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Abstract. Basis functions which are invariant under the operations of a rotational point group
G are able to describe any 3-D object which exhibits the rotational point group symmetry. However,
in order to characterize the spatial statistics of an ensemble of objects in which each object is
different but the statistics exhibit the symmetry, a complete set of basis functions is required. In
particular, for each irreducible representation (irrep) of G, it is necessary to include basis functions
that transform according to that irrep. This complete set of basis functions is a basis for square-
integrable functions on the surface of the sphere in 3-D. Because the objects are real-valued, it
is convenient to have real-valued basis functions. In this paper the existence of such real-valued
bases is proven and an algorithm for their computation is provided for the icosahedral I and the
octahedral O symmetries. Furthermore, it is proven that such a real-valued basis does not exist for
the tetrahedral T symmetry because some irreps of T are essentially complex. The importance of
these basis functions to computations in single-particle cryo electron microscopy is described.
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1. Introduction. A finite group of rotational symmetries of a 3-D object (i.e.,
a geometry object in the 3D Cartesian space such as a platonic solid), denoted by G,
arises in several situations including quasi-crystals [54], fullerenes [50], and viruses [29].
By definition, a finite group is a set of finite elements equipped with a binary oper-
ation that combines any two elements to form a third element in such a way that
four conditions, namely closure, associativity, identity and invertibility, are satisfied.
Group elements g ∈ G can be represented by matrices, namely representation matri-
ces. Specifically, a group representation is an invertible linear transformation from
the group elements to a set of representation matrices so that the group operation
can be represented by matrix multiplication. An irreducible representation (irrep) of
a group is a group representation that cannot be further decomposed into nontrivial
invariant subspaces. The trivial irrep or identity irrep has all representation matrices
to be identity (e.g., “1”). An unitary irrep has all irrep matrices to be unitary. Two
irreps are inequivalent if it is impossible to find a similarity transform relating them.
More terminology definitions can be found in [32].

One method for representing a 3-D object such as a quasi-crystal, a fullerene
or a virus particle is an orthonormal expansion in basis functions where each basis
function is a basis vector that associates the group operation with its matrix repre-
sentation [15, Section 5.1]. Specifically, the electron scattering intensity of the 3-D
object at coordinate x ∈ R3, denoted by ρ(x), can be expressed by a Fourier series
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2 NAN XU AND PETER C. DOERSCHUK

φp,j(x) with coefficients wp,j which are random variables, i.e.,

(1.1) ρ(x) =
∑
p

∑
j

wp,jφp,j(x),

where p indexes the pth irrep. If the object is invariant under the operations of
G, then each basis function should transform according to the identity irrep of G
(i.e., p = 1 in Eq. 1.1) and such basis functions, called “invariant basis”, have been
extensively studied [21, 42, 1, 39, 12, 19, 27, 30, 33, 35, 13, 47, 68, 20]. In more
complicated scenarios, the object is not invariant under the operations of G. In
particular, to describe any random 3-D object, a complete set of basis spanning the
L2 space is required, whereas such basis can be constructed by the basis functions that
transform according to each of the irreps of G (“all irreps basis”) [14, p.65, Theorem
1]. Such basis functions have also been studied [12, 42, 13, 47, 7]. Our motivating
problem, a structural biology problem described in section 2, is an example of the
more complicated situation.

Note that the Fourier series φp,j(x) can be a product of an angular basis function
Fp,j(x/x) and a radial basis function hp,j(x), i.e., φp,j(x) = Fp,j(x/x)hp,j(x) [65,
Appendex A.1]. One natural choice for the radial basis functions hp,j(x) is exactly
the family of Spherical Bessel functions [69], which form a complete orthonormal set
on R+ ∪ {0}. Then, computing a set of desired angular basis functions Fp,j(·) is the
focus of this paper. In the remainder of this paper, the word “basis functions” (or
“basis”) all refer to the angular basis functions (or the angular basis). In this paper,
we provide a practical computational algorithm for a set of basis functions with the
following four properties (which are specified in Eqs, 6.1-6.4, respectively):

1. Each function in the basis is a linear combination of spherical harmonics1 of
a fixed degree l.

2. Each function in the basis is real-valued.
3. The basis functions are orthonormal.
4. Under the rotations of a finite symmetry group, each function in the basis

transforms as one row of the corresponding unitary irreducible representation
(irrep) matrices.

Motivated by the study in structural virology, in which viruses often exhibit the
symmetry of a Platonic solid [16], we are especially interested in the three poly-
hedral groups–including 1) the tetrahedral group T that contains the 12 rotational
symmetries of a regular tetrahedron, 2) the octahedral group O that contains the
24 rotational symmetries of a cube and a regular octahedron, and 3) the icosahedral
group I that contains the 60 rotational symmetries of a regular dodecahedron and
a regular icosahedron. For reasons that are described in Section 6, in the cases of
the octahedral and icosahedral groups, it is possible to find a set of basis functions
which is complete in the space of square-integrable functions on the surface of the
sphere and which satisfies Properties 1–4. However, in the case of the tetrahedral
group, it is not possible to find a set of basis functions that is both complete and
which satisfies Properties 1–4. In such a situation, one way to achieve completeness is
to add additional complex-valued functions which is an undesirable situation for our
structural biology application (Section 2).

In the majority of existing literature, basis functions of a symmetry group have

1Throughout this paper, spherical harmonics are denoted by Yl,m(θ, φ) where the degree l satisfies
l ∈ {0, 1, . . . }, the order m satisfies m ∈ {−l, . . . , l} and (θ, φ) are the angles of spherical coordinates
with 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π [44, Section 14.30, pp. 378–379].
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REAL BASIS FUNCTIONS FOR THE POLYHEDRAL GROUPS 3

been generated as a linear combination of spherical harmonics of a single degree [1, 2, 3,
41, 46, 42, 21, 68, 70], because of the importance of rotations and the relative simplicity
of rotating spherical harmonics. Spherical harmonics have been widely applied in
structural biology, e.g., the fast rotation function [17]. Other work express the basis
functions of a polyhedral group as multipole expansions in rectangular coordinates [31,
26]. Previous work uses a variety of techniques and often has a restriction on the
value l of the spherical harmonics [1, 2, 3, 41, 46, 12, 42, 13, 47]. For instance,
Refs. [1, 2, 3] consider a range of point groups and use the techniques of projection
operators and Wigner D transformations to compute basis functions up to degree
l = 12, while Ref. [12] uses similar techniques restricted to the icosahedral group
to provide basis functions up to degree l = 15. Refs. [41, 46] use the method of
representation transformation to compute the invariant basis functions of the cubic
group up to degree l = 30; the work of Ref. [42] extends this computation to all
irreps basis functions. Refs. [13, 47] propose a method for deriving all irreps basis
functions of the cubic and the icosahedral groups for a specific degree l. However,
for computation which needs all irreps basis functions for a large range of l values
(e.g., from 0 to 55), the one-by-one derivation is cumbersome. Later work [21, 68, 70]
release this restriction on the degree l and allow for the computation of the invariant
basis functions of any polyhedral group. However, the recursions in [68, 70] appear to
be unstable in computational experiments. The cosmic topology implications of the
Wilkinson Microwave Anisotropy Probe observations have been analyzed [8, 7] using
functions similar to those of this paper for the icosahedral group. The approach of
Ref. [7] is to start with the invariant polynomials due to Felix Klein [34] and construct
the desired functions by algebraic and differential operations on polynomials. In
contrast, we start with known irreps, typically unitary, and use linear algebra to
compute real-valued unitary irreps. We then determine the desired functions from
the real-valued generalized projection operators that are constructed from the real-
valued irreps. Because of our application, we are focused on real-valued functions
and we show that such functions are only possible when there exists a real-valued
irrep (Section 4, Lemma 4.2). Among the variety of symmetries that arise in our
biophysical application, essentially all rotational point group symmetries, there exist
symmetries that do not allow real-valued irreps and our approach makes this clear.
We also provide efficient software implementation of the proposed algorithm.

In this paper, we derive an algorithm for efficiently computing the real-valued
all irreps basis functions for the tetrahedral, octahedral, and icosahedral groups for
arbitrary value of l. The algorithm takes advantage of the exact solution calculated
by Mathematica [63] build-in functions (e.g., WignerD). Given these Mathematica [63]
build-in functions, our proposed method does not use any recurrence to compute
the basis. This is to be contrasted with earlier work [68, 70], which computed basis
functions by explicit recurrence relations that led to unstable results. The most
burdensome calculation in the algorithm is to determine the eigenvectors of a real
symmetric matrix that is of dimension 2dp where dp is the dimension of the pth irrep
which, for the groups we consider, is no larger than 5.

To obtain the basis functions satisfying Properties 1–4, we first demonstrate that
such basis functions exist if and only if real-valued irrep matrices exist (Section 4).
Next, we determine the required real-valued irrep matrices . Standard approaches ex-
ist, e.g., Young diagrams [23]. However, taking advantage of existing complex-valued
irrep matrices [4, 36], we derive formula to find a similarity matrix that transforms the
complex-valued irrep matrices that are potentially-real (meaning that such a complex
to real similarity matrix transformation exists) to real-valued irrep matrices (Sec-
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4 NAN XU AND PETER C. DOERSCHUK

tion 5). Then, following the procedures as described in [15, p. 93], we determine
real-valued generalized projection operators using the real-valued irrep matrices (ob-
tained from Section 5), and apply them to real-valued spherical harmonics to obtain
the desired basis functions (Section 6). Finally, we provide numerical examples for
the three polyhedral groups (Section 7).

2. Motivation and contribution. The motivation for studying these functions
is to characterize the 3-D heterogeneity of a nanometer-scale biological particle (virus,
ribosome, etc.) based on single-particle cryo electron microscopy (cryo EM) [53, 43].
Single-particle cryo electron microscopy (cryo EM) [5, 11, 10] provides essentially a
noisy 2-D projection in an unknown direction of the 3-D electron scattering intensity
of a 101–102 nm biological object. For studies with high spatial resolution, only
one image is taken of each instance of the object because the electron beam rapidly
damages the object. There are multiple software systems, e.g., Refs. [22, 38, 49],
for computing a 3-D reconstruction of the object from sets of images of different
instances of the object and these systems include the possibility that the instances
come from a small set of classes where all instances within one class are identical
(homogeneous). However, not only may there be multiple classes of heterogeneity,
but each instance within a class may vary due to, for example, flexibility (continuous
heterogeneity) [56, 6] (see also the report of the 2017 Nobel Prize in Chemistry [57]).

Symmetry is an important characteristic of many biological particles. The Pro-
tein Data Bank [58] contained 130,005 structures and 39% had a rotational symmetry.
Some recent study [71] has relaxed the homogeneous class assumption by merging the
symmetry property of the biological object. Specifically, using the expression of the
electron scattering intensity of the object in Eq. 1.1, the reconstruction algorithm im-
poses the symmetry on ρ(x), which achieves the assumption that all instances within
each class are different but have identical symmetry (symmetric individuals) [71,
Eqs. 55–56]. The invariant basis (setting p = 1 in Eq. 1.1) becomes sufficient to
achieve such an assumption. In the case of virus particles, for example, most of which
exhibit icosahedral symmetry [9], the icosahedral basis functions associated to the
identity irrep [70] have been popularly employed in the Fourier series [61, 55, 25].

Our goal is to further merge the ideas that biological particles obey symmetry
and that different instances of the particle are heterogeneous due to different vibra-
tional states (continuous heterogeneity). In the continuous heterogeneity situation, it
becomes more natural to impose the symmetry on the 1st- and 2nd-order statistics of
ρ(x) for the particle (symmetric statistics) [66, 64], rather than on the ρ(x) itself. In
this more realistic assumption, since only the statistics have symmetry, the individual
particles may be non-symmetric, and therefore, the invariant basis becomes no longer
sufficient. Instead, a complete basis are required.

The combined ideas of continuous heterogeneity and symmetric statistics require
constraints on the mean and covariance of the coefficients vector w. As described in
[64, Section V], the constraints are simplest if each basis function transforms under
rotations of the group as some row of some irrep of the group (Eq. 6.4) and if all of the
basis functions are real valued (Eq. 6.2). These two goals are the primary topic of this
paper. Using harmonic functions (Eq. 6.1) helps characterize the spatial resolution of
the estimated electron scattering intensity and leads to simple formulas for both the
electron scattering intensity and the 3-D Fourier transform of the electron scattering
intensity. Using orthonormal functions (Eq. 6.3) improves the numerical properties
of the inverse problem.

Our focus on real-valued basis functions comes from the fact that the electron
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REAL BASIS FUNCTIONS FOR THE POLYHEDRAL GROUPS 5

scattering intensity ρ(x) is real valued and the complete orthonormal radial functions
h(x) are also real valued (e.g., the Spherical Bessel functions). Therefore, if all the
angular basis functions F (x/x) are also real valued, then the coefficients w can be
real valued which simplifies the statistical estimation problem in two ways. Suppose
w must be complex. The first complication is that it is necessary to estimate both
the expectation of wwT and of wwH . The second complication is that it is necessary
to account for constraints on the allowed values of w, much like a 1-D Fourier series
for a real-valued function that is periodic with period ∆ requires that the coefficients
(denoted by wn) satisfy wn = w∗−n when the basis functions for the Fourier series
are exp(i(2π/∆)nt). Our focus on real-valued basis functions which allow real-valued
coefficients permits us to avoid both of these complications for the important case of
the icosahedral and octahedral groups.

With these unique properties, these basis functions that we study in this paper
have been employed in the recent 3D image reconstruction calculations [65, 64], which
eliminated the well-recognized long-standing distortions on and near symmetry axes
of the biological object that were reconstructed by previous calculations [37, p.173]
(see also [72, 60, 18]) in which only the functions of invariant basis were used. This
has allowed important biological functions to be discovered along the symmetry axes
of the virus particles [65]. Furthermore, using all basis functions of this type dra-
matically reduces the number of parameters that must be estimated from the image
data [64, Figure 2] and makes each parameter independent of the other parameters.
An estimator might represent the electron scattering intensity ρ(x) as a weighted sum
of some alternative set of functions, e.g., as a 3-D array of voxels. Even in that case,
the functions described in this paper would still be important, because it is likely that
they would be involved in describing the constraint on the statistics of the weights for
the alternative set of functions.

3. Notation. The following notation is used throughout the paper. Let M be
a matrix with entry of ith row and jth column denoted by (M)i,j . Then M∗ is
the complex conjugate of M , MT is the transpose of M , and MH is the Hermitian
transpose of M , i.e., (MT )

∗
. In ∈ Rn×n is the identity matrix. < and = are the real

and imaginary parts, respectively, of their arguments. For 3-D vectors, x = ‖x‖2 and
x/x is shorthand for the (θ, φ) angles in the spherical coordinate system. Integration
of a function f : R3 → C over the surface of the sphere in R3 is denoted by

∫
f(x)dΩ

meaning
∫ π
θ=0

∫ 2π

φ=0
f(x, θ, φ) sin θdθdφ. The Kronecker delta function is denoted by

δi,j and has value 1 if i = j and value 0 otherwise.
“Representation” and “Irreducible representation” are abbreviated by “rep” and

“irrep”, respectively. For the finite group G, let Γp(g) ∈ Cdp×dp be the unitary irrep
matrix of the pth irrep for the group element g ∈ G with group order Ng, where
p ∈ {1, . . . , Nrep} indexes the inequivalent unitary irreps of G, and Nrep is the total
number of inequivalent irreps. Note that the values in the matrix Γp(g) for all g ∈ G
may be either real or complex. In Section 5, Γpc(g) ∈ Cdp×dp specifically denotes the
complex-valued unitary irrep matrix, whereas Γpr(g) ∈ Rdp×dp denotes the real-valued
orthonormal irrep matrix of the pth irrep.

4. Real basis functions require and generate real irreps. The one result
in this section, Lemma 4.2, states that a real-valued set of orthonormal basis func-
tions of the pth irrep of the finite group G exists if and only if a real irrep exists,
independent of whether the basis functions are expressed as linear combinations of
spherical harmonics of fixed degree l. First of all, the basis functions of a group of
coordinate transformations G have the following definition:
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6 NAN XU AND PETER C. DOERSCHUK

Definition 4.1. ([15, Eq. 1.26, p. 20]) A set of linearly independent functions
Fp,1, . . . , Fp,dp , that associate with the pth irrep, form a basis of G, denoted by Fp(·) = Fp,1(·)

...
Fp,dp (·)

 : R3 → Cdp , if for every g ∈ G,

(4.1) P (g)Fp,j(x/x) =

dp∑
m=1

(Γp(g))m,jFp,m(x/x), for j = 1, . . . , dp,

(4.2) or in the vector form, P (g)Fp(x/x) = (Γp(g))TFp(x/x),

where P (g) is the abstract rotation operator, i.e., P (g)f(x) = f(R−1g x), and Rg ∈
R3×3 with R−1g = RTg and detRg = +1 is the rotation matrix corresponding to g ∈ G.
When P (g) is applied to a vector-valued function, it operates on each component of
the vector. The function Fp,j(·) for j ∈ {1, . . . , dp} is said to “transform as the jth

row” of the pth irrep of the finite group G.

Lemma 4.2. Real-valued orthonormal basis functions of the pth irrep of the finite
group G exist if and only if the real-valued pth irrep exists for G.

Proof. Real-valued functions imply real-valued irreps: Let Fp,ζ(x/x) be the ζth
orthonormal vector basis of G that associate with the pth irrep (defined in Eq. 4.2).

Define Jp;p
′

ζ;ζ′ ∈ Rdp×dp by

Jp;p
′

ζ;ζ′ =

∫
[P (g)Fp,ζ(x/x)] [P (g)Fp′,ζ′(x/x)]

T
dΩ.(4.3)

Evaluate Jp;p
′

ζ;ζ′ twice. In the first evaluation,

Jp;p
′

ζ;ζ′ =

∫
Fp,ζ(x/x) [Fp′,ζ′(x/x)]

T
dΩ = Idpδp,p′δζ,ζ′ ,(4.4)

where the first equality is due to rotation the coordinate system by Rg, and the second
equality is due to the fact that the {Fp,ζ} are orthonormal.

In the second evaluation, use Eq. 4.2, rearrange, and use the orthonormality of
{Fp,ζ} to get

Jp;p
′

ζ;ζ′ =

∫
(Γp(g))TFp,ζ(x/x)

[
(Γp

′
(g))TFp′;ζ′(x/x)

]T
dΩ(4.5)

= (Γp(g))T
[∫

Fp,ζ(x/x) [Fp′,ζ′(x/x)]
T

dΩ

]
Γp

′
(g)(4.6)

= (Γp(g))T
[
Idpδp,p′δζ,ζ′

]
Γp

′
(g)(4.7)

= (Γp(g))TΓp
′
(g)δp,p′δζ,ζ′ .(4.8)

Equating the two expressions for Jp;p
′

ζ;ζ′ gives (Γp(g))TΓp(g) = Idp . Since Γp(g) is

unitary, multiplying on the right by (Γp(g))H implies that (Γp(g))T = (Γp(g))H so
that Γp(g) is real.

Real-valued irreps imply real-valued functions: This follows from the results in
the later section, Lemma 6.2 and Eqs. 6.10–6.11.

This manuscript is for review purposes only.



REAL BASIS FUNCTIONS FOR THE POLYHEDRAL GROUPS 7

5. Computation of real irrep matrices. In Section 4, we have proved that
the real basis functions requires the real irreps. In this section, starting from a set
of matrices that make up a complex-valued unitary irrep, we provide an approach
to compute an equivalent real-valued orthonormal irrep if that’s possible. The ques-
tion of existence of such equivalent real-valued orthonormal irrep is answered by the
Frobenious-Schur theory [15, p. 129, Theorem III] (see also [62, p. 708]), which is
summarized in the following paragraph.

The Frobenious-Schur indicator, denoted by χ, is defined as

χ({Γpc(g)}g∈G) = (1/Ng)
∑
g∈G

tr[Γpc(g)].

According to the Frobenious-Schur theory, the value of χ is 1, 0, or -1 has the following
implications:

a) If χ = 1, then the irrep is potentially real, meaning that there exists a unitary
matrix, denoted by Sp, such that (Sp)HΓp(g)Sp is real for all g ∈ G.

b) If χ = 0, then the irrep is essentially complex, meaning that there is no
similarity transformation that relates Γp and (Γp)∗.

c) If χ = −1, then the irrep is pseudo real, meaning that there exists a unitary
matrix, denoted by T p, such that (Γp(g))∗ = (T p)HΓp(g)T p for all g ∈ G,
but no similarity transformation exists such that (Γp(g))∗ real for all g ∈ G.

The remainder of this section applies only to potentially real irreps (i.e. χ = 1).
Given the fact that the direct sum of the disjoint subspaces defined by the irreps
of G from the L2 space [14, p. 65-67], it is satisfactory for generating any set of
orthonormal matrices that construct an irrep of G, and the question of uniqueness
does not arise for our purpose of study. In the following, we describe a three-step
algorithm to compute such a unitary matrix Sp ∈ Cdp×dp for the case of potentially
real irreps:

1. For any such unitary matrix Sp, show that the complex irrep Γpc is similar to
its complex conjugate (Γpc)

? with the similarity transformation Sp(Sp)T .
2. Find a matrix Cp, which is an explicit function of Γpc , and is a similarity

matrix relating the two sets of matrices Γpc and (Γpc)
?.

3. Factor Cp to compute a particular Sp.
Step 1 is achieved by Lemma 5.1.

Lemma 5.1. Suppose that the pth irrep of the group G which is represented by the
complex unitary matrices Γpc(g) (g ∈ G) is potentially real. Let Sp ∈ Cdp×dp denote a
unitary matrix. The following two statements are equivalent:

(5.1) For all g ∈ G, Γpr(g) = (Sp)HΓpc(g)Sp such that Γpr(g) ∈ Rdp×dp .

(5.2) For all g ∈ G, [Sp(Sp)T ]−1Γpc(g)[Sp(Sp)T ] = (Γpc(g))∗.

Please see Appendix A for the proof.
Step 2 computes a non-unitary symmetric matrix (Zp) (Lemma 5.2), which is

then normalized (Cp) to be unitary (Corollary 5.3).

Lemma 5.2. Suppose that Γpc(g) (g ∈ G) are complex unitary irrep matrices for
the pth rep of the group G which is potentially real. Let Ap ∈ Cdp×dp be a nonsin-
gular transpose-symmetric matrix (i.e., (Ap)T = Ap) and Zp be defined by Eq. 5.3,
specifically,

(5.3) Zp =
1

Ng

∑
g∈G

Γpc(g)Ap((Γpc(g))∗)−1.
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8 NAN XU AND PETER C. DOERSCHUK

If Zp is nonzero, then Zp has the following properties:
1. (Zp)T = Zp.
2. (Zp)

∗
Zp = cZIdp where cZ ∈ R+.

3. For all g ∈ G, (Γpc(g))∗ = (Zp)∗Γpc(g)Zp.

Please see Appendix A for the proof.
It is important to find a matrix Ap such that the matrix Zp is nonzero. For

the three polyhedral groups that we consider in this paper, this issue is discussed in
Section 7.1.

Corollary 5.3. Define Cp by

(5.4) Cp = Zp/
√
cZ .

Then Cp has the following properties:
1. (Cp)T = Cp.
2. (Cp)

∗
Cp = Idp .

3. For all g ∈ G, (Γpc(g))∗ = (Cp)∗Γpc(g)Cp .

The matrix Sp in the definition of potentially real is not unique. Comparing
Property 3 of Corollary 5.3 and Eq. 5.2, Sp can be restricted to satisfy

(5.5) Cp = Sp(Sp)
T
,

noting, however, that even with this restriction, Sp is still not unique. Because
Lemma 5.1 is “if and only if”, any unitary matrix Sp that satisfies Eq. 5.5 is a
satisfactory similarity matrix. The existence of the unitary factorization described by
Eq. 5.5 is guaranteed by the Takagi Factorization [28, Corollary 4.4.6, p. 207].

Step 3 is to perform the factorization of Cp and a general algorithm is pro-
vided by Lemma 5.4 which is based on the relationship between the coneigenvec-
tors (as is described in Property 3 of Lemma 5.4) of a unitary symmetric matrix
Q and the eigenvectors of its real representation matrix B, which is defined by

B =
[ <Q =Q
=Q −<Q

]
∈ R2n×2n.

Lemma 5.4. Let Q ∈ Cn×n be a unitary symmetric matrix, i.e., QT = Q and
QQ∗ = In. Let B ∈ R2n×2n be the real representation of Q, i.e., B =

[<Q =Q
=Q −<Q

]
∈

R2n×2n. Then, the following properties hold:
1. B is nonsingular and has 2n real eigenvalues and 2n orthonormal eigenvec-

tors.
2. The eigenvectors and eigenvalues of B are in pairs, specifically,

B [ x
−y ] = λ [ x

−y ] if and only if B [ yx ] = −λ [ yx ] .

3. Let
[ x1
−y1

]
, . . . ,

[ xn
−yn

]
be the orthonormal eigenvectors of B associated with

n positive eigenvalues of λ1, . . . , λn. (Since B is nonsingular, there are no
zero eigenvalues.) Then x1 − iy1, . . . , xn − iyn are the set of orthonormal
coneigenvectors of Q associated with the n coneigenvalues +λk, i.e., Q(xk −
iyk)∗ = λk(xk − iyk) for k = 1, ..., n.

4. λ1 = · · · = λn = 1.
5. Define uk = xk − iyk and U = [u1, . . . , un] ∈ Cn×n. Then U is unitary.
6. Q = UUT .

Please see Appendix A for the proof.
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REAL BASIS FUNCTIONS FOR THE POLYHEDRAL GROUPS 9

Applying Lemma 5.4 to Cp results in a particular matrix Sp which is the U matrix
of Property 5. The complete algorithm is summarized in Theorem 5.5.

Theorem 5.5. A unitary matrix, Sp ∈ Cdp×dp , which is a similarity transforma-
tion between the provided potentially-real complex unitary irrep and a real orthonormal
irrep, can be computed by the following steps:

1. Compute Zp by Eq. 5.3.
2. Compute cZ by Lemma 5.2 Property 3 and compute Cp by Eq. 5.4.
3. Compute the eigenvectors and eigenvalues of

(5.6) Bp =

[
<Cp =Cp
=Cp −<Cp

]
∈ R2dp×2dp .

4. Form the matrix V p ∈ R2dp×dp whose columns are the dp eigenvectors of Bp

that have positive eigenvalues.
5. Then Sp = [Idp , iIdp ]V p.

6. Computation of real basis functions. In this section, formulas corre-
sponding to the four goals in Section 1 are stated in Eqs. 6.1–6.4 and the computation
of basis functions satisfying these formulas is then described. Specifically, the basis
functions which satisfy the four goals in Section 1 have four indices: p indexes the
unitary irreducible representation; l indexes the subspace defined by spherical har-
monics of fixed order l; n indexes the vector basis of G that satisfies Eqn. 4.2; and j
indexes the component of the vector basis. Let Fp,l,n,j be a basis function that trans-
forms as the jth row of the irrep matrices and Fp,l,n = (Fp,l,n,j=1, . . . , Fp,l,n,j=dp)T .
Let Yl,m(θ, φ) be the spherical harmonic of degree l and order m [44, Section 14.30,
pp. 378–379]. Then the goals are to obtain a set of functions such that

Fp,l,n,j(θ, φ) =

+l∑
m=−l

cp,l,n,j,mYl,m(θ, φ)(6.1)

Fp,l,n,j(θ, φ) ∈ R(6.2)

δp,p′δl,l′δn,n′δj,j′ =

∫ 2π

φ=0

∫ π

θ=0

Fp,l,n,j(θ, φ)Fp′,l′,n′,j′(θ, φ) sin θdθdφ(6.3)

Fp,l,n(R−1g x/x) = (Γpr(g))TFp,l,n(x/x).(6.4)

The computation is performed by the projection method of Ref. [15, p. 94] in
which various projection operators (Definition 6.1) are applied to each function of
a complete basis for the space of interest. When the various projection operators
are defined using real-valued orthonormal irrep matrices (as computed in Section 5)
and are applied to a real-valued complete orthonormal basis in the subspace spanned
by spherical harmonics of degree l (which has dimension 2l + 1) then the resulting
basis for the same subspace is real-valued, complete, and orthonormal [15, Theorems I
and II, pp. 92-93].

The remainder of this section has the following organization. First, the projection
operators are defined (Definition 6.1). Second, the initial basis in the subspace is de-
scribed. Third, the results of applying the projection operators to the basis functions
are described in terms of individual functions (Lemma 6.2) and in terms of sparse
matrices of order (2l + 1) × (2l + 1). Fourth, normalization is discussed (Eq. 6.10).
Fifth, because basis functions computed by this process are more than necessary (as
is detailed in the later context), Gram-Schmidt orthogonalization is used to extract
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a orthonormal subset that spans the subspace defined by degree l. Finally, sixth,
comments are made on the non-uniqueness of the final basis.

Definition 6.1. ([15, p. 93]) The projection operators Ppj,k are defined by

(6.5) Ppj,k =
dp
Ng

∑
g∈G

(Γp(g))∗j,kP (g)

where P (g) is the abstract rotation operator as is defined in Definition 4.1.

The projection operator is applied to a complete set of basis functions. One
natural choice is the set of spherical harmonics [44, Eq. 14.30.1, p. 378] (denoted
by Yl,m(θ, φ), where the arguments will routinely be suppressed) because Yl,m have
simple rotational properties. Specifically, the Yl,m functions have the symmetry
property Yl,−m = (−1)mY ∗l,m [44, Eq. 14.30.6, p. 378] and the rotational property

P (R)Yl,m =
∑+l
m′=−lDl,m,m′(R)Yl,m′ , where R is a rotation matrix, and Dl,m,m′(R)

are the Wigner D coefficients [48, Eq. 4.8, p. 52], and P (R) is the rotation operator
P (R)f(x) = f(R−1x). However, except for Yl,m=0, spherical harmonics are complex
valued. Older literature [40, Eq. 10.3.25, p. 1264] used real-valued definitions, e.g.,

(6.6) Y̌l,m =


√

2=Yl,m, m < 0
Yl,0, m = 0√

2<Yl,m, m > 0

,

which retain simple rotational properties. Both Yl,m and Y̌l,m are orthonormal sys-
tems of functions.

We will apply the projection operator to Y̌l,m in order to get the desired basis
functions that satisfy the four goals of Section 1, but will describe our results in terms
of Yl,m, because much standard software is available. Standard computations based
on the properties described in the previous paragraph result in Lemma 6.2.

Lemma 6.2. Suppose that the pth irrep of a group G is potentially real with the
real-valued orthogonal irrep matrices Γpr(g) ∈ Rdp×dp for all g ∈ G. Then, the projec-
tion operation on real spherical harmonics Y̌l,m for m ∈ {−l, . . . , l} and l ∈ N can be
determined by

Ppj,kY̌l,m =

+l∑
m′=−l

D̂pj,k;l,m;m′Yl,m′(θ, φ)(6.7)

where

D̂pj,k;l,m;m′ =
dp
Ng

∑
g∈G

(Γpr(g))j,kD̂l,m,m′(Rg), and(6.8)

D̂l,m,m′ =


− i√

2
(Dl,m,m′ − (−1)mDl,−m,m′) , m < 0

Dl,0,m′ , m = 0
1√
2

(Dl,m,m′ + (−1)mDl,−m,m′) , m > 0
.(6.9)

An alternative view of Lemma 6.2 is described in this paragraph. Define the
vectors Yl = (Yl,−l, . . . , Yl,+l)

T ∈ C2l+1 and Y̌l = (Y̌l,−l, . . . , Y̌l,+l)
T ∈ R2l+1. There

exists a unitary matrix Ul ∈ C(2l+1)×(2l+1) such that Y̌l = UHl Yl where Ul has at
most two non-zero entries in any row or any column. The Wigner D coefficients can
be grouped into a matrix Dl(R) ∈ C(2l+1)×(2l+1) such that P (R)Yl = Dl(R)Yl where
Dl(R) is typically a full matrix. In terms of these two matrices, P (R)Y̌l = D̂l(R)Yl
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where D̂l(R) ∈ C(2l+1)×(2l+1) is defined by D̂l(R) = UHl Dl(R), The matrix equation

D̂l(R) = UHl Dl(R) is equivalent to Eq. 6.9, but Eq. 6.9 is less expensive to compute
because of the sparseness of Ul.

According to [15, p. 94], a vector of dp real basis functions, denoted by Cpk,l,m ∈ Rdp
and expressed in terms of Yl,m, can be computed from Lemma 6.2 (Eq. 6.7) as

Cpk,l,m(θ, φ) =
1

ĉpk,l,m

[ Pp
1,k

Y̌l,m(θ,φ)

...
Pp

dp,k
Y̌l,m(θ,φ)

]
= D̂p

l,mYl(θ, φ),(6.10)

where (D̂
p

l,m)j,m′ = D̂pj,k,l,m,m′/ĉ
p
k,l,m for j ∈ {1, . . . , dp}, m′ ∈ {−l, . . . , l}, and

ĉpk,l,m =
√∑l

m′=−l |D̂
p
k,k,l,m,m′ |2 all for some k ∈ {1, . . . , dp} such that ĉpk,l,m > 0.

Note that this procedure computes 2l+ 1 coefficient matrices D̂
p

l,m by varying m
through the set {−l, . . . ,+l}, so that a total of (2l+1)dp basis functions are computed.
This is more than necessary for a basis, because the subspace of square-integrable
functions on the surface of the sphere, where the subspace is defined by degree l ∈ N,
is spanned by (2l + 1) basis functions. Through Gram-Schmidt orthogonalization,

the set of coefficient matrices, {D̂
p

l,m} for m ∈ {−l, . . . , l}, shrinks to a smaller set of

coefficient matrices, {Ĥ
p

l,n} for n ∈ {1, . . . , Np;l < 2l + 1}. The value of Np;l ∈ N is
determined by this process. Finally, the expression for the vector of dp orthonormal
real basis functions, Fp,l,n(θ, φ), is

(6.11) Fp,l,n(θ, φ) = Ĥ
p

l,nYl(θ, φ), for n ∈ {1, . . . , Np;l}.

Note that given the WignerD solutions calculated by Mathematica [63], computing

the set of coefficient matrices, D̂
p

l,m for m ∈ {−l, . . . , l}, requires 2dp(2l + 1)[(3Ng +
1)l + Ng] arithmetic operations. The Gram-Schmidt procedure, which shrinks the
matrix of size dp(2l + 1) × (2l + 1) to a matrix of size dpNp;l × (2l + 1), requires
2dp(2l + 1)3 arithmetic operations [24, p. 255]. Eq. 6.11 for all n’s takes another

2dpNp;ll arithmetic operations, where
∑Nrep

p=1 dpNp;l = 2l + 1. Hence, given l, for all
p’s (p ∈ {1, . . . , Nrep}) and all n’s (n ∈ {1, . . . , Np;l}), it requires 2(2l + 1)[(3Ng +
1)l + Ng]

∑
p dp + 2(2l + 1)3

∑
p dp + 2l(2l + 1) arithmetic operations for computing

the set of basis functions Fp,l,n(θ, φ), and therefore the computational complexity is

O((
∑Nrep

p=1 dp)l
2(l +Ng)).

Note that the basis is not unique. In the approach of this paper, the nonuniqueness
enters in several places, e.g., in the choice of Ap (Eq. 5.3), in the definition of the
eigenvectors and the order of the loading of the eigenvectors into the matrix U (both
Lemma 5.4), and in the creation of an orthonormal family of basis functions in the
subspace of dimension 2l + 1 which is spanned by the 2l + 1 spherical harmonics of
degree l.

7. Application to the polyhedral groups. In this section, the theory of this
paper is applied to the three polyhedral groups, which are the tetrahedral T , octahe-
dral O, and icosahedral I groups. Recall the fact that the tetrahedral group T is the
rotational symmetry group of the regular tetrahedron; the octahedral group O is the
rotational symmetry group of the cube and the regular octahedron; and the icosahe-
dral group I is the rotational symmetry group of the regular dodecahedron and the
regular icosahedron. Properties of each group and the parameter values which select
a specific basis are described in Section 7.1 and the numerical results are presented
in Section 7.2.
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7.1. Irreps and rotation matrices of polyhedral groups. Unitary complex-
valued irrep matrices for the tetrahedral and octahedral groups are available at the
Bilbao Crystallographic Server [4, 52, 51]. Unitary complex-valued irrep matrices for
the icosahedral group are provided by [36]. The Frobenious-Schur indicator (Section 5)
implies that all irreps of the octahedral and the icosahedral groups are potentially real.
Similarly, the tetrahedral group has irreps A and T that are potentially real and irreps
1E and 2E that are essentially complex. In the reminder of the paper, we refer to the
tetrahedral irreps (the irreps of the tetrahedral group) A, 1E, 2E and T as the 1st,
2nd, 3rd and 4th irreps, respectively, and refer to the octahedral irreps A1, A2, E, T1
and T2 as the 1st, 2nd, 3rd, 4th and 5th irreps, respectively2 The basic properties of
the groups are tabulated in Table 7.1.

Symmetry Groups Ng Nrep dp potentially real irreps
Tetrahedral 12 4 {1, 1, 1, 3} 1,4
Octahedral 24 5 {1, 1, 2, 3, 3} 1,2,3,4,5
Icosahedral 60 5 {1, 3, 3, 4, 5} 1,2,3,4,5

Table 7.1: Basic properties of the polyhedral groups: the group orders (Ng), the
number of irreps (Nrep), the dimension of the pth irrep (dp for p ∈ {1, . . . , Nrep}), and
the potentially real irreps of each group.

For each symmetry operation, a rotation matrix (Rg ∈ R3×3 for g ∈ G which
satisfies RTg = R−1g , detRg = +1) is needed. The set of rotation matrices defines
the relationship between the symmetries and the coordinate system. Any orthonor-
mal real-valued irrep with dp = 3 can serve as such a set of rotation matrices. For
the tetrahedral and octahedral groups, rotation matrices are available at the Bilbao
Crystallographic Server [4, 52, 51] although the matrices must be re-ordered in order
to match the multiplication tables of the irrep matrices and, after reordering, they
are the 4th irrep of the tetrahedral group and the 4th irrep of the octahedral group.
For the icosahedral group, we desire to use the coordinate system in which the z-axis
passes through two opposite vertices of the icosahedron and the xz plane includes one
edge of the icosahedron [35, 1, 70]. Rotation matrices in this coordinate system are
available [67] although the matrices must be reordered to match the multiplication
table of the irrep matrices [36]. The reordering and the similarity matrix to match
the rotation matrices to either of the two dp = 3 sets of irrep matrices are given
in Appendix B. The calculations described in this paper use the rotation matrices
reordered to match the multiplication table of the 2nd irrep.

For the particular irreps described above, it is necessary to give values for the
Ap matrices of Lemma 5.2. The identity matrix Idp satisfies the nonsingular and
transpose symmetric hypotheses of Lemma 5.2. However, for the p = 4 irrep of the
icosahedral group for which d4 = 4, I4 leads to Z4 = 0 by direct computation. It
was not difficult to find a choice for Ap such that all potentially-real irreps of the

2{A, 1E, 2E, T} and {A1, A2, E, T1, T2} are the Mulliken symbols used to identify irreps
of group T in [52], and irreps of group O in [51], respectively. A, E and T denote 1-dimensional,
2-dimensional, and 3-dimensional irrep, respectively. Note that there are two 2-dimensional irreps
for the tetrahedral group, which are denoted by 1E and 2E, respectively, in [52]. The irrep A has
symmetry with respect to rotation of the principle axis. (·)1 ((·)2) denotes the irrep which has
symmetry (anti-symmetry) with respect to a vertical mirror plane perpendicular to the principal
axis.
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tetrahedral, octahedral, and icosahedral groups have nonzero Zp. For instance, the
choice of an “exchange permutation” matrix [24, Section 1.2.11, p. 20] for Ap, which
is the anti-diagonal matrix with all ones on the anti-diagonal, leads to Zp = Ap by
direct computation. This choice for Ap was used in all computations in this paper.

7.2. Numerical results. For the tetrahedral group, the coefficient matrices
Ĥ
p

l,n for degree l ∈ {1, . . . , 45}, p ∈ {1, 4} and n ∈ {1, . . . , Np;l}, were computed. The
total number of rows in the coefficient matrices is Np=1;l + Np=4;l < 2l + 1 for each
l, which is in agreement with the fact that only two of four irreps are potentially real
and therefore only two of four irreps are included in our calculation. The resulting
basis functions have been numerically verified to be real-valued and orthonormal.

For the octahedral and icosahedral cases, there are numerical checks that can
be performed on the basis functions because all irreps are potentially real. Eq. 6.1
is achieved by construction. Eq. 6.2 is achieved by construction for Ĥpl,m. To ver-

ify Eq. 6.3, form matrix Ĥl = [(Ĥp=1
l,1 )T , . . . , (Ĥl,Np;l

)T , . . . , (Ĥp=Nrep

l,1 )T , . . . , (Ĥp=Nrep

l,Np;l
)T ]T .

The matrix dimension is verified to be (2l + 1) × (2l + 1), which verifies that the

correct number of basis functions have been found (
∑Nrep

p=1 dpN
p
l = 2l+ 1). Moreover,

the matrix Ĥl is verified to be unitary, which verifies that the basis functions are
orthonormal. Eq. 6.4 is verified by testing an array of (θ, φ) values. The verifications
were carried out for l ∈ {0, . . . , 45}.

(a) Tetrahedral basis functions Tp,l,n,j

(b) Octahedral basis functions Op,l,n,j

(c) Icosahedral basis functions Ip,l,n,j

Fig. 7.1: Examples of the real basis functions of the three polyhedral groups. The
surfaces of 3-D objects defined by Eq. 7.1 are visualized by UCSF Chimera [45] where
the darkness indicates the distance from the center of the object. The darker the color
is, the closer the point is to the center.

Example basis functions are shown in Figure 7.1 by visualization of the function

(7.1) ξp,l,n,j(x) =

{
1, x ≤ κ1 + κ2Fp,l,n,j(x/x)
0, otherwise

where κ1 and κ2 are chosen so that 0.5 ≤ κ1 + κ2Ip,l,n,j(x/x) ≤ 1. Software and
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14 NAN XU AND PETER C. DOERSCHUK

numerical solution for the real irrep matrices and spherical harmonics coefficient for
constructing real basis functions for theses three polyhedral groups are available here
(https://github.com/nxu25/PolyhedralBasisFunction) as well as described in the Sup-
plemental Materials.

8. Conclusion. Motivated by cryo electron microscopy problems in structural
biology, this paper presents a method for computing real-valued basis functions which
transform as the various rows and irreducible representations of a polyhedral group.
The method has two steps: (1) compute real-valued orthonormal irreducible repre-
sentation matrices (Section 5) and (2) use the matrices to define projection operators
which are applied to a real-valued basis for the desired function space (Section 6).
The method is applied to the icosahedral, octahedral, and tetrahedral groups where
the second step is performed in spherical coordinates using the spherical harmonics
basis. The most burdensome part of the calculation for the first step is the solution
of a real symmetric eigenvector problem of dimension equal to twice the dimension of
the irreducible representation matrices. For these three groups, the largest matrix is
of dimension 5 so the calculations are straightforward. Of the remaining polyhedral
groups, basis functions for the cyclic groups are more naturally described in cylindrical
coordinates using the complex exponential basis and possibly the same is true for the
dihedral groups and so the calculations for the second step would be quite different
from those described in this paper. However, the calculations in the first step, which
apply to any potentially real irreducible representation, would remain relevant.

The resulting basis functions are described by linear combinations of spherical
harmonics and a Mathematica [63] program to compute the coefficients of the linear
combination and a Matlab [59] program to evaluate the resulting basis functions are
on our github page.
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Appendix A. Proofs of Lemmas.

Proof of Lemma 5.1. Eq. 5.1 implies Eq. 5.2) Γpr is real by definition so that

Γpr(g) = (Γpr(g))∗

. Since Γpr = (Sp)HΓpc(g)Sp, it follows that

Γpr = (Sp)HΓpc(g)Sp =
(
(Sp)HΓpc(g)Sp

)∗
= (Sp)T (Γpc(g))∗(Sp)∗.

Multiply on the left by ((Sp)H)T = ((Sp)−1)T = ((Sp)T )−1 and on the right by
((Sp)H)∗ = (Sp)T to get

((Sp)T )−1(Sp)HΓpc(g)Sp(Sp)T = (Γpc(g))∗,

which, since (Sp)H = (Sp)−1, implies that

[Sp(Sp)T ]−1Γpc(g)[Sp(Sp)T ] = (Γpc(g))∗.

Therefore Γpc(g) is similar to (Γpc(g))∗.
Eq. 5.2 implies Eq. 5.1) Multiplying by (Sp)T on the left and (Sp)∗ on the right

of Eq. 5.2 gives

(Sp)T [Sp(Sp)T ]−1Γpc(g)[Sp(Sp)T ](Sp)∗ = (Sp)T (Γpc(g))∗(Sp)∗

which can be reorganized using the assumption that Sp is unitary to get

[(Sp)T (Sp)∗](Sp)−1Γpc(g)Sp[(Sp)T (Sp)∗] = (Sp)T (Γpc(g))∗(Sp)∗.

Then, also since Sp is unitary, it follows that

(Sp)−1Γpc(g)Sp =
[
(Sp)−1Γpc(g)Sp

]∗
.

Since the left and the right hand sides of the above equation are complex conjugates
of each other, it follows that each is real, i.e., Γpr(g) = (Sp)−1Γpc(g)Sp is a real-valued
matrix.

Proof of Lemma 5.2. Property 1: Because the irrep is unitary, Zp can be written
in the form

(A.1) Zp =
1

Ng

∑
g∈G

Γpc(g)Ap(Γpc(g))T .

Then, Property 1 follows from a direct computation.
Properties 2 and 3: For any arbitrary g′ ∈ G, we have

Γpc(g
′)Zp(Γpc(g

′))T = Γpc(g
′)

1

Ng

∑
g∈G

Γpc(g)Ap(Γpc(g))T (Γpc(g
′))T

=
1

Ng

∑
g∈G

[Γpc(g
′)Γpc(g)]Ap[Γpc(g

′)Γpc(g))]T

=
1

Ng

∑
g∈G

Γpc(g
′g)Ap(Γpc(g

′g))T s =
1

Ng

∑
g∈G

Γpc(g)Ap(Γpc(g))T = Zp(A.2)
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where the forth equivalence follows from the Rearrangement Theorem [15, Theorem II,
p. 24]. Because the irrep is unitary, rearranging Eq. A.2 gives Γpc(g

′)Zp = Zp(Γpc(g
′))∗.

Because g′ is arbitrary,

(A.3) Γpc(g)Zp = Zp(Γpc(g))∗, for all g ∈ G.

Property 2 follows from Ref. [15, Theorem II, p. 128] because the irrep Γpc is potentially
real.

Note that both Γpc and (Γpc)
∗ are unitary irreps of dimension dp of the group G.

Schur’s Lemma [15, Theorem I, p. 80] applied to Eq. A.3 implies that either Zp = 0
or detZp 6= 0. Because of the assumption Zp 6= 0, Zp is nonsingular. Therefore, Zp is
a similarity transform from Γpc(g) to (Γpc(g))∗ for all g ∈ G which proves Property 3.

Proof of Lemma 5.4. For simplicity, let Q1 = <Q and Q2 = =Q.
Property 1: The matrices Q1, Q2, and B are all real and symmetric. Since

B ∈ R2n×2n and BT = B, B has 2n real eigenvalues (possibly repeated) and 2n real
orthonormal eigenvectors [28, Theorem 2.5.6, p. 104]. Define M by

M =
[
I −iI
0 I

]
B
[
I 0
iI I

]
=
[

0 Q2 + iQ1

Q2 − iQ1 −Q1

]
.

Then,

det(B) = det(M) = det((Q2 + iQ1)(Q2− iQ1)−0(−Q1) = det(QQ∗) = |det(Q)|2 > 0

because Q is non-singular. Hence, B is non-singular.
Property 2:

B [ x
−y ] = λ [ x

−y ]

⇐⇒

{
Q1x−Q2y = λx

Q2x+Q1y = −λy
⇐⇒

{
Q2y −Q1x = −λx
Q2x+Q1y = −λy

⇐⇒ B [ xy ] = −λ [ xy ] .

Property 3: Define the matrices X = [x1, . . . , xn] ∈ Rn×n, Y = [y1, . . . , yn] ∈
Rn×n,Λ = diag(λ1, . . . , λn) ∈ Rn×n, U = X − iY ∈ Cn×n. Then, the equation

B
[ xk
−yk

]
= λk

[ xk
−yk

]
for k{1, . . . , n}

is equivalent to B

[
X
−Y

]
=

[
Q1 Q2

Q2 −Q1

] [
X
−Y

]
=

[
X
−Y

]
Λ, which is equiva-

lent to

{
Q1X −Q2Y = XΛ

Q2X +Q1Y = −Y Λ
.

Multiplying the second equation by i and adding to the first equation gives

UΛ = (X − iY )Λ = (Q1X −Q2Y ) + i(Q2X +Q1Y )

= (Q1 + iQ2)X + (iQ1 −Q2)Y = (Q1 + iQ2)X + (Q1 + iQ2)iY

= (Q1 + iQ2)(X + iY ) = QU∗.

Therefore xk − iyk and +λk are the coneigenvectors and coneigenvalues of Q, respec-
tively.

Property 4: Because QQ∗ = In by assumption, the eigenvalues of QQ∗ are the
eigenvalues of In which all have value 1. By Ref. [28, Proposition 4.6.6, p. 246], ξ is
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an eigenvalue of QQ∗ if and only if +
√
ξ is a coneigenvalue of Q. Therefore, all the

coneigenvalues of Q have value 1.
Property 5: Let the columns of V ∈ R2n×2n be the 2n real orthonormal eigenvec-

tors of B, i.e.,

(A.4) V =

[[
x1
−y1

]
, . . . ,

[
xn
−yn

]
,

[
y1
x1

]
, . . . ,

[
yn
xn

]]
.

Then, V TV = V V T = I2n and V HV = V V H = I2n.
Define L ∈ Cn×2n by L = [In, iIn] and Ũ ∈ C2×2n by Ũ = LV . Then Ũ ŨH =

(LV )(LV )H = LV V HLH = LI2nL
H = LLH = In + In = 2In. But also, Ũ =

LV = [x1 − iy1, . . . , xn − iyn, y1 + ix1, . . . , yn + ixn] = [x1 − iy1, . . . , xn − iyn, i(x1 −

iy1), . . . , i(xn − iyn)] = [U, iU ] and Ũ ŨH = [U, iU ]

[
UH

−iUH
]

= UUH + UUH =

2UUH . Therefore, UUH = In.
Property 6: Property 6 follows immediately from Properties 3–5 since Property 3

states that QU∗ = UΛ, Property 4 states that Λ = In, and Property 5 states that
(U∗)−1 = UT .

Appendix B. Relationships between icosahedral dp = 3 irreps. Let
Rg be the rotation matrices of Ref. [67] which are also a real orthonormal irrep of
dimension 3. Let Γp(g) be the complex unitary irreps of Ref. [36] where p = 2 and
p = 3 are of dimension 3. With different permutations, Rg can be made similar to
both Γp=2(g) and Γp=3(g). In particular, Γp(g) = (Sp)HRγp(g)S

p for p ∈ {2, 3} where
the permutation γp(g) and the complex unitary matrices Sp ∈ C3×3 are given in
Table B.1 and Eq. B.1, respectively.

(B.1) Sp=2 =

 −1/
√

2 0 −1/
√

2

−i/
√

2 0 i/
√

2
0 1 0

 Sp=3 =

 −1/
√

2 0 −1/
√

2

i/
√

2 0 −i/
√

2
0 1 0

 .

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
γ2(g) 1 2 5 9 17 10 27 13 21 18 24 15 26 3 4
γ3(g) 1 4 3 36 52 38 42 49 60 54 56 48 45 2 5
g 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
γ2(g) 48 45 56 54 49 60 36 52 42 38 14 16 47 40 46
γ3(g) 24 18 15 26 21 13 10 27 17 9 46 55 22 8 25
g 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
γ2(g) 55 41 53 20 29 6 12 57 39 8 22 44 58 28 25
γ3(g) 28 20 29 53 41 40 47 12 6 39 57 16 14 44 58
g 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
γ2(g) 11 31 59 33 30 19 43 35 34 37 23 7 50 32 51
γ3(g) 50 31 11 32 43 51 19 33 35 7 59 37 23 34 30

Table B.1: Permutations relating the 3 dimensional icosahedral irreps of Refs. [67, 36].
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Supplemental Materials: All files described in Supplemental Materials are avail-
able at https://github.com/nxu25/PolyhedralBasisFunction.

I. Software for computing the real irrep matrices and real basis func-
tions. Software packages in Mathematica were developed for computing the real irrep
matrices as well as the spherical harmonics coefficients cp,l,n,j,m (Eq. 6.1) which define
the real basis functions in terms of spherical harmonics for the three polyhedral groups.
Specific software programs and functions for each group are listed in Table SM1. Fi-
nally, the real basis functions can be obtained by multiplying each row of Ĥ

p

l by the
spherical harmonics vector (i.e., Table[SphericalHarmonicY[l,m,θ,φ],{m,-l,l}]
in Mathematica). Please see the notebook file “Main.nb” for the tutorial of calling
these packages to generate real basis function for each polyhedral group.

Functions \ Group T O I
Software package RealIrrepBasisT.m RealIrrepBasisO.m RealIrrepBasisI.m

Irrep matrix Γt0[p ,g ]∈ Cdp×dp
Γt[p ,g ] ∈ Rdp×dp

Γo0[p ,g ]∈ Cdp×dp
Γo[p ,g ]∈ Rdp×dp

Γ0[p ,g ]∈ Cdp×dp
Γr[p ,g ] ∈ Rdp×dp

Non-orthogonalized
coefficients D̂p

l,m
(Eq. 6.10)

BasisRealFunctionCo-
effMatrixT[l ,m ,p ]

BasisRealFunctionCo-
effMatrixO[l ,m ,p ]

BasisRealFunctionCo-
effMatrixI[l ,m ,p ]

Matrix of coefficients

Ĥp
l =

[ Ĥp
l,n=1

...
Ĥp

l,n=Np;l

]
(Eq. 6.11)

BasisRealFunctionOt-
hoCoeffMatrixT[l ,p ]

BasisRealFunctionOt-
hoCoeffMatrixO[l ,p ]

BasisRealFunctionOt-
hoCoeffMatrixI[l ,p ]

Table SM1: Mathematica software packages and functions for computing real irrep
matrices and coefficient matrices of real basis functions for each group. Values p
∈ {1, . . . , Nrep}, g ∈ {1, . . . , Ng}, m ∈ {−l, . . . , l}, precisionN, l ∈ N, θ ∈ [0, π], and
φ ∈ [0, 2π). Note that for the group T , only the p = 1 and p = 4 irreps are real valued
and lead to real-valued functions.

II. Numerical Solutions. Note that the solution of real irrep matrices and
coefficients are not unique as described in Section 6. One solution for each group is
included as is tabulated in Table SM2.

Results T O I Format
Real irrep
matrices

RealIrreps T.txt RealIrreps O.txt RealIrreps I.txt

Ĥp
l

0 ≤ l ≤ 100

BasisCoeff T.txt BasisCoeff O.txt BasisCoeff I.txt a line of l
value, a line of
p value, and
then a line of
matrix Ĥp

l

F pl at random

(θ, φ)’s

0 ≤ l ≤ 100

RealBasisTest T.txt RealBasisTest O.txt RealBasisTest I.txt a line of l
value, a line
of p value,
and then a
line of “{θ,φ}
F pl (θ, φ)”

Table SM2: Numerical results of real irrep matrices and coefficient matrices of real
basis functions. In all these files, a matrix

(
a b
c d

)
is in the form of {{a,b},{c,d}}.

This manuscript is for review purposes only.

https://github.com/nxu25/PolyhedralBasisFunction
Main.nb
RealIrrepBasisT.m
RealIrrepBasisO.m
RealIrrepBasisI.m
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III. Obtain real basis functions in Matlab. Matlab functions are also devel-
oped to read the coefficients file (i.e., read coefMat.m for “BasisCoeff *.txt”) and then
to compute the real basis functions (i.e., demonstrate get Fplnj.m and get Fplnj.m).

This manuscript is for review purposes only.

read_coefMat.m
demonstrate_get_Fplnj.m
get_Fplnj.m
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