatial mesh, the unknowns un (n = 1, 2, ..., N) are approximation of
u(·, tn) on the spatial mesh.

For column vectors vi (i = 1, 2, ...,m), we use the notation (v1;v2; · · · ;vm) to
denote the following column vector:

v1

v2

...
vm

.

Putting the N many linear systems into a large linear system, we obtain

Lu = f , (2.6)

where

u = (u1;u2; · · · ;uN), f = (τf1 +Mu0; τf2; τf3; · · · ; τfN),

L =

A0

−M A0

. . .
. . .

−M A0

∈ R
NJ×NJ , A0 = M+ τK.

Remark 1. The BEC preconditioner is still available when (2.4) is replaced by
multi-step backward difference schemes, the details of which are discussed in Section
4. For the purpose of analysis and fast implementation, some assumptions of M and
K are listed as follows

Assumption 1. Both M and K are real symmetric positive definite.
Assumption 2. The condition number, κ2(M), of M is uniformly bounded, i.e.,

sup
J∈N+

κ2(M) < +∞.

Assumption 3. Both M and K are sparse, i.e., M and K only have O(J) many
nonzero entries.

The Assumption 1 is fulfilled by a lot of discretization schemes, such as, central
difference method, finite element methods. The Assumption 2 is quite obvious when
the spatial discretization is of finite difference type, since in that case M is exactly an
identity matrix. Moreover, Assumption 2 is also fulfilled for finite element discretiza-
tion whenever the mesh is simplicial and quasi-uniform; see [18]. The Assumption 3
is obvious for finite difference method or finite element methods with locally supported
basis.

3

3. The BEC preconditioner and Analysis of the Preconditioned Sys-
tem by BEC Preconditioner. In this section, we propose the BEC preconditioner
and investigate some interesting properties such as identity-plus-low-rank decompo-
sition, spectral clustering and diagonalizability of the preconditioned matrix. These
properties may not be directly related to fast convergence of iterative solver for the
preconditioned system (see, e.g., [1, 15]). In the end of this section, we will also prove
that the GMRES method for the preconditioned system has a linear convergence rate
independent of N and J when ǫ .

√
τ .

The BEC preconditioner for the all-at-once system (2.6) is defined as

Pǫ =

A0 −ǫM
−M A0

. . .
. . .

−M A0

∈ R
NJ×NJ ,

where ǫ > 0 is a parameter. When ǫ = 1, then Pǫ is exactly the block circulant
preconditioner proposed in [22].

It is clear that L is invertible. Moreover, since L is a block lower triangular
Toeplitz matrix, L−1 is also a block lower triangular Toeplitz matrix, which can be
rewritten as follows [22]

L−1 =

(L−1)0
(L−1)1 (L−1)0

...
. . .

. . .

(L−1)N−1 . . . (L−1)1 (L−1)0

,
(L−1)k := (A−1

0 M)kA−1
0

k = 0, 1, ..., N − 1.

(3.1)
Denote by Ik, the k × k identity matrix. Let ei be ith column of IN . Denote Ei =
ei ⊗ IJ .

For any Hermitian positive semi-definite matrix H ∈ Cm×m, denote

H
1
2 := U∗diag(d

1
2

1 , d
1
2

2 , ..., d
1
2
m)U,

where U∗diag(d1, d2, ..., dm)U is unitary diagonalization of H. In particular, if H is

Hermitian positive definite, then we rewrite (H−1)
1
2 as H− 1

2 for notation simplifica-
tion.

For any square matrix C, denote by σ(C) the spectrum of C. Denote

Zǫ := ǫ−1[IJ − ǫ(A−1
0 M)N]M−1. (3.2)

Theorem 3.1. Let ǫ ∈ (0, 1]. Then, both Pǫ and Zǫ are invertible with P−1
ǫ =

L−1 + L−1E1Z
−1
ǫ ET

NL−1.
Proof. By matrix similarity, we have

σ(M−1A0) = σ(M− 1
2A0M

− 1
2) = σ(M− 1

2 (M + τK)M− 1
2) = σ(IJ + τM− 1

2KM− 1
2),

which implies that σ(M−1A0) ∈ (1,+∞). Thus, σ(A−1
0 M) = σ((M−1A0)

−1) ∈
(0, 1). By ǫ ∈ (0, 1], we know that σ(ǫ(A−1

0 M)N) ∈ (0, 1). That means 0 /∈ σ(IJ −
ǫ(A−1

0 M)N), which proves that Zǫ is invertible.

4

It is clear that Pǫ can be rewritten as Pǫ = L− ǫE1MET
N . Using this expression

of Pǫ, it is straightforward to verify that Pǫ(L
−1 +L−1E1Z

−1
ǫ ET

NL−1) = INJ , which
shows that Pǫ is invertible and P−1

ǫ = L−1 + L−1E1Z
−1
ǫ ET

NL−1.
Remark 2. As shown in Theorem 3.1, ǫ ∈ (0, 1] guarantees the invertibility of

Pǫ. Hence, throughout this paper, we choose ǫ ∈ (0, 1].
With BEC preconditioner, instead of solving (2.6), we employ Krylov subspace

methods to solve the preconditioned system as follows

P−1
ǫ Lu = P−1

ǫ f . (3.3)

Theorem 3.2.

(i) The preconditioned matrix P−1
ǫ L has a identity-plus-low-rank decomposition, i.e.,

rank(P−1
ǫ L−INJ) = J . Hence, P−1

ǫ L has exactly (N−1)J many eigenvalues
equal to 1.

(ii) Given any constant η ∈ (0, 1), take ǫ ∈ (0, η]. Then, max
λ∈σ(P−1

ǫ L)
|λ− 1| ≤ ǫ

1−η .

Proof. By Theorem 3.1, P−1
ǫ L − INJ = L−1E1Z

−1
ǫ ET

N , with Zǫ defined in (3.2).
Then,

rank(L−1E1Z
−1
ǫ ET

N) = rank(E1Z
−1
ǫ ET

N) = J,

which proves (i).
Substituting (3.1) into P−1

ǫ L = INJ + L−1E1Z
−1
ǫ ET

N , we obtain

P−1
ǫ L =

IJ (L−1)0Z
−1
ǫ

IJ (L−1)1Z
−1
ǫ

. . .
...

IJ + (L−1)N−1Z
−1
ǫ

(3.4)

Therefore, σ(P−1
ǫ L) = {1} ∪ σ(IJ + (L−1)N−1Z

−1
ǫ). And then,

max
λ∈σ(P−1

ǫ L)
|λ− 1| = max

λ∈σ(IJ+(L−1)N−1Z
−1
ǫ)

|λ− 1|.

It thus remains to investigate σ(IJ + (L−1)N−1Z
−1
ǫ). By (3.1) and definition of Zǫ

given in Theorem 3.1,

IJ + (L−1)N−1Z
−1
ǫ = IJ + ǫ[(M−1A0)

N − ǫIJ]
−1, (3.5)

which implies that

σ(IJ + (L−1)N−1Z
−1
ǫ) =

{

1 + ǫ(λN − ǫ)−1|λ ∈ σ(M−1A0)
}

=

{

λN

λN − ǫ

∣

∣

∣

∣

λ ∈ σ(M− 1
2A0M

− 1
2)

}

=

{

λN

λN − ǫ

∣

∣

∣

∣

λ ∈ σ(IJ + τM− 1
2KM− 1

2)

}

⊂
{

λN

λN − ǫ

∣

∣

∣

∣

λ ∈ (1,+∞)

}

.

Hence,

max
λ∈σ(IJ+(L−1)N−1Z

−1
ǫ)

|λ− 1| ≤ sup
λ∈(1,+∞)

∣

∣

∣

∣

λN

λN − ǫ
− 1

∣

∣

∣

∣

5

= sup
λ∈(1,+∞)

∣

∣

∣

∣

ǫ

λN − ǫ

∣

∣

∣

∣

≤ ǫ

1− η
,

which completes the proof.
Theorem 3.2(i) implies that by using GMRES method, the exact solution of the

preconditioned system (3.3) can be found within at most J +1 iterations. But this is
not a sharp estimation of convergence rate of GMRES method when J is not small.
In Theorem 3.7, we will show that GMRES method for the system (3.3) has a linear
convergence rate independent of N and J when ǫ .

√
τ . Theorem 3.2(ii) shows that

all the eigenvalues of the preconditioned matrix are clustered at 1 with clustering
radius of O(ǫ).

Lemma 3.3. There exists an invertible matrix V ∈ RJ×J and a diagonal matrix
D ∈ RJ×J such that IJ+(L−1)N−1Z

−1
ǫ = VDV−1 and 1 /∈ σ(D), where Zǫ is defined

in (3.2).

Proof. Denote H0 := IJ + ǫ[(M− 1
2A0M

− 1
2)N − ǫIJ]

−1. From (3.5), we know that

IJ + (L−1)N−1Z
−1
ǫ = IJ + ǫ[(M−1A0)

N − ǫIJ]
−1 = M− 1

2H0M
1
2 .

Since M− 1
2A0M

− 1
2 is real symmetric, so is H0. Thus, H0 is orthogonally diag-

onalizable, i.e, there exists an orthogonal matrix Q ∈ RJ×J and a diagonal ma-
trix D ∈ RJ×J such that H0 = QDQT. Letting V = M− 1

2Q, we then obtain
IJ + (L−1)N−1Z

−1
ǫ = VDV−1 = VDV−1.

By H0 = QDQT, definition of H0 and ǫ ∈ (0, 1], we know that

σ(D) = σ(H0) =

{

λN

λN − ǫ

∣

∣

∣

∣

λ ∈ σ(M− 1
2A0M

− 1
2)

}

=

{

λN

λN − ǫ

∣

∣

∣

∣

λ ∈ σ(IJ + τM− 1
2KM− 1

2)

}

⊂ (1,+∞),

which means 1 /∈ σ(D).
Theorem 3.4. The preconditioned matrix P−1L is diagonalizable, i.e.,

P−1
ǫ L = V̂D̂V̂−1,

where

V̂ =

IJ V0

IJ V1

. . .
...

IJ VN−2

−V

, D̂ =

IJ
IJ

. . .

IJ
D

,

Vi = (L−1)iZ
−1
ǫ V(IJ −D)−1, i = 0, 1, ..., N − 2,

with V and D given by Lemma 3.3.
Proof. By Lemma 3.3, 1 /∈ σ(D), i.e., IJ − D is invertible. Thus, Vi (i =

0, 1, ..., N − 2) are well-defined. Then, it is straightforward to verify that LV̂ =

PǫV̂D̂. Moreover, invertibility of V guarantees the invertibility of V̂. That means
P−1

ǫ L = V̂D̂V̂−1. The proof is complete.
Let O denote zero matrix with proper size.
Lemma 3.5. Given any η ∈ (0, 1), choose ǫ ∈ (0, η]. Then,

||P−1
ǫ L− INJ ||2 ≤ ǫc0

√
N

1− η
,

6

where c0 := sup
J∈N+

κ2(M
1
2) =

√

sup
J∈N+

κ2(M) < +∞ is independent of J and N .

Proof. As M
1
2A−1

0 M
1
2 is real symmetric, M

1
2A−1

0 M
1
2 is orthogonally diago-

nalizable, i.e., there exists an orthogonal matrix Q ∈ RJ×J and a diagonal ma-
trix Λ ∈ R

J×J such that M
1
2A−1

0 M
1
2 = QΛQT. Since σ(Λ) = σ(M

1
2A−1

0 M
1
2),

M
1
2A−1

0 M
1
2 = [IJ + τM− 1

2KM− 1
2]−1 implies that O ≺ Λ � IJ . Then, by (3.1) and

definition of Zǫ given in (3.2), we have

(L−1)kZ
−1
ǫ = ǫ(A−1

0 M)k+1[IJ − ǫ(A−1
0 M)N]−1

= ǫM− 1
2 (M

1
2A−1

0 M
1
2)k+1[IJ − ǫ(M

1
2A−1

0 M
1
2)N]−1M

1
2

= ǫM− 1
2QΛk+1[IJ − ǫΛN]−1QM

1
2 , k = 0, 1, ..., N − 1,

which together with (3.4) implies that

P−1
ǫ L− INJ =

(L−1)0Z
−1
ǫ

(L−1)1Z
−1
ǫ

...
(L−1)N−1Z

−1
ǫ

= ǫ[IN ⊗ (M− 1
2Q)]

Λ1[IJ − ǫΛN]−1

Λ2[IJ − ǫΛN]−1

...
ΛN [IJ − ǫΛN]−1

[IN ⊗ (QTM
1
2)].

Rewrite Λ = diag(λi)
J
i=1. Then,

||P−1
ǫ L− INJ ||2 ≤ ǫ||IN ⊗ (M− 1

2Q)||2||IN ⊗ (QTM
1
2)||2

√

√

√

√

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

k=1

Λ2k(IJ − ǫΛN)−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

= ǫκ2(M
1
2)

√

√

√

√ max
1≤i≤J

N
∑

k=1

(

λk
i

1− ǫλN
i

)2

≤ ǫc0

√

√

√

√ max
1≤i≤J

N
∑

k=1

(

λk
i

1− ǫλN
i

)2

.

Moreover, it is easy to check that the functions gk(x) := xk

1−ǫxN are monotonically
increasing on x ∈ [0, 1] for each k = 1, 2, ..., N . Since O ≺ Λ � IN , {λi|1 ≤ i ≤ J} ⊂
[0, 1]. Hence,

||P−1
ǫ L− INJ ||2 ≤ ǫc0

√

√

√

√

N
∑

k=1

1

(1 − ǫ)2
=

ǫc0
√
N

1− ǫ
≤ ǫc0

√
N

1− η
,

which completes the proof
For any matrix Z ∈ Rm×m, denote

H(Z) :=
Z+ ZT

2
, S(Z) := Z− ZT

2
.

Let λmin(·) and λmax(·) denote the minimal and maximal eigenvalue of a Hermi-
tian matrix, respectively. Let ρ(·) denotes the spectral radius of a square matrix.

7

Lemma 3.6. (see [2, (1.1)]) Let Ξq = w be a real square linear system with
H(Ξ) ≻ O. Then, the residuals of the iterates generated by applying GMRES to
solving Ξv = w satisfy

||rk||2 ≤
(

1− λmin(H(Ξ))2

||Ξ||22

)k/2

||r0||2,

where rk = w−Ξqk with qk (k ≥ 1) being the iterate solution at kth GMRES iteration
and q0 being an arbitrary initial guess.

Theorem 3.7. For any given constants δ ∈ (0, 1), choose ǫ ∈ (0, bτ], where

bτ := δ
√
τ

δ
√
τ+c0

√
T

and c0 is given by Lemma 3.5. Then, the residuals of the iterates

generated by applying GMRES to solving the preconditioned system (3.3) satisfy

||rk||2 ≤
(

2
√
δ

1 + δ

)k

||r0||2,

where rk = P−1
ǫ f−P−1

ǫ Luk with uk (k ≥ 1) being the iterative solution at kth GMRES
iteration and u0 denoting an arbitrary initial guess.

Proof. Denote Ξ = P−1
ǫ L − INJ . Since bτ ∈ (0, 1), Lemma 3.5 is applicable. By

Lemma 3.5, we have

||Ξ||2 ≤ ǫc0
√
N

1− bτ
=

ǫδ

bτ
≤ δ.

Then,

H(P−1
ǫ L) = INJ +H(Ξ) � (1− δ)INJ ≻ O, (3.6)

implies that Lemma 3.6 is applicable to the preconditioned system (3.3). It remains
to estimate λmin(H(P−1

ǫ L))2 and ||P−1
ǫ L||22.

Clearly, (3.6) implies that

λmin(H(P−1
ǫ L))2 ≥ (1− δ)2.

Moreover,

||P−1
ǫ L||22 = ||(P−1

ǫ L)TP−1
ǫ L||2 = ||INJ +Ξ+ΞT+ΞTΞ||2 ≤ (1+2δ+ δ2) = (1+ δ)2.

Then, Lemma 3.6 implies that

||rk||2 ≤
(

1− λmin(H(P−1
ǫ L))2

||P−1
ǫ L||22

)

||r0||2

≤
(

1− (1 − δ)2

(1 + δ)2

)k/2

||r0||2 =

(

2
√
δ

1 + δ

)k

||r0||2,

which completes the proof.
Remark 3. Theorem 3.7 shows that GMRES for the preconditioned system (3.3)

has a linear convergence rate independent of system size whenever 0 < ǫ .
√
τ .

Actually, as illustrated by numerical results in Section 5, taking ǫ = O(τ) already
leads to a fast convergence of GMRES.

8

4. Implementation. In this section, we discuss on how to efficiently implement
the GMRES method for the preconditioned system (3.3). In GMRES iteration, it
requires to compute the matrix-vector product, P−1

ǫ (Lv) for some given vector v.
In this section, we present a fast implementation for computing the matrix-vector
product. Since our presented fast implementation also works when ∂t is discretized
by multi-step backward difference, we start with multi-step-backward-difference dis-
cretization of ∂t to describe the fast implementation.

Discretizing ∂t by a p-step backward difference scheme, then the corresponding L
is as follows [22]

L = R⊗M+ τIN ⊗K, (4.1)

where ‘⊗’ denotes the Kronecker product,

R :=

r0
r1 r0
...

. . .
. . .

rp
. . .

. . .
. . .

. . .
. . . r1 r0
rp . . . r1 r0

∈ R
N×N

Note that if p = 1, r0 = 1, r1 = −1, then the p-step (4.1) scheme reduces to the back-
ward difference scheme presented in Section 2. For p-step scheme, the corresponding
BEC preconditioner Pǫ is defined as follows

Pǫ = Rǫ ⊗M+ τIN ⊗K, (4.2)

where

Rǫ =

r0 ǫrp . . . ǫr2 ǫr1

r1 r0
. . .

. . . ǫr2
...

. . .
. . .

. . .
...

rp
. . .

. . .
. . . ǫrp

. . .
. . . r1 r0
rp . . . r1 r0

∈ R
N×N .

For a given vector v ∈ RNJ×1, to compute P−1
ǫ Lv is equivalent to compute

ṽ = Lv and P−1
ǫ ṽ. Hence, to compute the preconditioned-matrix-vector product

efficiently, it suffices to compute both P−1
ǫ v and Lv efficiently for a given vector v.

Proposition 4.1. (see [25, (2)]) For any B ∈ Cp1×q1 , C ∈ Cp2×q2 , Y =
(y1,y2, ...,yq1) ∈ Cq2×q1 , it holds (B⊗C)(y1;y2; ...;yq1) = (CYBT)(:) = [(B(CY)T)T](:
). Proposition [25] shows that if two matrices B and C have fast matrix-vector prod-
uct, then their Kronecker product B⊗C also have fast matrix-vector product. More
specifically, if computing B ∈ Cp×p (C ∈ Cq×q, respectively) times a vector requires
operations no more than c1 (c2, respectively), then computing B⊗C times a vector
requires operations no more than c1q + c2p.

9

Definition 4.2. A square matrix G ∈ Cm×m is called a Toeplitz if and only if
it has the form of

G =

g0 g−1 . . . g2−m g1−m

g1 g0 g−1 . . . g2−m

...
. . .

. . .
. . .

...
gm−2 . . . g1 g0 g−1

gm−1 gm−2 . . . g1 g0

.

If additionally gi−j = gi−j−m for all i− j ≥ 1, then G is called a circulant matrix.
Denote

Fm =
1√
m

[

θ(i−1)(j−1)
m

]m

i,j=1
, θm = exp

(

2πi

m

)

, i =
√
−1. (4.3)

Fm is called a Fourier transform matrix. F∗
m (Fm, respectively) times a vector is

equivalent to Fourier transform (inverse Fourier transform, respectively) of the vector
up to a scaling constant. Hence, F∗

m (or Fm) times a vector can be fast computed
by algorithms of fast Fourier transform (FFT), which requires O(m logm) operations
and O(m) storage.

For a vector v, by diag(v), we denote the diagonal matrix with entries of v as
its diagonal elements. It is well known that any circulant matrix C ∈ Cm×m is
diagonalizable by Fourier transform matrix (see, e.g., [6, 23]):

C = Fndiag(
√
mF∗

mC(:, 1))F∗
m,

where C(:, 1) denotes the first column of C. Hence, computing an m × m circulant
matrix times a vector requires O(N logN) operations and O(N) storage by FFTs.
Any Toeplitz matrix G ∈ Cm×m can be embedded into a larger circulant matrix (see,
e.g., [5, 6, 23]):

[

G ×
× G

]

,

where “×” here denotes some proper blocks. Hence, an m×m Toeplitz matrix times
a vector Gv can be computed as

[

G ×
× G

] [

v
0

]

=

[

Gv
×

]

,

which requires O(m logm) operations and O(m) storage.
We firstly discuss the fast computation of Lv for a given vector v. Note that

M, IN and K are all sparse matrices. Moreover, for small p, R is sparse and thus L
is sparse. It is well-known that computing a sparse matrix times a vector requires a
linear complexity. In other words, when p is small, the computation of Lv requires
O(NJ) storage and operations. Notice also that R is a Toeplitz matrix no matter how
large p is. As L consists of Kronecker products of Toeplitz matrix and sparse sparse
matrix, sparse matrix and sparse matrix, Proposition 4.1 implies that the computation
of Lv requires O(JN logN) operations and O(JN) storage by FFTs no matter how
big p is.

10

Now, we focus on the fast computation of P−1
ǫ y for a given vector y ∈ RNJ×1. To

this end, we exploit an interesting property of the matrix Rǫ, i.e., its diagonalizable
property. From [3, Theorem 2.10], we know that Rǫ can be diagonalized as follows

Rǫ = D−1
ǫ F∗

NΛǫFNDǫ, (4.4)

where FN is defined in (4.3),

Dǫ = diag
(

ǫ
0
N , ǫ

1
N , ..., ǫ

N−1

N

)

, Λǫ = diag(λ
(ǫ)
0 , λ

(ǫ)
1 , ..., λ

(ǫ)
N−1),

λ
(ǫ)
k =

p
∑

j=0

rjǫ
j

N θkjN , k = 0, 1, ..., N − 1,

θN is defined in (4.3).

When p is small, then it is clear that the computation of {λ(ǫ)
k }N−1

k=0 requires O(N)
operations and storage. When p is large, one can exploit the fact that

(λ
(ǫ)
0 , λ

(ǫ)
1 , ..., λ

(ǫ)
N−1)

T =
√
NFN (r0ǫ

0
N , r1ǫ

1
N , ..., rpǫ

p

N , 0, 0, ..., 0)T.

Hence, using IFFT, the computation of {λ(ǫ)
k }N−1

k=0 requires O(N logN) operations
and O(N) storage, no matter how big p is.

By (4.4), Pǫ can be rewritten as the following block diagonalization form

Pǫ = [(D−1
ǫ F∗

N)⊗ IJ]blockdiag(B0,B1, ...,BN−1)[(FNDǫ)⊗ IJ], (4.5)

where

Bk = λ
(ǫ)
k M+ τK, k = 0, 1, ..., N − 1.

Let y = (y1;y2; · · · ;yN) ∈ RNJ×1 with yk ∈ RJ×1 (k = 1, 2, ..., N) be a given vector.
Then, the computation of z = P−1

ǫ y can be equivalently rewritten as the following 3
steps:

Step 1 : Compute ỹ = [(FNDǫ)⊗ IJ]y, (4.6)

Step 2 : Solve Bk−1z̃
k = ỹk for z̃k, k = 1, 2, ..., N, where

(

ỹ1; ỹ2; · · · ; ỹN
)

= ỹ,
(4.7)

Step 3 : Compute z =
[

(D−1
ǫ F∗

N)⊗ IJ
]

z̃, where z̃ =
(

z̃1; z̃2; · · · ; z̃N
)

. (4.8)

Using FFTs and Proposition 4.1, it is easy to see that (4.6) and (4.8) requires
O(JN logN) operations and O(JN) storage. If the spatial discretization is finite dif-
ference method or finite element method with uniform square grid and the diffusion
coefficient function a is a constant, then B′

ks (k = 0, 1, ..., N − 1) are all diagonal-
izable by means of fast sine transform (see [22]), in the case of which the N many
linear systems in (4.7) can be fast and directly solved with O(NJ log J) operations
and O(NJ) storage. In a more general situation that B′

ks are not diagonalizable, one
can use some efficient spatial solvers, such as a multigrid method to solve the linear
systems in (4.7), for which only a few iterations are required since Pǫ serves as a
preconditioner. Although the linear systems in (4.7) are complex, numerical results
in Section 5 show that one iteration of V-cycle geometric multigrid for solving each
linear system in (4.7) already leads to a fast convergence of GMRES for the precondi-
tioned system. Solving the linear systems in (4.7) by V-cycle multigrid method with
a fixed number of iterations, it requires O(NJ) operations and storage.

11

It is remarkable to note that only half of the N many systems in (4.7) need to
be solved, the reason of which is explained as follows. From (4.6), we know that the
right hand sides in (4.7) can be expressed as

ỹk+1 =
1√
N

p
∑

j=0

ǫ
j
N θkjN yj+1, k = 0, 1, ..., N − 1.

Recall that the matrices in (4.7) have the following expressions

Bk =

p
∑

j=0

rjǫ
j
N θkjN

M+ τK, k = 0, 1, ..., N − 1.

Let conj(·) denote conjugate of a matrix or a vector. Then,

conj(ỹk+1) =
1√
N

p
∑

j=0

ǫ
j
N θ−kj

N yj+1 =
1√
N

p
∑

j=0

ǫ
j
N θ

(N−k)j
N yj+1 = ỹN−k+1, 1 ≤ k ≤ N − 1,

conj(Bk) =

p
∑

j=0

rjǫ
j
N θ−kj

N

M+ τK =

p
∑

j=0

rjǫ
j
N θ

(N−k)j
N

M+ τK = BN−k, 1 ≤ k ≤ N − 1.

That means the unknowns in (4.7) hold equalities: z̃k+1 = conj(z̃N−k+1) for k =
1, 2, ..., N − 1. Hence, only the first

⌈

N+1
2

⌉

many linear systems in (4.7) need to be
solved.

Hence, when M and K are diagonalizable by the fast sine transform, the com-
putation of P−1

ǫ Lv for a given vector v can be fast and exactly implemented, which
requires O(NJ) storage and O(NJ log J) operations. In other more general cases, the
computation of P−1

ǫ Lv for a given vector v can be approximately implemented by
V-cycle multigrid method with a fixed number of iterations, which requiresO(NJ) op-
erations and storage. Hence, using the multigrid method, the computation of P−1

ǫ Lv
for a given vector v requires O(NJ) storage and O(NJ) operations.

From the above discussion, we see that each preconditioned GMRES iteration
requires even cheaper operations by using the multigrid inner solver than that by
using the fast sine transform solver. However, unlike multigrid method, the fast sine
transform solver is an exact solver for (4.7) that does not bring additional iterative
error. Hence, when the fast sine transform solver is applicable, we prefer to use the
fast sine transform solver.

5. Numerical Results. In this section, we test the performance of the proposed
BEC preconditioner through examples of heat equation, convection diffusion equation
and compare it with block circulant preconditioner proposed in [22]. Finite element
discretization with Q1 element and uniform square mesh is used to discretize the
spatial terms of all the examples in this section. In Examples 2 and 3, the mass matrix
M and the stiffness matrix K are generated by the IFISS package [24]. All numerical
experiments are performed via MATLAB R2016a on a workstation equipped with
dual Xeon E5-2690 v4 14-Cores 2.6GHz CPUs, 256GB RAM running CentOS Linux
version 7.

Restarted GMRES method is employed to solve the preconditioned systems. The
restarting number of GMRES is set as 50. The tolerance of GMRES is set as ||rk||2 ≤
10−7||r0||2, where rk denotes preconditioned residual vector at kth GMRES iteration.
The zero vector is used as initial guess of GMRES method.

12

For convenience, the block circulant preconditioner is denoted by BC. As the BC
preconditioner is a special case of BEC preconditioner. Hence, we use the same algo-
rithm for implementation of BC preconditioner as the one used for that of BEC precon-
ditioner. We also denote GMRES with BC and BEC preconditioners by GMRES-BC
and GMRES-BEC, respectively.

Since preconditioned residual error by GMRES-BEC has a different definition
from that by GMRES-BC, we define the following unpreconditioned relative residual
error to measure the accuracy of GMRES-BEC and GMRES-BC for fair comparison:

RES :=
||f − Luiter||2

||f ||2
,

where uiter denotes some iterative solution.

By ‘Iter’, we denote the iteration number of restarted GMRES; by ‘DoF’, the
number of degrees of freedom, i.e., the number of unknowns, and by ‘CPU’, the
computational time in seconds.

For all the numerical experiments in this section, we take ǫ = min{0.5, 0.5τ} for
the BEC preconditioner.

Example 1. The first example is heat equation (2.1)–(2.3) with

Ω = (0, 1)× (0, 1), T = 1, f ≡ 0, a ≡ 10−5, g ≡ 0, u0 = x(x − 1)y(y − 1).

For Example 1, the corresponding B′
ks in (4.7) is diagonalizable by sine transform.

Hence, we implement the matrix-vector multiplication by fast sine transform for Ex-
ample 1. To demonstrate that the proposed preconditioning method works for multi-
step temporal discretization scheme, we firstly discretize the temporal derivative of
Example 1 by the two-step backward difference scheme (BDF2). The BDF2 scheme
is defined by r0 = 3

2 , r1 = −2, r2 = 1
2 and p = 2 (see the meanings of rk’s and p

in (4.1)). The results of GMRES-BEC and GMRES-BC for all-at-once system from
BDF2 temporal scheme is listed in Table 5.1. Table 5.1 shows that (i) both GMRES-
BEC and GMRES-BC work for BDF2-type all-at-once system; (ii) GMRES-BEC is
more efficient than GMRES-BC in terms of computational time and iteration number;
(iii) GMRES-BEC is more accurate than GMRES-BC in terms of RES measure.

13

Table 5.1: Performance of GMRES-BC and GMRES-BEC on Example 1 discretized
by BDF2 scheme

GMRES-BEC GMRES-BC
N J + 1 DoF Iter CPU RES Iter CPU RES

26

26 254016 13 1.40 9.98e-7 82 4.06 6.00e-3
27 1032256 13 2.82 9.98e-7 80 12.53 5.10e-3
28 4161600 13 12.81 9.98e-7 79 71.35 5.20e-3
29 16711744 13 53.12 9.98e-7 80 299.86 5.00e-3

27

26 508032 13 1.36 1.01e-6 80 6.51 9.20e-3
27 2064512 13 5.21 1.01e-6 77 28.78 9.00e-3
28 8323200 13 27.97 1.01e-6 77 158.63 8.60e-3
29 33423488 13 105.35 1.01e-6 76 567.45 8.90e-3

28

26 1016064 13 2.27 1.01e-6 71 11.18 1.42e-2
27 4129024 13 12.44 1.01e-6 70 60.81 1.39e-2
28 16646400 13 52.75 1.01e-6 67 259.32 1.32e-2
29 66846976 13 204.88 1.01e-6 68 1013.56 1.28e-2

29

26 2032128 12 4.84 3.03e-6 65 25.53 1.77e-2
27 8258048 12 25.00 3.03e-6 64 127.27 1.69e-2
28 33292800 12 100.23 3.03e-6 61 480.22 1.57e-2
29 133693952 12 385.97 3.03e-6 60 1796.61 1.57e-2

In the rest of this section, we focus on testing the performance of GMRES-BC and
GMRES-BEC for all-at-once system from 1-step backward difference scheme(2.4). By
BDF, we denote the 1-step backward difference scheme (2.4). The results of GMRES-
BEC and GMRES-BC preconditioner for solving Example 1 discretized by BDF are
listed in Tables 5.2.

Table 5.2 shows that (i) GMRES-BEC is more efficient than GMRES-BC in terms
of CPU and iteration number; (ii) the convergence rates of both GMRES-BEC and
GMRES-BC are independent of temporal and spatial stepsizes; (iii) GMRES-BEC is
more accurate than GMRES-BC in terms of RES.

14

Table 5.2: Performance of GMRES-BC and GMRES-BEC on Example 1 discretized
by BDF scheme

GMRES-BEC GMRES-BC
N J + 1 DoF Iter CPU RES Iter CPU RES

26

26 254016 2 0.55 9.11e-11 13 1.21 2.09e-5
27 1032256 2 0.73 1.69e-10 13 2.71 2.80e-5
28 4161600 2 3.08 2.23e-10 13 13.81 3.08e-5
29 16711744 2 12.65 2.46e-10 13 53.27 3.16e-5

27

26 508032 2 0.31 2.27e-11 13 1.18 2.09e-5
27 2064512 2 1.23 4.21e-11 13 4.96 2.81e-5
28 8323200 2 6.88 5.56e-11 12 24.05 3.44e-5
29 33423488 2 25.04 6.16e-11 13 11.92 2.81e-5

28

26 1016064 2 0.54 5.69e-12 13 2.16 2.09e-5
27 4129024 2 3.01 1.05e-11 13 11.92 2.81e-5
28 16646400 2 12.54 1.60e-11 13 53.46 3.08e-5
29 66846976 2 49.89 1.55e-11 13 203.58 3.16e-5

29

26 2032128 1 0.91 5.87e-8 13 4.91 2.09e-5
27 8258048 1 4.69 5.99e-8 13 28.86 2.81e-5
28 33292800 1 18.78 6.03e-8 13 104.66 3.08e-5
29 133693952 1 74.01 6.05e-8 13 406.46 3.16e-5

Example 2. The second example is also a heat equation but with variable
diffusion coefficient function a, which is defined as follows

Ω =(0, 1)× (0, 1), T = 1, a(x, y) = 10−5 × sin(πxy), g ≡ 0, u0 = x(x − 1)y(y − 1),

f(x, y, t) = exp(−t)x(1 − x)[2 sin(πxy) − y(1− y)− π cos(πxy)x(1 − 2y)]+

exp(−t)y(1− y)[2 sin(πxy)− π cos(πxy)y(1− 2x)].

Example 2 has the closed form analytical solution as follows

u(x, y, t) = exp(−t)x(1 − x)y(1− y).

Hence, for Example 2, we can measure the error of its numerical solution. For this
purpose, we define the error function as follows

EN,J = ||uiter − u∗||∞,

where uiter denotes the iterative solution of the linear system (2.6), u∗ denotes the
values of exact solution of the heat equation on the mesh. Since the exact solution
of Example 2 is known, instead of RES, we use EN,J to measure the accuracy of
GMRES-BC and GMRES-BEC. The temporal derivative in Example 2 is discretized
by the BDF (2.6). Notice that B′

ks in (4.7) arising from Example 2 is no longer
diagonalizable by sine transform. Hence, for Example 2, instead of solving (4.7)
exactly, we approximately solve it by one iteration of V-cycle geometric multigrid
method, in which ILU smoother is employed with one time of pre-smoothing and one
time of post-smoothing; the piecewise linear interpolation and its transpose are used
as the interpolation and restriction operators (see [24]). The results of GMRES-BEC
and GMRES-BC for solving Example 2 are listed in Table 5.3.

15

From Table 5.3 shows that (i) GMRES-BEC is much more efficient than GMRES-
BC in terms of CPU and iteration number; (ii) the iteration number of GMRE-BEC
keeps bounded as N and J changes. That means introducing the parameter ǫ indeed
help improve the performance of BC preconditioner on Example 2.

Table 5.3: Performance of GMRES-BC and GMRES-BEC on Example 2

GMRES-BEC GMRES-BC
N J + 1 DoF Iter CPU EN,J Iter CPU EN,J

26

26 254016 3 1.29 2.95e-4 72 9.07 2.95e-4
27 1032256 3 2.20 3.05e-4 78 34.10 3.04e-4
28 4161600 2 7.47 3.07e-4 87 162.58 3.07e-4
29 16711744 2 44.00 3.08e-4 133 1124.33 3.08e-4

27

26 508032 3 0.93 1.41e-4 72 16.98 1.42e-4
27 2064512 3 3.40 1.51e-4 78 65.01 1.51e-4
28 8323200 2 13.51 1.53e-4 87 328.69 1.53e-4
29 33423488 2 64.77 1.54e-4 133 2214.82 1.54e-4

28

26 1016064 3 1.78 6.43e-5 72 30.96 6.50e-5
27 4129024 3 6.60 7.39e-5 78 126.79 7.39e-5
28 16646400 2 23.04 7.63e-5 87 638.34 7.96e-5
29 66846976 2 115.18 7.69e-5 133 4479.13 8.38e-5

29

26 2032128 3 3.53 2.57e-5 72 60.84 2.65e-5
27 8258048 3 13.45 3.54e-5 78 260.44 3.55e-5
28 33292800 2 45.24 3.78e-5 87 1251.80 7.97e-5
29 133693952 2 217.20 3.84e-5 133 8996.60 8.39e-5

To visualize the numerical solution of Example 2, we present its surface plot and
contour plot in Figure 5.1.

0
1

0.005

0.01

1

0.015

y

0.02

0.5

x

0.025

0.5

0 0

Surface plot

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

Contour plot

Fig. 5.1: Numerical solution of Example 2 at final time T by GMRES-BEC with
N = 20 and J = 31

16

Example 3. (see [22]) The third example is an evolutionary convection diffusion
equation with circulating wind and hot wall boundary, which is defined as follows

∂tu(x, y, t) =
1

200
∆u−−→w · ∇u, (x, y) ∈ Ω := (−1, 1)× (−1, 1), t ∈ (0, T],

u(x, y, t) = (1 − exp(−10t))φ(x, y), (x, y) ∈ ∂Ω,

u(x, y, 0) = 0, (x, y) ∈ Ω̄,

where −→w := (2y(1 − x2),−2x(1 − y2)) is the circulating wind, φ represents the hot
wall boundary condition defined as follows

φ(x, y) :=

{

1, x = 1 and (x, y) ∈ ∂Ω,

0, x 6= 1 and (x, y) ∈ ∂Ω.

The steady-state version of Example 3 is given by [8, Example 6.1.4]. The Streamline-
upwind Petrov-Galerkin (SUPG) stabilization [4] is used to stabilize the discrete spa-
tial terms. The temporal derivative in Example 3 is discretized by the BDF scheme
(2.4). We solve (4.7) arising from Example 3 by one iteration of V-cycle geometric
multigrid method, in which ILU smoother is employed with one time of pre-smoothing
and one time of post-smoothing; the piecewise linear interpolation and its transpose
are used as the interpolation and restriction operators (see [24]). The results of
GMRES-BEC and GMRES-BC for solving Example 3 are listed in Table 5.4.

Table 5.4 shows that (i) GMRES-BEC is more efficient than GMRES-BC on
Example 3 in terms of CPU and iteration number; (ii) GMRES-BEC is more accurate
than GMRES-BC in terms of RES.

Table 5.4: Performance of GMRES-BC and GMRES-BEC on Example 3 with T = 1

GMRES-BEC GMRES-BC
N J + 1 DoF Iter CPU RES Iter CPU RES

26

26 254016 5 1.67 6.51e-8 20 2.72 3.72e-7
27 1032256 5 2.95 1.44e-8 21 9.60 8.62e-8
28 4161600 5 12.84 9.05e-9 21 41.32 4.44e-8
29 16711744 5 66.79 3.07e-9 21 189.99 1.70e-8

27

26 508032 5 1.49 3.43e-8 21 4.87 2.93e-7
27 2064512 5 5.07 1.16e-8 21 17.73 1.87e-7
28 8323200 5 24.32 9.57e-9 22 83.85 4.00e-8
29 33423488 5 112.30 3.47e-9 22 381.04 1.42e-8

28

26 1016064 5 2.75 1.79e-8 21 9.59 4.83e-7
27 4129024 5 10.10 1.10e-8 22 37.98 1.48e-7
28 16646400 5 45.13 1.09e-8 22 160.84 7.56e-8
29 66846976 5 214.81 3.86e-9 22 752.86 2.67e-8

29

26 2032128 4 5.25 1.75e-7 21 19.27 7.41e-7
27 8258048 5 19.62 1.20e-8 22 78.47 2.37e-7
28 33292800 5 85.36 1.31e-8 22 334.48 1.24e-7
29 133693952 5 404.25 4.56e-9 22 1469.73 4.37e-8

Since the boundary condition of Example 3 converges to the steady state, one can
expect that solution of Example 3 will be very close to its steady-state solution for

17

sufficiently large T . To observe this, we present the numerical solution of Example 3
at T = 200 by GMRES-BEC in Figure 5.2. Indeed, the numerical solution exhibited
in Figure 5.2 is very closed to the numerical steady-state solution exhibited in [8, FIG.
6.5].

0
1

0.2

0.4

0.5 1

0.6

0.5

y

0.8

0

x

1

0
-0.5 -0.5

-1 -1

Surface plot

u=0

-1 -0.5 0 0.5 1

u=0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u=
0

u=
1

Contour plot

Fig. 5.2: Numerical solution of Example 3 at time T = 200 by GMRES-BEC with
N = 200 and J = 127

6. Concluding Remark. In this paper, we have proposed the BEC precondi-
tioner as a generalization of BC preconditioner for all-at-once system arising from
evolutionary PDEs by introducing a positive parameter ǫ into the top-right corner of
BC preconditioner. We have shown that such generalization preserves the diagonaliz-
ability, identity-plus-low-rank decomposition of the preconditioned matrix. Moreover,
when ǫ is sufficiently small, we have shown that (i) the preconditioned matrix by BEC
preconditioner has all eigenvalues clustered at 1; (ii) GMRES for the preconditioned
system by BEC preconditioner has a linear convergence rate independent of matrix-
size. A fast implementation has been introduced so that the computational complex-
ity required for implementation of BEC preconditioner stays the same as that for BC
preconditioner. Numerical results have shown that BEC preconditioner improves the
performance of the BC preconditioner.

References.
[1] M. Arioli, V. Pták, and Z. Strakoš, Krylov sequences of maximal length

and convergence of GMRES, BIT, 38 (1998), pp. 636–643.
[2] B. Beckermann, S. A. Goreinov, and E. E. Tyrtyshnikov, Some remarks

on the Elman estimate for GMRES, SIAM J. Matrix Anal. Appl., 27 (2005),
pp. 772–778.

[3] D. Bini, G. Latouche, and B. Meini, Numerical Methods for Structured
Markov Chains, Oxford University Press: New York, 2005.

[4] A. N. Brooks and T. J. Hughes, Streamline upwind/Petrov-Galerkin for-
mulations for convection dominated flows with particular emphasis on the in-
compressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32
(1982), pp. 199–259.

18

[5] R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems,
SIAM Rev., 38 (1996), pp. 427–482.

[6] R. H.-F. Chan and X.-Q. Jin, An introduction to iterative Toeplitz solvers,
SIAM, 2007.

[7] V. Dobrev, T. Kolev, N. A. Petersson, and J. B. Schroder, Two-level
convergence theory for multigrid reduction in time (mgrit), SIAM J. Sci. Comput.,
39 (2017), pp. S501–S527.

[8] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast
iterative solvers: with applications in incompressible fluid dynamics, Numerical
Mathematics and Scie, 2014.

[9] R. D. Falgout, S. Friedhoff, T. V. Kolev, S. P. MacLachlan, and J. B.

Schroder, Parallel time integration with multigrid, SIAM J. Sci. Comput., 36
(2014), pp. C635–C661.

[10] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting
and Time Domain Decomposition Methods, Springer, 2015, pp. 69–113.

[11] M. J. Gander, L. Halpern, J. Ryan, and T. T. B. Tran, A direct solver
for time parallelization, in Domain Decomposition Methods in Science and En-
gineering XXII, Springer, 2016, pp. 491–499.

[12] M. J. Gander and M. Neumuller, Analysis of a new space-time parallel
multigrid algorithm for parabolic problems, SIAM J. Sci. Comput., 38 (2016),
pp. A2173–A2208.

[13] M. J. Gander and S. Vandewalle, Analysis of the parareal time-parallel
time-integration method, SIAM J. Sci. Comput., 29 (2007), pp. 556–578.

[14] M. J. Gander and S.-L. Wu, Convergence analysis of a periodic-like waveform
relaxation method for initial-value problems via the diagonalization technique,
Numer. Math., 143 (2019), pp. 489–527.

[15] A. Greenbaum, V. Pták, and Z. e. k. Strakoš, Any nonincreasing con-
vergence curve is possible for GMRES, SIAM J. Matrix Anal. Appl., 17 (1996),
pp. 465–469.

[16] W. Hackbusch, Parabolic multi-grid methods, in Proc. of the sixth int’l. sym-
posium on Computing methods in applied sciences and engineering, VI, North-
Holland Publishing Co., 1985, pp. 189–197.

[17] G. Horton and S. Vandewalle, A space-time multigrid method for parabolic
partial differential equations, SIAM J. Sci. Comput., 16 (1995), pp. 848–864.

[18] L. Kamenski, W. Huang, and H. Xu, Conditioning of finite element equations
with arbitrary anisotropic meshes, Math. Comp., 83 (2014), pp. 2187–2211.

[19] F. Kwok and B. W. Ong, Schwarz waveform relaxation with adaptive pipelin-
ing, SIAM J. Sci. Comput., 41 (2019), pp. A339–A364.

[20] J.-L. Lions, Y. Maday, and G. Turinici, A parareal in time discretization of
PDEs, C.R.Acad. Sci. Paris, Serie I, 332 (2001), pp. 661 – 668.

[21] E. McDonald, S. Hon, J. Pestana, and A. Wathen, Preconditioning for
nonsymmetry and time-dependence, in Domain Decomposition Methods in Sci-
ence and Engineering XXIII, Springer, 2017, pp. 81–91.

[22] E. McDonald, J. Pestana, and A. Wathen, Preconditioning and itera-
tive solution of all-at-once systems for evolutionary partial differential equations,
SIAM J. Sci. Comput., 40 (2018), pp. A1012–A1033.

[23] M. K. Ng, Iterative methods for Toeplitz systems, Numerical Mathematics and
Scie, 2004.

[24] D. Silvester, H. Elman, and A. Ramage, Incompressible Flow

19

and Iterative Solver Software (IFISS) version 3.5, September 2016.
http://www.manchester.ac.uk/ifiss/.

[25] C. F. Van Loan, The ubiquitous Kronecker product, J. Comput. Appl. Math.,
123 (2000), pp. 85–100.

[26] A. Wathen and A. Goddard, A note on parallel preconditioning for all-at-
once evolutionary PDEs, Electron. Trans. Numer. Anal., (2019).

[27] S.-L. Wu, Toward parallel coarse grid correction for the parareal algorithm,
SIAM J. Sci. Comput., 40 (2018), pp. A1446–A1472.

[28] S.-L. Wu and T. Zhou, Acceleration of the two-level mgrit algorithm via the
diagonalization technique, SIAM J. Sci. Comput., 41 (2019), pp. A3421–A3448.

20

